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Abstract

For robots to become valuable assistants in real-world scenarios, they must effec-
tively manipulate unknown objects in complex environments, such as homes with
multiple objects on shelves or desks. A critical aspect of manipulating objects is
grasping them with the robot’s end-effector. The key challenge for grasping an
unknown object lies in determining how to position and orientate the end-effector
relative to the object. While prior research has predominantly focused on table-
top scenarios with fixed camera-workspace transforms, in this thesis, we extend

robotic grasping to domestic settings.

This thesis makes three principal contributions in this area: (i) extending a depth-
image-based grasp quality prediction method to accommodate 6-DoF grasps and
versatile camera poses, (ii) creating a depth-image-based grasp proposal method
tailored for 6-DoF grasps and unknown camera-workspace transforms, and (iii) ap-
plying such a grasp proposal method in complex, domestic environments. For ap-
plication in domestic environments, we develop a simulation pipeline specifically

designed for training and evaluating grasp proposal models in domestic settings.

Quantitative experiments demonstrate competitive or superior performance of our
approach when compared with widely used techniques across a number of chal-
lenging simulated experiments. Additionally, real-world experiments with a mo-
bile manipulator demonstrate successful grasping of unknown objects positioned
on tables and shelves in unknown poses. We make our code and pre-trained mod-
els available for fellow researchers, facilitating the direct application of our models
when attempting to grasp unknown objects with mobile manipulators in domestic

environments.



Zusammenfassung

Damit Roboter in Alltagssituationen als wertvolle Assistenten fungieren kénnen,
miissen sie unbekannte Objekte in komplexen Umgebungen, z. B. in Wohnun-
gen mit Regalen oder Schreibtischen, effektiv manipulieren. Ein entscheidender
Aspekt bei der Handhabung von Objekten ist das Greifen mit dem Endeffektor
des Roboters. Die zentrale Herausforderung dabei besteht darin, die Position
und Ausrichtung des Endeffektors relativ zum Objekt zu bestimmen. Wéhrend
sich die bisherige Forschung vorwiegend auf Tischszenarien mit festen Kamera-
Arbeitsraum-Transformationen konzentriert hat, wird in dieser Arbeit das Greifen

mit Robotern auf hausliche Umgebungen ausgeweitet.

Die vorliegende Arbeit leistet drei konkrete Beitrage in diesem Bereich: (i) Er-
weiterung einer tiefenbildbasierten Methode zur Einschétzung der Griffqualitéat,
um Greifpositionen mit 6 Freiheitsgraden und vielseitige Kamerapositionen zu
beriicksichtigen, (ii) Erstellung eines tiefenbildbasierten Modells, das Greifposi-
tionen mit 6 Freiheitsgraden basierend auf unbekannten Kamera-Arbeitsraum-
Transformationen vorschlagt, und (iii) Anwendung eines solchen Modells in kom-
plexen, hauslichen Umgebungen. Fir die Anwendung in héuslichen Umgebun-
gen entwickeln wir eine Simulationsumgebung, die speziell fiir das Training und
die Evaluierung von Modellen zum Vorschlag von Greifpositionen in hauslichen

Umgebungen entwickelt wurde.

Quantitative Experimente zeigen in einer Reihe von anspruchsvollen simulierten
Experimenten, dass unser Ansatz im Vergleich zu weit verbreiteten Losungsan-
sitzen konkurrenzfihig oder iiberlegen ist. Experimente mit einem realen mobilen

Manipulator zeigen das erfolgreiche Greifen unbekannter Objekte, die auf Tischen

ii



Zusammenfassung

und in Regalen positioniert sind. Unsere Software und die trainierten Modelle
stehen anderen Forschern zur Verfiigung und erméglichen die direkte Anwendung
unserer Modelle beim Versuch, unbekannte Objekte mit mobilen Manipulatoren

in hauslichen Umgebungen zu greifen.
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grasp synthesis Finding a grasp configuration for a given object that satisfies a

set of criteria for a grasping task.

piled clutter Multiple objects lying on top of each other, for example, in a pile

on a planar surface.

structured clutter Multiple objects which are spread out in a scene, such that

they not neccesarily touch each other.

top-grasp A 4-DoF grasp where the grasp approach axis is aligned with gravity.
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Camera coordinates

0 Camera azimuth (azimuthal) angle around table normal
d Camera radial distance

@ Camera inclination (elevation) angle

K Intrinsic camera parameters

Domestic scene variables

F Set of furniture units
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CHAPTER

Introduction

Since the 1920s, science fiction has envisioned robot assistants capable of assisting
humans in their daily lives [1]. These autonomous assistants navigate the world,
achieving their goals by interacting with and manipulating objects in complex,
unstructured environments. Researchers have pursued making such robots a reality
since the invention of the early robots in the 1960s [2], achieving consistent progress
in all areas required to create such platforms. However, despite the substantial
progress made in specific contexts, e.g. robots assembling cars or waiting tables
in restaurants, we have yet to arrive at general-purpose robotic platforms capable

of manipulating any object in unstructured, real-world environments.

The difficulty in manipulating arbitrary objects in complex environments lies in
the large variability and uncertainty of such tasks, where a successful grasp is
dependent on properties such as an object’s geometry, mass, surface properties,
deformability, and pose. Furthermore, approaches must take account of an object’s
context, including the surrounding objects and other elements of the environment
(e.g. support surfaces, furniture units, etc.). When using a mobile manipulator,
a robot with both a mobile base and a robotic arm, the robot can grasp objects
from different workspaces but does not have a fixed position with respect to those

workspaces.

Use cases involving general-purpose mobile manipulators in real-world scenarios




Chapter 1. Introduction

Figure 1.1: Example of a) a vacuum cleaning robot, b) an industrial robot and ¢)
a PAL TTAGo mobile manipulator.

can, amongst others, be found in supermarkets, hospitals, care facilities or domestic
environments. In domestic environments, robots can potentially assist people with
limited mobility by, for example, fetching objects from a shelf, unloading groceries
or picking up objects that have fallen to the ground. Introducing robots for these
tasks could help those needing assistance to remain living independently and at
home as long as possible. To perform such assistive tasks, robots must be able to
both manipulate any object in complex, domestic environments and move between

different workspaces in their surroundings.

Robots available for use in home environments today can often navigate in di-
verse and complex environments and thereby move between different workspaces.
However, such robots usually do not have an arm or end-effector, preventing them
from manipulating objects in their environment. Examples of such robots are vac-
uum cleaners (see Figure 1.1a) or autonomous lawnmowers. More recently, mobile
robots have been deployed outside of home environments to serve customers and
transport tablets between the kitchen and tables in restaurants. As such robots
are usually not equipped with an arm and end-effector, they are unable to fill the

role of general-purpose robotic manipulators mentioned above.

Manipulating objects, on the other hand, can already be achieved reliably in in-
dustrial settings with robotic arms subject to certain constraints. Such robots

can be used to assemble structures, move products to or from a conveyor belt or

2
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pick objects from a bin. An example of an industrial robotic arm is shown in
Figure 1.1 b). These robotic arms are normally fixed in place and cannot move in
their surroundings. They are either programmed to repeat the same movements
in a precise manner or use fixed sensors and computer vision systems to guide
their movements. Furthermore, their surroundings and underlying programming
are usually optimised to ensure reliable performance. They usually attempt to
minimize collision hazards and include known object models, high-end tracking

systems, pre-known workspace limits, and offline path planning.

General real-world scenarios, and in particular domestic environments, are not set
up in such a controlled manner. They include a number of unknown objects, from
simple to complex geometries and appearances, situated on a similarly diverse set
of furniture units. They can include single objects or multiple objects in clutter
placed in arbitrary relative poses within the environment. A mobile manipula-
tor can move between different workspaces in the environment, for example, the
kitchen counter and the bookshelf. This enables the robot to transport objects
between those workspaces, for example, to store or fetch objects. For a robot to
transport an object, it must first grasp the object successfully. In this context,
grasping is defined as controlling all Degrees of Freedom (DoF) of an object with
the end-effector of a robot [3]. In other words, the end-effector locks the object’s

pose in place such that the object does not move in relation to the end-effector.

The key focus of this thesis is grasping arbitrary and unknown objects in dynamic
and complex environments, specifically in domestic settings. Figure 1.1 ¢) illus-
trates a mobile manipulator successfully grasping an object in such a domestic
setting. In contrast to grasping with fixed manipulators in tabletop settings, mo-
bile manipulators in domestic environments contend with a significantly expanded
workspace beyond the robot’s immediate surroundings. This expansion alters how
scenes are perceived and influences what kind of grasp poses can be executed, in-
creasing the overall complexity of the task. Given that recent research in robotic
grasping has primarily focused on fixed robotic arms and tabletop scenarios, we

describe the progress made in the following section.



1.1. The state of robotic grasping

1.1 The state of robotic grasping

Grasping objects with a robot usually involves three stages: (i) acquiring sensor
readings to construct a scene representation, (ii) proposing grasps based on the
scene representation, and (iii) path planning and execution of one grasp based on

the grasp proposals.

Proposing grasps, that is, how to position the end-effector to grasp an object, is
at the core of robotic grasping research. Finding grasp configurations that satisfy
a specific set of requirements for a given object is often called grasp synthesis [4,
5]. While this process might appear simple to people who exhibit this kind of
dexterity subconsciously every day, developing algorithms to grasp objects with
robots has been an active and challenging field of research for several decades [4, 6,
7]. The combination of problems in perception, dexterity, uncertainty, control and
adaptability in robotic grasping makes it a very complex problem, the solution to

which often requires different assumptions and simplifications.

Up to the year 2000, grasp synthesis has predominantly been solved by analytical
approaches [4], where assumptions about the physical properties of objects, e.g.
friction, mass and form, are used to calculate analytical metrics to judge grasp
quality. Since this kind of detailed information is usually not available from the
sensor data alone in real-world scenarios, analytical approaches have mostly been

restricted to simulated environments [4].

In recent years, the primary approach for creating grasp proposals has switched
to data-driven algorithms, which use grasp experience to build a model that may
be used to infer a prediction of success for grasp proposals [4, 5, 7, 8]. In contrast
to analytical approaches, data-driven algorithms usually do not require low-level
physical details about the scene during inference, making it possible to use them

in applications that directly employ sensor-based information from the scene.

When setting up the environment for generating the grasp experience, usually
in simulation, several design choices and constraints have typically been used to
simplify the problem. These simplifications were required initially to find workable

and robust solutions to enable robotic grasping for unknown objects. Some of these
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simplifications include the camera placement [9, 10, 11], the DoF of potential grasp
proposals [9, 10, 11, 12, 13, 14, 15], the rigidity of the objects [9, 10, 11, 12, 13, 14,
16, 17, 18, 19, 20], the number of objects presented [9, 10, 11], a limited workspace
area [16, 17, 21] and the general surroundings of the objects [9, 11, 12, 16, 18].

There has been progress toward removing some of these simplifications. For ex-
ample, several recent solutions are able to propose grasp poses for objects in clut-
ter [16, 18, 20, 22, 23, 24, 25|, to propose 6-DoF' grasp grasp poses [16, 18, 20, 24],
and to grasp non-rigid objects [26, 27].

However, to date, removing other simplifications, especially in regard to the camera
placement, limited workspace areas, and the general surroundings of the objects,
has not been fully addressed by the research community. Instead, many research
projects have focused on tabletop scenarios with fixed manipulators, where the
scene does not vary substantially in regard to the above simplifications. A central
argument of this thesis is that moving towards robust general-purpose robotic
grasping in complex, domestic environments will require solutions that do not rely

on such simplifications.

1.2 Thesis scope

This thesis aims to develop grasping algorithms tailored for grasping objects in
domestic environments. Such grasping algorithms have to address challenges aris-
ing from the inherent complexities of domestic scenes. We focus on three specific
aspects of this problem: flexible camera placements, flexible workspace areas and

flexible object surroundings.

o Flexible camera placements: Enabling a mobile manipulator to grasp ob-
jects in domestic environments requires a flexible camera placement since
the pose of the mobile manipulator, its camera, and the object workspace
is initially unknown. This changes how the object is viewed by the camera

and, consequently, how it is depicted in the scene representation.

o Flexible workspaces: Objects in domestic environments are placed in an un-

known pose that is not constrained to single, fixed workspaces. For example,
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objects could be placed on the top of shelves, tables, the floor or the lowest
drawer in a cupboard. Since the object poses are initially unknown, a robotic
grasping solution should be able to propose grasp poses regardless of where
the object appears in the scene representation. By adopting a simple yet
effective scene representation in the form of a depth image, we utilise the
advantage of proposing grasps for any pixel in the image efficiently. This,
coupled with a 6-DoF grasp grasp representation, enables the proposal of

grasps for flexible camera placements and workspace areas.

» Diverse object surroundings: Objects in domestic scenes are placed on dif-
ferent furniture units, not necessarily on tables but also on shelves, drawers
or cupboards. This results in different immediate surroundings of the ob-
jects, with different furniture units introducing occlusions and a higher risk
of collisions when attempting to grasp objects. To successfully grasp objects
in such scenarios, corresponding training data has to be used for data-driven

approaches.

The complexity of domestic environments necessitates a departure from conven-
tional tabletop grasping approaches with a known or implicit camera-workspace

transform.

1.3 Thesis contributions

The main contribution of this thesis is generating approaches for grasping unknown

objects in domestic settings. This comprises the following individual contributions:

1. Versatile Grasp Quality Convolutional Neural Network (VGQ-CNN): A Con-
volutional Neural Network (CNN) model capable of predicting the quality of
grasps under a wide range of camera poses. In contrast to other depth-image-
based grasp quality prediction models, VGQ-CNN can predict the quality
of 6-DoF grasp poses. Our results show that VGQ-CNN can be used with
6-DoF grasps and generalise to varying camera viewpoints while performing

competitively to its baseline for top-grasps and overhead camera viewpoints.
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2. Versatile Grasp Dataset (VG-dset): A versatile 6-DoF grasp quality dataset
including 7.2 million grasps over an extended range of camera poses. The
dataset can be used to train VGQ-CNN and other network architectures or

be sub-sampled to modify the dataset distributions.

3. Grasp Proposal Network (GP-net): A Fully Convolutional Neural Network
(FCNN) model to propose 6-DoF grasps for single objects with a parallel-
jaw gripper for unknown camera-workspace transforms. In contrast to other
grasp proposal models, it can operate over flexible camera viewpoints without
having to define workspaces or run table segmentation to filter grasp poses.
We show that GP-net performs better than widely used grasp proposal mod-

els in real-world experiments with a PAL TTAGo mobile manipulator.

4. A benchmark dataset and a simulation environment for robotic grasping in
domestic environments. The dataset comprises depth images of domestic
scenes with ground-truth grasp information. Objects in the domestic scenes
are placed in clutter on all available workspaces of furniture units like shelves,
tables and sideboards. The simulation environment can be used for training
and evaluating grasping algorithms in domestic environments. It can be
used with different scene representations and parallel-jaw grippers to enhance

comparability and is publicly available.

5. Grasp Proposal Network Plus (GP-net+): A FCNN model to predict 6-DoF
grasps for cluttered objects positioned on a diverse set of furniture units with
a parallel-jaw gripper. The objects can be positioned on tables or shelves with
an unknown camera-workspace transform. GP-net+ shows superior perfor-
mance to three grasp proposal models in a set of simulated experiments.
Furthermore, the results for a real-world experiment demonstrate how GP-
net+ can be used in a real-world application and obtain good results with a
PAL TTAGo mobile manipulator grasping objects placed in clutter on tables

and shelves.

6. A Robot Operating System (ROS) package for deploying both our grasp pro-
posal models, GP-net and GP-net+, on real robotic hardware. The package

provides examples of how to combine our grasp proposal models with path
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planning and collision-detection software. Further, our implementation for

GP-net+ can be used for target-driven object grasping.

1.4 Thesis outline

The structure of the remainder of this thesis is as follows. We start by providing a
review of related research in robotic grasping algorithms, detailing methods that
have been proposed over the years and how they have been applied to robots in
Chapter 2.

In Chapter 3, we develop a depth-image-based, 6-DoF grasp quality prediction
model called VGQ-CNN. To do so, we extend a grasp quality prediction model,
GQ-CNN [11], so that it can be used from versatile camera viewpoints (in con-
trast to fixed, overhead cameras) to predict the quality of 6-DoF rather than
4-DoF grasps. We evaluate VGQ-CNN on an object-wise test split focusing on the

performance under variation of the camera viewpoint in relation to the object.

In the subsequent Chapter 4, we utilise our findings from VGQ-CNN to propose
GP-net, a depth-image-based, fully-convolutional grasp proposal model that can
be used from flexible camera viewpoints to propose 6-DoF grasps on single ob-
jects. In contrast to VGQ-CNN, GP-net represents a generative method that can
be used in a one-shot manner for each pixel in an image to propose grasps with
advantages in run-time and sampling efficiency. We demonstrate the performance
of GP-net in simulation and real-world experiments using a PAL TTAGo mobile
manipulator. To compare GP-net’s performance with other algorithms, we re-
peat our real-world experiments with two widely used grasp proposal models and

compare their performance with GP-net.

In Chapter 5, we present a simulation environment for grasping objects in clutter
on a variety of furniture units in domestic environments. The core part of de-
veloping the simulation environment is creating reproducible steps for generating
domestic scenes with objects in clutter placed on various furniture units like coffee
tables, sideboards, shelves or drawers. The simulation environment can generate
training data and can be used to evaluate different models for grasping unknown

objects in such domestic scenes. We use the training data to train GP-net+, an
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improved version of GP-net, for proposing 6-DoF grasps for objects in clutter in

domestic environments.

We demonstrate the performance of GP-net+ in simulation and real-world exper-
iments with different stages of complexity. For the simulation experiments, we
compare GP-net+ with two widely used grasp proposal models to set its perfor-
mance in context. Furthermore, we show how GP-net+ can be coupled with a
pre-trained object detection model to enable target-driven object grasping. Fi-
nally, in Chapter 6, we conclude the thesis and present several opportunities for

future research.



CHAPTER

Literature Review

When grasping an unknown object with a robot, the process usually starts with
the robot’s end-effector in an unknown position in relation to the object. The
end-effector is then moved in a non-linear path to a position linearly in front of
a grasp pose. From there, the end-effector moves linearly toward the grasp pose

along the approach axis of the grasp.

Once the end-effector has arrived at the grasp pose, the gripper is closed, for
example, by moving the two plates of a parallel-jaw gripper linearly towards each
other along the grasp axis until contact between the gripper and the object is
established. This contact should be such that the contact wrenches, generated by
the torques and forces at the gripper contacts, enable the gripper to control all
DoF of the object. If that is the case, the object remains fixed in the gripper and
can be lifted. Lifting the object completes the grasping process. An example of
this process with a PAL TIAGo mobile manipulator grasping a mango is shown in

Figure 2.1.

The area of robotic manipulation of objects goes beyond grasping objects, for
example, with possibilities to use a manipulator for push-grasping objects [28],
placing objects [29, 30] or interacting with humans during a hand-over [31, 32].
Eventually, such skills must be incorporated with a grasping pipeline to enable a

useful deployment of robots in real-world scenarios. However, grasping objects is
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Figure 2.1: Grasping process with a robot as observed externally. The robot’s
end-effector is initially positioned in an unknown position to the target object (1).
It then moves in a non-linear path to a position linearly in front of the grasp pose
(2). Subsequently, it approaches the grasp pose linearly along the approach axis
(3) and closes the gripper (4). Finally, the end-effector is lifted vertically upwards
to lift the object from the surface (5).

a core part of many manipulation tasks with a robot. This makes robotic grasping
an important skill for manipulating robots and the focus of this thesis. We briefly
mention manipulation solutions exceeding robotic grasping throughout this review,

but overall, we focus on robotic grasping with a parallel-jaw gripper.

Furthermore, research projects in recent years have used affordances [33, 34, 35],
which describe the different actions or tasks that can be achieved with an object.
Affordances can be used to choose the right grasp poses for those tasks. In contrast,
most robotic grasping research in the last decades has focused on finding any
suitable grasp for successfully lifting the object [5]. While affordances can still be
incorporated into a developed training pipeline, we focus on proposing any suitable
grasp in this work. In the following chapter, we present an overview of robotic
grasping, including how grasp poses can be represented, proposed and executed,
how methods have progressed over the years, how solutions are typically evaluated

and how grasps have been proposed for mobile manipulators.
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The remainder of this chapter is organised as follows: We start with an overview
of robotic grasping and different variations in grasping pipelines in Section 2.1.
Subsequently, we describe how grasping algorithms are typically evaluated and
how different choices in setting up physical and simulated experiments can prevent
direct comparison of algorithms in Section 2.2. Next, we briefly introduce the
early research of robotic grasping and present several analytical grasp performance

metrics in Section 2.3.

Grasping algorithms are often distinguished by the numbers of DoF their proposed
grasps can vary. Exemplary methods for generating 4-DoF and 6-DoF grasp pro-
posals are described and compared in Section 2.4 and Section 2.5, respectively.
Focusing on grasping in domestic environments, we describe how grasps have been
proposed for mobile manipulators in Section 2.7. We conclude this chapter in Sec-
tion 2.8 with a summary of the field and describe how the remainder of this thesis
will sequentially move grasping towards domestic scenarios with mobile manipu-

lators.

2.1 An overview of robotic grasping

For grasping objects with a robot, the specific steps involved and how they are
implemented depend heavily on the target application and the robots’ surround-
ings. Figure 2.2 presents the key steps of an exemplary grasping pipeline, including
several potential variations of individual steps. At the start of a grasping pipeline,
information about the environment and surroundings of the robot needs to be

gathered and processed to produce a scene representation.

The scene representation provides a model of the robot’s workspace and can
be used to propose grasp poses. In some instances, information about the scene
is already available, for example, in industrial scenarios where a fixed robotic
manipulator grasps objects with a known shape in a fixed, pre-determined pose.
In such settings, neither sensing of the workspace to compute a scene representation
nor grasp planning is required, and instead, the robot can execute a pre-computed
path. Robotic grasping can also be achieved in scenarios with more variability

and less initial knowledge, for example, with unknown objects in unknown poses
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Figure 2.2: Exemplary pipeline for grasping objects with a robot. It acquires
sensor readings and constructs a scene representation, proposes and selects grasps,
plans paths, and executes the planned paths to grasp the object. Choices by the
grasping system developer are indicated with solid rectangles, while information
input about the environment is indicated with dashed rectangles.
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in any tabletop or domestic scenario. In such cases, sensors are used to gather
information about the surroundings and construct a scene representation to be

used as a basis for grasp proposal.

The most widely used sensors to gather information about the robots’ surroundings
for robotic grasping are active sensors such as RGB-D cameras [11, 12, 16, 18,
20, 24, 36, 37, 38]. Active sensors can use a variety of representations to model
the 3D structure of the world, for example point clouds [20, 38, 39, 40], depth
images [11, 12, 23, 41, 42, 43], RGB-D images [23, 25, 44] and voxel grids [15, 16,
45]. Combining sensor readings from multiple viewpoints can be used to reduce
uncertainty and increase the quality of the scene representations such as point
clouds [46] or voxel grids [16, 17] if the relative camera poses are known [5]. All
of these representations have been used in grasping pipelines, often exhibiting
different strengths and weaknesses, with no one representation proving optimal to
date [5].

While RGB-D cameras were the most widely used sensors up to 2022 [5], alterna-
tive input modalities like tactile [47, 48, 49], force-torque [50, 51] or acoustic [52]
sensors can also be used in the grasping process. For example, tactile sensors have
been used to detect object slippage [47], reconstruct object geometry [48] or reduce
uncertainty in object pose estimates [49]. Researchers have also investigated ap-
proaches that combine different sensor modalities using sensor fusion, for example,

combining visual and tactile sensor data for reconstructing object surfaces [53].

Once sensor readings have been processed, the resulting scene representation can
be used to propose potential grasp poses. Several design choices in the generation
of grasp poses depend on the robotic hardware used and the requirements the final
pipeline should meet. These choices include (i) the gripper design, (ii) the number

of DoF the grasp poses can vary in, and (iii) the grasp anchor.

The gripper design describes the end-effector used on the robot. It can range
from complex designs with human-like hands [54, 55] to soft end-effectors [56],
magnetic grippers [57, 58], pneumatic suction-cup designs [59, 60] and parallel-jaw
grippers [11, 16]. An example of different gripper designs is shown in Figure 2.3.

Each gripper design comes with different advantages and disadvantages. For exam-
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a) b) c) d)

Figure 2.3: Different gripper designs with a) a parallel jaw gripper, b) a human-
like hand, ¢) a pneumatic suction cup and d) a soft end-effector.

ple, soft robotic grippers can adapt seamlessly to various object shapes but often
struggle with robustness, speed and control [56]. Human-like robotic hands have
major advantages in terms of dexterous manipulation but currently still struggle
with reliability, complexity and cost [55]. In this work, we focus on parallel-jaw
grippers, which consist of two parallel gripper plates with a single DoF. The ad-
vantages of parallel-jaw grippers lie in their long lifetime and low complexity [61],
making them the most commonly used grippers in robotics grasping research up
to 2022 [5].

A full 6-DoF grasp pose ¢° € (t°, R, w) for a parallel-jaw gripper can be defined
with a 3D translation t* € (z,y, 2), a 3D rotation R? and the distance between
the gripper plates when executing the grasp on the object, i.e. the width w of the
grasp. This grasp pose is always given in relation to a coordinate base frame, for

example, the robot base b, which we denote with ¢°.

In order to reduce the complexity of the grasp pose representation, researchers
often reduce the grasp poses’ number of DoF from 6-DoF grasp, a 3D translation
and 3D orientation, to 4-DoF grasp with a 3D translation and a 1D orientation [5,
8]. The approach vector of 4-DoF grasps is usually aligned with an arbitrary vector,
where the one orientational DoF rotates around that arbitrary vector. Especially
in tabletop scenarios, this approach vector is often aligned with gravity, resulting
in a top-grasp [9, 10, 11, 13, 23].
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w W e

4-DoF 6-DoF

Figure 2.4: Example of 4-DoF and 6-DoF grasp poses on a bottle and a food
packaging box.

If the approach vector of a 4-DoF grasp is aligned with the camera principal ray, the
grasp x-axis between the gripper plates is perpendicular to that camera principal
ray, causing the grasp x-axis to be parallel to the image plane. In such cases, the
grasps can be presented as rectangles in the image plane [9, 10, 13, 14, 23, 62],
which often specify a 2D position, 1D rotation and width of the grasps. The depth
of the grasp in relation to the camera origin is then often inferred with a set delta
to the object surface [10, 23] or given as an explicit variable [11]. Examples of
4-DoF and 6-DoF grasp poses outlining their differences in variability are shown

in Figure 2.4.

Analytical methods usually analyse grasps based on each contact point between
gripper and object [6, 28]. When working with data-driven approaches based on
grasp experience, grasps are commonly described with a 6-DoF grasp pose relative
to a single grasp anchor point in the gripper reference frame. Parallel-jaw grippers
have a so-called Tool Centre Point (TCP), which lies in the centre between the
two gripper plates. This TCP seems to be the most commonly used grasp-anchor,
with usage in [9, 10, 11, 12, 13, 14, 15, 16, 21, 23, 37, 38, 45, 63, 64].

Alternatively, the grasp pose can be anchored at the contact point of one of the
gripper plates, as proposed by Contact-GraspNet [20]. By anchoring the grasp
pose to the visual grasp contact points, the learning process and pose accuracy

can be improved [17, 20]. The original authors argue this is due to the reduced
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dimensionality and immediate connection to the observed geometry in the scene
representation [20]. There is an open question about how a TCP and a visible
grasp contact compare as grasp anchors and their quantitative differences on the

performance of grasp proposal algorithms.

Once all design choices have been considered, grasps can be proposed. This pro-
cess can be divided into discriminative and generative methods [7]. Discriminative
methods propose grasps in two stages by sampling grasp candidates and subse-
quently evaluating the quality of each grasp individually, e.g. [10, 11, 13, 14, 15,
17, 19, 38, 40, 64]. The sampling of grasp candidates in discriminative methods
is usually based on random distributions, often taking into account the object
geometry [14, 17, 24, 38, 65].

In contrast to discriminative methods, generative methods do not evaluate the
quality of sampled poses individually but directly propose grasp poses [9, 12, 16,
20, 23, 62, 63, 66, 67]. They can propose single [9, 66] or several grasp poses [9,
68] for a given scene representation. When proposing more than a single grasp,
the proposals are usually coupled with a quality measure for grasp selection [12,
16, 20, 23]. Many generative methods propose dense outputs with grasps for every
point in the represented scene, for example, every pixel for a depth image [12, 23,
44, 63, 67] or every voxel in a voxel grid [16, 17, 69].

An overview of the difference between discriminative and generative methods
within grasp proposal (often also called grasp synthesis) is shown in Figure 2.5.
We note alternative names exist for these methods, likely since the division was
only introduced recently with some of the first generative methods described in
2015 [9]. Discriminative methods are also called sampling [5] or hypothesize-and-
test [8] methods, while generative methods are also called regression [5] methods
in different reviews. Overall, the terminology for these different approaches has
not been settled as of 2023.

After grasps have been proposed, appropriate grasps must be selected, paths
planned and finally executed by the robot. The selection of grasps is often
based on the predicted quality or success of grasp proposals. However, additional

requirements might be taken into account for a specific setup. For example, grasp
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Figure 2.5: Example of discriminative and generative grasp proposal. While dis-
criminative methods first sample grasp candidates and then evaluate them indi-
vidually, generative methods directly regress to good grasp proposals.

proposals can be filtered for grasping specific objects from a cluttered scene by
excluding all grasp proposals for other objects [20]. Such target-driven object
grasping can also be achieved by masking or indexing the scene representation
before grasps are proposed, as demonstrated in [38, 70]. While both methods lead
to several grasp proposals on the targeted objects, filtering grasp proposals ensures
geometric cues of the immediate object surroundings are used for the grasp pro-
posals, reducing the risk for collisions [20]. After grasps have been selected, paths

for reaching the grasp poses with the end-effector must be planned.

In most cases, path planning for a grasp requires collision checking to ensure
safe execution with a real robot. For known environments, collision objects can
be added manually to the scene, for example, in a scenario with a table-mounted
robotic arm where the transformation T? from the robot base b to the table collision
shape t is known. In scenarios where such transformations and collision shapes are
not known in advance or are not fixed, solutions like OctoMap [71] for mapping
sensor readings to an occupancy grid can be used and integrated into the planning

scene of a path planner, for example, using Movelt! [72] with the ROS.

The proposed grasps represent the pose of the anchored gripper-point when the
gripper is closed for grasping the object. When executing the grasp, it is common
to plan a joint path (where the end-effector can move in any way) to a point

at a short distance in the negative grasp z-direction from the final grasp pose.
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The subsequent grasp approach then involves following along a linear path in the
positive grasp z-direction until the final grasp pose is reached with the end-effector.
Once the gripper is closed, the object is usually lifted by moving the end-effector
for a certain distance upwards [21, 22, 38, 73, 74]. This completes the grasping
pipeline. In the following section, we discuss how the performance of grasp proposal

algorithms can be evaluated and benchmarked.

2.2 Performance of grasping algorithms

Judging the performance of grasping algorithms and benchmarking them against
each other can prove difficult due to the variety of problems studied in the field.
Differences in hardware, object sets, and setups often prevent direct compari-
son of performance metrics between studies. This difficulty in comparing several
approaches is one of the reasons why there are no clear state-of-the-art robotic
grasping algorithms to date. To set the scene for how grasping algorithms are
evaluated and what is needed to compare them, we describe the process and po-

tential differences in evaluation methods in the following sections.

2.2.1 Evaluation and performance metrics

Depending on the application and design choices of grasping algorithms, they can
be evaluated in different ways. For discriminative methods, one can evaluate how
good a quality prediction algorithm is at evaluating the quality of grasp candidates,
presented as (i) in Figure 2.6. For both discriminative and generative methods,
one can evaluate the end-product of the approach by checking the quality of the

final grasp proposals, presented as (ii) in Figure 2.6.

Evaluating the performance of grasp quality predictions is usually done with a
dataset, where a test set with grasp candidates and their corresponding ground-
truth qualities is available. This evaluation method typically yields some kind of
accuracy, describing the ratio of the ground-truth grasps properly classified by the
algorithm. Examples of such evaluation techniques are presented in [11, 75] and
our VGQ-CNN in Chapter 3.
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Figure 2.6: Example of possible performance evaluations in grasping pipelines.

Evaluating how good grasp proposals are can either be done offline by running in-
ference on a dataset or online by interactively testing grasp proposals in simulation

or real-world experiments.

When evaluating grasp proposals offline on a dataset, they are compared to
ground-truth information in the dataset. This type of evaluation can only be
used effectively if the ground-truth information covers all possible grasps that the
algorithm can propose. Only 4-DoF grasp proposal algorithms seem to have been
evaluated directly on datasets [9, 23, 62, 67], likely because it is computationally
expensive to pre-compute ground-truth information for all possible 6-DoF grasps

in the evaluation set.

For 4-DoF grasp proposal datasets [76, 77], the grasp approach axis is usually
aligned with the camera principal ray and the grasps are presented as oriented
rectangles in RGB or RGB-D images. Algorithms trained on such datasets are
evaluated by how well their predicted grasp proposal rectangles match the ground-
truth rectangles. There are dedicated metrics for how well the rectangles match
the ground truth, for example, using the Intersection over Union (IoU) [12, 62, 77]
or specifically introduced rectangle [9, 23, 69] and point metrics [69, 78].
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When evaluating grasp proposals online using simulation and real-world experi-
ments, grasp proposals are interactively executed in the scene and the grasp out-
come is observed. Discriminative methods and, specifically, grasp quality predic-
tion algorithms need to be coupled with a grasp sampling algorithm to be tested
in simulation or real-world experiments [10, 11, 22]. The most commonly used

metric in both simulated and real-world experiments is the grasp success:

# Success ful Grasps
# Attempted Grasps

Grasp Success = (2.1)

Grasp success can be expressed as a rate or a percentage. The definition of what
makes a grasp “successful” can vary. Commonly used approaches include the object
being lifted a certain distance above the surface [45, 70], staying in the gripper
for a certain amount of time [79], or staying in the gripper under the influence of
perturbations [11, 18, 20, 38].

A high grasp success does not necessarily correspond to a “good” grasp proposal
algorithm since it does not include a measure of how many of the graspable objects
in the scene can successfully be grasped. For example, the grasp success is high if
a grasp proposal algorithm is conservative and proposes successful grasps but only
for a few graspable objects. This is similar to the concept of precision, a common

evaluation metric used in machine learning for binary decision problems [80].

A high precision can be achieved with a conservative prediction algorithm only
classifying very few actual positive data points as such, thereby reducing the risk
of false positives. Since this is only one part of the performance, there is a second
metric called recall. Recall would be low in the case described above since many
actual positive examples are missed and predicted as negative, resulting in a high
number of false negatives. There is a similar concept to recall to identify such
cases in grasping with the so-called clearance or completion of an algorithm [5]. Tt
measures the ability of an algorithm to propose (successful) grasps for any object

in the scene:
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# Objects Cleared fromScene
# Objects in Scene

Clearance = (2.2)

Clearance can also be expressed as a rate or a percentage. There can be a single
object [11, 15, 34, 38, 42] or multiple objects [16, 18, 20, 22, 35, 36, 39, 65, 81, 82]
in the scene to be cleared. Scenes that include multiple objects are often described
as cluttered, where one can differentiate between piled clutter and structured clut-
ter [5]. Piled clutter includes objects which are dropped on top of each other,
often found in bin-picking scenarios [16, 18, 22, 35, 36, 65]. Structured clutter,
on the other hand, consists of objects that are spread out in a scene and do not
necessarily touch each other [20, 39, 81, 82].

Apart from its success in grasping or clearing objects, an algorithm’s run-time can
be crucial in real-world applications. Timing is often reported using the mean ab-
solute computation time it takes to propose grasps [12, 15, 16, 18, 20], or the Mean
Picks Per Hour (MPPH) [60, 63] which describes the average number of successful
grasps executed by a robot in an hour. Note that all timing metrics also depend
on the hardware being used, which needs to be reported by researchers in order to

generate reproducible results or compare the run-time of different algorithms.

2.2.2 Benchmarking algorithms

With many projects evaluating grasp success and clearance on simulated and real-
world experiments, it seems natural to compare their metrics and choose “the best-
performing method” as the state-of-the-art. Unfortunately, lack of consistency in
the experiment design in terms of (i) object sets, (ii) scene setup, (iii) perception
systems, and (iv) robotic hardware substantially influence the performance metrics
such that the results are often not comparable to each other. In the following, we
explain why these choices influence the experiments and what efforts are being

undertaken to make results more comparable.

The difficulty of a grasping experiment is influenced by the object sets used [5].
Object sets can differ in many aspects, for example, in object geometry, includ-

ing shape and size, the mass and density of objects and their surface material,
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including friction, rigidity and reflectivity. All of these aspects can influence the
outcome of grasp experiments. There are some projects specifically tailored to
certain properties of objects, e.g. grasping deformable 26, 27, 83| or transparent
objects [84]. However, most of the mentioned object properties have not yet been
considered in robotic grasping research. One aspect that is commonly described

for object sets is their geometric shape.

The shapes of objects can vary significantly, ranging from simple shapes like cylin-
ders and cubes [16, 44] to household objects [16, 76, 85, 86, 87] and irregular or
random shapes [74, 88]. The choice of object sets determines not only the difficulty
of experiments but also their reproducibility. Some methods are tested on a set
of household objects [10, 14, 16, 23]. Household object sets can provide a use-
ful performance measure for scenarios encountered in domestic environments but
make experiments difficult to reproduce unless the object set has been carefully

specified.

Various object sets have been introduced to make experiments more reproducible.
For example, the YCB object set [85] comes with 3D object models for simulation
experiments and the option to purchase the object set for real-world experiments.
It has been used with the 3D object models in simulation [16, 40, 45] and is also
used for real-world experiments with the real objects, usually featuring a subset
of the full object set [18, 25, 40, 45, 81]. Example objects from the YCB object
set are depicted in Figure 2.7 a). While the type of objects in household-based
object sets like YCB [85], BigBIRD [86] or KIT [87] capture many common items
in household scenarios, they often lack variety in aspects like object geometry,
grasp difficulty or object deformity [5]. Only if challenging and balanced object
sets are used for training and evaluating grasping algorithms can they be ensured

to be robust to such.

To test grasping algorithms on objects of varying complexity and difficulty, the
Evolved Grasping Analysis Dataset (EGAD) [74] has been introduced. The test
set of the dataset consists of 49 objects with 7 different levels of shape complexity
and grasp difficulty. Here, shape complexity refers to a measure of morphological

complexity [89, 90] and grasp difficulty to the 75" percentile of the robust Ferrari-
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Figure 2.7: Example of objects in a) the YCB object set and b) the EGAD evalu-
ation set.

Canny metric described in Section 2.3 [91]. Examples of some of the test objects
in EGAD are depicted in Figure 2.7 b).

EGAD has been used in various research projects to evaluate the performance of
grasping algorithms [81, 92, 93, 94]. An advantage of EGAD is the standardised
approach for generating 3D printed object models, providing consistency and ad-
justability for different gripper designs. While providing a good basis for evaluating
different object shapes, the EGAD objects do not hold any semantic meaning [5].
Therefore, EGAD experiments often accompany additional experiments using a

set of household objects.

Additionally to which objects are used, how these objects are set up in the scene
affects the difficulty of the experiments. As mentioned in Section 2.2.1, objects can
be placed individually (with no other graspable objects in the scene) or with multi-
ple objects in clutter. Some algorithms are tested on different setups, for example,
with piled clutter and structured clutter, which show differences in performance
of up to 20% in their Grasp Success Rate (GSR) and Clearance Rate (CR) [16,
21]. More complex setups, including non-planar support surfaces or complex furni-
ture units like shelves, are likely to reduce the performance of grasping algorithms

further since they can reduce direct visibility and increase the chances of collisions.

Besides the choice of objects used, the sensors for gathering the scene representa-

tion influence the experiments significantly. The scene representation for robotic

24



2.2. Performance of grasping algorithms

a) b) c) d)

Figure 2.8: Example of parallel-jaw grippers with a) a PAL [98] b) a Panda [99],
c) a Baxter [100] and d) a Robotiq 2F-85 gripper [101].

grasping algorithms usually comprises sensor readings from a single or several
depth sensors. Depth sensors suffer from depth sensor noise [95, 96], minimum
and maximum measurable depth ranges, and depth resolution, which varies be-
tween different sensors. Furthermore, the transformation between the sensors and
the robotic arm needs to be established with hand-eye calibration to map grasp
poses from the sensor readings to the robot base and execute the grasps. Inaccura-
cies in the transformation between the sensor and the arm cause misalignments in

the planned and achieved grasp pose, possibly influencing the grasping outcome.

Finally, the robotic hardware can influence the outcome of real-world experiments.
Setups can differ both in the robotic manipulator and end-effector used. Having
a robotic manipulator with more DoF will increase the reachability of the robot

while increasing the difficulty of planning paths using the inverse kinematics [97].

Even within the category of parallel-jaw grippers, available solutions differ in the
size of their gripper plates, maximum gripper width, maximum grasping force,
collision shape and the friction of their gripper plates. Examples of different designs
are shown in Figure 2.8 with the Franka Emika Panda gripper [99], Robotiq 2 finger
gripper [101], Baxter gripper [100] and the PAL gripper [98]. These differences can
affect performance and lead to a different outcome for the same grasp proposal.
The most popular choices for robotic manipulators as of 2022 according to [5] are
the Franka Emika Panda arm [102] and the Franka Emika Panda gripper [99].
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2.8. Analytical approaches for grasp proposal

In general, the grasp success of different algorithms can only be directly compared
if tested on the same object set in the same setup using the same perception
system and robotic hardware. While we mention the advantages and disadvantages
of different methods and algorithms in the following sections, we refrain from
doing so in terms of absolute grasp success due to those issues. This is similar to

comparative reviews and surveys in the field [4, 5, 7, §].

2.3 Analytical approaches for grasp proposal

The first solutions for grasp proposal used discriminative, analytical approaches,
where knowledge about the physical properties of objects is used to calculate an-
alytical metrics and thereby judge grasp quality [4]. These analytical metrics are
a way to judge the gripper-object behaviour of a grasp under the influence of ex-
ternal forces. Ultimately, they try to estimate if a gripper can control an object’s

DoF sufficiently when grasping the object at that specific grasp pose.

The analytical metrics are usually calculated using the forces acting on the body. A
general force acting on a rigid body consists of a linear and an angular component,
a force F € R? and a moment 7 € R?, respectively. When represented in a vector,

these two components are called a wrench ¢ [28, 103]

S = <F> (2.3)

Probably the most useful and widely-known metrics for the quality of grasps are
form closure and force closure, which have been used since 1876 to distinguish

contacts in machine design [28].

Form closure describes grasps where it is impossible to move the object relative
to the gripper, given that the gripper links are locked and fixed in space. Force
closure, on the other hand, is defined as a grasp that can resist any external wrench
¢ applied to an object, assuming an arbitrary amount of force can be applied at
the grasp’s contacts [28]. In other words, a grasp in force closure “squeezes” an

object to keep it in place, while a form closure grasp prevents movement solely
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Figure 2.9: Example of form closure and force closure grasps in 2D, based on a
visualisation in [104, 105].

through the positioning of the locked gripper fingers [28, 105]. In consequence,

any form closure grasps also exhibit force closure.

Even though there exist exact, non-linear force closure tests, e.g. [106], approx-
imate tests, e.g. [104], are often used to calculate force closure in an efficient
manner [28, 88]. Examples of several grasps with form closure and force closure

in 2D are depicted in Figure 2.9.

In an attempt to extend analytical metrics beyond binary categories to further
distinguish successful grasps between optimal and less-optimal grasps, quantita-
tive closure tests have been introduced [105]. One of them, the Ferrari-Canny
metric [107], sometimes also called the epsilon quality [108], is defined using the
grasp wrench space and presented as a continuous metric, where a higher value
corresponds to a more robust grasp. It uses a local grasp quality measure LQ(s),
which describes how efficiently a wrench ¢ can be resisted at a given contact. The

Ferrari-Canny metric () is subsequently calculated by:

_ sl
LQ(s) = max | f ||
Q = min LQ(s) (2.4)

Here, gf is the generalised force vector, a vector combining all finger forces fi-

applied at a given contact, A is the set of all couples (g, gf) where the generalised
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force vector gf can resist wrench ¢, and subsequently ¢A is the set of generalised
forces gf that can resist wrench ¢ [107]. In other words, the Ferrari-Canny met-
ric describes the “largest perturbation wrench ¢ that the grasp can resist in any

direction” [109] to control all DoF of an object with a gripper [107].

Analytical metrics like form closure, force closure or the Ferrari-Canny metric
can be computed if physical properties like the shape and friction of an object
are known. Given knowledge or assumptions about these properties, analytical
metrics provide mathematical guarantees for the grasp parameters like grasp pose
and initial finger configuration [4]. In contrast to simulated grasp success using
physics engines, they usually do not consider the explicit gripper design and do not
check for collisions with the object or environment. Furthermore, many of them,
like the Ferrari-Canny metric, force closure, and form closure, can be computed for
any gripper configuration, e.g. for parallel-jaw, three-fingered grippers or human-
like hands.

However, analytical metrics are heavily dependent on the accuracy of the physical
properties, with their applicability decreasing in the presence of uncertainty in sen-
sor measurements and actuation. In an attempt to strengthen analytical metrics
under such circumstances, robust versions of analytical metrics can be used by cal-
culating their probability of success under the influence of grasp perturbations [88,
108, 110]. The perturbations show the variability of the analytical metric over a
range of possible gripper poses [108] and can additionally include variations in ob-
ject poses and friction values [88, 110]. Perturbations can be sampled using Monte
Carlo sampling [88, 108] and used in large-scale supervised learning to estimate

grasp robustness [110].

In recent years, analytical grasp metrics have mostly been used to generate ground-
truth information in simulated training datasets [11, 24, 74] and for applications
which require grasp proposals for universal gripper configurations [111, 112]. As
an alternative to using purely analytical grasp metrics, many data-driven methods
in recent years have used simulated or real-world grasp experience recording grasp
success or failure as ground truth for training grasp proposal algorithms [16, 20,
38, 82]
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a) b)

Figure 2.10: Example of images with a) a single, centred and horizontally
aligned grasp in DexNet2.0 [11] and b) multiple grasp rectangles in the Jacquard
dataset [77].

2.4 4-DoF grasp proposal

When moving from purely analytical to data-driven approaches for grasp proposal,
most initial methods focused on producing 4-DoF grasp proposals to simplify the
problem and the search space [9, 10, 11, 12, 13, 14, 15, 23, 63, 64]. 4-DoF grasps
refer to grasp poses with a 3D position and a 1D rotation, usually around the
approach vector of the grasp, as shown in Figure 2.4. The approach vector of those
grasps is often aligned with the camera principal ray, resulting in planar grasps in
the image plane, and/or aligned with gravity, which are commonly referred to as
top-grasps. In other words, 4-DoF grasps limit the variability and complexity of
grasp poses by locking 2 of the DoF in place.

Although the representation of 4-DoF grasps shows minor variations across differ-
ent approaches, they are often represented as rectangles in the image plane, e.g.
as shown in Figure 2.10 b). There are several datasets available with ground-truth
information on 4-DoF grasp samples, for example, the Cornell dataset [76], the
Jacquard dataset [77] and the DexNet2.0 dataset [11]. Ground-truth information
is either manually annotated [76], based on simulated grasp experience [77] or
based on analytical metrics calculated in simulation [11]. Those datasets provide

a basis to train data-driven methods for 4-DoF grasp proposal.
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2.4.1 Discriminative 4-DoF grasp proposal

There are a variety of discriminative methods that sample and subsequently clas-
sify 4-DoF grasps [10, 11, 22, 59, 113]. The sampling of candidates in such methods
during inference is often realised by uniform random sampling from distributions
based on the scene representation [11, 113] or using specifically trained Neural
Networks (NNs) to sample grasp candidates [10]. Grasp candidates are then usu-
ally encoded in an input for a (Convolutional) Neural Network specifically trained
to estimate the quality of the proposed grasp candidates. This process can also be

run iteratively to improve the quality of grasp proposals [11].

One of the seminal approaches in this field is the Grasp Quality Convolutional
Neural Network (GQ-CNN) [11, 60], which represents grasp candidates in a depth
image and evaluates their quality using a CNN. The CNN consists of two parallel
streams, one for the depth image and one for the distance z between the grasp
TCP and the camera. The grasp position is centred in the depth image, and the
grasp x-axis, along which the gripper plates close, is aligned to lie horizontally
in the image, see Figure 2.10 a). This results in an aligned depth image, which
reduces the number of explicit variables to define a grasp. The full DoF for a given

grasp are thereby given by the aligned depth image and the distance z.

GQ-CNN is trained on the DexNet2.0 [11] dataset, containing synthetic images
with a robust version of the Ferrari-Canny metric (see Equation 2.4) [88, 107, 110]
as ground-truth information. In subsequent work, GQ-CNN has been extended to
GQ-CNN2.1 to work in cluttered environments [22]. GQ-CNN2.1 is based on a
GQ-CNN2.0 model, which is fine-tuned on a small dataset with cluttered scenes
and simulated grasp experience generated in PyBullet [114]. In further extensions,
GQ-CNN has been adapted to work for suction-cup grippers [59] and embedded in
a partially observable Markov decision process with an ambidextrous robot with

both a parallel-jaw and a suction-cup gripper [60].

GQ-CNN is one of the most popular approaches among the discriminative 4-DoF
grasp proposal methods with a widely used open-access codebase and a ROS node
that can be used for application on a real robot. Similar to most approaches

for discriminative 4-DoF grasp proposal, GQ-CNN’s usage is limited to tabletop
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scenarios with fixed workspaces in relation to an overhead camera, as this setup
matches the scenes in the training data. A major disadvantage in GQ-CNN and
all discriminative methods is the run-time since the individual evaluation of all

grasp samples is computationally expensive [8].

2.4.2 Generative 4-DoF grasp proposal

Rather than sampling grasp candidates and evaluating their quality individually,
one can also directly regress to several “good” grasp proposals using a generative
grasp proposal method to improve run-time. One of the first generative methods
for 4-DoF grasp proposal was proposed in 2015 by Redmon and Angelova [9],
with an option to propose a single grasp or multiple grasps for a given scene.
The model consists of a CNN with fully connected layers trained on the Cornell
dataset [76] by randomly choosing a ground-truth positive grasp for each training
image. When proposing a single grasp for a scene, it is assumed there is at least
one successful grasp per scene. When proposing several grasps, which the authors
call the MultiGrasp model, it divides the image into a grid and proposes a grasp

coupled with a likelihood of success for each cell.

The concept for the MultiGrasp model in [9] is tightly coupled with the concept
of region proposal networks often used in object detection algorithms [115]. Al-
gorithms proposed after these initial generative methods with single and multiple
grasp proposals per scene [9, 66] moved to outputting a grasp proposal for each
pixel in the input image coupled with a quality prediction, more related to a seg-

mentation than an object detection problem.

These later generative methods usually consist of FCNNs or transformer networks
and output dense tensors [12; 23, 63, 67, 116]. The dense output tensors have the
same size as the input image and apply a pixel-wise representation for suitable
grasps based on the input image. At least two different approaches with FCNNs
have been used for generative grasp proposal, with differences in the structure of
the output tensors. One of them uses multiple 2D tensors, which include a quality
estimation coupled with an angle and width for each pixel and anchor the grasps
at the TCP [12, 23, 116].

31



2.4. 4-DoF grasp proposal

The alternative to using multiple 2D tensors consists of 3D [44, 63] or 4D [63]
grasp quality heatmaps where the size of the third and fourth dimensions define
quantified values for the rotation [44, 63] and height [63] of grasps in so-called
“structured bins”. Each cell in the resulting heatmap defines the quality of a
TCP-anchored grasp. Due to the quantitisation, the position of the cell in the
heatmap fully defines the position, rotation [44, 63] and height [63] of the grasp.

The quality estimates in the 2D tensors and multi-dimensional heatmaps are used
to select the best grasp during inference. The grasp proposals are constructed
from the angle and width output tensors at that pixel or inferred from the cell’s
position in the multi-dimensional heatmap. One of the major advantages of such
methods is the run-time during inference, as many grasps are proposed with a
single forward pass. Some methods in this category, like the Generative Grasping
Convolutional Neural Network (GG-CNN), are specifically developed to enable

closed-loop control [12].

Similar to discriminative approaches for 4-DoF grasp proposals, the presented gen-
erative approaches are limited to tabletop scenarios with mostly fixed workspaces
in relation to the camera pose, limiting their application in more complex sce-
narios. Comparing the IoU of the different methods on an object-wise test split
of the 4-DoF Cornell grasping dataset shows a higher performance for generative
methods than discriminative methods in [8]. This indicates that the advantages
of generative methods in terms of run-time do not come at the cost of grasp per-

formance.

In general, 4-DoF grasping approaches are less complex than 6-DoF grasping ap-
proaches due to the reduced flexibility and complexity of their grasp representation.
While 6-DoF grasp proposals provide more flexibility for the grasp pose, this might
not be necessary for every scenario [5]. For example, tasks such as bin-picking [60]
in pre-defined and well-reachable spaces might not require the added flexibility of
6-DoF grasp proposals. In such a case, solutions can benefit from the advantages

in run-time and efficiency of 4-DoF grasp proposal methods.

However, these advantages come at the cost of reduced flexibility and, thereby,

reachability of the grasp poses. While specific scenarios might not suffer from
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this reduction, more complex scenarios with objects in clutter or in constrained
environments require 6-DoF grasps in order to grasp objects [7]. This is especially
apparent when moving into domestic environments where objects can be placed
on different furniture units at different heights. Objects placed very high or low
in the scene require different approach directions to enable collision-free grasps,
particularly when considering the robot end-effector’s reachability. Being able to
propose 6-DoF grasps for objects independent of the object’s pose and surround-
ings without limiting the DoF of the grasp proposals is a key factor for enabling

successful robotic grasping in such scenarios.

2.5 6-DoF grasp proposal

In light of the advantages in flexibility and reachability, robotic grasping research
has progressed towards 6-DoF' grasp proposal in recent years. 6-DoF grasp poses
are defined by a 3D position and a 3D orientation in space, see Figure 2.4. In con-
trast to 4-DoF grasps, none of the 6 DoFs is restricted, resulting in increased com-
plexity for the grasp representation and an increased search space for the grasps.
In the same manner as 4-DoF grasp proposal, 6-DoF grasp proposal methods can

be distinguished into discriminative and generative methods.

2.5.1 Discriminative 6-DoF grasp proposal

There are several examples for 6-DoF discriminative methods [24, 38, 40, 82, 117]
which sample 6-DoF grasp poses and subsequently evaluate their quality indi-
vidually. Grasp candidates can, for example, be sampled from the scene repre-
sentation by sampling points and estimating their orientation based on surface
normals [15, 24, 40, 45, 117] or generated by trained model architectures like Vari-
ational Autoencoders (VAEs) based on a probability density function over the
latent space [38, 82]. The grasp candidates are then encoded in some input form
corresponding to the scene representation and evaluated by grasp quality predic-
tion models, for example, using PointNet-like architectures [38, 40, 82], CNNs [24,
117] or analytical grasp quality metrics based on shape-completed meshes [15, 45].

One of the most widely used and referenced methods in this area is the Grasp

Pose Detection (GPD) algorithm [24]. Grasps are sampled uniformly over a region
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of interest in the input point cloud and subsequently encoded in a multi-channel
image showing different projections of the grasp. A CNN is then used to predict
grasp quality based on the multi-channel image. The BigBird [86] object meshes
are used for training, with force closure used as the ground-truth metric for sampled
grasp poses. GPD is often used to compare against other algorithms [16, 17, 21],
possibly in part due to the availability of a reference implementation in ROS since
2017.

Similar to the discriminative 4-DoF methods described in Section 2.4.1, a major
disadvantage of discriminative 6-DoF grasp proposal methods is their low com-
putational effiency [5, 8] and consequently slow run-time. This disadvantage is
further increased when moving from 4-DoF to 6-DoF, since the search space for
potential grasp poses increases, potentially leading to more grasp samples which
need to be evaluated. As of a survey from 2022, none of these methods have

demonstrated real-time capabilities [5].

2.5.2 Generative 6-DoF grasp proposal

There exist many different approaches for generative 6-DoF grasp proposal. Those
approaches can be further distinguished by the scene representation used for the
model input. Among the possible scene representations are point clouds [20, 70,
118, 119], depth images [18, 37, 120], and voxelised grids [16, 17, 21]. As of 2023,
there is no consensus as to the effect the scene representation has on grasp per-
formance and if any single representation is superior for this kind of application.
However, the typical architectures that are used differ between scene representa-

tions, which we detail in the following.

When presenting the scene in the form of a point cloud, the models typically use
a 3D CNN such as PointNet++ [20, 38, 70, 118], a transformer network [119] or
a graph network [121] for their model architecture. The point clouds for genera-
tive methods are usually subsampled to increase efficiency [5], which introduces a
question on how to process the point cloud for optimal results. Overall, the meth-
ods seem to perform well in terms of grasp success [8]. While some approaches

demonstrate operation in real-time, these are usually demonstrated on high-end
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Graphics Processing Units (GPUs) [20], which have limited applicability to mobile

platforms.

It is also possible to create a voxelised scene of a 3D workspace, for example, using a
Truncated Signed Distance Function (TSDF), and to subsequently use a 3D CNN
to propose grasps [16, 17, 21]. Since the 3D convolutions are computationally
expensive [8], the workspace size and resolution must be carefully picked to enable
fast run times while retaining a high grasp success. Furthermore, for application
of any of these algorithms, the pose of the 3D workspace in relation to the camera
has to be known in advance, which poses a problem in complex and unstructured

environments.

One example of a method using a 3D CNN is the Volumetric Grasping Network
(VGN) [16]. It scans a workspace along a pre-defined trajectory using a wrist-
mounted depth camera. The scene information is integrated into a TSDF, which
is input to the model in the form of a voxelised grid. The model is trained on
synthetic data from 3D object meshes and simulated grasp attempts using PyBul-
let [114]. Using multiple viewpoints for constructing these representations serves
to increase grasp performance by decreasing the scene representation’s uncertainty
and noise. However, scanning a workspace around a graspable object to construct
such a representation might not always be feasible or desirable due to the need for

appropriate equipment, time and robot motions.

Similar to the 4-DoF grasp proposal methods presented in Section 2.4, the scene
in 6-DoF grasp proposal methods can also be represented with depth images,
where a FCNN is used to propose grasps [18, 120]. A general advantage of using
FCNNSs in grasping is their simple design and the computational efficiency of the
2D convolutional layers. The approaches usually propose 4-DoF grasps based
on multiple virtual camera viewpoints to create 6-DoF grasps [18, 120]. While
those predicted grasps have their approach axis aligned with the virtual camera
ray and only vary in 4-DoF', the versatile placement of the virtual camera varies
the grasp proposals in 6-DoF. However, the variability in the grasp poses can
only approach the flexibility of “real” 6-DoF grasp poses when a sufficiently large

number of virtual camera placements is assumed. This, in turn, would reduce the
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computational efficiency of such approaches.

Overall, it is likely that robotic grasping research will continue towards 6-DoF com-
pared to 4-DoF grasp proposal methods. Generating such 6-DoF grasp proposals
is necessary when applying robotic grasping solutions to complex environments,
for example, in domestic scenarios. Objects in such scenes are placed in unknown
poses and can be surrounded by different objects or furniture units, increasing the
risk of collisions. If a grasp proposal method is limited to 4-DoF grasps, crowded
immediate surroundings of the object can lead to a substantial decrease in clear-
ance when all proposed grasps result in collisions. 6-DoF grasp poses, on the
other hand, result in an increased search space and flexibility of the end-effector’s
pose. This can increase clearance by including previously unreachable grasp poses,

making ungraspable objects graspable.

When moving towards the usage of general-purpose robots in real-world scenarios,
the environments are becoming more complex and flexible. The resulting increase
in search space of corresponding grasp proposal methods causes computational
efficiency to be of even greater importance. As such, computational efficiency is
essential when selecting a grasp proposal algorithm for real-world applications.
In general, generative methods seem to become dominant and take over from

discriminative methods due to their computational efficiency [5, 8].

2.6 Reinforcement Learning in robotic grasping

While most of the data-driven methods in robotic grasping are trained using the
generative and discriminative methods described above [5], one can also use a
Reinforcement Learning (RL) approach and learn a policy to grasp objects with
4-DoF or 6-DoF grasp poses. Examples of such methods have been trained in
simulation [43] and real-world experiments [73, 122]. An advantage presented in
many RL approaches is their ability to be used with closed-loop control, enabling
them to perform dynamic grasping for changing environments and potentially
learning a sequence of actions to achieve a grasping goal, e.g. with push-to-grasp
policies [123].

A review in 2019 identified issues in applying RL approaches to real-world prob-
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lems, including sample inefficiency, the balance between exploration and exploita-
tion, the generalisation and reproducibility of the algorithms, and how to efficiently
learn from demonstration [124, 125]. More recently, there have been improvements
made in those aspects, for example, with advances in the sample efficiency [122,
126, 127] or learning from human demonstration [36, 128]. An example of an
improvement for the sample efficiency of RL approaches is presented with [122],
which uses equivariant models to reduce training time substantially. Their pre-
sented method learns online on real robotic hardware in as few as 1.5 hours. This
enables learning different, specific tasks like grasping opaque or transparent ob-
jects. While the experiments demonstrated with these new methods are based on
objects in settings with fixed manipulators and fixed cameras, further efforts will

likely extend their applicability to more complex scenarios.

An issue with some RL algorithms lies in their setup, where agents learn actions
to follow a trajectory for grasping objects rather than proposing grasp poses. This
means those algorithms usually can only execute a single grasp per scene with no
choice between different grasp proposals, for example [36, 37, 43, 73]. This, in turn,
makes it difficult to incorporate further constraints in the overall pipeline [5]. For
example, if a single grasp for a scene is learned by a RL approach, target-driven

grasping for a single object in a cluttered environment can not be achieved easily.

Overall, RL approaches are usually more challenging to implement than supervised
generative or discriminative grasp proposal approaches [8]. However, they have
received more attention in recent years, progressing the field and providing new
solutions to problems. They will likely continue to do so, enabling solutions to the

abovementioned problems and potential solutions to robotic grasping.

2.7 Mobile manipulation

Mobile manipulators combine a base’s mobility with an arm’s dexterity, signifi-
cantly increasing the robot’s workspace compared to fixed manipulators. Domes-
tic environments usually have multiple workspaces, where objects are placed in
different rooms and on different furniture units. Here, mobile manipulators can

transport objects or provide a service at different workspaces in the environment.
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An example of a mobile manipulator can be seen with the PAL TIAGo robot in

Figure 1.1 c).

The design of mobile manipulators varies significantly depending on their pur-
pose. While many research projects are based on customised combinations of a
mobile base and a manipulator [129, 130, 131, 132, 133], there also exist complete
mobile robots that provide hardware platforms e.g. the Toyota Human Support
Robot [134] or the PAL TIAGo mobile manipulator [98]. Wheeled mobile bases
are the most popular choice for mobile manipulators, but specific applications and

tasks might require legged robots, aerial platforms or underwater robots [3].

The work on analytical, 4-DoF, and 6-DoF' grasp proposal has mainly focused on
robotic arms mounted on planar surfaces, with 66 out of 75 robotic platforms in a
survey on data-driven grasping from 2022 using fixed robotic arms [5]. The percep-
tion sensors for the research projects on robotic arms are either in a fixed position
to the workspace [11, 20, 63, 73] or attached to the wrist of the robotic arm [12, 16,
17, 36, 43]. Data-driven methods developed for application on fixed robotic arms
likely have limited applicability to mobile manipulators, however. The principal
issue is that methods for fixed robotic arms have not encountered sufficient vari-
ation in their workspace surroundings and the camera-workspace transformation

during training.

Despite this limitation, data-driven grasp proposal methods can be used with
a mobile manipulator in combination with workarounds, assuming the robot’s
surroundings are appropriate. The workarounds can be used to position the robot
and camera in relation to the workspace such that the viewed scene is similar to the
training data samples. For example, one can use 3D object detection to identify
the pose of a specific object on a table, move the mobile manipulator to a suitable
position and use a data-driven method like GPD [19], VGN [16] or GQ-CNN [60]

for proposing grasps.

While such workarounds are possible, complete multi-purpose systems described
for mobile manipulators rarely use the developed data-driven grasp proposal meth-
ods. Instead, they tend to utilise hand-crafted approaches based on point clouds [132,

133, 135, 136], analytical grasp metrics like force closure using reconstructed sur-
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face patches [137, 138], offline grasp proposal based on CAD models [136, 139] or
use specialised grippers for the target objects in the desired application [140].

Grasping with mobile manipulators can also be achieved by applying Reinforce-
ment Learning approaches [131, 141, 142]. This direction of research is relatively
new, where methods are typically demonstrated on specific tasks [141] and a lim-
ited number of relatively simple objects [131], or where they may circumvent the

need for grasp pose detection by employing landmarks within the scene [142].

There exist few projects to this date which apply data-driven 4-DoF and 6-DoF
grasp proposal methods specifically to mobile manipulators, for example, DexNet-
MM [143] and GarbageNet [129]. These projects are focused on grasping objects
from the floor. When objects are positioned on the floor, the relative pose of the
camera to the object and the surroundings of the objects include little variabil-
ity, enabling the application of simple workarounds for data-driven approaches.
DexNet-MM [143] uses the DexNet4.0 [60] 4-DoF grasp planner with adapted pa-
rameters for decluttering the floor, where the camera on the mobile manipulator
is positioned overhead the graspable objects. GarbageNet, on the other hand, ap-
plies the more flexible 6-DoF grasp proposal method GPD on a segmented point
cloud. While the initial viewpoints for GarbageNet are more flexible than those
of DexNet-MM, it is limited to picking garbage off the floor and not designed for

more complex environments [129].

As of 2023, there is little work for grasping unknown objects with mobile manip-
ulators in complex environments exceeding tabletop scenarios. More particularly,
data-driven grasp proposal algorithms are rarely applied to mobile manipulators,
likely because the simplifications used during the training of the algorithms do not
represent the environments encountered by such robots. Solutions for grasping
objects with mobile manipulators are often tailored specifically for a single use
case and thereby far from a robust general-purpose system that could be applied

in complex, domestic environments.
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2.8 Conclusion

In this chapter, we presented an overview of grasping objects with a robotic ma-
nipulator, emphasising different solutions to grasp proposal. Data-driven grasp
proposal has surpassed purely analytical approaches in recent years. Such data-
driven grasp proposal methods can generally only be expected to work on the kind
of input data and scenarios they have been trained on. For most research projects
in robotic grasping, the training scenarios focus on tabletop scenarios, often with a

fixed robotic arm and a fixed overhead camera close to a pre-defined workspace [5].

This reduces scene complexity based on several assumptions and simplifications;
for example, objects are always placed on planar surfaces and in a certain relation
to the camera. These simplifications were necessary to progress in the field under
the influence of the otherwise large search space and variability that comes with
real-world conditions. However, with the field advancing, more complex scenarios
need to be considered to move robotic grasping towards robust application in the

real world and specifically in domestic environments.

Such domestic environments are dynamic, complex and not defined in advance,
with various surroundings where objects should be grasped from different poses like
the floor, tables or shelves. The scenarios place broader requirements on proposed
grasps, requiring diverse, high-quality grasps to increase the probability of finding
collision-free, reachable grasp poses among them [5]. Since these scenarios are
more complex than the tabletop settings, they must be reflected in the training
and evaluation of grasp proposal algorithms to enable application in domestic

environments.

The next steps are, therefore, to extend robotic grasping to such applications by
removing assumptions and simplifications placed on the training pipelines. This
can ultimately lead to general-purpose solutions that can be applied reliably in
complex, domestic environments. It is important to test resulting algorithms in
those complex scenarios, such that they are evaluated under the influence of the

additional constraints posed by those scenarios.

In this thesis, we approach the goal of grasping unknown objects in domestic
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environments in several steps. We initially focus on the variability of camera
viewpoints and how a discriminative grasp proposal method with a simple scene
representation can generalise to different camera viewpoints and 6-DoF grasps.
Next, we convert this approach to a generative grasp proposal model that can
be used for 6-DoF grasp proposal of single objects on a planar surface. Finally,
we show how a grasp proposal model can be applied to domestic scenarios by
introducing a reproducible pipeline for generating domestic scenes with ground-
truth information about grasps in simulation. We use this simulation environment
to train and evaluate a grasp proposal method to grasp objects on shelves and
tables.
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CHAPTER

Versatile Camera Viewpoints and
6-DoF Grasps for Grasp Quality

Prediction

In Chapter 2, we reviewed how grasp proposal for 4-DoF and 6-DoF grasps has
been approached in recent years and how intrinsic limitations in these approaches
have restricted their transferability to real-world mobile robotics applications.
Conventionally, and to simplify the search space, grasp proposals for unknown
objects are usually generated with limited DoF and from fixed viewpoints in re-
gard to a workspace. One widely studied use-case with these limitations is that
of proposing 4-DoF top-grasps on planar surfaces from a fixed, overhead camera
viewpoint [9, 10, 11, 63, 66, 113]. The resulting models are usually used with
fixed manipulators, for example, moving single objects within the workspace or
picking objects from a bin. Due to the simplified grasp representation and the
scenarios encountered in the training data, methods developed for this use-case

are not transferable to scenarios with flexible viewpoints and 6-DoF grasps.

This chapter shows how a depth-image based, 4-DoF grasp quality prediction
model for fixed camera viewpoints can be extended to 6-DoF grasps from ver-

satile and unknown viewpoints. The difference in variability for relative grasp,

42
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Prediction

l'
q) b)

Figure 3.1: Visualisation of the differences in relative grasp, camera and object
pose variety for a) 4-DoF grasps and overhead camera poses and b) 6-DoF grasps
with flexible viewpoints. The sampling boundaries for the camera placement are
visualised with the dashed, blue lines.

camera and object poses of the two different models is visualised in Figure 3.1.
We see this extension as the first step when moving from fixed workspaces with
stationary cameras and 4-DoF grasps to the application on mobile manipulators.
Furthermore, this chapter can be seen as a proof-of-concept for Chapter 4, where
we evolve this depth-image based, 6-DoF and versatile viewpoint approach to a

grasp proposal method.

We based our VGQ-CNN on GQ-CNN by Mabhler et al. [11]. GQ-CNN is a model
for grasp quality evaluation of 4-DoF top-grasps from a fixed overhead camera.
In contrast, VGQ-CNN can evaluate 6-DoF grasp proposals of objects on planar
surfaces viewed from a wide range of camera poses above the object. We introduced
the VG-dset to include these variations in camera poses and grasp orientations,

significantly exceeding the range available in commonly used depth-image-based
datasets such as [10, 11, 77].

In summary, the contributions of the work presented in this chapter are:

o VG-dset: A versatile 6-DoF grasp quality dataset including 7.2 million grasps
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over an extended range of camera poses.

o VGQ-CNN: A model capable of predicting the quality of 6-DoF grasps under

a wide range of camera poses.

o Fast-VGQ-CNN: An alternative model structure to VGQ-CNN to speed up

inference run-time.

3.1 Related work

We based VGQ-CNN on the GQ-CNN first introduced by Mahler et al. in 2017 [11].
GQ-CNN can be categorised as a discriminative, 4-DoF method (see Section 2.4).
It predicts the quality of individual grasp samples presented in an aligned depth
image. The ground-truth grasps are sampled using an antipodal grasp sampling

technique and are annotated with the robust ferrari-canny metric.

One part of the work presented with GQ-CNN is the construction of a syn-
thetic, depth-image-based dataset to train GQ-CNN, called the Dexterity Net-
work (DexNet2.0). The depth images include objects from the 3Dnet [144] and
the KIT [87] mesh datasets in stable poses on a planar surface as rendered from an
overhead camera viewpoint. The 32 x 32 px images are aligned with ground-truth
grasp poses, where the TCP of the grasp is centred, and the grasp x-axis between
the gripper plates is aligned to be horizontal in the image. The ground-truth qual-
ity of the grasps is binary and based both on the robust ferrari-canny metric [110]

and the condition of it being a collision-free grasp.

In total, DexNet2.0 consists of 6.7 million images of ground-truth grasp poses,
including almost 1,500 different 3D object models. DexNet2.0 is used to train
GQ-CNN, a CNN to predict the quality of grasp samples. It consists of two
parallel input streams, an image- and a pose stream, merged in the head end of
the model and finally produces a prediction of grasp success 9, see Figure 3.2. The
input to the image stream is an aligned depth image with a single grasp centred
and oriented to lie horizontally in the image. The input to the pose stream is
a single float value z describing the distance between the camera origin and the

TCP of the grasp. This means GQ-CNN evaluates just a single grasp at a time
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Figure 3.2: Visualisation of the GQ-CNN [11] architecture and training pipeline.
GQ-CNN consists of a CNN with two parallel streams, one for the aligned depth
image and one for the distance z between the camera and grasp TCP.

and requires an appropriately translated and rotated depth image for evaluating

each grasp.

GQ-CNN and its extensions have been widely used and referenced in the litera-
ture [15, 145, 146, 147] and a reference implementation has been made available to
use with the Robot Operating System (ROS) and Movelt! [148]. The extensions
of GQ-CNN have mostly focused on objects in clutter [22] and alternative gripper
mechanisms like suction-cup grippers [59, 60]. As such, these models maintain the

4-DoF grasp representation and are limited to top-grasps.

Another extension of GQ-CNN has been presented with a FCNN [63], which works
as a generative approach for 4-DoF grasp proposal by predicting the grasp qual-
ity for a range of height and orientation bins for each pixel in the input depth
image. The bins are pre-defined and encompass the discrete range of all possible
grasp proposals in the workspace. Although this approach improves run-time, the
necessary parameterisation to allow for 6-DoF grasps would significantly increase
the size of the output tensor as currently formulated. For example, the output
tensor would increase from 4-DoF to 6-DoF, and, if using a similar quantisation
as in [63] with 16 bins for each variable, the represented grasps for a single pixel
in the output tensor would increase from 162 = 256 for 4-DoF to 16* = 65,536
with 6-DoF. Hence, we use GQ-CNN as the basis for our extension to 6-DoF from

45



3.2.  Problem formulation

Figure 3.3: Visualisation of the coordinate frames T for the workspace wo, stable
pose s, camera ¢ and grasp g, as well as the angle w for rotating the grasp g around
its contact points. Furthermore, we show the spherical coordinates of the camera
c relative to the workspace T with the radial distance d, the inclination angle
¢ and the azimuth angle 6. Relative orientations of the grasp approach axis are
denoted with the angle to the table normal 5 and the angle to the camera principal
ray V.

flexible viewpoints as opposed to any follow-up models proposed by the original

authors.

3.2 Problem formulation

We consider the problem of predicting grasp qualities for 6-DoF grasp poses with
a parallel jaw gripper as observed from a wide range of camera perspectives. The
environment is limited to a single object placed on a planar surface, with objects in
clutter not being considered in this chapter. The goal is to train a model that can
predict the qualities of sampled grasp poses based on depth images from a wide
range of camera poses without having to retrain the model for each new camera
viewpoint. In addition, the model should be able to evaluate 6-DoF grasp poses
where the gripper approach axis is not necessarily aligned with a pre-specified fixed
axis as in 4-DoF grasps. Such a model caters to situations that involve changing
the camera pose with regard to the workspace between setups whilst also support-
ing mobile manipulators, where the relationship between camera, workspace and

object can change when performing different tasks in an environment.
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Figure 3.3 shows a visualisation of the setup. It consists of a workspace w, with
its coordinate frame origin TV sitting on top of a planar surface. The objects
are placed in the workspace in predefined, stable resting poses s [149] with s €
SE(3). Their coordinate frame T? is positioned in close proximity to the origin
of workspace coordinate frame TV°. The camera position is defined in spherical
coordinates relative to TV, with the radial distance to the workspace origin d,
the inclination angle ¢ relative to the workspace z-axis and the azimuth angle 6
rotating around the workspace z-axis. The camera principal ray points towards the
origin of T"°, and the camera x-axis is parallel to the x-y plane of the workspace,
i.e. the table surface. This orients the camera frame, T¢, such that the camera
views the table horizontally. The gripper frame, TY, is defined such that it rests
at the TCP of the parallel jaw gripper. The x-axis of TY lies between the contact
points of the parallel jaw gripper, and the z-axis denotes the direction of the final,
linear approach of the grasp point from a pre-grasp position as shown in Figure 2.1

(2) to (3).

We define the camera pose in spherical coordinates from the workspace origin
TV with d € [0.4m,1.1m], 8 € [0°,360°] and ¢ € [0°, 70°], which corresponds
to a volume of roughly 2.1m?. The limits were chosen in reference to the typical
operating volume of available mobile manipulators, e.g. PAL TTAGo robot [98] or
Toyota HSR [134] when grasping objects placed on a table. Configurations where
the camera is below or level with the planar surface, for example, when grasping
objects from a top shelf, and those with objects placed close to the edge of the

surface are excluded.

Since the quality and usability of a grasp are influenced not only by the gripper pose
in relation to the table and the object but also by the visibility of the graspable
surface from the camera, we define a set of relative angles to parameterise the
space of unique camera-object-gripper configurations. These angles are visualised
in Figure 3.3. We denote the angle between the gripper z-axis and the table normal
as (3, and the angle between the gripper z-axis and the camera principal ray as V.
Rotating the grasp around the grasp x-axis is denoted by w and does not alter the

position of the contact points.
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Dataset | Ymaz  dmin~ dmaz  Bimas

VG-dset 70° 04m 1.1m  90°
DexNet2.0 | 5.7° 0.65m 0.75m  5°

Table 3.1: Parameter overview for VG-dset and DexNet2.0. The parameters in-
clude the spherical camera coordinate limits with inclination angle ¢ and radial
distance to the workspace origin d, as well as the angle between the gripper z-axis
and the table normal, .

o .
SEEEe

Figure 3.4: Example images with possible variations of camera viewpoints in VG-
dset (upper), DexNet2.0 (middle) and an RGB representation of the corresponding
object (lower). Each column shows objects in the same 3D pose in all rows, with
a bottle, doughnut, apple, carton and mug appearing from left to right. The same
normalisation boundaries for visualisation were applied to all depth images with
[0.4m; 1.3m)].

VG-dset

Dex-Net2.0

RGB

3.3 Dataset

We created a new 6-DoF grasp quality dataset called VG-dset to satisfy the speci-
fications in our problem formulation in Section 3.2. VG-dset exceeds the sampling
ranges for multiple parameters in DexNet2.0 substantially, as shown by the pa-
rameter ranges used for the two datasets in Table 3.1 and the example images

in Figure 3.4. We based VG-dset on the pre-sampled antipodal grasps g € G(0)

48



3.83. Dataset

included in DexNet2.0 [11], where the object meshes 0o € O were taken from the
KIT [87] and 3DNet [144] mesh datasets.

Dataset preparation for VG-dset consisted of dataset rendering and sampling. Dat-
apoints were created throughout the dataset rendering process by rendering images
and storing associated grasp poses and quality values. A total of 131 million grasps
were stored in the process, providing a baseline that could be sampled for differ-
ent purposes. The dataset sampling process was necessary since certain minimal
ratios, e.g. between ground-truth negative and ground-truth positive grasps, had
to be satisfied to ensure successful training of VGQ-CNN. The process could also
be used to allow for different dataset compositions, for example, excluding certain
camera or grasp configurations. While the dataset generation process could be
adjusted to generate a single, balanced dataset to be used for training, the time-
consuming process of rendering the data and checking the grasps would have to

be repeated each time a different dataset composition was desired.

3.3.1 Dataset rendering

We based our dataset rendering algorithm on the DexNet2.0 implementation by
Mabhler et al. [11] available on Github! with key changes in the camera poses, grasp
alignment and grasp representation. Each object mesh o € O has an average of 9
stable resting poses s € §(0). When rendering the dataset, we repeated the steps
detailed in Algorithm 3.1 for each stable resting pose of each of the 1492 object

meshes.

We sampled the camera coordinates by uniformly sampling the radial distance d
between the camera and the workspace origin, the azimuth (or azimuthal) angle ¢
and the inclination (or polar) angle ¢ individually. We used d, 0 and ¢ to define
the translation p° of the camera origin in workspace coordinates and constructed
the camera transform T} to position the camera at p® and view the workspace
origin centred and upright (see Figure 3.3). We rendered and saved a depth image

based on the camera transform, as can be seen in Algorithm 3.1, lines 2-4.

https://github.com/BerkeleyAutomation/dex-net

49


https://github.com/BerkeleyAutomation/dex-net

3.83. Dataset

Algorithm 3.1 Generating VG-dset

1: for 1:n do
2 Sample d, 0 and ¢ for camera origin p® from uniform distributions
3 Set camera transform TV to camera origin pY° pointing towards (0,0, 0)
4: Render and save depth image Z from T}°
5 for each grasp g € G(0) do
# Apply random gripper rotation around grasp x-axis

6: R, =R, Rx(w), w~U(0,2m)
7: if g"°.z is pointing toward positive wo.z then
# Grasp coming in from under the planar surface

8: R, =R, Rx(w),w=m

: end if
10 if linear approach of g collides or €;(g) < § then
11: Set success of grasp o(g) =0 # Negative grasp
12: else
13: Set success of grasp o(g) =1 # Positive grasp
14: end if
15: u(g),v(g) = Project(Ts, K) # Project grasp into image
16: 2(g¢) = [Ip; | # Calculate grasp distance to camera
17: Save u(g), v(g), 2(¢9°), r(¢°) and o(g)
18: end for
19: end for

Moving away from top-grasps and allowing for a variety of grasp orientations rep-
resents a challenge to both the grasp preparation and representation. For station-
ary cameras and top-grasps, some sense of alignment is usually assumed between
the grasp orientation and the camera position. In DexNet2.0 [11], this was re-
alised by rotating the gripper around w to minimise [ and discarding grasps with
B > 5°. By projecting the gripper TCP and gripper x-axis into the image plane
and rotating/cropping the image accordingly, Mahler et al. [11] reduced the grasp
representation to an aligned image and the distance between the grasp 79 and the
camera T°. This is similar to the reduced grasp representations in [9, 12, 14], all

defined as positions and orientations in the 2-D image plane.

Since VG-dset should include 6-DoF grasps, we aimed to include grasps with the
same grasp x-axis and varying approach angles. For example, a top-grasp rotated

by 90° around w would end up grasping the object parallel to the table. Ideally, a
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model trained on VG-dset should be able to predict the quality of both grasps and
thereby select all good grasps for the path planning system of a robot to choose
from. We augmented the data with a variety of grasp orientations in VG-dset by
applying a random rotation around w to the grasps with each new camera pose.
We flipped grasps approaching from under the table (i.e. with § > 90°) by rotating
them by a further 180° around w, since they would likely cause a collision with the
table, see lines 6-9 in Algorithm 3.1.

We generated this variety in grasp orientations to provide flexibility to various
sampling schemes (see Section 3.3.2) and to simplify constraining the final grasp
orientation. Note that rotating the gripper around w does not change the robust
Ferrari-Canny metric eg(g) [110] of a given grasp, and therefore does not influence
the grasp success g(g) aside from collisions checked after the final grasp orientation
has been decided. As in DexNet2.0, we set the robustness threshold dg = 0.002.

Similar to DexNet2.0 [11], we then proceeded to collision checking by setting the
grasp success for grasps colliding with the object or table to o(g) = 0 and thereby
marking the grasp as ground-truth negative, see lines 10-14 in Algorithm 3.1. After
collision checking, the gripper TCP was projected into the image plane to calculate

its image coordinates (u,v).

We rendered n = 100 images Z for each stable resting pose s € S(o0) for each of
the 1492 object meshes o € O, while n = 50 for the DexNet2.0 dataset generation.
Each image Z contained a single object o in one of an average of 9 stable resting
poses s, and up to 100 ground-truth grasps g. This resulted in a total of 130.8
million aligned images, i.e., images with a single grasp centred and oriented to
lie horizontally in the image, which we refer to as grasping data points in the

following.

Since our setup included a wider range of camera poses and grasp orientations,
increasing n and sampling more images Z per stable pose s allowed us to cover
the increased parameter space in the resulting images. We then sub-sampled the
grasping data points to ensure specific dataset balances, reducing the number of

grasping data points in the dataset to a comparable size of DexNet2.0.
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3.3.2 Dataset sampling

The 130.8 million grasping data points from the dataset rendering stage needed
to be sub-sampled to generate VG-dset, a dataset for training VGQ-CNN. This

sub-sampling process of the grasping data points had three purposes:

1. Filtering grasp and/or camera configurations for training VGQ-CNN; e.g.
removing grasps with W > 90°.

__ F#ground truth positive grasps
r =
F#all grasps
between the table normal and the grasp approach 3, since it is naturally

2. Adjusting the positivity rate p over the angle

decreasing for increasing [ which affects the model performance.

3. Balancing the number of grasps across the camera and grasp configurations

since it affects the model performance.

We found the positivity rate pr (2.) and the number of grasps (3.) across the
camera and grasp configurations substantially influenced model performance. For
example, training a model on the native distribution in the rendered dataset, as
shown in Figure 3.5 a), led to a high error rate when trying to predict ground-truth
positive grasps due to the overall low positivity rate pr. Furthermore, there were
very few examples of top-grasps available, causing a drop in performance when
using the model to predict them. We decided to use a sub-sampling process to
balance the dataset and achieve consistent performance. We discuss the possi-
bility of using a weighted loss function rather than sub-sampling the dataset in
Section 3.7.

The sub-sampling process was not needed in DexNet2.0 [11] since their dataset
parameters only included a limited range for the parameters like U and 5 (see
Table 3.1 and Figure 3.1) in which the grasping points were naturally balanced
for the configurations mentioned above. The large size of the rendered dataset
enabled differing dataset compositions to be sampled and their effect on the model
performance to be tested. We started by removing grasps with ¥ > 90° from the
dataset. This maximum value was set so that all remaining grasps approach the

final grasp pose in the direction of the camera principal ray. This selection criterion
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Figure 3.5: Positivity rate pr and grasp distribution over 3 a) before and b) after
sampling.

excluded grasps with a negative approach axis pointing towards the camera origin,

as they are more likely to be occluded by the object.

Both the positivity rate pr and the total number of grasps across the camera
and grasp configurations affect model performance. The native distribution in the
rendered dataset can be seen in Figure 3.5 a). The positivity rate pr declined with
increasing 3, since grasps with a higher 3 tend to collide with the table more often.
The native, rendered dataset had a varying positivity rate with an overall pr of

pr = 0.06, while the positivity rate for DexNet2.0 is prpeznes = 0.19.

In the rendered dataset, the number of grasps also increased with increasing 5, due
to the random sampling of the gripper rotation (around w) when setting the grasp
orientation in Algorithm 3.1, lines 6-9. When the native distribution of the dataset
was used for training, our tests yielded models that suffered in performance due
to this imbalance, for example, classifying all grasps with a high 3 as negative due

to an insufficient balance of ground-truth positive examples.

For the reasons above, we adjusted the positivity rate pr by sub-sampling nega-

tive/positive grasps based on the sampling rate sample_rate,. The goal of ad-

93



3.83. Dataset

justing the positivity rate was to match VG-dset’s pr to the positivity rate in
DexNet2.0 (with prpesner = 0.19). Since pr is dependent on 3, we calculated the
sampling rate for sub-sampling negative grasps as:
15 X pr(AB) — pr(AB)

1—pr(AB)

where, AS was varied in steps of 5°. The sub-sampling rate for positive grasps was

1
sample_rateneg

sample_rateney(AP) =

set to sample_ratey,s = . Subsampling rates of sample_rate, > 1
were set to 1, as we did not introduce duplicates or render new images during the
dataset sampling stage. We then randomly skipped positive and negative grasps

based on their sampling rate for the given .

Additionally to the imbalance of the positivity rate, the number of grasping data
points for different camera-grasp configurations influenced the network’s perfor-
mance. For example, substantially more grasping data points had a large angle
B between the table normal and the grasp approach axis due to the 3D represen-
tation of the sampled ground-truth grasps. However, this led to an imbalanced
distribution and comparably few examples of top-grasps. This made it difficult
for a model trained on such an imbalanced dataset to provide good predictions for
top-grasps. To counter that imbalance in grasp distribution over the camera-grasp
configurations, we sub-sampled the remaining grasps after adjusting the positivity
rate pr to have a uniform sample size over ¢ and . The resulting dataset VG-dset

had balanced positivity rates and distribution of grasps as shown in Figure 3.5 b).

The process of dataset sampling substantially reduced the size of our rendered
dataset from 130.8 million to 7.2 million grasping datapoints. However, the 7.2
million grasping datapoints are still more than those available in the DexNet2.0
dataset with 6.7 million [11]. In general, any dataset should include enough sam-
ples to prevent a supervised model from overfitting the presented samples during
training. To assess the risk of overfitting when using different dataset sizes, we
conducted an ablation study in Section 3.5.3 by training models on datasets with a
different number of training grasps. We found that training VGQ-CNN on datasets
with 1 million or more grasping data points showed a constant performance. In
comparison, training on a dataset with fewer than 1 million grasping data points

showed signs of overfitting. Hence, we concluded that the 7.2 million grasping
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‘ Total ‘ Train Validation  Test

1.05m 0.12m 0.13m
5.82m 0.67m 0.72m

1.3m
7.2m

# Images
# Grasps

Table 3.2: Number of images and grasps in the train, validation and test split of
VG-dset.

Centred Convolutional layers Fully Connected
depth image Va, layers
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R Prediction
of grasp

success
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Grasp Pose

Z .
r i I 7 I

Figure 3.6: Architecture of VGQ-CNN. The model consists of an image stream
(upper) and a pose stream (lower) combined in a merge stream to predict grasp
success. The input image is a 32 x 32 pixel depth image, and the pose is given
by the distance z between the camera and the gripper TCP, and the orientation
quaternion, r € R* where |r| = 1. It outputs a prediction of grasp success § €

0, 1].

data points in VG-dset were sufficient for training VGQ-CNN and could even be

sub-sampled further if necessary.

We divided both DexNet2.0 and VG-dset into an object-wise training, validation
and test split of 80-10-10, using the same objects for the test sets in both DexNet2.0
and VG-dset. This allowed us to compare performance between VGQ-CNN and
GQ-CNN on the same test objects in Section 3.5.1. An overview of the split

composition with the number of images and grasps can be seen in Table 3.2.
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3.4 Model architecture
We used VG-dset to train VGQ-CNN. The architecture of VGQ-CNN, a CNN

with two parallel streams, is shown in Figure 3.6. To represent 6-DoF grasp poses
for VGQ-CNN, we made two key adjustments compared to other image-based 4-
DoF grasp quality and grasp proposal models: encoding the grasp orientation as a

quaternion and providing the grasp orientation explicitly as an input to the model.

In DexNet2.0 [11], as well as in other image-based 4-DoF grasp predictors [9, 10,
12, 23, 77], the TCP of each grasp proposal is projected into the image to be
represented in the 2-D image plane, for example, as an oriented rectangle. In
these approaches, the grasp orientation is constrained to some arbitrary axis like

the camera principal ray and not explicitly specified as a model input.

Representing 6-DoF grasps with grasp orientations not necessarily aligned with
an arbitrary axis (such as the camera principal ray) requires an alternative grasp
specification for our model. We defined the full 6-DoF grasp representation using
a 3D position encoded as the grasp image coordinates (u,v) and the distance z
between the camera and the gripper TCP, as well as a 3D orientation encoded
as a quaternion r € R*. While we used quaternions as orientation representation
(e.g. similar to VGN [16]), this could be exchanged with other representations
such as Euler angles. Given that the input quaternion represents an orientation,

it is constrained to be a normalised unit quaternion, with |r| = 1.

We implicitly specified the grasp image coordinates, (u,v), in the image’s centre.
This was achieved by projecting the gripper TCP into the image Z, cropping the
image around the grasp coordinates (u,v) and subsequently resizing it to a 32 x 32
pixel image. The two remaining variables of the 6-DoF grasp, the distance of the
TCP to the camera, z, and the grasp quaternion, r, were provided to VGQ-CNN

as an input in the pose stream, see Figure 3.6.

We kept the general model structure of GQ-CNN, consisting of parallel image-
and pose-streams with convolutional and fully connected layers. The two streams
were combined into a single stream towards the head end of the model. Apart

from including the quaternion r as an extra input, we added an additional fully
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connected layer with 1024 nodes before the last layer. This extra layer added
representational capacity to account for the additional grasp information in the
pose stream and increased model performance by 4% as shown in Section 3.5.3.
VGQ-CNN has a total of 6.5 million trainable parameters, as compared to GQ-

CNN which has a total of 5.4 million trainable parameters.

3.5 Experiments

We trained both VGQ-CNN and GQ-CNN for 150 million training iterations on
VG-dset and DexNet2.0, respectively. One epoch of training on a DexNet2.0-
sized dataset is equivalent to approximately 6 million training iterations. The
training took approximately 23 hours to complete on a single NVIDIA RTX 2060
GPU. We used a stochastic gradient decent optimiser with a momentum rate of
0.9, a base learning rate of 0.001 decaying every 4 million iterations by 0.95, a

L2-regularisation of 0.0005 and sparse categorical cross-entropy loss.

In standard fashion, the depth images and z values were normalised before being
input into the model. The values of the unit quaternion r were not normalised
again for the model input since they naturally ranged within —1,1. We checked
performance on the validation split every 1 million iterations. We used the bal-
anced accuracy metric to evaluate the resulting models, which is calculated as the
mean of True Positive Rate (TPR) and True Negative Rate (TNR).

T
TPR= ———x1
B=1ppn < 100%
TN
TNR=———x1
R=pnrp <1007
TP TN
Balanced Accuracy = R;R

with T'P being True Positives, i.e., ground-truth positive grasps classified as pos-
itive, FFN being False Negatives, i.e., ground-truth positive grasps classified as

negative, etc.
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We motivate using the balanced accuracy metric due to the high imbalance in the
ground-truth data. A significant imbalance between positive and negative grasps
can make judging performance based on a standard accuracy metric difficult. For
example, a model classifying all grasps as negative achieves an accuracy of 90% if
a dataset has a positivity rate of pr = 0.1 and 10% if a dataset has a positivity
rate of pr = 0.9. Using the balanced accuracy metric instead yields a balanced
accuracy of 50% with TPR = 0% and TN R = 100% in both cases. We chose the
best model according to the balanced accuracy metric of the validation results for

all our evaluations.

In the following subsections, we investigated the performance of VGQ-CNN on a
test split of VG-dset and compared the performance between GQ-CNN and VGQ-
CNN on a dedicated test set only including top-grasps and overhead camera poses
similar to DexNet2.0 to provide a fair basis for comparison. Our results showed
the robustness of VGQ-CNN to varying camera poses, demonstrating that VGQ-
CNN does not require retraining when moving the camera within the range of
the parameters specified in Table 3.1. In a set of ablation studies, we showed the
effects of dataset size and the extra fully-connected layer on VGQ-CNN.

3.5.1 Overall performance

To measure the overall performance, we evaluated VGQ-CNN on the test split
of VG-dset (0.7 million grasps), and GQ-CNN on the test split of DexNet2.0
(0.7 million grasps). In addition, to compare the performance of VGQ-CNN and
GQ-CNN, we evaluated them on a separate, new dataset with 0.3 million grasps
named Top Grasp Testset (TG-tset). The test samples in TG-tset represent the
intersection of possible configurations in VGQ-CNN and GQ-CNN, enabling us to
compare both algorithms for these restricted input scenarios. The objects in TG-
tset have not been seen by VGQ-CNN or GQ-CNN during training since they are
not included in the training or validation sets of DexNet2.0 and VG-dset. TG-tset
was rendered using the grasp and camera parameters of DexNet2.0 as detailed in
Table 3.1.

Due to the different input requirements in the models, images were centred and
rotated before being input to GQ-CNN and only centred for use in VGQ-CNN.
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Model Evaluation | TPR TNR Balanced
dataset accuracy

GQ-CNN  DexNet2.0 | 70.0% 89.1%  79.5%
VGQ-CNN  VG-dset | 73.9% 90.2%  82.1%
GQ-CNN TG-tset | 63.6% 89.6%  76.7%
VGQ-CNN  TG-tset | 64.6% 85.7%  75.2%

Table 3.3: Results for testing VGQ-CNN and GQ-CNN on their own as well as a
common evaluation set.

Note that the collision checking for VG-dset differed slightly from the approach
used for DexNet2.0. In DexNet2.0, grasps were classified as collision-free if any
of four linear approaches within +10° around w were collision-free. In VG-dset,
grasps were classified as collision-free only if a linear approach along the grasp
approach axis (grasp z-axis) was collision-free. To compare GQ-CNN and VGQ-
CNN, we excluded grasps from TG-tset which differ in the outcome of the collision
checking by these two methods, corresponding to 0.3% of all generated grasps.

We calculated TPR, TNR and balanced accuracy for all evaluations. The results
can be seen in Table 3.3. The TNR for all evaluations was higher than the TPR,
which reflects the positivity ratio pr in the training datasets, i.e. more negative
than positive ground-truth datapoints, and led to a more conservative grasp quality
estimation. We note that the balanced accuracy result for GQ-CNN with 79.5%
was lower than the accuracy of 85.7% reported in [11]. The (unbalanced) accuracy
of GQ-CNN in our experiments was 85.5%, exhibiting a very similar performance
to the original results and thereby validating the usage of the model trained with

the reference implementation? as a good representation of GQ-CNN’s capabilities.

VGQ-CNN exhibited robust performance on VG-dset with a balanced accuracy of
82.1%), while being able to generalise to a wide range of camera poses and 6-DoF
grasp poses. On the much-restricted range of camera and grasp poses in TG-tset,
VGQ-CNN achieved competitive performance with a balanced accuracy of 75.2%
compared to GQ-CNN’s 76.7%, showing that the adjustments in training data

’https://github.com/BerkeleyAutomation/gqcnn
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Performance of VGQ-CNN over camera pose variations
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Figure 3.7: Performance of VGQ-CNN over camera pose variations with TPR
(left) and TNR (right), tested on an object-wise test split of VG-dset.

and grasp representations did not result in a substantial negative impact on the

performance of VGQ-CNN when tested on top-grasps with overhead cameras.

3.5.2 Performance over the camera parameter space

In addition to being comparable to GQ-CNN on the top-grasps in TG-tset, VGQ-
CNN also performed well across the varied camera poses of VG-dset. We specifi-
cally examined the TPR and TNR in relation to the spherical coordinate variables
of the camera, the radial distance d and the inclination angle ¢ and show the

results in Figure 3.7.

As in the overall results, the TNR was constantly higher than the TPR, as expected
due to the positivity rate pr in the training data. Furthermore, both TNR and
TPR were consistent over the range of camera poses, with no visible outliers or
trends. Over the full target range of camera poses with steps of Ad = 0.05m and
Ap = 5°, VGQ-CNN attained a mean TNR = 90.2% with a standard deviation of
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Figure 3.8: Influence of the dataset size with the number of grasping data points
used for training VGQ-CNN on model performance. A low number with fewer
than 1 million grasping data points exhibits signs of overfitting with a reduced
balanced accuracy on the held-out test set.

0.9% and a mean TPR = 73.9% with a standard deviation of 3.5%.

3.5.3 Ablation studies

For further insight into the model performance, we conducted a set of ablation
studies on the effect of the dataset size on VGQ-CNN and the extra fully-connected
layer in VGQ-CNN. Note that all models were trained from scratch for 10 million

training iterations.

Each model configuration was trained 8 times with the shading in Figure 3.8
corresponding to the 95% confidence interval over the results to account for the
repeatability of the training procedure. The datasets for the experiments of the
dataset size influence were sampled uniformly from VG-dset. While the training
and validation data differed for all models in the dataset size experiments, they

were tested on the same test split of VG-dset to ensure comparability.

Figure 3.8 shows how the number of training samples affected the trained model

performance. The minimum number of training samples for reasonable model
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performance is relevant, especially when evaluating different sampling strategies in
Section 3.3.2, as they can result in fewer training samples being available. When
training the model with fewer than 1 million grasping data points, the model
showed signs of overfitting, where the accuracy on a test set of 62 thousand grasping
data points dropped to roughly 65%. Training VGQ-CNN with 1 million grasping
data points or more exhibited stable results with a mean balanced accuracy of 77%.
Note that a balanced accuracy of 50% can be achieved by classifying all grasps
as positive or negative and hence was chosen as the minimum visible balanced

accuracy in Figure 3.8 and Figure 3.10.

Adding a second fully connected layer with 1024 nodes before the last layer, as
described in Section 3.4, increased balanced accuracy from a mean of 72.5% with a
standard deviation of 1.8% to a mean of 76.7% with a standard deviation of 1.1%.

3.6 Fast-VGQ-CNN

While discriminative methods like VGQ-CNN have been shown to work for gener-
ating successful grasp proposals, they typically incur high latency when proposing
grasps. This can be a major disadvantage for deployment on real robots, as ex-
plained in Section 3.1. We investigated an alternative model architecture for time-
critical applications with the Fast Versatile Grasp Quality Convolutional Neural
Network (Fast-VGQ-CNN). Our alternative model architecture can evaluate mul-
tiple grasps in a single forward pass, which we show can decrease latency when

evaluating multiple grasps on a given object.

3.6.1 Model architecture

Figure 3.9 shows the differences in model architecture between VGQ-CNN and
Fast-VGQ-CNN, which enabled the latter to predict multiple grasp proposals in a

single forward pass.

Instead of cropping the depth images such that the TCP is centred in the image,
as for VGQ-CNN, we decoupled the grasp centre from the image by turning the
image coordinates of the grasp centre into explicit inputs to the model. During

training, we applied random cropping [150] of the image around the grasp centre,
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Figure 3.9: Comparison of pipelines for grasp quality evaluation with VGQ-CNN
and Fast-VGQ-CNN. For VGQ-CNN, k£ images have to be generated from a single
image and input to the model with k£ poses. For Fast-VGQ-CNN, the image is
processed once and input into the image stream of the model. The output is then
input to the rest of the model together with & poses.

causing the grasp not to be centred in the image. We specified the full 6-DoF
grasp pose with g € (u, v, z,r) as an input to the pose stream of Fast-VGQ-CNN.

Applying random cropping to the image ensured grasp- and object placement
variety within the image during training and resulted in a model that can evaluate
grasp proposals for varying grasp locations within the image. The coordinates of

the grasp centre in the cropped and resized image (u,v) were sampled uniformly.

By introducing the new grasp representation, as well as the randomised grasp
image coordinates (u,v) during training, we could split the image stream, with
its high-dimensional and computationally intensive convolutional layers, from the
rest of the model during inference. The image stream could be used as a shared
encoder for multiple grasps visible in that image, processing the image once and
using the output for a batch of k£ grasp poses. Utilising shared model layers to
reduce run-time has been proposed and used for other model structures, e.g. for

various object detection models [115].

The new architecture also changed the requirements for image pre-processing. For
both VGQ-CNN and Fast-VGQ-CNN, the starting point is a single 300 x 300 pixel
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Figure 3.10: Influence of the maximum grasp distance k = max(|ul, |v|) to image
centre on model performance.

depth image and a variable number of grasp poses k, as indicated in Figure 3.9.
With VGQ-CNN;, for each of the k£ grasps, the image had to be centred, cropped
and resized, resulting in k centred 32 x 32 pixel depth images and k grasp poses
g € (z,r). In contrast, for Fast-VGQ-CNN, the original image had to be cropped
and resized just once, assuming all k grasp samples can be visible in a single 32 x 32
pixel depth image. The grasp centre coordinates (u, v) for each of the k grasp poses
were determined relative to the single image. Therefore, the model input comprised
a single 32 x 32 pixel depth image, and k grasp poses g € (u,v, z,r). In both pre-
processing pipelines, the image and pose values were normalised, excluding the

quaternion, which was normalised as a unit quaternion with |r| = 1 already.

For prediction, the resulting images and poses were input to the model. For
VGQ-CNN, the k& depth images 7 and k grasp poses went into a single, multi-
stream model. For Fast-VGQ-CNN, the single, depth image Z went into the shared
encoder while the resulting tensor, in combination with the k£ grasp poses, was

input to the remaining fully connected layers of the model.
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3.6.2 Performance

We hypothesised that there would exist a trade-off between the speed-up that
can be achieved with Fast-VGQ-CNN and its performance compared to VGQ-
CNN. This inherently relates to the spread of the distribution of grasp centre
coordinates in the image. We parameterised the range over which the grasp centre
coordinates (u,v) were uniformly sampled in the image by the maximum distance

k = max(|ul,|v]) between the grasp centre and the image centre.

We varied « for training Fast-VGQ-CNN and evaluated its performance to inves-
tigate the trade-off between the number of grasps that could be presented in an
image, which is connected to the run-time of that model for grasp proposal, and
its balanced accuracy. The base dataset for these experiments was VG-dset, with
different values of x applied to the same train-validation-test split. All models
were trained from scratch for 10 million training iterations, in the same manner

as the models from our ablation studies in Section 3.5.3.

Figure 3.10 shows a reduction in balanced accuracy as the displacement of the
grasp centre in the image increases. For k = Opzx, Fast-VGQ-CNN reached a
balanced accuracy of 77%, similar to VGQ-CNN’s performance with the same
number of training iterations shown in our ablation studies in Section 3.5.3. Fast-
VGQ-CNN’s performance dropped to 60% for grasps uniformly distributed over
the full range defined by k = 16pzx.

3.6.3 Speed

This reduction in performance with x = 16px should come with a speed-up based
on the pipeline adaption, which substantially reduces the number of computations
for a single image. To test this, we measured the inference time of VGQ-CNN and
Fast-VGQ-CNN on a machine with a 2.6 GHz Intel Core i7-10750 CPU and an
NVIDIA GeForce RTX 2060 GPU. Tensorflow 1.15 was used for all experiments.

We ran the tests with differing numbers of grasps, k € {32,64, 96,128}, as batch
sizes and measured inference as the mean over 1000 runs. All image pre-processing

steps were implemented with the pillow® library in Python. While the inference

3https://pillow.readthedocs.io/
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3.7. Discussion

Prediction
k 32 64 96 128

CPU VGQ-CNN | 41 72 103 138

CPU Fast-VGQ-CNN | 11 11 12 12
GPU VGQ-CNN 8 12 17 21

GPU Fast-VGQ-CNN | 8§ 8 8 8

Pre-processing

VGQ-CNN 7 14 21 28
Fast-VGQ-CNN [ 0.3 05 0.6 0.8

Table 3.4: Inference time [ms| for VGQ-CNN and Fast-VGQ-CNN.

times could be reduced further by implementing all code in a lower-level program-
ming language, we were mainly interested in the relative speed-up of Fast-VGQ-
CNN compared to VGQ-CNN. The resulting inference times for prediction and

pre-processing can be seen in Table 3.4.

The speed-up of Fast-VGQ-CNN relative to VGQ-CNN increased as we raised
the number of grasps predicted per batch, k. The Fast-VGQ-CNN pre-processing
pipeline is up to 35 times faster than the pre-processing for VGQ-CNN, taking

just 0.8ms to preprocess 128 grasps.

Of special interest when working with devices without a specialised GPU, Fast-
VGQ-CNN could predict 128 grasps within 12ms, while VGQ-CNN exhibited a
substantial increase in runtime for the prediction of more grasps taking 138ms to
predict 128 grasps on a CPU. When combined with an efficient grasp sampling
strategy, Fast-VGQ-CNN could enable real-time grasping.

3.7 Discussion
VGQ-CNN was based on GQ-CNN with adaptations to the training data and grasp

representation to extend the capabilities of the model from 4-DoF top-grasps and
overhead cameras to 6-DoF grasp poses and a wide range of camera poses. VGQ-

CNN exhibited a consistent performance over the space of camera pose variations
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when varying the radial distance of the camera d and the inclination angle ¢
in Figure 3.7. On top of that, when tested on top-grasp viewed from overhead
cameras, the performance of VGQ-CNN was comparable to GQ-CNN, as shown
in Table 3.3. This showed that the aforementioned adaptions did not negatively

impact performance on the baseline.

When training VGQ-CNN, we identified sensitivities to certain dataset distribu-
tions that could prohibit the successful training of models. In particular, we found
the positivity rate and the number of grasps in relation to the angle between the
table normal and the grasp approach, 3, to influence the model outcome substan-
tially. As shown in Section 3.3.2 and Figure 3.5, the native, unsampled dataset
featured an increase in the number of grasps and a decrease of positivity rate pr
when increasing 5. This led to a trained model predicting all grasps as negative

due to an insufficient number of ground-truth positive samples.

By balancing both the positivity rate and the number of grasp samples over the
range of 3, we managed to achieve consistent performance over the whole param-
eter space. This showed a sensitivity of VGQ-CNN regarding dataset balance.
Such a sensitivity could also be mitigated by introducing a weighted loss function
to VGQ-CNN. However, due to the multi-dimensional imbalances of the positivity
rate over both # and ¢ in the base dataset, the resulting loss function would be
substantially more complicated than the current binary cross-entropy loss used for
VGQ-CNN. Hence, we decided to adjust the training data for this work instead.

Overall, our results showed that by using appropriate training data, VGQ-CNN
can robustly handle the different viewpoints represented in the depth images. Ulti-
mately, this enables using VGQ-CNN from different camera viewpoints, which are
flexible and not limited to being directly above the workspace. Scenarios in which
this is valuable can include those using multiple cameras or having to move the
camera in a scene. In particular, varying camera viewpoints are encountered by
mobile manipulators where the transform between the workspace and the camera

(mounted on the robot) T is not specified initially.

VGQ-CNN presents a quality prediction method for evaluating grasp candidates

individually in a discriminative grasp proposal method. Such discriminative meth-
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ods often have a disadvantage in run-time compared to generative methods, which
directly regress to grasp proposals, since discriminative methods have to sample
and evaluate each grasp candidate individually [5, 8. In order to minimise the in-
ference time of discriminative methods, one has to implement efficient algorithms
for both sampling and evaluating candidates. We showed in Section 3.6 how a
speed-up of VGQ-CNN can be achieved by using a shared image encoder and
making coordinates of multiple grasp candidates an explicit variable in the model

input.

Although we showed that this reduced inference times for Fast-VGQ-CNN (see
Table 3.4), it also reduced the balanced accuracy of the model when increasing
r and thereby the number of grasp candidates that can be presented in a single
forward pass (see Figure 3.10). There is an open question about the balance of the
accuracy and the run-time of such algorithms and whether both can be improved
simultaneously. In addition to achieving this balance, using VGQ-CNN or Fast-
VGQ-CNN in a grasping pipeline also required an efficient sampling approach in
order to generate acceptable inference times. While there are different sampling
algorithms available for 6-DoF grasps [21, 24, 38, 46, 81, 151], it seems that overall
generative methods are superior in terms of computational efficiency, e.g. [16, 17,
20] and research has mostly shifted towards such generative methods in recent

years [5, 8].

3.8 Conclusion

In this chapter, we presented VGQ-CNN, a model for predicting the quality of 6-
DoF grasps as observed from a wide range of camera poses. Removing limitations
on grasp orientation and camera pose in previous methods [9, 11, 14, 23, 62, 73] and
available grasp datasets [10, 11, 77] allowed for VGQ-CNN to predict the quality
of 6-DoF grasps from a wide range of camera poses. The transform between the
camera and the object workspace T} does not need to be defined in advance and is
not limited to configurations like overhead cameras. This can be especially useful
when working with mobile manipulators, which change the relationship between

the camera and the object when they move.
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We showed in Section 3.5.1 how VGQ-CNN exhibited consistent, high performance
for varying camera viewpoints while not reducing performance for scenes with top-
grasps and overhead camera poses. We take three important insights from these
results: (i) A depth-image-based method using a CNN can adapt to different cam-
era viewpoints. These different viewpoints change the appearance of the depth
images significantly, as can be seen when comparing the data in VG-dset to the
overhead depth images in DexNet2.0 in Figure 3.4. (ii) Encoding the 6-DoF grasp
pose in the form of an implicit grasp centre in the image, a distance to the grasp
and, most importantly, a quaternion r € R*, where |r| = 1 is a suitable representa-
tion when learning the quality of grasp candidates. (iii) The balance of the dataset
in terms of positivity rate and relative grasp angles has to be taken into consider-
ation in order to ensure successful training of a versatile grasp quality prediction
model like VGQ-CNN. We discussed the reason for this sensitivity in Section 3.7

and implemented sampling strategies in Section 3.3.2 to enable successful training

of VGQ-CNN.

Ultimately, due to the run-time disadvantages of discriminative approaches, we did
not pursue these approaches further. Instead, we used the findings in this chapter
to construct a generative grasp proposal method, as described in the following

chapter.
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CHAPTER

GP-net: Flexible Viewpoint
Grasp Proposal

Moving from a discriminative grasping approach, like the VGQ-CNN presented in
Chapter 3, to a generative approach can have major advantages in run-time [5,
7] because each grasp does not have to be sampled and evaluated individually.
Sufficiently fast run-time can enable closed-loop control [12]. While this advan-
tage already exists in 4-DoF tabletop scenarios, it becomes substantially more
pronounced in the context of 6-DoF grasp proposals from unknown camera view-

points due to the increased search space.

Such unknown camera viewpoints in relation to the workspace are encountered
in domestic environments, as described in Section 1.2. Applying a 6-DoF grasp
proposal algorithm then often requires an estimation of the camera-to-workspace
transform TV° [16, 17] or object segmentation to guide the grasp proposals [20, 24].
The pre-processing steps required to enable these solutions in setups with unknown
camera viewpoints and unknown objects increase the runtime of algorithms and

add a reliance on the accuracy and reliability of such pre-processing steps.

In this chapter, we present a generative approach to 6-DoF grasp proposal from
flexible viewpoints with a FCNN model called the GP-net. It can propose 6-DoF

grasps for single objects in the entire scene representation without needing an
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Chapter 4. GP-net: Flexible Viewpoint Grasp Proposal

additional workspace definition. In other words, the model learns to differentiate
between graspable and non-graspable surfaces and does not require the definition
of a grasping workspace or object segmentation to guide grasp proposals to the
object. For example, GP-net can be used to allow mobile manipulators to grasp

unknown objects from planar surfaces like tables or the floor.

Similar to some depth-image-based generative 4-DoF approaches [12, 23], GP-net
encodes grasp proposals in the form of a dense output tensor which specifies a
prediction of grasp success g, orientation r and width W for each pixel in the input
image. It thereby presents a solution for end-to-end learning for generating grasp
proposals solely based on the depth image of a camera. We utilise a contact-based
grasp anchor for the grasp representation as suggested by Sundermeyer et al. [20],
which we found to increase the grasp performance substantially in our ablation
studies (see Section 4.5.3).

In a real-world experiment using the 49 objects from the EGAD evaluation set [74]
with a PAL TIAGo manipulator, we compared GP-net against VGN and GPD.
We chose those models based on their usage as benchmark approaches across a
wide number of papers in the field [17, 21, 38, 46]. GP-net achieved a grasp success
of 54.4%, performing better than the VGN with 51.6% and better than the GPD
with 44.2%. Importantly, GP-net achieved those results without requiring any of
the pre-processing steps required for VGN and GPD. This enables GP-net to be
used in scenarios with unknown camera-workspace transforms and without relying
on correct results of object segmentation techniques. Additionally, GP-net was
competitive in terms of runtime, especially when considering the pre-processing

steps required for proposing grasps with VGN and GPD in our experiment.
The contributions presented in this chapter can be summarised as follows:
o GP-net: A model to propose 6-DoF grasps for single objects with a parallel-

jaw gripper from unknown camera viewpoints without specifying the workspace

or running table segmentation to filter grasp poses.

o A ROS package to run GP-net and generate grasp proposals from a depth

camera.
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o A procedure for generating a dataset to train GP-net or alternative model
architectures featuring ground-truth grasps observed from unknown and flex-
ible camera viewpoints. We make our code and dataset publicly available?

so it can be used to train GP-net to adapt to different robots or grippers.

4.1 Related work

GP-net is a model to generate 6-DoF grasp proposals from flexible viewpoints and
can be used for single objects on planar surfaces. Multiple potential solutions
exist to such a problem, but these can only be rated against each other by consid-
ering their advantages, disadvantages and performance on a common benchmark
in simulated or real-world experiments. As described in Section 2.2.2, comparing
grasping algorithms to each other is particularly difficult if they have not been
evaluated using the same objects and hardware in a similar setting. To assess the
performance of our algorithm, we therefore conduct our real-world experiment with
GP-net and two established grasp proposal methods: GPD [24] and VGN [16].

The GPD package [24] was one of the first data-driven methods to be directly
applied to propose 6-DoF grasp poses based on point clouds. It identifies a region of
interest in the point cloud, samples grasp proposals from points within the region of
interest, encodes them in a multi-channel image, and finally uses a CNN to predict
the grasp quality. It is widely used to compare against other algorithms [16, 17,
21, 38, 46|, possibly due in part to the availability of a reference implementation
in ROS since 2017.

When sampling the grasp proposals, one could use all points in the point cloud
or only indexed points based on a region of interest, e.g. the points forming the
surface of an object. When applying GPD to real-world scenarios, identifying
such a region of interest in the point cloud ensures the grasp proposals fall on the
objects, not background and support surfaces like the table. When using GPD in
our experiment, we indexed the object points based on their position in relation to

the segmented table plane. The discriminative sampling nature of the algorithm

“https://aucoroboticsmu.github.io/GP-net/
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4.1. Related work

led to high latencies in the 6-DoF search space, taking an average of 14.6s to

propose grasps in our experiment.

The second reference model used in our experiment, VGN [16], proposes grasps
for objects in clutter using a TSDF representation of the workspace. Originally,
the TSDF is computed by integrating a stream of depth images acquired by a
wrist-mounted depth camera, where the camera follows a pre-defined scan trajec-
tory around a defined workspace before generating the grasp proposals. In our
experiment in Section 4.4, we built the TSDF from a single viewpoint instead to
accommodate our robot specifics with a head-mounted camera. Once the TSDF
is built, grasp proposals can be predicted based on a voxel representation of the
TSDF with a resolution of 1em3. While a single forward pass on the voxel grid
only took 10ms in the original paper [16], this did not include the initial scanning
procedure or any pre-processing steps required to create the TSDF of the object

workspace.

In the original paper, VGN achieved good results in a real-world experiment using
household objects within a tabletop scenario, which was subject to some con-
straints. The workspace of the fixed manipulator had to be known, and the TSDF
modelled a 30 x 30 x 30cm? workspace. When applying VGN to scenarios with an
unknown camera-workspace transform T’ such as with a mobile manipulator, the
approximate position of the object would have to be estimated in advance to com-
pute the TSDF. Furthermore, if no wrist-mounted camera is available, the TSDF
would have to be built using an alternative sensor, e.g. a head-mounted cam-
era, reducing the possible camera viewpoints and thereby potentially negatively
affecting the quality of the TSDF.

An advantage of GP-net over GPD and VGN is the ability to run it without
pre-processing steps to identify a region of interest or a workspace transform T?.
In order to rate the performance of the three models in the same scenario, we
performed the minimum necessary pre-processing steps to run GPD and VGN

and compared all algorithms in the same real-world experiment.
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4.2. Grasp Proposal Network

Figure 4.1: Visualisation of the grasp representation utilised in GP-net, which is
anchored to the visible grasp contact with the contact coordinates in the image
(u,v), grasp orientation r and grasp width w.

4.2 Grasp Proposal Network

We consider the problem of proposing 6-DoF grasps for a parallel-jaw gripper
using a depth camera. The environment consists of a planar surface, on top of
which we define a workspace coordinate frame T"° for description and camera pose
sampling purposes. The pose of the depth camera frame is defined in spherical
coordinates relative to the workspace TV such that its x-axis lies parallel to the
planar surface and its principal ray is pointed towards the workspace origin. The
spherical coordinates are defined using the radial distance to the workspace origin
d, the inclination angle ¢ relative to the workspace z-axis and the azimuth angle ¢
rotating around the workspace z-axis. The transform between the workspace and
the camera frame T}° is unknown within the sampling bounds for the spherical

coordinates as defined in Table 3.1.

A single object 0 € O is placed in a stable resting pose s € SE(3) [149] in the
workspace such that it is visible in the camera image. The goal is to propose a
set of collision-free 6-DoF grasps g € G to pick up the object o with a parallel-jaw
gripper. The grasps are proposed based on the robot’s surroundings as represented

in a depth image 7.

Similar to Sundermeyer et al. [20], we anchored the grasps for the grasp representa-
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Figure 4.2: Mapping depth values to a jet colourmap with individual RGB values
in the resulting normed jet-scale for GP-net.

tion to the contact point between the gripper and the object. Each pixel (u,v) in a
depth image Z described a potential grasp contact, i.e. the contact point between
a gripper plate and the object during grasp execution. The full ground-truth grasp
is defined as g € (u,v,r,w, g), with the contact coordinates (u,v), the orientation
of the grasp in camera coordinates r, the width of a grasp w and the grasp success
0. The orientation of the grasp is given in the form of a unit quaternion r, where
r € RYand |[r| = 1. A visualisation of the grasp representation is depicted in

Figure 4.1.

We based the model architecture for GP-net on a ResNet-50 model pre-trained
on ImageNet. Since the rendered depth image Z consists of a single channel and
the pre-trained ResNet-50 architecture uses three input channels, we applied a jet
colourmap to the depth values and represented the resulting input as a 3-channel
image to the model as described by Eiter et al. [152].

When applying the jet colourmap, we set fixed normalisation boundaries of 0.4m
and 1.4m. The normalisation boundaries were based on the maximum grasping
range of common mobile manipulators [98, 134] and the minimal perceivable depth
of the RGB-D cameras used in such mobile manipulators [98]. These boundaries
define a fixed relationship between the distance and size of objects in reality and
the normalised image. The choice of the normalisation boundary balances the

resolution and range of depth values for the model input. While narrowing the
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Figure 4.3: Using a depth image as input, we apply a jet colourmap, run inference
on the resulting RGB image with GP-net and output a dense tensor y with 6
channels and the same spatial resolution W x H as the input image. The channels
comprise a predicted grasp width W, a normalised unit quaternion for a predicted
grasp orientation T and a predicted grasp success 9, normalised to the range [0; 1]
by a sigmoid function o.

normalisation boundary increases the resolution, it also reduces the range of depth

values that can be represented in the jet colourmap image.

The jet colourmap has a linear increase/decrease in individual RGB values, with a
depth value corresponding to a unique composition of jet colourmap RGB values
and no repetitions at the start and end of the colourmap. We visualise the mapping

between the original image’s depth values and the RGB values in Figure 4.2.

GP-net outputs a 6-channel tensor with the same spatial resolution as the input
image, W x H, see Figure 4.3. Each pixel in the output tensor represents a potential
grasp proposal whose visible contact point corresponds to the 3D reprojection of
that pixel in the depth image. The channels in the output tensor define the
predicted width W of the grasp, the predicted grasp orientation t in the form
of a quaternion, and the predicted grasp ¢ of that grasp. Similar to VGN [16],
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we normalised the quaternions to have unit norm (see Figure 4.3) and applied a

sigmoid function to the predicted grasp success channel.

4.2.1 Loss function

Since creating ground-truth grasp proposals for training at each pixel of each
image is computationally infeasible, we generated sparse maps containing grasp
information at visible grasp contacts for up to 100 pre-sampled grasps per object.
The training data generation process is described in Section 4.3. We backpropa-
gated the loss only through the output pixels at which we have ground-truth grasp
information, similar to VGN [16].

We indicate the availability of ground-truth grasp information at pixel i as 1grqasps ()
and the availability of ground-truth positive grasp information as 1pysgrasps(?),
with 1grasps = 1posGrasps U InegGrasps- The availability of ground-truth grasp in-
formation 1gyqsps(?) includes pixels ¢ at which the contact of one of the up to 100
pre-sampled grasps is visible and all non-object pixels, e.g., pixels showing the

table. We then define our loss function as:
1 all__pixel

L= Z 1Grasps(i) ‘Cg,i +
NGrasps i
1 all__pixel
Z 1PosGrasps<i>(/\r£r,i + )\wcw,i) (41)

NposGrasps 3
with £, being the binary cross-entropy loss between the ground-truth grasp success
and predicted grasp success, o and g, £, = 1 — |r - | the distance metric between
the target and predicted quaternions, r and t, as defined in [153] and L,, the L1

loss between the ground-truth and predicted grasp width, w and W.

As ground-truth negative grasps do not have a valid configuration (grasp orienta-
tion r and grasp width w) for the model to learn, we only calculated the configura-
tion part of the loss function for pixels with ground-truth positive grasps indicated
as 1poscrasps(1). We averaged all parts of the loss function by dividing the sums
by the number of pixels used to calculate the loss, with the number of pixels with
ground-truth grasp information Ngyesps and the number of pixels with ground-
truth positive grasps Nposgrasps- We set Ay, Ay = 0.1, which we experimentally

found to give a good balance between L,, £, and L.
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In contrast to the loss function of VGN [16], we only allowed one valid configu-
ration for the orientation loss £,. This change was rooted in the grasp contact
representation, which anchors each grasp to the visible grasp contact pixel instead
of the non-visible TCP at the final grasp pose. The positive x-axis of the grasp
coordinate frame points towards the second grasp contact and grasp centre (see
Figure 4.1), with a mirrored version of the grasp (i.e. flipping the x-axis) result-
ing in a grasp in the air rather than on the object. With a TCP anchored grasp
representation, as used in VGN, a mirrored version of the grasp does not change
the position of the grasp centre, allowing for two valid orientations of the ground-
truth grasp. The contact representation does not affect grasp variability since the

parallel-jaw gripper is symmetric.

We trained GP-net for 20 epochs using an Adam optimiser with a learning rate of
3e~* and a batch size of 32. To reduce the sim-to-real-gap for GP-net, we added
simulated depth-camera noise to our depth images for training and evaluating
the model in simulation. We used the noise model described in [154, 155], which
simulated Gaussian-sampled random shifts in the depth based on disparity and
perturbed vertices based on their normals. Overall, this resulted in more realistic
depth images, with missing depth values for surfaces almost parallel to the camera
principal ray, as can be seen in the input depth image in Figure 4.3. Compared to
the Gaussian noise model suggested in DexNet2.0 [11], we found GP-net trained

with this noise model to perform better in real-world tests.

4.2.2 Using the model output for robotic grasping

Individual grasp proposals must be extracted to use the 6-channel tensor output
of GP-net for grasping objects with a robotic manipulator. As a first step, we used
Non-Maximum-Suppression (NMS) to select up to j = 10 image coordinates (u, v)
from the predicted grasp success ¢ output. To do this, we defined a minimum
distance of 4 pixels between two maxima and only considered maxima in the
predicted grasp success ¢ which exceeded the so-called acceptance threshold v, =
0.4. In other words, if there was a local maximum in the predicted grasp success
with 0 < 74, NMS would not select the pixel to construct a grasp proposal. The

acceptance threshold vy, was chosen based on our ablation studies in Section 4.5.3.
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re-project move to TCP
contact using w and transform to base frame

and execute

Figure 4.4: Grasp proposals for GP-net are generated by selecting pixels (u,v)
with the highest predicted grasp success ¢ using NMS, re-projecting the contact
point (visualised as a grey sphere) at those pixels into 3D using the depth at (u,v)
from the input image and moving to the TCP (visualised as a coordinate frame)
based on the predicted grasp orientation #(u, v) and predicted grasp width W (u, v).

Once the image coordinates (u,v) were chosen, we re-projected them into the 3D
camera coordinates of the grasp contact using the camera intrinsics K and the
depth value of (u,v) in the input depth image. Using the predicted quaternion
t and the predicted width W of each pixel coordinate, we translated the grasp
contact to the TCP by moving it 0.5% along the grasp x-axis between the gripper
plates. As a final step, the grasp was transformed from the camera coordinate
frame T¢ to the robot base coordinate frame T?, resulting in an executable grasp

pose for the robot.

Our ROS package provides this entire pipeline, as shown in Figure 4.4, by run-
ning inference with a trained model, selecting the pixel coordinates using NMS,
constructing grasp poses for those coordinates from the model output and map-
ping them to the robot base transform. Furthermore, we provide code to use the

package with a pre-trained GP-net model to plan grasps for a PAL TIAGo robot
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using a PAL parallel-jaw gripper. To ensure compatibility when using other grip-
per configurations, our code can generate an adjusted dataset, train a new model

and finally use it with our ROS package to produce grasp proposals.

4.3 'Training dataset

To train GP-net, we rendered a synthetic depth-image-based dataset with sparse
ground-truth grasp information. Similar to Chapter 3, we used 1492 objects from
the 3Dnet [144] and KIT [87] mesh datasets. We re-scaled the 3D meshes when
loading them from the mesh datasets, as commonly done when generating robotic
grasping datasets. In contrast to the re-scaling methods in [11, 74, 156], we re-
scaled objects to randomly chosen widths, drawn uniformly from the range 6¢m
to 10cm. Since we used a parallel-jaw gripper manufactured by PAL robotics with
an opening width of 8cm [98], our dataset included objects that did not fit in our

robotic gripper, which is a situation that will occur in real-world environments.

After re-scaling each object o, we calculated up to 25 stable resting poses [149]
S(0) and used a modified version of the antipodal grasp sampler proposed in [11]
to generate up to 100 parallel-jaw grasps G(o). In its original form, grasps were
sampled by uniformly choosing a surface point from the mesh and then sampling
the grasp x-axis (see Figure 4.1) based on the friction cone of the surface point.
This procedure did not necessarily yield a good grasp for a grasp contact point.
If available, our dataset should contain a good grasp of a given contact since we
used it to train a model for proposing good grasps. Therefore, in our modified
procedure, we generated k = 6 random grasps for a given contact. We calculated
the robust force closure metric epc [88, 108, 110] for each of the sampled grasps
at one contact point and kept the grasp with the highest ero. Using this method,
we generated a total of 148,706 ground-truth grasps for the 1492 objects in our

dataset.

Since the robust force closure metric epc of a sampled ground-truth grasp depends
on the grasp contacts, it is defined by the grasp x-axis and consistent for any
grasp approach axis, i.e. the direction of the grasp z-axis in Figure 4.1. However,

collisions between the gripper, object and planar support surface further influence
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the success of a grasp. We defined the grasp success o(g) in our rendered dataset

as

1 epc > dpc and coll_ free(g)

o(g) = { (4.2)

0 otherwise

with dpc = 0.5 being the robustness threshold for the robust force closure metric
erc and coll__free(g) indicating if the gripper is not in collision with the object

at the grasp pose, similar to DexNet2.0 [11].

We aimed to choose reproducible grasp orientations for a given scene and ground-
truth grasp to make the training data consistent and improve the training con-
vergence. To achieve this, we applied the following steps for choosing the grasp
approach axis orientation for a given grasp: we hinge-rotated the grasps in steps of
Aw = 15° around the contact points and thereby the grasp x-axis (see Figure 4.1)
and checked for collisions between the gripper and scene at each orientation. If we
only had a single, collision-free grasp orientation, we set the ground-truth grasp

orientation equal to it.

If we had multiple adjacent collision-free grasp orientations, we set the ground-
truth grasp orientation to be the median of these orientations to minimise the risk
of collisions. There could also be multiple collision-free regions separated by grasp
orientations that did result in collisions, for example, when grasping a tall and
narrow object, like a bottle, at its base. Here, a top-grasp would lead to a collision
of the gripper with the bottle, while horizontal grasps from both sides would be
successful. In such a case, we chose the median collision-free grasp whose approach
was most closely aligned with the principal ray of the camera. This resulted in
grasps approaching the final grasp pose from the front of the object rather than
from behind the object.

The objective for focusing on grasps more aligned with the camera principal ray
is similar to the objective for excluding grasps with ¥ > 90° in Section 3.3.2:
maximise visibility and reduce the risk of occlusions and collisions. The approach

differed from the one in Chapter 3 due to the move from a discriminative to a
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generative method. Since VGQ-CNN should be able to predict the quality of any
grasp, we did not consider collisions for selecting the grasp orientation. In contrast,
GP-net should propose good grasps if available since it is a generative method, and
therefore we considered collisions when selecting the orientation of ground-truth
grasps. With these steps, we fully defined the orientation of each grasp in our

dataset to train GP-net in a reproducible way.

We rendered n = 20 images for each stable pose s € S(0) of each object o €
0. The camera poses were generated relative to the workspace origin TV by
uniformly sampling the radial distance d, the azimuth (or azimuthal) angle § and
the inclination (or polar) angle ¢ individually, as described in Section 3.3.1. We
then projected the grasp contacts into the image plane and calculated the image
coordinates of the visible contact (u,v). If grasp contacts of multiple collision-free
grasps were visible at a single pixel, we chose the grasp with the highest robust
force closure value epc. In addition, we stored the binary segmentation mask of
the object and used pixels with a visible depth point that did not show the object
as ground-truth negative grasp contacts during training. The full dataset consists
of 260, 340 images with an average of 88.1 grasps per image, totalling 22,944, 376

grasps.

4.4 Experiments

We evaluated the performance of GP-net with simulation and real-world experi-
ments. While the simulation experiment enabled us to evaluate GP-net in vari-
ous settings in a controlled and reproducible manner, the real-world experiment
was important to evaluate the performance under real-world conditions, including
sensor noise and end-effector reachability. We conducted the real-world experi-
ment with two additional and widely used grasp proposal models, VGN [16] and
GPD [24], and compared them to the performance of GP-net.

We used the 49 objects from the EGAD evaluation set [74] for both our simulation
and real-world experiments to improve comparability between the experiments.
The objects in EGAD can be classified by two independent metrics: “Shape com-
plexity”, a measure of morphological complexity [89, 90], and “Grasp difficulty”,
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a measure of the average robustness of possible grasps on the object [91]. As pro-
posed by the original authors of the EGAD evaluation set, we represent the results
in a 7 x 7 grid, showing the performance metrics for each object according to its

measure of shape complexity and grasp difficulty.

For all of our experiments, we used GSR and CR to evaluate the performance of
the models overall and for each object individually. Both metrics are widely used
in the community to judge the performance of grasping algorithms, as described in
Section 2.2.1. We calculated GSR and CR aggregated across all evaluation scenes
according to Equation 2.1 and Equation 2.2.

4.4.1 Simulation experiment

We tested the grasp success of the grasps proposed by GP-net in simulation us-
ing the PyBullet [114] physics engine. We based our simulation environment on
the reference implementation provided for VGN [16], with changes to the camera
viewpoints, the gripper and the tested objects to enhance comparability to our

real-world experiment.

At the beginning of a grasping scene, an object was placed in a random pose
within a 30 x 30cm? workspace on a planar surface. Here, the workspace was used
to ensure visibility of the object from the sampled camera viewpoints, although
neither having a fixed workspace nor knowing the camera-workspace transform is
a requirement for using GP-net. After the object had been placed on the planar
surface, a depth image was rendered from a camera pose sampled uniformly from
the spherical coordinates around the centre of the workspace with the sampling
bounds used for training in Section 4.3. We ran inference with GP-net on the
depth image with added depth-camera noise and obtained grasp proposals from

the model as described in Section 4.2.

For each scene, we tested the grasp proposal with the highest predicted grasp
success 9. A PAL parallel-jaw gripper was simulated to approach the grasp pose
linearly along the grasp z-axis for 0.15m, close the gripper at the grasp pose using
a maximum force of 5N, and lift the object vertically. The grasp was labelled

successful if the gripper managed to lift the object 0.1m above the planar surface.
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Figure 4.5: Example of a PAL TIAGo mobile manipulator with an Intel Realsense
D435 depth camera mounted on its head.

Finishing a grasp attempt or failing to attempt a grasp, for example when the
model has proposed no grasps, caused the scene to be abandoned. An experimental
run of our simulation experiment comprised 100 grasping scenes for each of the
49 objects of the EGAD evaluation set. We decided to use the EGAD evaluation
set to make our simulation experiment comparable to our real-world experiment,

where we used a 3D-printed version of the same evaluation set.

4.4.2 Real-world experiment

We tested the grasping performance of GP-net, VGN and GPD in a real-world ex-
periment using a PAL TIAGo mobile manipulator [98]. We used an Intel Realsense
D435 depth camera mounted on TIAGo’s head since it can perceive objects closer
to the camera than the Orbbec Astra camera used in the TTAGo mobile manipula-
tor by default. We also found the Intel RealSense camera to perform better on thin
features, for example, it was able to perceive depth on thin objects such as pens
at a distance < 0.4m. An example of the PAL TIAGo mobile manipulator with
the Intel Realsense D435 camera mounted on its head is shown in Figure 4.5. For

noise reduction, we averaged over 10 consecutive depth image frames to generate
the model input for GP-net, VGN and GPD in each trial.
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We used a 3D-printed version of the EGAD evaluation set, where we scaled each
object to fit in the PAL parallel jaw gripper as instructed by the original au-
thors [74]. For each object and each tested algorithm, a total of 10 grasp trials
were executed, resulting in 490 grasp attempts per algorithm. We used two dif-
ferent initial robot poses for grasp planning, each having a different head tilt and
torso height, resulting in two different camera viewpoints of the scene. A human
operator dropped the object within a 30 x 30ecm? square on the table before each
grasp trial. The fixed workspace is a requirement for building the TSDF for VGN,
and hence for consistency, it was used also for the evaluations with GP-net and
GPD.

To apply VGN to our experiment, we manually defined the pose of the 30 x
30 x 30cm? workspace for building the TSDF (and hence sampling grasps) using
table segmentation for the height and a fixed x — y position. Note that VGN
was initially intended to be used with a wrist-mounted depth camera performing
a grasp scan along a trajectory to build the TSDF. Since our work focused on
proposing grasps from a single viewpoint, we applied VGN by building the TSDF
from a single, noise-reduced depth image. While this differed from the original
pipeline, there is an open question about how the number of viewpoints for building
the TSDF affects the quality of VGN’s grasp proposals. In later evaluations (see
Section 5.5.2), we found no substantial difference between the performance of VGN

when applied to a TSDF build from a single viewpoint and six different viewpoints.

VGN was originally trained and tested with a Panda gripper, which has the same
maximum gripper width but a different collision shape than the PAL parallel-
jaw gripper. We discuss this difference in Section 4.6, where we deem the PAL
gripper to be an acceptable approximation based on a simulated comparison of

both grippers.

To apply GPD to our experiment, we re-projected a point cloud from a single,
noise-reduced depth image and cropped the point cloud to fixed margins to reduce
the number of points and improve run-time. Furthermore, the points in the point
cloud associated with objects were indexed to indicate where grasps should be

sampled, applying a similar form of grasp-guiding as in our experiments in Sec-
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tion 5.4.2. The indexing of the point cloud was achieved by fitting a plane to the
point cloud and indexing points with a distance > 0.005m to the table plane.

While the approaches for setting the workspace for VGN and indexing the point
cloud for GPD were sufficient for our experiment, more general applications would
require more sophisticated workarounds to prevent erroneous grasp proposals. For
example, VGN would likely require 3D object detection to set the x-y position of
the workspace if the object is placed in an unknown area on a table plane. For
GPD, a robust object segmentation approach is required in order to guide the
grasp samples for more complex scenarios. In contrast, GP-net does not need any
workspace definition and can be directly applied to the depth image for tabletop
scenarios. We executed the algorithms for all methods on an Intel i7-10750H CPU
and NVIDIA RTX 2060 GPU.

4.5 Results

Overall, we found that the performance of GP-net in our experiment was superior
to VGN and GPD while not having to rely on any pre-processing steps. In addition
to the simulation and real-world experiments described above, we conducted two
ablation studies using the simulation environment to compare a contact-anchored
grasp representation to one based on the TCP and to set the acceptance threshold

v, when mapping GP-net’s dense tensor output to grasp proposals.

4.5.1 Simulation experiment results

In our simulation experiment, GP-net achieved a mean GSR of 74.6% and a mean
CR of 66.0% across all objects of the EGAD evaluation set. The GSR on each
object is depicted in Figure 4.6 a) and the CR in Figure 4.6 b). Each object’s
shape complexity and grasp difficulty are defined in the EGAD evaluation set.
Each object is named according to its shape complexity and grasp difficulty, e.g.
object “A0” with grasp difficulty “A” and shape complexity “0”. We note that both
the GSR and CR decreased significantly with increasing grasp difficulty, while they

were more consistent across the levels of shape complexity.
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Figure 4.6: Results of evaluating GP-net in simulation with a) GSR [%] and b)
CR [%]. 100 grasp attempts are executed with a PAL parallel-jaw gripper using
the objects from the EGAD evaluation set.

This result indicated GP-net’s ability to adapt to different shape complexities,
while objects with a higher grasp difficulty were more challenging to grasp with
the gripper. In EGAD, grasp difficulty is calculated using the average of the robust
force closure epc for up to 100 sampled grasps [74]. A lower average robust force
closure ep¢ indicates a less robust grasp on average and, thereby, a more difficult
object to grasp, resulting in a higher grasp difficulty. Therefore, we would expect
a robotic grasping system to demonstrate a lower performance for shapes with a

high grasp difficulty, as these objects are physically more challenging to grasp.

4.5.2 Real-world experiment results

The overall results and run-times for all three algorithms are shown in Table 4.1.
GP-net performed better than VGN and GPD with a GSR of 54.4% compared to
their 51.6% and 44.2%, respectively. Meanwhile, GP-net achieved a CR of 50.4%,
lower than VGN’s 51.2% and higher than GPD’s 37.6%.

In our experiment, GP-net took 2.1s to propose grasps on a given depth image,
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GP-net VGN [16] GPD [19]
Grasp success [%] 54.4 51.6 44.2
Clearance [%)] 50.4 51.2 37.6
Inference time [s] 2.1 1.2 14.7
Grasp planning time [s] 2.7 4.9 19.1

Table 4.1: Grasp success, inference, and grasp planning time for our real-world
experiment. Inference refers to the time between model input and output, while
grasp planning additionally includes pre-processing and post-processing.

while VGN and GPD required 1.2s and 14.7s, respectively. These inference times
did not include the time taken for additional pre-processing steps like table seg-
mentation and workspace definition, which were necessary for VGN and GPD. For
this reason, we report the overall grasp planning time in Table 4.1, which included
pre-processing, post-processing and sending data between different ROS nodes,
where GP-net was faster than VGN and GPD with 2.7s compared to 4.9s and
19.1s, respectively.

Our results for GP-net with a GSR of 54.4% and CR of 50.4% were substantially
lower than our results in our simulation experiment of 74.6% and 66.0%, respec-
tively. Our simulation results were simulated using only the robotic gripper, not
the full robot with the 7-DoF arm and the torso. In general, performance differ-
ences are expected when switching to a real-world environment. They are rooted
in perception noise and actuation uncertainties, variations in friction, collision

checking, and the performance of the path planning algorithms.

Detailed results for each algorithm with GSR and CR for each of the 49 objects
in the EGAD evaluation set are shown in Figure 4.7. For all algorithms, we
noticed a more prominent decline in performance for increasing grasp difficulty
than for increasing shape complexity. This was consistent with the behaviour of
GG-CNN [74] when tested on the EGAD evaluation set. Furthermore, we noticed
some objects that were never successfully grasped by any model, e.g., objects “F0”
and “G3”.

We encountered three main failure cases when testing GP-net in our real-world
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Figure 4.7: Results for evaluating grasp proposal models in a real-world experiment
with a PAL TIAGo mobile manipulator. Graphs show the GSR [%] (left) and CR
(%] (right) for 10 grasp attempts per object on the EGAD evaluation set using
GP-net, VGN and GPD for grasp proposal.
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Figure 4.8: Success and failure cases when using GP-net to propose grasps on
objects of the EGAD evaluation set with a PAL TIAGo mobile manipulator. We
label each figure according to the corresponding object in the dataset and indicate
success with v'and failures with “x”.

experiment. An overview of different successful grasp attempts and failures is
shown in Figure 4.8. The most common failure was caused by the gripper pushing
the object away when approaching, as seen in the example of objects “D4” and
“D6”. This failure can either be caused by badly planned grasps, e.g., a prediction
of the width & that is too small or too wide, or it can be caused by perception
or actuation noise. In most applications, modifying the grasping pipeline could
prevent or reduce these failure types. For example, one could use closed-loop
control using an RGB camera mounted on the gripper and correct the absolute

gripper position during the final grasp approach.

The second most common type of failure occurred when the gripper could not close
fully due to obstructions caused by the table or the object, e.g., in the examples
of objects “G0” and “G6”. Once lifted, the object lost contact with the gripper,

which resulted in a failed grasp attempt.
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The third and last main failure type occurred when the friction between the object
and the gripper was too low to compensate for the slanted surfaces being grasped,
e.g. with objects “E0” and “G1” in Figure 4.8. This could be due to badly planned
grasps or different friction values being expected by the model and resulted in
the objects slipping out of the gripper when trying to lift the object. Note that
grasping “E0” along its longitudinal axis was not an option as this side of the
object is slightly wider than the gripper width, causing “E0” to be rarely grasped
by our gripper.

4.5.3 Ablation studies

We conducted a set of ablation studies to investigate the performance of GP-net
further. We investigated how an alternative grasp representation, anchoring the
grasps to the TCP, performed compared to the contact-based grasp representation
(see Figure 4.1) used for GP-net. Furthermore, we ran a simulation experiment to
investigate how grasp success and the final number of grasp proposals of a given
model were influenced by the acceptance threshold «, used when applying NMS

to select grasp proposals.

Grasp representation: The grasp representation used in GP-net is anchored to
the visible grasp contacts, with each pixel in the depth image representing a visible
contact of a potential grasp, see Section 4.2. This grasp representation was first
proposed in Contact-Graspnet [20], where the authors suggested it facilitates learn-
ing by reducing the problem’s dimensionality. However, the grasp representation
in [20] was not compared to conventional grasp representations used in data-driven
grasp proposal approaches, which anchor grasps to the TCP [9, 11, 12, 14, 16, 18,
23, 24, 37, 63].

While the contact-based grasp representation can potentially increase the model
performance, it can lead to problems where no grasp contact is visible. An example
of such a situation is if a robot is supposed to grasp a book but is facing the spine
of the book head-on, for example, as visualised in Figure 4.9. In this situation,
the areas for potential grasp contacts on the left and right sides are invisible,
and a contact-based method cannot produce valid grasp configurations. In these

situations, repositioning the camera is necessary to produce grasp proposals.
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Figure 4.9: Example of a situation where a contact-based grasp representation can
not represent any grasp due to visibility issues (upper row), with the RGB (left),
depth (centre) and an overlayed image of the depth and predicted grasp success
0 (right). When repositioning the camera (lower row), grasp contacts become
visible, and grasps can be proposed.
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To assess this limitation against potential performance gains, we compared the
performance of a contact-based grasp representation to a TCP-based grasp rep-
resentation. We modified GP-net to use a TCP-based grasp representation as
g € (u,v, Az, r,w, ) with the image coordinates (u,v) defining the 2D position of
the grasp centre, i.e. the TCP, in the image. Az thereby describes the distance
between the TCP and the visible surface depth at (u,v), since the intersection
between the principal ray at (u,v) and the object surface is usually closer to the
camera than the TCP. In other words, the TCP is not visible, and Az describes
how much deeper than the visible depth at (u,v) the TCP lies.

We trained the model on our dataset as described in Section 4.2 and compared
performance to GP-net using the simulation analysis. Due to the extra variable Az

in the grasp representation, the model has seven output channels, and we define
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the adapted loss function as:

1 all__pixel

= 1 rasps 1) L K +
NG’rasps zz: Grasp ( ) ¢

1 all__pixel

~ Z 1PosGrasps (Z)()\r‘cr,z + AAZEAZ,Z' + Awﬁw,i) (43)
NPosGrasps i

L

with L. being the L1 loss between ground-truth Az and predicted grasp distance
Az. We set Ar,Aa, = 0.1 and A, = 0.01. We reduced \,, compared to the
contact-based loss function since the width is not used to predict the grasp centre
for the TCP-based grasp representation. As the width might still be used for
grasp execution in certain applications, such as sorting grasps or setting an initial
gripper width, we kept the width in the model output. After training the model
for 20 epochs, we achieved a mean GSR of 27.2% and CR of 20.4% in simulation,
substantially lower than GP-net’s 74.6% and 66.0% with the contact-based grasp
representation. We found that the rotation loss £, plateaued at almost double that
of GP-net’s loss with 0.24 for the TCP-based grasp representation and 0.13 with
the contact-based grasp representation. The remaining parts of the loss converged

similarly between both grasp representations.

Based on these results, we hypothesised that the performance difference was rooted
in the reduction of orientation ambiguities when grasps are anchored to their grasp
contact points. Ground-truth positive grasps would have similar orientations for
neighbouring grasp contacts on an object. In contrast, TCP-based grasps could

approach the same TCP position from a variety of angles.

This relationship is especially apparent when looking at cylindrical objects, where
a TCP-based ground truth positive grasp could rotate the grasp axis to any ori-
entation around the centre of the cylinder. In contrast, a contact-based ground
truth positive grasp only permits one orientation such that the x-axis of the grasp
passes through the centre of the cylinder. An example of this difference is shown in
Figure 4.10. The three different grasp orientations result in three different grasp
contacts with a contact-based grasp anchor but result in the same grasp centre

and thereby TCP position in the image.
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Figure 4.10: Example of the difference in TCP and contact-based anchor points
for cylindrical objects. The upper row shows an RGB image of the scene with a
symbolic parallel-jaw gripper in three different orientations. The corresponding
grasp anchors in the image are shown as white dots in the depth images. The
middle row thereby shows the TCP based grasp anchors, and the lower row shows
the contact-based grasp anchors.

Acceptance threshold +;: The acceptance threshold v, defines the minimum
predicted grasp success ¢ that can result in output grasp proposals for GP-net.
The coordinates of the output grasp proposals are obtained by applying NMS with
75 as a cut-off threshold to the predicted grasp success ¢ output of the model, as
explained in Section 4.2. As such, 7, balances the number of proposed grasps
and the confidence the model has in those grasps. Ideally, 7, should be set to
propose as many grasps as possible while retaining good confidence in the quality
of those grasps. To investigate how this trade-off affects GP-net, we applied a range
of acceptance thresholds v, = [0.1,0.2,...,0.9] and investigated the influence on
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Figure 4.11: Simulation results showing the influence of varying the acceptance
threshold 7, on a) the predicted grasp success g of grasp proposals, b) the grasp
success [%] and ¢) the number of output grasp proposals per object. The boxplot
shows the 25" to 75" percentile, while the lineplots include a 95% confidence
interval.

grasp performance in simulation.

The results can be seen in Figure 4.11. Increasing the acceptance threshold 7,
increased the predicted grasp success ¢ in Figure 4.11 a) and decreased the num-
ber of output grasp proposals in Figure 4.11 ¢). The number of successful and
unsuccessful grasp proposals are reduced non-linearly when increasing v;, where
the number of unsuccessful grasps decreased more rapidly than the number of

successful grasps for a small ;.

We show both the grasp success of all proposed grasps and the grasp success for
each object in Figure 4.11 b). Note that the grasp success for each object (shown
in orange) used only the output grasp proposal with the highest predicted quality
0 and reported an unsuccessful grasp if there was no grasp proposal available,
indicating the ability to pick up the object. The grasp success “All” (shown in
purple) shows the ratio of grasp success to grasp attempts when simulating every
proposed grasp by the model. The two curves show the trade-off between not

predicting any grasp and failing to pick up the object, i.e., a low grasp success for
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the object, and the success of all grasp proposals, i.e., a lower grasp success on all

grasp proposals if many unsuccessful grasps are proposed.

We calculated the performance over this trade-off to decide on an acceptance
threshold for the remainder of our experiments. We used the average between the
grasp success of all proposed grasps and the grasp success for each object. This
approach balanced the ability to pick up as many objects as possible (for all scenes)
while retaining a high grasp success for all grasp attempts. The maximum of the
resulting curve lay at v, = 0.4 with 66.4%. Based on these results, we set 7, = 0.4

for all of our other experiments using GP-net.

4.6 Discussion

The contact-based grasp representation utilised in GP-net anchors grasp proposals
to visible grasp contacts. If no grasp contact on a specific object is visible, no grasp
can be proposed for that object. This limitation does not occur in TCP-based grasp
representations, where the grasps are anchored to the TCP of the gripper. The
TCP of the gripper is then not directly anchored to any visible points in the sensor
readings, as it is usually within the volume of the object. To evaluate the benefits of
a contact-based grasp representation against these limitations, we compared it to a
TCP-based grasp representation in our ablation studies in Section 4.5.3. We found
a substantial performance advantage for a model trained with the contact-based
representation, which we hypothesise is connected to a reduction in orientation

ambiguities when anchoring the grasp proposals to visible grasp contacts.

In this work, we focused on applying 6-DoF grasp proposal algorithms to flexible
viewpoints, for example, for use with mobile manipulators in domestic environ-
ments. The robot can move the camera and view objects from different per-
spectives when using such a mobile manipulator in real-world scenarios. In this
way, previously invisible grasp contacts can be made visible to enable the pro-
posal of new grasps for an object. While we evaluated GP-net on a stationary
robot which can reposition itself and the camera, such a repositioning could also
be achieved while approaching the object and simultaneously planning paths to

enable a “smooth” movement of the robot given appropriate runtimes of the al-
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gorithms. Under these circumstances, we believe the benefits of a contact-based

representation outweigh its limitations.

Another limitation, and similar to most of the commonly used methods [11, 16,
17, 18, 20, 36, 37, 38, 63, 73], is that GP-net is trained with grasp success based on
experience with a specific gripper, in this case a PAL robotics parallel-jaw gripper.
While using simulated grasp experience for training is a common approach in
recent years [11, 16, 17, 18, 20, 38, 63], it establishes a gripper-dependence in the
training data and hence the resulting model. Since the grasp success depends on
the grasp being collision-free, the design of the gripper is used implicitly during
dataset generation when checking for collisions, see Eq. 4.2. The resulting model
learns the implicit gripper design, so the performance with alternative gripper

configurations cannot be guaranteed.

Gripper designs for parallel-jaw grippers mainly differ in their maximum gripper
width, collision shape and the size of their gripper plates, as shown in Figure 2.8.
When using pre-trained models for different gripper designs than intended, one
must take care to ensure these differences do not become an issue. In our real-world
experiment, the pre-trained version of VGN is trained for a Panda gripper, which
has a different design to the PAL parallel-jaw gripper used in our experiments, see
Figure 2.8. While the maximum gripper width is 8cm for both grippers [98, 99], it
cannot be guaranteed that the performance of VGN is the same when tested with
a PAL parallel-jaw gripper due to differences in the collision volume and gripper

plate areas.

To investigate if the PAL parallel-jaw gripper can be used instead of the Panda
gripper when tested with the EGAD object set that was used in our real-world
experiment, we conducted a simulation experiment as described in Section 4.4.1.
Grasps proposed by VGN were evaluated with both a Panda and a PAL parallel-
jaw gripper, where we got a GSR of 61.9% and 57.4%, respectively. When testing
the grasps proposed by GP-net with both a Panda and a PAL parallel-jaw gripper,
we achieved a GSR of 77.7% and 74.2%, respectively. This could indicate that the
Panda gripper might have a general design advantage over the PAL parallel-jaw

gripper.
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Considering this, we decided to use the PAL parallel-jaw gripper instead of the
Panda gripper for our experiment since it is available on our PAL TIAGo mobile
manipulator. Furthermore, though the PAL parallel-jaw gripper potentially has
a drop of up to 5% in GSR compared to the Panda gripper, it should affect
all algorithms equally. Therefore, we deemed the PAL parallel-jaw gripper an

acceptable approximation in our real-world experiment.

The results reported here may differ for other gripper designs or object sets, mak-
ing it important for researchers to make reference implementations available and
enabling others to adapt the code and model to required gripper designs. Alterna-
tively, there has been recent progress [111, 157] in making grasp proposal models
independent of the gripper design. However, this currently seems limited to dis-
criminative approaches with 4-DoF [157] or does not consider the collision shapes

of potential grippers [111].

4.7 Conclusion

In this chapter, we presented GP-net, a model to propose 6-DoF grasps based
on depth images from flexible and unknown viewpoints. In contrast to widely
used algorithms for robotic grasping like GPD [24] and VGN [16], the viewpoint
flexibility enables GP-net to be used without the need to pre-define a workspace
or filter grasps to produce good grasp proposals. Hence, GP-net can be used on
mobile robots without additional pre-processing steps like plane-fitting, table seg-
mentation or 3D object detection. To train GP-net, we created a synthetic dataset

based on more than 1400 object meshes with ground-truth grasp information.

We evaluated GP-net on a PAL TIAGo mobile manipulator in a real-world exper-
iment and compared its performance to GPD and VGN on the EGAD evaluation
set [74]. GP-net achieved a grasp success of 54.4%, better than VGN’s 51.6%
and substantially higher than GPD’s 44.2% in our setup. Importantly, GP-net
achieved those superior results without requiring any of the pre-processing steps
required for VGN and GPD. This enables GP-net to be used without relying on
correct results of object segmentation techniques and in scenarios with unknown

camera-workspace transforms. The advantage of not requiring pre-processing steps
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also affected the inference time in our experiment, where GP-net had a total grasp
planning time that was 0.55 of VGN and 0.14 of GPD.

Both VGN and GPD work in cluttered environments, while GP-net was trained
for single objects on planar surfaces. Moving from single objects on planar surfaces
to cluttered objects in domestic environments is the focus of the next chapter in
this thesis. Domestic environments feature cluttered objects on different furniture
units like tables, desks, or shelves, all with unknown camera-workspace transforms.
Therefore, a key challenge to be addressed in the next chapter is the provision of
sufficiently representative training data to train a data-driven approach for grasp

proposal in domestic environments.
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CHAPTER

Grasping Objects in Domestic

Environments

In Chapter 4, we proposed the GP-net, a depth-image-based 6-DoF grasp proposal
method for flexible camera viewpoints. GP-net is trained to propose grasps for
single objects on planar surfaces without the need for any pre-processing steps like
workspace definition. When moving to grasping in domestic environments, the
scenes become more complex and variable, making it important to use grasping

algorithms which are robust to these conditions.

The complexity of domestic environments in the grasping context stems from a
large number of unknown variables - the object type, object shape, scene surround-
ings and the pose of the object in relation to the robot are usually unknown. This
is especially apparent when looking at mobile manipulators, which can change
their own pose and that of their camera in relation to the workspace. Due to this
capability, mobile manipulators are able to transport objects within the environ-

ment.

Previous robotic grasping research typically simplified the problem and search
space to handle the complexity of domestic environments. While focusing on
variable object types and shapes, they often placed them in tabletop scenarios
with fixed cameras and 4-DoF grasp poses, e.g. [9, 10, 11, 23, 113]. While our
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Figure 5.1: Examples of a PAL TIAGo mobile manipulator grasping objects in
domestic environments.

own work, GP-net, allowed for flexible camera viewpoints and 6-DoF grasps, it
was trained for single objects on planar surfaces, not allowing for more complex

setups with multiple objects in clutter.

In this chapter, we focus on two substantial problems introduced when moving to
grasping in domestic environments: more complex scenes (e.g. cluttered objects
placed on shelves or tables) and an increased number of potential camera view-
points (e.g. looking up to an object on a shelf or down to an object on the floor).
Complex scenes make it difficult to recognise graspable surfaces and increase the
risk of collisions, while a high number of potential camera viewpoints increases
the complexity of the scene representation. An example of a mobile manipulator

grasping objects in such surroundings is shown in Figure 5.1.

We aim to solve grasping in domestic environments with a data-driven method
similar to GP-net and many grasping algorithms proposed in recent years [11,
12, 13, 14, 16, 21, 37, 38, 63, 64]. When using data-driven methods, simulated
or real-world grasp experience is used to train machine learning models. The
possible application scenarios for such algorithms are defined (and constrained) by
the grasp experience covered in the training data. For example, if a dataset only
covers tabletop grasping scenarios with a fixed overhead camera, it likely will not
be suitable for grasping on shelves from variable viewpoints. In order to develop

a model for domestic environments with cluttered objects on different furniture
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units, we had to generate training data from representative domestic scenes.

We took particular care in setting the furniture placement, object placement and
camera viewpoints in a manner that would likely be encountered in real-world
applications. For this, we developed reproducible setups for selecting furniture
units, selecting object meshes, placing them on the furniture units and rendering
camera viewpoints from realistic camera poses. We trained and evaluated an
updated version of GP-net called GP-net+ on our generated data. GP-net+,
which incorporates improvements to the tensor output and loss function, can be
used to propose 6-DoF grasps in cluttered environments on different furniture

units.

Many different architectures and scene representations for grasp proposal algo-
rithms have been explored in recent years [5, 8|, with no clear advantage of one
method over the others to date. A major issue in benchmarking grasp proposal
algorithms is rooted in differences in test setups, evaluation sets and robotic hard-
ware, as we discussed in Section 2.2.2. We compared GP-net+ to widely used
alternative grasp proposal solutions in a set of simulated experiments to provide
quantitative evaluations and investigate its strengths and weaknesses. In those
experiments, GP-net+ outperformed all models in most of the experiments while

being robust to more complex, domestic scenes.

We made our code for generating the domestic training scenes and evaluating the
models available on GitHub ® so it can be used by other researchers. Our codebase
can be used to generate training data for alternative scene representations, as well
as train and evaluate alternative model structures. Furthermore, we made a ROS
package available to run inference with GP-net+ and generate grasp proposals,
which we tested in a real-world experiment with a PAL TIAGo mobile manipulator.
The ROS package also includes an example of how GP-net+ can be combined with
a pre-trained object detection algorithm to enable target-driven object grasping in

clutter.

Shttps://github.com/AuCoRoboticsMU/GP-netplus
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5.1. Related Work

In summary, the main contributions of this chapter are:

o A benchmark dataset and a simulation environment. The dataset comprises
depth images of domestic scenes with ground-truth grasp information. The
simulation environment can be used for training and evaluating grasping
algorithms in domestic environments. It can be used with different scene

representations and parallel-jaw grippers to enhance comparability.

o GP-net+: A model to predict 6-DoF grasps on cluttered objects with a
parallel-jaw gripper. The objects can be positioned on tables or shelves with

an unknown camera-workspace transform.

o A ROS package for deploying GP-net+ on a real robot, for example, using
a PAL TIAGo mobile manipulator. When deploying the ROS package, GP-
net+ can also be used for target-driven object grasping using a pre-trained

object detection algorithm.

5.1 Related Work

Domestic environments in the real world are characterised by unstructured, com-
plex and dynamic scenes. For example, a living room typically includes several
sitting arrangements, shelves or sideboards, and unknown objects. The pose of the
furniture units and, especially, the objects are unknown and can change between

different points in time and different rooms or households.

For a mobile manipulator to accomplish assistive tasks in these domestic environ-
ments, it should be able to grasp objects regardless of their pose or which support-
ing surface they stand on, as long as they are physically reachable. For example,
this includes objects positioned on shelf compartments, drawers, and tables. Using
a mobile manipulator, compared to a fixed robot, in these domestic environments
enables accessing different furniture units and moving objects between them in the

scene [3].

Research for grasping objects with mobile manipulators today is often based on

hand-crafted approaches with limited flexibility and robustness under the influence
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nae P

Figure 5.2: Example scenes from the ACRONYM dataset with objects placed on
a table, two shelves and a desk. Note that the colour of the objects and furniture
units is chosen randomly for visualisation purposes.

of uncertainty, e.g. [132, 133, 135, 136]. Example approaches include segmenting
the objects in point clouds based on their relation to table surfaces [132] or applying
grasp poses for known CAD models [136, 139]. As such, these approaches can
likely not be applied to the domestic environments described here due to limited
flexibility.

As mentioned in the introduction of this chapter, recent robotic grasping research
has mostly focused on data-driven grasping algorithms, where grasping datasets
are used to train machine learning models for grasp proposal. Most of these
grasping datasets provide scenes with a single object [11, 76, 77, 158] or multiple
cluttered objects [22, 39, 73, 159] on planar surfaces like tables. This setup is most
appropriate when applying the resulting algorithms to similar scenarios where
the composition of training data matches the application, for example, with fixed

manipulators mounted on a table.

When moving to application in domestic scenarios, corresponding scenes must be
represented in the training data. If grasping algorithms have been trained for
domestic scenarios, they should be able to propose appropriate grasp proposals in
such scenes, i.e. grasp proposals on the objects rather than the furniture units,

and propose grasp poses that minimise the risk of collisions with the surroundings.
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One training dataset that features objects placed on different furniture is the
ACRONYM dataset [156], with examples shown in Figure 5.2. It is a synthetic
dataset generated with a physics simulator containing a large number of ground-
truth grasps for cluttered household objects. The household objects are placed on
single support surfaces of furniture units from the ShapeNet [160] mesh database.
While we think the ACRONYM dataset is a step in the right direction towards
training domestic grasping algorithms, we identify several shortcomings for our

use case specifically.

First, objects in ACRONYM are placed on a single support surface of the furniture
unit rather than being distributed over multiple support surfaces. We think this
could lead to algorithms being unable to propose grasps for different objects on

multiple support surfaces.

Secondly, the ground-truth grasp poses for the objects in ACRONYM are only
tested at the actual grasp pose; there is no collision-checking during the grasp
approach or retreat. This can lead to unreachable grasp poses being proposed,
especially in confined spaces like shelf compartments, where, for example, top-
grasps should not be proposed as they can collide with the shelf during the grasping

movements.

Lastly, scene representations are generated from camera viewpoints sampled in
spherical coordinates around the object centre, similar to how camera poses are
sampled in tabletop scenarios, e.g. [11]. While camera views sampled from spher-
ical coordinates are sensible when working with tabletop scenarios, they can lead
to unrealistic behaviour in more complex surroundings like shelves (e.g. occluded

camera views with the camera positioned inside a shelf compartment).

When grasping objects with a mobile manipulator in such domestic environments,
one would likely use a camera mounted on the robot to view the scene. The advan-
tages of using a robot-based camera viewpoint lie in their ability to reposition with
the robot and thereby access different furniture units in the entire environment.
We think including such robot-based viewpoints in the training data is necessary
to enable the usage of mobile manipulators for grasping objects in domestic envi-

ronments. Due to these shortcomings in the ACRONYM dataset for our purposes,
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Figure 5.3: Example depth images of domestic grasping scenes.

we needed to create our own dataset, as described in the following section.

5.2 Generating domestic grasping scenes

We aimed to generate domestic grasping scenes to train and evaluate a grasp
proposal algorithm for usage in real-world domestic scenarios. In contrast to our
previous work in Chapter 4, this included cluttered objects on different furniture
units viewed from robot-based camera poses in contrast to single objects on a table
plane. We used the resulting training dataset to train GP-net+ (see Section 5.3),

an extension of our previous model GP-net.

The following describes the process for creating the domestic grasping scenes.
The domestic grasping scenes consist of different kinds of graspable objects (see
Section 5.2.1) arranged on a variety of furniture units (see Section 5.2.2). Example
depth images of such scenes are shown in Figure 5.3. In contrast to ACRONYM,
we defined camera sampling spaces and object workspaces for each furniture unit
to generate the relative poses of camera viewpoints and graspable objects in a
reproducible manner. We used these sampling spaces during scene generation
and tested the success when grasping pre-sampled grasp poses in simulation (see
Section 5.2.3). We saved the depth images and the tested grasp poses as ground-

truth information for training GP-net+.
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Figure 5.4: a) Shape complexity and b) grasp difficulty for graspable objects in
our entire dataset with object categories. ¢) shows the combined scatter plot of
shape complexity and grasp difficulty values for each object.

5.2.1 Graspable objects
The graspable objects should include object meshes of different complexity and

variety as encountered in real domestic grasping scenarios. To achieve this, we used
a selection of 137 object meshes from the YCB [85], BigBIRD [86], ShapeNet [160]
and EGAD [74] datasets.

While YCB includes a wide variety of challenging objects found in household
environments, BigBIRD mostly contains rectangular and cylindrical instances of
various packaged household items. ShapeNet enhances the object set with various
mugs and bowls, of which only very few instances are included in YCB and Big-
BIRD. Finally, EGAD supplies objects with highly complex and irregular shapes
to prevent the object shapes from being too simple. We kept the original sizes
of YCB and BigBIRD objects and reverted the normalisation of the ShapeNet
objects. According to the process described in [74], we scaled the EGAD objects
for our maximum gripper size of 0.08m. Overall, the mean size of the bounding
boxes of all objects in (z,y, z) was (0.097,0.102, 0.084)m with standard deviations
of (0.061,0.062,0.049)m.
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A 4 LALE X

>

Increasing shape complexity

Figure 5.5: Examples of graspable objects used in the domestic grasping scenes
with increasing shape complexity values as defined in EGAD [74]. The colours of
the objects represent the object categories also used in Figure 5.4.

We calculated the shape complexity for each object mesh in the object sets as
described in EGAD [74]. We used the shape complexity values to sample a subset
of graspable objects from YCB, BigBIRD and ShapeNet. The subset contained 20
objects for every shape complexity value of 0,1,2...7, if enough examples were

available in the datasets.

We added a total of 44 meshes from the EGAD training set for shape complexity
intervals which did not have enough examples present in YCB, BigBIRD and
ShapeNet, e.g. very complex shapes with a shape complexity of 7. Figure 5.4 a)
shows the resulting distribution of shape complexity values and Figure 5.4 b) the

corresponding distribution of grasp difficulty, as defined in EGAD [74]°.

The relationship between shape complexity and grasp difficulty across the dataset
is visualised in Figure 5.4 ¢), showing the overall coverage of both dimensions. As
expected and also described in EGAD [74], there were few objects with a very high
grasp difficulty and very low shape complexity and vice versa. Apart from these
extremes, the objects were balanced, covering a wide range of grasp difficulty and

shape complexity values.

We manually assigned categories to all objects to give insight into their variety in
the resulting dataset. An example of objects with increasing shape complexity is

given in Figure 5.5.

SNote that we reverse the grasp difficulty values from the original implementation with
difficulty = 100 — egad__difficulty to have objects that are more difficult to grasp have a greater
grasp difficulty, to ensure consistency with the EGAD evaluation set and avoid confusion.
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Using an antipodal grasp sampler [11] and the grasp sampling technique described
in Section 4.3, we sampled an average of 377 grasps for each grasping object.
To enable realistic physics simulations of concave object meshes, we leveraged a
fully automatic algorithm for approximating a convex subset called “Volumetric
Hierarchical Approximate Convex Decomposition” (V-HACD) [161]. V-HACD
is also used when generating other robotic grasping datasets, e.g. [70, 77]. We
performed V-HACD offline for each object mesh and used the result as collision
mesh when generating our domestic grasping scenes, allowing for the simulation

of concave object shapes.

5.2.2 Furniture units

In real-world domestic scenarios, objects are placed on various furniture units like
tables, counters, sideboards, shelves or cupboards. To include a variety of fur-
niture units in our domestic grasping scenes, we used furniture meshes from the
ShapeNet [160] dataset. We uniformly sampled 50 tables and 50 shelves from
ShapeNet, resulting in 100 furniture units f € F. The tables and shelves varied
significantly in their appearance, ranging from bookshelves, cupboards and round
coffee tables to sideboards, desks and dinner tables, see Figure 5.3. We subse-
quently use “tables” for the collection of tables, sideboards, desks, and coffee

tables and categorise bookshelves and cupboards as “shelves”.

We added walls behind suitable furniture meshes, for example, bookshelves or
desks, to make our scenes more realistic. To use the furniture units as support
surfaces in our domestic grasping scenes, we defined two distinct properties: the
object workspaces, i.e. where objects can be placed on the furniture, and the

camera sampling spaces, i.e. how the camera can view the scene.

Object workspaces: We used blender [162] to define the object workspaces of
a furniture unit. For each furniture object, we grouped adjacent faces parallel to
the x-y plane, i.e. horizontal faces touching each other, into regions. We manually

excluded unsuitable regions like rims and the underside of shelves since they can

"Note: some furniture objects classified as “tables” may have multiple support surfaces, for
example, coffee tables with two levels or desks with multiple storage compartments.
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Figure 5.6: Variations in the furniture units used in our dataset, with their a) the
total area of their object workspaces wa(f), b) the number of object workspaces
and c¢) the volume of their look-to-region lv(f). The volume of the look-to-region
results from the object workspaces and their position and is defined within the
camera sampling spaces.

not support objects. We generated a convex hull for each region and saved them

for loading and sampling during data generation.

Overall, the heights of workspaces on tables ranged from 0.061m to 1.07m (mean
= 0.63m), and the heights of workspaces on shelves ranged from 0.01m to 2.18m
(mean = 0.84m). The median number of workspaces was 1 (min = 1, max = 7)
for tables, and 6 (min = 2, max = 20) for shelves. An overview of the variations
of all furniture units in their total object workspace area wa(f) and their number

of object workspaces can be seen in Figure 5.6 a-b.

As the furniture units ranged from small coffee tables to large shelves, the area of
the object workspaces varied significantly. To create a realistic density of objects
on a given furniture unit, we defined the number of objects n,(f) based on the

cumulative area of the object workspaces wa(f).

Given a furniture unit f and the area of its object workspaces wa(f), we calculated

the expected number of objects o on the furniture unit as
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Figure 5.7: Object density for each furniture unit as observed when sampling the
number of objects n,(f) for 200 times. Since the furniture units had a different
total area of object workspaces (see Figure 5.6), we used the summed area of
object workspaces wa(f) to sample the number of objects n,(f) via a Poisson
distribution. This resulted in an approximately constant density of objects on the
object workspaces over the set of furniture units.

Ao(f) = waé?{; (5.1)

resulting in a mean of one object in an area of 0.4m x 0.4m. We used \,(f) as
the expected value for a Poisson distribution and sampled from that distribution
during dataset generation to obtain the number of objects n,(f) to be placed
on any given furniture unit f. We further set a minimum number of objects of
minn,(f) = 1 and a maximum number of objects of maxn,(f) = 100 for any
furniture unit. The sampling of n,(f) was actually performed during scene setup

as described in Section 5.2.3.

Figure 5.7 shows how using the Poisson distribution resulted in a median of ap-
proximately 6 Objects/m? when used to sample the number of objects for a given
furniture unit. (As the number of objects for each furniture unit is sampled for 200
different scenes in this figure, there is a range of object densities for each furniture

unit.) The outlier shelf in the middle of the graph had a very small workspace area

111



5.2. Generating domestic grasping scenes
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Figure 5.8: Examples of furniture units with their 2D camera sampling spaces,
including the camera-origin-region, where the camera position is sampled, and the
look-to-region, where the camera is pointed towards. Visualised as a top-down
view of the scene.

wa(f) = 0.07m?, which led to a significant jump in object density when adding a

single additional object.

Camera sampling spaces: The camera sampling spaces define the range of
camera poses for a given furniture mesh. Contrary to tabletop scenarios with a
limited workspace where the camera pose is sampled from spherical coordinates,
we aimed to sample camera poses in a robot-based manner. The resulting camera
poses were more representative of those on a mobile manipulator operating in a

real-world domestic scene.

We split the camera sampling spaces into a camera-origin-region and a look-to-
region. From those regions, we sampled a camera-origin-point, i.e., a point in the
camera-origin-region where the camera is positioned, and a look-to-point, i.e., a
point in the look-to-region that the camera is directed towards. Examples of the

camera-origin-regions, look-to-regions and their relation are depicted in Figure 5.8.

We defined both camera sampling spaces based on a concave hull of the footprint
of a given furniture mesh. The camera-origin-region was created using disk dila-
tion based on the concave hull of the furniture footprint, such that the robot is
positioned in proximity to the furniture. The camera-origin-region had a mini-
mum distance of 0.1m and a maximum distance of 1.0m to the mesh footprint,
as well as a minimum distance of 0.3m to each wall. Since the camera should
view the furniture unit to perceive objects placed on the furniture unit, the look-
to-region was based on the concave hull of the mesh footprint dilated by 0.05m,

resulting in a minimum distance of 0.05m between the camera-origin-region and
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the look-to-region.

We pixelated the resulting 2D regions using a resolution of 0.05m. When uniformly
sampling from the regions, we augmented the resulting 2D positions with a uni-
formly sampled offset to compensate for the pixelation. The height of the camera-
origin-point was uniformly sampled from the height range of the PAL TIAGo
mobile manipulator, which can vary between 1.0m and 1.55m. The look-to-point
was uniformly sampled from the minimum and maximum height of the object

workspaces extended by 0.2m above and 0.05m below.

Similar to the number of objects n,(f) to be placed on the furniture unit, we
coupled the number of images n;(f) rendered for a scene to the scale and charac-
teristics of the furniture unit. This was done since larger furniture units cover more
space and variety than smaller ones. For example, the smallest furniture unit in
our dataset had a look-to-region volume [v(f) of < 0.1m? and the largest furniture
unit had a look-to-region volume [v(f) of > 5.0m3. The increased look-to-region
and, consequently, increased camera-origin-region resulted in an overall increased
number of possible camera viewpoints. We used the volume of the look-to-region

lv(f) to calculate the expected number of rendered images of a furniture scene

n;(f) as

lo(f)

M) = 5ot

(5.2)

which resulted in 1 expected image to be rendered for a furniture volume of roughly
0.2m x0.2m x0.2m. We used X;(f) as the expected value for a Poisson distribution
and sampled the number of images to render for a given furniture unit n;(f) during
dataset generation. We set a minimum number of images of minn;(f) = 10 for

any furniture unit.

Figure 5.9 shows how using the Poisson distribution results in a median of ap-
proximately 100 Images/m?® when using it to sample the number of images n;(f)
for a given furniture unit f, despite having vastly different furniture scales, as

shown in Figure 5.6 c¢). The outlier shelf in the middle of the graph was the
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Figure 5.9: Image density for each furniture unit as observed when sampling the
number of images n;(f) for 200 times. Since the furniture units had different
characteristics and scales (see Figure 5.6), we used the volume of the look-to-
region [v(f) to sample the number of images n;(f) via a Poisson distribution. This
resulted in an approximately constant density of images over the set of furniture
units.

Number of images based on furniture mesh volume
220 - .

I Table

-

=
[o0)
o

¢

* o

3
¢
L Y

m3

# Images

o O o

o o i

12
60
0

Image density [

Furniture units

same as the outlier in 5.7, which was very small with a look-to-region volume of
lo(f) = 0.047m3.

All graspable objects and all furniture units were separated into a 70-15-15 training-
validation-testing split. Moreover, this point represented the conclusion of all pre-
processing steps for the furniture units, which were used as the basis for generating

the domestic grasping scenes.

5.2.3 Simulating domestic grasping scenes

We used PyBullet [114] for simulating domestic grasping scenes utilising the gras-
pable objects and furniture units described above. We describe as a domestic
grasping scene a simulated environment where objects have been placed on a fur-
niture unit. Simulating the scenes consists of three parts: scene setup, grasp

testing and grasp contact projection.

Scene setup: An algorithm for the scene setup is shown in Algorithm 5.1. We

started to generate the scene by uniformly choosing a furniture unit f and placing
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Algorithm 5.1 Constructing a domestic grasping scene with PyBullet

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

Uniformly choose one of the furniture units f € F and place it at wo = (0,0, 0)
Sample number of objects n,(f), setting minn,(f) = 1 and maxn,(f) = 100
max__attempts = 2 X ny(f)
while current_objects < n,(f) AND attempts < mazx__attempts do
Uniformly sample one of the object meshes 0o € O
Augment object size with scaling factor s € [0.8;1.2]
Sample z,y, z from the convex object workspaces
With a probability of 50%, use upright pose and randomly rotate around
z, else uniformly sample random rotation matrix R
Place object o in the chosen pose such that all its parts are at least 0.01m
above the workspace
if Object velocity > 0.1m/s after 3.0s OR object outside of workspace
OR object intersects with other mesh then
Remove object
end if
attempts + =1
end while
Sample number of images n;(f), setting minn;(f) = 10

viewpoint__counter = 0, rendered__1mages = 0
while rendered images < n;(f) do
Sample camera origin p}° and look-to-point p;** from camera regions
Calculate camera extrinsic from camera origin p!’® and look-to-point p;*°
Render a depth image and segmentation image
Add noise to the depth image
viewpoint__counter + =1
if At least one object visible OR viewpoint__counter > 25 then
Save noisy depth image, segmentation image, and camera pose
rendered__images + = 1
end if

end while

it in the simulation environment on the ground plane. Based on the furniture unit,

we sampled the number of objects to be placed, n,(f) from a Poisson distribution
with A\,(f) as described in Eq. 5.1, see Algorithm 5.1 line 2.

We uniformly sampled a graspable object from the object set and placed it at a

uniformly sampled position within the furniture’s object workspaces. The orien-

tation of the objects is not expected to be entirely random in a domestic environ-
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ment, for example, with bottles and mugs usually standing upright. To cater for
these circumstances, we chose to use a hybrid of the orientation in the “piled” and
“packed” procedures in VGN [16]. Approximately half the time (50% probability),
objects were placed upright and randomly rotated around their z-axis (packed).
The remainder of the time, objects were oriented according to a uniformly sampled

random rotation matrix (piled), as described in Algorithm 5.1 line 8.

We dropped the object from lem above the workspace in the sampled pose. We
ran the physics of the simulation environment to let it come to a stable resting
pose by monitoring the object’s velocity. Objects were added sequentially, waiting
for each object to rest before the next object was added. Furthermore, we removed
objects that intersected with the furniture or other objects, fell to the ground, or

were balancing over the edge of the object workspace at any point.

For a given scene, we rendered n;(f) images based on the Poisson distribution
with A\;(f) as described in Eq. 5.2. For each rendered image, we sampled the
camera’s extrinsic parameters based on the camera sampling spaces as described
in Section 5.2.2, see Algorithm 5.1 lines 18-19. We rendered and saved the depth
image and segmentation mask based on the sampled camera pose. We added
artificial noise to the depth image as described in [154, 155]. In Chapter 4, we
found adding artificial depth noise to improve model performance by reducing the

sim-to-real gap.

Grasp testing: After a scene has been created with Algorithm 5.1, we proceeded
to grasp testing to generate ground-truth grasp information, see Algorithm 5.2.
We uniformly chose up to n,(0) = 300 of the pre-sampled grasps ¢ for each object
o in the scene. We ran an initial check for each grasp to see if the gripper would
be in collision when placed at the grasp pose. If the grasp pose was collision-free,
grasp success was checked by approaching the grasp pose along the grasp z-axis
with a PAL parallel-jaw gripper, closing the gripper with a maximum force of 5V,
moving the gripper vertically upwards and checking if it managed to lift the object

from the support surface.

We repeated this process a total of 12 times for each grasp pose while rotating

the gripper around w (the grasp contacts) for 0...360° in steps of 30°, see Algo-
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Algorithm 5.2 Evaluating grasp success in a given scene using a PyBullet simu-
lation.

1: for each object o in scene do

2: Load ground-truth grasps G(o) and uniformly choose up to 300 of them

3: for each grasp ¢ in chosen ground-truth grasps do

4: for 0...360° rotation of g around x-axis in steps of 30° do

5: if gripper does not collide AND lifting object is successful then

6: o(g) =1 # Successful ground-truth grasp

7: else

8: o(g) =0 # Unsuccessful ground-truth grasp

9: end if

10: end for

11: Choose median grasp of neighbouring successful approach directions

12: For multiple neighbouring successful approach direction clusters, store
all median grasps

13: end for

14: end for

rithm 5.2 line 4. This was done since the pre-sampled grasps of an object were
defined by the grasp contacts and could vary in their approach direction g.z (z-axis
of the grasp). If any of the attempted grasps was successful, we used the median
successful grasp orientation as the default orientation of the grasp, as shown in
Algorithm 5.2 lines 5-11.

There could also be multiple neighbouring successful grasp approach direction
clusters. For example, a bottle could be grasped from the front and rear of the
object, but top-grasps could be in collision with the bottle itself. In such cases, we
stored all median collision-free grasp orientations and decided the final orientation
when projecting the grasp contact points into the image in Algorithm 5.3 lines
10-13.

Testing the grasps in simulation, rather than using the analytical metrics calculated
during grasp sampling in Section 5.2.1, has the advantage of checking for collisions
between the objects, gripper and furniture in the generated scenes. Since we
worked with objects in clutter and complex furniture units, collision checking in

the final scene was crucial for filtering unsuitable grasp poses.
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Algorithm 5.3 Projecting grasp contacts into the image, checking their visibility
and saving grasp data using a PyBullet simulation.

1: for each image of the n;(f) previously rendered images do
2: for each stored grasp do

3: Calculate grasp contact points (P, 1, Pj.2) in camera frame c
4: Choose point closer to camera ¢ with p§., = min [p§., |, [P§2|
5: Project grasp contact point pg., into image coordinates (u,v)
6: Skip grasp if coordinates (u,v) outside of image boundaries
7: De-project image coordinates (u,v) to pg .,
8: Calculate distance between ground-truth and de-projected grasp con-
tact point dist = [P§., — PG el
9: if dist < 0.01m AND ray-test yields correct object then
# Check if earlier grasp g2 is already stored at (u,v)
10: if ¢2 exists at (u,v) AND o(g) < 0(g2) then
11: if o(g) == 1 AND V¥(g) < ¥(¢2) then
12: Overwrite g2 with g
13: end if
14: else
15: Save grasp ¢
16: end if
17: end if
18: end for
19: end for

Projecting grasp contacts: After all grasps in the scene have been labelled, we
checked the visibility of their grasp contact points in each of the n;(f) rendered im-
ages, as described in Algorithm 5.3. Of the two grasp contact points (pf., |, Piep2)
in the camera frame ¢, we selected the one closer to the camera origin, pg.,. This
is the contact point that is visible in the camera frame unless obstructions occlude

the surface point.

Since the grasp contact point is later identified by its image coordinates, we used
the camera intrinsics to project the grasp contact point Pyep 10O the 2D image,
resulting in the image coordinates (u,v), see Algorithm 5.3 lines 3-6. Next, we
needed to assess if the grasp contact point was visible in the image, for which we
had two distinct criteria. First, we checked the Euclidean distance, dist, between

the original grasp contact point pg,,, and the deprojected grasp contact point pg .,
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of the image coordinates (u, v), see Algorithm 5.3 lines 7-9. If dist exceeded 0.01m,
we deemed the grasp contact point invisible due to the large aliasing error induced
when projecting the point into the image. Secondly, a ray-test from the camera
origin to the grasp contact point p,, had to return the object ID connected to the
ground-truth grasp, as opposed to the ID of another object or the furniture unit.

If both criteria were met, we deemed the grasp contact visible.

If the grasp contact was visible, we saved the image coordinates (u, v), grasp width
w(g), orientation r(g) and success p(g) of the grasp. If more than one grasp was
visible at a given set of image coordinates (u,v), we saved the successful grasp g
whose approach direction was most aligned with the principal ray of the camera
- resulting in a smaller ¥ - see Algorithm 5.3 lines 10-15. Using this process,
we preferred grasps approaching the object from the front to those approaching
the object from the rear. We repeated this process to save grasps for each depth
image in a given scene. The resulting dataset with training and validation data
consists of 542,055 images with an average of 108.6 ground truth grasps visible
in each scene, of which an average of 10.5 grasps are labelled as successful (i.e.

ground-truth positive).

5.3 GP-net+

GP-net+ is an extension of the Grasp Proposal Network, which we introduced in
Chapter 4. We made a number of changes to the loss function as well as several
small changes to the model input and output to improve performance. An overview
of the pipeline for GP-net+ is depicted in Figure 5.10. Similar to GP-net, GP-net+
consists of a FCNN with a ResNet-50 architecture pre-trained on ImageNetV2. We
converted the input depth image into 3 channels by applying a jet colourmap using

fixed normalisation boundaries of 0.2m and 1.5m.

As mentioned in Section 4.2, the fixed normalisation boundaries balance the res-
olution and perceivable depth in the input image. Compared to GP-net, the
normalisation boundaries for GP-net+ were increased by 0.3m to broaden the vis-
ible range. We found drops in performance when increasing the normalisation

boundaries further than that, likely due to the reduced resolution in the input
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Figure 5.10: Pipeline of GP-net+ grasp proposal. Using a depth image as input,
we apply a jet colourmap, run inference on the resulting RGB image with GP-
net+ and output a dense tensor y with 6 channels. The channels comprise a
predicted relative grasp width 7, a normalised unit quaternion for a predicted
grasp orientation r and a predicted grasp confidence gc, normalised to the range
[0; 1] by a sigmoid function o.

image.

In contrast to GP-net, we defined the grasp width in the output tensor of GP-net+
relative to the maximum gripper width and denoted it as v. This was done since
all successful grasps (as labelled in Algorithm 5.2), which are the only ones used
to learn the width in the model, have a maximum width of max(w) = 0.08m for a
PAL parallel-jaw gripper. The relative width scales the output to the [0; 1] range,
thereby assimilating the scale of possible width values with the remainder of the
model outputs, which we hypothesised would improve the learning process. In the
model architecture, we added a sigmoid function to the width output and used the
maximum grasping width as a scaling factor when mapping the model output to

grasp proposals in Section 5.3.2.

120



5.8. GP-net+

In general, a pixel ¢ in our ground-truth data could have one of three states:
It could hold a successful grasp, where lgyccessgrasps(1) = 1, a negative ground-
truth grasp, where 1neggrasps(2) = 1, or no ground-truth grasp information, where
LsuccessGrasps(1) = 0 and Ineggrasps(i) = 0. Pixels with ground-truth negative
grasps could either be based on tested, unsuccessful grasps on the objects or non-
object pixels in the depth image based on the segmentation mask. Pixels with
no ground-truth information were present on invisible parts of the depth image,
e.g. where there was no depth information due to sensor noise, the normalisation

bounds or object pixels without visible ground-truth grasp contact points.

5.3.1 Loss function

The most significant differences between GP-net and GP-net+ can be found in
the loss function. In GP-net’s loss function (see Equation 4.1), the loss for grasp
success L, is a binary cross-entropy loss between the ground-truth and predicted
grasp success. It is entirely independent of the second configuration part of the
loss function and thereby does not consider the predicted grasp width & or the
predicted grasp orientation . However, the configuration of the grasp is an im-
portant factor in the grasp prediction, where small changes in both variables can

change a successful grasp proposal to an unsuccessful one.

To counter this behaviour and inspired by the box confidence in the YOLOv2 [163]
loss function, we changed the predicted grasp success 0 output from GP-net to a
predicted grasp confidence ge. The ground-truth grasp confidence gc was calcu-
lated as a measure of how well the predicted grasp pose with relative width ©
and orientation © matched the ground-truth grasp pose. To measure how well
the orientation matched the ground truth, we used the angular distance a for the
predicted and ground-truth quaternions a(r,#) = 2 arccos|r - £|, normalised to 1

by dividing the term with 7.

To measure how well the predicted relative grasp width © matched the ground
truth, we calculated the absolute error between the predicted and the ground-
truth value. We weighted the sum of the grasp orientation and relative grasp
width error with a factor of 2 to increase the resolution of the grasp confidence gc

when approaching a configuration close to the ground-truth grasp configuration.
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Overall, this resulted in the ground-truth grasp confidence gc for grasp at pixel ¢

being calculated as:

1— min(la 2- (CL(I'Z‘, fz) + |Vi - VAZD) it 1SuccessGrasps(i) =1
gci = (5.3)

0 if 1SuccessGrasps (Z> =0

This caused the ground-truth grasp confidence gc to approach 1 for grasps with
a prediction similar to the ground-truth orientation r and relative width v. For
bad predictions of the grasp configuration, the grasp confidence gc approached 0.
If no successful grasp was available at pixel 7, the ground-truth grasp confidence

was gc; = 0. The overall loss function consists of three parts:

o LguccessGrasps €valuates the predicted grasp confidence for pixels with a suc-

cessful ground-truth grasp.

o LnegGrasps €valuates the predicted grasp confidence for pixels with ground-
truth negative grasp samples. Ground-truth negative grasp samples include
tested, unsuccessful grasps on the objects and background pixels based on

the segmentation mask of the scene.

o Lconfig evaluates the predicted grasp orientation  and the predicted relative

grasp width 7 for pixels with a successful ground-truth grasp.

We used the distance metric for quaternions defined by Kuffner et al. [153] and
used in VGN and GP-net, as well as the mean-squared error for the relative width

v in the configuration loss, resulting in:

all__pixel

ESuccessGrasps - Z 1SuccessGrasps(i) (gcz - gACi)Q (54)
i
all__pixel

LNegGrasps = Z 1NegGrasps(i) gACzQ (55)

%

122



5.4. FExperiments

all__pixel

EC’onfig = Z 1SuccessGrasps(i) (1 - |ri : I¢z| + (Vi - ﬁl)Q) (56)

7

Loss = )\SuccessG’rasps ESuccessGrasps + )\NegGrasps ﬁNegGr(zsps + )\Config EConfz'g (57)

We set Avegarasps = 1, AsuccessGrasps = 100 and Aconpig = 2, which we found
experimentally to give a good balance between the individual losses. Note that we
had a substantially higher number of ground-truth negative grasps than successful
ground-truth grasps and summed the losses over all pixels, motivating a high
ASuccessGrasps 10 counter that imbalance. We trained GP-net+ for 8 epochs using

an Adam Optimiser with a learning rate of 3e~*.

5.3.2 Mapping the model output to grasp proposals

Mapping the dense output tensor of GP-net+ to grasp proposals worked similarly
to GP-net, see Section 4.2.2. Since GP-net+ outputs a predicted grasp confidence
gc as opposed to a predicted grasp success 9, the predicted grasp confidence was
used for selecting grasp proposal pixels in the output tensor. We defined an ac-
ceptance threshold 4. = 0.29, which we set experimentally based on the results
in Section 5.5.1.

Another difference to the grasp proposal mapping for GP-net was rooted in the
grasp width. In contrast to taking the absolute predicted grasp width W directly
to translate the grasp contact point to the TCP, we calculated it based on the
predicted relative grasp width 2. This was done by multiplying the predicted
relative grasp width # with the maximum gripper width max(w) = 0.08m for a

PAL parallel-jaw gripper.

5.4 Experiments

We evaluated the performance of GP-net+ in three stages using a tabletop simu-
lation (sim-tabletop), a domestic simulation (sim-domestic) and a real-world do-
mestic experiment (real-domestic). The combination of simulated and real-world
experiments enabled us to evaluate different aspects of performance. For example,
simulated experiments can be repeated in a controlled manner and be used to

compare multiple models under the exact same conditions. In contrast, real-world
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Figure 5.11: Overview of the different experiments conducted to evaluate GP-
net+ and compare it against other algorithms, with tabletop simulations (sim-
tabletop), domestic simulations (sim-domestic) and a real-world domestic exper-
iment (real-domestic). The images show all experiments with the EGAD evalua-
tion set. We tested three additional object sets in the experiments: a “simple” set
(sim-tabletop), a “custom” set (sim-tabletop, sim-domestic) and a “household” set
(real-domestic).

experiments evaluate the performance under real-world conditions without the as-
sumptions and simplifications applied in a simulation environment. Figure 5.11

shows a visualisation of the different experiments.

Up to now, most research in robotic grasping is trained and evaluated using table-
top scenarios [11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 25, 37, 38, 42, 62, 164]. To
ensure GP-net+ is performing well in such scenarios, we compared its performance
relative to VGN [16], GPD [19] and GP-net (see Chapter 4) in a tabletop simu-
lation experiment (sim-tabletop). VGN and GPD represent two established grasp
proposal methods that are frequently used as points of comparison in robotics
research [16, 17, 21, 38, 46].

In a second experiment (sim-domestic), we examined how GP-net+ extends to
domestic scenarios. Since domestic scenarios are more complex and variable in

their object, furniture and camera placement than tabletop scenarios, we expected
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the performance of the models to drop relative to our first set of experiments.
The simulated domestic scenarios contained objects placed in structured clutter
on tables and shelves. To show the importance of using appropriate training data
and models when applying grasp proposal solutions to domestic scenarios, we
compared the performance of GP-net+ to the performance of GPD and GP-net

on the same domestic scenarios.

Finally, we performed a real-world experiment (real-domestic) with a PAL TIAGo
mobile manipulator. This real-world experiment indicated the performance of GP-
net+ under real-world conditions. Such conditions include sensor noise, actuation
noise, and end-effector reachability and exclude many of the assumptions and

simplifications prevalent in simulated experiments.

For all experiments, we describe as a scene a simulated or real-world environment
where objects have been placed on a furniture unit or planar surface. Multiple
grasping trials can be executed for one scene. Each trial involves constructing a
scene representation (e.g. by taking a depth image) and executing a single grasp,

given that at least one grasp has been proposed by the model.

We employed four distinct evaluation sets in our experiments. Some of the eval-
uation sets were a constellation of virtual 3D object meshes designed for sim-
ulation purposes (virtual), and some comprised real-world objects suitable for
manipulation by a physical robot (physical). The evaluation sets are: a sim-
ple evaluation set containing simple shapes like cuboids and cylinders (virtual,
used in sim-tabletop)®, a custom evaluation set based on the test split of the
graspable objects described in Section 5.2.1 (virtual, used in sim-tabletop and
sim-domestic), the EGAD [74] evaluation set (virtual and physical, used in all
experiments) and a household evaluation set described in Section 5.4.3 (physical,

used in real-domestic).

Using these varied evaluation sets allowed us to evaluate the strengths and weak-
nesses of the models in more detail. In the tabletop simulations (sim-tabletop)
experiment, the simple evaluation set produced good results for all models, while

the more complex custom evaluation set revealed distinct differences among the

8The simple evaluation set was first proposed in VGN [16], where it is called “blocks”
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models in the same experiment. As a special case, the EGAD evaluation set
was evaluated in all experiments (sim-tabletop, sim-domestic and real-domestic)
and exhibited differences in performance as the complexity of the experiments in-
creased. In the remainder of this section, we describe the setup of our experiments

in detail, with the results for each experiment represented in Section 5.5.

5.4.1 Tabletop simulation experiment (sim-tabletop)

The tabletop simulation setup consisted of a 30 x 30cm? workspace positioned on
top of a planar surface such that the workspace did not extend beyond the planar
surface. During scene setup, n objects were dropped in a uniformly sampled pose
in the workspace, corresponding to the “piled” procedure described Section 5.2.3.
We evaluated two different numbers of objects with n = 5 and n = 1 objects to
test cluttered scenarios and provide a basis of comparison to GP-net in Chapter 4
with single objects. We tested three different object sets in the experiment: the

simple, custom and EGAD [74] evaluation set.

We generated 500 scenes for each configuration of evaluation sets and the number
of objects n, totalling 500 x 3 x 2 = 3000 scenes. We tested all models on those
same scenes. In this experiment, we rendered images from camera poses based on
spherical coordinates from the centre of the workspace, with radial distance d =
0.6m, inclination (or polar) angle ¢ = 60° and the azimuth (or azimuthal) angle
sampled uniformly from 6 € [0°,360°] (identical to VGN [16] for comparability).

Identical to the generation of our training data in Section 5.2.3, we added noise [154,
155] to the rendered depth images. We used the noisy depth images for GP-net+
and GP-net. We also used the noisy images to generate the point cloud for GPD
and the TSDF for VGN. Furthermore, we segmented the object points in the point
cloud using the ground-truth segmentation mask. This segmentation was used on
GPD’s input point cloud to prevent grasp proposals on non-object points, e.g.
the ground plane. We call this process grasp-guiding in our experiments. While
this gives an advantage to GPD compared to the other models, it is a necessary

pre-processing step for applying GPD in our experiment.

We tested all algorithms based on sensor readings from a single camera pose,

126



5.4. FExperiments

not applying noise reduction techniques or stitching point clouds. An exception
was VGN, where we additionally tested performance with a higher quality TSDF
scan incorporating images without added noise from 6 camera viewpoints spaced
at A6 = 60° to reproduce the original setup for VGN [16]. We indicated this

reproduced setup as “VGN*” in our results.

For each trial in each model, we executed the grasp proposal with the highest
predicted grasp quality and logged the grasp as successful if the gripper was able
to lift the object above the support surface. If two consecutive trials failed or,
alternatively, if all objects were grasped successfully, we moved to the next scene.
VGN was originally trained with a Franka Emika Panda gripper [16]. While we
showed in Section 4.6 that a PAL parallel-jaw gripper can approximate a Franka
Emika Panda gripper, the simulation environment enabled us to test VGN with
the original gripper without requiring hardware modifications on a physical robot.
Therefore, we decided to test VGN with the Franka Emika Panda gripper in our

simulated tabletop experiments.

5.4.2 Domestic simulation experiment (sim-domestic)

To simulate the domestic experiments, we used the same PyBullet simulation
environment that had been used to generate our training data (described in Sec-
tion 5.2) but with new test scenes. Using the test split of the furniture dataset,
which included a total of 15 shelves and tables, we generated 300 scenes, all with
different compositions of objects, object poses and furniture units. We tested two
different evaluation sets in our domestic simulation experiment: the custom and
EGAD [74] evaluation set.

We rendered noisy depth images from sampled robot-based camera poses (as de-
scribed in Section 5.2.2) in each scene, proposed grasps based on the image using
GP-net+ and selected the grasp proposal with the highest predicted grasp quality.
We executed the grasp in the simulation using a PAL parallel-jaw gripper and
labelled it as successful if the gripper managed to lift the object above the support
surface when it was moved vertically upwards by 0.05m. We aborted a scene and
moved to the next scene after 5 consecutive failed trials or if all objects had been

grasped successfully.
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We compared GP-net+ to GPD and GP-net using these domestic simulations. To
apply both algorithms to such scenarios with complex furniture geometries, we
used grasp-guiding to prevent them from proposing grasps on non-object points in
the respective scene representation, i.e., we guided their grasp proposals exclusively
to object points. For GPD, we indexed all object points in the point cloud as the
region of interest for grasp sampling, as described in [24]. To do so, we utilised
the ground-truth segmentation mask of the PyBullet simulation and used it when
de-projecting the noisy depth image into the point cloud. This ensured grasps were
proposed on the objects instead of the furniture unit. For GP-net, we filtered the
output tensor of the model using the ground-truth segmentation mask. In doing so,
we set the predicted grasp success 0 of non-object pixels to zero, resulting in such

pixels not being selected for grasp proposals when applying NMS (see Section 4.2).

While this gave GPD and GP-net some advantage with additional ground-truth
information unavailable to GP-net+, it is a necessary and reasonable workaround
when applying more “conventional” tabletop grasp proposal algorithms to domestic
scenarios. For example, a mobile manipulator collecting garbage from the ground,
GarbageNet [129], uses a similar approach to define grasp sampling regions with
GPD. Naturally, the performance of such a workaround in the real world depends
on the quality of the segmentation mask. The provision of extra information to

GPD and GP-net should be considered when interpreting the results.

5.4.3 Real-world experiment (real-domestic)

We performed a real-world experiment with GP-net+ using a PAL TTIAGo mobile
manipulator. The real-world experiment could evaluate the performance under
real conditions without many of the assumptions and simplifications used in the
simulated experiments, for example, regarding object mass, inertia, friction and
sensor noise. Furthermore, the real-world experiment used the full movement of
the robot, in contrast to only simulating the end-effector. As a consequence, real-
world limitations in terms of reachability and inaccuracies for path planning and

motor control were incorporated.

The real-world experiment evaluated two separate evaluation sets: our household
evaluation set and the EGAD [74] evaluation set. While the household evaluation
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set represented objects found in real domestic environments, the EGAD evaluation
set enabled us to evaluate the performance of GP-net+ in the real world in com-
parison to our simulated domestic experiments (sim-domestic). We selected the
15 objects in the household evaluation set from ordinary objects available in local
supermarkets and homes. While not directly obtained from any dataset, the set
encompassed representative objects from all categories available in the YCB [85]
object set with food, kitchenware, shape items, toys and tools. The household
evaluation set can be seen in Figure 5.12. Note that for both the food can and
the food box, the weight of the original contents (> 0.5kg), in combination with
the friction between the PAL parallel-jaw gripper and object surface, caused the
gripper to be unable to lift the objects. We, therefore, reduced their weight by

removing the original contents and filling them with foam.

We used ROS noetic and ran GP-net+ based on depth images from an Intel Re-
alSense D435 camera mounted on the robot’s head for our real-world experiments
as shown in Figure 4.5. We used the Intel RealSense D435 camera since it could
perceive objects closer to the camera than the Orbbec Astra camera used in the
TTAGo mobile manipulator by default. We also found the Intel RealSense cam-
era to perform better on thin features, e.g. being able to perceive depth on thin

objects like pens at a distance < 0.4m.

To prepare a scene for our real-world experiment, a human operator placed all
objects on the furniture unit with a distance d < 1.0m to the robot. We manually
positioned the camera so that at least one of the objects was visible and started
the automatic grasping trial process in the GP-net+ ROS node. The ROS node
averaged over 10 consecutive depth images and input the resulting averaged depth
image to GP-net+ in order to generate grasp proposals as described in Section 5.3.
The resulting grasp proposals were sorted based on their predicted grasp confidence
gc. The automatic grasping trial process then attempted to plan a path to the pre-
grasping pose of the grasp with the highest predicted grasp confidence. If no path
could be planned for this grasp, the automatic grasping trial process proceeded to
the next highest predicted grasp confidence until a path could be planned or no

grasp proposals were left.
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Figure 5.12: All 15 objects of the household evaluation set used for the real-world
experiments, similar to objects from the YCB [85] object dataset. We include two
or more objects from the categories of food items, kitchen items, shape items, toys
and tools.

We planned paths using an OMPL [165] path planner in Movelt! [72]. We further
used OctoMap [71] based on the Intel RealSense point cloud with a resolution of
0.02m to build a planning scene for collision checking. If the pre-grasping poses
could be reached, the grasp was executed with a joint movement to a pre-grasping
pose 0.05m away from the grasping pose in negative z direction, a linear approach
in positive z direction to the grasping pose and closing the gripper. Once the
gripper was closed, the robot tried to lift the object above the support surface by
moving the gripper vertically upwards for 0.05m. If the gripper lifted the object

above the support surface, the grasp was counted as a success.

If an object was successfully grasped, it was removed from the scene. Similar to
the domestic simulation experiments, 5 consecutive failures to grasp any object
caused the scene to be abandoned. When manually positioning the camera at the
start of the trial, we ensured each object in a scene was visible in at least one trial.
Half of the scenes feature a table as a furniture unit, and half the scenes contain
a shelf. The composition of the objects for all scenes was allocated before the
experiments by shuffling all available objects and selecting the objects sequentially
from the shuffled list. Overall, each object appeared in 5 scenes with a table and

5 scenes with a shelf with no duplicate objects in a single scene. This resulted in 4
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Figure 5.13: Example of the scenes tested in our real-world experiments with a
PAL TIAGo mobile manipulator.

different conditions for this experiment, with 2 furniture objects and 2 evaluation
sets tested. Examples of scenes tested in our real-world experiments are shown in
Figure 5.13.

5.5 Results

We reported the GSR, CR and the Visible Clearance Rate (VCR), where we de-
fined VCR specifically for our domestic simulation experiment. With the flexible
setup in our domestic simulation experiment (sim-domestic), not all objects in a
scene were necessarily visible in the perceptive field of the camera before the scene
was abandoned. For example, if a small object was placed at the top of a shelf, it
might never have been visible from a robot’s perspective. We excluded such invis-
ible objects when calculating VCR as it was impossible for any model to propose
grasps on objects not included in the scene representation. We calculated GSR
(Equation 2.1) and CR (Equation 2.2) and VCR aggregated across all evaluation
scenes, with VCR defined as:
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_ #Objects cleared from scenes

VCR =

5.8
#Visible objects in scenes (58)

Note that for our simulated tabletop (sim-tabletop) and real-world experiments
(real-domestic), VCR = CR. While the simulated tabletop experiments naturally
have all objects visible, we specifically ensured the visibility of each object in at
least one trial in the real-world experiments. It is important to keep in mind that
the overall performance of a model can only be judged when looking at both the
grasp success with GSR and the clearance with CR (or, in our domestic simulation
experiments, VCR). Ideally, a good grasp proposal pipeline should achieve high

success in the grasp proposals and a high clearance of the objects in the scene.

5.5.1 Setting the acceptance threshold

When converting the dense output tensor of GP-net+ to grasp proposals, we used
the so-called acceptance threshold 74, to define the minimum predicted grasp con-
fidence gc that can yield a grasp proposal. As such, varying 74 influenced the
performance of the model since both GSR and VCR vary with the predicted grasp

confidence ge.

To select a suitable acceptance threshold v4., we began by setting a low threshold
of 4. = 0.01 to generate a large set of grasp proposals for scenes using the custom

evaluation set in the domestic simulation experiment (sim-domestic).

We filtered grasp proposals in steps of Avy; = 0.01 and plotted the resulting
performance of GP-net+ with GSR and VCR in Figure 5.14. Both GSR and VCR
are important for a good performance of a grasp proposal algorithm, as a very low
performance on either would result in very few successful grasp attempts overall.
The performance for the two variables showed an inverse relationship, with GSR
increasing and VCR decreasing for an increasing acceptance threshold v, (up until
Yge > 0.8, where fewer than 20 grasps were proposed for all objects in all scenes).
Given this relationship, we found equal importance of GSR and VCR to yield the

best results. Therefore, we calculated their fitness I' as their average:
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Effect of acceptance threshold y4- on GP-Net+
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Figure 5.14: We calculate a fitness function I' as the average of GSR and VCR to
evaluate the performance of GP-net+ over variations in the acceptance threshold
Vge- Note that for v4. > 0.8, fewer than 20 grasps were proposed for all objects in
all scenes with the custom evaluation set in the domestic simulation experiment.
We maximised the fitness and set the acceptance threshold 7g.(I'yne) = 0.29 for
the remainder of our experiments.

. _ GSRIVCR

. (5.9)

As shown in Figure 5.14, the fitness I' increased initially and stayed relatively
constant between 4. = 0.2 and 74 = 0.6, with both GSR and VCR changing dis-
tinctly in that region. This indicated the trade-off when risking more unsuccessful
grasps with lower predicted grasp confidence gc and increasing the clearance rate
with each additional successful grasp. In our results, the fitness I' was maximised
with [y = 55.5% at yge(Finae) = 0.29, which we set as the acceptance threshold

for all of our remaining experiments.
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n= Simple EGAD Custom
GPD 50.5 / 67.7 /59.1  46.0 / 66.1 / 56.1  30.0 / 48.1 / 39.1
VGN 84.8 /94.6 /89.7 50.1 /722 /612 50.8/69.4/60.1
VGN* 82.5/90.6 /86.6 49.4 /66.5 /58.0 54.0 /70.6 / 62.3
GP-net | 88.5/96.8 /927 57.7/76.3 /642 474 /674 /574
GP-net+ | 90.1 / 96.2 / 93.2 756 /89.4 / 82.5 64.6 /79.2 /71.9
n =
GPD 724 /495 /610 342 /369 /356 26.3/18.7 /225
VGN | 90.4 /90.1 /903 51.1/432 /472 388 /315 /352
VGN* 91.8 /872 /895 475 /31.1 /393 41.3/29.8 /356
GP-net | 86.2/91.7 /89.0 550 /479 /51.5 499 /42.7 / 46.3
GP-net+ | 92.3 /96.5 /944 63.0/57.5/60.3 578 /514 /546

Table 5.1: Results of tabletop simulation experiments (sim-tabletop) with n = 1
and n = 5 objects for three different evaluation sets. Results are reported as GSR
/ CR / fitness with bolded items representing the best performance as measured
by fitness I" with a margin of 1%. VGN* denotes an extra run of all scenes with a
full workspace scan of 6 non-noisy images, compared to a single, noisy image for
all other experiments.

5.5.2 Tabletop simulation results (sim-tabletop)

Using the acceptance threshold 4. = 0.29, GP-net+ outperformed all other models
in our tested tabletop scenarios. Table 5.1 lists the full set of results for GP-net+,
GPD, GP-net and VGN. GP-net+ performed substantially better than the other
models, especially when using the more complex EGAD and custom evaluation
sets. As expected, all models had a reduction in performance when moving from
the simple evaluation set to the more complex geometries included in the EGAD

evaluation set and the custom evaluation set.

The results for GP-net showed only a slight reduction in performance when moving
from n =1 to n = 5 objects. Since GP-net has never seen cluttered environments
in its training data, this indicated some robustness for image-based grasp proposal
methods when moving from single to cluttered objects. In general, GP-net per-

formed well for all conditions, second in performance to GP-net+ in all but two
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cases.

Interestingly, VGN did not improve performance when scanning the full workspace
with non-noisy images (marked as VGN* in Table 5.1). This seemed counter-
intuitive since a higher-quality scan of the environment would be expected to yield

a better scene representation and, hence, a higher quality of the proposed grasps.

Unfortunately, the original paper of VGN has no ablation studies regarding differ-
ent numbers of scans for the TSDF integration, how it influences the grasp perfor-
mance or what effect object size has on the TSDF or grasp performance. Object
size might come into effect with the different evaluation sets since the maximum
resolution of objects in the TSDF is proportional to the size of the voxels [166].
Regardless of the effects in play for VGN, our results for the simple evaluation set,
which was used for the original simulation experiments in VGN, were similar to

those of the original paper [16].

In summary, GP-net+ performed better than all tested alternatives on tabletop
scenarios. This demonstrated the ability of GP-net+ to propose grasps for ap-
plications covered by tabletop methods for fixed manipulators, scenarios that are
often tested in the robotic grasping literature, e.g. [10, 11, 12, 16, 20, 37, 44, 63,
73]. From these results, we moved on to more complex scenarios by evaluating

GP-net+ in simulated domestic environments.

5.5.3 Domestic simulation results (sim-domestic)

In this section, we report the results of the domestic simulation experiment indi-
vidually for each object set, first, the custom evaluation set and then the EGAD
evaluation set [74]. Finally, we combine all domestic simulation scenes and show
the performance of GP-net+ in regard to the position of the objects in the input
depth image.

Custom evaluation set: An overview of all results can be seen in Table 5.2, with
the individual results achieving the highest fitness I' (as per Equation 5.9) marked
in bold. Despite GPD and GP-net receiving an advantage through grasp-guiding
(see Section 5.4.2) with ground-truth information, GP-net+ substantially outper-

formed both algorithms. GP-net was “conservative” in terms of grasp confidence,
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Tables Shelves All

GPD | 223 /268 /245  73/86 /7.9 13.6 / 16.1 / 14.8
GP-Net | 70.3 /246 /475 491/7.0/28.0  63.7 /154 /39.6
GP-net+ | 59.2 / 78.1 / 687 437 /513 /475 499 /61.4 /557

Table 5.2: Performance of GP-net+ in simulations (sim-domestic) using the objects
from the custom evaluation set. Results are reported as GSR / VCR / fitness with
bolded items representing the best performance as measured by fitness I' with a
margin of 1%.

resulting in a high GSR, but a very low VCR due to very few grasp being tested
with a total of 171 grasps compared to GP-net+’s 2009 grasps and GPD’s 1674

grasps in the same scenes.

Note that the VCR values in Table 5.2 in combination with the total number of
grasp attempts and the GSR can only be used to calculate the number of visible
objects in all scenes. The number of visible objects in all scenes varied between
the tested models due to the maximum number of consecutive grasp failures for
a single scene and, thereby, a different number of camera viewpoints. The CR,
however, could be used to calculate the total number of object appearances in the
experiment. The CR was 12.0% for GPD, 5.8% for GP-net and 52.9% for GP-
net+. There were a total of 1895 object appearances from the custom evaluation

set in our domestic simulation experiment.

All algorithms exhibited a lower performance on shelves compared to tables. This
was expected since shelves present a more challenging setting with lower visibility,
more occlusions and a higher chance of collisions between the gripper and its sur-
roundings. Examining the reasons why proposed grasps failed provides interesting
insight into the performance of a grasp proposal algorithm. Figure 5.15 visualises
the failure causes of GP-net+ for both furniture types. The simulation tracked
five possible outcomes: “approach collides”, “failed to grasp”, “grasped furniture
unit”, “retreat collides” and “success”. In our results, “failed to grasp” was the
most common failure type and occurred 24.7% of the time, with a similar number

of failures on tables and shelves.
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Figure 5.15: Causes of failure when testing GP-net+ grasp proposals in our do-
mestic simulation experiment (sim-domestic) with the custom evaluation set.

Examples of grasp attempts where the gripper failed to grasp the object are shown
in Figure 5.16 a). We observed two main failure situations in this category:
(i) badly planned grasps, where the combination of predicted grasp orientation,
width and contact position resulted in a failure, and (ii) grasps where a crucial
part of the scene was occluded in the original image. An example of case (ii) is
shown in Figure 5.16 a), where the gripper would have managed to grasp the mug
if it had been empty. The content of the mug was not visible in the scene represen-
tation. In such situations, a measure of uncertainty might be able to differentiate

the possibilities and plan sensible grasps, which we further discuss in Section 5.7.

The second and third most common failures occurred when the gripper collided

with the furniture unit or other objects during grasp execution. This can happen
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:
A

(iii) (iv) (V)
b) Approach collides

Figure 5.16: Examples of failure causes in simulation, with a) failures to grasp and
b) approach collisions.

during the approach of the final grasping pose (“approach collides”, 13.0% of grasp
attempts) or when lifting the gripper with the grasped object (“retreat collides”,
8.9% of grasp attempts). Most of these failures occurred when grasping objects
from shelves due to the increased possibility of collision. Examples of such failures
are shown in Figure 5.16 b). Similar to the “failed to grasp” category, some grasp
proposals were poorly planned, e.g. (v), while others were reasonable based on the

available information in the scene representation. For example, the depth images
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Figure 5.17: Number of times an object occurred in the simulation and number

of successful /unsuccessful grasp attempts for each object in the custom evaluation
set.

for (iii) and (iv) did not include the end of the outer part of the shelf, with which
the gripper collided during execution. The least common failure cause of GP-
net+ occurring 3.4% of the time was the “grasped furniture unit”, which almost
exclusively happened on the shelf and indicated a problem with distinguishing

graspable object surfaces from ungraspable furniture surfaces.

To get a better insight into the performance of GP-net+ for each object, we plotted
the number of successful and unsuccessful grasp attempts as well as the number
of occurrences for each object in the custom evaluation set in Figure 5.17. Since
tables and shelves are non-graspable objects that the robot cannot lift, they are
only associated with unsuccessful grasp attempts. Furthermore, since a scene only
got abandoned after 5 consecutive failed grasp attempts or when all objects have

been grasped, there could be more than one attempt to grasp a single object in the
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egad_t11_2 shapenet_bowl_7d7bde

shapenet_mug_1dd829 ycb_070-a_wood_blocks

Figure 5.18: Visualisation of objects with low performance for GP-net+.

scene. This could result in the sum of successful and unsuccessful grasp attempts
exceeding the number of object occurrences. For each object, the ratio between the
number of successful grasps and the number of object occurrences calculates the
CR (The number of unseen objects can not be referred from the graph, not allowing
a calculation of VCR). Similarly, the ratio between the number of successful and
unsuccessful grasp attempts results in the GSR of a given object. We sorted
the graspable objects based on their mesh surface area, with the smallest object
(ycb_073-a_lego duplo) on the left and the one with the largest surface area
(shapenet_ bowl_12ddb) on the right.

A visualisation of the object mesh of challenging objects in the custom evalua-
tion set is shown in Figure 5.18. One of those particularly challenging objects is
“shapenet_bowl 7d7bd”, a ShapeNet bowl with a lid. The lid made it difficult
for the bowl to be grasped along the rim. We noticed that most of the proposed
grasps for this object were along the rim of the object, especially in cases where

the camera viewed the object from below and did not perceive the lid.

Another challenging object in our custom evaluation set is a mug from ShapeNet
labelled “shapenet_mug 1dd829”, which is filled with liquid and therefore could
not be grasped by the rim, see Figure 5.18. Furthermore, it had a diameter of
9.9¢m, making it too wide to be grasped on the outer surface with the PAL parallel
jaw gripper, which has a maximum graspable width of 8¢m. Human operators
would usually grasp such an object with a form closure grasp around the handle,
which is more challenging to achieve with the limited flexibility of two gripper

plates with a parallel-jaw gripper.
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The YCB object “ycb_070-a_wood blocks” is a box filled with coloured wooden
blocks [85] and too wide to be grasped along the bottom side of the box. Fur-
thermore, the model exhibited traces of sensing inaccuracies in the mesh file due
to the reflective surface of the object packaging (see Figure 5.18), which was a
problem that can also be encountered in real-world scenarios. Despite these chal-
lenges, GP-net+ generated approximately 21% successful grasps on this object,

exclusively when grasping the box lid.

The EGAD object “egad_t11_2” is another object with many failures. A failed
grasp attempt on that object is also depicted in Figure 5.16 a) (i), where the
gripper pushed the object away. We assumed that due to the high curvature and
“spikes” on the upper part of the object as depicted in Figure 5.18, GP-net+
struggled to propose sensible grasp orientations. Furthermore, the object had a
quite small height, making it difficult to grasp it when lying on the ground in a

similar pose to the one shown in Figure 5.18.

No object in Figure 5.17 had a VCR of 100%, i.e. was grasped successfully every
time it appeared in a scene. This is expected in domestic scene scenarios since
some objects’ poses and surroundings can make them ungraspable with a single
grasping motion. For example, the “bighird_nut_ crunch” object is a rectangular
food box. If the box lay face-down on a surface, it could not be grasped in a single
movement with the parallel-jaw gripper as it was smaller than the height and
width of the box. For grasping such objects, a robot would either require a more
sophisticated gripper or combine skills like pushing and grasping objects [123, 127,
167].

EGAD evaluation set: In addition to the simulation evaluations using the cus-
tom evaluation set, we show the results for using the EGAD [74] evaluation set
in Table 5.3. Similar to the results with the custom evaluation set in Table 5.2,
GP-net+ outperformed both GPD and GP-net in terms of the fitness I' for the
tables and the shelves. This was despite the latter models being given an advan-
tage through grasp-guiding with ground-truth information, as described in Sec-
tion 5.4.2.

Also similar to the results in Table 5.2, GP-net was conservative in terms of grasp
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EGAD Tables Shelves All

GPD | 21.8/339/27.8  65/83/74 146 /20.6 /17.6
GP-Net | 66.4 /225 /444  366/49/208 584 /141 /363
GP-net+ | 52.0 / 73.9 / 629 412 /46.7 /440 466 /589 /528

Table 5.3: Performance of GP-net+ in our domestic simulation experiment (sim-
domestic) with EGAD evaluation set. Results are reported as GSR / VCR / fitness
with bolded items representing the best performance as measured by fitness I with
a margin of 1%.
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Figure 5.19: Results of our domestic simulation experiment (sim-domestic) with
a) GSR [%] and b)VCR [%] of GP-net+ on the EGAD evaluation set.

proposals, only proposing a total of 154 grasps with a high GSR of 58.4% but a
low VCR with only 14.1% for all visible objects. In contrast, GPD proposed a
total of 1666 grasps and GP-net+ proposed a total of 1649 grasps. Similar to the
results for the custom evaluation set, the CR was 16.5% for GPD, 6.1% for GP-net
and 52.3% for GP-net+.
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FO G3 G4 F2

Figure 5.20: EGAD objects “F0”, “G3” and “G4”, which have a low performance,
and “F2” which has a high performance for both GP-net (see Section 4.5) and
GP-net+.

We utilise the structure of the EGAD evaluation set and show the GSR and VCR
for GP-net+ over the 2-dimensional space of shape complexity and grasp difficulty
in Figure 5.19. There was a substantial drop in both GSR and VCR for increasing
grasp difficulty, while the performance over shape complexity was relatively con-
stant. These trends are similar to the performance evaluation of other models on
the EGAD evaluation set, e.g. GG-CNN [74] or our results for GP-net in Chap-
ter 4. There are a few objects in the EGAD evaluation set with very few successful
grasp attempts overall (resulting both in a low GSR and VCR in Figure 5.19), for
example, “F0”, “G3” and “G4”.

A mesh representation of these low-performance objects and a high-performing
object with “F2” is visualised in Figure 5.20. We note that all low-performing
objects had quite a low height, usually causing the graspable surfaces to be very
close to the ground plane. Additionally, the visible surfaces of their graspable
areas were small, reducing the visible surface that could be used to propose grasp
contacts. This was especially apparent when comparing those low-performance
objects to more successful objects like “F2”. The low-performance objects usually
did not have any grasps proposed by GP-net+ in our simulated and real-world

experiments.

All evaluation sets: We report the position of successfully and unsuccessfully
grasped objects in image coordinates to gain more insight into where successfully

grasped objects are located in the image. To do so, we saved the coordinates of

143



5.5. Results
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Figure 5.21: Position of successfully and unsuccessfully grasped objects in the
input images. We overlay the ground-truth segmented area of the object in the
image for all grasp attempts to generate these images.

all pixels of a grasped object in an image based on the ground-truth segmentation
mask. After all trials had been executed, we summed the occurrences of object
pixels for successfully and unsuccessfully grasped objects over all images. This

resulted in the images shown in Figure 5.21.

We can see that overall, grasp proposals for both successfully and unsuccessfully
grasped objects seem to be most common in the lower centre of the image. Given
that the camera was placed on the robot’s head and always viewed the scene
upright and horizontally, this makes sense since objects towards the upper end
of the image tend to be only partially visible. Additionally, there were more
unsuccessfully grasped objects than successfully grasped objects towards the left
and right border of the image. In these regions, the object shape and the immediate

surroundings were only partly available in the scene representation.

GP-net+ could not properly judge collisions or the full grasp pose when objects
were partly invisible or their immediate surroundings were out of view. We think
it is important to be aware of uncertainty in such situations. While GP-net+ does

not have such features at the moment, we think it would be beneficial to introduce
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‘ Household evaluation set EGAD evaluation set

Table 61.5 / 74.7 / 68.1 68.1 / 77.6 / 72.9
Shelf 65.8 / 33.3 / 49.6 79.3 / 37.6 / 53.5
All 63.1 / 54.7 / 58.9 714 / 57.6 / 64.5

Table 5.4: Results of our real-world experiment with a PAL TIAGo mobile ma-
nipulator using GP-net+ with the household and EGAD evaluation sets. Results
are presented as GSR / CR / fitness I'.

a measure of uncertainty for the scene representation or grasp proposals. We will

discuss this possibility further in Section 5.7.

5.5.4 Real-world results (real-domestic)

We report both the GSR and the CR for the real-world domestic experiment using
the household and EGAD evaluation set in Table 5.4. Due to the experiment setup
as described in Section 5.4.3, CR was equivalent to VCR since all objects in all

scenes were visible to the model at least once.

Overall, GP-net+ achieved a GSR of 63.1% and a clearance rate of 54.7% on the
household evaluation set and a GSR of 71.4% and CR of 57.6% on the EGAD
evaluation set. While the GSR was higher for the shelf, CR was higher for the
table with both evaluation sets. This differed from the behaviour in our domes-
tic simulation experiment (sim-domestic) in Section 5.5.3, where the GSR was
lower for the shelf. This was rooted in differences in grasp execution between the
simulated (sim-domestic) and real-world (real-domestic) experiments. The path
planning pipeline in our real-world domestic experiment excluded grasps where the
approach pose would collide with the shelf. Such grasps would count as failures
in our simulated experiments (sim-domestic). As we did not attempt to execute
them in real-world experiments to avoid harming the robotic arm, they could not

be unsuccessful, and hence, the GSR was increased.

Household evaluation set: We plot the number of successful and unsuccess-
ful grasp attempts for each object in Figure 5.22. While we did not have exact

measures of the surface area for the real-world objects like in the simulated exper-
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Figure 5.22: Number of successful and unsuccessful grasp attempts (stacked bars)
in our real-world domestic experiment for each object in the household evaluation
set.
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iments, we manually sorted them according to their estimated surface area from
the smallest to the largest surface area from left to right. There was a group of
objects that the robot struggled to grasp. For example, objects like the banana,
spatula and screwdriver had very few or no grasp attempts. GP-net+ seemed to
struggle to propose grasps on objects with a small visible surface area, especially

for those close to the ground plane.

The two objects with the most unsuccessful grasp attempts were the power drill and
the food can. The diameter of the food can is 7.3c¢m, which is close to the maximum
gripper width of 8cm. Inaccuracies in the sensor readings, gripper positioning and
grasp width prediction sometimes caused the gripper to push the food can away,
which we observed to be the most common error for this object. The power drill

is comparatively heavy with a mass of 0.312kg and has a complex geometry and
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Figure 5.23: Results for our real-world domestic experiment with a) GSR [%] and
b) CR [%] of GP-net+ on the EGAD evaluation set. Empty fields in a) correspond
to objects where not a single grasp has been attempted.

weight distribution. It usually slipped out of the gripper when lifting the object.
For both failure modes, changes to the hardware and pipeline (e.g. adding closed-
loop control combined with sensor fusion) could help make the grasping process

more reliable. We discuss this further in Section 5.7.

In general, we observed a high number of successfully executed grasps for objects
with simpler shapes, like the golf ball, measuring tape and tennis ball, which the
robot was able to pick up every time. Even objects with more complex shapes,

like the truck, could be picked up more than half the time.

EGAD evaluation set: For the real-world experiments using the EGAD [74]
evaluation set, GP-net+ achieved a GSR of 71.4% and CR of 57.6% across the

entire dataset, see Table 5.4.

Figure 5.23 shows the GSR and CR for each object in the EGAD evaluation

set. Similar to the results in our domestic simulation experiment (sim-domestic)
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and the results for GP-net (see Section 4.5) and for GG-CNN [74], there was a
clear reduction in performance with increasing grasp difficulty. Only very few
grasps were executed for objects with a high grasp difficulty of category “G”, as
shown by the number of empty fields in Figure 5.23 a), where no grasps have
been attempted. Overall, the low-performing objects were similar to those in the

domestic simulation experiment (sim-domestic), for example, objects “F0”, “G2”,
“G3” and “G4”.

In Chapter 4, Section 4.5, we observed three primary failure cases for GP-net on
objects of the EGAD evaluation set. These failure cases, illustrated in Figure 4.8,
involved situations where the gripper pushed objects away during the final grasp
approach, was unable to fully close due to obstructions, or experienced object
slippage when lifting the gripper. We found the same kind of failure cases with
GP-net+, usually occurring on the same objects given their specific geometric

characteristics.

In general, the performance of GP-net+ on the EGAD evaluation set in this real-
world experiment was higher than that of GP-net in the real-world experiment
using the same evaluation set in Chapter 4. This was despite the complexity of
the setup having increased substantially for GP-net+, with multiple, cluttered
objects positioned on both tables and shelves. In detail, GP-net+ achieved a GSR
of 71% and CR of 58% in the experiment using the EGAD evaluation set (see
Table 5.4) which was substantially higher than the results of the simpler real-
world experiment in Chapter 4 for GP-net with a GSR of 54% and CR of 50%.
Despite these promising results, there are several aspects which GP-net+ could be

improved upon, and we discuss these in Section 5.7.

5.6 Target-driven object grasping

When using grasp proposal algorithms in real-world domestic applications, they
should have the ability to be used for target-driven object grasping. For example,
when using an assistive robot at home, it should be able to grasp targeted objects
to transport them to a human or store them at a defined spot. To apply a grasp

proposal algorithm for target-driven grasping, some form of object detection [115]
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Figure 5.24: Example of target-driven object grasping with GP-net+. The user
can choose an object for grasping based on the grasp proposals from GP-net+
and the object bounding boxes. The grasp proposals are filtered, paths planned,
and suitable grasps without collisions are executed. Here, we show an example of
grasping a sports ball successfully executed by the robot.

or instance segmentation [168] algorithm can be used to match the grasp proposals
to the desired object [82, 169].

Our ROS package includes this functionality and can thereby use GP-net+ to grasp
specific objects. Since the size of the dense tensor output of GP-net+ corresponds
to the input image, we can easily use any image-based instance segmentation or
object detection algorithm to filter grasp proposals. In our ROS package, we used
a Faster R-CNN [170] object detector pre-trained on the COCO dataset [171] to
filter and group GP-net+’s grasp proposals. The code can be easily amended to
utilise different weights or an instance segmentation algorithm for object identifi-
cation if required. In our tests, we decided to use the pre-trained Faster R-CNN
object detector since we found that the available, pre-trained instance segmen-
tation models from PyTorch performed worse, especially in domestic household

environments.
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In our ROS package, object labels are allocated to grasp proposals by matching
the label of the smallest area-wise bounding box in which the visible grasp contact
of a grasp proposal falls. Based on the labels, objects can be selected for grasping
by the user through a pop-up window with choices. An example of such a process
for target-driven object grasping with our ROS package and a PAL TTAGo mobile

manipulator can be seen in Figure 5.24.

5.7 Discussion

When choosing a grasp proposal model to use with a robotic system, one should
consider the model’s relative performance and any limitations the model approach
might have. In this section, we first discuss GP-net+’s performance in relation to
the three other grasp proposal models we tested in our experiments in Section 5.5.
Subsequently, we discuss the limitations of GP-net+ regarding depth resolution,

the balance between GSR and CR, and the visibility of grasps in the scene.

In Section 5.5.2, we showed how GP-net+ outperformed all other models in all of
the tested conditions in the simulated tabletop experiment. This showed GP-net+
can perform better than widely-used grasp proposal solutions in the often-tested
tabletop scenarios. GP-net+ could also generalise to the different scene variations

in complex, domestic environments, as shown in Section 5.5.3.

Here, GP-net+ outperformed both GPD and GP-net in a domestic simulation ex-
periment. Despite the extra ground-truth information GPD and GP-net received
for grasp guiding (see Section 5.4.2), GP-net+ achieved substantially higher per-
formance for all tested evaluation sets. The other model tested in our simulated
tabletop experiment, VGN, could not be applied directly to the domestic simula-
tion experiment. The domestic scenes featured multiple objects in large workspace
areas with an unknown pose in relation to the camera. Since VGN requires a fixed-
size workspace of 30 x 30cm? with a known camera-workspace transform, such
scenes cannot be solved with a single scene representation and without additional
pre-processing steps to determine the pose of (multiple) workspaces in relation to

the camera.

This showed the importance of using appropriate models and training data when
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applying grasp proposal solutions to similarly complex scenarios. Furthermore, the
results for the real-world experiment in Section 5.5.4 demonstrated how GP-net+
can be used in a real-world application and obtain good results with a PAL TIAGo

mobile manipulator grasping objects placed in clutter on tables and shelves.

To the best of our knowledge, there exist no other data-driven methods that can
be directly applied for grasping complex objects in domestic environments with-
out relying on workarounds like the grasp guiding required for GPD and GP-
net. Some robot competitions test manipulation tasks in more controlled envi-
ronments with a single shelf, for example, the Amazon Picking Challenge [172] or
RoboCup@Home [132]. Complete robotic manipulation systems described for use
in similar scenarios usually use hand-crafted approaches based on point clouds [132,
133, 135, 136], analytical grasp metrics like force closure using reconstructed sur-
face patches [137, 138] or deploy offline grasp proposal based on CAD models [136,
139]. It would be beneficial to test more grasp proposal algorithms (if required
with the corresponding workarounds) in complex domestic settings and evaluate

their performance and applicability.

Naturally, GP-net+ comes with limitations that must be considered when choosing
a grasp proposal algorithm. Since GP-net+ takes a depth image as a normalised
3-channel jet-colourscale image as input, it tries to find a balance between the

maximum visibility and maximum depth resolution in the model input.

For GP-net+, we set the normalisation bounds to [0.2m, 1.5m|, which we found
experimentally to show good convergence during training. However, this prevents
the model from proposing grasps for objects further away than 1.5m and reduces
the applicability for GP-net+ in those situations. While the graspable range of
a mobile manipulator is usually smaller than 1.5m when stationary, an increased
depth visibility could be beneficial when looking at closed-loop control with holistic
grasping motions, where the robot starts to reach for the object while approaching
it, e.g. [129, 130].

There is an interesting question about resolution in all scene representations. Ulti-
mately, the representation has to balance the resolution it can achieve (within the

limits of the sensor), the physical space it can represent and the memory and pro-
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cessing power it requires. In the case of GP-net+, the normalisation bounds limit
the resolution and physical representation. In the case of VGN, these quantities
are limited by the number of voxels and their size when integrating the TSDF.
When using point clouds, there is a question about the number of points they con-
tain, with possibilities to speed up the algorithms while reducing the resolution or

representation by sub-sampling the point cloud.

It is also possible to combine different methods, potentially using a representa-
tion with a lower resolution and wider physical coverage for initial proposals and
switching to a high resolution and low physical coverage representation in later
stages of a grasp attempt to finetune grasp proposals. The hardware limits both
the resolution and the physical representation, potentially influencing the best

representation and resolution-representation balance for a given application.

In general, GP-net+ with the chosen acceptance threshold v is conservative with
the proposed grasps. There are objects in simulation and real-world experiments
without any grasp proposals, even though they should be graspable in their re-
spective setups. In particular, we found GP-net+ to propose few to no grasps on
objects with small surface areas or thin features. When using GP-net+ in real
applications, this results in objects being unable to be grasped. This deficiency
in proposed grasps could potentially be improved by more targeted ground-truth

grasp sampling in the training data or applying weights during training.

Finally, similar to the experiences with GP-net in Chapter 4, the contact-based
grasp representation limits the ability to represent grasps for some objects. As
the grasps are anchored to visible grasp contacts, no grasps can be represented if
no graspable surfaces are visible in the scene representation. An example of this
behaviour is represented in Chapter 4, Figure 4.9. This problem is more severe in
the case of shelves, where the 6-DoF grasp poses are further limited by collisions
with the furniture unit. In such cases, repositioning the robot might be necessary

to grasp the objects.
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5.8 Conclusion

In this chapter, we presented work for grasping objects in cluttered, domestic
scenarios with a mobile manipulator. For this, we constructed domestic grasping
scenes with objects in clutter positioned on varying furniture units like tables and
shelves. We developed algorithms for placing objects in those scenes and sampling
camera poses to generate realistic camera viewpoints. We then trained GP-net+,
a 6-DoF' grasp proposal model, on these scenes to be used to grasp objects in

domestic environments without pre-processing.

We showed GP-net+ outperforms widely used grasp proposal algorithms on simple
tabletop scenarios and in domestic scenes in two simulated experiments. In our
real-world experiments, GP-net+ performed well on table scenes but, although it
retained a high GSR, the VCR decreased substantially for shelves with only 35%
for both evaluation sets. This corresponds to only being able to grasp a third
of the available objects, which can limit applicability in practice. For GP-net+
to prove useful in real-world applications, this performance has to be improved,
for example, by using more powerful model architectures and training regimes or

adjusting the training data to reflect even more difficult scenarios.

The drop in performance from the simplest experiment, where GP-net+ achieved
both a GSR and CR of more than 90%, to the simulated domestic experiments
on shelves, where it achieved less than 50% GSR and 55% VCR, clearly shows the
importance of testing models in appropriately realistic and challenging scenarios.
To continue to make progress towards using assistive robotics in domestic environ-
ments, the test regimes must continue to become similarly variable and complex

as their real-world counterpart.

GP-net+ concludes the work in this thesis, where we have created a viewpoint-
flexible 6-DoF grasp proposal method for cluttered objects in domestic environ-
ments. We achieved this by building on a 6-DoF grasp quality prediction method
in Chapter 3 and then GP-net, a 6-DoF grasp proposal method for single objects
on planar surfaces in Chapter 4. Overall, GP-net+ has demonstrated the value of
using a depth-imaged based FCNN for grasp proposal. Despite being a compara-

bly simple scene representation, both GP-net and GP-net+ have performed as well
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as or better than widely used alternatives with more complex scene representation

setups.

While we demonstrated the adaptation of GP-net+ to grasping in domestic envi-
ronments in real-world experiments, there are still many challenges ahead in the
path to building reliable end-to-end grasping pipelines for deployment in real-world
scenarios. In the following chapter, we conclude this thesis by giving an overview of
the presented research problem, highlighting some main takeaways and outlining

ideas for future research.
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CHAPTER

Concluding remarks

This thesis has presented grasp proposal algorithms for 6-DoF grasps from flexible
and unknown viewpoints in complex scenes. Flexible grasp proposal algorithms
are needed to allow robots to operate in dynamic real-world environments. In
contrast to 4-DoF grasps, 6-DoF grasps increase the variability of grasp poses
and can improve reachability when grasping objects in complex scenarios (see
Section 2.5). Objects in real-world applications are also likely viewed from flexible
camera viewpoints, especially when using mobile manipulators to grasp objects

from different points within an environment (see Section 2.7).

Grasp quality prediction models evaluate the quality of pre-sampled grasp poses
in a discriminative grasping approach, as discussed in Section 2.1. Such models
are often restricted to fixed, overhead camera viewpoints and 4-DoF grasps [10,
11, 13, 14, 22], especially when their scene is represented as a depth image, see
Section 2.4.1. While those models work well in practice, their limited flexibility

restricts their applicability to more constrained scenarios.

To extend the flexibility of such discriminative 4-DoF models while keeping the
architecture and scene representation simple, we integrated a 6-DoF grasp repre-
sentation into a grasp quality prediction model and generated a balanced training
dataset from versatile camera viewpoints. Training the extended architecture on

this dataset resulted in a 6-DoF grasp quality prediction model for depth images
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observed from flexible viewpoints, called VGQ-CNN; (see Chapter 3). Experimen-
tal results showed that using appropriate training data, a CNN can evaluate the
quality of 6-DoF grasps and generalise to variable camera viewpoints while retain-

ing a similar performance as 4-DoF models for overhead cameras and top-grasps.

Discriminative approaches usually have substantial run-time disadvantages com-
pared to generative approaches, however, since they need to sample and evaluate
the quality of each grasp individually. In Chapter 4, we transitioned the positive
characteristics of grasping with VGQ-CNN;, including a simple scene representation
for 6-DoF grasps from versatile camera viewpoints, from a discriminative to a gen-
erative approach. Instead of individually evaluating the quality of 6-DoF grasps,
we constructed a generative method, called GP-net, to propose 6-DoF grasps for
single objects on planar surfaces. GP-net predicts grasp poses and grasp quali-
ties for each pixel in a depth image, which then can be used to construct grasp

proposals.

A challenge in developing GP-net was rooted in the grasp representation, where we
found that TCP-anchored grasp representations resulted in low convergence for the
grasp orientation during training. Consequently, instead of the TCP, we based the
grasp anchor for GP-net on the visible grasp contact in the scene representation, as
first suggested by Contact-Graspnet [20]. Our results confirmed that this change
in grasp anchor improved performance and convergence during training with our

ablation studies in Section 4.5.3.

We examined the performance of GP-net not only in simulation but also con-
ducted real-world experiments with a PAL TIAGo mobile manipulator using the
EGAD evaluation set [74]. We also compared it to two widely used grasp proposal
methods, VGN [16] and GPD [19], in those real-world experiments. Our results
showed that GP-net performed better than GPD and VGN in these experiments
with a grasp success of 54.4% compared to 44.2% and 51.6%, respectively. While
performing better than alternative algorithms with this complex evaluation set, a
grasp success of 54.4% should be improved before applying GP-net in commercial

or real-world applications. We give ideas for such improvements in Section 6.1.

In contrast to other grasp proposal models like VGN and GPD, GP-net can propose
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grasps for objects in the scene representation without any additional pre-processing
steps like defining a workspace in relation to the camera pose or indexing regions
of interest for grasp proposals to generate suitable grasp proposals. This yields an
advantage in run-time and removes the dependency on workarounds like segmen-
tation algorithms. Furthermore, it becomes an even more important characteristic
when moving from single objects on planar surfaces to cluttered objects in complex

scenarios.

Domestic environments feature cluttered objects placed on workspaces within dif-
ferent furniture units and unknown camera-workspace configurations. We inves-
tigated training dataset design and grasp proposal approaches for such environ-
ments in Chapter 5. While the pre-processing steps for workspace or object defini-
tion required for VGN and GPD could be applied in tabletop scenarios, the wide
variation in domestic environments with unknown furniture designs and an un-
known camera-workspace transform makes their usage substantially more difficult
in those environments. Even when using perfect ground-truth information, such

workarounds can substantially reduce performance, as we show in Section 5.5.3.

The key to learning a data-driven grasp proposal technique for diverse applica-
tions lies in providing suitable data for training. Using simulated environments to
generate ground-truth grasp information is a useful approach that provides better
flexibility, lower cost and higher scalability than real-world experiments [74, 156,
158]. However, care must be taken with simplifications and assumptions when con-
structing the simulation environment to reduce the sim-to-real gap when applying
the resulting models in the real world. We carefully constructed reproducible al-
gorithms and pipelines for generating training data for 6-DoF grasp proposal on
objects in clutter in domestic scenarios. We took particular care in preparing the
scene, placing graspable objects on top of viable support surfaces of the furni-
ture units and sampling camera viewpoints as they would be encountered with a
camera mounted on a mobile manipulator. We used the simulation environments
to generate data for training GP-net+, an extension of the grasp proposal model

(GP-net) we proposed in Chapter 4.

Since real domestic environments can also feature tabletop scenarios, we showed in
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simulated experiments that GP-net+ performs better than VGN, GPD and GP-net
in such tabletop scenarios. We further demonstrated the performance of GP-net+
in simulated domestic environments and compared it to GPD and GP-net, where
we used the ground-truth segmentation mask for grasp guiding (i.e. filter grasps
so they do not occur on the background or furniture unit) to be able to apply
GPD and GP-net. While this was a necessary and reasonable workaround to
use GPD and GP-net in domestic scenarios, utilising this ground-truth knowledge
within the overall pipeline provided these algorithms with an inherent advantage.
Since the pipeline was highly dependent on the quality of the segmentation mask,
performance in real-world applications with estimated segmentation masks would
likely be reduced.

Despite GP-net+ not being given this advantage in ground-truth information,
it performed substantially better than GPD and GP-net in those simulations,
regardless of the evaluation set. This demonstrated the limits of applying tabletop
grasp proposal algorithms to more complex scenarios, where, despite using ground-
truth information for workarounds, the increased complexity of the scene reduced

the quality of the output grasp proposals substantially.

We demonstrated the applicability of GP-net+ to real scenarios with real-world
experiments featuring domestic scenes with different furniture units. Finally, we
showed that GP-net+ can be used for target-driven object grasping by combining
the dense output tensor with an object detection or segmentation algorithm. We
made our complete codebase available on GitHub? so it can be used to train,
evaluate and apply 6-DoF grasp proposal algorithms to robots in real, domestic

environments.

While GP-net+ can be applied as-is for grasping objects in domestic environments,
the overall GSR of 60% to 70% (depending on the evaluation set) is too low to
provide a reliable system in real domestic settings. The performance obtained
in our experiments could be improved in a number of ways. For example, such
options include coupling it with closed-loop control for the final grasp approach,

letting the robot position itself to get a more favourable view of targeted objects,

9https://github.com/AuCoRoboticsMU /GP-netplus
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and using a holistic motion controller for whole-body movements. We address
some of our ideas for future research in the following section (for example, see
Section 6.1.5 and Section 6.1.6).

6.1 Opportunities for future research

Despite the significant progress made in the robotic grasping community in recent
years, much research is still needed to develop reliable grasping systems. In the
following subsections, we briefly outline some opportunities for future research that

can be explored to make grasping more robust and reliable.

6.1.1 Uncertainty in predictions

A robotic system in real-world environments always encounters uncertainty. This
can result from sensor noise and limited visibility, e.g. with obstacles prohibiting
sensor readings for parts of the scene and objects. The data of those sensor readings
is used to construct the scene representation. When using this scene representation
for grasp proposal, the quality and measurement uncertainty in the sensor readings
will affect the quality of the grasp proposals. An example of this effect is shown in
our results in Section 5.5.3, where partially occluded objects towards the edge of
the scene representation experience a higher number of unsuccessful grasps than

centred objects.

An approach that could limit this effect would be to estimate uncertainty in the
scene representation when proposing the grasps. For example, uncertainty estima-
tion could be used during inference to prioritise grasp proposals associated with
more certain sensor measurements or directly be integrated into a grasp confidence
prediction of a model. An example of estimating uncertainty in the scene repre-
sentation is demonstrated by [15], where a measure of uncertainty over a shape

completed voxel-grid is used for grasp selection.

6.1.2 Scene representation

A robot’s (usually visual) sensor readings can be represented in various ways to
propose grasps. Common representations are point clouds [20, 38, 39, 40], depth
images [11, 12, 23, 41, 42, 43], RGB-D images [23, 25, 44] and voxel grids [16, 45].
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As discussed in Section 5.7, a representation must balance the scene’s resolution

with the physical space covered and the memory and processing power it requires.

There is an open question about which scene representation is the best for robotic
grasping in general and whether particular scene representations have advantages
for specific applications. It would benefit the field to compare the advantages and
disadvantages of different scene representations in a benchmark, particularly in

relation to different object sizes, scene resolutions and computational load.

Such an evaluation may point to the potential for hybrid versions of current scene
representations that could benefit the field. For example, adaptive representations
could be used to balance the resolution and processing power required of the scene.
There are initial explorations for using Octrees as scene representation for grasping
in a Reinforcement Learning approach [173]. They can represent “unimportant”
regions of the scene with a coarse resolution while representing object surfaces in
more detail and could be an interesting representation to compare against more
traditional methods. Furthermore, one could combine such an adaptive scene
representation with an uncertainty measure (as mentioned in the previous section)
to increase robustness, similar to the approach used for the UFOMap mapping
framework [174].

6.1.3 Grasp representation

In tandem with the scene representation, grasps themselves must be represented in
the scene to define the position and orientation of the robot’s end-effector. While
in this thesis, we focused on parallel-jaw grippers due to their low complexity and
long lifetime (see Section 2.1), other manipulation tasks might require different

gripper designs and different grasp representations.

Traditionally, grasps for parallel-jaw grippers are anchored at the TCP of the end-
effector [9, 10, 11, 12, 13, 14, 15, 16, 21, 23, 37, 38, 45, 63, 64]. In Contact-
GraspNet [20], a contact-based grasp representation was presented where the
grasps are anchored at one of the gripper contacts. We tested this contact-based
grasp representation with GP-net in Chapter 4 and compared it to a TCP-based

grasp representation where we found advantages for convergence of the grasp ori-
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entation using the contact-based representation in line with the assumptions made

in [20].

However, the contact-based grasps can only be anchored to visible contact points,
which limits applicability in cases where a grasp is possible but the grasp contact
is not visible. This can be the case when viewing objects like books from their
spine and is worsened in situations with reduced visibility, for example, in shelves
and cupboards. A combination of grasp representations or an entirely different
approach might be needed to merge the advantages of contact-based grasp repre-
sentations with a more robust availability of grasp proposals in the case of limited

visibility of grasp contacts.

6.1.4 Adaptable benchmarks for robotic grasping

A major problem in robotic grasping research is comparability between different
algorithms [8], as discussed in Section 2.2.2. If tested on different evaluation sets
or scene setups, or when using different hardware for the tests, the results are not
comparable. To properly compare algorithms against each other, they have to be

tested in the same setup, either in real-world or simulated experiments.

Other disciplines in computer vision and robotics often have benchmarks adapted
across a field of research and use them to compare solutions, for example, object
detection [171] or SLAM [175] algorithms. In contrast, while there have been
several benchmarks introduced for robotic grasping, e.g. EGAD [74], Graspnet-1-
billion [39] or DexYCB [176], there exists no benchmark that has been adopted
across the entire robotics grasping community so far. This is due to challenges
that arise from the variability of approaches within robotics grasping research,
with differences in scene representation, camera positioning, grasp flexibility, grasp
representation, gripper design, object preferences, application and available hard-
ware making it difficult to provide a single benchmark that can be used for every

project.

Under these circumstances, a common framework with standardised simulation
experiments could play a key role in making research more comparable. While

simulation experiments always make assumptions and simplifications in contrast
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to real-world environments, they could provide a basis for comparison due to their
high adaptability, transferability and low costs. There are several aspects that
need to be considered when generating such a framework, however. These in-
clude exactly which setups to cover, how to ensure adaptability to various scene
and grasp representations, and how to reduce the sim-to-real gap. If successfully
implemented and used by researchers, such a simulation framework could add a

common baseline for comparing the performance of grasping solutions.

6.1.5 Sensor fusion for closed-loop control

Real-world experiments with robots often demonstrate the need for closed-loop
control [4], with inaccuracies in perception, actuation and dynamic environments
making it crucial for a grasping system to react and reposition the gripper. One
possible solution for closed-loop control in robotic grasping is fusing different sensor

modalities to accumulate their advantages.

Wrist-mounted cameras can be used for closed-loop object grasping by continually
re-evaluating potential grasps during the approach [12, 36, 43|, for example, using
a grasp proposal model during the final approach to the object to correct miss-
alignments of the gripper. Furthermore, tactile sensors have been used to detect
object slippage [47], reconstruct occluded regions of the object geometry [48, 53]

and reduce uncertainty in object pose estimates [49].

Combining different sensor modalities could make grasping approaches more robust
since the combined modalities can represent different aspects of the real world,
enhancing the scene representation. When choosing to deploy such multi-modal
approaches, one must ensure they are compatible with the chosen grasping pipeline.
Some of the sensor fusion and control approaches described above can be combined
with the grasping techniques presented in this thesis. For example, wrist-mounted
cameras may be used for a closed-loop, final approach towards the object or the
grasping procedure in our GP-net+ ROS package could be modified to detect
object slippage.

162



6.1. Opportunities for future research

6.1.6 Holistic grasping

Historically, when planning paths for mobile manipulators, the base movement is
decoupled from the movement of the arm, and potentially the torso, of the robotic
manipulator [132, 135, 140]. Hence, a robot would approach an object, stop, plan
a grasping pose, plan a path for the grasping pose and finally execute the path
with the arm. This approach is based on the high dimensionality and uncertainty

for mobile motions, causing computationally expensive global motion planning [3].

In contrast to this decoupled approach, there has been some recent work in con-
trolling whole-body motions for grasping with full systems like Garbage-Net [129]
or holistic motion controllers [130]. Having a single, fluid motion that combines
the movement of the mobile base with the movement of the robotic arm has sev-
eral advantages: grasp planning and approaching the object can be executed in
parallel, reducing run-time, increasing efficiency, providing more viewpoints for
the grasp planning and having a “more natural” and potentially less intimidating
motion of the robot. This latter point has particular relevance when operating

near people in domestic environments.

It is important to ensure that grasp proposal systems fit the requirements of such
methods. One has to consider their run-time for closed-loop control, their applica-
tion range in terms of camera viewpoints, and the stability of their grasp proposal
predictions when making small changes to the camera viewpoint and scene repre-
sentation during object approach. Combining a robust grasp proposal system with
a holistic motion controller could enable a safe and robust application of assistive

robotic devices for grasping in complex, domestic environments.

6.1.7 General-purpose robots through Machine Learning

In the last decade, substantial developments have been made in many different
areas using Machine Learning techniques. For example, CNN models have sig-
nificantly improved tasks used in robots like image classification, object detection
or object tracking [177]. More recently, generative architectures like transformers,

adversarial networks and diffusion models have led to advancements in domains
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like Natural Language Processing (NLP), computer graphics and computer vi-

sion [178].

In recent years, researchers have started using multi-modal models that combine
text, images, and other sensory data to increase their variety of use cases. Such
models include Google Gemini [179] or GPT-4 [180]. Various efforts have been
made to apply those advances to the field of robotics in order to generate founda-

tional models that are capable of solving a diverse set of embodied tasks.

As of 2023, multi-modal language models have been successfully embodied in robot
control loops to enable manipulation tasks like retrieving objects from a drawer
(PaLM-E [181]) or using a sponge to clean a surface (SayCan [182]). In these
examples, the large language model divides high-level tasks (such as cleaning the
surface) into a series of low-level, executable instructions (such as picking up the
sponge or navigating to the surface). Such an approach could be valuable in bridg-
ing the gap between the vast progress in very specific grasping and manipulation

tasks and the implementation of general-purpose robotic systems.

The grasping tasks for PaLM-E and SayCan are implemented as RL algorithms [182],
behavioural cloning approaches [182] or Transformer-based control models [181,
183]. So far, and to the best of our knowledge, the application of grasping tasks
in the presented high-level pipelines is mostly limited to simple object shapes (for
example, cylindrical, spherical or rectangular shapes [182, 183]) and has yet to
be tested on grasping benchmarks containing more general object sets. However,
since these models have only been developed within the last year, there is con-
siderable opportunity for further development in more challenging scenarios. As
the field advances, recent progress in the generalisation of low-level tasks, such as
grasping more complex objects in domestic scenarios with grasp proposal models

or RL approaches, could be incorporated with such pipelines.

There are several aspects that have to be considered when moving towards such
general-purpose robotic systems. An example of a current limitation is the com-
putational efficiency of solutions. As of today, a key to the performance of large
language models is the very large number of trainable parameters they use. This,

in turn, requires a large amount of suitable training data and large computational
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resources for training and inference. Especially when applying the solutions on
mobile robotic devices, the required computing power for inference is a crucial
element that might prevent the efficient usage of new concepts. While cloud-based
applications might be a solution in such cases, overall efficiency should still be
investigated to limit unnecessary “waste” of resources. There is no doubt that
progress in Machine Learning will change the field of robotics within the next few
years, and it will be interesting to observe these new developments both in terms

of the problems they solve and the new opportunities they present.

6.2 Conclusions

In conclusion, the main contribution of this thesis has been to develop an approach
to robotic grasping in complex, domestic environments. This was done in three
steps: removing constraints on a simple grasp quality prediction model, converting
it into a grasp proposal method, and finally developing simulation environments
for training and evaluating a grasp proposal method in domestic scenarios. In all of
the steps, we took particular care in investigating the limitations of the respective
methods and, if possible, testing them in real-world experiments with a mobile

manipulator.

We believe that recent developments in machine learning can accelerate the pace of
developments in robotic grasping within the next decade if crucial questions like
scene representations, grasp representations and reproducible benchmarking are
considered in their approaches. We hope that within that time, these developments
will enable safe and robust usage of mobile manipulators in domestic environments,
potentially assisting with various tasks in the home such that robots can help

people to live independently.
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