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Abstract

Rising sea levels pose significant risks to coastal regions worldwide, and the 2021
Intergovernmental Panel on Climate Change AR6 report emphasised that rates
of sea-level rise are the fastest in at least the last 3000 years. To understand
historical sea-level trends at regional and local scales, it is crucial to analyse the
drivers of sea-level change and their potential impacts. The influence of these
different drivers interact at a range of spatial (global, regional, local level) and
temporal (annual to millennia) scales. The development of a statistical model
that seeks to estimate a number of these characteristics would be of immeasurable
value to the sea level and climate impact communities. These characteristics would
include: exhibiting flexibility in time and space; having the capability to examine
the separate drivers; and taking account of uncertainty.

The aim of our project is to develop statistical models to examine historic sea-level
changes for North America’s Atlantic coast and extend to the North Atlantic re-
gion, incorporating Ireland’s coastline. For our models, we utilise sea-level proxies
and tide gauge data which provide relative sea level estimates with uncertainty.
Proxy data can reconstruct sea-level variations over the late Holocene, spanning the
last 2000 years, providing a valuable pre-anthropogenic context for understanding
historical relative sea-level changes. We study a range of statistical models used to
examine relative sea-level data accounting for uncertainty and varying in space and
time. The statistical approaches employed range from simple linear regressions to
advanced Bayesian Generalised Additive Models (GAMs), which allow separate
components of sea-level change to be modelled individually and efficiently and for
smooth rates of change to be calculated.
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Abstract

Our most advanced models are built in a Bayesian framework which allows for ex-
ternal prior information to constrain the evolution of sea-level change over space
and time. To investigate the drivers of sea-level change, we use flexible and ex-
tended GAMs and effectively account for the uncertainty associated with proxy
data using the noisy input uncertainty method. Through the integration of sta-
tistical models, proxy data, and tide gauge measurements, our findings reveal a
significant rise in current sea levels along North America’s Atlantic coast, reaching
the highest point in at least the last 15 centuries. The GAMs exhibit a remarkable
capability to examine various drivers of relative sea level change, including geolog-
ical processes (e.g. glacial isostatic adjustment; GIA), local factors, and barystatic
influences. Our models provide evidence that GIA primarily drove relative sea-
level change along North America’s Atlantic coast until the 20th century when a
notable rise in the rate of sea-level rise became apparent.

We present the open-source reslr package, which serves as a valuable resource
for the sea level community, offering a diverse range of statistical approaches.
This R package enables Bayesian modeling of relative sea level data, providing a
unified framework for loading data, fitting models, and summarising results. By
incorporating various statistical models, it offers flexibility and versatility in sea
level analysis. Notably, reslr takes into account measurement errors associated
with relative sea-level data in multiple dimensions, enhancing the accuracy and
reliability of the modelling process. With reslr, researchers and practitioners
can explore and compare different statistical methodologies for a comprehensive
understanding of historical sea-level changes, their uncertainties and importantly,
the rate of change of these sea-level variations.

One critical driver of sea-level change is ocean dynamics, commonly referred to
as dynamic sea-level change. Our statistical methodologies offer valuable insights
into dynamic sea-level changes over the last 2,000 years, using both proxy records
and tide gauges at a regional level. To investigate the dynamic sea-level compo-
nent along the North Atlantic coastline, we employ an extended noisy input GAM,
effectively decomposing the relative sea-level signal. In our investigation, we focus
on two key components of dynamic sea-level change in the North Atlantic: the
vertical (Atlantic Meridional Overturning Circulation - AMOC) circulation and
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Abstract

the quasi-horizontal circulation, involving surface-enhanced currents and gyres.
Our results highlight a decline in the AMOC over the studied period of 2,000
years with an unprecedented rate of decrease similar to previous studies. Addi-
tionally, the quasi-horizontal circulation exhibits increased variability during the
same timeframe with a notably difference north and south of Cape Hatteras, USA.
This comprehensive analysis sheds light on the complex dynamics driving sea-level
changes in the North Atlantic region, contributing to a better understanding of
the factors influencing sea-level variations. Our approach places the present alter-
ations in ocean circulation patterns within the extended context of a 2,000-year
timeframe. However, the interpretability of these changes is constrained by the
resolution of the proxy data.
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CHAPTER 1
Introduction

1.1 Motivation
Climate change is defined as a change in our climate over time due to natural
variability or anthropogenic influences (IPCC, 2007). The latest IPCC AR6 report
emphasises that human activities, particularly the release of greenhouse gases, are
responsible for global warming (IPCC, 2023). As a consequence, our climate has
experienced the most rapid rise in global surface temperature over the past 50 years
compared to any other 50-year period in the last 2000 years (IPCC, 2023). With
rising global temperatures, every region in the world has experienced an increase
in extreme weather events such as heatwaves, heavy precipitation, droughts and
tropical cyclones, which has resulted in agricultural damage, ecological losses and
increased human mortality (Masson-Delmotte et al., 2021). Thus, climate change
is the overarching challenge of the 21st century that encompasses various domains,
including science, economics, health, sociology, and politics (Maslin, 2019).

Sea level change is a visual and tangible example of climate change and it has been
shown, with “high confidence”, that global mean sea level (GMSL) is rising and
accelerating (Oppenheimer et al., 2019). Rates of GMSL rise between 2006 and
2015 were 3.6 mm/yr, which is 2.5 times the rate recorded between 1901 and 1990
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(Masson-Delmotte et al., 2021). Currently, more than 800 million people globally
(Reimann et al., 2023) are living in the low-elevation coastal zone (less than 10m
above sea level; Hauer et al., 2021) with this number predicted to rise to over
1 billion in the future (Neumann et al., 2015; Reimann et al., 2023). With this
in mind, the impacts of rising sea levels could have devastating consequences for
coastal communities, for example increased coastal erosion (e.g., Douglas et al.,
2000), coastal flooding (e.g., Finkl, 2013; Spalding et al., 2014) or storm damage
due to extreme sea levels (Tebaldi et al., 2021). The future of our coastlines is
unknown, yet understanding what has happened in the past is crucial for predicting
future sea-level rise.

Our understanding of recent global sea-level rise has improved dramatically over
the last thirty years with the advent of satellite data. In the late 1990s, the launch
of the TOPEX/Poseidon satellite ushered in the modern satellite era, enabling di-
rect measurements of global sea surface height to high degrees of accuracy (Legeais
et al., 2018; Biferno et al., 2023). Prior to the modern satellite era, instrumental
data collected by tide gauges provided the primary source of information regard-
ing sea-level changes. The earliest continuous sea-level observations can be traced
back to the late 1600s (Wöppelmann et al., 2006), while the advent of automatic
tide gauge records commenced in the 19th century (Woodworth et al., 2011). Tide
gauge records offer vital information on coastal sea level changes relative to the
ground, although they exhibit a spatial bias towards northern hemisphere regions
(Cazenave et al., 2022). The instrumental data from satellites and tide gauges pri-
marily capture changes within the relatively recent anthropogenic periods, limiting
our understanding of long-term sea-level variations (i.e. prior to the 1700s).

To address the temporal limitations of instrumental data, researchers turn to the
use of proxies. Proxies are observable features, whether physical, biological, or
chemical, that enable estimates of indirectly measurable variables (e.g., Murray-
Wallace and Woodroffe, 2014). Over the past four decades, significant advance-
ments in proxy data collection and processing techniques have greatly improved
our understanding of past relative sea-level changes from the Common Era (CE:
years between 0 and 2000) (e.g., Van De Plassche, 1986; Shennan et al., 2015).
However there are limitations when reconstructing Common Era sea-level changes
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using proxy records, in particular measurement uncertainties for the observations
(e.g., Barlow et al., 2013). Consequently, specific statistical modelling strategies
are necessary to investigate the spatio-temporal evolution of sea-level change while
accounting for associated uncertainties. Recently, the variety of statistical models
available to the sea-level community has grown (e.g., Kopp et al., 2009; Church
and White, 2011; Cahill et al., 2015a; Dangendorf et al., 2017; Kopp et al., 2016;
Walker et al., 2021). With these statistical advancements and data sources, it
has been shown the rate of sea-level rise today is at its fastest for the last three
millennia (Masson-Delmotte et al., 2021).

Sea-level change is not equal at every location and many regions deviate drastically
from the GMSL (Cazenave and Llovel, 2010). As a result, researchers are interested
in investigating physical processes impacting sea-level change at different spatial
scales (Kopp et al., 2015; Brown et al., 2016). The increased availability of data
and progress made in statistical modelling has allowed researchers to examine
different physical drivers impacting global, regional and local changes in sea level
over the Common Era (e.g., Shennan et al., 2006; Walker et al., 2021). Yet, these
statistical models are impacted by computational limitations which have affected
their wide-spread usability (Ashe et al., 2019). Overcoming these challenges will
allow further insight into the drivers of sea-level change.

The outputs derived from statistical models in sea-level research not only deepen
our understanding of sea-level fluctuations but also empower policymakers and
stakeholders to develop adaptive strategies, make informed policy decisions, and
implement effective mitigation measures to address the challenges posed by sea-
level rise (IPCC, 2023). By combining scientific knowledge with proactive policy-
making and resilient strategies, we can work towards a sustainable and secure
future in the face of sea-level changes (O’Brien et al., 2012).

1.2 Relevant Statistical Techniques
Statistical models have been used to examine various aspects of our climate and
are vital tools for understanding the changes that occur in our climate over various
timescales and locations (e.g., Von Storch and Zwiers, 2002; Flato and Marotzke,
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2013). For sea-level research, a variety of models have been developed using both
parametric and non-parametric techniques. The outputs of these models can assist
the sea-level community when examining changes in sea level, rates of these changes
and potential causes for these changes in time and space.

In this section, we discuss the statistical modelling techniques that are used by the
sea-level research community, as well as mentioning the extensions that we have
implemented. Our discussion here is mostly descriptive, with the full technical
specification provided in later chapters. In general we aim to estimate the true sea
level which we define as f(x, t) where x represents space and t time, though much
of this section is concerned with time only for which we drop the dependence
on location. For each statistical model in this thesis, a Bayesian hierarchical
framework is employed and Markov Chain Monte Carlo (MCMC) simulations are
used to provide estimates for unknown parameters with associated uncertainties.
The tool used to conduct MCMC simulations is Just Another Gibbs Sampler
(JAGS; Plummer, 2003), which is implemented in R using the rjags package
(Plummer et al., 2016). In the final components of this section, we provide a brief
insight into the two uncertainty methods we employ and provide a rationale for
their selection.

1.2.1 Linear Regression
A linear regression provides a line of best fit that, in sea level research, provides a
rate of change of sea level over time. Mathematically, it is given by:

f(t) = α + βt (1.1)

where α is the intercept and β is the slope. Previous studies undertaken by the
sea-level community have used this technique to assess the rate of relative sea level
change over the past 4,000 years, however, measurement uncertainties (which are
common to proxy records) were not incorporated (Shennan and Horton, 2002; En-
gelhart et al., 2009). In Chapter 4, we use a temporal linear regression method to
estimate such rates of change in relative sea level (RSL). The simplistic interpre-
tation of the results of this technique have contributed to its popularity. However,
the rigidity of the assumption of linearity may be unrealistic when examining
long-term historical trends in RSL change.
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1.2.2 Change Point Models
The change point (CP) model is a modification of the linear regression that employs
piecewise linear segments and determines the location or timing of trend changes
in the data (Carlin et al., 1992; Cahill et al., 2015b). The multiple CP model, f(t)
is described as:

f(t) =

α1 + βj(t− λ1) when j = 1, 2,

αj−1 + βj(t− λj−1), when j = 3, ...,m+ 1
(1.2)

where αj is the expected value of the response at the jth CP. λj is the time at
which the CP occurs with the prior restriction that λ1 < λ2 < ... < λm and m is the
number of CPs (Cahill et al., 2015b). β1 and βm+1 are the slopes before and after
the first and last CP respectively. βj for j = 2 . . . ,m are the slopes between the
(j− 1)th and jth CP. β1 and βm+1 are estimated as part of the model and are free
parameters given prior distributions (Carlin et al., 1992). The remaining βj are
deterministically calculated since the function is continuous and the neighbouring
linear segments must join together (Cahill et al., 2015b) such that:

βj = αj − αj−1

λj − λj−1
, j = 2, ...,m. (1.3)

Change point modelling has been used in various sea level studies. For instance,
the timing and magnitude of recent accelerated sea-level rise in North Carolina
used proxy records and a change point modelling strategy (Kemp et al., 2009). In
addition, change point modelling was used to examine instrumental records. One
such example being Hogarth et al. (2020) where tide gauge records since 1958 for
the British Isles were extended through data archaeology, and then change point
models were applied to achieve more consistent estimates of sea level rise. Building
on this work, Hogarth et al. (2021) further extended the technique to analyse
changes in mean sea level around Great Britain over the past two centuries.

In Chapter 4, we explore the implementation of CP modelling within the reslr
package. This technique allows for the estimation of abrupt changes in RSL.
However, a drawback of many CP modelling techniques is the need to determine
the number of change points in advance.
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1.2.3 Gaussian Process
Rasmussen and Williams (2006) define a Gaussian process (GP) as a generalised
multivariate Gaussian distribution where each individual random variable is nor-
mally distributed and their collective distribution also follows a Gaussian distri-
bution. The GP can be described in the following way:

f(t) ∼ GP (µ(t), k(t, t′)) (1.4)

where µ(t) is the mean function and k(t, t′) is the covariance function. The covari-
ance function indicates the relationship between outcome variables. The proximity
of input variables (t and t′) strengthens the association between their respective
outcomes, whereas increasing distance between the input variables results in a
weaker relationship (Rasmussen and Williams, 2006).

This modelling strategy has been used extensively in the sea-level community
to examine the evolution of sea-level change in time and space and examining
potential underlying processes causing sea level change (Kopp et al., 2009; Kopp,
2013; Kopp et al., 2016; Kemp et al., 2018; Walker et al., 2021). In Chapter 3, we
discuss the use of GPs when examining the drivers of RSL change and highlight
the requirement for a more efficient model as the computational burden associated
with GPs grows in proportion with the cube of the number of data points.

In Chapter 4, we demonstrate an extension to the Gaussian Process called the
Integrated Gaussian Process (IGP) which allows for the derivative of the curve to
be directly estimated, providing an estimate for rate of change of RSL (Holsclaw
et al., 2013). Previous research has demonstrated its success for a range of single
site proxy records (e.g. Hawkes et al., 2016; Kemp et al., 2017; Shaw et al., 2018;
Dean et al., 2019; Stearns et al., 2023; Kirby et al., 2023), however, a more efficient
strategy is required for spatio-temporal modelling.

1.2.4 Splines
Splines are versatile mathematical tools used in various applications, including in-
terpolation and data smoothing. In our research, we specifically examine two types
of splines: B-splines (de Boor, 1978; Dierckx, 1995) and P-splines (Eilers and Marx,
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1996). B-splines construct smooth curves by connecting piecewise polynomials at
specific points called knots along the horizontal axis. Any degree of polynomial
can be used provided an appropriate number of knots are used (de Boor, 1978;
Dierckx, 1995; Cox, 2006). Mathematically, B-splines are described by:

f(t) =
K∑

k=1
bk(t)βk (1.5)

where bk(t) is the spline basis function and βk is the spline coefficient.

P-splines by contrast aim to overcome the difficulty of choosing the number of
knots (Eilers and Marx, 1996) by constraining the smoothness of the spline via
the spline coefficients. The penalty is constructed based on differences (of order d)
between spline coefficients. A parameter applied to the penalty term controls the
trade-off between model accuracy and smoothness. In Chapter 4, we demonstrate
the P-spline technique when examining RSL change in time for a single location
and the corresponding rate of change.

In our research, we extend the B-spline approach to account for both space and
time. We form B-spline basis functions for each individual covariate; time, lon-
gitude and latitude (Wood, 2017a). In order to capture the variability over time
and space, a tensor product is used to combine these individual basis functions
(Wood, 2006). We use a spatio-temporal spline in Chapter 4 to examine sea level
over multiple locations and time periods.

1.2.5 Generalised Additive Models
Generalised additive models are generalised linear models with linear predictors
that depend “linearly on the sum of smooth functions of the predictor variable"
(GAMs; Wood, 2017a, p. 161). It is constructed using a basis expansion for each
smoother and an associated variable which penalises the function’s smoothness
as described in Hastie and Tibshirani (1990). GAMs allow for a combination
of smoother functions along with random effects which allows for models to be
carefully specified relevant to the problem at hand.

GAMs allow us to identify variations in sea-level across different spatial and tem-
poral scales, instead of focusing solely on specific underlying physical processes.
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The model’s components have the ability to capture multiple underlying processes
which can vary depending on the specific location and timeframe under study.
These processes may occur simultaneously and interact in complex ways, poten-
tially obscuring or amplifying the influence of other factors.

We use GAMs in Chapter 3 to understand the physical processes driving RSL
change over the last 3,000 years. In Chapter 4, the reslr package enables the
paleo sea-level community to use this technique for future sites. Chapter 5 demon-
strates the capabilities of this technique on large datasets. Also, in Chapter 5 we
demonstrate the extendable nature of this model which allows for a comparison
between RSL changes at a regional level across the North Atlantic.

1.2.6 Uncertainty Methods
In our analysis, we use a combination of data sources from instrumental and proxy
records. The data sourced from proxies contain bivariate uncertainties resulting
from measurement error associated with the response variable (RSL) and with the
input variable (time). In this section, we describe the two uncertainty methods
employed in our research and provide a rationale for their selection.

1.2.6.1 Errors-in-Variables Uncertainty Method

The Errors-in-variables (EIV) method, proposed by Fuller (1987) and formulated
by Dey et al. (2000), considers the input variable to be measured as an error-prone
substitute, thereby accounting for potential errors in the input variable. This is
in contrast to the conventional assumption of error-free input variables. The EIV
model assumes that the input variable time, t̃, is given:

t̃ = t+ ϵt (1.6)

where t is the true unknown values for the input variable and ϵ ∼ N(0, s2
t ) with s2

t is
the known measurement error variance associated with the input variable. Whilst
the method can be applied to any problem with input noise, we apply it specifically
to the problem of input time error when examining relative sea level changes. The
EIV method is applied to linear regression, change point and integrated Gaussian
process models presented in Chapter 4. Whilst this technique directly accounts
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for the uncertain input process, the extra statistical modelling steps can lead to
substantially increased computation time.

1.2.6.2 Noisy Input Uncertainty Method

An alternative to the EIV method is the Noisy Input method which also al-
lows for data where the input and output measurements are corrupted by noise
(McHutchon and Rasmussen, 2011). The Noisy Input (NI) method was originally
introduced within a Gaussian Process model, yet, we demonstrate its capabilities
for other process models. The NI method assumes the response variable y to be a
noisy measurement ỹ given by:

ỹ = y + ϵy (1.7)

where y is the true response and the error term is given by ϵy ∼ N(0, s2
y) with

sy being the known measurement standard deviation of the response. The input
measurements are assumed to be a noisy estimate, t̃ of the true time value t given
as:

t̃ = t+ ϵt (1.8)

where the error term is given by ϵt ∼ N(0, s2
t ) and st is the known measurement

error associated with the input variable. As a result, a function for the response
variable with input noise is formed in the following way:

y = f(x, t̃+ ϵt) + ϵy (1.9)

McHutchon and Rasmussen (2011) describes a three step process to account for
these uncertainties: (1) the model is fitted without input noise; (2) the slope of
the posterior mean is calculated and a corrective variance term is calculated; (3)
the model is re-fitted with this corrective variance term added as an additional
model error term, in other words, inflating output variance to overcome these
noisy inputs.

The advantage of the NI approach is that it maintains a consistent level of noise
regardless of whether the measurement is treated as an input or an output. This
ensures that all the data contributes to informing the input noise variance, thereby
aligning with output expectations and reducing the potential for overfitting (McHutchon
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and Rasmussen, 2011). For this reason, we use this approach in our new modelling
approach as described in Chapter 3 and demonstrated in Chapter 4 and Chapter
5.

1.3 Thesis Outline
The remainder of this thesis is organised as follows. In Chapter 2, we provide
a detailed definition of relative sea level and describe the physical processes that
cause relative sea level to vary in time and space. In addition, we provide insight
into the data collection techniques used by the sea-level community. This chapter
is based on the work presented in Upton et al. (2023a).

In Chapter 3, we address the main challenges encountered by the sea-level commu-
nity, including dealing with data complexities and uncertainties, the confounding
nature of the different relative sea-level components, and computational inefficien-
cies. We propose an additively decomposed Bayesian spatio-temporal model that
has the capability to identify different drivers of relative sea-level change at re-
gional and local levels. The model estimates multiple components of the relative
sea-level field using a combination of splines and random effects, and accounts for
the bivariate uncertainties associated with the proxy input data using the noisy-
input uncertainty method. The outputs of our model provide insight into the
dominant factors influencing RSL change along the densely populated Atlantic
coast of North America over the past 3,000 years. Notably, our results emphasise
that RSL has been increasing at an unprecedented rate during the 20th century.

Chapter 4 delves into a comprehensive discussion on the implementation of our R
package, called reslr. We provide a thorough explanation of the design choices
that govern the package architecture and enhance the interpretability of its key
features. The reslr package facilitates the examination of relative sea-level change
by employing a variety of Bayesian statistical models, while also accounting for
measurement errors inherent in data derived from proxy records. To ensure us-
ability for a wide range of users, regardless of their level of experience with R,
we have curated a minimal set of functions. We illustrate the capabilities of the
package through two case studies. The first case study showcases the temporal
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evolution of RSL at a single location, including the rate of RSL change. The sec-
ond case study expands upon this analysis by incorporating multiple locations,
demonstrating how the package can effectively decompose the RSL signal.

In Chapter 5, we discuss the impact of ocean dynamics on RSL, which is referred to
as dynamic sea-level change. We focus on ocean circulation patterns in the North
Atlantic region due to their significant relevance in the field of global climate dy-
namics. In particular, we examine two components: (1) the Atlantic meridional
overturning circulation (AMOC) and (2) the quasi-horizontal circulation pattern
consisting of gyres and other surface-enhanced currents. We use proxy records and
instrumental data from tide gauges to understand how dynamic sea level evolved
in the North Atlantic over the last 2,000 years. Applying an extended noisy in-
put generalised additive model, we explore the changes that occur in these two
components of ocean circulation, focusing on two sub-regions: - the east west sub-
region of the North Atlantic - and the south north sub-region of Cape Hatteras,
North Carolina, USA. Our results demonstrate that the AMOC has been gradu-
ally declining, however, since the late 1850s, the rate of decline has dramatically
increased. Over the past 2,000 years, quasi-horizontal circulation patterns have
displayed substantial fluctuations, highlighting distinct dynamic sea-level variabil-
ities on either side of Cape Hatteras, USA. In both scenarios, the resolution of our
proxy records has posed limitations on the interpretation of our results, especially
when considering shorter timeframes.

Finally, in Chapter 6, we provide a comprehensive conclusion to the thesis, sum-
marising the key findings and insights obtained throughout our research. Addi-
tionally, we identify and discuss potential avenues for future research. All proposed
methods in this thesis were implemented using the R (R Core Team, 2021) soft-
ware and are accessible on the author’s Github1 via three public repositories. The
repositories NI-GAM, reslr, and RSL-NorthAtlantic are related to Chapters 3,
4, and 5, respectively. R scripts are made available such that the analyses and
plots presented throughout this thesis are reproducible. In addition, all datasets
are available, either through R packages, which are presented in the R scripts, or
files in the aforementioned repositories.

1https://github.com/maeveupton
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CHAPTER 2
Introduction to Relative

Sea-Level Change

Throughout this thesis, we examine relative sea-level changes using a variety of
statistical models and data sources. In this chapter, we describe the physical pro-
cesses that can cause these changes which result in different responses on spatial
and temporal scales. In addition, we provide insight into the different data col-
lection techniques and their associated uncertainties. The reader can refer back
to this chapter to obtain definitions of geological terms which are used in the
statistical models presented in later chapters.

2.1 Relative Sea Level (RSL)
The sea surface is constantly changing with some perturbations caused by the wind
producing waves or storms, gravitational forces resulting in tides or atmospheric
influences giving rise to ocean currents (Murray-Wallace and Woodroffe, 2014).
Mean sea level is the average height of the sea surface, measured relative to the
centre of the Earth, over time and space (Church et al., 2013). On a global scale, it
is known as global mean sea level (GMSL). Relative sea level (RSL) is the height of
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the ocean surface measured with respect to the Earth’s sediment surface as shown
in Figure 2.1 (Church et al., 2013).

Figure 2.1: A schematic diagram for the relative sea level definition.

2.2 Drivers of RSL Change
RSL is the resultant effect of physical processes that can alter the height of the
land and/or sea surface. The importance of specific processes varies markedly
across space and through time giving rise to a complex and evolving pattern of
RSL change (e.g. Warrick et al., 1993; Milne et al., 2009).

Shennan and Horton (2002) identified factors that can influence RSL changes
(∆ξrsl(τ, ψ)) over time (τ) and space (ψ). Building upon their conceptual def-
inition, we have expanded the framework to incorporate additional components
relevant to our research:

∆ξrsl(τ, ψ) = ∆ξbar(τ, ψ) + ∆ξthermo(τ, ψ) + ∆ξiso(τ, ψ)+

∆ξdyn(τ, ψ) + ∆ξlocal(τ, ψ).
(2.1)

∆ξbar(τ, ψ) demonstrates barystatic influences and in previous literature (e.g. Fair-
bridge, 1961; Lambeck et al., 2004) the term “eustatic” was commonly employed to
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encompass barystatic influences. However, Gregory et al. (2019) discussed the di-
verse interpretations associated with the term “eustatic” and its subsequent omis-
sion from recent IPCC reports and from this thesis (e.g., Church et al., 2001;
IPCC, 2007; Church et al., 2013). ∆ξthermo(τ, ψ) represents thermosteric changes
and ∆ξiso(τ, ψ) represents isostatic adjustment. ∆ξdyn(τ, ψ) represents dynamic
sea-level and ∆ξlocal(τ, ψ) represents local changes that can be impacted by fac-
tors such as tidal range changes and sediment compaction. Figure 2.2 provides
visualised representation of these components adapted from Shugar et al. (2014).

Figure 2.2: A list of the various physical processes that can impact relative sea level change
(Shugar et al., 2014; Dunbar, 2010).

These processes can occur concurrently and in varying directions, which can ob-
scure or magnify the contributions from other factors. In the upcoming sections,
we describe these mechanisms, commencing with global and regional-scale pro-
cesses, followed by local-scale processes. We emphasise the significant processes
identified in our research. In our more complex statistical model, our objective is
to deconstruct the relative sea-level (RSL) signal into components that represent
these diverse processes. However, given their intricacy, we often perform this de-
composition at an aggregated level. For instance, isostatic adjustment may have
global ramifications, while local factors are subject to site-specific variations.
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2.2.1 Barystatic Changes
Barystatic changes are influenced by the transfer of mass between land-based ice
and oceans, where the growth or decay of ice causes global mean sea level to rise
or fall (Gregory et al., 2019). The transfer of mass between land-based ice and
the ocean drives RSL change. Ice melt returns mass to the ocean as liquid water,
which causes a rise in global mean sea level (Leuliette, 2015). This contribution
can vary in magnitude (and indeed sign) across all timescales, but is common to all
locations. In addition, barystatic sea-level changes may result from anthropogenic
influences, for example land-water storage, where water is retained on land by
dams, reduces the transfer of water to the oceans, whereas, ground water pumping
processes can accelerate the water transfer from the land to ocean (Church et al.,
2013).

In Chapter 3, we highlight the impacts of barystatic changes along the Atlantic
coast of North America and how they evolved over the past 3000 years on a regional
scale. In Chapter 5, we extend the spatial scale to incorporate sites along the
North Atlantic coastline and investigate how barystatic changes varied over a larger
region.

2.2.2 Thermosteric Changes
Thermosteric contributions are influenced by changes in global temperature cre-
ating density variations within our oceans resulting in sea-level changes (Antonov
et al., 2005). The magnitude of this contribution may differ across various timescales,
but it remains consistent across all locations. With rising global temperatures, 90%
of this additional heat is absorbed by our oceans (Masson-Delmotte et al., 2021).
Changes in temperature alter the density of ocean water resulting in sea-level
change. When water warms it becomes less dense and rises, while when water
cools it becomes more dense and falls. Since water can move horizontally this
thermosteric contribution can drive a change in global mean sea level (Grinsted,
2015).

Chapter 3 sheds light on the consequences of thermosteric shifts along the Atlantic
coast of North America, delving into their historical evolution over the past 3000
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years within a regional context. Expanding the investigation in Chapter 5, we
extend the spatial scale to encompass sites along the North Atlantic coastline,
aiming to uncover the varied dynamics of thermosteric changes across a broader
and more expansive region.

2.2.3 Isostatic Adjustment
Isostatic adjustment is the gradual response of the Earth, the gravitational field
and the oceans in response to changes in surface loads, for example ice sheets
(Sleep, 2002). This phenomenon is particularly relevant in the context of glacial
isostatic adjustment (GIA), which specifically deals with the response of the Earth’s
crust to the formation and melting of ice sheets (Whitehouse, 2018). The process
displays both temporal and spatial variations attributed to the gradual formation
and melting of ice sheets, as well as proximity to the ice sheet.

Throughout the Last Glacial Maximum, which occurred approximately 25,000
years ago, ice sheets covered significant portions of the Earth’s surface (Peltier,
1999). The weight of these ice sheets caused the land beneath them to sink, a
process known as subsidence, while simultaneously leading to the uplift of outlying
regions, forming what is called a peripheral forebulge (PB; Rovere et al., 2016).

During deglaciation, the isostatic response was reversed and previously subsided
areas began to uplift, resulting in a fall in RSL (Peltier, 1999). At the same time,
the PB started to collapse and retreat, contributing to a rise in RSL. Additionally,
as the mass of the melted ice was redistributed from being concentrated on land
to being dispersed in the ocean, the geoid (the shape of the Earth’s gravitational
field) was altered (Fjeldskaar, 1994). The aspects of GIA are visually represented
in Figure 2.3 as sourced from Whitehouse et al. (2021). Crucially, the process of
GIA continues for several thousand years after deglaciation and is ongoing today
with a characteristic spatial pattern (Engelhart et al., 2009).

16



2.2. Drivers of RSL Change

Figure 2.3: A schematic diagram of the physical process of glacial isostatic adjustment sourced
from Whitehouse et al. (2021).(a) Equilibrium state of the Earth without any ice sheet. (b) The
ice sheet causes land underneath to subside and uplifted regions form peripheral forebulges (PB)
resulting in a fall in sea level. (c) After the ice sheet melts, sinking areas begin uplifting and the
peripheral forebulges fall resulting in a rise sea level.

Physical models, known as Earth-ice models (e.g. Peltier, 2004; Caron et al., 2018),
predict these broad global spatial GIA patterns, although rates of change at specific
sites are sensitive to choices of Earth parameters such as mantle viscosity and
ice histories (Peltier, 2004). These patterns are confirmed using empirical data
in the form of coarse-resolution RSL reconstructions (e.g. Vacchi et al., 2016),
measurements by permanent global positioning system (GPS) stations (e.g. Ivins
et al., 2013), and tide gauges (e.g. Davis and Mitrovica, 1996).
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2.2.4 Spatial Fingerprint of Sea-Level Change from Ice
Sheets

While melting of land-based ice raises global mean sea level it also results in a
characteristic spatial fingerprint of sea-level change with locations proximal to the
melting ice sheet experiencing less rise (or even a fall) than the global mean, while
distal locations experience rise in excess of the global mean (Jeon et al., 2021). The
difficulty in identifying spatial fingerprints for specific locations, such as Greenland
in the North Atlantic region, stems from the limited availability of data spanning
multiple decades (Coulson et al., 2022). As a result, we do not focus on the impacts
of this process in this thesis.

2.2.5 Dynamic Sea-Level Change
Ocean circulation systems transport water, heat, dissolved gases and nutrients
around the globe and are vital component of our climate system (Pörtner et al.,
2019). Dynamic sea-level change arises from the redistribution of ocean mass
caused by shifts in prevailing patterns and strength of atmospheric and oceanic
circulation (e.g., Lowe and Gregory, 2006). It refers to mean sea-level changes
above the geoid, which represents the theoretical shape of the Earth’s surface
influenced solely by gravity, and is a consequence of ocean dynamics (Gregory
et al., 2019). This process causes RSL to vary at non-linear rates among regions
on decadal to multi-century timescales (Suzuki and Tatebe, 2020).

The ocean circulation patterns around the globe are complex and possess a vari-
ety of component that influence dynamic sea-level changes. In this research, we
focus on the North Atlantic Ocean which is a vital regulator for our global climate
(Rhines et al., 2008). The North Atlantic possesses active deep water formation
sites which allow vertical mixing of waters resulting the transfer of heat, nutrients,
dissolved gasses and other vital components throughout the ocean layers (Rahm-
storf, 2006). The extent of the ocean circulation system in the North Atlantic
is beyond this research. Instead, we focus on two key components that impact
dynamic sea-level changes. The first is the Atlantic Meridional Overturning Cir-
culation (AMOC) which is a system of currents that redistributes heat from the
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equatorial regions towards the poles, as demonstrated in Figure 2.4, and is driven
by deep water formation sites in the North Atlantic (Kuhlbrodt et al., 2007).

Figure 2.4: Global ocean circulation pattern known as the "great ocean conveyor" is crucial for
transporting water, heat, nutrients and dissolved gases (Broecker, 1991). It is moves warm salty
surface water northwards and returns cold dense water to the deep ocean (Sourced from National
Oceanography Centre: NOC, 2014).

The second type of oceanic circulation that we focus on is quasi-horizontal cir-
culation patterns. These quasi-horizontal circulation patterns encompass large-
scale surface currents influenced by the gyres and other surface-enhanced currents.
Gyres, circular rotating systems of ocean currents, are prone to forming in major
ocean basins due to the combined effects of wind patterns and the Coriolis effect,
which arises from the Earth’s rotation (Law et al., 2010). While, surface-enhanced
currents refer to oceanic currents that occur primarily in the upper layer of the
ocean and are influenced by wind patterns, temperature differences, and Coriolis
effect. Examples of surface-enhanced currents in the North Atlantic include the
Gulf Stream, the North Atlantic Drift, and the Canary Current. The interaction
of these gyres and surface-enhanced currents plays a crucial role in regulating the
transfer of heat and energy within the North Atlantic Ocean and the adjacent
regions as demonstrated in Figure 2.5.

19



2.2. Drivers of RSL Change

Figure 2.5: A map of the world’s five major gyres (circular rotating systems of ocean currents)
and surface-enhanced currents (e.g. Gulf Stream) influence global climate patterns and marine
ecosystems through the transport water, heat, nutrients and dissolved gases (Sourced from Na-
tional Oceanic and Atmospheric Administration: NOAA, 2018)

In Chapter 5, we discuss dynamic sea-level changes in conjunction with these
oceanic circulation patterns in the North Atlantic. We use our statistical modelling
approach to address the impacts of changing ocean currents on various locations
along coastline of the North Atlantic and the Atlantic coast of North America over
the past 2,000 years.

2.2.6 Sediment Compaction
Changes in sediment volumes can impact the height of the Earth’s surface through
the process of sediment compaction (Horton et al., 2018). Sediment compaction
refers to a variety of natural processes that occur during and after sediment de-
position in low-lying coastal areas, leading to a decrease in sediment volumes
and land-level lowering (i.e. subsidence) (Kaye and Barghoorn, 1964; Allen, 2000;
Brain, 2016). This subsidence is the result of mechanical compression processes
that occur over time and as a result of stress, reducing the pore space within the
sediment and increasing its bulk density (Brain et al., 2011).
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Sediment compaction processes are important for developing effective coastal risk
management strategies as they can trigger rapid and extensive alterations in
coastal geomorphology resulting in RSL changes at a local level (Horton et al.,
2018). The rates at which compaction induces RSL change differs based on spatial
and temporal factors in response to a combination of natural processes and human
activities that accelerate these processes (Brain, 2016).

In Chapter 3, sediment compaction is captured in a non-linear local component
which identifies site -specific RSL changes along the Atlantic coast of North Amer-
ica. It is important to note that in many cases, reconstructions of historic RSL are
not primarily aimed at understanding local-scale changes. Therefore, estimating
the local-scale component is typically a way to isolate the contribution of processes
occurring at larger spatial scales.

2.2.7 Tidal Range Changes
Tidal range is the difference between high and low water marks and changes in tidal
ranges are considered to be site specific (Dipper, 2022). Ocean depths or changes in
coastline can influence sedimentation in coastal areas which in turn impacts their
tidal ranges over centuries to millennia (Hill et al., 2011; Hall et al., 2013; Walker
et al., 2021). In addition, human activities, including dredging, deforestation or
loss of wetlands, can impact tidal range processes on shorter timescales (Mawdsley
et al., 2015).

As previously mentioned, the focus of Chapter 3 is to decompose the RSL signal
into different components that vary in time and space and so will be explored fur-
ther there. Local-scale RSL changes are usually framed as being the component
that is site specific. More often than not, RSL reconstructions are not generated
with the purpose of understanding local-scale change, and indeed sites are selected
to attempt to minimise the influence of local-scale factors. Therefore estimating
the local-scale component is most commonly a means to distill the contribution
from processes acting at larger spatial scales. Changes in tidal range are an exam-
ple of local-scale processes and the geomorphology of some sites (such as, a narrow
and dynamic connection to the open ocean) renders some more susceptible to this
change than others.
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2.3 Data Collection Techniques
Three primary methods are used to investigate changes in RSL over time and
space. Recent changes are captured through instrumental records from satellites
and tide gauges, while proxy records reconstruct longer-term changes prior to
human influence. The data sources include instrumental records from satellites
(covering the previous 30 years) and tide gauges (covering the last 150 years),
as well as proxy data extending beyond the instrumental timeframe. This thesis
focuses specifically on RSL changes during the late Holocene era, spanning the
past 3,000 years which requires proxy and tide gauge data.

2.3.1 Instrumental Data
One method for measuring the height of the ocean is using satellite altimetry. This
technique involves using radar to accurately and precisely measure the height of
the ocean with near global coverage (Church et al., 2013). However, this method is
limited to data collected from 1992 onwards, since the launching of the TOPEX/-
Poseidon satellites (Church et al., 2013). In Figure 2.6 we demonstrate the tempo-
ral range of the satellite data for examining sea level changes (Upton et al., 2023a).
As a result, alternative data collection techniques will be the focus of this thesis.
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Figure 2.6: Global mean sea level variation over the past 30 years based on satellite data sourced
from NASA’s Goddard Space Flight Center (Data sourced from NASA: Biferno et al., 2023)

The next data collection technique is tide gauges. Tide gauges are devices fixed
to the land and regularly measure the height of the adjacent sea surface at regular
intervals, for example every hour or at higher frequencies (Pugh and Woodworth,
2014a). The Permanent Service for Mean Sea Level (PSMSL) compiles monthly
and annual tide gauge data for approximately 1,500 stations globally (PSMSL;
Woodworth and Player, 2003; Holgate et al., 2013). Figure 2.7 displays the highly
uneven distribution of the global network of tide gauges across space and through-
out time (Upton et al., 2023a). With the earliest tide gauge records beginning
in the late 17th or early 18th centuries in northwestern Europe, the tide gauge
records are temporally restricted and an additional data collection technique is
required to extend these records further back in time (Wöppelmann et al., 2006).
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Global Tide Gauge Network
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Figure 2.7: Location of the tide gauge stations from 1807 to 2021 using data from Permanent
Service for Mean Sea Level online database (Data sourced from PSMSL: Woodworth and Player,
2003; Holgate et al., 2013)

In this thesis, we use tide gauge data to extend the proxy records to capture recent
RSL changes using data from the online Permanent Service for Mean Sea Level
database (PSMSL; Woodworth and Player, 2003; Holgate et al., 2013), focusing
on sites along the Atlantic coast of North America in Chapter 3 and in Chapter 5
we extend our records to incorporate tide gauges along the coastline of the North
Atlantic. In Chapter 4 we demonstrate the capabilities of the reslr package which
automatically downloads the user’s required tide gauge from the PSMSL online
database.

2.3.2 Proxy Records
In the late 1970s, a number of projects were coordinated under the International
Geological Correlation Programme with the aim of defining a strategy for collect-
ing indicators of paleo sea level (Van De Plassche, 1986; Brooks and Edwards,
2006). Findings from these early studies provided a clear methodology for de-
veloping records of RSL change (Edwards, 2005). These indicators are classified
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as sea-level proxies, which can be physical, biological, or chemical in nature, and
possess a systematic and quantifiable relationship with sea level during their forma-
tion, for example, in situ sediments, fossil organisms, morphological features, and
archaeological remains (Horton et al., 2018). Proxies for sea level can be collected
from diverse environments that display vertical zonation allowing for meaningful
interpretation, such as salt marshes in mid to high latitudes (e.g., Stearns et al.,
2023) or mangrove sediments in low latitudes (e.g., Khan et al., 2022).

Proxy records were used to reconstruct historic RSL before the availability of
instrumental records and can be obtained from two main sources: sea level index
points and continuous cores. In this thesis, we focus on proxy records arising from
continuous cores for sites along the coastline of the North Atlantic.

2.3.2.1 Sea Level Index Point

A sea-level index point (SLI or SLIP) is a single sample with a single proxy obser-
vation at a single location and representing a single historic date (e.g., Brooks and
Edwards, 2006). SLIPs possess uncertainty in both the age and the reconstructed
RSL elevation. The vertical uncertainty associated with the reconstructed RSL
elevation arises from the local tidal range where the sample is collected, whereas
the age uncertainty of the sample results from the dating process (Khan et al.,
2019). SLIPs have been collected globally in many different environments and
have a number of different uses when examining paleo sea-level change (e.g., Shen-
nan and Horton, 2002; Horton et al., 2007). One advantage of SLIPs is that they
can be used in testing and constraining physicals models such as GIA models (e.g.
Shennan et al., 2002; Peltier, 1998). As a result, the focus on SLIPs is to obtain
long term temporal records, i.e. dating back over 10,000 years, however, these
types of records are extremely difficult to collect on a global scale (Shennan et al.,
2006). For this reason, we do not use SLIPs in our analysis.

2.3.2.2 Continuous Cores

For our research, we use proxy records from continuous cores to reconstruct historic
RSL prior to instrumental records (e.g. Kemp et al., 2009). Continuous cores
involve collecting sediment cores (vertical columns of sediment obtained from the
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Earth’s sediment surface, with the oldest materials located at the lowest depths
and the most recent materials found at the highest levels, as shown in Figure
2.8) from coastal or marine environments, offering a near continuous record of
sediment deposition over time (e.g. Van De Plassche, 1986). Samples of sediment
are recovered in a single core and interrogated in subsequent laboratory analysis
to determine sample age and the elevation at which it accumulated relative to
tidal datums (a defined stable zero level for sea level (Pugh, 2004)). These cores,
known as geological tide gauges or near continuous proxy reconstructions, contain
multiple proxy observations and numerous historic dates (e.g. Barlow et al., 2013).
By analysing the sediment layers, researchers can identify changes in sea level based
on variations in sediment composition, microfossil assemblages, or other indicators
(Shennan et al., 2015). This allows for a detailed reconstruction of paleo sea level
changes.

Figure 2.8: An example of continuous core of salt marsh sediment from Prince Edward Island,
Canada. The sediment core is collected using a hand held Russian Peat corer.

To estimate the age of a sample, a history of sediment accumulation is developed
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by directly dating a subset of levels (depths) within a core typically using radio-
carbon measurements (Törnqvist et al., 2015). In addition, dating the shallowest
(i.e. most recent) part of the core can be accomplished by identifying trends and
events of a known age in down-core profiles of elemental abundance, isotopic ra-
tios, activity, and pollen assemblages, which can be reliably attributed to historical
causes (Marshall, 2015). These directly dated levels provide the input for a sta-
tistical age-depth model, which estimates the age of every sample (often but not
always around 1-cm thick) in the core with uncertainty. Several statistical models
are available to perform this step such as the Bchron (Parnell et al., 2008), Ba-
con (Blaauw and Christen, 2011), or Rplum (Aquino-López et al., 2018) packages
in R, and comparisons between the models indicate that the output has minimal
dependence on the specific model used (e.g. Wright et al., 2017).

Reconstructing the height of RSL requires a sea-level proxy. One example of a sea-
level proxy is distinctive plant communities found in salt marshes and mangrove
environments that have adapted to saltwater inundation within narrow elevation
ranges (Redfield, 1972). By employing reasoning by analogy, the spatial distribu-
tion of these plant species in present-day salt marshes can be used to interpret
their preserved counterparts found within core samples, allowing for paleomarsh
elevation (elevation with respect to tidal elevation at the time of formation) to be
reconstructed (Kemp and Telford, 2015).

Another example of a sea-level proxy is the remains of microfossils, which are
single celled organisms (also known as foraminifera) that are preserved in salt-
marsh sediment (e.g. Kemp et al., 2011). These form distinctive assemblages (as
described by the relative abundance of species) with a strong relationship to tidal
elevation as they are sensitive to duration and frequency of tidal inundation (e.g.
Horton et al., 2018). There are two advantages to using microfossils to reconstruct
RSL: (1) assemblages may occupy narrow elevations zones, which enables them to
produce more precise reconstructions than proxies with broader tolerances, such
as plants; (2) the large number of individuals in a microfossil assemblage (possibly
several hundred in a single sample), makes them suitable for quantitative analysis
(e.g. Kemp et al., 2009, 2013).
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Typically, RSL reconstructions using microfossils rely on the application of trans-
fer functions. A transfer function provides quantitative estimates of past envi-
ronmental conditions using empirically-derived equations and paleontological data
(Sachs et al., 1977). The transfer function is calibrated using the relationship
between micro-fossil families and tidal elevation using a dataset representative of
the modern environment (Kemp and Telford, 2015). Transfer functions may use
Frequentist (Sachs et al., 1977; Horton and Edwards, 2006; Kemp et al., 2011)
or Bayesian approaches (Cahill et al., 2016) which provide an estimate for paleo-
marsh elevation with an associated uncertainty. This estimate for paleo-marsh
elevation is given in units of a standardised water level index (SWLI) which is
utilised to standardise the elevation of the modern day marsh across all sites of
varying tidal ranges in the study (Wright et al., 2011). Next, this estimate is
converted from SWLI units to paleo-marsh elevation in the core sample. From
this value, the RSL for each core sample is reconstructed using the paleo-marsh
elevation, surface altitude and the depth of core sample (Marshall, 2015).

The final proxy RSL record is completed by appending the age of each core sample
provided by the age-depth models with the associated RSL reconstructed using
sea-level proxies. The proxy RSL record contains stratigraphically-ordered data
points of age and RSL with corresponding 1 sigma uncertainties for both age and
RSL. The vertical uncertainty of sea level indicators, which varies among different
proxies and is influenced by tidal amplitude, is associated with the precision of
the measurements (Barlow et al., 2013). The age uncertainty, on the other hand,
is inherent to the dating method, usually radiocarbon dating, and varies due to
fluctuations in atmospheric radiocarbon concentration (Edwards, 2007). In Figure
2.9, we present a schematic illustration summarising the formation of the proxy
record. The boxes represent the uncertainty and the dots are the midpoints of the
boxes. In this thesis, proxy records from the coastline of the North Atlantic will
be the focus.
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Figure 2.9: A diagram illustrating how to reconstruct relative sea-level using a continuous core of
sediment. In step 1, the age and associated uncertainty of the sample is obtained by dating levels
in the sediment core using a dating technique, e.g. radiocarbon dating, and inputting this result
into an age-depth model. In step 2, sea level proxies from the core (i.e. plants and micro-fossils)
and a transfer function are used to estimate paleo-marsh elevation with uncertainty. In step 3,
the paleo-marsh elevation is converted to RSL and combined with the sample ages to form the
proxy records used reconstruct historic RSL changes. The boxes represent the uncertainty and
the red dots are the midpoint of the boxes.

2.4 Summary
In this chapter, we defined RSL and highlighted the underlying physical processes
driving changes across temporal and spatial scales. We discussed various RSL
data sources; satellite measurements, tide gauges and proxy records, and evalu-
ated their inherent advantages and disadvantages. We demonstrated the temporal
limitations of satellite data, leading to its exclusion from this thesis. We exam-
ined the instrumental records collected by tide gauges and highlighted its uses in
the upcoming chapters. Also, we carefully examined proxy record sources, includ-
ing SLIP and continuous cores. Ultimately, we selected continuous cores as their
observations are nearly uninterrupted over time, which aligned with our research
goals. In summary, this chapter established the research groundwork, defining key
concepts, and assessing data sources. Subsequent chapters expand on this foun-
dation, exploring statistical models and software advances to investigate physical
drivers of RSL changes and their implications at various regional levels.
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CHAPTER 3
A Noisy-Input Generalised

Additive Model for Relative
Sea-Level Change along the

Atlantic Coast of North America

We propose a Bayesian, noisy-input, spatial-temporal generalised additive model to ex-
amine regional relative sea-level (RSL) changes over time. The model provides proba-
bilistic estimates of component drivers of regional RSL change via the combination of
a univariate spline capturing a common regional signal over time, random slopes and
intercepts capturing site-specific (local), long-term linear trends and a spatial-temporal
spline capturing residual, non-linear, local variations. Proxy and instrumental records of
RSL and corresponding measurement errors inform the model and a noisy-input method
accounts for proxy temporal uncertainties. Results focus on the decomposition of RSL
over the past 3000 years along the Atlantic coast of North America. R code and data
for NI-GAM implementation is available at https://github.com/maeveupton/NI-GAM.
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3.1 Introduction
The Intergovernmental Panel for Climate Change (IPCC) in 2021 reported with
“high confidence" that global mean rates of sea-level rise increased from approx-
imately 1.3mm/yr between 1901 and 1971 to 3.7mm/yr between 2006 and 2018,
with a further increase in rates predicted for the remainder of the 21st century
(Masson-Delmotte et al., 2021, p. 5). In contextualising the socio-economic risk
that this sea-level rise poses for coastal communities, it is necessary to place his-
toric and predicted changes in a longer term (pre-anthropogenic) context and to
recognise that local sea level can diverge sharply from the global average.

Relative Sea Level (RSL) is the height of the ocean surface at any given location
and time, measured relative to the adjacent land (Church et al., 2013). Direct
measurements of RSL (typically considered to be high accuracy and with low
uncertainty) are made by a network of coastal tide gauges whose spatial distri-
bution is highly uneven and whose temporal duration is typically limited to the
past ∼ 100 years or less (Church and White, 2011). Understanding RSL before
tide-gauge measurements began requires proxies (physical, biological, or chemical
features with an "observable and systematic relationship to tidal elevation"; Hor-
ton et al., 2018) that are preserved in dated geological archives such as coastal
sediment (e.g. Gehrels, 1994) or corals (e.g. Meltzner et al., 2017). For the past
3,000 years (a period in Earth’s history called the late Holocene), it is possible
to generate near-continuous proxy RSL reconstructions which overlap tide-gauge
measurements (Kemp et al., 2013). The suite of late Holocene RSL proxy recon-
structions is growing, but their global distribution is highly uneven (Ashe et al.,
2019). However, the Atlantic coast of North America has a relatively large number
of datasets (Figure 3.1) generated from sediment that accumulated in salt-marsh
(e.g. Kemp et al., 2018) and mangrove environments (e.g. Khan et al., 2022). We
therefore focus on this region to develop a new statistical model for quantifying
patterns, rates, associated uncertainties and possible causes of late Holocene RSL
change from a combination of proxy reconstructions and tide-gauge measurements
concurrently.
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Figure 3.1: Location of the 66 tide gauge sites and 21 proxy record data sites along the Atlantic
coast of North America with four proxy record sites chosen as case studies to present results of
our model.

A general discussion on how proxy records are developed is provided in Section
3.2 and we point the reader in the direction of Shennan et al. (2015) for a more
detailed account of the methodologies employed by the paleo sea-level community.
In this paper, we focus on analysing published data arising from proxy RSL recon-
structions. The proxy records contain RSL estimates throughout time for different
locations, specifically along the Atlantic coast of North America, and have asso-
ciated bivariate uncertainties, i.e. uncertainty in time and vertical uncertainty in
RSL.

Tide gauges and proxy records can only capture RSL, which is the net outcome
of a complex combination of physical processes operating on characteristic tempo-
ral (years to millennia) and spatial (site-specific to global) scales. These physical
processes often act simultaneously and serve to reinforce or mask one another;
they can change both the height of the sea-surface and that of the land differ-
ently through time and across space (Khan et al., 2022). Consequently, RSL
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measurements can display a rich variety of spatio-temporal patterns. A principal
goal of sea-level research is to interrogate these patterns to identify and quan-
tify the contribution from specific physical processes including (but not limited
to) the multi-millennial and regional response of the solid Earth to de-glaciation,
decadal to centennial redistribution of ocean water by changing currents, and the
recent (multi-decadal) acceleration of global average sea-level rise in response to
a warming climate (Church et al., 2013). This goal requires a means to decom-
pose the site-specific RSL signal at each locality in the network into contributions
at different temporal and spatial scales, while accounting for uncertainties in the
underlying data.

The most widely used tool for decomposing late Holocene RSL is a model devel-
oped by Kopp et al. (2016, hereon K16) and its various extensions (Kemp et al.,
2018; Walker et al., 2021). The K16 model decomposes RSL into three categories:
(1) a non-linear signal common to all records in the dataset being analysed (termed
global, irrespective of the geographic range of input data); (2) a regional signal
characterized by a linear rate of change over the past ∼ 2000 years and (3) a
local (site-specific) signal that operates in a non-linear fashion. Rather than rep-
resenting specific physical processes, these categories serve to represent groups of
processes that operate at similar spatial and temporal scales informed by the data.
K16 employs Gaussian Process (GPs) for each component and, due to the associ-
ated computational burden which grows in proportion with the cube of the number
of data points, relies on a maximum likelihood approach to estimate and fix model
hyperparameters. These modelling decisions, that aim to reduce the computa-
tional burden of GPs, can impact uncertainty quantification (Ashe et al., 2019).
In this paper we aim to propose an alternative method for estimating these com-
plex, interdependent components, that improves uncertainty quantification whilst
remaining computational feasible.

Our new spatio-temporal statistical approach to modelling RSL change uses Gen-
eralised Additive Models (GAMs). A GAM is a generalised linear model where
“the linear predictor depends linearly on a sum of smooth functions of the pre-
dictor variable" (GAMs; Wood, 2017a, p. 161). GAMs flexibly model non-linear
relationships using smooth functions (most commonly splines) and can reduce
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computational complexity when compared with GPs (for example those used in
K16) as they do not require large matrix inversions (Hastie and Tibshirani, 1990).
We place our model in a Bayesian framework which allows for the estimation of
parameters conditioned on the RSL data with full accounting for, and propaga-
tion of, uncertainty. Similar to K16, our model partitions the total RSL signal
into components that characterize distinctive spatial and temporal scales, which
(to varying degrees) are associated with specific physical processes. These compo-
nents are: (1) a regional component, a non-linear signal common to all sites along
the Atlantic coast of North America, and equivalent to the global term in K16;
(2) a linear local component which contains unstructured random effects and is
comparable the regional linear term in K16; and (3) a non-linear local component,
which is site-specific and varies smoothly in space and time. Similar to K16, any
variation not addressed by the model is captured by a residual term.

Since the data points at each site have a bivariate error structure, and the decom-
position required involves differing structures, the simple application of default
GAMs does not work in our case study. Previous methods, such as (Cahill et al.,
2015a), provides guidance for how to model RSL with bivariate uncertainty. We
follow K16 in accounting for the time error using the Noisy-Input uncertainty
method of McHutchon and Rasmussen (2011). This method inflates the residual
variance by a corrective term to compensate for noisy-input measurements using
a smooth process. Whilst the original paper uses the method exclusively for GPs
we extend the approach to spline terms. The RSL error is captured via a standard
measurement error term added to the residual variance.

The structure of our paper is as follows. Section 3.2 addresses the proxy records
and tide-gauge data used in our analysis. Section 3.3 describes the main physical
processes driving RSL changes and Section 3.4 discusses the previous modelling
strategies employed by Kopp et al. (2016). Section 3.5 gives a detailed descrip-
tion of our statistical model with different splines representing each driver of RSL
change and introduces the noisy-input method. The model validations are shown
in Section 3.6 and the results for different drivers of RSL change and their asso-
ciated rates are presented in Section 3.7. Section 3.8 provides concluding remarks
for our approach for the Atlantic coast of North America.
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3.2 Data
We use a combination of instrumental data from tide gauges and proxy records.
This section discusses the different sea-level data sets, including their collection
methods and their associated uncertainties.

3.2.1 Tide-Gauge Data
Tide gauges are fixed to the land and regularly measure (for example hourly or to
higher frequency) the height of the adjacent sea surface (Pugh and Woodworth,
2014a). For understanding RSL change, these observations are usually expressed
as annual averages and held in the database maintained by the Permanent Service
for Mean Sea Level (PSMSL; Woodworth and Player, 2003; Holgate et al., 2013).
The ∼1500 stations in this global network display highly uneven distribution of
data across space and through time and in addition individual records may have
temporal gaps (Church and White, 2011).The earliest tide gauges records began in
the late 17th or early 18th centuries in northwestern Europe (Wöppelmann et al.,
2006). Along the Atlantic coast of North America, the longest tide-gauge record in
the PSMSL database is The Battery from New York City (since 1856 CE) (Holgate
et al., 2013). Annual tide-gauge data from the PSMSL are treated as having fixed
and known ages without uncertainty in elevation measurements (Holgate et al.,
2013).

In our analysis, we use 66 tide-gauge sites along the Atlantic coast of North Amer-
ica (Figure 3.1). Tide gauges meeting at least one of the following criteria were
included in our analysis; (1) record length exceeding 150 years; (2) the nearest
tide gauge to proxy site; (3) within 1 degrees distance to a proxy site and longer
than 20 years (Kopp et al., 2016; Walker et al., 2021). The addition of tide-gauge
data supplements the long-term proxy records and provides additional insight into
recent changes in RSL. Annual data for each tide gauge were downloaded from the
PSMSL and expressed in meters relative to the average over 2000-2018 CE. This
time window captures variability resulting from the 19-year cycle in astronomical
tides (Pugh and Woodworth, 2014b) and serves to make proxy and tide-gauge
data comparable since the sediment cores used to develop proxy reconstructions
were recovered since ∼ 2000 CE. In addition, we further average tide-gauge data
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by decade to increase comparability with proxy reconstructions that are developed
from 1 cm thick slices of core sediment which accumulated over a period of several
years (depending on sedimentation rate) and are therefore inherently time aver-
aged. At this step we include an uncertainty in the tide-gauge data (± 5 years for
age and ± 1σ for RSL). See Appendix 3.A for additional information.

3.2.2 Proxy Records
Proxy-based reconstructions provide estimates of pre-anthropogenic RSL (Kemp
et al., 2013). On the Atlantic coast of North America, these near-continuous proxy-
based reconstructions are generated using buried sequences of salt-marsh (at mid
to high latitudes; Gehrels et al., 2020) or mangrove (low latitudes; Khan et al.,
2022) sediment. Samples of this sediment are recovered in a core (a column of
sediment extracted from the ground, where the oldest material is at the bottom
and the youngest material is at the top) and interrogated in subsequent laboratory
analysis to determine the age of the sample and the tidal elevation (height above
a tide level) at which it accumulated (Horton and Edwards, 2006).

A history of sediment accumulation provides estimates of sample ages by directly
dating a subset of depths in the sediment core, typically using radiocarbon mea-
surements (Törnqvist et al., 2015). In addition, the shallowest (i.e. most re-
cent) part of the core can be dated by recognising historic pollution and land use
changes of known age in down-core profiles of elemental abundance, isotopic ac-
tivity and isotopic ratios (Marshall, 2015). These directly dated levels in the core
are the input (i.e. age of sediment sample) for a statistical age-depth model (e.g.
the Bchron (Parnell et al., 2008), Bacon (Blaauw and Christen, 2011), or Rplum
(Aquino-López et al., 2018) packages in R). These age-depth models (irrespective
of their specific similarities and differences) estimate the age of every 1 cm thick
sediment sample in the core with uncertainty. Comparisons indicate that sediment
accumulation histories have little dependence on the specific age-depth model used
(Wright et al., 2017).

A sea-level proxy is required to reconstruct RSL. A sea-level proxy is any physical,
biological or chemical feature with an observable and systematic relationship to
tidal elevation (Shennan et al., 2015). Salt marshes and mangrove environments

36



3.2. Data

are vegetated by distinctive plant communities that are adapted to inundation by
salt water, resulting in distinct and narrow elevation ranges (Redfield, 1972). This
distribution makes salt-marsh vegetation a valuable sea-level proxy. Through rea-
soning by analogy, the observable distribution of plants in modern salt marshes
enables interpretation of their analogous counterparts preserved in core material
(Kemp and Telford, 2015). In this way, the paleo-marsh elevation (elevation with
respect to tidal elevation at the time of formation) is reconstructed. Another
sea-level proxy preserved in salt-marsh sediment is the remains of micro-fossils
(e.g., foraminifera) that form distinctive assemblages with a strong relationship
to elevation (Edwards and Wright, 2015). When using micro-fossils to recon-
struct RSL a transfer function is required which relates the abundance of specific
micro-fossil families to tidal elevation using a dataset that is representative to the
modern environment (Kemp and Telford, 2015). There are various transfer func-
tions available using Frequentist (Sachs et al., 1977; Horton and Edwards, 2006;
Kemp et al., 2011) and Bayesian approaches (Cahill et al., 2016), which all esti-
mate paleo-marsh elevation with uncertainty. The age of each core sample with a
corresponding paleo-marsh elevation reconstruction is provided by the age-depth
model. Resulting in a single proxy RSL record comprised of stratigraphically-
ordered data points of age (with 1 sigma uncertainty) and RSL (with 1 sigma
uncertainty) as shown in Figure 3.2.

In Figure 3.2, we illustrate the proxy RSL records derived from the analysis. Each
box represents the proxy sea-level reconstruction for a specific core sample, with
the associated uncertainty clearly depicted in grey. The midpoint of the box is
denoted by a black dot, and larger boxes indicate greater uncertainty associated
with that particular core sample (Upton et al., 2023a). The vertical uncertainty is
directly tied to the precision of the sea level indicator or proxy, such as micro-fossils
or vegetation, utilized in the sea-level reconstruction. This precision varies among
different proxies and is influenced by tidal amplitude (Edwards and Wright, 2015).
Furthermore, the horizontal uncertainty is inherent to the dating approach em-
ployed. As previously mentioned, in techniques like radiocarbon dating, variations
in atmospheric radiocarbon concentration lead to differences in the magnitude of
uncertainty (Kemp and Telford, 2015).
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Figure 3.2: Proxy records from four proxy sites along the Atlantic coast of North America used
as illustrative case studies. The y-axis is relative sea level (RSL) in meters, where 0m is present
sea level and negative values indicate RSL below present. Each proxy record observation consists
of paired age and RSL estimate at the corresponding site. The black dot represents the midpoint
of the proxy sea-level reconstruction and the grey boxes of 1 standard deviation represent vertical
and horizontal (temporal) uncertainty.

We analyze 21 RSL proxy records (totaling 1731 data points) located on the At-
lantic coast of North America from the Florida Keys, USA to Newfoundland,
Canada (Figure 3.1). There are 66 tide-gauge records that meet our criteria for
inclusion (Figure 3.1). The spatial scope of our analysis is restricted to this coast-
line because it has (by a considerable margin) the greatest concentration of avail-
able records. Results presented in this paper are generated from all the proxy
and tide-gauge records, yet we present four of these sites (Placentia Newfoundland
Canada, East River Marsh Connecticut USA, Cedar Island North Carolina USA,
and Swan Key Florida) as illustrative case studies throughout the remainder of
the manuscript as shown in Figure 3.2. The four sites were selected to provide
diversity of location and therefore the processes causing RSL change during the
past ∼ 3000 years.
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3.3 Drivers of RSL Change
Spatio-temporal models recognise sea-level variability characteristic of different
spatial and temporal scales rather than from specific processes. Each component
estimated in the model may capture several contributing processes depending on
the location and time interval under examination. These processes may act si-
multaneously and in directions that mask or exaggerate contributions from other
drivers.

Transfer of mass between land-based ice and the ocean drives RSL change. Ice
melt/growth returns or removes mass to the ocean as liquid water which causes a
rise/fall in global mean sea level (this process is termed barystatic) (Gregory et al.,
2019). This contribution varies in magnitude across timescales, but is common to
all locations. In addition, changes in global temperatures alter the density of ocean
water resulting in a sea-level change (rise/fall when water warms/cools becoming
less/more dense); this process is known as a thermosteric contribution (Grinsted,
2015). The global term in the K16 model and the regional component in our model
attempts to capture influences from these processes.

Along the Atlantic coast of North America, the principal driver of RSL change
during the pre-industrial late Holocene is glacial isostatic adjustment (GIA) (Roy
and Peltier, 2015). GIA is the response of the Earth, the gravitational field, and
the ocean to the growth or decay of ice sheets (Whitehouse, 2018). GIA can be
reasonably approximated as a linear contribution through time on this relatively
short timescale, but with considerably variability along the coast (Engelhart et al.,
2009). There are a family of physical models known as Earth-ice models which
use a representation of the physical Earth structure (such as lithospheric thickness
and properties such as mantle viscosity) to predict changes in GIA that occur
through loading and unloading of ice, and provide estimates of GIA rates. One
such example of an Earth-ice physical model is the ICE5G VM2-90 (Peltier, 2004).
It is important to recognise that other processes (e.g., tectonically-driven vertical
land motion) can mimic the linear trend of GIA. However, along the passive margin
of the Atlantic coast of North America these non-GIA drivers are likely modest
in magnitude (Kopp et al., 2015). As a result, the linear local component in our
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model and the linear regional term in the K16 may capture contributions from
processes other than GIA that drive RSL changes.

There are processes with a spatially-coherent structure where the signal is shared
by some but not all sites (Stammer et al., 2013). One such process that can cause
RSL to vary on decadal to multi-century timescales is the redistribution of existing
ocean mass by shifts in prevailing patterns and strength of atmospheric and oceanic
circulation (termed dynamic sea-level change) (Gregory et al., 2019). Dynamic sea
level varies by site, but the magnitude of the difference from one site to the next
is too small to be detected using proxy data due to the resolution. Some processes
(e.g. sediment compaction: which can impact the height of the solid Earth surface
with changes in sediment volumes for each site (Horton et al., 2018)) can drive RSL
changes that are site-specific. Consequently, contributions from these processes
lack spatial coherence and display an unpredictable spatial structure. Therefore,
site-specific RSL changes can vary markedly across closely-spaced sites. More
often than not, RSL proxy reconstructions are not generated with the goal of
understanding site-specific processes (Walker et al., 2021). It remains important
to quantify this component as a means to distill the contribution from processes
acting at larger spatial scales. In our model the structured (common to some,
but not all sites) and unstructured (unique to one site) RSL variability on century
timescales is captured by the non-linear, local component.

3.4 Previous Statistical Models for RSL Change
In this section, we review previous work on modelling RSL change, focusing in
particular on K16. The model was further extended in Kemp et al. (2018) and
Walker et al. (2021), here, we focus on the simpler K16 model. We first review
the structure of this model, which decomposes RSL into component parts before
discussing how the model might be fitted to the data and the potential influence
of optimising hyperparameters using maximum likelihood. K16 forms the basis
upon which we build our new approach in Section 3.5.

The RSL measurements are recorded in units of height; with meters used by de-
fault. In cases where the scale of the change is relatively small we use cm or mm
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instead for some plots and discussion in the text. We write yij = y(xj, tij) for the
RSL height at location xj (latitude and longitude) and time tij. These observa-
tions arise from the proxy records and tide gauges with j indexing the data site
and i the observation. For the resolution of the data the time is expressed in years
CE. The K16 model can be written as:

yij = f(xj, tij) + w(xj, tij) + y0(xj) + ϵy
ij (3.1)

where f is the full RSL spatio-temporal field, w is a white noise process repre-
senting sub-decadal trends unexplained by the data due to resolution of data, y0

is a site-specific spatially variable vertical offset, and ϵy
ij is residual error. In K16

all the structured terms above are given Gaussian Process prior distributions with
stationary covariance functions.

A key complication is that the times tij associated with the proxy records are
observed with uncertainty. Thus the observed values t̃ij have measurement error,
defined as:

t̃ij = tij + ϵt
ij. (3.2)

Usually ϵt
ij is assumed iid normally distributed with known variance, though in

reality the age-depth model through which the ages are estimated often provides
skewed distributions. A previous attempt at resolving this issue can be found in
Cahill et al. (2015a), though across large, multi-site datasets the imposition of
this assumption is believed to have minor effects on the outcome of the model (as
shown in Parnell and Gehrels, 2015).

3.4.1 Decomposing the RSL Field f
For the RSL process defined above as f , K16 use a spatio-temporal empirical
Bayesian hierarchical model to partition the influence of the components into
global, regional and local scales. The fields that make up f are, as above, given sta-
tionary GP priors that can vary in time and space as controlled by the covariance
functions (Ashe et al., 2019). The standard decomposition of f is written:

f(xj, tij) = c(tij) + g(xj)(tij − t0) + l(xj, tij) (3.3)
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where c(tij) is term the global term, the temporal non-linear signal common across
all sites, designed to capture changes such as barystatic sea level rise and ther-
mosteric changes. g(xj) is a spatially varying term that captures slower processes
such as long-term land level change (GIA) and vertical land motion driven by plate
tectonics. The g term is multiplied by time t differenced from a reference point t0
to form temporally linear field. Unlike the other components in K16, g is given a
univariate normal prior distribution with the mean centred on the value obtained
from a Earth-ice physical model (ICE5G VM2-90; Peltier, 2004) which estimates
the GIA rate. l(xj, tij) is the local spatio-temporal field that describes factors such
as dynamic sea level change, sediment compaction and tidal regimes. These terms
are explained in more detail in K16.

Without strong prior information, it is difficult to separate out the magnitudes of
the components. Thus in K16, the hyperparameters are first obtained by maximis-
ing the likelihood of the model conditioned on the observations but constrained
to two timescale hyperparameters for the non-linear terms. The model is then
re-fitted using these hyperparameters to estimate the components of the fields in
an empirically Bayesian framework. In our approach, we aim to avoid the em-
pirical Bayesian approach of fixing hyperparameters by placing informed priors
on the model components. However, model shortcuts are unavoidable due to the
complexity of the decomposition and the innate confounding of many of the key
terms.

3.5 A New Approach Based on Generalised
Additive Models

In this section we outline a new approach to evaluating the different drivers of
spatio-temporal RSL using proxy records and tide gauge data. With careful choices
of the prior distributions of the hyperparameters, we aim to recover the components
of RSL change through the standard tools of Bayesian inference. Subsequently, we
estimate of rates of RSL change at sites along the Atlantic coast of North America.
We build our model inspired by the standard decomposition of the RSL field f

as described above. Our approach contains four main differences compared to the
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Kopp et al. (2016) (and subsequent) models:

1. We focus on the high quality sites along North America’s Atlantic coast and
aim to produce a regional RSL curve. Thus we avoid making statements
about global sea-level change.

2. We use splines instead of GPs to avoid the computationally challenging in-
version of the GP covariance matrices. The model, at its simplest, thus falls
under the standard generalised additive modelling paradigm.

3. We fit the model in two stages to maximise the regional variability which
would otherwise be confounded with the local structure. This allows us to
perform a more complete posterior analysis of the model hyperparameters
which might otherwise been fixed in K16.

4. We remove the spatial structure on the linear effect g in K16 and replace
it with a univariate random effect on the slope. For the proxy records we
use a prior mean for the slope that is informed by the data before 1800 CE
(i.e. the pre-industrial time period; Neukom et al., 2019). This change is
helpful because we have found the estimated values of the GIA rate from
the Earth - ice physical model (e.g. Peltier, 2004; Argus et al., 2014; Caron
et al., 2018) do not match the observed data well for the proxy record time
period. For the tide gauge records the prior mean of the slope is taken from
a physical Earth-ice model (ICE5G VM2-90; Peltier, 2004) with uncertainty
taken from Engelhart et al. (2009). We refer back to this modelling choice
in Section 3.8.

Below we outline the full posterior distribution of the model to highlight the as-
sumed conditional independences, then outline each term and its structure. The
temporal uncertainty in the data causes difficulties in fitting the model in one
step, and we resort to McHutchon and Rasmussen (2011)’s noisy-input method to
account for this uncertainty. We then discuss the prior distributions assumed for
the hyperparameters, and the computational details of our model. In Section 3.7,
we showcase the successful implementation of our model.
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3.5.1 Model Notation
We now provide a full outline of our notation for reference:

• yij is an RSL observation in meters with i = 1, ...nj observations at site j
with j = 1, ...,m sites. We vectorise the full set of observations as y and the
observations for each site as yj.

• tij are the ages of each RSL observation, indexed and vectorised as above.
We represent age in years of the Common Era (CE).

• xj is the 2-vector of a latitude and longitude pair for each site j.

• zx is an index vector for the data sites that converts each site into a label.
Thus zxj

= j.

• f(xj, tij) = fij is the mean sea-level process at site j and time tij. We write
f(x, t) as the mean process for a generic location and time, and continue
with this notation below for brevity

• r(t) is the regional component at time t.

• l(x, t) is the non-linear local component at location x at time t.

• g(zx) is the linear local component at location x.

• h(zx) is a site-specific vertical offset component at location x.

• br(t) and bl(x, t) are sets of known b-spline basis functions corresponding to
the regional and local components respectively.

• mg and sg are the mean and standard deviation parameters respectively for
the linear local correction component. These are site specific and so each is
a vector of length m.

• βr,βl are the spline regression coefficient vectors of the regional and local
components respectively. βr is of length kr and βl is of length kl where kr

and kl are the number of knots associated with each term.
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• βg,βh are parameter vectors, each of length m, containing the random effect
coefficients for each site. βg is the slope parameter for each site and βh is
the intercept parameter for each site.

• σr and σl are the smoothness parameters associated with the regional and
local spline terms respectively.

• σh is the standard deviation of the site-specific offset.

• syij
is the known standard deviation of the RSL data point ij.

• stij
is the known standard deviation of the age of data point ij.

• σ is a residual standard deviation parameter to capture any remaining vari-
ability in y.

3.5.2 Posterior Distribution
The joint posterior distribution of our Bayesian hierarchical model is shown below:

p(σ2,βr,βl,βg,βh, σ2
r , σ

2
l , σ

2
h|y, br, bl,mg, s

2
g, s2

y, s2
t )︸ ︷︷ ︸

posterior

∝

p(y|f , σ2, s2
y, s2

t )︸ ︷︷ ︸
likelihood

× p(σ2)︸ ︷︷ ︸
prior on error variance

×

p(βr|σ2
r)︸ ︷︷ ︸

prior on regional parameters

× p(σ2
r)︸ ︷︷ ︸

prior on regional smoothness parameter

×

p(βh|σ2
h)︸ ︷︷ ︸

prior on site-specific vertical offset parameters

× p(σ2
h)︸ ︷︷ ︸

prior on variance site-specific vertical offset parameters

× p(βg|mg, s
2
g)︸ ︷︷ ︸

prior on linear local parameters

×

p(βl|σ2
l )︸ ︷︷ ︸

prior on non-linear local parameters

× p(σ2
l )︸ ︷︷ ︸

prior on non-linear local smoothness parameter

×
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The likelihood p(y|f , σ2, s2
y, s2

t ) can be deconstructed thus:

p(y|f , σ2, s2
y, s2

t ) =
m∏

j=1

nj∏
i=1

N (yij|fij, σ
2 + s2

yij
+ s2

tij
) (3.4)

3.5.3 A Fully Specified Generalised Additive Model for
Decomposing the RSL Field

Our version of the decomposition of the mean sea level field can be written as:

f(x, t) = r(t) + g(zx) + h(zx) + l(x, t) + ϵy (3.5)

All terms are as defined above: r(t) is the regional component. g(zx) is the linear
local component represented by a random effect with zx representing each data
site. h(zx) is the spatial vertical offset for each data site. l(x, t) is the non-linear
local component. We represent r(t) using a spline:

r(t) =
kr∑

s=1
brs(t)βr

s (3.6)

where βr
s is the sth spline coefficient, kr is the number of knots and brs(t) is the sth

spline basis function at time t.

The linear local component, g(zx), is an unstructured random effect for each site
which is formulated as:

g(zxj
) = βg

j t (3.7)

where βg
j is a slope parameter specific for each site j. This specification is in

contrast to K16 where the linear effect, g, varies smoothly in space and is informed
through the prior by GIA model-derived values. We found such a restriction to
adversely affect model performance due the lack of agreement between the data
and the provided GIA values, and the wide variation in values between proximal
sites (Engelhart et al., 2009).

The site-specific vertical offset h is a random effect used to capture vertical shifts
associated with measurement variability between sites and is formulated as:

h(zxj
) = βh

j (3.8)
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where βh
j contains the random effect coefficients for site j.

The non-linear local component l(x, t) is described with a spatio-temporal spline
function formulated by:

l(x, t) =
kl∑

s=1
bls(x, t)βl

s (3.9)

where βl
s is the sth spline coefficient, kl is the number of knots and bls(x, t) is the

sth spline basis function at time t and location x.

We use B-splines (de Boor, 1978) for both the regional and local terms. Our B-
splines are constructed as piece-wise polynomials which join together at equidistant
knots such that the first derivatives are equal (Eilers and Marx, 1996). For the
regional term we use cubic B-splines as we are interested in the behaviour of the
first derivatives. We can simply calculate these by differentiating the cubic B-
splines and multiplying with the posterior spline parameters to provide a posterior
distribution for the derivative. However for the non-linear local component, which
requires a tensor product to capture the variability over time and space (repre-
sented with longitude and latitude) so that the individual covariates are combined
product-wise (Wood, 2006). We use a simpler and faster quadratic polynomial
basis for the non-linear local component. Many other basis function types and
options are available (see, e.g. Dierckx, 1995; Wood, 2017a) but we believe our ap-
proach balances both parsimony and computational efficiency for our application
area.

3.5.4 Noisy-Input Uncertainty Method
Our data is corrupted with measurement error in the RSL values and that arising
from the temporal uncertainty associated with radiocarbon dating the fossil layers
of sediment. McHutchon and Rasmussen (2011) describe an assumption for GPs
which avoids the need for complex errors-in-variables models (e.g. Dey et al., 2000;
Cahill et al., 2015a) and instead adds an extra measurement uncertainty on the
response variable. We adapt this noisy-input (NI) approach for our RSL GAM
which we now term an NI-GAM.

The response variable y is assumed to be a noisy measurement with the true output
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given as ỹ:
y = ỹ + ϵy (3.10)

where the error term is given by ϵy ∼ N(0, s2
y) with sy being the known measure-

ment standard deviation of the RSL data. Similarly, for the input measurements,
t is assumed to be a noisy estimate of the true time value t̃:

t = t̃+ ϵt (3.11)

with the error term given by ϵt ∼ N(0, s̃2
t ) where s̃t is the known standard deviation

of the date obtained from the age-depth model (described in Section 3.2). As a
result, a function for the response variable is formed in the following way:

y = f(x, t̃+ ϵt) + ϵy (3.12)

Following McHutchon and Rasmussen (2011) we can use a Taylor expansion about
the latent state t̃ to obtain:

f(x, t̃+ ϵt) = f(x, t̃) + ϵT
t

∂f(x, t̃)
∂t̃

+ · · · ≈ f(x, t) + ϵT
t

∂f(x, t)
∂t

(3.13)

Thus the error in t can be approximated by an increase in the measurement error
proportional to the derivative of f . McHutchon and Rasmussen (2011) calculate
the derivative of the mean of the GP function, given as vector ∂f̄ for the first order
case and ∆f̄ for a D-dimensional matrix.

Analogously for our NI-GAM setting, the first order terms are expanded to form
a linear model with input noise:

y = f(x, t) + ϵT
t ∂f̄ + ϵy (3.14)

The derivative of the posterior mean for f is obtained using a two-step method.
First the model is fitted ignoring the input uncertainty and then the slope of
the posterior mean is calculated. From this, a corrective variance term can be
calculated, which we write as s2

t . We use this as an additional model error term
in our subsequent full model fit.

Intuitively, the input noise impacts the gradient of the function mapping input
to output and the input noise variance is related to the output by the square of
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the posterior mean function’s gradient (McHutchon and Rasmussen, 2011). As a
result, the corrupted input measurements influence a rapidly changing output value
more than an output value that remains constant. The advantage of this method
is that the noise remains the same whether the measurement is considered an
input or output measurement, and so all the data informs the input noise variance
ensuring the output dimensions are met, reducing the chance of over-fitting.

3.5.5 Prior Distributions
Within the process level each component is given a prior distribution. Our prior
for the spline coefficients of the regional component, βr

s is:

βr
s ∼ N(0, σ2

r) (3.15)

where σr is the standard deviation of the spline coefficient and fundamentally
controls the smoothness of the model fit.

Our prior for the linear local component for the proxy records is:

βg
j ∼ N(mgj

, s2
gj

) (3.16)

where mgj
and s2

gj
are the empirically estimated rate and associated variance for

the data set obtained from the time period prior to 1800 CE (Neukom et al., 2019).
For the tide-gauge records, we obtain mgj

from a physical model (ICE5G VM2-90;
Peltier, 2004) and s2

gj
from previous studies (Engelhart et al., 2009).

Our prior distribution for the site-specific vertical offset is:

βh
j ∼ N(0, σ2

h) (3.17)

where σ2
h is the variance of the random intercept across data sites.

Our prior on the spline coefficient for the non-linear local component is given as:

βl
s ∼ N(0, σ2

l ) (3.18)

where σ2
l is the variance of the spline coefficients over space and time. This pa-

rameter fundamentally controls the smoothness of the local non-linear effect.
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The remaining hyperparameters of the model include σ2
r , σ2

h and σ2
l . The stan-

dard deviation parameter σh represents the variability in the site specific vertical
shift after taking account of the local linear trend. As it is measured in meters it
is more interpretable in a physical context and so we place an informative prior
here. The vertical shifts can be quite variable with some sites sitting many meters
above or below others. From revisiting the publications associated with our data
(see Appendix 3.A for the full list), shifted values spanning more than 5m seem
unlikely. As a result, we specify the standard deviation to have a Cauchy distri-
bution with mode 2.5m but with a wide scale of a further 2m (Gelman, 2006).
For the variability of the spline coefficients across the knots, i.e. σ2

r and σ2
l , we

expect considerably smaller variation but we have less information, thus we use a
truncated Cauchy distribution centred on zero and with scale value 1.

3.5.6 Model Fitting and Computational Details
In previous sections, we have described our Bayesian hierarchical model structure
using GAMs and the manner in which we account for uncertainty. In this section,
we address how to fit our NI-GAM model and the decisions that influenced our
model fitting strategy. We are constrained because we have to fit the model twice
as part of the noisy-input uncertainty method, described in Section 3.5.4. We
also found that a single model fit yielded poor convergence due to the unavoidable
confounding between the regional, vertical shift, linear, and non-linear local terms.
Thus, we use the two-stage NI process to our advantage by fitting a slightly reduced
model at the first stage to estimate the regional term, and using the posterior as
strong prior information in the second stage to provide the estimate of the non-
linear local term. Our approach has some similarities to that of cut feedback
or modularised Bayesian models (Plummer, 2015), but we do not explore these
avenues further here.

The two steps of our model fit are:

1. We first fit a simplified version of our process level model where we replace
f(x, t) with f ∗(x, t), defined as:

f ∗(x, t) = r(t) + g(zx) + h(zx) (3.19)

50



3.5. A New Approach Based on Generalised Additive Models

This removes the non-linear local component and so avoids the confounding
issue. From this model fit we calculate the first derivative of the posterior
mean of f ∗(x, t). The resulting slope estimate for each observation provides
a corrective variance term, s2

tij
= s̃2

tij
∂2

f̄∗
ij

. This term is added to the other
model error variances for the fit in the second stage.

2. In the second step we fit the complete process model as defined in Section
3.5.4. The only changes being: (1) the addition of the new noisy-input
measurement variance term; (2) the prior distribution on the regional spline
terms now being βr

s ∼ N(mr
s, (sr

s)2) where mr
s and sr

s are estimated in the
first model run; and (3) the prior distribution on the vertical offset term
being βh

s ∼ N(mh
s , (sh

s )2) where as above mh
s and sh

s are estimated in the first
model run.

In effect the second model fitting stage simply becomes a means by which the full
error uncertainty is accounted for and the residuals are decomposed into a pure
error and a non-linear local space-time effect. Whilst all our subsequent results
are presented based on the second model fit, this stage is essentially only useful for
providing interpretation of the model error and the degree to which local factors
drive deviations from the main regional effect.

At each stage our models are written using the Just Another Gibbs Sample (JAGS
Plummer, 2003) software, which in turn is based on the on Spiegelhalter et al.
(2002). The JAGS language uses Gibbs sampling and the Markov Chain Monte
Carlo (MCMC) algorithm to draw samples from the posterior distribution of the
unknown parameters. We implement our approach using the rjags package in
R (Plummer et al., 2016). For our models, we used 5000 iterations with a burn-
in value of 1000, thinning at 5 and 3 chains. Convergence diagnostics for the
parameters are investigated using the coda package (Plummer et al., 2006) and
the ShinyStan app which provides an interactive visualization tool for investigating
model convergence (Gabry and Goodrich, 2017). All convergence diagnostics were
checked and ensured to be satisfactory before the model results were interpreted.
The code and data for our model can be found here.
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3.6 Model Validation
To assess the robustness of our model, we employed various techniques, including a
10-fold cross-validation (10-CV), a residual analysis, a GAM sensitivity study and
a convergence diagnostics inspection, all detailed in this section. The outcomes
from these analyses affirm the appropriateness of our model setup and validate the
accuracy of our model fits.

3.6.1 10-Fold Cross Validation
We run the 10-CV exclusively for the 21 proxy sites since the tide gauge records are
short in duration and would provide relatively weak information about model per-
formance. We present the site-specific results for only the four case study sites with
the remaining sites shown in Appendix 3.B. We evaluate the model performance
based on out of sample empirical coverage and the Root Mean Squared Error
(RMSE). The prediction intervals are created using posterior predictive simula-
tions with the full error structure, i.e. ŷij ∼ N(f̂ij, σ

2
yij

+ σ2
tij

+ σ2). The empirical
coverage provides the percentage of occasions that the true RSL observation is
within the model prediction interval (PI) for RSL. The RMSE provides insight
into prediction performance in the same units as the response (meters).

The 10-CV for our full model using the 21 proxy sites obtained overall empirical
coverage of 99.1% with the 95% prediction interval and 78.6% with the 50% pre-
diction interval. These are satisfactory for a model fitted to complex data such as
ours, especially with the addition of the model error. The conservative coverage
values are likely a consequence of accounting for the observed measurement errors
in the estimation of the prediction intervals. The RMSE for the 21 proxy sites is
0.14 m. An average out of sample error of 14 cm is reasonable given the scale and
variety of the data set.

Table 3.1 provides a site-specific insight into the empirical coverage for the model
and the size of the prediction intervals. Three out of the four sites have a coverage
of 100% due to the large prediction intervals arising from the bivariate uncertainties
associated with the proxy data (Figure 3.2). Based on the RMSE, the best fitting
case study site is Cedar Island in North Carolina, where the RMSE is 6cm (Table
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3.1). At the other end of the spectrum is Swan Key Florida, where the RMSE
is larger at 19 cm (Table 3.1). Figure 3.3 presents the true RSL observations
versus the model-based RSL point estimates with 95% prediction intervals at each
site. The size of the prediction interval corresponds to the bi-variate uncertainties
inherent in the proxy records, with Swan Key Florida exemplifying pronounced
uncertainties, as evident in the large grey uncertainty boxes in Figure 3.2. To
reiterate, the results presented here are used as case studies, while the model is
run on the full dataset of 21 proxy sites and remaining sites are presented in Figure
3.B.6.

Site Name 95%
Empirical
Coverage

95%
Average PI

width

50%
Empirical
Coverage

50%
Average PI

width

RMSE
(m)

Placentia, Newfoundland 0.97 0.36 0.59 0.12 0.11
East River Marsh, Connecticut 1.00 0.52 0.77 0.18 0.13
Cedar Island, North Carolina 1.00 0.26 0.78 0.09 0.06
Swan Key, Florida 1.00 0.77 1.00 0.26 0.19

Table 3.1: Empirical coverage from the 10 fold cross validation and the corresponding size of the
prediction intervals (PI) used for model validation for our 4 chosen sites.
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Figure 3.3: True vs Predicted RSL values for our case study sites at Placentia Newfoundland,
East River Marsh Connecticut, Cedar Island North Carolina and Swan Key Florida using 10-fold
cross validation (CV). The axis scales, expressed in meters, vary for each site. The predicted
means are the red points with a vertical 95% prediction interval for each point. The identity line
is shown in grey.

3.6.2 Residual Analysis
To evaluate the efficacy of our models, we analyse the residuals, representing the
differences between observed and predicted values, through residual plots (Bad-
deley et al., 2005). In Figure 3.4, our residual plot provides insights into model
performance, aiding in the identification of patterns, trends, or systematic errors
in the data. Specifically, Figure 3.4 (a) reveals a discernible trend, indicating that
the model has not fully captured underlying patterns in the data. In contrast,
Figure 3.4 (b) illustrates the second model run, which eliminates the discernible
trend, presenting residuals that are random and evenly spread around the hori-
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zontal axis. This analysis justifies the adoption of a two-step modeling process, as
outlined in section 3.5.6.
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Figure 3.4: Residual analysis for the noisy input generalised additive model highlighting. (a)
Model run 1 represents the first step of our modelling approach and the residuals possess evidence
for an underlying trend. (b) Model run 2 presents the second step of our model which removed
the underlying trend, highlighting the requirement of the two step modelling approach.

3.6.3 GAM Sensitivity Study
As mentioned in Section 3.5.3, we use B-splines for our regional and non-linear
local terms. In this section, we utilise a GAM sensitivity study to highlight the
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range of basis functions settings examined and how our model choices provided
satisfactory model fits as well as computational efficiencies.

Initially, we assessed the capabilities of the mgcv package developed by Wood
and Wood (2015), which facilitates the fitting of various smoother functions and
generalized additive models. However, this package lacks provisions for Bayesian
analysis or the incorporation of uncertainties associated with input and output
variables. Subsequently, we explored the jagam package by Wood (2016), leverag-
ing the functionalities of mgcv while automatically generating corresponding JAGS
model code, enabling Gibbs sampling. Nevertheless, challenges emerged when in-
corporating informed priors for the linear local component, leading to issues with
model fits at certain locations. Consequently, to enhance flexibility in the model
structure, we developed our own basis functions and JAGS scripts.

Following a comprehensive examination, we scrutinized both the individual com-
ponents and the overall fit of the model. Our residual analysis underscored the
necessity for diverse levels of components and multiple model runs to effectively
address uncertainty and capture inherent patterns in the data. Commencing with
the most basic model involving a spline in time, we systematically progressed
through a spline in space-time, eventually incorporating random effect terms. It
is crucial to highlight that the structure and smoothness of basis functions associ-
ated with our regional (spline in time) and non-linear local components (spline in
space-time) play a pivotal role in enhancing the performance and interpretability
of statistical models.

Regarding the regional component, we conducted comparisons with B-splines (Hastie
and Tibshirani, 1986) and P-splines (Eilers and Marx, 1996). Within our model,
we observed that incorporating the P-spline addressed the knot selection issue;
however, it introduced an additional parameter that affected the convergence of
the complex NI-GAM. Consequently, we concentrated on B-splines and tuning
the number of knots and validating our decision with 10-fold CV as previously
mentioned. Figure 3.5 displays the overall model fit for the NI-GAM, showcas-
ing a subset of sensitivity tests conducted to explore the interplay between model
smoothness and efficiency focusing on the regional component. The plot reveals
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that the optimal fit for the data is achieved by selecting a range of knots between
13 to 33 knots for the regional component, effectively capturing the underlying
data variability a configuration adopted in our paper.
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Figure 3.5: Total model fit for the noisy input generalised additive model using a range of
knot values for the regional component. The grey boxes represent the bi-variate uncertainties
associated with the proxy records and the black dot is the midpoint of the box. The coloured
lines with corresponding 95% credible intervals represent a subset of sensitivity tests used to find
the optimum regional knot setting.

In our exploration of the regional component’s sensitivity, achieving the optimal
balance in model fit, addressing identifiability challenges, and pinpointing the op-
timum number of knots required a careful assessment of both the total model fit
and the corresponding component plot. In Figure 3.6, we illustrate that the opti-
mal knot setting for the regional component has been identified as 23 knots. This
choice proves more effective, significantly reducing uncertainty compared to the
alternative with 21 knots, and effectively balancing the variability among the dif-
ferent components of the NI-GAM. In instances where one component exhibits less
flexibility, the remaining component tends to become more variable. The applica-
tion of the 10-fold cross-validation (CV) technique facilitated the determination of
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this delicate balance among the various components.
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Figure 3.6: The regional component for the noisy input generalised additive model with the
coloured lines and corresponding 95% credible intervals highlighted a subset of the knot settings
examined during our sensitivity analysis.

A similar GAM sensitivity analysis was carried out for the non-linear local compo-
nent. Figure 3.7 displays the overall model fit for the NI-GAM, showcasing a subset
of sensitivity tests conducted to explore the interplay between model smoothness
and efficiency focusing on the non-linear local component.
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Figure 3.7: Total model fit for the noisy input generalised additive model using a range of knot
values for the non-linear local component. The grey boxes represent the bi-variate uncertainties
associated with the proxy records and the black dot is the midpoint of the box. The coloured
lines with corresponding 95% credible intervals represent a subset of sensitivity tests used to find
the optimum non-linear local knot setting.

Figure 3.8 demonstrates a subset of the knot settings examined for the non-linear
local component and the impact of these settings on the component and the overall
fit of the model. As a result, we found a simpler and faster quadratic polynomial
basis, with 262 knots, the most approachable choice using our GAM sensitivity
analysis and the 10-fold CV.
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Figure 3.8: The non-linear local component for the noisy input generalised additive model with
the coloured lines and corresponding 95% credible intervals highlighted a subset of the knot
settings examined during our sensitivity analysis.

In this GAM sensitivity study, we have demonstrated how basis functions serve
as fundamental components, playing a crucial role in representing the relationship
between predictors and the response variable in a flexible and non-linear man-
ner. We have presented a subset of our sensitivity study, which helps address the
modeling decisions we made to ensure the smoothness of the basis functions. We
complemented this sensitivity study with the 10-fold CV techniques, as previously
mentioned, to assess the goodness-of-fit for different numbers of knots and deter-
mine the optimal number of knots that balance model complexity and efficiency.

3.6.4 Convergence Diagnostics
In this section, we use convergence diagnostics, specifically employing the ShinyS-
tan app (Gabry and Goodrich, 2017), to ensure the well-convergence of our model,
signifying that sampled values accurately represent the posterior distribution of
the parameters. We present the results for one hyperparameter, σh, representing
the variability of the site-specific vertical offset component as described in Section
3.5.5. The model convergence plots for the remaining hyperparameters, σl and σr,
are provided in Section 3.2.2.1.
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Model convergence in the context of Bayesian statistical analysis, particularly with
JAGS, refers to the process by which the Markov chain generated by the sampler
reaches a stable and stationary distribution. To assess model convergence in JAGS,
we use several diagnostic tools which include:

• Gelman-Rubin Statistic (R-hat): This diagnostic compares the variance within
multiple chains to the variance between chains (Gelman and Rubin, 1992a).
An R-hat close to 1 indicates convergence.

• Trace Plots: Examining the trace plots of parameters across iterations can
provide visual cues about convergence. A stable and stationary trace indi-
cates good convergence.

• Autocorrelation Plots: Monitoring the autocorrelation of the chain can reveal
how quickly the chain forgets previous values. Rapid decay in autocorrelation
indicates better convergence.

• Effective Sample Size: This metric estimates the number of independent
samples, considering autocorrelation. A higher effective sample size is desir-
able.

• Density plots: Visual tools for assessing the convergence and distribution of
sampled parameters. These plots display the estimated probability density
function of the parameter values.

Figure 3.9 demonstrates the results of a comprehensive range of model convergence
tests, as described earlier, utilizing the output of the ShinyStan app (Gabry and
Goodrich, 2017). The Rhat value of 1 signifies convergence, and the large n_eff
(Effective Sample Size) value indicates robust convergence. The Kernel Density
Estimate visualises the distribution of the hyperparameter σh. The autocorrela-
tion plot exhibits a rapid decay, and the traceplot, involving 3 chains, displays a
stable and stationary trace, affirming good convergence. These results collectively
demonstrate that our model has converged, with the Markov chain sufficiently
exploring the posterior distribution, rendering the results reliable for statistical
inference.
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Figure 3.9: Convergence tests for the hyperparameter σh, which captures variability in the site-
specific vertical offset component of the noisy input generalized additive model, were conducted
using the ShinyStan app (Gabry and Goodrich, 2017). The Gelman-Rubin Statistic (Rhat)
value is 1, indicating convergence, and the large Effective Sample Size (n_eff) value further
supports robust model convergence. Visualisations, including the Kernel Density Estimate and
autocorrelation plot, demonstrate a well-converged model. The traceplot, based on 3 chains,
exhibits a stable and stationary trace, confirming the model’s good convergence.

3.7 Results
In this section we present the results from our Bayesian hierarchical RSL model.
We consider the full model fit and its decomposition into the different components
of RSL, i.e., regional component, linear local component and non-linear local com-
ponent.

3.7.1 Full Model Fit and Rate of Change
The full model fit for the four case study sites are shown in Figure 3.10 (results
from all 21 proxy sites are included in Appendix 3.B). The model demonstrates
how the RSL varies in time at each site. Overall, the model fits the data well.
The 95% credible intervals for Swan Key Florida are larger due to the relatively
large observation uncertainties at this site and the fit is notably smoother than
the others. The data in Placentia, Newfoundland experiences additional variability
in the observations compared with the other sites and this is reflected in a more
variable total model fit.
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Figure 3.10: The noisy-input generalised additive model (NI-GAM) fit for four selected sites
along the Atlantic coast of North America. The four sites include: Placentia, Newfoundland,
Canada; East River Marsh, Connecticut, USA; Cedar Island, North Carolina, USA; and Swan
Key, Florida, USA. The black dots and grey boxes represent the midpoint and associated un-
certainty, respectively, for each proxy record. The solid purple line represents the mean of the
model fit with a 95% credible interval denoted by shading.

Figure 3.11 shows the site-specific rates of change for the case study locations cal-
culated as described in Section 3.5.3. The remaining sites are shown in Appendix
3.B. Late Holocene rates of RSL change display century to multi-century scale
variability around a stable mean at each site until the 19th and 20th centuries
since when the rate of rise appears unprecedented. Rates fluctuate throughout
the last 2000 years but remain below 1.5mm/yr until the late 1800s in East River
Marsh, Connecticut, and the early to mid 1900s in Cedar Island, North Carolina
and Swan Key, Florida. The late 20th and 21st century rates at these sites are
unprecedented in the last 2000 years with the most recent rates of change being
3.06 ± 0.3, 2.9 ± 0.5 and 2.9 ± 0.7 mm per year in East River Marsh Connecticut,
Cedar Island North Carolina and Swan Key Florida respectively. Placentia New-
foundland does not appear to experience the same uptick in rates that the other
sites do with the most recent rate being 1.21 ± 0.4 mm per year.
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Figure 3.11: Rate of relative sea change found by taking the first derivative of the total model fit
for four sites along the Atlantic coast of North America. The mean of the fit is the solid purple
line with the dark shaded area being the 50% credible interval and the light shaded area being
the 95% credible interval.

3.7.2 Examining the Decomposition of RSL
The RSL process level f consists of the regional component, the linear local com-
ponent, the site-specific vertical offset, and a non-linear local component, all as
described in Section 3.5. Figure 3.12 illustrates the decomposition in our case
study sites and provides an insight into how the components of RSL have varied
over time for the Atlantic coast of North America by demonstrating the scale of
the different components and how they interact over time. The total posterior
model is obtained by the sum of these separate components as illustrated by the
purple line in Figure 3.12.

It is evident that the dominant driver of RSL change for these four sites until
the late 1800s is the linear local component. After this interval, regional variabil-
ity along the Atlantic coast of North America appears to take over and the total
RSL trends at each site tend to reflect the RSL rise seen in the regional compo-
nent. The non-linear local component is picking up the remaining variability and
demonstrates that non-linear local effects on RSL variability are more apparent in
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Placentia and Swan Key compared to Cedar Island and East River Marsh.
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Figure 3.12: The decomposition of the relative sea level process level for the four sites, with
solid lines indicating means and shaded areas 95% posterior credible intervals. The blue curve
represents the regional component. The brown curve represents the non-linear local component.
The green line represents the site-specific vertical offset plus the linear local component. The
purple line is the sum of all three components and represents the full noisy-input generalised
additive model fit.

Figure 3.13(a) shows the regional component (common to all sites) for the 21
proxy sites and 66 tide gauge sites along the Atlantic coast of North America. As
a reminder, the regional component is represented with a spline in time which is
common across all sites. Prior to 0 CE, sea level fluctuated from 0.01 m to -0.13
m. From 0 CE to 1200 CE, variability of sea level reduced ranging from -0.12 m
to -0.09 m. Following 1200 CE, a sharp increase in sea level can be seen with brief
periods of stability from 1410 CE to 1560 CE and from 1800 CE to 1840 CE.
After 1800 CE, sea levels are consistently rising and the most dramatic increase can
been seen from the mid-1800s until the present day. Figure 3.B.1 in Appendix 3.B
demonstrates the underlying behaviour of the posterior samples for the regional
component. Figure 3.13(b) shows the rate of change for the regional component
along the Atlantic coast of North America. Rates fluctuate around 0 CE between
-990 CE and 1800 CE after which a continuous increase can be see from 1800 CE
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onwards. The rate from the late 20th century is unprecedented when compared
with the last 3000 years and is estimated to be 1.8 ± 0.5 mm per year. This 20th
regional sea-level rate depicts patterns over multi-decadal to centennial timescales
due to the resolution limits and natural time-averaging of proxy reconstructions
and decadally averaged of tide-gauge data.
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Figure 3.13: The noisy-input generalised additive model (NI-GAM) results for (a) the regional
component and (b) the regional rate of change component. (a) The regional component mean
model fit represented with a solid line and the shading indicating the 50% credible interval in
dark blue and 95% credible interval in light blue. The y-axis is the sea level in m with the x-axis
representing the time across the last 3000 years for the Atlantic coast of North America. (b)
Rate of Change for the regional component for the Atlantic coast of North America with the solid
line representing the mean of the fit, the dark blue shaded area representing the 50% credible
interval and the light blue shaded area representing the 95% credible interval. The y-axis is the
instantaneous rate of change of regional sea level in mm per year.

The linear local component is represented with a random slope effect as described
in Section 3.5. As stated in Section 3.3, this parameter removes a long term varia-
tion driven principally (but perhaps not exclusively) by GIA. Table 3.2 compares
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our empirically estimated values of this parameter for the proxy record sites in mm
per year prior to 1800 CE. It is clear that there is wide variability in these values
between sites with areas such as Swan Key Florida and East River Marsh Con-
necticut experiencing rates of 0.91 mm/yr whereas Placentia Newfoundland has
just 0.41 mm/yr. To show a comparison with physical model-based GIA rates,
Table 3.2 presents values obtained from the ICE5G - VM2-90 Earth-ice model
(Peltier, 2004). It is evident that the data-driven rates and the GIA-model rates
differ, with Swan Key Florida experiencing the greatest difference of 0.8mm/yr.
Whereas, East River Marsh Connecticut has similar rates with a difference of only
0.05mm/yr.

Empirical Rate
prior to 1800 CE
[mm/yr]

ICE5G-VM2-90
Earth-ice GIA
rate [mm/yr]
(Peltier, 2004)

Placentia, Newfoundland 0.41 0.21
East River Marsh, Connecticut 0.91 0.96
Cedar Island, North Carolina 0.74 0.69
Swan Key, Florida 0.91 0.11

Table 3.2: Linear local component for our four sites along the Atlantic coast of North America
given in mm per year. The empirical rates represent the rate estimated from the data prior to
1800 CE, which is used to inform the priors for the linear local component (Neukom et al., 2019).
ICE5G-VM2-90 Earth-ice GIA rate is from an Earth-ice physical model (Peltier, 2004).

Figure 3.14 shows our non-linear local component that represents the spatially
structured behaviour specific to each site. There are clearly different patterns of
non-linear local sea-level change, which is to be expected given that the common
source of variation across all sites has been captured by the regional component.
Placentia Newfoundland and Swan Key Florida show non-linear local variations in
sea level ranging from 0.19 m to -0.12 m and 0.21 m to -0.25 m respectively. On
the other hand, Cedar Island North Carolina and East River Marsh Connecticut
do not experience this level of variability with sea levels in the non-linear local
component fluctuating close to zero.
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Figure 3.14: The non-linear local component for our four sites along the Atlantic coast of North
America. The y-axis represents sea level in meters. The brown solid line represents the mean of
the model fit with the 50 % credible interval in dark brown shading and 95% credible interval in
the light brown shading.

3.8 Discussion
RSL change is the net result of multiple physical processes within the oceans, at-
mosphere, and solid Earth, that can alter the height of the land and/or sea surface
(Church et al., 2001). The importance of specific processes varies markedly across
space and through time, giving rise to a complex and evolving pattern of RSL
change. Tide-gauge data and proxy records contain information about these pro-
cesses and the sea-level community requires advanced statistical tools to decompose
the net RSL signal into contributions from physical processes while accounting for
uncertainties in the underlying data. The need for RSL decomposition motivated
current modeling strategies such as the K16 model and our approach presented
here.

Our approach provides a more computationally efficient method for decomposing
the RSL signal. The process level of our model utilises a spatio-temporal field
decomposed into: a regional component; a linear local component; and a non-linear

69



3.8. Discussion

local component. In contrast to K16 which uses GPs, we use splines to examine the
different drivers of RSL. This is due to the computational complexity associated
with the likelihood computation for a Gaussian Processes being of O(n3) where
n is the number of data points. In contrast, the likelihood computation for the
equivalent spline with pre-computed basis functions is just O(n) (Wood, 2017a).
Thus our model can be fitted quicker than K16, allowing for further checks on the
performance of our model. The model validations presented in Section 3.6 highlight
this and we are confident that the NI-GAM is effectively capturing the different
components of RSL along the Atlantic coast of North America. In addition, the
construction of our GAM using spline basis functions and random effects allows
for easy interpretability without the need for covariance matrices and correlation
functions (Porcu et al., 2021). We can efficiently model late Holocene RSL changes
along the Atlantic coast of North America and the interpretability of GAMs allows
for these changes to be easily examined (Figure 3.10).

Our approach attempts to deviate from the Empirical Bayesian framework as
implemented by K16 and related models. Piecuch et al. (2017) demonstrated that
Empirical Bayesian methodologies can underestimate uncertainty when examining
historic sea-level change along the Atlantic coast of North America. However, we
recognise the difficulty of a fully Bayesian approach due to the confounding nature
of the regional, linear local, and non-linear local components. Instead we opted to
take advantage of the two-step fitting required by our use of the noisy-input method
to take account of age errors. The first step of the modeling procedure obtains
posterior distributions for the regional component and the site-specific vertical
offset. The second step uses the resulting posterior estimates and uncertainties to
inform the priors for the remaining linear local and non-linear local components,
and the extra measurement variance contribution from the age uncertainties. The
first step can be thought of as estimating the main component of our model: the
regional RSL curve, with the second step designed to decompose the residuals and
ensure the uncertainty is properly calibrated. Our modelling strategy avoids fixing
process model parameters, and severe confounding that would occur were we to
fit the model in one step.

Considering the individual RSL components, pre-anthropogenic (before 1800 CE;
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Neukom et al., 2019) RSL change along the Atlantic coast of North America is
dominated by the linear local component which is principally capturing the contri-
bution from ongoing GIA. However, there are some notable differences between the
empirically-estimated rates obtained from our models and the GIA rates obtained
from the ICE5G-VM2-90 Earth-ice physical model (Table 3.2). There are sev-
eral possible explanations for these discrepancies. First, a single Earth-ice model
generates GIA predictions from a specific representation of the solid Earth (e.g.,
mantle viscosity and lithospheric thickness parameters) and history of deglacia-
tion. It is unlikely that any single Earth-ice model will perfectly estimate GIA
at all places and all times because the parameters are uncertain and may vary
by location (Roy and Peltier, 2015). In particular, locations close to the margins
of former ice sheets (such as Newfoundland) may exhibit particularly pronounced
differences in GIA estimated by different Earth-ice models. Systematic difference
between RSL predicted by specific Earth-ice models and proxy reconstructions on
Holocene timescales is well documented in eastern North America (Vacchi et al.,
2018) and elsewhere (Shennan et al., 2018). One such example is Placentia New-
foundland where our empirically-estimated rate and the Earth-ice physical model
GIA rate differ by 0.1 mm/yr (Table 3.2). Second, physical Earth-ice models only
estimate the contribution from GIA, while the empirical approach captures con-
tributions from other processes such as vertical land motion from tectonic process
which may also be a linear driver of RSL change on the timescales under consid-
eration. Although these non-GIA processes may be small on the passive margin
of the Atlantic coast of North America, they are also unlikely to be zero at all
sites. For example, Khan et al. (2022) identified an anomalously high rate of rise
at Swan Key Florida compared to nearby Snipe Key Florida and proposed that
dissolution of the carbonate bedrock beneath the site resulted in an additional ap-
proximately linear component of RSL rise. This is highlighted in Table 3.2 where
Swan Key Florida exhibits a large difference between the empirical rate of 0.91
mm/yr compared with the ICE5G-VM2-90 GIA rate of 0.11 mm/yr.

After ∼ 1900 CE the regional component dominates and we see the regional rate of
change increase markedly from 0.7 ± 0.5 mm/yr in 1902 to 1.8 ± 0.5 mm/yr at the
end of the 20th century (Figure 3.13(b)). This change is the result of anthropogenic
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forcing of the climate system (Neukom et al., 2019), which drove sea-level rise
through thermosteric and barystatic processes (Frederikse et al., 2020). Our esti-
mate of regional sea-level rise during the 20th century represents trends sustained
on multi-decadal to centennial timescales because of the natural time-averaging
and resolution limits of the proxy reconstructions and our decadal average of tide
gauge measurements. Despite our analysis being limited to the Atlantic coast of
North America, our estimated rate is comparable to century-scale estimates gen-
erated using only tide gauge data (Hay et al., 2015; Frederikse et al., 2020) and
the K16 statistical model (Kopp et al., 2016; Walker et al., 2022).

The diverse trends captured by the non-linear local component, as shown in Figure
3.14, highlight the important influence site-specific processes can have on the RSL.
At Placentia Newfoundland the non-linear local component experiences large fluc-
tuations with maximum peaks reaching values of ∼ 0.19m at around 250 CE and
1775 CE and minimum troughs of -0.12 m at around -450 CE and 1050 CE. This
is a particularly pronounced degree of variability. The original study of the site
by Kemp et al. (2018) recognised that the geomorphology at Placentia rendered it
sensitive to site-specific RSL change due to the position of the salt marsh. The salt
marsh is separated from the open ocean by a narrow inlet which is likely prone
to opening and closing of the dynamic sediment barrier. In contrast, the East
River Marsh record was generated exclusively through sediment in direct contact
with bedrock to negate the potential influence of sediment compression as a driver
of RSL change (Kemp et al., 2015). This contrast is reflected in our estimate of
the non-linear local component where variability is present with a slight increase
in sea level followed by a fall at around 100 CE and from 650 CE onwards an
increase. Thus the component is non-zero due to the presence of other processes
that can affect individual sites or groups of sites (e.g., dynamic sea level change
Kemp et al., 2015).

There are a number of potential extensions to the NI-GAM model which have not
been addressed in our paper. A future aim is to extend NI-GAM further to larger
regions, e.g. North Atlantic, or potentially to examine global RSL trends. This
poses a challenge as the network of proxy records and tide gauges is non-uniformly
spread and biased to coastal regions in the Northern hemisphere. Previous at-
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tempts to resolve this spatial bias have used a variety of techniques, (e.g. Jevrejeva
et al., 2008; Wenzel and Schröter, 2010; Church and White, 2011; Hay et al., 2015;
Dangendorf et al., 2017; Berrett et al., 2020), yet have mostly focused on instru-
mental data from tide gauges and satellites. Models like K16 and its extensions
(e.g. Khan et al., 2017; Kemp et al., 2018; Walker et al., 2021) created a global
component which may give insight into the changes in sea level common across
many sites. Therefore, our model would require more components and further so-
lutions to additional potential confounding issues. Yet, NI-GAM is an extendable
modeling approach due the flexible structures of spline-GAMs and the Bayesian
framework which allows for the inclusion of informed priors from future RSL anal-
yses. Our modelling strategy is of course not limited to RSL changes. Rather it
has the potential to be expanded to other areas of research that require the de-
composition of a signal into different components that vary in time and space with
complex measurement errors. One such example would be investigating historic
temperature trends at a local and regional level to gauge the components that
alter temperature spatially and temporally.
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Appendix

3.A Data
Table 3.A.1 provides a list of all the proxy record sites used along the Atlantic
coast of North America in our model and Figure 3.A.1 represents the proxy data
associated with the 21 proxy record sites used in our model with the grey boxes
the 1 σ uncertainty in the age and RSL value and the black dots the midpoint of
the uncertainty box. Table 3.A.1 gives the references associated with each proxy
data site and more information in regard to data collection can be sourced here.
In addition, Table 3.A.1 contains the GIA rate used to inform the prior for the
linear local component calculated using a linear regression for the data prior to
1800 CE for each site (Neukom et al., 2019). This provides an estimate for the
rebounding effect of the tectonic plate after a glacier melts (Whitehouse, 2018).
In previous models, physical GIA models are used to inform the prior for the
linear local component. Peltier (2004) developed the ICE5G - VM2-90 Earth - ice
which provides a GIA rate for each site. We carried out comparison between these
techniques however, the data driven GIA rates were our preferred choice for the
proxy records.

Table 3.A.2 gives the reference name associated with each tide-gauge data site and
its’ location along North America’s Atlantic coast using PSMSL database (Holgate
et al., 2013). For each tide gauge site, the associated GIA rate is provided which is
obtained using the ICE5G - VM2-90 Earth - ice developed by Peltier (2004). The
uncertainty associated with these values is selected to be 0.3 mm per year based
on study carried out by Engelhart et al. (2009).
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3.A. Data

Reference Site Name Empirical
rate prior
to 1800 CE
(mm/yr)

ICE5G
GIA rate
(mm/yr)
(Peltier,
2004)

Donnelly et al. (2004);
Gehrels et al. (2020)

Barn Island, Connecticut 1.00 0.99

Kemp et al. (2015); Stearns
and Engelhart (2017)

East River Marsh, Connecticut 0.91 0.96

Kemp et al. (2014)
Nassau, Florida 0.42 0.28

Donnelly (2006)
Revere, Massachusetts 0.58 0.40

Kemp et al. (2011)
Wood Island, Massachusetts 0.52 0.40

Kemp et al. (2011, 2017)
Sand Point, North Carolina 0.97 0.69

Kemp et al. (2011, 2017)
Cedar Island, North Carolina 0.74 0.69

Kemp et al. (2013); Cahill
et al. (2016)

Cape May Courthouse, New Jersey 1.19 1.24

Kemp et al. (2013); Cahill
et al. (2016)

Leeds Point, New Jersey 1.69 1.41

Barnett et al. (2017)
Les Sillons, Magdelen Islands 1.23 2.20

Gerlach et al. (2017)
Little Manatee River, Florida 0.28 0.14

Kemp et al. (2018)
Big River Marsh, Newfoundland 0.87 0.60

Kemp et al. (2018)
Placentia, Newfoundland 0.41 0.21

Barnett et al. (2019)
Saint Simeon, Quebec 0.93 2.33

Gehrels et al. (2020)
Chezzetcook Inlet, Nova Scotia 1.76 0.63

Gehrels et al. (2020)
Sanborn Cove, Maine 3.23 0.08

Khan et al. (2022)
Snipe Key, Florida 0.66 0.13

Khan et al. (2022)
Swan Key, Florida 0.90 0.11

Walker et al. (2021)
Cheesequake, New Jersey 0.85 1.31

Kemp et al. (2017); Stearns
and Engelhart (2017)

Pelham Bay, New York 0.8 1.31

Stearns and Engelhart
(2017)

Fox Hill Marsh, Rhode Island 1.00 1.07

Table 3.A.1: The 21 data sites used in our model and the associated reference for each location.
The Site Name are a combination of the site-specific name and the corresponding state. In
addition, a comparison is made between the GIA rates we use from the data and GIA rates from
physical models such as the ICE5G - VM2-90 Earth-ice model by Peltier (2004).

76



3.A. Data

Longitude Latitude Site Name ICE5G-VM2-90 GIA rate (mm/yr)
(Peltier, 2004)

-54.00 47.30 ARGENTIA 0.21
-74.40 39.40 ATLANTICCITY 1.41
-68.20 44.40 BARHARBOR,FRENCHMANBAY,ME -0.11
-76.70 34.70 BEAUFORT,NORTHCAROLINA 0.61
-63.60 44.70 BEDFORDINSTITUTE 0.49
-65.80 47.90 BELLEDUNE 1.98
-74.10 40.60 BERGENPOINT,STATENIS. 1.31
-53.10 48.70 BONAVISTA 0.36
-71.10 42.40 BOSTON 0.40
-64.00 44.70 BOUTILIERPOINT 0.49
-73.20 41.20 BRIDGEPORT 0.96
-70.60 41.70 BUZZARDSBAY 1.07
-61.90 47.40 CAPAUXMEULES 2.20
-75.60 35.20 CAPEHATTERAS,NORTHCAROLINA 0.69
-75.00 39.00 CAPEMAY 1.24
-83.00 29.10 CEDARKEYI 0.24
-63.10 46.20 CHARLOTTETOWN 1.67
-82.80 28.00 CLEARWATERBEACH 0.25
-67.20 44.60 CUTLER 0.08
-67.30 44.60 CUTLERII 0.08
-66.40 48.10 DALHOUSIE 2.12
-75.70 36.20 DUCKPIEROUTSIDE 0.67
-67.00 44.90 EASTPORT 0.08
-81.50 30.70 FERNANDINABEACH 0.42
-81.90 26.60 FORTMYERS 0.13
-70.70 43.10 FORTPOINT,NEWCASTLEISLAND -0.30
-63.60 44.70 HALIFAX 0.49
-80.10 25.90 HAULOVERPIER 0.11
-75.10 38.60 INDIANRIVERINLET 1.13
-81.60 30.40 JACKSONVILLE 0.28
-81.00 24.70 KEYCOLONYBEACH 0.07
-81.80 24.60 KEYWEST 0.13
-73.80 40.80 KINGSPOINT,NEWYORK 1.31
-58.40 49.10 LARKHARBOUR -0.82
-75.10 38.80 LEWES(BREAKWATERHARBOR) 1.13
-64.90 47.10 LOWERESCUMINAC 2.24
-81.00 24.70 MARATHONSHORES 0.07
-81.40 30.40 MAYPORT 0.42
-81.40 30.40 MAYPORT(BARPILOTSDOCK),FLORIDA 0.42
-80.10 25.80 MIAMIBEACH 0.11
-72.00 41.00 MONTAUK 0.99
-76.70 34.70 MOREHEADCITY 0.61
-72.10 41.40 NEWLONDON 0.99
-71.30 41.50 NEWPORT 1.07
-73.80 40.90 NEWROCHELLE 1.31
-74.00 40.70 NEWYORK(THEBATTERY) 1.31
-60.20 46.20 NORTHSYDNEY 1.51
-75.50 35.80 OREGONINLETMARINA,NORTHCAROLINA 0.91
-75.10 39.90 PHILADELPHIA(PIER9N) 1.24
-62.70 45.70 PICTOU 0.93
-72.20 41.20 PLUMISLAND 0.99
-59.10 47.60 PORTAUXBASQUES 1.19
-73.10 41.00 PORTJEFFERSON 0.96
-76.30 36.80 PORTSMOUTH(NORFOLKNAVYYARD) 0.67
-71.40 41.80 PROVIDENCE(STATEPIER) 1.07
-64.40 49.00 RIVIERE-AU-RENARD 1.12
-63.30 46.50 RUSTICO 1.67
-70.50 41.80 SANDWICHMARINA,CAPECODCANALENTRANCE 1.20
-74.00 40.50 SANDYHOOK 1.31
-52.70 47.60 ST.JOHN’S,NFLD. 0.41
-82.60 27.80 ST.PETERSBURG 0.26
-55.40 46.90 STLAWRENCE 0.59
-81.10 24.70 VACAKEY 0.07
-80.20 25.70 VIRGINIAKEY,FL 0.11
-73.80 40.80 WILLETSPOINT 1.31
-70.70 41.50 WOODSHOLE(OCEAN.INST.) 1.07

Table 3.A.2: The 66 tide-gauge data sites and their geographical coordinates used in our model
from Holgate et al. (PSMSL 2013). Also, the GIA rate for each tide gauge site is provided using
the ICE5G - VM2-90 Earth - ice physical model developed by Peltier (2004).
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3.B. Model Results and Validations for the Full Dataset

3.B Model Results and Validations for the Full
Dataset

In this section, we will present the results from our full dataset of 21 proxy sites
and 66 tide gauges. In addition, we present the results from the 10-fold cross
validation using the 21 proxy sites.

3.B.1 Results for full dataset
The model is run using 21 proxy sites and 66 tide gauge sites, yet we present the
results of the proxy record sites as their long temporal trend provide insight into
long term changes in RSL along the Atlantic coast of North America. Figure 3.B.2
provides the total model fit for the 21 proxy sites along the Atlantic coast of North
America and Figure 3.B.3 provides the rates of change for the corresponding 21
proxy sites. Figure 3.B.4 provides the decomposition of the NI-GAM into the total
model fit and the three components; regional, linear local component with the site-
specific vertical offset and non-linear local component for the 21 proxy sites. Figure
3.B.1 presents the regional component of the NI-GAM. The grey lines represent
10 randomly chosen posterior samples showing the underlying behaviour of the
posterior for the regional component. Figure 3.B.5 provides the non-linear local
component for each proxy record data site.
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10 Posterior Samples
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Figure 3.B.1: Regional component of the noisy-input generalised additive model using 21 proxy
sites and 66 tide gauge sites along the Atlantic coast of North America. The dark blue line
highlights the mean posterior model fit and the dark blue shading indicated the 50% credible
interval and the lighter blue shading is the 95% credible interval. The grey lines represent 10
randomly chosen samples to demonstrate the underlying behaviour of the posterior.
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3.B.2 Model Validation
Model validations using 10-fold cross validation was undertaken using the data
set from the 21 proxy sites along the Atlantic coast of North America. The tide
gauge data was not used in the 10-fold cross validation as many sites had fewer
than 10 data points. Figure 3.B.6 provides the true versus predicted RSL for
the 21 proxy sites using 10 fold cross validation. In table 3.B.1, the empirical
coverage of the model for all 21 sites along the Atlantic coast of North America
is examined. The empirical coverage indicates the percentage of times the true
observation lies within the prediction interval. A comparison is made between the
95% empirical coverage and the 50% empirical coverage. It is evident that the
prediction intervals for our model are large resulting in 100% coverage in many
sites. This is due to the large size of the prediction intervals resulting from the
large bivariate uncertainty that arises from the proxy records. Also included in
Table 3.B.1, it the root mean square error (RMSE) for the 21 data sites along the
Atlantic coast of North America which gives an insight into the prediction errors.

Site Name Empirical 95% Coverage 95% PI width Empirical 50% Coverage 50% PI width RMSE(m)
Barn Island, Connecticut 1.00 0.31 0.59 0.11 0.08
Big River Marsh, Newfoundland 0.96 0.46 0.63 0.16 0.12
Cape May Courthouse, New Jersey 0.99 0.53 0.81 0.18 0.14
Cedar Island, North Carolina 1.00 0.26 0.78 0.09 0.06
Cheesequake, New Jersey 1.00 0.81 0.78 0.28 0.21
Chezzetcook Inlet, Nova Scotia 1.00 0.26 0.95 0.09 0.07
East River Marsh, Connecticut 1.00 0.52 0.77 0.18 0.13
Fox Hill Marsh, Rhode Island 0.98 0.40 0.61 0.14 0.13
Leeds Point, New Jersey 1.00 0.48 0.64 0.17 0.12
Les Sillons, Magdelen Islands 1.00 0.38 0.87 0.13 0.10
Little Manatee River, Florida 1.00 0.30 0.84 0.10 0.07
Nassau, Florida 1.00 0.30 1.00 0.10 0.07
Pelham Bay, New York 1.00 0.70 0.51 0.24 0.19
Placentia, Newfoundland 0.97 0.36 0.59 0.12 0.11
Revere, Massachusetts 0.50 0.34 0.00 0.12 0.07
Saint Simeon, Quebec 1.00 0.64 0.92 0.22 0.16
Sanborn Cove, Maine 1.00 0.72 0.50 0.25 0.18
Sand Point, North Carolina 1.00 0.33 0.96 0.11 0.08
Snipe Key, Florida 1.00 0.93 1.00 0.32 0.23
Swan Key, Florida 1.00 0.77 1.00 0.26 0.19
Wood Island, Massachusetts 0.78 0.27 0.28 0.09 0.06

Table 3.B.1: Empirical 95% coverage for the 21 data sites along the Atlantic coast of North
America with the associated prediction interval(PI). As a comparison, the prediction intervals
are reduced to 50% intervals and the empirical coverage for the 50% is presented. The root mean
square error (RMSE) is included in meters
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3.2.2.1 Convergence Diagnostics

We assess the convergence of our model through various tests, employing the
ShinyStan app (Gabry and Goodrich, 2017). The findings for one hyperparam-
eter, σh, are detailed in Section 3.6.4, and we extend this analysis to encompass
the remaining hyperparameters, σl and σr, in this section. These hyperparameters
account for the variability in the spline coefficients governing the non-linear local
and regional components, as discussed in Section 3.5.5.

Figure 3.2.7: Convergence tests for the hyperparameter σr, which captures variability in the site-
specific vertical offset component of the noisy input generalized additive model, were conducted
using the ShinyStan app (Gabry and Goodrich, 2017). The Gelman-Rubin Statistic (Rhat)
value is 1, indicating convergence, and the large Effective Sample Size (n_eff) value further
supports robust model convergence. Visualisations, including the Kernel Density Estimate and
autocorrelation plot, demonstrate a well-converged model. The traceplot, based on 3 chains,
exhibits a stable and stationary trace, confirming the model’s good convergence.
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Figure 3.2.8: Convergence tests for the hyperparameter σl, which captures variability in the site-
specific vertical offset component of the noisy input generalized additive model, were conducted
using the ShinyStan app (Gabry and Goodrich, 2017). The Gelman-Rubin Statistic (Rhat)
value is 1, indicating convergence, and the large Effective Sample Size (n_eff) value further
supports robust model convergence. Visualisations, including the Kernel Density Estimate and
autocorrelation plot, demonstrate a well-converged model. The traceplot, based on 3 chains,
exhibits a stable and stationary trace, confirming the model’s good convergence.
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CHAPTER 4
reslr: An R Package for Relative

Sea-Level Modelling

We present reslr, an R package to perform Bayesian modelling of relative sea level data.
We include a variety of different statistical models previously proposed in the literature,
with a unifying framework for loading data, fitting models, and summarising the results.
Relative sea-level data often contain measurement error in multiple dimensions and so
our package allows for these to be included in the statistical models. When plotting
the output sea level curves, the focus is often on comparing rates of change, and so our
package allows for computation of the derivative of sea level curves with appropriate
consideration of the uncertainty. We provide a large example dataset from the Atlantic
coast of North America and show some of the results that might be obtained from our
package. An R package that implements our approach is available on the Comprehen-
sive R Archive Network at https://cran.r-project.org/web/packages/reslr or on
GitHub at https://github.com/maeveupton/reslr.
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4.1. Introduction

4.1 Introduction
Understanding the rates and spatial patterns of Relative Sea-Level (RSL) change
across various timescales, spanning from decades to millennia, poses a significant
challenge. The task involves analysing sparse and noisy proxy and/or instrumen-
tal data sources that often have large measurement uncertainties. To address
these complexities and provide robust assessments, statistical models play a piv-
otal role and have become indispensable in the task of quantifying RSL changes
(as examined by Cahill et al., 2015a; Khan et al., 2015) and in the evaluation of
temporal and spatial variability (e.g. Kopp, 2013; Kopp et al., 2016; Kemp et al.,
2018; Walker et al., 2021). To that end the paleo sea-level community would
benefit from a comprehensive toolset capable of analysing the historical evolution
of sea-level changes across different times and locations. This motivated us to
create the reslr package, which is available on the Comprehensive R Archive
Network at https://cran.r-project.org/web/packages/reslr or on GitHub
at https://github.com/maeveupton/reslr. Our package includes a suite of sta-
tistical models appropriate for modelling the complexity of sea-level over time and
space while accounting for sea-level data uncertainties and remaining computa-
tionally tractable. The output of our package provides insight into temporal and
spatial sea-level variability and rates of sea-level change.

The reslr package includes a comprehensive dataset of proxy RSL reconstruc-
tions for 21 locations along the Atlantic coast of North America (Kemp et al.,
2013). These reconstructions rely heavily on dated geological archives obtained
from coastal sediments (e.g. Gehrels, 1994) or corals (e.g. Meltzner et al., 2017).
Moreover, users of the package have the option to incorporate instrumental sea-
level data sourced from the Permanent Service Mean Sea Level online database,
which provides annual RSL measurements for approximately 1,500 tide gauge sta-
tions worldwide (Holgate et al., 2013). By offering this diverse range of data
sources, the reslr package caters to the needs of researchers seeking to explore
and analyse sea-level variations across different locations and time periods.

The reslr package offers a range of statistical models which include: linear re-
gression (Ashe et al., 2019), change point models (Cahill et al., 2015b), integrated
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4.1. Introduction

Gaussian process (IGP) models (Cahill et al., 2015a), temporal splines (de Boor,
1978), spatio-temporal splines (Simpson, 2018) and generalised additive models
(GAM) (Upton et al., 2023c). In all cases, a Bayesian framework is employed,
facilitating the estimation of unknown parameters based on the RSL data while
fully accounting for the associated uncertainties. The reslr package enables re-
searchers to gain comprehensive insights into sea-level variations, leveraging the
flexibility and robustness of these statistical models.

When it comes to addressing measurement uncertainty in proxy records, the reslr
package offers two distinct approaches. The first approach involves employing the
Errors-in-Variables (EIV) method, which takes into account the inherent uncer-
tainties in the input variables (Dey et al., 2000). This method acknowledges that
the input variables are not error-free and incorporates this knowledge in the anal-
ysis. The second approach offered by the package is the Noisy Input (NI) un-
certainty method. This method tackles uncertainty by inflating the output noise
variance with a corrective term that is directly linked to the input noise variance
(McHutchon and Rasmussen, 2011). By considering the level of uncertainty in
the input, this approach provides a more accurate representation of the overall
uncertainty in the results. Both the EIV and NI methods have their respective
advantages, and the reslr package recommends the most suitable uncertainty
method based on the statistical model being employed. This ensures that re-
searchers can select the appropriate approach to effectively address measurement
uncertainties within their specific analysis context.

For each model, the reslr package generates informative plots illustrating the
model-based estimates of RSL. In the case of more complex models like the IGP,
splines, and GAMs, the resulting plots not only provide RSL estimates but also
offer insights into the rates of RSL change. Of particular significance to the paleo-
sea level community, the GAM model provides estimates for separate components
that represent potential drivers of RSL change. This feature enables comparisons
between different components and contributes to a more comprehensive under-
standing of the factors influencing RSL fluctuations (Upton et al., 2023c). These
visual representations enable researchers to gain a clearer understanding of when
and where RSL changes occurred, including the magnitude of their temporal vari-
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ations. Moreover, the package grants users access to the posterior samples used to
generate the plots, providing the option to delve deeper into the underlying statis-
tical distributions and uncertainties associated with the estimated RSL changes.
The combination of these outputs serves as a valuable resource for researchers, aid-
ing in the investigation and interpretation of RSL dynamics across various spatial
and temporal contexts.

The reslr package is uniquely tailored to address the challenges inherent in
analysing historic RSL changes using proxy records. Its design, characterised by
minimal functions and a user-friendly interface, draws inspiration from other pack-
ages such as simmr, which integrates mathematical equations within a Bayesian
framework (Govan et al., 2023), and mgcv, renowned for its diverse statistical mod-
eling options (Wood and Wood, 2015). While packages like oce offer intriguing
approaches to studying oceanographic data (Kelley and Richards, 2014), they lack
the advanced statistical modeling choices provided by reslr. Crucially, there are
currently no competing R packages that match the breadth of capabilities offered
by reslr. This uniqueness stems from its capability to provide users with a selec-
tion of Bayesian statistical models and account for bi-variate uncertainty, crucial
in sea level research.

Our paper has the following structure. Firstly, we introduce the example dataset
provided within the package, which serves as the foundation for the examples pre-
sented throughout the paper. We also provide insight into additional data sources.
Secondly, we offer an overview of the statistical models available in the package,
providing necessary background information. Next, we explore the uncertainty
methods employed within these statistical models. Following this, we provide a
detailed description of the functionality of the reslr package, outlining the di-
verse outputs and plots accessible to users. Finally, we conclude with important
remarks and discuss potential future extensions for the package’s advancement.
Whilst this paper is just a summary of the features of reslr, a more complete
vignette containing examples of the full functionality of the package is available
at https://maeveupton.github.io/reslr/.
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4.2 Data and Models
4.2.1 Data Sources
Proxy sea-level data are vital sources of information for examining historic changes
in RSL prior to the instrumental data period. A proxy refers to a characteristic
that can be observed and used to estimate a variable of interest, which cannot
be measured directly, and can be of physical, biological or chemical nature (e.g.,
Gornitz, 2009). In sea-level studies, the proxy data can be sources from microor-
ganisms such as foraminifera (e.g., Edwards and Wright, 2015), geochemical mea-
surements (e.g., Marshall, 2015), or vegetation that have accumulated in the tidal
realm (e.g., Kemp and Telford, 2015). The data sets we use have had their proxy
measurements transformed into sea level using various techniques which are be-
yond the scope of our paper (e.g., Gehrels, 1994; Shennan et al., 2015; Kemp et al.,
2018). In the reslr package, we provide an example proxy dataset which contains
21 proxy sea-level records (See Appendix 4.A) from the Atlantic coast of North
America as used in Upton et al. (2023c).

Within the context of sea-level analysis, instrumental data plays an important
role by providing direct measurements obtained from tide gauges and satellites
(although the latter are currently not incorporated into the reslr package). To
enhance the versatility of the package, we have implemented a feature that allows
users to download annual tide-gauge data from the PSMSL Level online database
and store it in a temporary file, making it readily available when needed (PSMSL,
2023 Holgate et al., 2013; Woodworth and Player, 2003).

To ensure the comparability of the tide-gauge data with proxy records, we apply
two processing steps. Firstly, the tide-gauge data in the PSMSL database is given
in millimetres relative to a revised local reference datum (a coordinate system
which defines the zero level for sea level measurements Pugh and Woodworth
(2014a)). Within reslr, we transform the data by removing 7000 mm to revert
the tide-gauge data into the observed reference frame and convert the RSL to
metres following the guidance from the PSMSL website as described in Aarup
et al. (2006). The second processing step involves averaging the tide-gauge data to
equation with the resolution of the temporal resolution of the more recent proxy
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data. However, we provide flexibility for users to adjust this averaging period
according to the specific characteristics of their data.

4.2.2 Statistical Models
Within the reslr package, a Bayesian hierarchical framework is employed for each
statistical modelling technique. Markov Chain Monte Carlo (MCMC) simulations
are carried out using the Just Another Gibbs Sampler (JAGS) tool (Plummer,
2003) and implemented using the rjags package in R (Plummer et al., 2016).
Other tools, such as Stan (Carpenter et al., 2017), are utilized for MCMC simu-
lations. However, our preference for JAGS is based on its user-friendly interface,
computational efficiency, and flexible model design capabilities.

Mathematically, the data level for every statistical model is described as:

y = f(x, t) + ϵy (4.1)

where y is the response data (RSL in metres). f(x, t) is the process mean that
depends on location x and time t. ϵy is the error term given by ϵy ∼ N(0, σ2

y + s2
y),

where σ2
y is the residual variance and sy the known measurement error associated

with RSL. In Table 4.2.1 we provide a list of all the possible options for f within
the reslr package. Since some of the models we fit do not vary over space (they
apply to a single site or treat a set of sites as identical) we use f(t) rather than
f(x, t) to denote the process model.

When using proxy RSL data, measurement error is also present in the input vari-
able (time) due to the dating technique used. For the input measurements, t̃ is
assumed to be a noisy estimate of the true time value t:

t̃ = t+ ϵt (4.2)

with the error term given by ϵt ∼ N(0, s2
t ) where st is the known measurement

error associated with time.

We use two methods to account for the time measurement uncertainty. The first is
the Errors-in-variables (EIV) method which assumes that the input variable, e.g.
time, is measured as an error-prone substitute and models it directly (Dey et al.,
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2000). The second uncertainty method is the Noisy Input method. This method
fits an initial model and uses the derivative of the mean of f to calculate a corrective
variance term. Then, the model is re-run with this additional corrective variance
term allowing for the input noise variation to be learned from the complete outputs
of the model (McHutchon and Rasmussen, 2011). Within the reslr package, the
EIV method is used for the linear regression, change point and IGP model and
the temporal spline, the spatio-temporal spline and the GAM use the Noisy Input
uncertainty method. In general, the EIV method tend to be slower but models
the uncertain input process directly, whilst the NI method is faster but requires
the model to be fitted twice.

In Table 4.2.1, we present a range of statistical modelling techniques for f(x, t),
the component of our approach, available in the reslr package. While our seven
distinct models are implemented using JAGS software, users are not permitted to
input their own JAGS models. This restriction is in place because defining each
model output and its corresponding prior values would entail additional work for
the user. Consequently, we do not offer an option for user-defined JAGS models.
Below we discuss each technique and provide insight into the potential uses of
these techniques for the paleo-environmental community.
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Statistical
Model

Model Information model_type
code

Errors in vari-
ables simple lin-
ear regression

A straight line of best fit tak-
ing account any age and mea-
surement errors in the RSL val-
ues using the method of Cahill
et al. (2015b)

"eiv_slr_t"

Errors in vari-
ables change
point model

An extension of the linear re-
gression modelling process. It
uses piece-wise linear sections
and estimates where/when trend
changes occur in the data (Cahill
et al., 2015b)

"eiv_cp_t"

Errors in vari-
ables integrated
Gaussian pro-
cess

A non-linear fit that utilities a
Gaussian process prior on the
rate of sea-level change that is
then integrated (Cahill et al.,
2015a).

"eiv_igp_t"

Noisy Input
spline in time

A non-linear fit using regression
splines as mentioned Upton et al.
(2023c)

"ni_spline_t"

Noisy Input
spline in space
and time

A non-linear fit for a set of sites
across a region using the method
of Upton et al. (2023c).

"ni_spline_st"

Noisy Input
Generalised
Additive model
for the decom-
position of the
RSL signal

A non-linear fit for a set of sites
across a region and provides a
decomposition of the signal into
regional, local linear and non-
linear local components. This
full model is as described in Up-
ton et al. (2023c).

"ni_gam_decomp"

Table 4.2.1: List of all statistical models available in the reslr package. We provide a short
description and the relevant literature for each model. The model_type code column represents
the text input the user should use when implementing their preferred modelling technique.

4.2.3 EIV Linear Regression
The EIV linear regression model given by:

f(t) = α + βt (4.3)
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where α is the intercept, β is the slope and t is the time. Earlier studies, for
example Shennan and Horton (2002) and Engelhart et al. (2009), employed lin-
ear regression when evaluating the rate of RSL change over the past 4000 years.
The reslr package implements a temporal linear regression as its simplicity is
popular for approximate estimates of linear rates of RSL change. However, linear-
ity assumptions for RSL change are often unrealistic when examining long-term
historical trends.

4.2.4 EIV Change Point Model
The EIV change point (CP) model, an extension of the linear regression model,
assumes the RSL process is piecewise linear and estimates when trend changes
occur in the data (Carlin et al., 1992; Cahill et al., 2015b). Mathematically, the
multiple CP model, f(t) is described as:

f(t) =

α1 + βj(t− λ1) when j = 1, 2,

αj−1 + βj(t− λj−1), when j = 3, ...,m+ 1
(4.4)

where αj is the expected value of the response at the jth CP. λj is the time at
which the CP occurs with the prior restriction that λ1 < λ2 < ... < λm and m is
the number of CPs (Cahill et al., 2015b). In the reslr package, the user can select
m to be 1, 2 or 3 CPs. β1 and βm+1 are the slopes before and after the first and last
CP respectively. βj for j = 2 . . . ,m are the slopes between the (j − 1)th and jth
CP. β1 and βm+1 are estimated as part of the model and are free parameters given
prior distributions (Carlin et al., 1992). The remaining βj are deterministically
calculated since the function is continuous and the neighbouring linear segments
must join together (Cahill et al., 2015b) such that:

βj = αj − αj−1

λj − λj−1
, j = 2, ...,m. (4.5)

This technique has be used in different aspects of the sea-level literature. For
example, Kemp et al. (2009) determined the magnitude and the timing of recent
accelerated sea-level rise using change point models in North Carolina, USA. Brain
et al. (2012) used the CP method to examine the impacts of sediment compaction
on reconstructing recent sea-level rise in the United Kingdom. Hogarth et al.
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(2020) used CP models to obtain more consistent estimates of sea-level rise since
1958 for the British Isles. The main advantage of the CP model is its’ ability to
identify sudden changes in RSL. However, the number of change points must be
specified by the user.

4.2.5 Integrated Gaussian Process
An Integrated Gaussian process (IGP) is a modelling strategy that has been used
extensively by the sea-level community when examining the temporal evolution of
sea level change (e.g. Cahill et al., 2015a; Hawkes et al., 2016; Kemp et al., 2017;
Shaw et al., 2018; Dean et al., 2019; Stearns et al., 2023; Kirby et al., 2023).

The IGP uses Gaussian Process (GP) to directly estimate the rate of change of the
response (Holsclaw et al., 2013). In order to extract the original f(t) we integrate
p(t):

f(t) = α +
∫ t

0
p(u)du (4.6)

where α is the intercept and is the rate of change, p(t) = df
dt

, described as:

p(t) ∼ GP (µ(t), k(t, t′)) (4.7)

with t time and µ(t) the mean function and k(t, t′) is the covariance function. The
covariance function provides insight into the relationship between the outcome
variables, i.e. if input variable, t and t′ are in close proximity, the corresponding
outcomes will be more correlated and vice versa (Rasmussen and Williams, 2006).
It is written as (Cahill et al., 2015a):

k(t, t′) = ν2ρ(t−t′)2 (4.8)

where ρ is the correlation parameter and ν2 is the variance of the rate process.

The technique, described by Cahill et al. (2015a), offers insights into examining
rates of Relative Sea Level (RSL) change using proxy records from a single location.
Apart from the IGP model, the reslr package does not rely on GP methods. We
acknowledge that the use of GP modelling has gained considerable traction within
the sea-level research community, particularly for investigating the spatio-temporal
evolution of sea-level changes, as evidenced by notable studies (e.g., Kopp et al.,
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2009; Kopp, 2013; Kopp et al., 2016; Kemp et al., 2018; Walker et al., 2021).
Nevertheless, in the context of the reslr package, we have intentionally opted for
computationally efficient alternatives- splines and GAMs - as detailed in our prior
work (Upton et al., 2023c). These methods offer practical and effective approaches
to analysing sea-level data, accommodating the complexities of spatio-temporal
dynamics while ensuring computational tractability.

4.2.6 Temporal Spline
Splines are mathematical tools used in a wide range of settings from interpolation
to data smoothing. There are a variety of different splines available, yet in this
research we focus on B-splines (de Boor, 1978; Dierckx, 1995) and P-splines (Eilers
and Marx, 1996). Mathematically, B-splines are described in the following way:

f(t) =
K∑

k=1
bk(t)βk (4.9)

where bk(t) is the spline basis function and βk is the spline coefficient.

Following on from B-splines, Eilers and Marx (1996) describe a method to over-
come the difficulty of choosing the correct number of knots by developing the
penalised spline or P-splines. Penalised differences in the spline coefficients con-
trol the smoothness of the spline based on differences (of order d) of the spline
coefficients. The first order differences are written as:

∆βk = βk − βk−1 (4.10)

The spline coefficient will be centered on the previous value with a smoothness
parameter σ2

β:
∆βk ∼ N (0, σ2

β) (4.11)

In our package, P-splines are used for the NI spline in time and the extendable
nature of these splines allows for different components to be examined within the
GAM which is described below.

4.2.7 Spatio-Temporal Spline
We use a spatio-temporal spline to examine RSL evolving over time at multiple
locations. We include a tensor product to capture the variability over time and
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space (represented with longitude and latitude). For each individual covariate,
time (t) and longitude (x1) and latitude (x2), we construct a B-spline basis (Wood,
2017b). These basis functions are combined product-wise in the following way
(Wood, 2006):

f(t, x1, x2) =
H∑

h=1

I∑
i=1

J∑
j=1

bh(t)bi(x1)bj(x2)βhij (4.12)

where βhij is the spline coefficient. H is the number of knots for bh(t) the spline
basis function in time t. I is the number of knots for bi(x1) the spline basis function
for longitude. J is the number of knots for bj(x2) the spline basis functions for
latitude values. The prior for the spline coefficient is given as:

βhij ∼ N (0, σ2
β) (4.13)

where σ2
β is the smoothness parameter for the spatio-temporal spline. The reslr

package uses B-splines for the NI spline in space and time allowing for multiple
sites to be examined. The advantage of the tensor B-spline approach is that the
basis functions are simple to construct, each depending on only one input variable.
However the number of parameters to estimate does increase considerably.

4.2.8 Generalised Additive Models
Generalised additive models are an extension of generalised linear models that
use a basis expansion and a smoothing penalty to create linear predictors that are
dependent on the sum of smooth functions of the predictor variable (GAMs; Wood,
2017a). The model developed by Upton et al. (2023c) uses splines and random
effects to create a spatio-temporal relative sea level field. It identifies variations of
sea-level at different spatial and temporal scales, encompassing multiple underlying
processes and avoiding a focus on specific physical processes. The decomposition
of this mean relative sea level field can be written as:

f(x, t) = r(t) + g(zx) + h(zx) + l(x, t) (4.14)

where r(t) is the regional component at time t represented with a spline in time.
g(zx) is the linear local component at location x represented by a random effect
with zx representing each data site. h(zx) is the spatial vertical offset for each data
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site. l(x, t) is the non-linear local component represented with a spline in space
time.

The regional component (r(t)) represents temporal processes that are common to
all locations, including barystatic and thermosteric contributions, where the former
is caused by the transfer of mass between land-based ice and oceans (Gregory et al.,
2019) and the latter is influenced by changes in global temperature creating density
variations within the oceans (Grinsted, 2015). It is described using a spline in time:

r(t) =
kr∑

s=1
brs(t)βr

s (4.15)

where βr
s is the sth spline coefficient, kr is the number of knots and brs(t) is the sth

spline basis function at time t. The prior for the spline coefficients of the regional
component βr

s are:
βr

s ∼ N (0, σ2
r) (4.16)

where the smoothness of the model fit is controlled by σr is the standard deviation
of the spline coefficient.

The linear local component (g(zx)) of the sea level model aims to capture linear
trends present in the relative sea level signal. One such cause is glacial isostatic
adjustment (GIA), which is a response of the Earth, the gravitational field, and the
ocean to changes in the size of ice sheets (Whitehouse, 2018). On relatively short
timescales, it is approximated to be linear through time with spatial variability
along the Atlantic coastline of North America (Engelhart et al., 2009). Mathemat-
ically, the linear local component is an unstructured random effect for each site
which is formulated as:

g(zxj
) = βg

j t (4.17)

where βg
j is a slope parameter specific for each site j. The prior for the linear local

component is given by:
βg

j ∼ N (mgj
, s2

gj
) (4.18)

where mgj
and s2

gj
are the empirically estimated rate and associated variance (refer

to Upton et al. (2023c) for a detailed description).
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The site-specific vertical offset h is a random effect used to capture vertical shifts
associated with measurement variability between sites and is formulated as:

h(zxj
) = βh

j (4.19)

where βh
j contains the random effect coefficients for site j. The prior for the site-

specific vertical offset βh
j is given as:

βh
j ∼ N (0, σ2

h) (4.20)

where σ2
h is the variance of the random intercept across all data sites.

The non-linear local component (l(x, t)) captures structured and unstructured RSL
variability on century timescales, including dynamic sea-level changes (atmospheric
and oceanic circulation patterns (Gregory et al., 2019)) and site-specific processes
(e.g. sediment compaction affecting solid Earth’s surface (Horton et al., 2018)). It
is described using a spatio-temporal spline function formed using a tensor product
and is formulated as:

l(x, t) =
kl∑

s=1
bls(x, t)βl

s (4.21)

where βl
s is the sth spline coefficient, kl is the number of knots and bls(x, t) is the sth

spline basis function at time t and location x. The prior for the spline coefficient
βl

s is given as:
βl

s ∼ N (0, σ2
l ) (4.22)

where σ2
l is the variance of the spline coefficients over space and time.

As described in Upton et al. (2023c), B-splines are used for both the regional and
local terms as this model structure balances both model usability and computa-
tional efficiency for examining proxy-based sea level reconstructions on a regional
to local scale. B-splines also allow for easier prior elicitation of the smoothness
parameters since they directly control the variability of the spline weights in the
model.

101



4.3. Implementation

4.3 Implementation
Within the package, we keep the number of functions to a minimum to ensure
accessibility for users R experience. We run the statistical models using an MCMC
algorithm and include a summary function to obtain a high level insight into the
outputs. We use S3 classes to access the summary, print and plot commands. The
package has functions to plot the input data and resulting model fits using ggplot2
(Wickham, 2016). The user has access to all the underlying information used to
create these plots allowing these visualisations to be re-created. In addition, the
functions within the package are extendable allowing advanced users access to
more complex outputs.

In this section, we provide insight into the example dataset and additional data
sources using tide-gauge data within the reslr package. A discussion is provided
into each function using two separate case studies; a single location and multiple
locations. In the first case study, we demonstrate the Noisy Input temporal spline
(model_type = "ni_spline_t") which is an example modelling strategy for a
single location. In the second case study, we examine multiple locations using the
Noisy Input GAM decomposition (model_type = "ni_gam_decomp").

4.3.1 Example Dataset
We include a dataset used as an example called NAACproxydata. The full dataset
with names of the locations and associated literature is in the Appendix 4.A. The
NAACproxydata is a data frame with 1715 rows and 8 columns which include:

• Region: Region name
• Site: Site name
• Latitude: Latitude of the site
• Longitude: Longitude of the site
• RSL: Relative Sea level in metres
• RSL_err: 1 standard deviation error associated with relative sea level measured

in metres
• Age: Age in years Common Era (CE)
• Age_err: 1 standard deviation error associated with the age in years CE
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4.3.2 Including Tide Gauge Data
The tide-gauge data available to users can be obtained from the PSMSL online
database (Holgate et al., 2013; Woodworth and Player, 2003) through the reslr
package. To ensure compatibility with the proxy records, several processing steps
are performed within the package, as discussed earlier.

When incorporating tide-gauge data, users have three methods to select their
preferred tide gauge(s). The first option is to provide a list of tide-gauge names
from the PSMSL database, allowing users the freedom to select any tide gauge
available. The second option is to automatically identify the nearest tide gauge to
the proxy location that has more than 20 years of observations. This option proves
particularly useful when examining proxy records and extending the temporal
range to capture recent changes in RSL.

The final option enables the selection of all tide gauges within a 1-degree radius
(latitude and longitude) of the proxy location, provided they have more than 20
years of observations. This option grants users access to a wide array of tide gauges
within a larger geographic area. Moreover, users can combine the first option with
either the second or the third option, allowing for the freedom to choose specific
tide gauges while incorporating the nearest tide gauge or multiple tide gauges.

All the values mentioned in this paragraph are arguments that can be adjusted
within the function, giving users flexibility in customizing their data selection
process according to their specific requirements.

4.3.3 Case Study for 1 Location
In the following sections, we use one site, Cedar Island North Carolina USA (Kemp
et al., 2011, 2017), from the example dataset, NAACproxydata:

CedarIslandNC <- reslr::NAACproxydata %>%
dplyr::filter(Site == "Cedar Island")

glimpse(CedarIslandNC)

#> Rows: 104
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#> Columns: 8
#> $ Region <chr> "North Carolina", "North Carolina", "North Carolina", "North
#> $ Site <chr> "Cedar Island", "Cedar Island", "Cedar Island", "Cedar Islan
#> $ Latitude <dbl> 34.971, 34.971, 34.971, 34.971, 34.971, 34.971, 34.971, 34.9
#> $ Longitude <dbl> -76.38, -76.38, -76.38, -76.38, -76.38, -76.38, -76.38, -76.
#> $ RSL <dbl> -0.12, -0.14, -0.16, -0.18, -0.19, -0.21, -0.22, -0.23, -0.2
#> $ Age <dbl> 2005, 1996, 1988, 1979, 1974, 1963, 1957, 1951, 1941, 1937,
#> $ Age_err <dbl> 2.25, 2.00, 5.00, 5.75, 5.50, 5.50, 7.00, 7.75, 7.75, 8.00,
#> $ RSL_err <dbl> 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,

For a single location such as this case study, we recommend using an EIV IGP or
a NI spline in time as they demonstrate how the RSL changed over time for this
example site called Cedar Island. In this example, tide gauge data is not included
but it is an option available to the user if they require. The next example will
demonstrate a more complex analysis with the inclusion of tide gauges.

After selecting the data site from the example dataset, we use the reslr_load
function to process the data prior to running the statistical model and it has a
number of different settings that the user can alter depending on the model choice.
One such setting is the prediction_grid_res option. This provides the resolution
at which predictions of RSL and RSL rates are made and subsequently plotted.
We set the default at 40 years and if a finer grid is required, the user can alter the
setting for prediction_grid_res. The reslr_load function includes additional
settings to include tide gauge data and linear rates which will be discussed in the
next case study. For the single site case study, we demonstrate the reslr_load
function:

CedarIslandNC_input <- reslr_load(data = CedarIslandNC)

The output of this function is a list of two dataframes called data and data_grid.
The data dataframe is the inputted data with an additional column called data_type_id
which distinguishes proxy records from tide gauge data. The data_grid is a
dataframe that is evenly spaced in time based on the prediction_grid_res value
chosen by the user and is used to create the plots:

glimpse(CedarIslandNC_input$data_grid)
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#> Rows: 57
#> Columns: 5
#> Groups: SiteName [1]
#> $ Longitude <dbl> -76.38, -76.38, -76.38, -76.38, -76.38, -76.38, -76.38, -
#> $ Latitude <dbl> 34.971, 34.971, 34.971, 34.971, 34.971, 34.971, 34.971, 3
#> $ SiteName <fct> "Cedar Island,\n North Carolina", "Cedar Island,\n North
#> $ data_type_id <fct> ProxyRecord, ProxyRecord, ProxyRecord, ProxyRecord, Proxy
#> $ Age <dbl> -865.25, -750.00, -700.00, -650.00, -600.00, -550.00, -50

A brief insight into the outputs of the reslr_input function can be obtained using
the print function which provides the number of observations and the sources of
the data as shown below:

print(CedarIslandNC_input)

#> This is a valid reslr input object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included.
#> It is recommended for the ni_gam_decomp model
#> The linear_rate or linear_rate_err was not included.
#> It is required for the ni_gam_decomp model

The next step is using the plot function to plot the raw data, shown in Figure
4.3.1, using the following:

plot(CedarIslandNC_input,
plot_caption = FALSE)

4.3.3.1 Noisy Input Spline in time

The NI spline in time (model_type = "ni_spline_t") examines how the response
variable, RSL, varies in time. While the EIV-IGP method is commonly used in
the sea-level community, we demonstrate that the NI spline in time is a superior
alternative for future research. Unlike the Gaussian process, which has a compu-
tational complexity that grows exponentially with the number of data points, the
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Figure 4.3.1: A plot of the raw data for our example site Cedar Island North Carolina (Kemp
et al., 2011, 2017). The x-axis is time in years in the Common Era (CE) and the y-axis is relative
sea level in metres. The grey boxes are 1 standard deviation vertical and horizontal (temporal)
uncertainty. The black dots are the midpoints of the uncertainty boxes.

spline equivalent uses pre-computed basis functions, resulting in a more efficient
computation (Wood, 2017a).

For this model type, the reslr_mcmc function is used to implement the MCMC
simulation using JAGS and the model type setting is selected to be model_type
= "ni_spline_t".

res_ni_spline_t <- reslr_mcmc(input_data = CedarIslandNC_input,
model_type = "ni_spline_t")

The output of the reslr_mcmc function is a list that stores the JAGS model run,
the input dataframe and the dataframes for plotting the results. The user can
set the size of the credible intervals by changing the CI setting in this function;
the current default is CI = 0.95. In addition, the user can alter the number of
iterations which will be required if the model is not converging.
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To obtain a brief insight into the outputs of the reslr_mcmc function, the user
can use the print function which provides the number of iterations and the model
type:

print(res_ni_spline_t)

#> This is a valid reslr output object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> The model used was the Noisy Input Spline in time model.
#> The input data has been run via reslr_mcmc and has
produced 3000 iterations over 3 MCMC chains.

The convergence of the MCMC algorithm can be examined for the “ni_spline_”
model using the summary function and ensures the scale reduction factor (R-hat)
is close to 1 (Gelman and Rubin, 1992b; Gelman et al., 2013). If the model run
has converged, the package will print: “No convergence issues detected”. If the
package prints: “Convergence issues detected, a longer run is necessary”. The
user is required to update the reslr_mcmc function with additional iterations
as described above. The summary function provides insight into the parameter
estimates from the model using the following:

summary(res_ni_spline_t)

#> No convergence issues detected.

#> # A tibble: 2 x 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <num> <num> <num> <num> <num> <num>
#> 1 sigma_beta 2.10 0.682 0.545 1.30 3.32 1.00
#> 2 sigma_y 0.00626 0.00474 0.00462 0.000521 0.0153 1.00

For the parameter estimates, “sigma_beta” acts as a smoothness parameter con-
trolling the penalisation of the splines coefficients for the spline in time model and
“sigma_y” represents the data model variation. These are σy and σβ as described
in Section 4.2.6.
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The final results from the “ni_spline_t” model can be illustrated using the plot
function and the corresponding dataframes are stored in the res_ni_spline_t ob-
ject called output_dataframes as a named list element. Figure 4.3.2 demonstrates
the posterior model fit for our example site using:

plot(res_ni_spline_t,
plot_type = "model_fit_plot",
plot_caption = FALSE)
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Figure 4.3.2: The plot of the noisy input spline in time model fit for our example site, Cedar
Island, North Carolina (Kemp et al., 2011, 2017). The x-axis is time in years in the Common
Era (CE) and the y-axis is relative sea level in metres. The grey boxes are 1 standard deviation
vertical and horizontal (temporal) uncertainty. The black dots are the midpoints of the uncer-
tainty boxes. The solid purple line represents the mean of the model fit with a 95% credible
interval denoted by shading.

In Figure 4.3.3 the rate of change of this posterior model fit is presented and can
be viewed using:

plot(res_ni_spline_t,
plot_type = "rate_plot",
plot_caption = FALSE)
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Figure 4.3.3: The rate of change model fit using noisy input spline in time model for our example
site Cedar Island, North Carolina (Kemp et al., 2011, 2017). The rate is calculated by taking
the first derivative of the total model fit. The x-axis is time in years in the Common Era (CE)
and the y-axis is the instantaneous rate of change of sea level in mm per year. The solid purple
line represents the mean of the model fit with a 95% credible interval denoted by shading. There
is a black horizontal line which is the zero rate of change for this site.

4.3.4 Case Study for Multiple Sites
The sea-level research community is commonly interested in temporal and spatial
variations in RSL. To cater to this interest, the reslr package offers two models for
spatio-temporal modeling. The first model is a noisy-input spline that accounts for
noise in both time and space, providing a robust representation of RSL dynamics.
The second model, a more intricate option, is the noisy input GAM. Mathematical
details concerning the Noisy Input GAM can be found in Upton et al. (2023c). In
our upcoming example, we will focus on this model as it empowers users to explore
the decomposition of the RSL signal over time and space, unraveling valuable
insights into the underlying dynamics.
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4.3.4.1 Noisy Input Generalised Additive Model for Decomposition
of Response Signal

We demonstrate the functions settings required for the NI GAM. This model re-
quires an adequate number of sites to perform the decomposition and the minimum
sites required will depend on the signal in the data. In this example, we use nine
sites from the example dataset, NAACproxydata, which are selected in the following
manner:

multi_site <- reslr::NAACproxydata %>%
dplyr::filter(Site %in% c("Cedar Island","Nassau",

"East River Marsh", "Swan Key",
"Placentia",
"Pelham Bay","Fox Hill Marsh",
"Snipe Key","Big River Marsh"))

Next, the reslr_load function is required for the preparation of input data for the
NI GAM, which necessitates additional information not required by earlier mod-
els. Firstly, the statistical model relies on an estimate of the “linear local rate”
and its associated uncertainty. By setting include_linear_rate = TRUE, the
package incorporates this rate, which is assumed to stem from physical processes
like Glacial Isostatic Adjustment (GIA) (refer to Section 4.2.8 for more informa-
tion). Users have the flexibility to include their preferred linear rate values as
additional columns (linear_rate and linear_rate_err) in the input dataframe.
If these values are not provided, the package automatically calculates them using
the available data.

Secondly, users are encouraged to include tide gauge data by setting include_tide_gauge
= TRUE. As discussed previously, users need to make a decision regarding the inclu-
sion of the closest tide gauge (TG_minimum_dist_proxy = TRUE), selecting specific
tide gauges by providing a list of names (list_preferred_TGs = c("ARGENTIA")),
or including all tide gauges within a one-degree proximity of the proxy site (all_TG_1deg
= TRUE). Additionally, the tide gauge data requires values for the linear_rate and
linear_rate_err columns, which are calculated using a physical model known as
an Earth-Ice model called the ICE-5G (VM2) Model (Peltier, 2004) with an un-
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certainty value of 0.3 mm/year (Engelhart et al., 2009), both provided within the
reslr package.

Thirdly, the tide gauge data is averaged over a decade to equate with the resolution
of proxy records. If necessary, users can adjust the size of the averaging window
to accommodate varying sediment accumulation rates. For example, a longer
sediment accumulation rate would result in a larger average, such as 20 years.
The default setting for sediment_average_TG is 10 years, which we will use in our
example.

The final setting of the reslr_load function is prediction_grid_res, allowing
users to modify the resolution of the output plots. The default setting of 50 years
serves as a starting point, but users have the flexibility to explore alternative
options. For our example, we will utilize nine proxy sites and select all tide gauges
within a one-degree range of our proxy site, maximizing the number of data points
to demonstrate the capabilities of our package. The specific settings employed are
described below:

multi_site_input <- reslr_load(
data = multi_site,
include_tide_gauge = TRUE,
include_linear_rate = TRUE,
TG_minimum_dist_proxy = TRUE,
all_TG_1deg = TRUE)

Similar to the previous example, the output of this function is a list of two
dataframes called data and data_grid. The data dataframe is the inputted data
with additional columns for the data_type_id which will contain “ProxyRecord”
and “TideGaugeData”. The data_grid is a dataframe that is evenly spaced in
time based on the prediction_grid_res value chosen by the user and is used to
create the plots. In this example, we have 9 proxy sites and 26 tide gauges and
the data can be accessed by:

glimpse(multi_site_input$data)

#> Rows: 1,130
#> Columns: 14
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#> $ Region <chr> "Florida", "Florida", "Florida", "Florida", "Florida",
#> $ Site <chr> "Nassau", "Nassau", "Nassau", "Nassau", "Nassau", "Nas
#> $ LongLat <chr> "30.6_-81.7", "30.6_-81.7", "30.6_-81.7", "30.6_-81.7"
#> $ Latitude <dbl> 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6, 30.6,
#> $ Longitude <dbl> -81.7, -81.7, -81.7, -81.7, -81.7, -81.7, -81.7, -81.7
#> $ RSL <dbl> 0.05, 0.03, 0.01, -0.01, -0.03, -0.05, -0.07, -0.09, -
#> $ Age <dbl> 2002, 1990, 1980, 1974, 1964, 1936, 1920, 1906, 1896,
#> $ Age_err <dbl> 4.25, 5.50, 4.25, 4.50, 9.50, 10.75, 8.75, 9.75, 9.50,
#> $ RSL_err <dbl> 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07,
#> $ SiteName <fct> "Nassau,\n Florida", "Nassau,\n Florida", "Nassau,\n F
#> $ data_type_id <fct> ProxyRecord, ProxyRecord, ProxyRecord, ProxyRecord, Pr
#> $ linear_rate <dbl> 0.417923, 0.417923, 0.417923, 0.417923, 0.417923, 0.41
#> $ linear_rate_err <dbl> 0.002958023, 0.002958023, 0.002958023, 0.002958023, 0.
#> $ ICE5_GIA_slope <dbl> 0.278517, 0.278517, 0.278517, 0.278517, 0.278517, 0.27

A brief insight into the outputs of the reslr_input function, e.g. number of
observations and number of locations, can be obtained using the print function
shown below:

print(multi_site_input)

#> This is a valid reslr input object with 1130 observations and 35 site(s).
#> There are 9 proxy site(s) and 26 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data included by the package.
#> The linear_rate and linear_rate_err has been included.

A plot of the raw data can be created using plot function with an option to
plot the tide gauges and the proxy records together or have present separate plots
for each data source. Figure 4.3.4 demonstrates the resulting plot for the proxy
records only using the following function:

plot(x = multi_site_input,
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE,
plot_caption = FALSE)
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Figure 4.3.4: A plot of the raw data for our nine example sites along the Atlantic coast of North
America. The x-axis is time in years in the Common Era (CE) and the y-axis is relative sea
level in metres. The grey boxes are 1 standard deviation vertical and horizontal (temporal)
uncertainty. The black dots are the midpoints of the uncertainty boxes. The separate sites will
appear in separate windows on the plot.

This model type should use model_type = "ni_gam_decomp" in the reslr_mcmc
function and the MCMC simulation settings can be altered to ensure convergence.

res_ni_gam_decomp <- reslr_mcmc(
input_data = multi_site_input,
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model_type = "ni_gam_decomp"
)

The output of the reslr_mcmc function is a list that stores the JAGS model run,
the input dataframe and the dataframes for plotting the results. Identical to the
other model processes, the convergence of the MCMC algorithm is examined and
the parameter estimates from the model can be investigated using the following:

summary(res_ni_gam_decomp)

#> No convergence issues detected.

#> # A tibble: 4 x 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <num> <num> <num> <num> <num> <num>
#> 1 sigma_beta_h 1.76 0.250 0.236 1.39 2.20 1.00
#> 2 sigma_beta_r 0.282 0.0533 0.0501 0.208 0.381 1.00
#> 3 sigma_beta_l 0.971 0.150 0.145 0.747 1.25 1.00
#> 4 sigma_y 0.0142 0.00110 0.00113 0.0125 0.0161 1.00

For the parameter estimates, we provide the standard deviation associated with
each component of the NI GAM decomposition. Specifically, "sigma_beta_r" rep-
resents the standard deviation of the spline coefficient for the regional component,
"sigma_beta_l" represents the standard deviation of the spline coefficient for
the non-linear local component, "sigma_beta_h" denotes the standard deviation
of the site-specific vertical offset component, and "sigma_y" indicates the data
model variation. These names correspond to the algebraic components described
in Section 4.2.8.

One of the key advantages of the NI GAM approach is its ability to decompose re-
gional RSL change into separate components. The results from the ni_gam_decomp
model can be visualised using the plot function, which generates individual plots
for each component. Additionally, all components, except for the linear local com-
ponent, have corresponding rate plots. Users can access the data used to create
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each plot in the res_ni_gam_decomp object as separate dataframes for each com-
ponent.

In our example, we demonstrate the rate of change for the total model fit in
Figure 4.3.5. This figure illustrates the rate of change at each site, which is useful
to understand the variations of the relative sea-level signal, i.e. f(x, t). To plot
the rate of change, users can employ the following method:

plot(res_ni_gam_decomp,
plot_type = "rate_plot",
plot_caption = FALSE)

Figure 4.3.5: The rate of change for the total model fit for the noisy input generalised additive
model for sites along the Atlantic coast of North America. It is calculated by finding the derivative
of the total model fit. The solid purple line is the mean rate of change fit and the shading denotes
95% credible interval for each site along the Atlantic coast of North America. The x-axis is time
in years in the Common Era (CE) and the y-axis is rate of change in mm per year.
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The regional component (r(t)) captures the mean of RSL change along the Atlantic
coast of North America. The associated rate of change of the regional component,
as seen in Figure 4.3.6, provides an important visual insight into the rate at which
this trend varied over the past 3000 years. It is accessed by:

plot(res_ni_gam_decomp,
plot_type = "regional_rate_plot",
plot_caption = FALSE)

Figure 4.3.6: The rate of change for the regional component of the noisy input generalised
additive model for the nine proxy sites and the eleven tide gauges along the Atlantic coast of
North America. It is calculated by finding the derivative of the regional component fit. The
solid blue line is the mean rate of change fit and the shading denotes 95% credible interval. The
x-axis is time in years in the Common Era (CE) and the y-axis is rate of change in mm per year.

4.4 Summary
In this paper, we have presented an overview of the reslr package and discussed
its various features and design decisions. Our goal was to address the specific needs
of the paleo sea-level community and provide an efficient and flexible R package
that caters to different types of source data, whilst maintaining a simple workflow
that does not require the user to learn too many different functions.
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Through two case studies, we demonstrated the simplicity and accessibility of the
package. The first case study examined a single site using the NI spline in time.
Our results showed that the reslr package can provide RSL estimates and asso-
ciated rate of change values over time for a single location. In the second case
study, we showcased the capabilities of the reslr package when analysing data
from multiple locations. We highlighted its flexibility, allowing for the decompo-
sition of the relative sea-level signal into different components. Additionally, we
presented a comprehensive method for incorporating tide-gauge data, which can
help to provide valuable insights into recent changes in RSL not captured by proxy
records.

There are a number of limitations with our package. One notable constraint arises
from the inherent complexity of the NI GAM, as demonstrated in our second case
study, which demands a substantial volume of data. This becomes a challenge due
to the sparsity often observed in proxy records. Despite offering seven models for
diverse users, advanced users are unable to customise the priors in the Bayesian
framework. Addressing this would empower those seeking more control in Bayesian
modeling with the reslr package. Acknowledging and refining these limitations
will contribute to the ongoing development and improvement of the reslr package.

There are several potential extensions for the reslr package. One possibility is
to include additional statistical models, such as machine learning techniques, to
accommodate larger datasets. Another improvement could be the integration of
other instrumental data sources, such as satellite data, enabling the examination
of other variables related to climate change. Overall, the reslr package offers
a powerful toolkit for the paleo sea-level community, and we anticipate that it
will continue to evolve and expand its capability to meet the evolving needs of
researchers in this field.
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4.A Example Dataset
The reslr package contains a dataset used as an example called NAACproxydata.
This dataset contains proxy records from the Atlantic coast of North America as
used in Upton et al. (2023). The 21 different proxy data sites and the references
for each data source can be found in Table 4.A.1.

Site Name Reference
Barn Island, Connecticut Donnelly et al. (2004); Gehrels et al. (2020)
Big River Marsh, Newfoundland Kemp et al. (2018)
Cape May Courthouse, New Jersey Kemp et al. (2013); Cahill et al. (2016)
Cedar Island, North Carolina Kemp et al. (2011, 2017)
Cheesequake, New Jersey Walker et al. (2021)
Chezzetcook Inlet, Nova Scotia Gehrels et al. (2020)
East River Marsh, Connecticut Kemp et al. (2015); Stearns et al. (2023)
Fox Hill Marsh, Rhode Island Stearns et al. (2023)
Leeds Point, New Jersey Kemp et al. (2013); Cahill et al. (2016)
Les Sillons, Magdelen Islands Barnett et al. (2017)
Little Manatee River, Florida Gerlach et al. (2017)
Nassau, Florida Kemp et al. (2014)
Pelham Bay, New York Kemp et al. (2017); Stearns and Engelhart (2017)
Placentia, Newfoundland Kemp et al. (2018)
Revere, Massachusetts Donnelly (2006)
Saint Simeon, Quebec Barnett et al. (2017)
Sanborn Cove, Maine Gehrels et al. (2020)
Sand Point, North Carolina Kemp et al. (2011, 2017)
Snipe Key, Florida Khan et al. (2022)
Swan Key, Florida Khan et al. (2022)
Wood Island, Massachusetts Kemp et al. (2011)

Table 4.A.1: A list of names of all the sites available in the example dataset within the reslr
package. For each site we include the reference in the literature to the source of the data.
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4.B Vignettes for the reslr package
The reslr package includes three distinct vignettes to aid users in effectively util-
ising its functionalities. The first vignette, titled the Quick Start Guide, offers
users a concise overview of the key functions within the reslr package. The second
vignette, known as reslr, serves as the primary vignette, providing comprehensive
and detailed instructions for each function and configuration available in the pack-
age. Lastly, the Advanced vignette is designed to enable users to delve deeper into
specific functions, offering a more thorough exploration of their capabilities. In
this thesis, we have included the complete set of associated vignettes and they can
also be accessed at https://maeveupton.github.io/reslr/news/index.html.

4.B.1 Main Vignette for reslr package
reslr: Statistical Models for examining Relative Sea Level Change in R

Maeve Upton, Andrew Parnell & Niamh Cahill

4.B.1.1 Introduction

If you require fast instructions, check out the reslr: Quick start.

The reslr package is specifically developed for Bayesian modeling of relative sea-level data. It
offers a diverse selection of statistical models, including linear regression, change-point regression,
integrated Gaussian process regression, splines, and generalized additive models. One notable
feature is the incorporation of measurement uncertainty in multiple dimensions, which is crucial
when analyzing relative sea-level data. The package provides a unified framework for data
loading, model fitting, and summarising changes in relative sea level (RSL) over time and space.
The generated plots depict sea level curves and corresponding rates of change, taking into account
the associated uncertainty.

4.B.1.2 Modelling Options

There are a number of modelling options available to the user:

Statistical Model Model Complexity & Information
model_type
code

Errors in variables simple
linear regression

Low: A straight line of best fit taking account of
any age and measurement errors in the RSL
values using the method of Cahill et al (2015)

“eiv_slr_t”
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Statistical Model Model Complexity & Information
model_type
code

Errors in variables change
point model

Medium: An extension of the linear regression
modelling process. It uses piece-wise linear
sections and estimates where/when trend
changes occur in the data (Cahill et al. 2015).

“eiv_cp_t”

Errors in variables
integrated Gaussian
Process

High: A non linear fit that utilities a Gaussian
process prior on the rate of sea-level change that
is then integrated (Cahill et al. 2015).

“eiv_igp_t”

Noisy Input spline in time High: A non-linear fit using regression splines
using the method of Upton et al (2023).

“ni_spline_t”

Noisy Input spline in space
and time

High: A non-linear fit for a set of sites across a
region using the method of Upton et al (2023).

“ni_spline_st”

Noisy Input Generalised
Additive model for the
decomposition of the RSL
signal

Extreme: A non-linear fit for a set of sites
across a region and provides a decomposition of
the signal into regional, local-linear (commonly
GIA) and local non-linear components. Again
this full model is as described in Upton et al
(2023).

“ni_gam_decomp”

As presented in this table, users can choose from seven statistical models with varying complex-
ities. The simplest, labeled "Low," is the errors-in-variables simple linear regression, suitable for
examining linear trends in sea level data but limited to linear trends and a single location. The
errors-in-variables change point model, categorized as "Medium" complexity, requires users to
specify 1, 2, or 3 change points, making it effective for identifying abrupt changes and estimating
change rates but limited to a few change points and a single location.

Moving to higher complexity, the errors-in-variables integrated Gaussian Process is labeled "High"
and offers advantages over previous models. It is flexible in time, providing sea level trends and
associated rates of change, though confined to a single location with long computational run
times. For improved computational efficiency, the noisy input spline in time maintains advantages
of the errors-in-variables integrated Gaussian process but is restricted to a single location.

To explore multiple locations in time and space, the noisy input spline in space and time, labeled
"High" complexity, captures sea level trends and rates for many locations simultaneously. The
final approach, the noisy input generalised additive model for decomposing the RSL signal, is
classified as "Extreme" complexity. Users need to provide additional information on the phys-
ical processes driving RSL changes in space and time, offering insights into these underlying
mechanisms.
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For all of the above models the user is able to quantify and visualise changes of RSL and rates
of change with associated uncertainties. Indeed a full posterior distribution ensemble of values is
available in the output of the functions. For the decomposed full model, “ni_gam_decomp”,
the user is able to access the posterior probability distributions of the individual components.

4.B.1.3 Installation of the reslr package

Installation of the reslr package

The reslr package uses the JAGS (Just Another Gibbs Sampler) software to run the models.
Before installing reslr, visit the JAGS website and download and install JAGS for your operating
system.

Next, start Rstudio and find the window with the command prompt (the symbol >). Type

install.packages("reslr")

It may ask you to pick your nearest CRAN mirror (the nearest site which hosts R packages).
You will then see some activity on the screen as the reslr package and the other packages it
uses are downloaded. The final line should then read:

package 'reslr' successfully unpacked and MD5 sums checked

You then need to load the package.

library(reslr)

This will load the reslr package and all the associated packages. You’ll need to type the
library(reslr) command every time you start R. If you have problems, visit the Issues page
and leave a message to tell us what went wrong.

4.B.1.4 Considerations before running reslr

Prior to running the reslr package, there are a few points to consider.

4.B.1.5 Installating JAGS software

In this package, the models are written using Just Another Gibbs Sample (JAGS) which uses
Gibbs sampling and Markov Chain Monte Carlo (MCMC) algorithm to draw samples from the
posterior distribution of the unknown parameters. To download the JAGS package use this link.
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4.B.1.6 Working with scripts

The best way to use the reslr package is by creating scripts. A script can be created in Rstudio
by clicking File > New File > Rscript. This opens a text window which allows commands
to be typed in order and saved. The command can be sent to the command prompt (which
Rstudio calls the Console) by highlighting the command and clicking Run (or going to Code >
Run Lines). There are also keyboard shortcuts to speed up the process. We strongly recommend
you learn to run R via scripts.

4.B.1.7 Inputting User’s data

reslr can handle three different types of data structure. It is important to note that varying
the number of data sites will require different statistical modelling strategy:

• A single site. This may occur when you have data for only one individual data site. In the
case of a single site, we recommend using a temporal model, for example EIV Integrated
Gaussian Process or NI spline in time.

• Multiple sites. This may occur if you have a dataset which has multiple different data
sites. In this situation, the user must use a spatial temporal model, for example NI spline
in space time.

• Multiple group of sites with different drivers of change. This may occur if you have multiple
locations are interested in investigating how the regional, linear local and non-linear local
components vary. In this case, the NI GAM decomposition is recommended.

The user must ensure that the input data is a dataframe. For a single site or multiple sites only
one dataframe should be given to the package, i.e. combined all sites into one dataframe, with
the following columns names:

Region Site Latitude Longitude RSL Age Age_err RSL_err linear_rate linear_rate_err
“Leeds Point" “New Jersey" 41.33 -71.86 -0.91 1336.00 16.50 0.04 1.69 0.03
“Leeds Point" “New Jersey" 41.33 -71.86 -0.78 1413.00 13.50 0.04 1.69 0.03
... ... ... ... ... ... ... ... ... ...
“Cedar Island" “North Carolina" 40.33 -72.8 -0.63 1570.00 43.00 0.05 0.74 0.01
“Cedar Island" “North Carolina" 40.33 -72.8 -0.53 1655.00 13.50 0.05 0.74 0.01

• Site is the name of the site in question, e.g. Leeds Point.
• Region is the area in which is was collected, e.g. New Jersey. To note, in the package,

the Site and the Region columns will be combined to form a factor called the SiteName
which results in an output, e.g.

‘‘Leeds Point,\n New Jersey’’

• Age is the year of the data in Common era (“CE”) or Before Present (“BP”). If calibrated
in the BP form the package will convert the data into the Common Era form.
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• Age_err is the 1 standard deviation (σ) Age uncertainty associated with the Age.
• RSL is the Relative Sea Level measured in meters.
• RSL_err is the 1 standard deviation (σ) Relative Sea level uncertainty associated with

the RSL measured in meters.
• Longitude is the longitude of the site in degrees (in decimal, range: -180 to 180). It is

important to note that if there are slightly different longitude values for all the observations
in site this will lead to errors. Therefore, select one longitude value for each site.

• Latitude is the Latitude of the site in degrees (degree in decimal, range -90 to 90). Simi-
larly, it is important to note that if there are slightly different latitude values for all the
observations in site this will lead to errors. Therefore, select one latitude value for each
site.

• Optional linear_rate is a column that contains the linear rate in mm per year associated
with that site, arising from processes such as glacial isostatic adjustment (GIA). This is
not a requirement. For the NI GAM decomposition model, the user has the option of using
their own rate, otherwise the package will calculate it using the data. It is important to
note that if the linear_rate is provided without the linear_rate_err column this will lead
to issues, i.e. both columns need to be provided

• Optional linear_rate_err is a column that contains associated uncertainty for the linear
rate in mm per year. This is not a requirement. For the NI GAM decomposition model,
the user has the option of using their value, otherwise the package will calculate it using
the data. It is important to note that if the linear_rate_err is provided without the
linear_rate column this will lead to issues, i.e. both columns need to be provided.

4.B.1.8 Tide Gauge Data

There is an option in the reslr package to include tide gauge data as an additional source of
data which we recommend when using the model_type = "ni_gam_decomp". The package will
extract tide gauge data from the PSMSL website. The data is downloaded from this website and
stored in a temporary directory.

The tide gauges undergo a number of processing steps within the package. Firstly, certain tide
gauges have been flagged by the PSMSL website and we remove these locations. Secondly, the
tide gauge data in the PSMSL database is given in millimetres relative to a revised local reference
datum (a coordinate system which defines the zero level for sea level measurements (Pugh et
al., 2014)). We transform the data by removing 7000 mm to revert the tide gauge data into
the observed reference frame and convert the RSL to metres following the PSMSL guidance as
described in Aarup et al. 2006 . Lastly, the tide gauge data is averaged over a decade to make
it comparable with sedimentation rates associated proxy records sedimentation rates. The user
can alter the size of the average if required when accumulation rates for the sediment in the
proxy record is estimated to have a higher or lower accumulation rate, e.g. longer sediment
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accumulation rate result in a larger window average of 20 years.

Within the reslr_load function, the user has three options to choose from:

1. Provide a list of the preferred tide gauges from the PSMSL website, ensuring spelling,
capitalisation and spacing is exactly the same as the website. Note, the package will not
work if error in spelling occurs. In addition, certain tide gauges have been flagged by the
PSMSL website and are not included in this package and will return an error if selected.
This is done by giving a list to the list_preferred_TGs = c("ARGENTIA","MAYPORT")
option in the reslr_mcmc function

2. The nearest tide gauge to proxy site based on minimum distance in kilometers, which is
done by setting TG_minimum_dist_proxy = TRUE.

3. Any tide gauge within 1 degree from the proxy site, which is done by setting all_TG_1deg
= TRUE.

The user can select a combination of option 1 and option 2 or option 1 and option 3 which
allows for additional tide gauge data to be included. The final output is a data frame which
contains an additional column, called data_type_id, identifying the data source “ProxyRecord”
or “TideGaugeData” depending on the observation in question.

4.B.1.9 Glacial Isostatic Adjustment (GIA)

For the NI GAM decomposition, the statistical model requires an estimate for the local linear rate
arising from processes such as GIA and associated uncertainty for this rate each site. According
to Whitehouse (2018), GIA represents the Earth’s reaction to the growth or melting of ice sheets,
including the gravitational field and ocean. GIA can be approximated as a linear contribution
over a short timescale, but with variable effects along the coast (Engelhart et al., 2009). Earth-ice
models, which incorporate the physical structure of the Earth to predict GIA changes due to ice
loading and unloading, can provide estimates of GIA rates. There are a range of Earth-ice models
with one such example being the ICE5G VM2-90 (Peltier, 2004). It should be noted that other
processes, such as tectonic vertical land motion, can mimic the linear trend of GIA. Therefore,
the linear local component within the NI GAM decomposition may account for contributions
from processes other than GIA that drive changes in relative sea level. These are included as
additional columns, linear_rate and linear_rate_err, in the input dataframe provided by
the user.

If the GIA rate for the proxy site is not provided then package will automatically calculate these
rates using the data provided and we do not estimates the rates from any Earth-ice physical
model. The user can source their own rate estimates as previously mentioned. Two examples of
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GIA rate sources (not limited to) include Prof. Peltier’s webpage and the associated publication
(Peltier, 2004) or the Caron et al. 2018 publication and data.

Important to note, the tide gauge data require values for the linear_rate and linear_rate_err
columns. This is calculated using ICE-5G (VM2 L90) Earth ice model (Peltier et al. 2004) with
an uncertainty value of 0.3 mm/year from Engelhart et al. 2009.

4.B.1.10 Example Data Set

The reslr package possesses a large dataset used as an example called NAACproxydata. This
dataset contains proxy records from the Atlantic coast of North America as used in Upton et al
2023 along with tide gauge data which will be discussed below. The 21 different proxy data sites
and the references for each data source can be found in the following table:

Site Name Reference

Barn Island, Connecticut Donnelly et al (2004), Gehrels et al (2020)
Big River Marsh, Newfoundland Kemp et al (2018)
Cape May Courthouse, New Jersey Kemp et al (2013), Cahill et al (2016)
Cedar Island, North Carolina Kemp et al (2011), Kemp et al (2017)
Cheesequake, New Jersey Walker et al (2021)
Chezzetcook Inlet, Nova Scotia Gehrels et al (2020)
East River Marsh, Connecticut Kemp et al (2015), Stearns et al (2023)
Fox Hill Marsh, Rhode Island Stearns et al (2023)
Leeds Point, New Jersey Kemp et al (2013), Cahill et al (2016)
Les Sillons, Magdelen Islands Barnett et al (2017)
Little Manatee River, Florida Gerlach et al (2017)
Nassau, Florida Kemp et al (2014)
Pelham Bay, New York Kemp et al (2017), Stearns et al (2017)
Placentia, Newfoundland Kemp et al (2018)
Revere, Massachusetts Donnelly et al (2006)
Saint Simeon, Quebec Barnett et al (2017)
Sanborn Cove, Maine Gehrels et al (2020)
Sand Point, North Carolina Kemp et al (2011), Kemp et al (2017)
Snipe Key, Florida Khan et al (2022)
Swan Key, Florida Khan et al (2022)
Wood Island, Massachusetts Kemp et al (2011)

The NAACproxydata is a data frame with 1715 rows and 8 columns which include:
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• Region: All regions along Atlantic coast of North America
• Site: All sites along Atlantic coast of North America
• Latitude: Latitude of the data site
• Longitude: Longitude of the data site
• RSL: Relative Sea level in meters
• RSL_err: 1 standard deviation error associated with relative sea level measured in meters
• Age: Age in years common era (CE)
• Age_err: 1 standard deviation error associated with the Age in years CE

If you are interested in a specific site or multiple sites from the example dataset, then filter for
that site prior to running the package, using the following method:

# For 1 site
data_1site <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")
# For multiple sites
data_multisite <- reslr::NAACproxydata %>% dplyr::filter(Site \%in\% c(

"Snipe Key", "Cheesequake",
"Placentia", "Leeds Point"

))

4.B.1.11 How to run reslr

The general structure for running reslr is as follows:

Step 0. Users have the option to use the provided database, accessed by using reslr::NAACproxydata
or they can supply their own data. In the latter case, it is imperative for users to confirm that
their data is in dataframe format and adhere to the template outlined in Section 4.B.1.7.

Step 1. Load in the data using reslr_load. The user can alter the following options:

• When analysing proxy RSL data, tide gauge data serves as an additional source that users
may need to examine recent RSL changes. If tide gauge data is necessary, please update
the argument to include_tide_gauge = TRUE. From there, users have three options as
described in Section 4.B.1.8.

• If sedimentation accumulation rates for the proxy records are less than or greater than a
decade the user can alter this size using sediment_average_TG = 10. The default setting
is 10 years.

• If the user is interested in the linear rate, please update the argument to include_linear_rate
= TRUE. More information about the linear_rate is given in Section 4.B.1.9.

• The user can select the resolution of the output by changing the value of prediction_grid_res
= 50. The default setting is 50 years.
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• The input_age_type argument is associated with the type of input age where the default
is in Common Era as described in Section 4.B.1.7.

Step 1a. The print function provides a brief insight into the inputted data.

Step 2. Plot the raw data using plot and select whether to include tide gauges in the output
plot. The user can update the title (plot_title) and axis labels (xlab,ylab). The captions
(plot_captions) can be included on the plots which provides a summary of the number of proxy
sites and tide gauge sites.

Step 3. Choose your preferred model type from the available list above and use the reslr_mcmc
function to obtain the parameter estimates and the dataframes required for plotting the outputs.
This function has a number of settings which allow the user to improve model diagnostics. In
addition, this function allows the user to chose their preferred credible interval size, the default
setting is CI = 0.95.

Step 3a. The print function provides a brief insight into the output of the reslr_mcmc function.

Step 4. Check the model converged and examine the results of the parameters with the summary
function

Step 5. Visualise the results with plot and access the dataframes used to create the plots. The
plot_type option allows users to print individual plots, for example the model fits (“model_fit_plot”)
and the rates (“rate_plot”) separately. The captions (plot_captions) can be included on the
plots which provides a summary of the model type, the number of proxy sites and tide gauge
sites. The user can select to include the tide gauge (plot_tide_gauges) in the output plots.

4.B.1.12 Errors-in-Variables Simple Linear Regression (“eiv_slr_t”)

The simplest model the reslr package can fit is a simple linear regression using the Errors-in-
Variables method to account for the uncertainty associated with the proxy records, i.e. uncer-
tainty associated with input (age) and the output (RSL). We would not recommend any model
simpler than this (e.g. lm) as it will ignore some of the key uncertainties in the data.

This technique focuses on 1 site and is not recommended for multiple proxy sites together. Tide
gauge data can be included to gain insight into recent changes in RSL, however, the user must
investigate which tide gauge is suitable. As an example, we will filter the example dataset
NAACproxydata to select one site to demonstrate the process:

# For 1 site
CedarIslandNC <- NAACproxydata %>% dplyr::filter(Site == "Cedar Island")

Step 1: Load in the data using the reslr_load function:
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CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL},
all_TG_1deg = FALSE,
prediction_grid_res = 50,
input_age_type = "CE",
sediment_average_TG = 10

)

In this function, the user can select to add tide gauge data and estimates for linear_rate,
by changing include_tide_gauge =TRUE and include_linear_rate =TRUE respectfully. If
include_tide_gauge =TRUE the user must decide if they require the closest tide gauge i.e.
TG_minimum_dist_proxy = TRUE, or select specific tide gauge i.e. list_preferred_TGs = c("ARGENTIA"),
or all tide gauges within 1 degree of the proxy site i.e. all_TG_1deg = TRUE. The default set-
ting is rolling_window_average = 10 which corresponds to sediment accumulation rates of the
proxy records, yet the user has the ability to alter this sediment accumulation rate. Note that for
a simple linear regression we recommend using the default settings as demonstrated in the above
code chunk. The user can alter the resolution of the output plots using prediction_grid_res
with the default set at 50 years.

The output of this function is a list of two dataframes called data and data_grid.

• The data dataframe is the inputted data with additional columns for the linear_rate,
linear_rate_err and data_type_id which will contain two options, “ProxyRecord” or
“TideGaugeData”. It can be accessed by:

data <- CedarIslandNC_input$data

• The data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res value
chosen by the user and is used to create the plots and is accessed by

data_grid <-CedarIslandNC_input$data_grid

Step 1a: A brief insight into the outputs of the reslr_input function can be obtained using:

print(CedarIslandNC_input)
#> This is a valid reslr input object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
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#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included. It is recommended for the ni_gam_decomp model
#> The linear_rate or linear_rate_err was not included. It is required for the ni_gam_decomp model

Step 2: Plotting the data the raw data with:

plot(x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_tide_gauges = FALSE,
plot_proxy_records = TRUE,
plot_caption = TRUE)
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This will produce a plot of Age on the x-axis and Relative Sea Level on the y-axis in meters. Grey
boxes represent the uncertainty associated with the vertical and horizontal uncertainty. The black
data points are the midpoints of these uncertainty boxes. The following extra arguments can be
used which allows the user to updated the titles and axis labels. The caption plot_caption,
included by default, provides the number of proxy sites and tide gauge sites that will be used
in the model and can be removed if required plot_caption = FALSE. In addition, the user can
select to plot the additional tide gauge data, plot_tide_gauge =TRUE.

Step 3: To run the the model the following code is used:
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res_eiv_slr_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_slr_t",
CI = 0.95)

This command takes the input data and the user specifies the statistical model, i.e. a simple
linear regression using the EIV uncertainty method (“eiv_slr_t”). The CI setting allows the
user to set the credible intervals, the current default is CI = 0.95. The function tells reslr to
store the output of the model run in an object called res_eiv_slr_t.

Step 3a: A brief insight into the outputs of the reslr_output function can be obtained using:

print(res_eiv_slr_t)
#> This is a valid reslr output object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> The model used was the Errors-in-Variables Simple Linear Regression model.
#> The input data has been run via reslr_mcmc and has produced 3000 iterations over 3 MCMC chains.

Step 4: The convergence of the algorithm is examined and he parameter estimates from the
model can be investigated using the following:

summary(res_eiv_slr_t)
#> No convergence issues detected.
#> # A tibble: 3 x 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <num> <num> <num> <num> <num> <num>
#> 1 alpha -1.99 0.0171 0.0178 -2.02 -1.96 1.00
#> 2 beta 0.824 0.0129 0.0127 0.802 0.844 1.00
#> 3 sigma_y 0.0665 0.00943 0.00943 0.0513 0.0820 1.00

If the model run has the package will print: “No convergence issues detected”. If the package
prints: “Convergence issues detected, a longer run is necessary”. The user is required to update
the reslr_mcmc function with additional iterations in the following manner:

res_eiv_slr_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_slr_t",
# Update these values
n_iterations = 6000, # Number of iterations
n_burnin = 1000, # Number of iterations to discard at the beginning
n_thin = 4, # Reduces number of output samples to save memory and computation time
n_chains = 3 # Number of Markov chains)
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The output of this function allows to user to examine the parameter estimates. For the eiv_slr_t
model, the parameters of interest are the intercept (“alpha”), the slope (“beta”) and the residual
standard deviation of the model (“sigma_y”). When using the eiv_slr_t model, an estimate of
the of the rate of sea-level change can be obtained by examining the value of the slope, i.e.“beta”.

Step 5: The results from the eiv_slr_t model can be visualised using the following function:

plot(res_eiv_slr_t,
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)")
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The output of this function is a graph of the input data, i.e. Age and RSL and associated
uncertainty boxes, and the model fit with 95 % credible interval. The caption provides the
model type used and number of proxy sites and tide gauge sites used and can be removed if
necessary with plot_caption = FALSE.

To examine the data creating these plots the user types the following:
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output_dataframes <- res_eiv_slr_t$output_dataframes
head(output_dataframes)
#> Longitude Latitude SiteName data_type_id Age pred
#> 1 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -800 -2.649079
#> 2 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -750 -2.607902
#> 3 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -700 -2.566724
#> 4 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -650 -2.525546
#> 5 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -600 -2.484369
#> 6 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -550 -2.443191
#> upr lwr CI
#> 1 -2.699450 -2.598455 95%
#> 2 -2.657003 -2.558537 95%
#> 3 -2.614578 -2.518346 95%
#> 4 -2.572246 -2.478260 95%
#> 5 -2.529913 -2.438299 95%
#> 6 -2.487382 -2.398293 95%

4.B.1.13 Errors-in-Variable Change Point Model (“eiv_cp_t”)

The Errors-in-Variable Change Point model is an extension of the linear regression and allows
the user to specify the number of change points required.

This technique focuses on 1 site and the maximum number of change points available to the
user is 3. We do not recommended for multiple proxy sites together. Tide gauge data can be
included to gain insight into recent changes in RSL, however, the user must investigate which
tide gauge is most suitable. It is important to note that certain data sites will not work with 2 or
3 change points as there is no distinct changing points in the data. In this case, we recommend
testing different number of change points and reviewing the resulting plots to confirm the correct
number of change points is selected.

As an example, we will filter the example dataset NAACproxydata to select one site to demonstrate
the process:

# For 1 site
CedarIslandNC <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")

Step 1: Load in the data using the reslr_load function:
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CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10)

In this function, the user can select to add tide gauge data and estimates for linear_rate,
by changing include_tide_gauge = TRUE and include_linear_rate = TRUE respectfully. If
include_tide_gauge = TRUE the user must decide if they require the closest tide gauge i.e.
TG_minimum_dist_proxy = TRUE, or select specific tide gauge i.e. list_preferred_TGs = c("ARGENTIA"),
or all tide gauges within 1 degree of the proxy site i.e. all_TG_1deg = TRUE. The default setting
is sediment_average_TG = 10 which corresponds to sediment accumulation rates of the proxy
records, yet the user has the ability to alter this sediment accumulation rate by changing the
size of the rolling window average.

Note that for a change point model, we recommend using the default settings as demonstrated in
the above code chunk. The user can alter the resolution of the output plots using prediction_grid_res
with the default set at 50 years. The output of this function is a list of two dataframes called
data and data_grid. The data dataframe is the inputted data with additional column for the
data_type_id which will contain, “ProxyRecord”. It can be accessed by:

data <- CedarIslandNC_input$data
head(data)
#> Region Site Latitude Longitude RSL Age Age_err RSL_err
#> 1 North Carolina Cedar

Island 34.971 -76.38 -0.12 2005 2.25 0.06
#> 2 North Carolina Cedar

Island 34.971 -76.38 -0.14 1996 2.00 0.06
#> 3 North Carolina Cedar

Island 34.971 -76.38 -0.16 1988 5.00 0.06
#> 4 North Carolina Cedar

Island 34.971 -76.38 -0.18 1979 5.75 0.06
#> 5 North Carolina Cedar

Island 34.971 -76.38 -0.19 1974 5.50 0.06
#> 6 North Carolina Cedar

Island 34.971 -76.38 -0.21 1963 5.50 0.06
#> SiteName data_type_id
#> 1 Cedar Island,\n North Carolina ProxyRecord
#> 2 Cedar Island,\n North Carolina ProxyRecord
#> 3 Cedar Island,\n North Carolina ProxyRecord
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#> 4 Cedar Island,\n North Carolina ProxyRecord
#> 5 Cedar Island,\n North Carolina ProxyRecord
#> 6 Cedar Island,\n North Carolina ProxyRecord

• The data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res
value chosen by the user and is used to create the plots and is accessed by

data_grid <- CedarIslandNC_input$data_grid
head(data_grid)
#> A tibble: 6 x 5
#> \# Groups: SiteName [1]
#> Longitude Latitude SiteName data_type_id Age
#> <dbl> <dbl> <fct> <fct> <dbl>
#> 1 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -800
#> 2 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -750
#> 3 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -700
#> 4 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -650
#> 5 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -600
#> 6 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -550

Step 1a: A brief insight into the outputs of the reslr_input function can be obtained using:

print(CedarIslandNC_input)
#> This is a valid reslr input object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included. It is recommended for the ni_gam_decomp model
#> The linear_rate or linear_rate_err was not included. It is required for the ni_gam_decomp model

Step 2: Plotting the data the raw data with:

plot(x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE)

134



4.B. Vignettes for the reslr package

Cedar Island,
 North Carolina

−1000 0 1000 2000
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Year (CE)

R
el

at
iv

e 
S

ea
 L

ev
el

 (
m

)

1−sigma Error Data

Plot of the raw data

No. proxy sites:1
 No. tide gauge sites:0

This will produce a plot of Age on the x-axis and Relative Sea Level on the y-axis in meters.
Grey boxes represent the uncertainty associated with the vertical and horizontal uncertainty.
The black data points are the midpoints of these uncertainty boxes. The extra arguments can
be used which allows the user to updated the titles and axis labels. The caption plot_caption,
included by default, provides the number of proxy sites and tide gauge sites that will be used in
the model and can be removed if required plot_caption = FALSE. The user can select to plot
the additional tide gauge data, plot_tide_gauge = TRUE.

Step 3: Run the model using the following code and select the number of change points you
require:

res_eiv_cp1_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_cp_t",
n_cp = 1,
CI =0.95)

If the user is interested in running 2 change points use method:

res_eiv_cp2_t <- reslr_mcmc(
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input_data = CedarIslandNC_input,
model_type = "eiv_cp_t",
n_cp = 2, # Updating the default setting to include an additional change point.
CI =0.95)

The CI setting allows the user to set the credible intervals, the current default is CI = 0.95.
Similar to the earlier model, the output object res_eiv_cp1_t stores the JAGS model run and
should take a second to run.

Step 3a: A brief insight into the outputs of the reslr_output function can be obtained using:

print(res\_eiv\_cp1\_t)
#> This is a valid reslr output object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> The model used was the Errors-in-Variables Change Point model with 1 change point.
#> The input data has been run via reslr_mcmc and has produced 3000 iterations over 3 MCMC chains.

Step 4: The convergence of the algorithm is examined and the parameter estimates from the
model can be investigated using the following:

summary(res_eiv_cp1_t)
#> No convergence issues detected.
#> A tibble: 5 x 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <num> <num> <num> <num> <num> <num>
#> 1 alpha -1.05 0.634 0.0679 -2.04 -0.559 1.00
#> 2 beta[1] 0.646 0.153 0.0249 0.354 0.766 1.00
#> 3 beta[2] 1.99 0.828 0.746 0.880 3.06 1.00
#> 4 Change Point in CE: 1266 0.774 0.0599 0.0518 1.85 1.00
#> 5 sigma_y 0.0156 0.0142 0.0109 0.000854 0.0442 1.00

If the model run has the package will print: “No convergence issues detected”. If the package
prints: “Convergence issues detected, a longer run is necessary”. The user is required to update
the reslr_mcmc function with additional iterations in the following manner:

res_eiv_cp1_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_cp_t",
# Update these values
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n_iterations = 6000, # Number of iterations
n_burnin = 1000, # Number of iterations to discard at the beginning
n_thin = 4, # Reduces number of output samples to save memory and computation time
n_chains = 3 # Number of Markov chains)

For the eiv_cp_t model, the parameters of interest are the intercept (alpha), the slopes before
the change point (“beta[1]”) and after the change point (“beta[2]”), the year of the change point
(Change Point) and “sigma_y” the variance of the model.

Step 5: The results from the EIV Change Point model can be illustrated using:

plot(res_eiv_cp1_t,
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)")
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The output of this function is a graph of the input data, i.e. Age and RSL and associated
uncertainty boxes, and the model fit with 95 % credible interval. The caption provides the
model type used and number of proxy sites and tide gauge sites used and can be removed if
necessary with plot_caption = FALSE.

To examine the data creating these plots the user types the following:
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output_dataframes <- res_eiv_cp1_t$output_dataframes
head(output_dataframes)
#> Longitude Latitude SiteName data_type_id Age pred
#> 1 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -800 -2.496999
#> 2 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -750 -2.464701
#> 3 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -700 -2.432402
#> 4 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -650 -2.400104
#> 5 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -600 -2.367806
#> 6 -76.38 34.971 Cedar Island,\n

North Carolina ProxyRecord -550 -2.335507
#> upr lwr CI
#> 1 -2.592305 -2.313382 95%
#> 2 -2.553800 -2.295996 95%
#> 3 -2.515442 -2.279266 95%
#> 4 -2.477038 -2.262920 95%
#> 5 -2.438731 -2.246754 95%
#> 6 -2.400375 -2.229156 95%

4.B.1.14 Errors-in-Variable Integrated Gaussian Process Model
(“eiv_igp_t”)

The EIV Integrated Gaussian Process model provides the underlying rate of the process directly
from the model. Further reading on this modeling approach can be found here.

This technique focuses on 1 site and we do not recommended for multiple proxy sites together.
Tide gauge data can be included to gain insight into recent changes in RSL, however, the user
must investigate which tide gauge is suitable. As an example, we will filter the example dataset
NAACproxydata to select one site to demonstrate the process:

# For 1 site
CedarIslandNC <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")

Step 1: Load in the data using the reslr_load function:

CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
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include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10)

In this function, the user can select to add tide gauge data and estimates for linear_rate,
by changing include_tide_gauge = TRUE and include_linear_rate = TRUE respectfully. If
include_tide_gauge = TRUE the user must decide if they require the closest tide gauge i.e.
TG_minimum_dist_proxy = TRUE, or select specific tide gauge i.e. list_preferred_TGs = c("ARGENTIA"),
or all tide gauges within 1 degree of the proxy site i.e. all_TG_1deg = TRUE. The default setting
is sediment_average_TG = 10 which corresponds to sediment accumulation rates of the proxy
records, yet the user has the ability to alter this sediment accumulation rate.

Note that for an IGP we recommend using the default settings as demonstrated in the above
code chunk. The user can alter the resolution of the output plots using prediction_grid_res
with the default set at 50 years. The output of this function is a list of two dataframes called
data and data_grid. - The data dataframe is the inputted data with additional columns for
the data_type_id which will contain “ProxyRecord”. It can be accessed by:

data <- CedarIslandNC_input$data

• The data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res
value chosen by the user and is used to create the plots and is accessed by

data_grid <-CedarIslandNC_input$data_grid

Step 1a: A brief insight into the outputs of the reslr_input function can be obtained using:

print(CedarIslandNC_input)
#> This is a valid reslr input object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included. It is recommended for the ni_gam_decomp model
#> The linear_rate or linear_rate_err was not included. It is required for the ni_gam_decomp model
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Step 2: Plotting the data the raw data with:

plot(
x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE)
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This will produce a plot of Age on the x-axis and Relative Sea Level on the y-axis in meters.
Grey boxes represent the uncertainty associated with the vertical and horizontal uncertainty.
The black data points are the midpoints of these uncertainty boxes. The extra arguments can
be used which allows the user to updated the titles and axis labels. The caption plot_caption,
included by default, provides the number of proxy sites and tide gauge sites that will be used
in the model and can be removed if required plot_caption = FALSE. In addition, the user can
select to plot the additional tide gauge data, plot_tide_gauge = TRUE.

Step 3: To run the eiv_igp_t model the following function should be used:
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res_eiv_igp_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_igp_t",
CI =0.95

)

This command takes the input data and the user specifies the statistical model, i.e. an integrated
Gaussian process using the EIV uncertainty method (“eiv_slr_t”). It tells reslr to store the
output of the model run in an object called res_eiv_igp_t. The CI setting allows the user to
set the credible intervals, the current default is CI = 0.95. The computational run time for this
model is approximately 14 minutes.

Step 3a: A brief insight into the outputs of the reslr_output function can be obtained using:

print(res_eiv_igp_t)

Step 4: The convergence of the algorithm is examined and he parameter estimates from the
model can be investigated using the following:

summary(res_eiv_igp_t)

If the model run has the package will print: “No convergence issues detected”. If the package
prints: “Convergence issues detected, a longer run is necessary”. The user is required to update
the reslr_mcmc function with additional iterations in the following manner:

res_eiv_igp_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "eiv_igp_t",
# Update these values
n_iterations = 6000, # Number of iterations
n_burnin = 1000, # Number of iterations to discard at the beginning
n_thin = 4, # Reduces number of output samples to save memory and computation time
n_chains = 3 # Number of Markov chains)

For the parameter estimates, the length scale parameter, “rho” is the correlation parameter and
“nu” is the standard deviation of the rate process. “sigma_y” is the variation of the model.

Step 5: The results from the EIV IGP model can be illustrated using:
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plot(res_eiv_igp_t,
plot_type = "model_fit_plot",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE},
plot_tide_gauges = FALSE)

The output of this function is a graph of the input data, i.e. Age and RSL and associated
uncertainty boxes, and the model fit with 95 % credible interval. The caption provides the
model type used and number of proxy sites and tide gauge sites used and can be removed if
necessary with plot_caption = FALSE. In order to view the rate of change plot, the following
setting should be used:

plot(res_eiv_igp_t,
plot_type = "rate_plot",
xlab = "Year (CE)",
y_rate_lab = "Rate of Change (mm per year)"

)
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This prints the plot of the rate of change with 95 % credible intervals. The caption provides the
model type, the number of proxy sites and tide gauge sites that were used.

To examine the data creating these plots the user types the following:

output_dataframes <-res_eiv_igp_t$output_dataframes

4.B.1.15 Noisy input spline in time (“ni_spline_t”)

An alternative method to examine how the response variable varies in time is using the Noisy
input spline in time (ni_spline_t). It model can obtain results in more efficient computational
run times when compared with the eiv_igp_t model.

This technique focuses on 1 site and we do not recommended for multiple proxy sites together.
Tide gauge data can be used to gain insight into recent RSL changes. As an example, we will
filter the example dataset NAACproxydata to select one site to demonstrate the process:
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# For 1 site
CedarIslandNC <- reslr::NAACproxydata %>% dplyr::filter(Site == "Cedar Island")

Step 1: Load in the data using the reslr_load function:

CedarIslandNC_input <- reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10

)

In this function, the user can select to add tide gauge data and estimates for linear_rate,
by changing include_tide_gauge = TRUE and include_linear_rate = TRUE respectfully. If
include_tide_gauge = TRUE the user must decide if they require the closest tide gauge i.e.
TG_minimum_dist_proxy = TRUE, or select specific tide gauge i.e. list_preferred_TGs = c("ARGENTIA"),
or all tide gauges within 1 degree of the proxy site i.e. all_TG_1deg = TRUE. The default setting
is sediment_average_TG = 10 which corresponds to sediment accumulation rates of the proxy
records, yet the user has the ability to alter this sediment accumulation rate by changing the
size of the rolling window average.

Note that for a spline in time, we recommend using the default settings as demonstrated in the
above code chunk. The user can alter the resolution of the output plots using prediction_grid_res
with the default set at 50 years. The output of this function is a list of two dataframes called
data and data_grid. The data dataframe is the inputted data with additional columns for the
data_type_id which will contain “ProxyRecord”. It can be accessed by:

data <- CedarIslandNC_input$data

• The data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res
value chosen by the user and is used to create the plots and is accessed by

data_grid <-CedarIslandNC_input$data_grid
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Step 1a: A brief insight into the outputs of the reslr_input function can be obtained using:

print(CedarIslandNC_input)
#> This is a valid reslr input object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included. It is recommended for the ni_gam_decomp model
#> The linear_rate or linear_rate_err was not included. It is required for the ni_gam_decomp model

Step 2: Plotting the data the raw data with:

plot(
x = CedarIslandNC_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE)
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This will produce a plot of Age on the x-axis and Relative Sea Level on the y-axis in meters. Grey
boxes represent the uncertainty associated with the vertical and horizontal uncertainty. The black
data points are the midpoints of these uncertainty boxes. The following extra arguments can be
used which allows the user to updated the titles and axis labels. The caption plot_caption,
included by default, provides the number of proxy sites and tide gauge sites that will be used
in the model and can be removed if required plot_caption = FALSE. In addition, the user can
select to plot the additional tide gauge data, plot_tide_gauge = TRUE.

Step 3: To run this model type use the following:

res_ni_spline_t <- reslr_mcmc(
input_data = CedarIslandNC_input,
model_type = "ni_spline_t",
CI = 0.95)

The output object res_ni_spline_t stores the JAGS model run. The CI setting allows the user
to set the credible intervals, the current default is CI = 0.95. Note that there will be two model
runs printed in the console here but the output will be the same format as earlier models.

Step 3a: A brief insight into the outputs of the reslr_output function can be obtained using:

print(res_ni_spline_t)
#> This is a valid reslr output object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> The model used was the Noisy Input Spline in time model.
#> The input data has been run via reslr_mcmc and has produced 3000 iterations over 3 MCMC chains.

Step 4: The convergence of the algorithm is examined and he parameter estimates from the
model can be investigated using the following:

summary(res_ni_spline_t)
#> No convergence issues detected.
#> A tibble: 2 x 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <num> <num> <num> <num> <num> <num>
#> 1 sigma_beta 2.10 0.699 0.551 1.29 3.43 1.00
#> 2 sigma_y 0.00618 0.00475 0.00456 0.000465 0.0152 1.00

If the model run has the package will print: “No convergence issues detected”. If the package
prints: “Convergence issues detected, a longer run is necessary”. The user is required to update
the reslr_mcmc function with additional iterations in the following manner:
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res_ni_spline_t <- reslr_mcmc(
input_data = CedarIslandNC,
model_type = "ni_spline_t",
# Update these values
n_iterations = 6000, # Number of iterations
n_burnin = 1000}, # Number of iterations to discard at the beginning
n_thin = 4, # Reduces number of output samples to save memory and computation time
n_chains = 3 # Number of Markov chains)

For the parameter estimates, we can present the standard deviation associated with the NI spline
time model. Where “sigma_beta” highlights the variation associated with the spline coefficient
for the spline in time and “sigma_y” presenting the overall variation of the model.

Step 5: the results from the ni_spline_t model can be illustrated using:

plot(res_ni_spline_t,
plot_type = "model_fit_plot",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)")
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The output of this function is a graph of the input data, i.e. Age and RSL and associated
uncertainty boxes, and the model fit with 95 % credible interval. The caption provides the
model type used and number of proxy sites and tide gauge sites used and can be removed if
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necessary with plot_caption = FALSE. In order to view the rate of change plot, the following
setting should be used:

plot(res_ni_spline_t,
plot_type = "rate_plot",
xlab = "Year (CE)",
y_rate_lab = "Rate of Change (mm per year)")
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This prints the plot of the rate of change with 95 % credible intervals. Again, the caption provides
the model type, number of proxy sites and tide gauge sites that were used.

To examine the data creating these plots the user types the following:

output_dataframes <-res_ni_spline_t$output_dataframes
head(output_dataframes)
#> Longitude Latitude SiteName data_type_id Age pred
#> 1 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -800 -2.311847
#> 2 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -750 -2.316669
#> 3 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -700 -2.317327
#> 4 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -650 -2.314025
#> 5 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -600 -2.306967
#> 6 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -550 -2.296357
#> upr lwr rate_pred rate_upr rate_lwr CI
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#> 1 -2.395677 -2.225187 -0.13944226 -0.66827226 0.3574160 95%
#> 2 -2.385091 -2.248401 -0.05412126 -0.50095360 0.3638846 95%
#> 3 -2.374171 -2.258137 0.02712015 -0.34603889 0.3755087 95%
#> 4 -2.365972 -2.261774 0.10428175 -0.20067569 0.3884338 95%
#> 5 -2.356117 -2.256532 0.17736354 -0.06926482 0.4055157 95%
#> 6 -2.344780 -2.245924 0.24636553 0.05057027 0.4283991 95%

4.B.1.16 Noisy input spline in space time (“ni_spline_st”)
The Noisy input spline in space time examines changes in RSL over multiple locations and
throughout time. For this model, a minimum of 2 proxy sites should be used and tide gauge
data provides insight into recent changes in RSL if the user is requires_ As an example, we will
filter the example dataset NAACproxydata to select two sites to demonstrate the process:

# For 2 site
multi_site <-reslr::NAACproxydata %>%

dplyr::filter(Site %in% c("Cedar Island", "Nassau"))

Step 1: Load in the data using the reslr_load function:

multi_site_input <- reslr_load(
data = multi_site,
include_tide_gauge = FALSE,
include_linear_rate = FALSE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10)

In this function, the user can select to add tide gauge data and estimates for linear_rate,
by changing include_tide_gauge = TRUE and include_linear_rate = TRUE respectfully. If
include_tide_gauge = TRUE the user must decide if they require the closest tide gauge i.e.
TG_minimum_dist_proxy = TRUE, or select specific tide gauge i.e. list_preferred_TGs = c("ARGENTIA"),
or all tide gauges within 1 degree of the proxy site i.e. all_TG_1deg = TRUE. The default set-
ting is rolling_window_average = 10 which corresponds to sediment accumulation rates of the
proxy records, yet the user has the ability to alter this sediment accumulation rate.

Note that for a spline in space time, we recommend using the default settings as demonstrated
in the above code chunk or investigating the resulting plots if additional tide gauge data could
provide insight into recent changes. The user can alter the resolution of the output plots using
prediction_grid_res with the default set at 50 years. The output of this function is a list
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of two dataframes called data and data_grid. The data dataframe is the inputted data with
additional columns for the linear_rate, linear_rate_err and data_type_id which will contain
two options, “ProxyRecord” or “TideGaugeData”. It can be accessed by:

data <- multi_site_input$data
head(data)
#> Region Site Latitude Longitude RSL Age Age_err RSL_err
#> 1 Florida Nassau 30.587 -81.666 0.05 2002 4.25 0.07
#> 2 Florida Nassau 30.587 -81.666 0.03 1990 5.50 0.07
#> 3 Florida Nassau 30.587 -81.666 0.01 1980 4.25 0.07
#> 4 Florida Nassau 30.587 -81.666 -0.01 1974 4.50 0.07
#> 5 Florida Nassau 30.587 -81.666 -0.03 1964 9.50 0.07
#> 6 Florida Nassau 30.587 -81.666 -0.05 1936 10.75 0.07
#> SiteName data_type_id
#> 1 Nassau,\n Florida ProxyRecord
#> 2 Nassau,\n Florida ProxyRecord
#> 3 Nassau,\n Florida ProxyRecord
#> 4 Nassau,\n Florida ProxyRecord
#> 5 Nassau,\n Florida ProxyRecord
#> 6 Nassau,\n Florida ProxyRecord

• The data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res
value chosen by the user and is used to create the plots and is accessed by

data_grid<- multi_site_input$data_grid
head(data_grid)
#> A tibble: 6 x 5
#> Longitude Latitude SiteName data_type_id Age
#> <dbl> <dbl> <fct> <fct> <dbl>
#> 1 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -800
#> 2 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -750
#> 3 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -700
#> 4 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -650
#> 5 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -600
#> 6 -76.4 35.0 "Cedar Island,\n North Carolina" ProxyRecord -550

Step 1a: A brief insight into the outputs of the reslr_input function can be obtained using:

print(multi_site_input)
#> This is a valid reslr input object with 169 observations and 2 site(s).
#> There are 2 proxy site(s) and 0 tide gauge site(s).
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#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included. It is recommended for the ni_gam_decomp model
#> The linear_rate or linear_rate_err was not included. It is required for the ni_gam_decomp model

Step 2: Plotting the data the raw data with:

plot(
x = multi_site_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records =TRUE,
plot_tide_gauges = FALSE)
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This will produce a plot of Age on the x-axis and Relative Sea Level on the y-axis in meters.
Grey boxes represent the uncertainty associated with the vertical and horizontal uncertainty.
The black data points are the midpoints of these uncertainty boxes. The separate sites will
appear in separate windows on the plot. The extra arguments can be used which allows the user
to updated the titles and axis labels. The caption plot_caption, included by default, provides
the number of proxy sites and tide gauge sites that will be used in the model and can be removed
if required plot_caption = FALSE. In addition, the user can select to plot the additional tide
gauge data, plot_tide_gauge = TRUE.

Step 3: Run the model for the two sites.

res_ni_spline_st <- reslr_mcmc(
input_data = multi_site_input,
model_type = "ni_spline_st",
CI = 0.95)

The output object jags_output.ni_spline_st stores the JAGS model run. The CI setting
allows the user to set the credible intervals, the current default is CI = 0.95. Note that additional
computational run time is required for this model compared with the ni_spline_t.

Step 3a: A brief insight into the outputs of the reslr_output function can be obtained using:

print(res_ni_spline_st)

Step 4: The convergence of the algorithm is examined and he parameter estimates from the
model can be investigated using the following:

summary(res_ni_spline_st)

If the model run has the package will print: “No convergence issues detected”. If the package
prints: “Convergence issues detected, a longer run is necessary”. The user is required to update
the reslr_mcmc function with additional iterations in the following manner:

res_ni_spline_st <- reslr::reslr_mcmc(
input_data = multi_site_input,
model_type = "ni_spline_st",
# Update these values
n_iterations = 6000, # Number of iterations
n_burnin = 1000, # Number of iterations to discard at the beginning
n_thin = 4, # Reduces number of output samples to save memory and computation time
n_chains = 3 # Number of Markov chains

)
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For the parameter estimates, we can present the standard deviation associated with the NI
spline space time model. Where “sigma_beta” highlights the variation associated with the
spline coefficient of the spline in time and “sigma_y” presenting the overall variation.

Step 5: the results from the ni_spline_st model can be illustrated using:

plot(res_ni_spline_st,
plot_type = "model_fit_plot",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)")

The output of this function is a graph of the input data, i.e. Age and RSL and associated
uncertainty boxes, and the model fit with 95 % credible interval. The caption provides the
model type used and number of proxy sites and tide gauge sites used and can be removed if
necessary with plot_caption = FALSE. In order to view the rate of change plot, the following
setting should be used:

plot(res_ni_spline_st,
plot_type = "rate_plot",
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xlab = "Year (CE)",
y_rate_lab = "Rate of Change (mm per year)")

This will print the plot of the rate of change with 95 % credible intervals. Again, the caption
provides the model type, the number of proxy sites and tide gauge sites that were used.

To examine the data creating these plots the user types the following:

output_dataframes<- res_ni_spline_st$output_dataframes

4.B.1.17 Noisy Input Generalised Additive Model for decomposition
of response signal (“ni_gam_decomp”)

The Noisy Input Generalised Additive Model for the decomposition of the response signal (RSL).
In the case of RSL, there are different drivers influence the changing RSL signal and these drivers
vary in time and space. .The three main components of RSL change being examined using this
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model type at a regional, local linear component and non-linear local component. A detailed
description of this model can be found here.

There are a number of settings within the package that are important when using this model
type. For the local linear component, GIA rate and associated uncertainty of the GIA rate must
be provided prior to running. If the GIA rate is not provided for each location, then the reslr
package will calculate it using the data and if this is not possible, the package will print an
error message. Also, we recommend using tide gauge data averaged over a decade to match the
accumulation rates of the proxy records, which is an additional argument in the function.

This model needs an adequate number of proxy sites to perform the decomposition and the
minimum sites required will depend on the signal of the data. We found that in general we need
a minimum of five proxy sites and at least five associated tide gauge sites. Also, we strongly
recommend using tide gauge data for this model to obtain insight into recent changes in RSL.
As an example, we will filter the example dataset NAACproxydata to select nine random sites to
demonstrate the process:

# For 9 site
multi_9_sites <- reslr::NAACproxydata %>%

dplyr::filter(Site %in% c(
"Cedar Island", "Nassau", "Snipe Key",
"Placentia", "Cape May Courthouse", "East River Marsh",
"Fox Hill Marsh", "Swan Key", "Big River Marsh"))

Step 1: Load in the data using the reslr_load function:

multi_9_sites_input <- reslr_load(
data = multi_9_sites,
include_tide_gauge = TRUE,
include_linear_rate = TRUE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = TRUE,
prediction_grid_res = 50,
sediment_average_TG = 10)

In this function, the user can select to add tide gauge data and estimates for linear_rate,
by changing include_tide_gauge = TRUE and include_linear_rate = TRUE respectfully. If
include_tide_gauge = TRUE the user must decide if they require the closest tide gauge i.e.
TG_minimum_dist_proxy = TRUE, or select specific tide gauge i.e. list_preferred_TGs = c("ARGENTIA"),
or all tide gauges within 1 degree of the proxy site i.e. all_TG_1deg = TRUE. In this example, we
use all tide gauges within 1 degree of the proxy site. The default setting is sediment_average_TG
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= 10 which corresponds to sediment accumulation rates of the proxy records, yet the user has
the ability to alter this sediment accumulation rate.

Note that for this model, we recommend using the default settings as demonstrated in the above
code chunk. If the user has not provided the linear rate and the associated linear rate uncertainty
within the linear_rate and linear_rate_err column prior to running the package, the package
to calculate it using the data.

The output of this function is a list of two dataframes called data and data_grid. The data
dataframe is the inputted data with additional columns for the linear_rate, linear_rate_err and
data_type_id which will contain two options, “ProxyRecord” or “TideGaugeData”. It can be
accessed by:

data <- multi_9_sites_input$data

• The data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res
value chosen by the user and is used to create the plots and is accessed by

data_grid <- multi_9_sites_input$data_grid

Step 1a: A brief insight into the outputs of the reslr_input function can be obtained using:

print(multi_9_sites_input)
#> This is a valid reslr input object with 1124 observations and 36 site(s).
#> There are 9 proxy site(s) and 27 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data included by the package.
#> The linear_rate and linear_rate_err has been included.

Step 2: Plotting the data the raw data with:

plot(
x = multi_9_sites_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_proxy_records =TRUE},
plot_tide_gauges =TRUE)
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This will produce a plot of Age on the x-axis and Relative Sea Level on the y-axis in meters.
Grey boxes represent the uncertainty associated with the vertical and horizontal uncertainty.
The black data points are the midpoints of these uncertainty boxes. The separate sites will
appear in separate windows on the plot. The extra arguments can be used which allows the user
to updated the titles and axis labels. The caption plot_caption, included by default, provides
the number of proxy sites and tide gauge sites that will be used in the model and can be removed
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if required plot_caption = FALSE. In addition, the user can select to plot the additional tide
gauge data, plot_tide_gauge = TRUE.

Step 3: Run the model

res_ni_gam_decomp <- reslr_mcmc(
input_data = multi_9_sites_input,
model_type = "ni_gam_decomp",
CI = 0.95)

The output object res_ni_gam_decomp stores the JAGS model run. The CI setting allows the
user to set the credible intervals, the current default is CI = 0.95. Note that there will be two
model runs printed in the console here but the output will be the same format as earlier models.

Step 3a: A brief insight into the outputs of the reslr_output function can be obtained using:

print(res_ni_gam_decomp)

Step 4: The convergence of the algorithm is examined and he parameter estimates from the
model can be investigated using the following:

summary(res_ni_gam_decomp)

If the model run has the package will print: “No convergence issues detected”. If the package
prints: “Convergence issues detected, a longer run is necessary”. The user is required to update
the reslr_mcmc function with additional iterations in the following manner:

res_ni_gam_decomp <- reslr_mcmc(
input_data = multi_9_sites_input,
model_type = "ni_gam_decomp",
# Update these values
n_iterations = 6000, # Number of iterations
n_burnin = 1000, # Number of iterations to discard at the beginning
n_thin = 4, # Reduces number of output samples to save memory and computation time
n_chains = 3 # Number of Markov chains

)
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For the parameter estimates, we can present the standard deviation associated with each com-
ponent of the NIGAM decomposition. This gives an insight into the variation caused by the
different components with “sigma_r” representing the regional component, “sigma_l” highlight-
ing the non-linear local component, “sigma_y” presenting the overall variation and “sigma_h”
representing the site specific vertical offset.

Step 5: The results from the ni_gam_decomp model can be illustrated with the option of
excluding the tide gauge using:

plot(res_ni_gam_decomp,
plot_type = "model_fit_plot",
plot_tide_gauge = FALSE)

In addition, the user can select to plot the additional tide gauge data, plot_tide_gauge = TRUE
in the plot. The output of this function is a graph of the input data, i.e. Age and RSL and
associated uncertainty boxes, and the model fit with 95 % credible interval. The caption provides
the model type used and number of proxy sites and tide gauge sites used and can be removed if
necessary with plot_caption = FALSE. In order to view the rate of change plot, the following
setting should be used:
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plot(res_ni_gam_decomp,
plot_type = "rate_plot")

This will print the plot of the rate of change with 95 % credible intervals. The caption provides
the model type, the number of proxy sites and tide gauge sites that were used. To examine the
data creating the total model fit and the rate of change plot, the user can use:

total_model_fit_df <- res_ni_gam_decomp$output_dataframes$total_model_fit_df

There are separate settings to examine the plot of each component and its associated rate. To
examine the regional component plot use:

plot(res_ni_gam_decomp, plot_type = "regional_plot")
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The regional component and the rate of change of the regional component is presented with 95%
credible interval. The caption provides the model type used and number of proxy sites and tide
gauge sites used and can be removed if necessary with plot_caption = FALSE. To examine the
data creating the regional component plot and rate plot, the user can use:

regional_component_df <- res_ni_gam_decomp$output_dataframes$regional_component_df

The rate for the regional component can be accessed using:

plot(res_ni_gam_decomp, plot_type = "regional_rate_plot")
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Similarly, the rate of change of the regional component is presented with 95% credible interval.
The caption provides the model type used and number of proxy sites and tide gauge sites used
and can be removed if necessary with plot_caption = FALSE.

To examine the linear local component plot use:

plot(res_ni_gam_decomp, plot_type = "linear_local_plot")
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The linear local component is plotted with 95% credible interval. The caption provides the model
type used and number of proxy sites and tide gauge sites used and can be removed if necessary
with plot_caption = FALSE. To examine the data creating the linear local component plot, the
user can use:

lin_loc_component_df <-res_ni_gam_decomp$output_dataframes$lin_loc_component_df

The associated linear local component rates for each location can be accessed by:

lin_loc_component_rates <- lin_loc_component_df %>%
dplyr::group_by(SiteName) %>%
dplyr::summarise(

linear_rate = unique(linear_rate),
linear_rate_err = unique(linear_rate_err))

To examine the non-linear local component plot use:

plot(res_ni_gam_decomp, plot_type = "non_linear_local_plot")
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The non-linear local component is plotted with with 95% credible interval. The caption provides
the model type used and number of proxy sites and tide gauge sites used and can be removed
if necessary with plot_caption = FALSE. To examine the data creating the non-linear local
component plot and rate plot, the user can use:

non_lin_loc_component_df <-res_ni_gam_decomp$output_dataframes$non_lin_loc_component_df

The plot of the rate of change for the non-linear local component use:

plot(res_ni_gam_decomp, plot_type = "non_linear_local_rate_plot")
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The rate of change of the non-linear local component is plotted with with 95% credible interval.
The caption provides the model type used and number of proxy sites and tide gauge sites used
and can be removed if necessary with plot_caption = FALSE.

In order to examine how all components vary, the user can examine the plot using the following
method:

plot(res_ni_gam_decomp, plot_type = "nigam_component_plot")
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Each component is plotted with an 95% credible interval and this plot gives insight into the
variability of the different components through time and at the different locations in question.
The caption provides the model type used and number of proxy sites and tide gauge sites used
and can be removed if necessary with plot_caption =l FALSE.

4.B.1.18 Appendix - suggested reading

For an introduction into statistical modelling for relative sea level change:

Upton, Maeve, Cahill, Niamh and Parnell, Andrew C. (2023), ‘Statistical Modelling for Relative
Sea-Level Data’, Reference Module in Earth Systems and Environmental Sciences, Elsevier

For the maths on the original Change Point models:

Cahill, Niamh, Rahmstorf, Stefan and Parnell Andrew C. (2015), ‘Change points of global tem-
perature’, Environmental Research Letters, 10(8), 084002

For the maths on the original EIV models:

Cahill, Niamh, Kemp, Andrew C , Horton, Benjamin P and Parnell, Andrew C (2015), ‘Modeling
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sea-level change using Errors-in-Variables integrated Gaussian Process 1’, The Annals of Applied
Statistics 9(2), 547–571

For the maths on the original NIGAM: Upton, Maeve, Parnell, Andrew C, Kemp, Andrew C
, Ashe, Erica, McCarthy, Gerard and Cahill, Niamh (2023) ‘A noisy-input generalised additive
model for relative sea-level change along the Atlantic coast of North America’

For the background of GIA rates:

Whitehouse, Pippa L (2018), ‘Glacial isostatic adjustment modelling: historical perspectives,
recent advances, and future directions’, Earth Surf. Dynam 6, 401–429.

Engelhart, Simon E., Benjamin P. Horton, Bruce C. Douglas, W. Richard Peltier and Torbj&oorn
E. T́’ornqvist (2009), ‘Spatial variability of late Holocene and 20th century sea-level rise along
the Atlantic coast of the United States’, Geology 37(12), 1115–1118

Peltier, W.R (2004), ‘Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G
(VM2) Model and GRACE’, Annual Review of Earth and Planetary Sciences 32, 111–149

For the background to tide gauge data:

Pugh, David, and Philip Woodworth. 2014. “Tidal Forces: Sea-Level Science: Understanding
Tides, Surges, Tsunamis and Mean Sea-Level Changes.” In Sea-Level Science: Understanding
Tides, Surges, Tsunamis and Mean Sea-Level Changes, 36–59. Cambridge University Press.

Holgate, Simon J., Andrew Matthews, Philip L. Woodworth, Lesley J. Rickards, Mark E.
Tamisiea, Elizabeth Bradshaw, Peter R. Foden, Kathleen M. Gordon, Svetlana Jevrejeva, and
Jeff Pugh. 2013. “New Data Systems and Products at the Permanent Service for Mean Sea
Level.” Journal of Coastal Research 29 (3): 493–504.

Aarup, T., M. Merrifield, B. Pérez Gómez, I. Vassie, and P.Woodworth. 2006. “Manual
on Sea-level Measurements and Interpretation, Volume IV : An update to 2006.” Intergov-
ernmental Oceanographic Commission of UNESCO 4. https://unesdoc.unesco.org/ark:
/48223/pf0000147773
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4.B.2 Quick Start Vignette for reslr package
reslr: quick start guide

Maeve Upton, Andrew Parnell & Niamh Cahill

4.B.2.1 Step 1: install reslr

Use:

install.packages("reslr")

library(reslr)

Note: The JAGS software is a requirement for this instruction sheet and refer back to main
vignettes for more information.

4.B.2.2 Step 2: load in the data into reslr

There is a large example dataset included in the reslr package called NAACproxydata. In this
example, we demonstrate how to include proxy record data which is stored in a csv file. This
csv file of data can be found in the package and the readr function reads the csv file:

path_to_data <- system.file("extdata", "one_data_site_ex.csv", package = "reslr")
example_one_datasite <- read.csv(path_to_data)

Using the reslr_load function to read in the data into the reslr package:

example_one_site_input <- reslr_load(
data = example_one_datasite)

4.B.2.3 Step 3: plot the data

plot(
x = example_one_site_input,
title = "Plot of the raw data",
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_tide_gauges = FALSE,
plot_caption = TRUE)

168



4.B. Vignettes for the reslr package

Cedar Island,
 North Carolina

−1000 0 1000 2000
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Year (CE)

R
el

at
iv

e 
S

ea
 L

ev
el

 (
m

)

1−sigma Error Data

Plot of the raw data

No. proxy sites:1
 No. tide gauge sites:0

4.B.2.4 Step 4: Run your statistical model and check convergence
Select your modelling technique from the modelling options available:

Statistical Model Model Information
model_type
code

Errors in variables simple linear
regression

A straight line of best fit taking account of any age and
measurement errors in the RSL values using the method
of Cahill et al (2015). Use for single proxy site.

“eiv_slr_t”

Errors in variables change point
model

An extension of the linear regression modelling process.
It uses piece-wise linear sections and estimates
where/when trend changes occur in the data (Cahill et
al.2015).

“eiv_cp_t”

Errors in variables integrated
Gaussian Process

A non linear fit that utilities a Gaussian process prior on
the rate of sea-level change that is then integrated
(Cahill et al.2015).

“eiv_igp_t”

Noisy Input spline in time A non-linear fit using regression splines using the
method of Upton et al (2023).

“ni_spline_t”

Noisy Input spline in space and
time

A non-linear fit for a set of sites across a region using the
method of Upton et al (2023).

“ni_spline_st”

Noisy Input Generalised
Additive model for the
decomposition of the RSL signal

A non-linear fit for a set of sites across a region and
provides a decomposition of the signal into regional,
local-linear (commonly GIA) and local non-linear
components. Again this full model is as described in
Upton et al (2023).

“ni_gam_decomp”
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For this example, it is a single site and we are interested in how it varies over time select the
Noisy Input spline in time. If it was multiple sites, we recommend using a spatial temporal
model, i.e.Noisy Input spline in space and time, or for decomposing the signal, i.e. Noisy Input
Generalised Additive model.

Once the model is chosen use the reslr_mcmc function to run it:

res_one_site_example <- reslr_mcmc(
input_data = example_one_site_input,
model_type = "ni_spline_t",
CI = 0.95

)

The convergence of the algorithm is examined and he parameter estimates from the model can
be investigated using the following:

summary(res_one_site_example)
#> No convergence issues detected.
#> \# A tibble: 2 x 7
#> variable mean sd mad q5 q95 rhat
#> <chr> <num> <num> <num> <num> <num> <num>
#> 1 sigma_beta 2.11 0.681 0.557 1.31 3.40 1.00
#> 2 sigma_y 0.00621 0.00465 0.00457 0.000478 0.0151 1.00

4.B.2.5 Step 5: Plot the results
The model fit results can be visualised using the following function:

plot(res_one_site_example,
xlab = "Year (CE)",
ylab = "Relative Sea Level (m)",
plot_type = "model_fit_plot")
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For the rate of change plot use:

plot(res_one_site_example,
plot_type = "rate_plot")
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To examine the data creating these plots the user types the following:

output_dataframes <- res_one_site_example$output_dataframes
head(output_dataframes)
#> Longitude Latitude SiteName data_type_id Age pred
#> 1 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -800 -2.313305
#> 2 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -750 -2.317669
#> 3 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -700 -2.317949
#> 4 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -650 -2.314343
#> 5 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -600 -2.307049
#> 6 -76.38 34.971 Cedar Island,\n North Carolina ProxyRecord -550 -2.296264
#> upr lwr rate_pred rate_upr rate_lwr CI
#> 1 -2.400030 -2.227257 -0.12943764 -0.64875213 0.3968221 95%
#> 2 -2.387780 -2.249597 -0.04578351 -0.48234828 0.4027361 95%
#> 3 -2.376887 -2.260269 0.03391535 -0.32931190 0.4128568 95%
#> 4 -2.366038 -2.264015 0.10965871 -0.18955952 0.4243838 95%
#> 5 -2.354508 -2.259395 0.18144659 -0.06696884 0.4325678 95%
#> 6 -2.343160 -2.246958 0.24927898 0.05161619 0.4432910 95%

To examine the additional options in the reslr package, see the main vignette.

4.B.3 Advanced Vignette for reslr package
reslr: advanced

Maeve Upton, Andrew Parnell & Niamh Cahill

4.B.3.1 Introduction

In this document we present a range of advanced options that are available in the reslr package.
To examine the all other options in the reslr package, see the main vignette.

If you have created other examples demonstrating reslr capabilities yourself, please contact me
so I can include them here for other people to see.

Installing reslr and loading it with:

install.packages("reslr")
library(reslr)
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4.B.3.2 Errors in Variables Integrated Gaussian Process with
detrended data

The EIV Integrated Gaussian Process model provides the underlying rate of the process directly
from the model. If the user requires a model applied to data that has been de-trended this is
available in our package for a single site using the model_type = "eiv_igp_t". The data is
de-trended using the linear rate which can be provided by the user within the input dataframe
along with the uncertainty associated with the rate. Or the linear rate is calculated within the
package using the data and this rate is used to de-trend the data. In addition, the user will need
to provide the estimated year of core collection.

This technique focuses on 1 site and we do not recommended for multiple proxy sites together.
Tide gauge data can be included, however, the user must investigate which tide gauge is suitable
and the tide gauge data will use the same linear_rate as the proxy records. As an example, we
will filter the example dataset NAACproxydata to select one site to demonstrate the process:

# For 1 site
CedarIslandNC<- NAACproxydata[NAACproxydata$ Site == "Cedar Island" ,]

Step 1: Load in the data using the reslr_load function:

CedarIslandNC_input_detrend<-reslr_load(
data = CedarIslandNC,
include_tide_gauge = FALSE,
include_linear_rate = TRUE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10,
detrend_data = TRUE,
core_col_year = 2010)

For this case, we update the setting detrend_data =TRUE and we provide the core_col_year =
2010 corresponding to the year of the core collection. The linear_rate is required and is included
by setting include_linear_rate = TRUE.

The output of this function is a list of two dataframes called data and data_grid. - The data
dataframe is the inputted data with additional columns for the data_type_id which will contain
“ProxyRecord”. It can be accessed by:
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data<- CedarIslandNC_input_detrend$data

• The data_grid is a dataframe that is evenly spaced in time based on the prediction_grid_res
value chosen by the user and is used to create the plots and is accessed by

data_grid<- CedarIslandNC_input_detrend$data_grid

Step 1a: A brief insight into the outputs of the reslr_input function can be obtained using:

print(CedarIslandNC_input_detrend)
#> This is a valid reslr input object with 104 observations and 1 site(s).
#> There are 1 proxy site(s) and 0 tide gauge site(s).
#> The age units are; Common Era.
#> Decadally averaged tide gauge data was not included. It is recommended for the ni_gam_decomp model
#> The linear_rate and linear_rate_err has been included.
#> Data has been detrended.

Step 2: Plotting the data the raw data with:

plot(
x = CedarIslandNC_input_detrend,
title = "Plot of the raw detrended data" ,
xlab = "Year (CE)" ,
ylab = "Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE)
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This will produce a plot of Age on the x-axis and Sea Level on the y-axis in meters. Grey boxes
represent the uncertainty associated with the vertical and horizontal uncertainty. The black data
points are the midpoints of these uncertainty boxes. The extra arguments can be used which
allows the user to updated the titles and axis labels. The caption plot_caption, included by
default, provides the number of proxy sites and tide gauge sites that will be used in the model
and can be removed if required plot_caption = FALSE. In addition, the user can select to plot
the additional tide gauge data, plot_tide_gauge = TRUE.

Step 3: To run the eiv_igp_t model the following function should be used:

res_eiv_igp_t_detrend<-reslr_mcmc(
input_data = CedarIslandNC_input_detrend,
model_type = "eiv_igp_t",
CI = 0.95)

This command takes the input data and the user specifies the statistical model, i.e. an integrated
Gaussian process using the EIV uncertainty method (“eiv_igp_t”). It tells reslr to store the
output of the model run in an object called res_eiv_igp_t. The CI setting allows the user to
set the credible intervals, the current default is CI = 0.95.

Step 3a: A brief insight into the outputs of the reslr_output function can be obtained using:
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print(res_eiv_igp_t_detrend)

Step 4: The convergence of the algorithm is examined and he parameter estimates from the
model can be investigated using the following:

summary(res_eiv_igp_t_detrend)

If the model run has the package will print: “No convergence issues detected”. If the package
prints: “Convergence issues detected, a longer run is necessary”. The user is required to update
the reslr_mcmc function with additional iterations in the following manner:

res_eiv_igp_t_detrend<-reslr_mcmc(
input_data =CedarIslandNC_input_detrend,
model_type ="eiv_igp_t",
# Update these values

n_iterations = 6000,# Number of iterations
n_burnin =1000, # Number of iterations to discard at the beginning
n_thin = 4, # Reduces number of output samples to save memory and computation time
n_chains = 3# Number of Markov chains
)

For the parameter estimates, the length scale parameter, “rho” is the correlation parameter and
“nu” is the standard deviation of the rate process. “sigma_y” is the variation of the model.

Step 5: The results from the EIV IGP model for the de-trended data can be illustrated using:

plot(res_eiv_igp_t_detrend,
plot_type = "model_fit_plot",
xlab = "Year (CE)",
ylab = "Sea Level (m)",
plot_proxy_records = TRUE,
plot_tide_gauges = FALSE)
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The output of this function is a graph of the input data, i.e. Age and SL and associated
uncertainty boxes, and the model fit with 95 % credible interval. The caption provides the
model type used and number of proxy sites and tide gauge sites used and can be removed if
necessary with plot_caption = FALSE. In order to view the rate of change plot, the following
setting should be used:

plot(res_eiv_igp_t_detrend,
plot_type = "rate_plot" ,
xlab = "Year (CE)" ,
y_rate_lab = "Rate of Change (mm per year)")
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This prints the plot of the rate of change with 95 % credible intervals. The caption provides the
model type, the number of proxy sites and tide gauge sites that were used.

To examine the data creating these plots the user types the following:

output_dataframes<- res_eiv_igp_t_detrend$output_dataframes

4.B.3.3 Using a different input age unit

The default input age for the reslr package is in units of years in the Common Era. The user
can select to input the age value in Before Present by updating the input_age_type = "BP"
within the reslr_load function. Inside the package, the Age is converted into CE in order to
run the models. The plots are then altered to account for the input age in BP and the x-axis is
be reversed.

Load in the data using the reslr_load function:

CedarIslandNC_input_age_BP<-reslr_load(
data = data_age_bp,
input_age_type = "BP")
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The output of this function is a list of two dataframes called data and data_grid. Both
dataframes will contain two new columns which identify the Age_type = "BP" and an addi-
tional column is included called Age_BP which contains the original input Age in units Before
Present.If the user is recreating these plots, they are required to use the Age_BP column along
the x-axis as it provides the original input age in units Before Present (BP) and the x-axis will
need to be reversed.

4.B.3.4 Including Tide Gauge data
In this package, we have described three ways to select a tide gauge and in the example we
showed how to include the closest tide gauge to the proxy site. Here we are demonstrating the
other options available to the user.

# For 2 site
multi_site<- NAACproxydata[NAACproxydata$ Site %in% c("Cedar Island", "Nassau"),]

If the user has a list of chosen tide gauges from PSMSL website, include them in a list in the
reslr_load function as demonstrated:

multi_site<-reslr_load(
data = multi_site,
include_tide_gauge = TRUE,
include_linear_rate = TRUE,
TG_minimum_dist_proxy = FALSE,
# There is no limit to the number of tide gauges provided in the list

list_preferred_TGs = c(
"ARGENTIA", "MAYPORT",
"JACKSONVILLE", "LAKE WORTH PIER",
"MAYPORT (BAR PILOTS DOCK), FLORIDA"

),
all_TG_1deg = FALSE,
prediction_grid_res = 50,
sediment_average_TG = 10)

Here is how to plot this example:
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plot(
x = multi_site,
title = "Plot of the raw data" ,
xlab = "Year (CE)" ,
ylab = "Relative Sea Level (m)",
plot_tide_gauges = TRUE} ,
plot_proxy_records = TRUE ,
plot_caption = TRUE)

If the user requires all tide gauges within 1 degree of the proxy site, which is the equivalent of
111kms, this can be done by updating all_TG_1deg=TRUE in the following way:

multi_site<-reslr_load(
data = multi_site,
include_tide_gauge =TRUE,
include_linear_rate = TRUE,
TG_minimum_dist_proxy = FALSE,
list_preferred_TGs = NULL,
all_TG_1deg = TRUE ,
prediction_grid_res = 50)

Here is how to plot this example:

plot(
x = multi_site,
title ="Plot of the raw data",
xlab ="Year (CE)",
ylab = "Relative Sea Level (m)",
plot_tide_gauges =TRUE,
plot_proxy_records = TRUE ,
plot_caption =TRUE)

4.B.3.5 Plotting techniques
In the package, all plot labels for results, i.e. x and y labels and titles, can be updated in the
following manner:
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# Example
final_plots<-plot(x =reslr_mcmc(CedarIslandNC, model_type =}"ni_spline_t"))
final_plots$ plot_result

# Adding new title to the total model fit plot
final_plots$plot_result+ggplot2::ggtitle("New Title Added as Example")
final_plots$plot_result+ggplot2::xlab("New x axis label Added as Example")
final_plots$plot_result+ggplot2::ylab("New y axis label Added as Example")

The user can access the dataframes creating these plots in order to recreate the output plots in
their own style. To access the data frame used to create the raw plot and the output model fit
plot use:

raw_data<- CedarIslandNC_input_detrend$data
output_data<- res_eiv_igp_t_detrend$output_dataframes

This dataframes contains the model fit under the column pred and the rate of change column is
rate_pred.

For the ni_gam_decomp model, there are a separate dataframe for each component and the rate
of change for each component has a corresponding dataframe. This ensures the decomposition
of the RSL signal can be plotted with all four components together, using separate colours to
identify the different drivers of RSL change.

4.B.3.6 Accessing the posterior samples
In the package the user has the ability access all the posterior sample for each unknown parameter
in the following way:

# Example
CedarIslandNC_input<-reslr_load(
data = CedarIslandNC)
res_eiv_slr_t<-
reslr_mcmc(CedarIslandNC_input,

model_type = "eiv_slr_t" )
# Accessing the slope of the EIV simple linear regression
beta<- res_eiv_slr_t$noisy_model_run_output$BUGSoutput$sims.list$beta
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4.B.3.7 Smoothing settings for splines
When constructing a spline piecewise polynomials join together at knots to form smooth curves.
The number of knots for these models can be reduced to achieve a more smooth model fit or
increased for more flexibility. In the reslr package, tests have been carried out to select the
correct number of knots for the spline in time, spline in space time and the GAM. However, if the
situation arise where the model fits require additional flexibility or require additional smoothing,
the user can adjust these settings. To adjust the setting for the number of knots in the spline in
time update the reslr function in the following way:

res_ni_sp_t<-
reslr_mcmc(CedarIslandNC_input,

model_type = "ni_spline_t",
spline_nseg = NULL)

By updating the spline_nseg function, the number of knots we change. Note the minimum value
for this setting is 2. The default for this setting is NULL as we use a rule of thumb calculation
to identify the number of knots based on the range of observations. Similarly, for the spline in
space time. The number of knots is updated using:

res_ni_sp_t<-
reslr_mcmc(CedarIslandNC_input,

model_type = "ni_spline_st" ,
spline_nseg = NULL)

By updating the spline_nseg function, the number of knots we change. Note the minimum value
for this setting is 2. The default for this setting is NULL as we use a rule of thumb calculation to
identify the number of knots based on the range of observations.

When using the NI GAM approach, the number of knots for the separate components can be
altered. To control the smoothness of the regional component (i.e. spline in time) the setting to
vary is the spline_nseg_t. To vary the non-linear local component (i.e. spline in space time),
the user can vary the spline_nseg_st setting. The following example will demonstrate these
settings:

res_ni_sp_t<-
reslr_mcmc(CedarIslandNC_input,

model_type = "ni_gam_decomp",
spline_nseg_t = 20,
spline_nseg_st = 6)
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The default settings have been tested using cross validation techniques to incorporate the require
flexibility for both components.

4.B.3.8 Cross Validation tests for Spline and NI-GAM
In the previous section, we discussed altering the smoothness of the splines by varying the
number of knots in the model. The user can test the validity of the model and the number of
knots selected using this cross validation function with in the package. For example, the user can
run different values for the knots and compare the model fits for each setting using the following
cross validation function.

data1site_example<- NAACproxydata[NAACproxydata$Site == "Cedar Island",]
# Cross Validation test
cv<-cross_val_check(data = data1site_example,

model_type ="ni_spline_t",
n_iterations =1000,
n_burnin =100,
n_thin =5,
n_chains =2,

# User the package to calculate the number of knots
spline_nseg =NULL,

# n_fold allows the user to alter the cross validation, i.e. 3, 5, 10 fold
n_fold =3,

#To reproducible results,seed stores the output of the random selection
seed =NULL,

# Size of the credible intervals and prediction intervals
CI =0.95)

To alter the number of knots in the model, include the spline_nseg or spline_nseg_t or
spline_nseg_st arguments in this function. The different meanings for these arguments are
described in the section above. By altering the CI argument, the user can change the size of the
prediction intervals.

The n_fold = 3 argument allows the user to change the number of folds used in the cross
validation test. We recommend a minimum of 3 folds and the ideal number of folds is 5 or 10,
however, using 10 folds will result in longer run times.

By updating the model_type argument, the user can undertake cross validation for the noisy
input spline in time, the noisy input spline in space time or the noisy input generalised additive
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model. This function will print a statement regarding model convergence. If the convergence
issues are detected, the package will inform the user to increase the number of iterations in the
cross_val_check function.

The outputs of the cross_val_check function are stored as a list. To examine the true versus
predicted plot use the following command.

cv$true_pred_plot
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This figure presents the true RSL value in metres versus the predicted RSL value in metres for
each data site. The predicted means are the red dots and the vertical lines over each point are
the prediction intervals.

To access the dataframe creating this plot use:

CV_model_df<- cv$CV_model_df

This dataframe contains the true_RSL values from the test set and the corresponding predicted
values pred_RSL. In this dataframe, there are the prediction intervals upr_PI and lwr_PI. The
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SiteName column identifies each site present in the dataframe and allows for site specific analysis
of the model if required.

The model performance is examined using a variety of different test. The first is the out of
sample empirical coverage. The empirical coverage provides the percentage of occasions that the
true RSL observation is within the model prediction interval (PI) for RSL and is given by:

# Overall coverage
total_empirical_coverage<- cv$total_coverage
total_empirical_coverage

# Coverage by site
coverage_by_site<- cv$coverage_by_site
coverage_by_site

#> A tibble: 1 x 2}
#> SiteName coverage_by_site
#> <fct> <dbl>
#> 1 "Cedar Island,\n North Carolina" 1
# Size of the prediction intervals
prediction_interval_size<- cv$prediction_interval_size
prediction_interval_size

#> \# A tibble: 1 x 2
#> SiteName PI_width
#> <fct> <dbl>
#> 1 "Cedar Island,\n North Carolina" -0.246

The prediction intervals are created using posterior predictive simulations with the full error
structure, i.e. ŷij ∼ N(f̂ij , σ2

yij
+ σ2

tij
+ σ2) where σ2

yij
is the observed uncertainty associated

with the RSL and σ2
tij

is calculated to account for the noisy input uncertainty associated with the
input (time). The size of these prediction intervals for each site can be examined to understand
how the coverage is calculated and using different prediction intervals, e.g. 95% versus 50%, the
model validity can be further examined.

The remaining tools used to examine model performance within the reslr package are the Root
Mean Squared Error (RMSE), mean error (ME) and mean absolute error (MAE). The RMSE
provides insight into prediction performance in the same units as the response (meters). The
RMSE can be examined by site or for each fold in the cross validation test. The overall mean error
(ME) by finding the difference between the predicted observation and the true RSL observation.
The mean absolute error (MAE) is calculated by taking the absolute value of the mean error, in
turn, this provides the degree to which our model is biased. For each test, the recommendation
is the lower the value the better the model fit and these values can be accessed by:

# Overall
ME_MAE_RSME_overall<- cv$ME_MAE_RSME_overall
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ME_MAE_RSME_overall
#> RSME MAE ME
#> 1 0.01269653 0.03528882 -0.001244997
# By fold and site
ME_MAE_RSME_fold_site<- cv$ ME_MAE_RSME_fold_site
ME_MAE_RSME_fold_site

#> A tibble: 3 x 5
#> SiteName CV_fold_number RSME MAE ME
#> <fct> <fct> <dbl> <dbl> <dbl>}
#> 1 "Cedar Island,\n North Carolina" 1 0.0634 0.0325 -0.0107
#> 2 "Cedar Island,\n North Carolina" 2 0.0643 0.0281 -0.0110
#> 3 "Cedar Island,\n North Carolina" 3 0.105 0.0451 0.0177
# By site
ME_MAE_RSME_site<- cv$ME_MAE_RSME_site
ME_MAE_RSME_site

#> A tibble: 1 x 4}
#> SiteName RSME MAE ME
#> <fct> <dbl> <dbl> <dbl>
#> 1 "Cedar Island,\n North Carolina" 0.0127 0.0353 -0.00124
# By fold
ME_MAE_RSME_fold<- cv$ME_MAE_RSME_fold
ME_MAE_RSME_fold

#> A tibble: 3 x 4
#> CV_fold_number RSME MAE ME
#> <fct> <dbl> <dbl> <dbl>
#> 1 1 0.0634 0.0325 -0.0107
#> 2 2 0.0643 0.0281 -0.0110
#> 3 3 0.105 0.0451 0.0177

For more information about the outputs to these cross validation tests for RSL data refer to
Upton et al. 2023 paper.
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CHAPTER 5
An investigation of ocean

dynamics and relative sea-level
change in the North Atlantic

Sea-level rise, in particular ocean dynamics, pose a devastating risk to coastal commu-
nities in the North Atlantic. We discuss the relative sea-level changes in the North
Atlantic for the last 2,000 years using proxy records and tide gauges data. We employ a
noisy input Bayesian generalised additive model to decompose the RSL signal in order
to examine the dynamic sea level component along the coastlines of the North Atlantic.
We investigate two components of dynamic sea-level change; the vertical Atlantic Merid-
ional Overturning Circulation (AMOC) circulation and the quasi-horizontal circulation
(surface-enhanced currents and gyres). Results show a decline in the AMOC with an
unprecedented rate of decrease beginning in 1850 CE, aligning with previous studies.
Quasi-horizontal circulation varies significantly over the last 2,000 years with an notably
difference north and south of Cape Hatteras, USA. However for both components, the
considerable bivariate uncertainties stemming from proxy records have led to substantial
uncertainties within our outcomes, thereby reducing the resolution of our results. R code
and data is available at https://github.com/maeveupton/RSL-NorthAtlantic.
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5.1 Introduction
In 2019 the Intergovernmental Panel for Climate Change (IPCC) reported that
the cryosphere (Earth’s frozen areas) has been diminishing due to global warming
(Pörtner et al., 2019). The average rate of ice loss from the Greenland ice sheet is
estimated to be 278 ± 11 Gt/yr between 2006 and 2015 with the oceans having
absorbed 89% of the excess heat, resulting in warming since 1970 (Pörtner et al.,
2019; von Schuckmann et al., 2023). The ice loss has been widely reported as
contributing to global mean sea-level rise (Church et al., 2011, 2013; Gregory
et al., 2013; Bilbao et al., 2015). The population along the low-lying coastal zones
(less than 10 metres above sea level) is predicted to rise to over one billion people
by 2050 (Pörtner et al., 2019; IPCC, 2023).

Relative sea level (RSL) is the difference between the sea surface and the Earth’s
sediment surface and varies in time and space (e.g. Shennan et al., 2015). RSL
change is impacted by a range of processes on different spatial (global, regional,
local) and temporal (annual to millennial) scales. Such processes include, for ex-
ample, geological processes, ocean dynamical processes, atmospheric processes and
human activities (e.g. Bulgin et al., 2023). In particular, changes in ocean circula-
tion, and ocean dynamical process, can have far-reaching consequences, impacting
regional climates, sea surface temperatures, and even the modulation of global
atmospheric circulation systems.

In this paper, we investigate the influence ocean dynamics can have on RSL
changes, which is defined as dynamic sea-level change (Gregory et al., 2019), using
proxy records and instrumental data from tide gauges. Proxy records are used to
extend the temporal range prior to the instrumental era using physical, biological,
or chemical features that are preserved in dated geological archives such as coastal
sediment (e.g. Gehrels, 1994) or corals (e.g. Meltzner et al., 2017). For the instru-
mental data, we use tide gauge data to gain insights into coastal sea-level change,
as satellite instrumental data, while providing high resolution, is limited to the
last thirty years (Church and White, 2011). The combination of proxy records,
tide gauges and appropriate statistical models prove useful when examining the
pre-industrial evolution of dynamic sea- level changes along the coastlines of the

188



5.1. Introduction

North Atlantic (Upton et al., 2023c).

Our analysis focuses on the North Atlantic region as it holds great significance in
the realm of global climate dynamics, exerting a profound influence on both the
region itself and the entire planet (e.g. Lozier et al., 1995). In this region, we are
interested in investigating two main components of large-scale ocean circulation
that impact dynamic sea level (Little et al., 2019). The two components include;
(1) the deep overturning circulation known as the Atlantic meridional overturning
circulation (AMOC) and (2) the quasi-horizontal circulation consisting of gyres
(circular systems of currents formed due to Earth’s rotation and wind patterns,
Denny, 2008) and other surface-enhanced currents (near surface currents driven by
wind patterns, temperature differences and Earth’s rotation, Vallis, 2012). Some
of the major physical forces influencing these ocean circulation patterns include:
wind; thermohaline circulation; the Coriolis effect (caused by the Earth’s rotation
deflecting the direction of ocean currents to the right in the Northern Hemisphere
or to the left in the Southern Hemisphere); gravitational forces; topography and
continental boundaries (shape of the ocean basins); atmospheric and oceanic vari-
ability (e.g. North Atlantic Oscillation which is the North South pressure difference
between low pressure in Iceland and high pressure at the Azores; Vallis, 2017).

The AMOC redistributes heat from south to north, influencing not only the North
Atlantic climate but also affecting weather patterns across Europe, North America
and the broader Northern Hemisphere (e.g. Frankignoul et al., 2013; Ionita et al.,
2022; Bellomo et al., 2023). Previous studies have shown that weakening of the
AMOC is linked to projected, and possibly ongoing, sea-level rise along the Atlantic
coast of North America (Little et al., 2019), with the North Atlantic experiencing
stronger rates of rise compared to the North Pacific (Körper et al., 2009).

Quasi-horizontal circulation in the North Atlantic is influenced by a combination
of gyres (North Atlantic Subtropical Gyre and North Atlantic Subpolar Gyre) and
surface-enhanced currents (e.g. the Gulf Stream, the North Atlantic Drift, and
the Canary Current) (Little et al., 2019). It is a critical component of dynamic
sea-level change and McCarthy et al. (2015) demonstrated how dynamic sea level
decreases northwards due to the transitions between North Atlantic subtropical
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and subpolar gyres using tide-gauge data along the western Atlantic seaboard. As
a result, we seek to determine the level of influence the AMOC and quasi-horizontal
circulation has had on pre-industrial dynamic sea level in the North Atlantic.

Understanding how dynamic sea level evolved in the North Atlantic over the last
2,000 years (a period in Earth’s history known as the late Holocene or Common
Era) is crucial and requires a flexible statistical modelling approach. The sea-
level data collected using instrumental records and proxies are the net outcome
of various physical processes that vary in time and space (Khan et al., 2022).
Recently, statistical models have been used to decompose this RSL signal in order
to examine the different drivers of sea-level change (Kopp et al., 2016; Walker et al.,
2021; Upton et al., 2023c). In this paper, we use a noisy input generalised additive
model (NI-GAM) approach, as developed by Upton et al. (2023c), focusing on
regional changes in the North Atlantic. The NI-GAM is extended from Upton et al.
(2023c) to possess four components: (1) a common component averaged over time
for the full region, (2) a hierarchical regional component averaged over time for
different regions, (3) a linear local component and (4) a non-linear local component.
To retrieve and process instrumental RSL data, we use the reslr package which
is an open source R software that allows the paleo sea-level community to examine
RSL changes (Upton et al., 2023b). Using the extended NI-GAM, we decompose
the RSL signal and focus on the influence of dynamic sea-level change in the North
Atlantic region.

We undertake two strategies to investigate the two main components of the North
Atlantic ocean circulation system: the AMOC and the quasi-horizontal circula-
tion. First, we apply the extended NI-GAM (Upton et al., 2023c) to proxy sea-
level records and tide gauge data and examine the difference between the regional
component from the east and west coast of the North Atlantic in order to under-
stand the evolution of the AMOC. For the second strategy, we apply the same
extended NI-GAM (Upton et al., 2023c) to proxy sea-level records and tide gauges
from the Atlantic coast of North America and investigate the regional component
north and south of Cape Hatteras to examine quasi-horizontal circulation in the
region. The results from our analysis address the reported long term changes in
the intensity and stability of the AMOC and the quasi-horizontal circulation in
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the North Atlantic (e.g. Rahmstorf et al., 2015; McCarthy et al., 2015; Thornalley
et al., 2018; Caesar et al., 2021).

We structure our paper in the following manner. In Section 5.2, we provide back-
ground information on the ocean dynamics that influence sea-level changes in the
North Atlantic. In Section 5.3, we discuss the data sources that we use in this
research. In Section 5.4, we provide a detailed mathematical description for the
NI-GAM focusing on the extension used in this analysis. The results for our anal-
ysis are presented in Section 5.5 and we discuss these results in Section 5.6.

5.2 Ocean Dynamics in the North Atlantic
Oceans are indispensable to our climate system, acting as crucial regulators and
conveyors of water, heat, and nutrients across the globe (e.g. Pörtner et al., 2019).
On interannual and decadal time scales, ocean dynamics are a crucial component
of sea-level change which can impact marine life in our oceans and our coastlines
(Di Lorenzo et al., 2008; Qiu and Chen, 2012; Minobe et al., 2017). On large spatial
scales, ocean dynamics can vary and these variations have dramatically increased
due to global warming resulting in non-uniform global sea-level changes (e.g., Yin
et al., 2010; Slangen et al., 2014). As a result, Gregory et al. (2019) defines dynamic
sea-level change as the mean sea-level changes above the geoid (theoretical surface
that depicts the shape of the Earth’s surface if influenced solely by gravity) caused
by ocean dynamics.

The North Atlantic Ocean is crucial for global climate regulation (e.g. Muschitiello
et al., 2019), marine biodiversity (e.g. Olafsson et al., 2021), carbon sequestration
(e.g. Olafsson et al., 2021), and sea-level variability (Thompson, 1986; Lozier et al.,
1995; Kopp, 2013). One key aspect of the North Atlantic Ocean’s importance lies
in the presence of active deep water formation sites. These sites facilitate the
vertical mixing of waters, allowing for the transfer of heat, nutrients, and other
vital components throughout the ocean layers (Rahmstorf, 2006). As a result,
the ocean circulation system in the North Atlantic possesses a complex array of
currents that can impact sea-level rise at a range of time scales and contribute to
the delicate balance of the region’s climate (Bjerknes, 1964).
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In the upcoming sections, we focus on two important components of the North
Atlantic Ocean circulation system; (1) the Atlantic Meridional Overturning Cir-
culation (AMOC) which impacts vertical circulation in the North Atlantic and (2)
quasi-horizontal circulation, which is driven by a combination of gyres (North At-
lantic Subpolar Gyre and North Atlantic Subtropical Gyre) and surface-enhanced
currents, for example the Gulf Stream. The aim of our paper is to investigate the
evolution of dynamic sea level over the Common Era, impacted by these ocean
circulation patterns, using proxy records and tide-gauge data.

5.2.1 Atlantic Meridional Overturning
Circulation(AMOC)

The Atlantic Meridional Overturning Circulation (AMOC) is a system of currents
that redistributes heat from the equatorial regions towards the poles (McCarthy
et al., 2020). The deep water formation in the North Atlantic serves as a critical
driver for large-scale oceanic circulation patterns, such as the AMOC. The AMOC
significantly contributes to the relatively mild climate of northwestern Europe
(Seager et al., 2002). It is responsible for maintaining temperatures approximately
3 °C warmer on the northwestern European seaboard compared to similar maritime
climates on the eastern seaboard of North America (Rhines et al., 2008).

Changes in the intensity or stability of the AMOC can have far-reaching con-
sequences, impacting regional climates, sea surface temperatures, and even the
modulation of global atmospheric circulation systems. Recent literature has indi-
cated that the AMOC is weakening (Rahmstorf et al., 2015; McCarthy et al., 2015;
Thornalley et al., 2018; Thibodeau et al., 2018; Spooner et al., 2020; Caesar et al.,
2021). However, these studies have been limited in time. We seek to extend this
analysis to examine how dynamic sea-level variations are impacted by the AMOC
over the Common Era.

Mathematically, the relationship between the AMOC and dynamic sea level in the
North Atlantic can be given as:

Qo ∝ he − hw (5.1)
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where Qo is the water volume transported by the AMOC and he and hw are
the eastern-boundary sea level and western-boundary sea level respectively (Little
et al., 2019). In other words, when water volume transported by AMOC increases,
a simultaneous increase in the east-minus-west sea-level difference across the North
Atlantic ocean basin is expected to be observed.

In our paper, we use a statistical model to decompose the RSL signal into four
separate components: common; regional; linear local and; non-linear local com-
ponents. When examining the dynamic sea-level change for the North Atlantic,
we find the difference between the regional component for the east coast and the
regional component for the west coast. This allows us to investigate the influence
of the AMOC on our dynamic sea-level change for the Common Era.

5.2.2 Quasi-Horizontal Circulation
The quasi-horizontal circulation in the North Atlantic refers to the large-scale
oceanic movement that occurs mainly along the surface of the ocean (Vallis, 2012).
This circulation pattern is characterised by the presence of gyres and other surface-
enhanced currents. Gyres are circular, rotating systems of ocean currents that tend
to form in the major ocean basins due to the combined effects of wind patterns
and the Coriolis effect (a result of Earth’s rotation McCarthy et al., 2020). In the
North Atlantic, there are several prominent gyres, including the North Atlantic
Subtropical Gyre and the North Atlantic Subpolar Gyre (Little et al., 2019). The
North Atlantic Subtropical Gyre is the larger and more stable of the two, driven
by the trade winds blowing from east to west across the subtropical regions (Yin
et al., 2010). The clockwise rotation of this gyre tends to accumulate warm surface
waters in the central part of the North Atlantic (Rossby, 1999). The North Atlantic
Subpolar Gyre, on the other hand, is located in the higher latitudes of the North
Atlantic and experiences more variable wind patterns (Little et al., 2019). This
gyre rotates cyclonically and tends to accumulate colder and fresher waters from
the Arctic region (Rossby, 1999).

The North Atlantic experiences various other surface-enhanced currents, such as
the Gulf Stream, the North Atlantic Drift, and the Canary Current (McCarthy
et al., 2020). The Gulf Stream, in particular, is a significant and well-known ocean
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current that flows along the eastern coast of North America, transporting warm
water from the Gulf of Mexico towards the North Atlantic (Minobe et al., 2008).
The interaction of these gyres and surface-enhanced currents plays a crucial role
in regulating the transfer of heat and energy within the North Atlantic Ocean
and the adjacent regions. The quasi-horizontal circulation in the North Atlantic
exhibits significant differences between the northern and southern regions of Cape
Hatteras in North Carolina, as it marks the boundary between the subtropical
and subpolar gyres (McCarthy et al., 2015). These differences demonstrate the
intricate interplay of oceanic currents and their impact on the climate, marine
ecosystems, and coastal environments in the North Atlantic region.

McCarthy et al. (2015) describes a relationship between the transport along the
intergyre boundary (region between the North Atlantic Subpolar Gyre and the
North Atlantic Subtropical Gyre) and the dynamic sea level north and south of
Cape Hatteras as:

υig ∝ hs − hn (5.2)

where υig represents the water transported along the intergyre boundary. hs is the
dynamic sea level south of Cape Hatteras and hn is dynamic sea level south of
Cape Hatteras.

As previously mentioned, we decompose the RSL signal and investigate the evo-
lution of dynamic sea-level change along the Atlantic coast of North America. By
finding the difference between our regional component north and south of Cape
Hatteras, we can address the influence of these quasi-horizontal circulations (i.e.
gyres and surface-enhanced currents) on dynamic sea-level changes in this region
for the Common Era.

5.3 Data
In this analysis, we focus on coastal locations around the North Atlantic. In this
section, we discuss the sourced data from proxy and tide-gauge records along the
Atlantic coast of North America and from the coast of Iceland and European sites
as shown in Figure 5.3.1. In particular, we discuss the separate regions that will
be examined using separate statistical models. The first region is an analysis of
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all the data around the North Atlantic coastlines with a separate identifier for
the east coast (i.e. North American sites) and the west coast (i.e. Europe and
Iceland). The second region is an analysis of the Atlantic coast of North America
with sites above Cape Hatteras deemed the north sub-region and sites below Cape
Hatteras are designated as the south sub-region.
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Figure 5.3.1: Location of the tide-gauge sites and proxy record sites along the North Atlantic
coastline. The east North Atlantic section comprises all the sites to the east of 40◦W, as indicated
by the black dashed line, while the remaining sites belong to the west North Atlantic section.
Cape Hatteras North Carolina, is highlighted with the black dashed line. Sites located above
this line are categorised as part of the north Cape Hatteras sub-region, whereas those below the
line fall under the classification of the south Cape Hatteras sub-region.

5.3.1 Proxy Sea-Level Records
Proxy sea-level datasets are vital sources of information for investigating the evo-
lution of RSL changes over the Common Era. Near-continuous proxy RSL re-
constructions can provide information on RSL changes prior to the instrumental
period (e.g. Kemp et al., 2013). They are often obtained from sediment cores from
salt marshes (at mid- to high latitudes; Gehrels et al., 2020) or mangrove sediment
(low latitudes; Khan et al., 2022).
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In these sediment cores, a subset of depths are dated using radiocarbon measure-
ments or other dating methods. Additionally, the shallowest part of the core,
representing the most recent sediment layers, can be dated by identifying historic
pollution and land use changes of known age in down-core profiles. These changes
are observed through elemental abundance, isotopic activity and isotopic ratios
(Marshall, 2015). These directly dated levels in the core (i.e., age of sediment
sample) form the input for a statistical age-depth model, e.g. the Bchron (Parnell
et al., 2008), Bacon (Blaauw and Christen, 2011), or Rplum (Aquino-López et al.,
2018) packages in R. These age-depth models (irrespective of their specific simi-
larities and differences) estimate the age of every 1 cm thick sediment sample in
the core with uncertainty.

To reconstruct RSL, a sea-level proxy is used. A proxy encompasses physical,
biological, or chemical properties, that are directly measured and they provide
valuable insights into an unmeasurable variable of interest, i.e., RSL (e.g., Gor-
nitz, 2009). In the field of sea-level studies, proxy data can be obtained from
various sources, including microorganisms like foraminifera (e.g., Edwards and
Wright, 2015), geochemical measurements (e.g., Marshall, 2015), and the accu-
mulation of vegetation within the tidal zone (e.g., Kemp and Telford, 2015). The
information from these sources is preserved in dated geological archives, and it can
be used to estimate paleo-marsh elevation (i.e., elevation with respect to height
above a tide level at the time of formation) with uncertainty (Kemp et al., 2013).
This estimation is achieved through either a transfer function approach, which
establishes a relationship between the abundance of specific micro-fossil families
and tidal elevation using data representative of the modern environment (Sachs
et al., 1977; Horton and Edwards, 2006; Kemp et al., 2011; Cahill et al., 2016), or
through reasoning by analogy. The reasoning by analogy method involves observ-
ing the distribution of plants in modern salt marshes and using this knowledge to
interpret their analogous counterparts found in core material (Kemp and Telford,
2015). By employing these approaches, paleo-marsh elevation can be estimated
along with associated uncertainty (e.g., Gehrels, 1994; Shennan et al., 2015; Kemp
et al., 2018). The age of each core sample derived from an age-depth model and a
paleo-marsh elevation reconstruction for the core are combined to provide a single
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proxy RSL record comprised of age (with 1 sigma uncertainty) and RSL (with 1
sigma uncertainty). Figure 5.3.2 illustrates the proxy RSL record, displaying the
associated 1-sigma uncertainty for both age and RSL, providing a visual represen-
tation.
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Figure 5.3.2: Proxy records for the east coast of the North Atlantic coastline. The y-axis is
relative sea level (RSL) in metres and the x-axis is the years in units of Common Era. The
black dot represents the midpoint of the proxy sea-level reconstruction and the grey boxes of 1
standard deviation represent vertical and horizontal (temporal) uncertainty.

5.3.2 Tide Gauge Data
Tide gauges provide direct regular (e.g. minute to hourly) measurements of RSL
(Pugh and Woodworth, 2014b). The Permanent Service for Mean Sea Level online
database provides tide-gauge records for ∼ 1500 stations (PSMSL, 2023: Holgate
et al., 2013; Woodworth and Player, 2003). The reslr package enables processing
of the tide-gauge data to ensure that it is comparable with relevant (i.e., nearby)
proxy records (detailed description of the methodology is provided in Upton et al.,
2023b). Through the reslr package, we select tide-gauge data with more than
20 years of observations situated closest to the proxy site. In addition, the reslr
package enables users to choose supplementary tide gauges from the PSMSL online
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database. We incorporate extra tide-gauge data along the European coastline,
spanning an area from the Netherlands to Spain, under the stipulation that the
temporal record of the tide gauges exceeds 50 years. This approach has provided
us with an extensive collection of tide gauges within the North Atlantic region
reducing the spatial bias present in the data. Similarly, we incorporate additional
tide gauge data south of Cape Hatteras to overcome the spatial bias in this region.

For our analysis, we present two separate sub-regions in the North Atlantic which
include: (1) east west of the North Atlantic coastline and (2) north south of Cape
Hatteras North Carolina USA (Longitude: -75.5 and Latitude: 35.3). In the first
dataset, we class all sites in Europe and Iceland as the east, as demonstrated
in Figure 5.3.2, and the west sites include all proxy and tide-gauge sites on the
Atlantic coast of North America as shown in Figure 5.7.1. For the second dataset,
we focus on the Atlantic coast of North America and organise all the tide gauge
and proxy sites north of Cape Hatteras in Figure 5.7.2 and south of Cape Hatteras
in Figure 5.7.3. In the Appendix 5.7, we present a table of all the proxy data sites
and tide gauge location and a corresponding reference to the source literature.

5.4 Statistical Methodology
We now describe the statistical approach to decomposing the RSL signal and inves-
tigate the contribution of dynamic sea-level change in the North Atlantic region.
In particular, we are interested in the contribution of the two main components of
dynamic sea-level change in this region which are the AMOC and quasi-horizontal
circulation (Refer to Section 5.2 for detailed description of both). The goal is to
use proxy records and tide-gauge data to examine the pre-industrial dynamic sea-
level changes which are influenced by the AMOC and quasi-horizontal circulation
in the North Atlantic. For this analysis, we require two separate strategies for
examining these complex ocean circulation systems. The two strategies use the
same statistical model but with different input data as described here:

1. We model the data sites along the coastline of the North Atlantic using an
extended version of NI-GAM (Upton et al., 2023c). The extended version
possesses an additional component, as compared to the model outlined in
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Upton et al. (2023c), to capture the regional signals as well as a common
signal along the North Atlantic coastline. We identify separate regional
components for the east of the North Atlantic (Figure 5.3.2) and west of
the North Atlantic (Figure 5.7.1) using a hierarchical prior on the spline
coefficient. This east-west analysis allows us to investigate the influence of
the AMOC on RSL changes for the region over the Common Era.

2. Similarly, we employ an extended variant of the NI-GAM model (Upton
et al., 2023c) to characterise the data sites located along the Atlantic coast of
North America. To reiterate, this extended model incorporates an additional
component aimed at capturing the shared signal prevalent along the Atlantic
coast of North America (common component). The regional component
involves a hierarchical spline coefficient with distinct values for the north
(refer to Figure 5.7.2) and south (refer to Figure 5.7.3) of Cape Hatteras,
North Carolina, USA (Longitude: -75.5288, Latitude: 35.2505). Through
the north-south analysis, we gain insights into the variations of RSL over
the last 2,000 years resulting from quasi-horizontal ocean circulation.

5.4.1 Statistical Model
For both analyses, we use an extended version of Noisy Input Generalised Addi-
tive model (NI-GAM) as outlined in Upton et al. (2023c). The original NI-GAM
uses a combination of splines and random effects to decompose the regional RSL
signal into three separate components. In our extended NI-GAM, an additional
component is included to represent the common signal across the region which we
outline below. The model uses a Bayesian hierarchical framework with Markov
Chain Monte Carlo (MCMC) simulations being undertaken using Just Another
Gibbs Sampler (JAGS) tool (Plummer, 2003) and implemented using the rjags
package in R (Plummer et al., 2016).

The data level for the NI-GAM is described as:

y = f(x, t) + ϵy (5.3)

where y is the RSL measurement in metres. f(x, t) is the process underlying
the RSL data that depends on location x and time t. ϵy is the error term given
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by ϵy ∼ N (0, σ2
y + s2

y), where σ2
y is the residual variance and sy is the known

measurement error associated with each RSL reconstructed data point.

To account for age uncertainty that arises when using proxy RSL records we use
the Noisy Input (NI) uncertainty method (McHutchon and Rasmussen, 2011). For
the input measurement, t̃ is assumed to be the a noisy estimate for the true value
t given as:

t̃ = t+ ϵt (5.4)

where the error term is given by ϵt ∼ N (0, s2
t ) where st is the known age measure-

ment error associated with that data point. The NI method is a three step process
where (1) an initial model is fitted without age error, (2) the derivative of f is
estimated using this model, and a corrective variance term is computed in units
of y (as opposed to t). Finally in step (3), the model is re-run with this additional
corrective variance term added to the ϵy variance. By employing this approach,
our model is able to acquire knowledge of the input noise variation by studying
the complete output it generates.

For the process level, the extended NI-GAM uses a spatio-temporal RSL field and
includes an additional component written in the following manner:

f(x, t) = c(t) + r(t, wx) + g(zx) + h(zx) + l(x, t) + ϵy (5.5)

where f(x, t) is the underlying RSL process for a generic location and time. c(t) is
the common component over time for all sites. r(t, wx) is the regional component
at time t which varies depending on east or west of the North Atlantic and north
or south of Cape Hatteras, with wx identifying the section east or west or north or
south. g(zx) is the linear local component represented by a random effect with zx

representing each data site. h(zx) is the spatial vertical offset for each data site.
l(x, t) is the non-linear local component.

The common component, c(t), is represented using a spline in time and represents
physical processes that are common to all locations, including barystatic and ther-
mosteric contributions, where the former is caused by the transfer of mass between
land-based ice and oceans (Gregory et al., 2019) and the latter is influenced by
changes in global temperature creating density variations within the oceans (Grin-
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sted, 2015). For this component, we use cubic B-splines (piece-wise polynomials
joined at equidistant knots with equal first derivatives de Boor, 1978; Eilers and
Marx, 1996), described by:

c(t) =
kc∑

s=1
bcs(t)βc

s (5.6)

where βc
s is the sth spline coefficient, kc is the number of knots and bcs(t) is the

sth spline basis function at time t. We define the prior for the spline coefficients of
the common component βc

s by:

βc
s ∼ N (0, σ2

c ) (5.7)

where σc is the standard deviation of the spline coefficients for the common compo-
nent which controls the general smoothness of the spline. In addition, we calculate
the rate of change of the common component by finding the derivative over time
for each basis function, bcs(t), using first principles.

The regional component, r(t, wx), represents physical processes that occur at spe-
cific spatial scales. One such example is dynamic sea-level changes that impact
groups of sites differently, as previously mentioned in Section 5.2. Similar to the
previous component, the regional component is mathematically described using a
cubic B-spline in time. However in contrast, the regional component has a hierar-
chical structure which identifies different groups of sites (wx), for example east and
west of the North Atlantic or north and south of Cape Hatteras in the following
way:

r(t, wx) =
kr∑

s=1
brs(t, wx)βr

s (5.8)

where βr
s is the sth spline coefficient with i identifying the different section, kr is

the number of knots and brs(t) is the sth spline basis function at time t. We define
the prior for the spline coefficients of the regional component βr

s by:

βr
s ∼ N (0, σ2

r) (5.9)

where σr is the standard deviation of the spline coefficients and controls the
smoothness of the regional spline. For the regional component, there is a dif-
ferent σr depending on the group of sites in question, i.e. east and west or north
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and south. As previously mentioned, we calculate the rate of change of the regional
component by finding the derivative over time for each basis function, brs(t), using
first principles.

The linear local component, g(zx), aims to capture linear trends present in the RSL
signal. One such reason for the expected linearity is glacial isostatic adjustment
(GIA), which is a response of the Earth, the gravitational field, and the ocean, to
changes in the size of ice sheets (Whitehouse, 2018). On relatively short geological
timescales, it is approximated to be linear through time with spatial variability
along the Atlantic coast of North America (Engelhart et al., 2009). Mathemat-
ically, the linear local component is an unstructured random effect for each site
which is formulated as:

g(zxj
) = βg

j t (5.10)

where βg
j is a slope parameter specific for each site j. The prior for the linear local

component is:
βg

j ∼ N (mgj
, s2

gj
) (5.11)

where mgj
and s2

gj
are empirically estimated rate and associated variance values

as described in detail in Upton et al. (2023c).

The site-specific vertical offset h is used to capture vertical shifts linked to vari-
ability between sites. It is formulated using is a random effect in the following
manner:

h(zxj
) = βh

j (5.12)

where βh
j contains the random effect coefficients for site j. The prior for the site-

specific vertical offset is given by:

βh
j ∼ N (0, σ2

h) (5.13)

where σ2
h is the variance of the random intercept across all data sites.

The non-linear local component l(x, t) captures RSL variability on century to
millennia timescales which are site specific, for example sediment compaction (im-
pacting the height of the Earth’s surface: Brain et al., 2011; Horton et al., 2018)
and tidal range changes (difference between high and low water marks impacted
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by sedimentation, geomorphology of site and human activites: Hill et al., 2011;
Hall et al., 2013; Mawdsley et al., 2015). It is described using a spatio-temporal
spline function constructed with B-splines (de Boor, 1978) and a tensor product to
capture the variability over time and space (represented by longitude and latitude)
so that the individual covariates are combined product-wise (Wood, 2006). It is
formulated by:

l(x, t) =
kl∑

s=1
bls(x, t)βl

s (5.14)

where βl
s is the sth spline coefficient, kl is the number of knots and bls(x, t) is the sth

spline basis function at time t and location x. The prior for the spline coefficient
βl

s is given as:
βl

s ∼ N (0, σ2
l ) (5.15)

where σ2
l is the variance of the spline coefficients over space and time, and controls

the smoothness of the space-time component. Also, we calculate the rate of change
of the non-linear local component by finding the derivative over time and space
for each basis function, bls(x, t), using first principles.

5.5 Results
In this section, we provide the results for the extended NI-GAM for the east-west
North Atlantic and the north-south Cape Hatteras analysis. For both analysis,
we demonstrate how the RSL signal is decomposed and we provide a comparative
analysis for the regional components. The remaining components for the decom-
position of the RSL signal are documented in Appendix 5.7. These additional
components include the total model fit, the common component, the linear local
component, non-linear local component and associated rate of changes for each
component and for each site. We then discuss how the dynamic sea level from
our east-west analysis of the North Atlantic compares with other AMOC proxy
reconstructions. Finally, we provide insight into the fluctuations of dynamic sea
level north and south of Cape Hatteras driven by quasi-horizontal circulation from
gyres and other surface-enhanced currents.
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5.5.1 East West Analysis of the North Atlantic
In this section, we investigate the decomposition of the RSL signal for the North
Atlantic. We present one component of the RSL decomposition, the regional com-
ponent and the corresponding rates of change informed by our proxy records and
tide-gauge data. We demonstrate how the difference between the east and west
regional components can related to dynamic sea-level changes.

In Figure 5.5.1(a) we display the regional component for the east sites (i.e. east in
blue) and west sites (i.e. west in purple) along the North Atlantic coastline. The
west sub-region possesses a minimal variation, ranging between -0.004m ± 0.03m
to 2mm ±0.04m, with a minor anomaly emerging between 1740 CE to 1770 CE,
followed by a gradual decline until the present data. The east possesses a gradual
increase from 0 CE to ∼ 840 CE. After 840 CE, we observe a gradual decline in the
eastern trend until 1770 CE. Following 1770 CE, we see a short period of increase
until 1893 CE following by a decrease until the present day.

The rates associated with these trends are presented in Figure 5.5.1(b). The rates
of change associated with the west sub-region reflect the minimal fluctuations
observed in 5.5.1(c). We observe a slight increase from 0mm/year between 1740CE
and 1770 CE, following be a gradual decrease until today. The rate of change
for the east sub-region reached its max value of 0.3mm/year ± 0.4mm/year in
573CE. The minimum rate of change observed in the east sub-region is the present
day(2023) with rates of -0.2mm/year ± -0.6mm/year.
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Figure 5.5.1: The extended noisy-input generalised additive model (NI-GAM) results for (a) the
regional component and (b) the regional rate of change component. By using separate colours
(blue for east and purple for west), we can compare the regional component for the east sites
of the North Atlantic versus the west sites of the North Atlantic. (a) The regional component
mean model fit represented with a solid line and the shading indicating the 50% and 95% credible
intervals. The y-axis is the sea level in m with the x-axis representing the time across the last
3000 years for the North Atlantic region. (b) Rate of change for the regional component for
the North Atlantic region with the solid line representing the mean of the fit and shaded area
representing the 50% and 95% credible intervals. The y-axis is the instantaneous rate of change
of sea level in mm per year.

In Section 5.2, we describe how the difference between the dynamic sea-level com-
ponent from the easthern- and western- boundary of the North Atlantic basin is
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proportional to the water transported by the AMOC (Little et al., 2019). Our
models decompose the RSL signal and the regional component captures changes
in dynamic sea level using a hierarchical temporal spline. Figure 5.5.2 represents
the difference between east west regional component (a) and the associated rate
of change of this difference (b). From 0 CE to 810 CE, the trend of the east-west
difference exhibited a gradual increase. Subsequent to 810 CE, this trend shifted,
leading to a descent until 1770 CE. Following this, there was a renewed ascent in
the trend, which persisted until ∼ 1900 CE. However, from that point onwards
until the present day in 2023, there was a significant decrease in the east-west
difference trend. In Figure 5.5.2 (b) we present the associated rate of change of
the east-west difference over the past 2,000 years. The rates displayed a gradual
increase until ∼ 570 CE, succeeded by a decline until 920 CE. Between 920 CE
and 1530 CE, there was a gradual decrease in the rates. Following 1530 CE un-
til 1850 CE, there was an observed increase, followed by a subsequent downturn
in the rates prior to 1850 CE. This pattern has persisted up to the present day,
with rates of change for the disparity between the eastern and western regional
components measuring at -0.2mm/year ± 0.6mm/year as of 2023.
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Figure 5.5.2: The difference between the regional component from noisy-input generalised addi-
tive model (NI-GAM) for the east and west coasts of the North Atlantic used to identify dynamic
sea-level changes. (a) is the difference between the regional components and (b) is the associate
rate of change for the difference between the regional components for east and west coasts of
the North Atlantic. (a) For the difference between the regional components for east and west,
the mean model fit is represented with a solid line and the shading indicating the 50% and 95%
credible intervals. The y-axis is the sea level in m with the x-axis representing the time across
the last 2,000 years for the North Atlantic region. (b) Rate of change for the difference between
regional components for east and west of the North Atlantic region is represented with a solid
line for the mean of the fit and shaded area representing the 50% and 95% credible intervals.
The y-axis is the instantaneous rate of change of sea level in mm per year.

The results from our regional east-west difference plot (Figure 5.5.2) can be com-
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pared with other approaches which have reconstructed the AMOC using with other
forms of proxy and instrumental records. By comparing our result with these other
trends, we seek to understand how dynamic sea-level estimates could represent the
influence the AMOC is having on the North Atlantic region. Caesar et al. (2021)
provided insight into the evolution of the AMOC over the last millennium using
a range of reconstruction techniques and data sources. We focus on six of these
different approaches which are comparable over our longer temporal (i.e. century
to millennia). The first approach uses temperature differences between mean sur-
face temperature and the subpolar gyre in the Northern Hemisphere as explained
in Rahmstorf et al. (2015). The second includes proxy data using compound-
specific δ15 N of deep-sea gorgonian corals described in Sherwood et al. (2011).
The third study uses marine sediment records to understand the North Atlantic
subpolar gyre(SPG) presented by Spooner et al. (2020). The fourth study uses
δ18O records in benthic foraminifera (single cell organisms) from sediment cores
in the Laurentian Channel as developed by Thibodeau et al. (2018). In the final
study, two proxies from marine cores of slit are used to reconstruct the AMOC
and data collection process is documented in Thornalley et al. (2018).

In Figure 5.5.3, we compare the rate of change of our regional east-west difference
with selected approaches from Caesar et al. (2021). The Rahmstorf et al. (2015)
trend is presented in red and demonstrates how the AMOC fluctuates with a small
range until a steep down trend is observed begin in the twentieth century and
continuing to present day. However, this trend possess large uncertainty making
it difficult to confirm the trend of the AMOC. Sherwood et al. (2011) results
are presented in gold with the data points possess large bi-variate uncertainties
which decrease over time. The additional trend beginning in 1926 CE displays
a downward trend similar to the previous reconstruction however, the data is
limited to the last 100 years with the exception of the bi-variately uncertain data
points. Spooner et al. (2020) reconstruction is presented in green and examines
the AMOC variability from 393 CE to 2013 CE. The dark green trend represents
the Thibodeau et al. (2018) reconstruction which ranges from 708 CE to 1962
CE. The results using Thornalley et al. (2018) data present two separate trends
with the blue result examining the changing AMOC from 380 CE to 1995 CE
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Figure 5.5.3: Comparing the rate of change for the difference in the regional component east and
west of the North Atlantic (g) with a range of other Atlantic Meridional Overturning Circulation
(AMOC) reconstructions as discussed in Caesar et al. (2021). The black vertical dashed line
at 1850 CE highlights the beginning of the downward trend for our rate of change for the east
west difference. For each AMOC reconstruction, a 50 year LOWESS filter is applied.(a) The sea
surface temperature based proxy demonstrating the response of the temperature of the North
Atlantic resulting from a change in Atlantic meridional heat transport (Rahmstorf et al., 2015).
(b) Proxy data using compound-specific δ15 N of deep-sea gorgonian corals (Sherwood et al.,
2011). (c) The relative abundance of T.quinqueloba(type of foraminifera) in marine sediment
cores (Spooner et al., 2020). (d) δ18O records in benthic foraminifera (single cell organisms)
from sediment cores in the Laurentian Channel (Thibodeau et al., 2018). (e,f) Mean grain size
of sortable-silt data ss from marine cores (Thornalley et al., 2018).



5.5. Results

while the purple trend presents a shorter timeframe, from 1475 CE to 2003 CE.
Both trends present significant amount of fluctuation. Our rate of change of the
east-west dynamic sea level difference, presented in pink, shows the evolution of
the AMOC over the past 2,000. The black vertical dashed line represents the year
in which the rate of our east west difference began to decrease (1850 CE). It is
evident from Figure 5.5.3 that the decline we observe coincides with Rahmstorf
et al. (2015), Thornalley et al. (Core 56JPC: 2018) and Thibodeau et al. (2018).
Whereas, Spooner et al. (2020), Sherwood et al. (2011) and Thornalley et al. (Core
48JPC: 2018) observe this decline at a later date. However, the precision of our
findings introduces complexities when attempting a confident comparison with
other AMOC reconstructions.

5.5.2 North South along the North American Atlantic
coastline

We demonstrate the decomposition of the RSL signal for the Atlantic coast of
North America using the extended NI-GAM approach and data sourced from prox-
ies and tide gauges. We investigate the regional component north and south of
Cape Hatteras (Longitude: -75.5288 and Latitude: 35.2505). As previously men-
tioned, Cape Hatteras in North Carolina holds significance as it is the boundary
between the North Atlantic subpolar and subtropical gyre and is a location of
importance for the Gulf Stream (McCarthy et al., 2020).

In Figure 5.5.4(a), we examine the variation of the regional component for the
north(blue) and south(purple) sub-regions. It is evident that the sea level peaked
in the south sub-region in 813CE with a value of 0.03m ± 0.04m and two minimums
troughs in 15 CE and 1560CE with values of -0.04m ± 0.06m and -0.03m ±
0.05m respectively. Whereas, the north sub-region possess two maximum peaks
in 3CE and 1560CE with sea level values of 0.02m ± 0.04m and 0.01 ± 0.05m.
Figure 5.5.4(b) demonstrates the rate of change for the regional component with
separate trends for the north and south sub-regions. It clear that the rates reflect
the oscillatory behaviour represent in Figure 5.5.4(a). The southern rates begin
positively, followed by a downward trend until around 1560 CE. Afterward, there
is an increase until the present. On the other hand, the northern rates start
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negatively and increase to a maximum of 0.07 mm/year ± 0.13 mm/year in 1208
CE, followed by a decrease until the present. Recent rates for the southern sub-
region are slightly higher than those for the northern sub-region. The rate of
change for the southern sub-region in 2022 is estimated to be 0.08 mm/year ±
0.15 mm/year, whereas the rate of change for the northern sub-region in 2022 is
estimated to be -0.05 mm/year ± 0.11 mm/year.
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Figure 5.5.4: The extended noisy-input generalised additive model (NI-GAM) results for (a)
the regional component and (b) the regional rate of change component. By using separate
colours (blue for North and purple for South), we can compare the regional component for the
northern sites versus the southern sites of the Atlantic coast of North America. (a) The regional
component mean model fit represented with a solid line and the shading indicating the 50% and
95% credible intervals. The y-axis is the sea level in m with the x-axis representing the time
across the last 3000 years for the North Atlantic region. (b) Rate of change for the regional
component for the Atlantic coast of North America, north and south of Cape Hatteras, with
the solid line representing the mean of the fit and shaded area representing the 50% and 95%
credible intervals. The y-axis is the instantaneous rate of change of sea level in mm per year.

Figure 5.5.5 represents the difference between south and north regional components
(a) and the associated rate of change of this difference (b). It is clear that the
south-north difference increased from 0CE to 802CE followed by a downward trend
until ∼ 1580. After ∼ 1580, the south-north difference increase and it continues to
increase to the present. The corresponding rate of change plot (b) demonstrates
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how the rate ranged between -0.19mm/year and 0.2 mm/year over the past 2,000
years. The rates have evolved from the maximum in 324CE to the minimum in
1214CE followed by a gradually increase until ∼ 1920. After ∼ 1920, the rates
begin to decrease and the current rate value is 0.14mm/year ± 0.18mm/year.
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Figure 5.5.5: The difference between the regional component from noisy-input generalised addi-
tive model (NI-GAM) for the north and south of Cape Hatteras for the Atlantic coast of North
America (a) the difference between the regional components and (b) is the associate rate of
change for the difference between the regional components. (a) For the difference between the
regional components for north and south, the mean model fit is represented with a solid line
and the shading indicating the 50% and 95% credible intervals. The y-axis is the sea level in m
with the x-axis representing the time across the last 2,000 years for the North Atlantic region.
(b) Rate of change for the difference between regional components for north and south of Cape
Hatteras North Carolina along the Atlantic coast of the North America is represented with a
solid line for the mean of the fit and shaded area representing the 50% and 95% credible intervals.
The y-axis is the instantaneous rate of change of sea level in mm per year.
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5.6 Discussion
By analysing RSL changes across different temporal and spatial scales, we have
obtained valuable insights into the intricate interplay between our oceans and
coastlines. Through the decomposition of the RSL signal into its constituent com-
ponents, we gain a deeper comprehension for factors driving these fluctuations.
One such driver, which we have investigated in this paper, is dynamic sea level in
the North Atlantic region. The data obtained by tide gauges and proxy records
have provided us with insights into dynamic sea-level changes over the past 2,000
years along the coastline of the North Atlantic.

Our approach used a statistical model within a Bayesian framework to decompose
the RSL signal into four components, achieved through a generalised additive
model formed by a combination of random effect terms and splines. This statisti-
cal model was an extended version of the NI-GAM as described by Upton et al.
(2023c), and accounted for the bi-variate uncertainty associated within the data
using the Noisy Input uncertainty method (McHutchon and Rasmussen, 2011).
The model possessed four separate components within the process level: common
(temporal spline), regional (hierarchical temporal spline), linear-local (random ef-
fect) and non-linear local component (spatial temporal spline). In Section 3.7, we
present one component of our RSL decomposition: the regional component. The
remaining components of the decomposition were recorded in the Appendix 5.7.2.
In order to estimate dynamic sea level changes, we carried out our extend NI-GAM
on two different datasets, the North Atlantic east west data and north south of
Cape Hatteras, North Carolina USA. We demonstrated the successful implementa-
tion of the models using 10-fold cross validation as demonstrated in Section 5.7.3.
The east west dataset obtained an empirical coverage value of 99.3% while, the
north south dataset yield an empirical coverage value of 99.0%. These values are
conservative estimates, given the substantial bi-variate uncertainties linked with
the proxy records.

We concentrated on the North Atlantic region as it holds important significance
for climate regulation for the globe as it carries heat from the subtropics north-
wards (Talley, 2003; Roemmich and Wunsch, 1985; Biastoch et al., 2008). As the
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North Atlantic ocean is characterised by complex and influential ocean dynamics
(Marshall et al., 2001), we examined two key components of this ocean circulation
system; the AMOC and quasi-horizontal circulation (gyres and surface-enhanced
currents). Other factors that impact the North Atlantic ocean, including wind
patterns and temperature gradients (Marshall et al., 2001), were not the focus of
this paper, yet the interplay of these elements shapes the ocean’s behavior and
plays a crucial role in global climate systems (Delworth et al., 2017). We utilised
the dynamic sea level, estimated using the extended NI-GAM and, by finding the
difference between the east-west sub-region of the North Atlantic, we were able to
investigate changes in the AMOC. A similar approach using the south-north sub-
region allowed us to examine changes in quasi-horizontal circulation. The results
from our models are summarised in Section 3.7.

To examine the relationship between the AMOC and dynamic sea level, we used
the difference between the eastern and western boundary sea level as described by
Little et al. (2019). Figure 5.5.2(a) demonstrated that the dynamic sea-level change
on the eastern boundary has fluctuated while, the western boundary experienced
minimal variation over the past 2,000 years. The response of sea level due to ocean
circulation changes along the eastern boundary is not clear, with some models
suggesting that sea level could fall (Little et al., 2019) and others suggesting it could
rise (Yin et al., 2009). From our perspective, this observed trend could emanate
from an underlying process, or more likely it arises due to an inherent bias in the
data distribution on either side of the North Atlantic, which is biased heavily to the
western boundary. Consequently, the variability linked to the western boundary
exerts a notably greater influence on the common component, leading the regional
component that pertains to the western sub-region to exhibit a tendency toward
a relatively stable trajectory.

The difference between our east and west regional components and the associated
rate of change is presented in Figure 5.5.2. The posterior model fit, shown in Fig-
ure 5.5.2 (a), illustrates the dynamic sea level trend’s evolution over the past 2,000
years, reaching a peak in 810 CE, followed by a gradual decline until 1770 CE, a
subsequent increase until 1900 CE, and a pronounced decline thereafter. However,
the considerable uncertainty stemming from the inherent variability in proxy data
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complicates the identification of dynamic sea-level changes, underscoring the need
for additional data to comprehensively understand the influence of the AMOC on
this region. Similarly, the rate of change presented in Figure 5.5.2(b) possesses a
pronounced decline since the year 1850 CE, yet, the large uncertainties introduces
challenges in identifying the significance of these variations and in turn the po-
tential influence of water transported by the AMOC. As demonstrated in Figure
5.5.3, the rate of this downward trend is consistent with other studies which claim
that the AMOC has been weakening (e.g., Rahmstorf et al., 2015; Caesar et al.,
2018, 2021). However, our results exhibit large uncertainties due to the substantial
uncertainty in the proxy data and the additional component has contributed to
increased identifiability challenges. We would require additional data to overcome
the North Atlantic data bias and external information to improve prior constraints
which could improve the resolution of our results.

The term quasi-horizontal circulation describe a variety of components including
gyres and surface enhanced currents, with Cape Hatteras in North Carolina mark-
ing the boundary for these components (Woodworth et al., 2011). The dynamic
sea level south and north of Cape Hatteras is proportional to transport along
the intergyre boundary (McCarthy et al., 2015). Using our extended NI-GAM
and proxy RSL reconstructions, we investigated the evolution of the difference be-
tween our north and south regional components, along with the associated rate of
change, over the past 2,000 years. In Figure 5.5.5, we have highlighted that the
water transported over the intergyre boundary has fluctuated dramatically, with a
strengthening of southward transport by the North Atlantic subtropical gyre until
802CE followed by weakening trend until 1580CE when the transport increased
again. Since 1920, the rate of change of the southward transport has decreased.
The observed posterior model fit in Figure 5.5.5(a) reveals an anti-correlation in
dynamic sea level changes on either side of Cape Hatteras, consistent with findings
in Diabaté et al. (2021); however, the presence of substantial uncertainties hinders
definitive confirmation. In providing context to these findings, McCarthy et al.
(2015) highlighted the association between dynamic sea-level changes north of
Cape Hatteras and fluctuations in overturning circulation (Bingham and Hughes,
2009; Ezer, 2013), and changes south of Cape Hatteras with variations in the Gulf
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Stream from Florida to Cape Hatteras. However, due to the limitations in resolu-
tion within our results, discerning the specifics of the underlying quasi-horizontal
circulation patterns in the northern and southern regions becomes challenging,
making it difficult to gain a clear understanding of the contributing factors. The
dataset used in this analysis is significantly smaller when compare to the east-west
analysis, yet south and north of Cape Hatteras possess similar data balance issues
which can impact the temporal range of the models.

Using proxy sea-level reconstructions to inform our understanding of past circula-
tion changes is an important advance, because it provides an independent, orthog-
onal data constraint on past ocean dynamics. In order to clarify current debates
surrounding whether recent ocean circulation changes in the Atlantic which are
viewed as extraordinary, our models would require a number of improvements. The
first is the resolution of outputs. As previously mentioned in (Upton et al., 2023c),
identifiability has been a constant challenge when decomposing the RSL signal. By
including the extra component, we have attempted to separate barystatic influ-
ences and thermosteric contributions, which are common across all sites, from
processes that may influence certain regions differently over time. However, it is
difficult to be definite that the remaining variation in the regional component is due
to dynamic sea-level changes. Other process like the spatial fingerprint of sea-level
change from ice sheets is known to impact large areas such as Greenland, yet, the
lack of data makes it difficult to quantify this influences (Long et al., 2012; Coul-
son et al., 2022). An addition of higher resolution data over larger spatial scales
would improve certainty in our results, however, proxy reconstructions are difficult
to collect and require numerous data processing procedures (e.g., Marshall, 2015).
The outcomes derived from these enhanced models could contextualise present-day
observations within the framework of the recent geological history. This approach
would enable us to discern whether the alterations occurring in the Atlantic region
today are indeed exceptional or follow patterns seen in the past.

In future research, the community would benefit from the development of a com-
prehensive database which incorporates a range of instrumental and proxy sources.
The integration of satellite data would furnish high-resolution observations, thereby
enhancing the precision of our model results, particularly for recent time periods
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and broader spatial extents. This additional data would require a statistical model
that could account for these varied data sources in an efficient manner. One such
improvement would to replace our current MCMC algorithm, implemented using
JAGS software (Plummer, 2003), with more efficient software package using e.g.
variational Bayes or Integrated Nested Laplace Approximations (INLA: Rue et al.,
2009). Another model improvement would be to use adaptive penalties for splines
(Jullion and Lambert, 2007) or adaptive smoothness.

A final alternative would be to employ a multi-proxy analysis, akin to the ap-
proach undertaken by Croke et al. (2021). Their work effectively integrated a
diverse range of palaeoclimate data to enhance comprehension of water security
planning dynamics. As exemplified in Figure 5.5.3, an abundance of data sources
spanning various temporal and spatial scales serve as proxies for investigating al-
terations in North Atlantic ocean circulation (Sherwood et al., 2011; Rahmstorf
et al., 2015; Thibodeau et al., 2018; Thornalley et al., 2018; Spooner et al., 2020).
The implementation of a multi-proxy analysis framework would facilitate a pro-
found exploration of the nuances within the AMOC, quasi-horizontal circulation,
and other global ocean circulation systems.

5.7 Appendix
5.7.1 Data Sources
This dataset contains proxy records from the coastline of the North Atlantic. The
33 different proxy data sites and the references for each data source can be found
in Table 5.7.1. The 77 tide-gauge sites we used are listed in Table 5.7.2 and were
obtained from the PSMSL database (Aarup et al., 2006; Holgate et al., 2013) using
the reslr package.
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Site Name Reference
Barn Island, Connecticut Donnelly et al. (2004); Gehrels et al. (2020)
Bassin, Magdelen Islands Barnett et al. (2017)
Bracky Bridge, Ireland Kirby et al. (2023)
Big River Marsh, Newfoundland Kemp et al. (2018)
Bilbao, Spain Leorri et al. (2012)
Cape May Courthouse, New Jersey Kemp et al. (2013); Cahill et al. (2016)
Cedar Island, North Carolina Kemp et al. (2011, 2017)
Cheesequake, New Jersey Walker et al. (2021)
Chezzetcook Inlet, Nova Scotia Gehrels et al. (2020)
Dungarvan, Ireland Alvarez et al (In progress)
East River Marsh, Connecticut Kemp et al. (2015); Stearns et al. (2023)
Fox Hill Marsh, Rhode Island Stearns et al. (2023)
Leeds Point, New Jersey Kemp et al. (2013); Cahill et al. (2016)
Hammock River, Connecticut Van de Plassche (1991); Engelhart and Horton (2012)
Kyle of Tongue, Scotland Barlow et al. (2014)
Les Sillons, Magdelen Islands Barnett et al. (2017)
Little Manatee River, Florida Gerlach et al. (2017)
Loch Laxford, Scotland Barlow et al. (2014)
Nassau, Florida Kemp et al. (2014)
Newtown Estuary, Isle of Wight Long et al. (2014)
Pelham Bay, New York Kemp et al. (2017); Stearns and Engelhart (2017)
Placentia, Newfoundland Kemp et al. (2018)
Revere, Massachusetts Donnelly (2006)
Saint Simeon, Quebec Barnett et al. (2017)
Sanborn Cove, Maine Gehrels et al. (2020)
Sand Hill Point, North Carolina Kemp et al. (2011, 2017)
Sand Point, North Carolina Kemp et al. (2011, 2017)
Snipe Key, Florida Khan et al. (2022)
Swan Key, Florida Khan et al. (2022)
Thurlestone, South West England Gehrels et al. (2011)
Tump Point, North Carolina Kemp et al. (2011, 2017)
Urdaibai, Spain García-Artola et al. (2009); Leorri et al. (2012)
Urdaibai Estuary, Spain García-Artola et al. (2009)
Vioarholmi, Iceland Gehrels et al. (2006); Saher et al. (2015)
Wood Island, Massachusetts Kemp et al. (2011)

Table 5.7.1: We provide the names of all the proxy sites along the coastline of the North Atlantic
with are used in the east-west and north-south analysis. For each site we include the reference
in the literature to the source of the data.
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Site Name Longitude Latitude
ARCACHON-EYRAC -1.16 44.67
ARGENTIA -54.00 47.30
ATLANTIC CITY -74.40 39.40
BEAUFORT, NORTH CAROLINA -76.70 34.70
BEDFORD INSTITUTE -63.60 44.70
BELLEDUNE -65.80 47.90
BILBAO -3.00 43.40
BOSTON -71.10 42.40
BOUCAU -1.51 43.53
BOULOGNE 1.58 50.73
BOURNEMOUTH -1.90 50.70
BREST -4.49 48.38
CADIZ II -6.31 36.53
CALAIS 1.87 50.97
CAPE MAY -75.00 39.00
CASCAIS -9.42 38.68
CEUTA -5.32 35.89
CHARLESTON I -79.92 32.78
CONCARNEAU -3.91 47.87
CUTLER II -67.30 44.60
DAYTONA BEACH -81.00 29.23
DEN HELDER 4.75 52.96
DEVONPORT 146.36 -41.18
DIEPPE 1.08 49.93
DUBLIN -6.20 53.40
DUBLIN -6.22 53.35
DUNKERQUE 2.37 51.05
FERNANDINA BEACH -81.50 30.70
FORT MYERS -81.87 26.65
FORT PULASKI -80.90 32.03
GIBRALTAR -5.36 36.15
HALIFAX -63.60 44.70
HARLINGEN 5.41 53.18
HEYSHAM -2.92 54.03
HOEK VAN HOLLAND 4.12 51.98
IJMUIDEN 4.55 52.46
ILFRACOMBE -4.10 51.20
KEY WEST -81.80 24.60
KINLOCHBERVIE -5.10 58.50
LA CORUÑA II -8.40 43.36
LA ROCHELLE-LA PALLICE -1.22 46.16
LARK HARBOUR -58.40 49.10
LE CONQUET -4.78 48.36
LE HAVRE 0.11 49.48
LEIXOES -8.70 41.18
LERWICK -1.14 60.15
LES SABLES D OLONNE -1.79 46.50
MAASSLUIS 4.25 51.92
MALIN HEAD -7.30 55.40
MILLPORT -4.91 55.75
NAPLES -81.81 26.13
NEW LONDON -72.10 41.40
NEW ROCHELLE -73.80 40.90
NEWLYN -5.54 50.10
NEWPORT -71.30 41.50
NIEUWPOORT 2.73 51.15
NORTH SHIELDS -1.44 55.01
OOSTENDE 2.92 51.23
OREGON INLET MARINA, NORTH CAROLINA -75.50 35.80
PORT BLOC -1.06 45.57
REYKJAVIK -21.90 64.20
ROSCOFF -3.97 48.72
RUSTICO -63.30 46.50
SANDY HOOK -74.00 40.50
SHEERNESS 0.74 51.45
SOUTHEND 0.72 51.51
SPRINGMAID PIER -78.92 33.66
ST JEAN DE LUZ (SOCOA) -1.68 43.40
ST. NAZAIRE -2.20 47.27
TORSHAVN -6.77 62.02
TOWER PIER 0.08 51.50
VIGO -8.73 42.24
VIRGINIA KEY, FL -80.20 25.70
VLISSINGEN 3.60 51.44
WEST-TERSCHELLING 5.22 53.36
WILMINGTON -77.95 34.23
ZEEBRUGGE 3.20 51.35

Table 5.7.2: We provide the names of all the tide-gauge sites along the coastline of the North
Atlantic with are used in the east-west and north-south analysis. For each site we include the
longitude and latitude of the site as sourced from the online PSMSL database (Aarup et al.,
2006; Holgate et al., 2013).
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5.7.1.1 East and West of the North Atlantic

We present all the proxy data sites along the coastline of the North Atlantic. We
identify the east coast as all sites in Europe and Iceland, as shown previously
in Figure 5.3.2, which contains 10 proxy sites and 60 tide-gauge sites. The west
side of the North Atlantic contains all the North American sites as shown in Fig-
ure 5.7.1 which contains 23 proxy sites and 51 tide-gauges sites. In Figures 5.3.2
and 5.7.1, the proxy sea level record features stratigraphically-ordered age and
RSL data points with 1 sigma uncertainties for both, where vertical uncertainty,
varying across proxies and influenced by tidal amplitude, reflects measurement
precision (Barlow et al., 2013). Age uncertainty, inherent to the dating method
(typically radiocarbon dating), fluctuates due to atmospheric radiocarbon concen-
tration (Edwards, 2007). The boxes represent these uncertainties, varying with
the core sample, and the dots mark their midpoints, with larger boxes indicating
greater associated uncertainties for specific core samples.
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Figure 5.7.1: Proxy records for the west coast sites along the North Atlantic coastline. The
y-axis is relative sea level (RSL) in metres and the x-axis is the years in units of Common Era.
The black dot represents the midpoint of the proxy sea-level reconstruction and the grey boxes
of 1 standard deviation represent vertical and horizontal (temporal) uncertainty.
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5.7.1.2 North and South of Cape Hatteras, North Carolina, USA

In this analysis, we examine sites along the North American Atlantic coast and
investigate what happens north and south of Cape Hatteras (Longitude: -75.5288
and Latitude: 35.2505). Figure 5.7.2 demonstrates the raw data from proxy records
for sites north of Cape Hatteras. There are 18 proxy sites and 15 tide gauges sites
for the north of Cape Hatteras region. Figure 5.7.3 demonstrates the raw data
from proxy records for sites south of Cape Hatteras. There are 5 proxy sites and
11 tide gauges sites for the south of Cape Hatteras region. As mentioned previ-
ously, Figures 5.7.2 and 5.7.3, present the proxy sea level record which contains
stratigraphically-ordered age and RSL data points with corresponding 1 sigma un-
certainties for both. The vertical uncertainty, influenced by tidal amplitude and
varying across proxies, denotes measurement precision (Barlow et al., 2013) and
the age uncertainty, intrinsic to the dating method (typically radiocarbon dat-
ing), fluctuates due to atmospheric radiocarbon concentration (Edwards, 2007).
Representing these uncertainties, the varying-sized boxes, contingent on core sam-
ples, are marked with dots at their midpoints, where larger boxes indicate greater
associated uncertainties for specific core samples.
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Figure 5.7.2: Raw data from proxy record sites that are located north of Cape Hatteras.The
y-axis is relative sea level (RSL) in metres and the x-axis is the years in units of Common Era.
The black dot represents the midpoint of the proxy sea-level reconstruction and the grey boxes
of 1 standard deviation represent vertical and horizontal (temporal) uncertainty.
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Figure 5.7.3: Raw data from proxy record sites that are located south of Cape Hatteras. The
y-axis is relative sea level (RSL) in metres and the x-axis is the years in units of Common Era.
The black dot represents the midpoint of the proxy sea-level reconstruction and the grey boxes
of 1 standard deviation represent vertical and horizontal (temporal) uncertainty.

5.7.2 Decomposition of the RSL signal
In this section, we present the plots from the decomposition of the RSL signal
using the extended NI-GAM for the East-West North Atlantic dataset and the
North-South Cape Hatteras dataset.

5.7.2.1 East West North Atlantic

In Figure 5.7.4 we present the common component (a) and its associated rate
of change (b) for 33 proxy sites and 111 tide gauge locations in the North At-
lantic region. Figure 5.7.5 demonstrates the total model fit for each proxy site
using the extended NI-GAM for the coastline of the North Atlantic. Figure 5.7.6
demonstrates the rate of change for the total model fit for each proxy site using
the extended NI-GAM for the coastline of the North Atlantic. In Figure 5.7.7 we
present the linear local component for our sites along the coastline of the North
Atlantic. Figure 5.7.8 represents the non-linear local component for the 37 proxy
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sites along the coastline of the North Atlantic and Figure 5.7.9 represents the
corresponding rate of change for this component.

−0.2

−0.1

0.0

0.1

0.2

0 500 1000 1500 2000

Year (CE)

R
el

at
iv

e 
S

ea
 L

ev
el

 (
m

)

Posterior Fit 50% & 95% Credible Interval

−1

0

1

2

3

4

0 500 1000 1500 2000

Year (CE)

R
at

e 
of

 C
ha

ng
e 

(m
m

/y
ea

r)

Posterior Fit 50% & 95% Credible Interval

Figure 5.7.4: The extended noisy-input generalised additive model (NI-GAM) results for (a) the
common component and (b) the common rate of change component. (a) The common component
mean model fit represented with a solid line and the shading indicating the 50% and 95% credible
intervals in light red. The y-axis is the sea level in m with the x-axis representing the time across
the last 2,000 years for the North Atlantic region. (b) Rate of change for the common component
for the North Atlantic region with the solid line representing the mean of the fit, the light red
shaded area representing the 50% and 95% credible intervals. The y-axis is the instantaneous
rate of change of sea level in mm per year.
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5.7. Appendix

5.7.2.2 North South Cape Hatteras

In Figure 5.7.10 we present the common component (a) and its associated rate of
change (b) for the Atlantic coast of North America using 23 proxy sites and 26
tide gauge sites. Figure 5.7.11 demonstrates the total model fit for each proxy site
using the extended NI-GAM for the coastline of the North Atlantic. Figure 5.7.12
demonstrates the rate of change for the total model fit for each proxy site using
the extended NI-GAM for the coastline of the North Atlantic. In Figure 5.7.13 we
present the linear local component for our sites along the coastline of the North
Atlantic. Figure 5.7.14 represents the non-linear local component for the 37 proxy
sites along the coastline of the North Atlantic and Figure 5.7.15 represents the
corresponding rate of change for this component.
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Figure 5.7.10: The extended noisy-input generalised additive model (NI-GAM) results for (a)
the common component and (b) the common rate of change component for the Atlantic coast
of North America. (a) The common component mean model fit represented with a solid line
and the shading indicating the 50% and 95% credible intervals. The y-axis is the sea level in m
with the x-axis representing the time across the last 3000 years for the North Atlantic region.
(b) Rate of change for the common component for the North Atlantic region with the solid line
representing the mean of the fit, the light red shaded area representing the 50% and 95% credible
intervals. The y-axis is the instantaneous rate of change of sea level in mm per year.
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5.7.3 Model Validation
In this section we present the model validation tests which were carried out for
both the east-west and north-south analysis. In both cases, we used 10-fold cross-
validation (10-CV) the proxy sites and tide gauge records. We present the site-
specific results for both east-west and north-south analysis and we evaluated the
model performance based on out of sample empirical coverage and the Root Mean
Squared Error (RMSE). The prediction intervals were created using posterior pre-
dictive simulations with the full error structure as described in Upton et al. (2023c).
As a result, the size of the prediction intervals vary by data point which corre-
sponds to the large and changeable bi-variate uncertainty associated with the core
sample used in the proxy records as demonstrated in Figures 5.3.2, 5.7.1, 5.7.2 and
5.7.3. The empirical coverage provides the percentage of occasions that the true
RSL observation is within the model prediction interval (PI) for RSL. The RMSE
provides insight into prediction performance in the same units as the response
(meters).

5.7.3.1 East West North Atlantic

For the east west analysis, the overall empirical coverage value is 99.3% and is
a satisfactory result for our model fit as the input data which possess bivariate
uncertainties. The conservative coverage values likely stems from taking into ac-
count the observed measurement errors when estimating the prediction intervals.
The overall RSME for the east west analysis is 0.28m which is reasonable given
the scale and variability of the data set. Figure 5.7.16 presents the true RSL
observations versus the model-based RSL point estimates with 95% prediction
intervals at each site. It is evident that locations like Loch Laxford and Kyle
of Tongue in Scotland exhibit substantial prediction intervals, indicative of the
inherent uncertainty variability in the proxy records associated with these sites.
Furthermore, these particular sites display a heightened sensitivity to the physical
process of GIA, significantly influencing the resulting linear local component of the
NI-GAM. Table 5.7.3 provides a site-specific insight into the empirical coverage
for the model, the RSME and the size of the prediction intervals. Many of our
sites have a coverage of 100% due to the large prediction intervals arising from the
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bivariate uncertainties associated with the proxy data.

Site Name Prediction Interval Width (m) Empirical Coverage RSME(m)
Barn Island, Connecticut 0.5262 1.0000 0.0577
Bassin, Magdelen Islands 0.5969 1.0000 0.0164
Big River Marsh, Newfoundland 0.5742 0.9909 0.0555
Bracky Bridge, Ireland 0.8932 1.0000 0.0454
Cape May Courthouse, New Jersey 0.6796 1.0000 0.1842
Cheesequake, New Jersey 0.9105 1.0000 0.1053
Chezzetcook Inlet, Nova Scotia 0.4752 1.0000 0.0809
Dungarvan, Ireland 1.2180 1.0000 0.0130
East River Marsh, Connecticut 0.7126 1.0000 0.0106
Fox Hill Marsh, Rhode Island 0.5722 0.9438 0.2852
Hammock River, Connecticut 0.8497 0.7778 0.4008
Kyle of Tongue, Scotland 1.4575 1.0000 0.0313
Leeds Point, New Jersey 0.6071 0.9600 0.0747
Les Sillons, Magdelen Islands 0.5783 1.0000 0.0074
Loch Laxford, Scotland 1.4541 1.0000 0.0056
Nassau, Florida 0.4622 1.0000 0.0266
Newtown Estuary, Isle of Wight 0.7659 1.0000 0.0438
Pelham Bay, New York 0.8068 1.0000 0.8838
Placentia, Newfoundland 0.5605 0.9804 0.0300
Saint Simeon, Quebec 0.7350 1.0000 0.1369
Sanborn Cove, Maine 0.8456 1.0000 0.0491
Sand Hill Point, North Carolina 0.4011 1.0000 0.0098
Sand Point, North Carolina 0.4695 1.0000 0.0263
Snipe Key, Florida 0.9682 1.0000 0.1221
Swan Key, Florida 0.8381 1.0000 0.0057
Tump Point, North Carolina 0.4495 1.0000 0.0313
Urdaibai Estuary, Spain 0.7558 1.0000 0.0287
Vioarholmi, Iceland 0.8642 1.0000 0.0140
Wood Island, Massachusetts 0.4211 1.0000 0.0110
BREST 0.4932 1.0000 0.0022
HARLINGEN 0.5650 1.0000 0.0089
IJMUIDEN 0.5524 1.0000 0.0071
DEN HELDER 0.5426 1.0000 0.0106
SHEERNESS 0.5310 1.0000 0.0285
MAASSLUIS 0.5336 1.0000 0.0189
HOEK VAN HOLLAND 0.5513 1.0000 0.0359
NEWLYN 0.5959 1.0000 0.0001
DUBLIN 0.6037 1.0000 0.0046
VLISSINGEN 0.5412 1.0000 0.0002
CASCAIS 0.5272 1.0000 0.0023
NORTH SHIELDS 0.5768 1.0000 0.0295
ATLANTIC CITY 0.6133 1.0000 0.0181
HALIFAX 0.5687 1.0000 0.0148
FERNANDINA BEACH 0.5810 1.0000 0.0034
KEY WEST 0.6138 1.0000 0.0195

Table 5.7.3: The empirical coverage, prediction interval width and Root Mean Square Error
(RMSE) by site for our east west analysis.
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5.7. Appendix

5.7.3.2 North South Cape Hatteras

In the context of the north-south analysis, the overall empirical coverage stands
at 99.0%, which is a satisfactory outcome considering the presence of bivariate
uncertainties in the input data. The cautious coverage values likely arise from
factoring in the observed measurement errors when estimating prediction intervals.
The overall root mean square error (RSME) for the east-west analysis is 0.41m,
a reasonable value given the scale and variability of the dataset. Figure 5.7.17
illustrates the comparison between actual relative sea level (RSL) observations
and model-derived RSL point estimates, accompanied by 95% prediction intervals
at each site. Evidently, Snipe Key in Florida and Swan Key in Florida exhibit wide
prediction intervals, underscoring the substantial bi-variate uncertainties inherent
in the proxy data. While, locations like Hammock River in Connecticut and Wood
Island in Massachusetts demonstrate comparatively sparse data in relation to the
other sites. Additionally, Table 5.7.4 provides a site-specific breakdown of empirical
coverage, RSME values, and prediction interval sizes for the model. It’s notable
that numerous sites exhibit 100% coverage due to the wide prediction intervals
resulting from the bivariate uncertainties associated with the proxy data.
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5.7. Appendix

Site Name Prediction Interval Width Empirical Coverage RSME
Barn Island, Connecticut 0.3548 1.0000 0.0510
Bassin, Magdelen Islands 0.4311 1.0000 0.0327
Big River Marsh, Newfoundland 0.4852 0.9818 0.0609
Cape May Courthouse, New Jersey 0.5549 1.0000 0.1545
Cheesequake, New Jersey 0.8359 1.0000 0.0216
Chezzetcook Inlet, Nova Scotia 0.3006 1.0000 0.0028
East River Marsh, Connecticut 0.6377 1.0000 0.0041
Fox Hill Marsh, Rhode Island 0.4497 0.9551 0.3918
Hammock River, Connecticut 0.7975 0.7222 0.4568
Leeds Point, New Jersey 0.5416 0.9600 0.0355
Les Sillons, Magdelen Islands 0.4170 1.0000 0.0174
Nassau, Florida 0.3401 1.0000 0.0043
Pelham Bay, New York 0.7176 1.0000 1.0125
Placentia, Newfoundland 0.4476 1.0000 0.0938
Saint Simeon, Quebec 0.6525 1.0000 0.0593
Sanborn Cove, Maine 0.7453 1.0000 0.0031
Sand Hill Point, North Carolina 0.2902 1.0000 0.0043
Sand Point, North Carolina 0.3600 1.0000 0.0212
Snipe Key, Florida 0.9317 1.0000 0.1209
Swan Key, Florida 0.7808 1.0000 0.0310
Tump Point, North Carolina 0.3019 1.0000 0.0239
Wood Island, Massachusetts 0.3020 0.8889 0.0285
FERNANDINA BEACH 0.2660 1.0000 0.0097
KEY WEST 0.2666 1.0000 0.0114
HALIFAX 0.2723 1.0000 0.0167
ATLANTIC CITY 0.2741 1.0000 0.0053

Table 5.7.4: The empirical coverage, prediction interval width and Root Mean Square Error
(RMSE) by site for our north-south analysis.
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CHAPTER 6
Conclusions

In this thesis, we have developed novel statistical modelling techniques to examine
the physical drivers of RSL change that vary in time and space. We have demon-
strated how our model allows users to decompose the RSL signal to examine the
underlying physical drivers while accounting for bivariate uncertainties associated
with the data. In this final chapter, we summarise the main findings from Chapters
3 to 5 and we address the limitations and potential directions for future research
in this study area.

6.1 Chapter Summaries and Limitations
In Chapter 3, we discussed our approach to decomposing the overall RSL signal
into contributions from individual physical processes which have differing degrees
of significance in different locations and over time, resulting in a complex and
ever-changing pattern of RSL change. To gain insights into these patterns, we
used tide-gauge data, proxy records and advanced statistical tools to decompose
the net RSL signal into contributions from physical processes while accounting
for uncertainties in the underlying data. Our statistical model utilised a new
generalised additive model containing a combination of splines and random effects
within a Bayesian framework. This sophisticated model not only allowed us to
discern the contributions of different physical processes to the net RSL signal
but also facilitated the incorporation of uncertainties in both parameter estimates
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and data. Previous modelling strategies (Kopp et al., 2016; Walker et al., 2021),
relied on Gaussian Processes and exhibited computational complexities growing
with the cube of data points. Our approach, with the equivalent spline and pre-
computed basis functions, offered a far more efficient likelihood computation of just
O(n) (Wood, 2017a). As a result, our model could be fitted much quicker than
the current state-of-the art approaches, granting us the opportunity to perform
additional checks on the model’s performance.

The findings from our NI-GAM analysis revealed distinct patterns of pre-anthropogenic
(before 1800 CE; Neukom et al. (2019)) RSL change along the Atlantic coast of
North America. Initially, the dominant factor was the linear local component,
mainly representing the contribution from ongoing GIA. However, after approx-
imately 1900 CE, the regional component took precedence, and we observed a
significant increase in the regional rate of change, rising from 0.7 ± 0.5 mm/yr in
1902 to 1.8 ± 0.5 mm/yr at the end of the 20th century. This shift was a con-
sequence of anthropogenic forcing on the climate system (Neukom et al., 2019),
leading to sea-level rise through thermosteric and barystatic processes (Frederikse
et al., 2020). In addition, the diverse trends captured by the non-linear local com-
ponent underscores the crucial influence that site-specific processes can exert on
RSL changes.

We demonstrated the capabilities of our statistical modelling approach to examine
physical drivers influencing RSL change in Chapter 3. As we decomposed the RSL
signal, we faced several challenges relating to parameter identifiability and the con-
founding nature of the regional, linear local, and non-linear local components. To
address these complexities efficiently, we opted for an Empirical Bayesian approach
instead of a full Bayesian approach. We leveraged the two-step fitting procedure, as
necessitated by the noisy input uncertainty method (McHutchon and Rasmussen,
2011), to accurately estimate the unknown parameters. This combination of meth-
ods proved crucial in overcoming the difficulties encountered and obtained reliable
results in our analysis. In addition, it is essential to acknowledge that our model’s
scope is limited to regional changes, which sets it apart from prior research (Kopp,
2013; Kopp et al., 2016; Walker et al., 2021). To extend our analysis to capture
global RSL changes, we would need to address the challenges posed by the non-
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uniform spread and biased distribution of the available data. Previous efforts to
address this spatial bias have predominantly focused on using instrumental data
from tide gauges and satellites (e.g., Jevrejeva et al., 2008; Wenzel and Schröter,
2010; Church and White, 2011; Hay et al., 2015; Dangendorf et al., 2017; Berrett
et al., 2020). The proxy reconstructions are limited to trends sustained on multi-
decadal to centennial timescales due to the inherent time-averaging and resolution
limits. While there is a growing global distribution of proxy records, accompa-
nied by improvements in data resolution over time, it’s crucial to highlight that
the collection and analysis techniques required for such records demand extensive
human resources and substantial funding. This highlights the ongoing challenges
in expanding and enhancing our understanding of global RSL changes.

In Chapter 4, we offered an extensive overview of our R software package reslr,
which allows for the estimation of rates and spatial patterns of RSL changes over a
wide range of timescales (decades to millennia), while accounting for uncertainties
associated with noisy and sparse input proxy and/or instrumental data sources.
We discussed the range of statistical models available to the user (linear regression
(e.g., Ashe et al., 2019), change point models (e.g., Cahill et al., 2015b), integrated
Gaussian process (IGP) models (e.g., Cahill et al., 2015a), temporal splines (e.g.,
de Boor, 1978), spatio-temporal splines (e.g., Simpson, 2018) and generalised ad-
ditive models (GAM) (e.g., Upton et al., 2023c). We provided insight into the
Bayesian framework and the uncertainty methods used in the package which fa-
cilitated the estimation of unknown parameters based on the RSL data while fully
accounting for the associated uncertainties. We demonstrate the accessible pack-
age design using two cases which used our unifying framework for loading data,
fitting models and summarising results.

The reslr package offers extensive possibilities for the sea-level community and
serves as a key contribution to the open-source approach required in the field
of climate science. However, there are several limitations associated with our
package. One such limitation, as mentioned in the earlier Chapter 3, is that the
complexity of the NI-GAM necessitates a large amount of data, which becomes
challenging due to the sparsity of proxy records. Another limitation is that the
package’s primary focus lies in investigating RSL changes from proxy records.
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Although we presented a comprehensive method for incorporating tide-gauge data,
which can provide valuable insights into recent RSL changes, the user is restricted
to using tide-gauge data solely from the PSMSL website (Aarup et al., 2006).
Enhancing the flexibility of data sources within the reslr package would address
this limitation. Furthermore, the package encompasses seven different statistical
models, making it comprehensive. However, since the reslr package targets the
sea-level community, which possesses a wide range of R experience, this results
in challenging decisions for the users. For advanced users, the reslr package
has limitations, as it lacks the capability to allow for tuning of priors within the
Bayesian framework to be altered, impacting customization options.

In Chapter 5 we used the extended NI-GAM to examine RSL change along the
North Atlantic coastline. The extended NI-GAM remained within a Bayesian
framework and decomposed the RSL signal into four components: a common
(temporal spline), a regional (hierarchical temporal spline), a linear-local (random
effect) and a non-linear local component (spatial temporal spline). This decompo-
sition enhanced comprehension of RSL changes, notably, dynamic sea-level changes
driven by ocean dynamics. The North Atlantic region was our focal point, given its
vital role as a heat conveyor, transporting warm water from the subtropics north-
wards (Talley, 2003; Roemmich and Wunsch, 1985; Biastoch et al., 2008). Diverse
factors contribute to circulation patterns in the North Atlantic ocean, yielding
a complex array of currents (Marshall et al., 2001). Therefore, we targeted two
key components: the AMOC and quasi-horizontal circulation (gyres and surface-
enhanced currents). Using dynamic sea-level estimates derived from the extended
NI-GAM model, along with proxy and tide gauge data, we calculated differences
within the east-west sub-region of the North Atlantic. This allowed us to investi-
gate changes in the AMOC. We applied a similar method to the Atlantic coast of
North America, focusing on north and south of Cape Hatteras, which enabled us
to explore shifts in quasi-horizontal circulation.

When examining the AMOC, dynamic sea-level changes on the eastern boundary
fluctuated dramatically while, the western boundary showed minimal change over
the past 2,000 years. Previous studies demonstrated that the dynamic sea-level
changes along the eastern boundary remain unclear, with models suggesting a pos-
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sible sea level fall (Little et al., 2019) or rise (Yin et al., 2009). This trend could
have stemmed from an underlying process or, arose from inherent data bias on
both sides of the North Atlantic, skewed towards the western boundary. Thus,
the variability of the western boundary exerted a strong influence on the common
component, resulting in a relatively stable regional component for the western
sub-region. The difference between our east and west regional components offered
insight into the water transported by the AMOC (Little et al., 2019), which demon-
strated an AMOC decline since the late 1800s. The rate of this decline, since the
year 1850 CE, marked the steepest drop in 2,000 years, aligning with arguments
for a weakening AMOC (e.g, Rahmstorf et al., 2015; Caesar et al., 2018, 2021).

Regarding quasi-horizontal circulation, we studied dynamic sea-level shifts north
and south of Cape Hatteras, a boundary for gyres and enhanced surface currents
(Woodworth et al., 2011), and these shifts are proportional to water transported
along this intergyre region (McCarthy et al., 2015). Water transported across the
intergyre boundary fluctuated dramatically over 2,000 years, reflecting strength-
ening and weakening southward transport by the North Atlantic subtropical gyre.
These fluctuations demonstrated an anti-correlation between dynamic sea level
changes either side of Cape Hatteras which aligned with results previously pre-
sented in Diabaté et al. (2021). McCarthy et al. (2015) indicated that dynamic
sea-level changes north of Cape Hatteras were associated with fluctuations in the
overturning circulation (Bingham and Hughes, 2009; Ezer, 2013), while southern
dynamic sea-level changes reflected variations in surface-enhanced currents, par-
ticularly the Gulf Stream from Florida to Cape Hatteras (McCarthy et al., 2015).

In Chapter 5, we demonstrated how proxy sea-level reconstructions, tide-gauge
data, and the extended NI-GAM approach can be used to investigate changes in
ocean circulation over the past 2,000 years in the North Atlantic. However, our
approach possesses a number of limitations which have impacted the interpretation
of our results. The first challenge resulted from substantial bivariate uncertain-
ties linked to proxy records and data biases on both sides of the North Atlantic
and along the Atlantic coast of North America, which influenced the resolution of
our model outputs. The resolution limitations tied to our model outputs posed a
challenge when attributing the observed trends solely to changes in AMOC for the
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east-west sub-region and quasi-circulation patterns in the north-south sub-region.
Other processes such as the spatial fingerprint of sea-level change from ice sheets,
are known to impact substantial areas like Greenland, but limited data hinders the
quantification of these influences Long et al. (2012); Coulson et al. (2022). Fur-
thermore, tackling parameter identifiability was a challenge we faced while decom-
posing the RSL signal into distinct components, akin to Chapter 3. Incorporating
higher-resolution data across broader spatial scales would improve certainty in our
results, aiding in placing present-day observations within the context of recent ge-
ological history. This method would allow us to distinguish whether the changes
observed in the current Atlantic region are indeed exceptional or follow historical
patterns.

6.2 Future Work
In our research, we explored the temporal and spatial variations of relative sea level
(RSL) and gained valuable insights into the diverse physical phenomena influencing
these changes. Nevertheless, in this section we present opportunities for further
extensions and advancements in this field of study.

In Chapter 3, our study showcased the effectiveness of the NI-GAM in identifying
the different drivers of relative sea-level (RSL) change along the Atlantic coast of
North America. Building on this, Chapter 5 expanded the spatial scope to investi-
gate the North Atlantic region. However, despite these advancements, our models
were restricted to regional RSL changes. Extending our modeling approach to
incorporate global RSL changes holds great potential for the sea-level community.
By encompassing a broader geographical scope, we can gain a more comprehen-
sive understanding of the complex interplay between various drivers and factors
influencing sea-level dynamics on a global scale.

The application of GAMs to decompose spatio-temporal signals into different com-
ponents holds significant potential beyond sea-level research. For instance, employ-
ing GAMs to examine the components influencing temperature variations in time
and space could prove highly valuable in other areas of research. By disentangling
the different drivers and factors affecting temperature changes, GAMs can pro-

250



6.2. Future Work

vide deeper insights into the complexities of climate dynamics and contribute to a
better understanding of the mechanisms driving temperature fluctuations on both
regional and global scales. The versatility of GAMs makes them a promising tool
for various disciplines seeking to unravel complex spatio-temporal phenomena and
uncover underlying patterns and drivers.

Another potential future avenue would be to incorporate other instrumental data
sources, such as satellite data, which would allow for the investigation of other
variables related to climate change. Satellite data provides high resolution data
(Church and White, 2011) and the temporal range is growing each year (Vignudelli
et al., 2019). Such an extension would not only enhance our knowledge of sea-level
fluctuations but also contribute valuable insights into the broader implications of
climate change and its impact on coastal regions worldwide.

In Chapter 4, we showcased the open-source reslr package, a powerful tool for
Bayesian modeling of relative sea level data. While the package offers a diverse
range of statistical models, there is room for improvement by incorporating addi-
tional statistical techniques, such as machine learning algorithms. For example,
Camargo et al. (2023) utilised a neural network approach and a network detection
approach to examine the regional drivers of sea-level change using satellite data on
large spatial scales. This approach could provide the reslr user with an additional
data source via satellites, in turn reducing the spatial bias when examining RSL
changes over large spatial scales. Another illustration of the potential of machine
learning is evident in endeavors to automatically model and forecast short-term
regional coastal sea level changes, as elucidated by Nieves et al. (2021). Through
the integration of machine learning techniques, reslr could accommodate diverse
data sources, enhancing its capability to forecast forthcoming alterations in re-
gional sea levels. This enhancement would broaden the package’s applicability
and further empower the sea-level community in their endeavors to understand
and address the challenges posed by sea-level changes on a larger scale.

Chapter 5 addressed how ocean dynamics influenced RSL changes in the North
Atlantic over the past 2,000, by examining dynamic sea-level changes using proxy
records and tide-gauge data. Future research could benefit from an inclusive
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database integrating instrumental, proxy sources, and satellite data to enhance
model precision, especially for recent times and broader spatial extents. Incorpo-
rating this additional data would demand a statistical model adept at efficiently
accommodating these diverse sources. A potential enhancement involves replacing
our current MCMC algorithm, employed via JAGS software (Plummer, 2003), with
more efficient alternatives like variational Bayes or Integrated Nested Laplace Ap-
proximations (INLA: Rue et al., 2009). An additional model improvement could
entail incorporating adaptive penalties for splines, as proposed by Jullion and
Lambert (2007), or adopting adaptive measures for controlling spline smoothness,
which could better capture complex variations in the data.

In Chapter 5, we used a range of proxy sources from previous studies to place cur-
rent trends in a wider temporal context (Sherwood et al., 2011; Thibodeau et al.,
2018; Thornalley et al., 2018; Spooner et al., 2020; Caesar et al., 2021). An alterna-
tive strategy would be to integrate our database of proxy records and instrumental
data with these additional proxy sources. This would allow for a multi-proxy anal-
ysis to be undertaken, providing a deeper understanding of the variations in the At-
lantic Meridional Overturning Circulation (AMOC), quasi-horizontal circulation,
and other global ocean circulation systems. This is similar to work undertaken by
Croke et al. (2021) which incorporated a range of palaeoclimate data to understand
water security planning. This approach offers the potential for a more thorough
and detailed comprehension of the complex mechanisms driving dynamic sea-level
changes. Such a database and modeling framework would enhance collaboration
and knowledge-sharing among researchers, fostering a more holistic understanding
of ocean dynamics and their broader implications for climate and coastal regions.

In future work, we can enhance our statistical approach by incorporating a com-
bination of instrumental data from tide gauges and satellite measurements, along
with proxy records. This integrated approach holds the potential to provide more
accurate and robust projections for future sea-level changes at both regional and
local levels. While the AR6 IPCC report currently presents projections for future
sea level rise until 2300 (Oppenheimer et al., 2019), the online regional projection
tools have limitations, notably in spatial coverage. For example, for Ireland, the
existing tool is limited to Dublin (NASA and IPCC, 2021). By integrating our so-
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phisticated models, we can extend the spatial projections to cover a broader area,
providing valuable insights into sea-level changes at various locations along the
North Atlantic coast and beyond. This extension would offer more comprehensive
and localised projections, aiding coastal planning and decision-making efforts to
address the challenges posed by future sea-level rise.

To conclude, all proposed methods are freely available at https://github.com/
maeveupton in the repositories named NI-GAM, reslr, and RSL-NorthAtlantic,
for Chapters 3, 4 and 5, respectively. This ensures every analysis presented in this
thesis is reproducible and methodologies are available to interested practitioners.
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