
Universal Error Correction Decoding

Algorithms

A dissertation submitted for the degree of

Doctor of Philosophy

By:

Kevin Galligan

Under the supervision of:

Prof. Ken Du�y

Prof. Muriel Médard (Massachusetts Institute of Technology)

Hamilton Institute

National University of Ireland Maynooth

Ollscoil na hÉireann, Má Nuad

Contents

Abstract iv

Acknowledgements vi

Funding acknowledgements vii

Publications viii

Acronyms ix

1 Introduction 1

1.1 An overview of the channel coding problem 1

1.2 Outline of thesis . 8

2 Background 9

2.1 Linear codes . 9

2.2 Channel models . 11

2.3 Parameters and statistics of channels 14

2.4 Guessing Random Additive Noise Decoding 15

2.4.1 Overview . 15

2.4.2 Soft-input GRAND algorithms and ORBGRAND 18

2.4.3 GRAND complexity . 21

2.5 Product codes . 22

3 Iterative GRAND 25

3.1 Introduction . 25

i

Contents

3.2 Background . 28

3.3 Iterative GRAND . 30

3.3.1 Description . 30

3.3.2 Implementation details for e�cient decoding 31

3.3.3 Pseudocode . 32

3.3.4 Columns-only decoding . 32

3.4 Empirical Results . 36

3.4.1 Experimental setup . 36

3.4.2 Error correction performance 37

3.4.3 Complexity . 40

3.5 Discussion . 42

4 Block turbo decoding with ORBGRAND 47

4.1 Introduction . 47

4.2 Background . 48

4.2.1 List decoding . 48

4.2.2 Turbo decoding . 49

4.3 List decoding with GRAND . 51

4.4 Turbo decoding with GRAND . 54

4.4.1 Description and complexity 54

4.4.2 1-line ORBGRAND for turbo decoding 55

4.5 Performance evaluation . 57

4.5.1 List decoding . 57

4.5.2 Turbo decoding accuracy . 58

4.5.3 Turbo decoding complexity 62

4.6 Discussion . 64

5 Alternative soft output for GRAND 67

5.1 Introduction . 68

5.2 Background . 69

5.2.1 GRAND . 70

5.2.2 Previous work on soft output 70

5.3 GRAND soft output . 71

ii

Contents

5.4 GRAND soft output per bit . 77

5.5 Performance evaluation . 80

5.5.1 Accuracy of soft output . 80

5.5.2 Application to error detection. 85

5.6 Discussion . 88

6 Discussion 90

6.1 Future work . 92

A Capacity-achieving proof for random linear product codes 95

List of Figures 98

Bibliography 100

iii

Abstract

There is no perfect communication channel, and any communication necessarily

involves some level of noise. Attempting to hold a conversation across a crowded

room, for instance, will likely result in miscommunication due to background noise.

Channel coding, as a �eld, is concerned with reducing the rate of error in such noisy

communication channels. This can be achieved by encoding messages with channel

codes, which allow communication errors to be detected and corrected. The study

of channel coding was launched in 1948 [78], and it now underlies critical technology

such as the Internet, space communications, and storage of digital information [57].

In this thesis, we develop new algorithms and channel coding techniques based

on Guessing Random Additive Noise Decoding (GRAND), a recently introduced

family of decoders for channel codes. GRAND algorithms, unusually, can de-

code any channel code of any length that has a moderate amount of redundancy.

Assuming that all messages are equally likely, they achieve maximum-likelihood

decoding, which is the best possible outcome of decoding a channel code. GRAND

challenges several assumptions of traditional channel coding and asserts a new de-

coding paradigm in which the particular channel code being used doesn't matter,

allowing greater �exibility in the design of communication schemes. Given that an

upper bound on GRAND's computational complexity increases exponentially with

the amount of redundancy in a code, it is impractical to directly decode arbitrary

channel codes that have a large amount of redundancy.

The goal of this thesis is thus to explore if GRAND can be used to decode such

high-redundancy codes, which are suitable for the noisiest channel environments.

To that end, we introduce and develop two iterative decoding algorithms, Itera-

iv

Abstract

tive GRAND (IGRAND) and block turbo decoding with GRAND, for a power-

ful class of channel codes known as product codes. Product codes are, in gen-

eral, high-redundancy codes formed from a concatenation of low- to moderate-

redundancy component codes. The key insight of the algorithms considered here

is that GRAND can decode product codes by decoding each of their component

codes in turn, circumventing the aforementioned complexity constraint.

Soft information indicates the reliability of a received message and is useful for

a wide range of applications, including error detection and turbo decoding. In

addition to the goal of decoding high-redundancy codes, this thesis also investigates

the question of whether it is possible for GRAND decoding to output accurate soft

information. We derive probabilistic soft output formulae for GRAND algorithms,

evaluate their accuracy, and explore their application to error detection.

v

Acknowledgements

Thanks to Professors Ken Du�y and Muriel Médard for being a heroic supervisor

team and for teaching me everything I now know about research.

Thanks to all of my wonderful collaborators, including the Network Coding and

Reliable Communications group and Rabia's group in Boston. It was a pleasure

to spend time and to collaborate with you all!

Thanks to Mam & Dad for reading to me when I was an annoying kid, and for

supporting my 20+ years of education.

Thanks to Marie and Rachel for their constant sisterly presence during my 29 years

of existence. Special thanks to Marie for making me aware that there was such a

thing as a PhD.

Thanks to Sonia for all the emotional support and QT!

Thanks to all my friends at the Hamilton Institute for being there during all the

trials and tribulations of the past 4 years. In particular, thanks to Anna for all

the hot chocolate and juicy goss. Thanks to Fred for many distracting games of

chess. Thanks to Dáire for the thoughtful gifts and sassy jokes. Thanks to my

other cohort buddies: Hannah, Niamh, Amit, Ganesh and Bharvi. And thanks to

all the other Hamiltonians, who are too numerous to mention by name.

Thanks to Rosemary, Kate and Joanna for keeping the Hamilton Institute a�oat

and for helping me to navigate the bureaucratic nightmares of Maynooth Univer-

sity.

And thanks to everyone there wasn't space to mention, except Chris.

vi

Funding acknowledgements

All chapters:

� This publication has emanated from research supported in part by a Grant

from Science Foundation Ireland under Grant number 18/CRT/6049. The

opinions, �ndings and conclusions or recommendations expressed in this ma-

terial are those of the author(s) and do not necessarily re�ect the views of

the Science Foundation Ireland.

Chapter 3:

� This work was supported by the Battelle grant Low-Probability-of-Detect/Intercept

Communications Employing Peaky Frequency-Shift-Key Modulation (PO

US0011-0000743557).

Chapter 4 and Chapter 5:

� This work was partially supported by Defense Advanced Research Projects

Agency contract number HR00112120008.

vii

Publications

� K. Galligan, P. Yuan, M. Médard, and K. R. Du�y. Upgrade error detection

to prediction with GRAND. In IEEE GLOBECOM, 2023.

� K. Galligan, M. Médard, and K. R. Du�y. Block turbo decoding with

ORBGRAND. In CISS, pages 1�6, 2023.

� A. Riaz, A. Yasar, F. Ercan, W. An, J. Ngo, K. Galligan, M. Médard,

K. R. Du�y, and R. T. Yazicigil. A sub-0.8pJ/b 16.3Gbps/mm2 universal

soft-detection decoder using ORBGRAND in 40nm CMOS. In IEEE ISSCC,

2023.

� F. Ercan, K. Galligan, D. Starobinski, M. Médard, K. R. Du�y, and R. T.

Yazicigil. GRAND-EDGE: A Universal, Jamming-resilient Algorithm with

Error-and-Erasure Decoding. In IEEE ICC, 2023.

� F. Ercan, K. Galligan, K. R. Du�y, M. Médard, D. Starobinski, and R.

T. Yazicigil. A General Security Approach for Soft-information Decoding

against Smart Bursty Jammers. In GLOBECOM Workshops, pages 245 �

251, 2022.

� K. Galligan, A. Solomon, A. Riaz, M. Médard, R. T. Yazicigil, and K. R.

Du�y. IGRAND: decode any product code. In IEEE GLOBECOM, 2021.

� A. Riaz, V. Bansal, A. Solomon, W. An, Q.Liu, K. Galligan, K. R. Du�y,

M. Médard, and R. T. Yazicigil. Multi-Code Multi-Rate Universal Maximum

Likelihood Decoder using GRAND. In ESSCIRC, 2021.

viii

Acronyms

AWGN additive white Gaussian noise

BCH Bose-Chaudhuri�Hocquenghem

BER bit error rate

BLER block error rate

BDD bounded distance decoding

BPSK binary phase-shift keying

BSC binary symmetric channel

CA-Polar CRC-assisted polar

CA-SCL CRC-assisted successive cancellation list

CRC cyclic redundancy check

ECC error correction code

ER erasure rate

FER forward error correction

GRAND Guessing Random Additive Noise Decoding

HARQ hybrid automatic repeat request

IGRAND Iterative GRAND

KL Kullback-Leibler

LDPC low-density parity check

LLR log-likelihood ratio

ORBGRAND Ordered Reliability Bits GRAND

RLC random linear code

ix

Acronyms

SGRAND Soft GRAND

SNR signal-to-noise ratio

SRGRAND Symbol Reliability GRAND

UER undetected error rate

URLLC ultra-reliable low-latency communications

x

CHAPTER 1
Introduction

1.1 An overview of the channel coding problem

Digital communication has become ubiquitous in recent decades and enables many

utilities that we now take for granted, such as mobile phones, digital television,

optical disk drives, and, of course, the Internet. One of the key technologies and

�elds of study underlying these applications is channel coding. In this section

we will provide an overview of channel coding, including the key concepts and

developments of the �eld since its inception 70 years ago.

The story of channel coding begins in 1948 with the publication of Claude Shan-

non's A Mathematical Theory of Communication [78], in which he set out to pro-

vide a mathematical framework for digital communication and to establish its

theoretical limits. Shannon de�ned communication as follows:

The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another

point.

Channel coding addresses the problem of reliable communication in the presence

of a noisy communication channel. The channel in question could be a cable,

1

1.1. An overview of the channel coding problem

air, or outer space. Discrete information, such as a text message or an image,

is encoded as a continuous-valued signal (often in the form of electromagnetic

radiation or electricity), and is then transmitted through the channel. Noise is

the corruption of this continuous signal, and is caused by physical phenomena as

diverse as interference from other signals, solar radiation, a faulty wire, or a shark

biting an undersea cable. The receiver of the signal must then convert it back to

a sequence of discrete-valued symbols.

By this point, channel noise may have su�ciently corrupted the transmitted signal

that there are errors in the discrete message at the receiver side. For example,

the message �hello� could be corrupted and received as �cello�, in which case the

�rst symbol is an error. Such errors must be identi�ed and removed in order

to recover the original message. This is the purpose of channel coding. The

message is encoded with an error correction code (ECC), or channel code, prior

to transmission. In its encoded form, the message contains redundant information

that makes it resistant to errors. The simplest channel code is a repeat code, which

would encode the sample message as �hellohellohello�.

On receiving an encoded message, the receiver has multiple options for handling

errors. To continue the example, suppose that the discrete channel output is

�cellohellohello�. The receiver knows that errors are present because the 3 copies

of the message are not in agreement. One possible mitigation is to request a

retransmission from the sender, if possible. Alternatively, in what is known as

fec! (fec!), the receiver can use a decoding algorithm to correct the errors, based

on the redundant information provided by the channel code. In the case of the

repeat code, a majority rule decoding algorithm can be used, in which case the

message �hello� would win over �cello� with 2 votes to 1. The bene�t of fec! is

that it avoids a costly back-and-forth between sender and receiver, although the

best solution depends on system constraints and may involve a hybrid of these and

other approaches.

As a more concrete model of the channel coding problem, consider the communi-

cation system in Figure 1.1. This is the same framework that was �rst established

by Shannon in 1948, and it remains the basic model today.

2

1.1. An overview of the channel coding problem

Information
Source Sender Channel Receiver Destination

Figure 1.1: Basic model of a communication system.

The parts of the system can be described as follows [73].

1. Information Source: Digital messages are produced here. The messages are

strings of symbols drawn from an alphabet, typically the binary alphabet

{0, 1}. The symbols are also typically considered to be 1) independent of

each other, and 2) drawn uniformly at random from the alphabet. This

property can be ensured by compressing the messages from the information

source; any correlation or non-uniformity can be exploited to compress the

messages further until they satisfy properties 1 and 2.

2. Sender : Converts the message from digital (discrete) to analogue (contin-

uous) using some signal modulation scheme, then transmits the analogue

signal through the channel. If channel coding is included in the system

design, then the message is encoded using a channel code before the digital-

to-analogue conversion, which has the e�ect of adding redundancy to the

message. The code rate R is the fraction of an encoded message that contains

information and is not redundant. Since there are 5 letters of information

in the repeat code considered above, and the remaining 10 letters are redun-

dant, it has a code rate of R = 5/15 = 1/3. A higher code rate is generally

more desirable, as it means that less energy is spent on transmitting redun-

dant information, though the quality of the channel acts as a constraint on

what code rates are possible while maintaining reliable communication.

3. Channel : The physical medium through which the message must pass, whether

it's a vacuum or a metal wire or a beam of light. The channel adds noise to

the signal. The noise is typically modelled as a probabilistic process.

4. Receiver : Demodulates the signal, recovering a discrete message that may

or may not contain errors. May then make use of a channel code to detect

3

1.1. An overview of the channel coding problem

or correct these errors.

5. Destination: The intended recipient of the message.

Figure 1.2 illustrates an example transmission through this system.

Shannon showed that a channel's key property is its capacity, C, which is a mea-

sure of the rate at which information can be sent through it. As a channel becomes

noisier, its capacity decreases. Shannon proved that arbitrarily reliable communi-

cation is possible if R < C. That is, if R < C, then the probability of error can be

made arbitrarily small by choosing appropriate channel codes of rate R. If R > C,

then no codes exist that can make the error probability arbitrarily small.

Shannon's work launched several �elds of study, including channel coding, source

coding and information theory. It popularised the term bit, short for binary digit (0

or 1), and the use of the bit as the standard unit of information content. However,

it also left several open questions that would fuel the study of channel coding for

the rest of the 20th century and beyond. Firstly, Shannon's proof showed the

existence of good codes but did not reveal how to construct them. Secondly, the

proof relied on allowing the code length, n, to become in�nitely long, and it was

unclear whether good codes existed at practical values of n. Thirdly, given a good

code, Shannon did not explicitly present an algorithm to e�ciently decode it.

We will explore this third challenge in more detail. Assuming that the message

consists of k symbols drawn from a binary alphabet, there are 2k possible input

messages. The set of all encoded messages is known as the codebook, and the

encoded messages themselves are known as codewords. Every message is mapped

to a unique codeword, as otherwise it would be impossible for the receiver to

distinguish between them. For example, with k = 3, and using a code that appends

a single bit to the end of each message representing its parity, the codebook would

be C = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}.

Given output from a channel, the best possible decoding outcome is maximum-

likelihood decoding. As the name implies, this is the codeword with the maximum

likelihood of being the intended one. It's impossible to do better than maximising

4

1.1. An overview of the channel coding problem

Figure 1.2: An example transmission through
the communication system detailed in Fig-
ure 1.1, and an application of FEC. (a) The
information source produces data to be sent.
In this case, the data is a black and white
image, which may be encoded in binary so
that the white pixels are 0 and the black pix-
els are 1. (b) The sender adds redundancy to
the data. The redundancy is a function of the
original message. It could simply be a copy
of the original message or it could be the re-
sult of something more involved like an alge-
braic operation on the message bits. (c) The
encoded message (which is a codeword in the
codebook) is converted to analog, modulated,
and transmitted through the channel. (d)
The receiver demodulates the channel out-
put. The demodulated output may contain
errors as a result of channel noise, represented
here as red dots. (e) The receiver applies a
decoding algorithm to correct errors and ex-
tract the original message from the channel
output.

5

1.1. An overview of the channel coding problem

the likelihood of correctness, because given the probabilistic nature of noise, the

original message can't be recovered with 100% certainty. The most straightfor-

ward algorithm to achieve maximum-likelihood decoding, and the one that arises

implicitly in Shannon's proof, is a brute-force search where the likelihood of each of

the 2k codewords is calculated and the maximum-likelihood codeword is returned.

The complexity of this approach, O(2k), is exponential in the message length and

for most purposes is impractical. For this reason it remained an open question to

identify e�cient decoding algorithms.

An important theoretical development that came later was the proof by Berlekamp

et al. in 1978 that maximum-likelihood decoding of arbitrary linear codes is an

NP-complete problem [14]. The proof assumed discrete input to the decoder, but

the result also holds for more informative probabilistic input [60]. This makes

it unlikely that there exists an e�cient general-purpose decoder for all binary

codes. Researchers have overcome this di�culty by designing codebooks with

algebraic structures that, when combined with specialised decoders, allow them

to be decoded e�ciently. We will see, however, that universal decoding, i.e. the

design of a decoder that can decode any binary code, can still be e�cient when

there are constraints on properties of the code such as n and R.

The design of channel codes, in tandem with decoding algorithms that can decode

them e�ciently, has become something of an art, and has been a signi�cant focus

of research in channel coding over the past 70 years. It involves a trade-o� be-

tween the codeword length n, the code rate R, and algorithmic considerations. It is

desirable for the code length to be short, because long codewords may delay trans-

mission while enough data is accumulated to form an appropriately long message.

On the other hand, Shannon's proof of arbitrarily low error rates was asymptotic

in the code length n, and in practice many code constructions require large n in

order to be e�ective. The code rate R must be below the channel capacity C to

achieve arbitrarily low error rates, but ideally should be as close as possible to C

in order to maximise the data rate through the channel while still guaranteeing

reliable communication. On the other hand, lower R sometimes leads to faster

decoding. It is also common for there to be trade-o� in the choice of decoding

algorithm. A more complex algorithm may achieve a lower error rate but at the

6

1.1. An overview of the channel coding problem

cost of higher latency, energy or hardware complexity.

The holy grail, so to speak, of channel coding has always been to design an error

correction code, and an associated, computationally-tractable decoding algorithm,

that achieves capacity. This means that the code should be able to achieve ar-

bitrarily low error probability with a code rate equal to, or approaching, channel

capacity.

The �rst reasonably sophisticated error correction code was introduced by Richard

Hamming in 1950 [46]. He speci�ed a code, now known as a Hamming code, with

4-bit input messages and 7-bit codewords (hence code rate R = 4/7 ≈ 0.57) that

was guaranteed to correct single-bit errors. This can be generalised to a larger

family of Hamming codes, all capable of correcting a single error, with codeword

length n = 2r − 1 for r ≥ 2 and message length k = 2r − r − 1.

Following this came decades of research on the design of codes and decoding al-

gorithms. One signi�cant development was the invention of the turbo decoding

technique in the 1990s [15][65], named after an analogous technique from the de-

sign of car engines. Turbo decoding makes use of probabilistic information from

the channel, called soft information, which indicates the reliability of each symbol.

Hard information is the discretised soft output (e.g. �cello� or �101110�). Turbo

decoding iteratively re�nes soft information until it converges to the decoding out-

put. Since the turbo decoding algorithm is given soft information as input and

produces updated soft information as output, it is called a soft-input soft-output

decoding algorithm.

Also in the category of iterative soft-input soft-output decoding techniques are

low-density parity check (LDPC) codes and their belief propagation-style decoding

methods. LDPCs were introduced in 1960 by Gallagher [37], but their implemen-

tation was infeasible at the time due to the constraints of computing technology.

They were rediscovered in the 1990s and have since become widely used due to

advances in computing capabilities. Both turbo decoding and LDPCs enabled re-

searchers to come very close to channel capacity. That is, they could achieve tiny

or arbitrarily small error probabilities at code rates that were almost at the value

of channel capacity. Both turbo decoding and LDPCs continue to be widely used

7

1.2. Outline of thesis

in communications standards [1].

The �nal development we shall explore in the history of channel coding is the

invention in the late 2000s of the polar code [12], the �rst code to reach the holy

grail of provably achieving capacity for binary-input discrete memoryless chan-

nels, an important channel type that we will describe in more detail later. Polar

codes were later combined with cyclic redundancy check (CRC) codes to form

CRC-assisted polar (CA-Polar) codes, which enabled them to be decoded more

e�ectively [82]. Signi�cant e�ort has since been made to incorporate polar codes

into modern communications technology, including the recent 5G 3GPP standard

[1].

We have followed the progression of channel coding from its beginnings in 1948 to

the present day. While the sought-after goal of �nding a capacity-achieving code

has been achieved, the trade-o� inherent in code design means that channel coding

remains a fruitful area of research, as no code or decoding algorithm is perfect for

every application. Communication standards are constantly evolving to provide

new applications, and the design of codes and decoding algorithms must continue

in order to meet these ever-changing requirements. In the background chapter

that follows, we will examine the fundamentals of channel coding in more detail

and explore recent developments in channel coding that underlie the work in this

thesis.

1.2 Outline of thesis

In this chapter we have introduced the channel coding problem. Chapter 2 presents

more background detail on channel coding, GRAND, product codes and other

prerequisites. Chapter 3 introduces IGRAND, a hard-input iterative decoding al-

gorithm that can decode any product code. Chapter 4 introduces the decoding

of product codes with soft-input GRAND algorithms. Chapter 5 introduces new

formulae for calculating soft output for GRAND algorithms and discusses applica-

tions of this output. Finally, Chapter 6 provides an overarching discussion of the

ideas of the thesis.

8

CHAPTER 2
Background

2.1 Linear codes

In Chapter 1, we introduced a class of error correction codes known as Hamming

codes, which were among the �rst error correction codes to be invented. Hamming

codes are part of the wider class of codes called linear codes [73]. The codewords

of a linear code form a linear space, which, importantly, allows the code to be

characterised concisely, as we will now see. If a binary linear code takes k-bit

inputs and its codewords are n bits in length, then it is fully characterised by

its n × k generator matrix G. If uk ∈ {0, 1}k is a k-bit input message, then its

encoding is Guk, where uk is a column vector and the multiplication takes place

over the binary �eld F2. In linear algebra terms, the codebook of a linear code is

the image of G, while the domain is the set of all possible messages to be encoded.

We use the notation [n, k] to refer to a binary code with 2k possible input messages,

drawn from {0, 1}k, and 2k codewords in {0, 1}n with a mapping from each input

message to a unique codeword. The rate of such a code is R = k/n and n − k is

the amount of redundancy that the code adds to a message. The codebook of a

code, i.e. the set of all codewords, is denoted C = Image(G) ⊆ {0, 1}n.

The generator matrix G of a binary linear code can be stored in nk bits. Storing all

2k codewords of a general [n, k] code would require 2kn bits, which is impractical

9

2.1. Linear codes

as k becomes large. It is for this reason that the vast majority of error correction

codes in practical use are linear codes [73]. It has been proven that there is

no performance penalty involved in using linear codes, because channel capacity

can also be achieved by picking appropriate linear codes [64]. In fact, all of the

codes mentioned in the introduction to this thesis (Hamming, LDPC, CRC, Polar,

Turbo-decoded) are linear codes.

Linear codes have another matrix associated with them called their parity-check

matrix, H. H is an (n − k) × n matrix with the property that, for all codewords

cn ∈ C, Hcn = 0n−k, where 0n−k is the all-zero vector. In linear algebra terms,

H is the dual matrix of G [57]. H is important because it allows us to check

xn
?
∈ C using a single O(n2) matrix multiplication Hxn (known as a syndrome

computation) instead of having to compare xn to all 2k codewords in the codebook.

The constraint placed on the codebook by an individual row of the parity-check

matrix is called a parity check.

A systematic code is one where, when forming a codeword, the original message

bits are left untouched and redundant bits, or parity bits, are added to the end

of the message. This is convenient because, following error correction, the orig-

inal message can be extracted by isolating the �rst k bits of the message rather

than having to invert a complex encoding operation. The generator matrix of a

systematic linear code takes the form

G =

[
Ik

P

]
,

where Ik is the k × k identity matrix and P is some (n − k) × k matrix. The

corresponding parity-check matrix is H = [P |In−k].

The �nal property of linear codes that we will explore is their minimum Hamming

distance, denoted dmin. This property is useful because, in the absence of soft

information, it completely characterises the error correction capability of a code.

In the binary case it's the minimum number of bit �ips that must be performed

to turn a codeword into any other codeword. More precisely, let the Hamming

10

2.2. Channel models

weight of a binary sequence xn be wH(xn) =
∑n

i=1 x
n
i . The Hamming distance

between two codewords xn, yn ∈ C is dH(xn, yn) = wH(xn 	 yn), where 	 de-

notes element-wise subtraction of two vectors. The minimum Hamming distance

is dmin = minxn,yn∈C dH(xn, yn) = minxn,yn∈C wH(xn 	 yn) = minxn∈C wH(xn). The

last equality comes from the linearity of the code, which means that xn 	 yn ∈ C,
and it implies that the minimum Hamming distance of a linear code is in fact equal

to the weight of the code's minimum-weight codeword.

Why does dmin characterise a code's error correction capability? If a codeword cn

is perturbed by noise such that fewer than t = bdmin/2c of its bits are changed,

then it is guaranteed that cn is still the closest codeword to the channel output and

a maximum-likelihood decoding algorithm should be able to identify it. Hence it is

said that the code is t-error-correcting. The codewords can be visualised as being

distributed throughout n-dimensional space, each codeword surrounded by a ball

of radius t, as in Figure 2.1. As long as noise does not push an encoded message

outside the ball that surrounds it, then the errors should be correctable. This all

assumes that there is no soft information available, which may enable many more

errors to be corrected, but minimum distance is still a useful measure of a code's

e�ectiveness.

An [n, k] linear code of minimum Hamming distance dmin will be denoted C(n, k, dmin),

where C is the class from which the code is drawn. For instance, LDPC(128, 90, 5)

denotes a [128, 90] LDPC code with a minimum Hamming distance of 5. C(n, k)

may be used instead if the minimum Hamming distance is unknown or omitted.

2.2 Channel models

Real-world channels are complex physical systems. Some of their distinguishing

features include the physical medium through which data is transmitted, the mod-

ulation of the transmitted signal, and the level of interference. A vast literature

exists for modelling these diverse features [42]. Despite this complexity and vari-

ation, channel coding techniques are generally intended to function regardless of

channel type. This is achieved by engineering coding systems so that the following

simplifying assumption is guaranteed: that all transmitted symbols are a�ected by

11

2.2. Channel models

t
dmin

Figure 2.1: The dots are the codewords of a t-error-correcting channel
code, distributed throughout n-dimensional space. They are surrounded
by so-called Hamming balls of diameter dmin and radius t. A maximum-
likelihood decoder would map any channel output within a ball to the
codeword at the centre of the ball, since that codeword is most likely to
be the intended one (assuming there is no additional soft information that
indicates otherwise, and that all codewords are equally likely a priori). An
n-dimensional lattice would actually be a more appropriate representation
of the space, because the symbols are discrete.

the channel noise independently. Interleaving ensures the independence of the noise

by moving adjacent bits away from each other during transmission, thus breaking

any correlation. With this assumption in hand, the behaviour of the channel can

be e�ectively captured by a simple probabilistic model; two such models that we

will consider here are the binary symmetric channel (BSC) and the additive white

Gaussian noise (AWGN) channel.

The BSC is depicted in Figure 2.2. Each bit transmitted through a BSC has

an independent probability p of being �ipped, thus introducing an error, and a

probability 1 − p of being unchanged. The channel is called symmetric because

0 and 1 both have the same probability p of being corrupted. The BSC is called

memoryless because the noise has an independent e�ect on each transmitted bit.

In the AWGN model, each symbol is modulated to produce a d-dimensional signal

that usually is considered to lie somewhere in real space R (d = 1) or in the

complex plane C (d = 2). During transmission, the signal is perturbed by the

addition of a d-dimensional vector of Gaussian random variables. In binary phase-

12

2.2. Channel models

0

1

0

1

1-p

1-p

p

Figure 2.2: A binary symmetric channel with bit-�ip probability p.

+1-1 0

Figure 2.3: An illustration of BPSK modulation. 0 is mapped to -1, 1
is mapped to +1 (or the other way around). The receiver demodulates
anything below 0 to 0 and anything above 0 to 1. In an AWGN channel,
the signal is shifted by Gaussian noise, and a shift past 0 results in an
error.

shift keying (BPSK) modulation (Figure 2.3), binary symbols are modulated to

1-dimensional real values: 0 is mapped to a value of −1, while 1 is mapped to +1

(alternatively, 0 may be mapped to +1 and 1 to −1). The receiver demodulates

the received signal y ∈ R so that a value of y < 0 will be interpreted as 0 and a

value of y > 0 will be interpreted as 1. If the value of the noise is large enough

that it changes the sign of y, then the receiver will misinterpret the value of the

symbol and an error will occur. AWGN channels are also memoryless, as there is

no correlation between the d Gaussian random variables.

A channel can output hard information or soft information. A hard-output channel

will return a sequence of symbols, some of which may be incorrect. For example,

the BSC may receive as input the string 010 and may output 110, in which case

the �rst symbol is received in error. A soft-output channel returns real-valued

information that indicates not only the value of a symbol (such as 0 or 1), but also

13

2.3. Parameters and statistics of channels

its reliability. This may take the form of the raw signal value, or a probability of

error, or a log-likelihood ratio comparing the likelihood of being in error versus not

being in error, or any other measure of reliability. In an AWGN channel with BPSK

modulation, the received signal is considered more unreliable as it gets closer to 0,

as it is then more likely to have changed sign due to noise. In general, the use of soft

information signi�cantly improves the ability of the receiver to correctly decode

received messages and can reduce error probability by an order of magnitude [57].

However, it may be expensive or infeasible to extract soft information for each

symbol, and the decoder may have to make do with hard information.

2.3 Parameters and statistics of channels

A variety of parameters and statistics are used to describe channels and the per-

formance of coding schemes within those channels. The bit-�ip probability p,

introduced already in describing the BSC, is one such parameter. The AWGN

channel has a parameter σ that describes the standard deviation of the channel

noise value. Assuming an AWGN channel and BPSK modulation with unit trans-

mit power, a bit-�ip probability of p is given by σ = −1/(
√

2erf(2p − 1)) [42],

where erf is the error function.

More generally, a quantity called the signal-to-noise ratio (SNR) is used to describe

the ratio of the transmitter energy to the energy of the channel noise. When

comparing channel codes, however, the code rate R must be considered; due to the

overhead of transmitting redundant bits, the energy cost of a bit of information

becomes 1/R times the cost of transmitting a single bit. For this reason, the

quantity Eb/N0 is typically used instead, where Eb is the energy per bit and N0/2

is the power spectral density of the noise. Eb/N0 is in fact equivalent to a rate-

normalised SNR, given certain assumptions about the bandwidth and frequency

of the transmitted signal. Once again assuming an AWGN channel and BPSK

modulation, a bit-�ip probability of p is given by

Eb/N0 =
1

2R

(
Q−1(p)

)2
,

14

2.4. Guessing Random Additive Noise Decoding

where Q is the Q-function [42]. Eb/N0 is typically expressed in decibels (dB), so

that this equation becomes

10 log10(Eb/N0) = 10 log10

(
1

2R

(
Q−1(p)

)2)
.

To indicate the performance of a channel coding scheme, two metrics are commonly

used: the bit error rate (BER), which is the fraction of bits that are decoded

incorrectly by the receiver, and the block error rate (BLER), which is the fraction

of messages that are decoded incorrectly by the receiver such that the intended

codeword is not recovered. They can be de�ned more precisely as follows. Suppose

that N messages are transmitted, each of which is n bits in length. Let mi ∈
{0, 1, . . . , n} denote the number of bit errors in the decoding of the i-th of these

transmissions. Then

BER =
N∑
i=1

mi/(nN)

and

BLER =

(
N∑
i=1

1mi>0

)
/N,

where 1mi>0 is 1 if mi > 0 and 0 otherwise.

2.4 Guessing Random Additive Noise Decoding

2.4.1 Overview

We have described in Section 1.1 how, given that the general decoding problem is

NP-complete [14], decoding algorithms are typically designed to work with a single

type of code structure, which they exploit to achieve e�cient decoding. E�cient

decoding algorithms for Hamming codes cannot generally decode any other type

of code because they are specialised for the structure of Hamming code. However,

15

2.4. Guessing Random Additive Noise Decoding

Figure 2.4: Photograph of the GRAND chip implementation from [67] for
hard-input decoding of codes of up to 128 bits in length, and photograph
of the ORBGRAND chip implementation from [69] for soft-input decoding
of codes of up to 256 bits in length.

there has been continued e�ort to identify e�ective universal decoders, capable of

decoding any code.

A recent addition to the category of universal decoding algorithms is Guessing

Random Additive Noise Decoding (GRAND) [4, 5, 10, 11, 24, 27, 29, 30, 67, 80].

GRAND is a class of maximum-likelihood decoding algorithms that can accurately

decode any code that has a moderate amount of redundancy. In addition to

achieving maximum-likelihood decoding and being able to decode arbitrary codes,

GRAND was proven to be capacity-achieving for channels with discrete input and

output symbols, with or without memory [27]. Its promise for practical, highly-

parallelised decoding has led to the publication of several circuit designs [2, 4, 5]

and chip implementations [67, 69], the latter of which are pictured in Figure 2.4.

The key idea behind GRAND is that the e�ect of the noise is given by the di�erence

between the demodulated channel output and the transmitted codeword. GRAND

ignores the code structure and instead attempts to identify this noise e�ect and

thereby infer the transmitted codeword; this is unlike existing decoding methods,

which attempt to identify the transmitted codeword directly, often assuming an

interleaved channel to do so. GRAND algorithms sequentially generate, from most

to least likely, the noise e�ects that potentially corrupted the original message,

based on knowledge of channel statistics or soft information. Given channel input

cn ∈ C and demodulated channel output yn ∈ {0, 1}n, the noise e�ect introduced

by the channel is zn = cn 	 yn, where 	 is the element-wise binary di�erence

16

2.4. Guessing Random Additive Noise Decoding

operation. GRAND attempts to identify zn and invert its e�ect on yn, thereby

yielding cn. It does so by making a series of guesses ẑn1 , ẑ
n
2 , ... and computing

x̂ni = yn	 ẑni until it �nds a sequence x̂ni that satis�es x̂ni ∈ C, which is a maximum-

likelihood decoding. As described in Section 2.1, x̂ni ∈ C can be con�rmed for a

linear code by checking that Hx̂ni = 0n−k [57], where H is the parity-check matrix

and 0n−k represents the length-(n − k) all-zero vector. These core steps of the

GRAND algorithm are described more explicitly in Algorithm 1.

Algorithm 1: GRAND decoding of hard channel output yn, possibly
with soft output rn informing the likelihood of noise e�ects. Given a
codebook C and code length n.
1 ẑn ← 0n; // start with most likely noise effect

2 while true do

3 ĉn ← yn 	 ẑn; // undo putative noise effect

4 if ĉn ∈ C then
5 return ĉn;
6 end

7 ẑn ← next most likely noise e�ect;

8 end

As long as the sequence {ẑni } is ordered so that P (Nn = ẑni) ≥ P (Nn = ẑnj)

for i < j, Nn : Ω → {0, 1}n being a random variable representing the channel

noise e�ect, this procedure is guaranteed to yield a maximum-likelihood estimate

of the original message [27]. To see why, let the random variable Cn : Ω → C be

a codeword and let Y n : Ω → {0, 1}n be the demodulated channel output. The

instantiations of these random variables are cn and yn, respectively. A maximum-

likelihood decoding is given by cnML ∈ argmaxcn∈C P (Cn = cn|Y n = yn). Using

Bayes' Rule,

P (Cn = cn|Y n = yn) =
P (Cn = cn, Y n = yn)

P (Y n = yn)

=
P (Cn = cn)P (Y n = yn|Cn = cn)∑
cn0∈C

P (Cn = cn0)P (Y n = yn|Cn = cn0)
.

Assuming that all codewords have equal prior probability, and given that the

denominator in this expression is constant for a particular yn, this implies that

17

2.4. Guessing Random Additive Noise Decoding

P (Cn = cn|Y n = yn) ∝ P (Y n = yn|Cn = cn) = P (Nn = yn 	 cn), and hence

argmaxcn∈C P (Cn = cn|Y n = yn) = argmaxcn∈C P (Nn = yn 	 cn). Thus, given

that GRAND identi�es a codeword x̂nq on its q-th guess, P (Cn = x̂nq |Y n = yn) =

P (Nn = ẑnq) ≥ P (Nn = ẑni) = P (Cn = x̂ni |Y n = yn) for i > q, and hence x̂nq is a

maximum-likelihood estimate of the true codeword.

The exact ordering of the noise e�ects guessed by GRAND must depend on the

channel, since a noise e�ect that is probable in one channel may be improbable in

another. For this reason a family of GRAND algorithms has been developed, each

one specialised for a di�erent channel model. They distinguish themselves by how

they generate the sequence of noise guesses, since the other main component of

GRAND, the codebook check, is independent of channel type.

For discrete memoryless channels, including the previously-described BSC, noise

e�ects can be generated in maximum-likelihood order by �rst generating the noise

e�ects of Hamming weight 0, then Hamming weight 1, then Hamming weight 2, and

so on, breaking ties arbitrarily. A chip implementation of this GRAND variant has

in fact been produced [67]. This algorithm achieves maximum-likelihood decoding

in a BSC with bit-�ip probability p < 1/2. Given two noise e�ects an, bn ∈ {0, 1}n

where wH(an) = i < j = wH(bn), their probabilities of occurrence are P (Nn =

an) = pi(1 − p)n−i and P (Nn = bn) = pj(1 − p)j. an should come before bn in

a maximum-likelihood guessing order because P (Nn = an) > P (Nn = bn), and

it does, since i < j and the algorithm orders the noise sequences by Hamming

weight.

2.4.2 Soft-input GRAND algorithms and ORBGRAND

Several variants of GRAND have been developed for soft-output channels [26, 29,

80]. Soft GRAND (SGRAND) [80] is a variant that achieves maximum-likelihood

decoding in soft-output memoryless channels. It accomplishes this by generating

noise e�ects based on a heap data structure, which grows with each noise guess

and which tracks the next-most-likely noise e�ect. The downside of this approach

is that it has high algorithmic complexity and is unsuitable for hardware imple-

mentation.

18

2.4. Guessing Random Additive Noise Decoding

Ordered Reliability Bits GRAND (ORBGRAND) [24, 25] is an alternative soft-

input variant of GRAND that comes close to achieving channel capacity [58] while

having signi�cantly lower complexity than SGRAND. After a pre-processing step

that involves sorting the input bits based on their reliability, ORBGRAND has

a �xed sequence of noise guesses, which makes it amenable to e�cient hardware

implementation, as evidenced by a recent integrated circuit design [5] and a chip

implementation [69].

A more detailed explanation of ORBGRAND goes as follows. Given rank-ordered

reliability values {ri} for the demodulated bits yn, where ri ≥ 0 and ri < rj for

i < j, the likelihood of a putative noise sequence zn is proportional to f(zn) =∑n
i=1 riz

n
i [25]. The basic version of ORBGRAND approximates the reliability

values with a line through the origin, ri = βi, β ≥ 0, and based on this model

it e�ciently generates noise sequences in approximate maximum-likelihood order.

Then f(zn) = β
∑n

i=1 iz
n
i = βwL(zn), where wL(zn) is the logistic weight of zn.

Since β is �xed for a particular instantiation of the noise, it can be disregarded

when ordering noise e�ects based on f , and ORBGRAND thus generates noise

e�ects in order of increasing logistic weight wL. This approximation enables the

e�cient generation of noise e�ects in an order that is close to maximum-likelihood

order.

ORBGRAND's generation of noise e�ects can be recast in terms of a combina-

torics problem: integer partitioning with unique parts and a maximum part size.

Generating the noise e�ects of logistic weight l for a code length of n is equivalent

to constructing the integer partitions of the integer l with a maximum part size of

n; the parts in each partition of l corresponds to an error at a particular position in

the reliability-ordered hard channel output. For example, given l = 5 and n = 5,

the corresponding partitions of l are {5}, {1, 4} and {2, 3}, the parts of all of which
sum to 5, as required of a partition of the integer 5. These partitions map to noise

e�ects 00001, 10010 and 01100, respectively, assuming that the bits are ordered

from least to most reliable; a part value of 2 indicates that the 2nd bit in sorted

order should be a 1. The construction of partitions, and by extension the noise

e�ect generation, can be achieved by using the landslide algorithm from [25].

19

2.4. Guessing Random Additive Noise Decoding

0 20 40 60 80 100 120
Ordered Bit Position

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Re
ce

iv
ed

 S
ig

na
l M

ag
ni

tu
de

0 dB
2 dB
4 dB
6 dB
8 dB
10 dB

Figure 2.5: The position of a bit in sorted order, versus the average re-
ceived signal magnitude at that position. The channel SNR (in decibels)
is varied. A code length of n = 128 is assumed, and an AWGN channel
model is used with BPSK modulation. The absolute value of the received
signal is used as a proxy for the reliability of a bit, since they are propor-
tional. It can be seen that a linear model does not �t the distribution as
well when the channel SNR is higher.

Assuming that this linear approximation, described above, perfectly captures the

reliability distribution, basic ORBGRAND generates noise e�ects in maximum-

likelihood order. Particularly in low-noise channels, however, its approximation

becomes worse, as seen in Figure 2.5.

The full version of ORBGRAND uses a multiline model to better match the reli-

ability distribution in low-noise channels. Here, we further expand on the 1-line

model, which distinguishes itself from basic ORBGRAND by potentially having a

non-zero intercept. 1-line ORBGRAND uses the approximation ri = α+βi, where

α, β ≥ 0. Then f(zn) =
∑n

i=1(α + βi)zni = α
∑n

i=1 z
n
i + β

∑n
i=1 iz

n
i = αwH(zn) +

βwL(zn), where wH(zn) is the Hamming weight of zn. c = α/β is assumed to be a

non-negative integer. We then let wT (zn) = f(zn)/β = cwH(zn) + wL(zn) be the

total weight of a noise sequence, where wT (zn) ∈ {0, 1, 2, ...}.

The description of the full ORBGRAND algorithm [25] details how to e�ciently

generate putative noise sequences in order of their total weight, which is an approx-

imation of their maximum-likelihood order, without the need for dynamic memory.

20

2.4. Guessing Random Additive Noise Decoding

A simple alternative method will be introduced in Chapter 4, and also a method

to �nd a suitable value for c.

2.4.3 GRAND complexity

There is an upper bound on GRAND's decoding complexity based on the number

of parity checks in the code, n − k. In general, an erroneous decoding is encoun-

tered in a binary code after approximately 2n−k codebook queries [27][Theorem 2].

Intuitively, fewer codebook queries will be required in low-noise channels, as the

probability will be concentrated on noise e�ects that introduce a small number of

errors and the true noise e�ect is likely to appear early in the guessing order, before

any erroneous codewords. In contrast, in high-noise channels, the probability will

be distributed di�usely across all possible noise e�ects, and the true noise e�ect

is likely to appear later in the guessing order. When the channel is su�ciently

noisy, GRAND is more likely to identify an erroneous codeword than not, and the

average number of queries becomes dominated by the term 2n−k.

More precisely, the GRAND algorithm may be understood as a race between two

random variables: the number of guesses to �nd the true channel noise e�ect

Nn : Ω→ {0, 1}n, thus recovering the correct codeword, and the number of guesses
Un : Ω → {1, ..., 2n} before GRAND identi�es an incorrect codeword. GRAND's

guessing order is de�ned by a bijective function G : {0, 1}n → {1, ..., 2n} that

maps each noise e�ect to its position in the guessing order. The number of guesses

to identify the true channel noise e�ect is G(Nn). GRAND identi�es the correct

decoding when G(Nn) < Un, the asymptotic probability of which as n tends to

in�nity is derived in [27] for uniform random codebooks.

As n tends to in�nity, the average number of guesses to identify the transmitted

codeword is limn→∞ E[G(Nn)] = 2nH , whereH is the Shannon entropy of the chan-

nel [20]. And, as stated previously, limn→∞ E[Un] = 2n−k. The average number of

queries performed by GRAND for asymptotic n and uniform random codebooks

is thus upper bounded by min(2nH , 2n−k) ≤ 2n−k.

The consequence of this is that, for practical applications, GRAND is suitable for

codes with a moderate amount of redundancy. For n−k = 20, GRAND is expected

21

2.5. Product codes

0 50 100 150 200 250
Code Length, n

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

 R
at

e,
 R

GRAND
CA-Polar

Figure 2.6: The code lengths and code rates at which GRAND can operate
when given up to 20 parity checks, and up to a maximum code length
of 256. Each dot corresponds to a pair of code length and rate. For
comparison, the parameters of CA-Polar codes are shown as well, assuming
the use of the 11-bit CRC prescribed by the 5G uplink scenario [1].

to make no more than 220 = 1, 048, 576 queries on average. Exponential growth

soon makes this number impractical; for n − k = 30, it's 230 = 1, 073, 741, 824.

Still, GRAND o�ers great �exibility to the designers of communication systems,

particularly at short code lengths. This is illustrated in Figure 2.6, which shows

the decoding region, i.e. the code lengths and rates, at which GRAND can operate

with up to 20 parity checks. Compared to CA-Polar codes, which in recent years

were included in the 5G communications standard [1] and which exist only at

lengths that are powers of 2, GRAND is completely �exible in terms of code

length. Much of the focus of this thesis will be on expanding the decoding region

of GRAND by applying it to a powerful class of codes called product codes, which

are long, low-rate and high-redundancy.

2.5 Product codes

Product codes are a form of concatenated error correction code that were intro-

duced by Elias in 1954 [32]. They allow the construction of long, powerful codes

from short component codes. In 2 dimensions they are constructed by arranging

22

2.5. Product codes

u1 u2 u3

u4 u5 u6

p5 p6 p7

p1 p2

p3 p4

p8 p9

Figure 2.7: A 2-dimensional product code that has a [5, 3] component code
C1 and a [3, 2] component code C2, giving it a code rate of (k1k2)/(n1n2) =
6/15. Information symbols ui are structured as a k2 × k1 = 2 × 3 array.
Rows are encoded using C1 and the array is extended with the resulting
parity bits p1, p2, p3 and p4. The extended rows are codewords of C1.
Similarly, the columns are extended by encoding them with C2. Encoding
the parity bits of C1 produces so-called parity-on-parity bits p8 and p9.
Note that the product code is both longer than its component codes and
has a lower code rate.

information symbols in an array (see Figure 2.7). Each row of the array is ex-

tended by encoding it with a systematic code. Then the columns are extended by

encoding each of them with another systematic code, possibly distinct from the

one that was used for the rows. We use C(n, k, dmin)
2 to denote a product code

with row and column codes of type C(n, k, dmin).

More generally, a D-dimensional product code consists of D component codes

C1, . . . , CD, where each component code Ci is an [ni, ki] systematic code of rate Ri =

ki/ni. The product code is constructed by structuring k =
∏D

i=1 ki information

symbols as a D-dimensional array of shape kD×· · ·×k1. All 1-dimensional slices in

the last dimension, which are of length k1, are extended by encoding them with the

component code C1. The array then has shape kD × · · · × k2× n1. This procedure

is repeated for each of the remaining component codes, giving the array a �nal

shape nD × · · · × n1.

Appropriately enough, the properties of a product code are all de�ned in terms of

products of component code properties. A D-dimensional product code is length

n =
∏D

i=1 ni, contains k =
∏D

i=1 ki information symbols, and has a code rate

R = k/n =
∏D

i=1Ri. If the component codes are linear codes, and the i-th

23

2.5. Product codes

component code has minimum Hamming distance di, then the product code has

a minimum Hamming distance of dmin =
∏D

i=1 di. Evidently, product codes are

longer, lower rate, and have more error correction power than their component

codes.

A key property of product codes with linear component codes is that all 1-dimensional

slices (in the 2-dimensional case, that would be all rows and all columns) are in

fact codewords of a component code, even if they are not explicitly encoded. This

is most easily proven in the 2-dimensional case. Take as the encoding input a

k2 × k1 matrix X whose elements are drawn from a discrete alphabet. Let G2

be the n2 × k2 generator matrix for the column code and let G1 be the n1 × k1
generator matrix for the row code. Assuming the columns are encoded �rst and

then the rows, (G1X)G2 is the encoding of X. All rows of X are codewords of

the row code because they were explicitly encoded with G2, while only the �rst

k1 columns were encoded with G1. If the rows are encoded �rst, the encoding is

G1(XG2), and this time all columns are explicitly encoded as codewords of the

column code. By the associativity of matrix multiplication, (G1X)G2 = G1(XG2),

and hence the outcome is the same regardless of the encoding order, and all rows

and all columns are codewords.

24

CHAPTER 3
Iterative GRAND

This chapter introduces Iterative GRAND (IGRAND), a universal product code

decoder. IGRAND applies iterative bounded distance decoding to product codes,

correcting errors in their component codes using the code-agnostic GRAND algo-

rithm. This approach overcomes the complexity constraints of GRAND and enables

GRAND to be used for decoding high-redundancy codes, a task that would otherwise

be infeasible. In addition to describing the algorithm, this chapter contains em-

pirical results that demonstrate IGRAND's accuracy and e�ciency, showing gains

over comparable algorithms. A summary of the decoding accuracy results can be

found in Table 3.2. Parts of this chapter have been published in [39].

3.1 Introduction

In previous chapters it was established that the average guessing complexity of

GRAND, a universal maximum-likelihood decoding algorithm for error correction

codes, generally has an upper bound of 2n−k, where n− k is the amount of redun-

dancy in the code. This makes it impractical for GRAND to decode long, low-rate

codes, which have a large amount of redundancy.

Here we propose to extend the feasible decoding region of GRAND by applying it

to a class of codes known as product codes. As described in Section 2.5, product

codes are long, high-redundancy codes that are formed from a concatenation of

25

3.1. Introduction

0 200 400 600 800 1000
Code Length, n

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

 R
at

e,
 R

GRAND
IGRAND

Figure 3.1: The code lengths and code rates at which GRAND and
IGRAND can operate, up to a maximum code length of n = 1024. Each
dot corresponds to a pair of code length and rate. GRAND is assumed to
operate on codes of up to 20 parity bits, while for IGRAND it is assumed
that the product codes have component codes of up to 20 parity bits (i.e.
up to a total of 20× 20 = 400 parity bits). It can be seen that IGRAND
greatly expands the decoding region of GRAND, encompassing many long
and low-rate codes. The product codes are also assumed to be square, i.e.
to have row and column codes of the same length, and non-square product
codes would be even more �exible.

shorter codes [32]. Product codes are the target of what we will call Iterative

GRAND (IGRAND), a hard-input decoding algorithm that applies GRAND to the

component codes of product codes, thus vastly expanding the range of application

of GRAND. Figure 3.1 depicts the expanded decoding region that results from

using IGRAND.

Decoding algorithms for product codes assume that there is a decoder for each

component code. Elias, who introduced product codes in 1954 [32], proposed

decoding the component codes sequentially: �rst the columns, then the rows.

Performed repeatedly, this process is known as iterative decoding [57]. Subsequent

e�orts have produced near-optimal soft-input decoders for product codes [65], and

we will consider these in the next chapter, but interest in hard-input decoding

26

3.1. Introduction

continues [8, 9, 45, 50]. For example, high-rate product codes with hard-input

decoders have been deployed in optical transport networks [51, 77, 79]. In such

networks, where the bit rate can be as high as 100Gb/s, it may be infeasible to

derive soft information for each bit, or soft-input decoding may be too slow. In

storage applications [83, 88], soft information is simply unavailable.

IGRAND iteratively uses the GRAND algorithm to decode individual component

codewords of product codes. IGRAND enforces bounded distance decoding (BDD)

on GRAND, which not only improves decoding accuracy [8, 45], but also reduces

GRAND's complexity. IGRAND does not de�ne a �xed distance bound. It at-

tempts to keep the distance bound small by initially setting it to the lowest possible

value and increasing it only when necessary. We demonstrate through simulation

that this approach o�ers accuracy and e�ciency improvements over comparable

algorithms.

The components of a product code can be decoded in parallel at no extra energy

cost. This feature can be exploited by IGRAND, and we give estimates, based on

measurements of a hardware implementation of GRAND [67], that full paralleli-

sation of IGRAND can reduce its decoding latency by orders of magnitude. We

also give an estimate of the energy cost of the GRAND chip if used to decode a

16,129-bit product code.

GRAND can reduce the hardware footprint of product code decoding. If product

codes are not decoded in parallel, then the hardware footprint of their decoding is

already modest because only a single decoder is required for each type of compo-

nent code. GRAND enhances this �exibility, as only a single decoder is required

for all component codes due to GRAND's code-agnosticism. This property also

enables IGRAND to decode a particular class of product codes that are otherwise

not decodable: those with random linear component codes. In Appendix A, we

prove that such codes are capacity-achieving in hard information channels, though

simulation results demonstrate that their performance does not live up to this

promise at the �nite block lengths considered here.

27

3.2. Background

(a) An uncorrectable error

pattern.

(b) A correctable staircase

error pattern.

Figure 3.2: A 49-bit product code with 1-error-correcting component codes
of minimum Hamming distance 3. While iterative decoding of the code
cannot correct some 4-error patterns (note that (b3/2c + 1)2 = 4), it can
correct some error patterns with many more than 4 errors, such as the
13-error pattern shown above. This 13-error staircase pattern can be suc-
cessfully decoded by correcting 1 error at a time over multiple iterations.

3.2 Background

All product code decoders assume the availability of a decoder for the component

codes. Elias described how product codes could be decoded by decoding the com-

ponent codes one after another [32] using the appropriate sub-decoder for each one.

At least as early as 1968 [6] it was realised that multiple iterations of this process

could improve error correction performance, though there remain error patterns

that iterative decoding fails to correct. We refer to this algorithm, parameterised

by the maximum number of iterations, as the Elias algorithm.

This iterative approach enables more errors to be corrected than indicated by the

minimum Hamming distance of the product code. Consider a product code whose

component codes both have a minimum distance of dmin and which therefore itself

has a minimum distance of d2
min

. Iterative decoding may fail to correct a block

of (bdmin/2c + 1)2 errors, as shown in Figure 3.2a, but can correct some error

patterns with many more errors than that, such as the staircase pattern illustrated

in Figure 3.2b.

It should be noted, however, that product codes are not theoretically optimal

28

3.2. Background

codes in an algebraic sense. Given a particular length and code rate, the Hamming

bound [57] is a limit on the best possible minimum Hamming distance. Consider

a product code with BCH(15, 11, 3) component codes. Its length is 152 = 225, its

code rate is roughly 0.53, and its minimum Hamming distance is 32 = 9, which

means it is guaranteed to correct at least 3 errors. The Hamming bound for these

code parameters indicates that the maximum possible error correction capability

is 23, and a BCH(255, 143, 29), of approximately the same length and code rate, is

guaranteed to correct up to 14 errors. Despite this non-optimality, product codes

are used in practical settings because the algebraic properties of codes are less

important when soft information is available, and due to their ease of decoding. In

particular, their components can be decoded in parallel to improve throughput and

latency, a property that we will explore later in the context of e�cient GRAND

decoding.

Justesen [50] used results from random graph theory to estimate the rate of oc-

currence of uncorrectable error patterns in product codes, placing an upper bound

on their decoding accuracy. The bound is estimated by relating product codes

to random graphs where the nodes represent component codewords. There's an

edge between two nodes when the corresponding codewords have a bit in common

and that bit is received in error. If the component codes of the product code can

correct up to t errors, then the probability of an uncorrectable error pattern is the

probability of a (t + 1)-core appearing in the graph, which is known for random

graphs. A mitigation for uncorrectable error patterns is to identify their location

during decoding, and treat the a�ected bits as erasures that can then potentially

be recovered [9, 16, 45].

Another source of decoding failure is miscorrection, where new errors are intro-

duced by attempting to decode a component codeword when it contains more than

t errors. BDD [8, 45] minimizes the frequency of miscorrection events by applying

error correction to a codeword only if ϕ or fewer bits are changed as a result. In a

hard-output memoryless channel, the fewer bits that are changed by a decoding,

the more likely the decoding is to be correct. If a product code can be decoded by

correcting only up to ϕ bits at a time, then it is more likely that miscorrections

will be avoided. Al-Dweik et al. [8] described an iterative decoding algorithm that

29

3.3. Iterative GRAND

applies BDD with a bound of ϕ = t− 1 in the �rst iteration of decoding and dis-

cards the bound thereafter. We refer to this as the Al-Dweik algorithm. Like the

Elias algorithm, it is parameterised by the maximum number of iterations allowed.

Inspired by a comment of Justesen's in [50], Häger et al.[45] developed another

technique to avoid miscorrection called anchor decoding, which is complementary

to BDD. It avoids changing bits in already-decoded components until they are

contradicted su�ciently many times by the decoding of other components.

3.3 Iterative GRAND

3.3.1 Description

IGRAND decodes a product code's component codes using GRAND. Since GRAND

is code-agnostic, IGRAND can decode arbitrary product codes. IGRAND enforces

BDD on GRAND, which, in addition to improved decoding accuracy, provides a

bound on GRAND's complexity. What distinguishes IGRAND from other iterative

decoding algorithms is its particular use of BDD. Rather than allowing GRAND to

decode a component codeword and then retroactively applying a distance bound,

IGRAND passes the distance bound ϕ as a parameter to GRAND. If GRAND

exhausts all noise sequences of weight up to ϕ without �nding a decoding, it re-

turns a failure. The outcome is the same as a retroactive application of BDD, but

reduces complexity by not continuing the search for a decoding when it would in

any case fall outside the distance bound. This assumes that GRAND makes noise

guesses in order of increasing Hamming weight, which is the case in any hard-input

memoryless channel.

In order to minimise complexity and maximise accuracy, IGRAND does not use

a �xed distance bound, but instead starts with the lowest possible bound, ϕ = 1,

and increments the bound only when necessary to make further progress in the

decoding. IGRAND continues decoding iteratively until either 1) all components

have been decoded successfully; 2) the decoding gets stuck not due to decoding

failure, but due to an irreconcilable contradiction between row and column com-

ponent codes; or 3) ϕ > t, where we assume that all component codes can correct

t errors. When ϕ > t, further decoding is likely to cause miscorrections. If t

30

3.3. Iterative GRAND

is unknown, such as when the component codes are chosen at random, then an

optimistic value can be derived from the Hamming bound [70].

IGRAND avoids miscorrection as much as possible by keeping the distance bound

as low as possible. This also serves the purpose of controlling GRAND's complex-

ity. In general, GRAND makes up to min(2n−k,
∑wH(zn)

i=0

(
n
i

)
) codebook queries

to decode an [n, k] codeword that has been a�ected by a binary noise sequence

zn of Hamming weight wH(zn). With a distance bound of ϕ, this is limited to

min(2n−k,
∑ϕ

i=0

(
n
i

)
) codebook queries.

Figure 3.3 depicts IGRAND in operation, including its use of the status �ags

described in the next section.

3.3.2 Implementation details for e�cient decoding

If a component has been decoded successfully and none of its bits are altered in

the decoding of another component, decoding it again would be redundant. Thus,

to be e�cient, an iterative decoding algorithm should track the decoding status of

each component. For this purpose we initialise an array S of status �ags, where

Si ∈ {0, 1, 2} denotes the decoding status of the ith component. Similar to the use

of status �ags in [45], 0 means the component is yet to be decoded, 1 means the

decoding was successful, and 2 means the decoding failed.

All �ags are initialised to Si ← 0. At each iteration, the decoder should attempt to

decode component i only when Si = 0. If component i is decoded successfully, then

its status is set to Si ← 1. If the decoding of component i causes a bit to change in

component j, then the status of j must be reset to Sj ← 0 because any decoding

of j is no longer valid. A status �ag of 2 is assigned if a component fails decoding

due to a distance bound, or if the decoder can detect an error in the component

but not correct it. In our implementations, the Al-Dweik algorithm and IGRAND

interact with the status �ags in a distinct manner to the Elias algorithm, which

does not use a distance bound. When the distance bound is increased or discarded,

then any component i whose decoding failed (Si = 2) must have its status reset to

Si ← 0, because it may be possible to decode i with the new distance bound.

31

3.3. Iterative GRAND

#1 (φ=1)

? ? ? ?

?
?
?

#2 (φ=1)

?
?
?

#3 (φ=1)

??
??

#4 (φ=1)

?

#5 (φ=2) #6 (φ=2)

?

??

?

Figure 3.3: IGRAND decodes a 16-bit product code with 2-error-
correcting component codes. Red crosses represent errors. Each com-
ponent has an associated status �ag, with a blue question mark beside
component i if Si = 0, a green tick if Si = 1 and an orange crossed circle if
Si = 2. The direction of the dotted grey lines indicates whether IGRAND
is about to decode columns or rows, while an orange background indicates
that a bit is about to be changed. In #1, IGRAND decodes the columns.
Since it starts with ϕ = 1, it fails to correct the �rst 3 columns, which each
contain 2 errors. In #2, IGRAND changes 2 bits while decoding the rows,
which leads it to retry the 3rd and 4th columns in #3. By #5, IGRAND
is stuck and must increment ϕ, which allows it to correct the remaining
errors following #6.

3.3.3 Pseudocode

Algorithm 2 contains pseudocode for IGRAND. Algorithm 3 describes the GRAND

algorithm and how it interacts with the distance bound ϕ as well as the status

�ags.

3.3.4 Columns-only decoding

In low-noise channels, there is an opportunity to optimise decoding e�ciency: if

the columns of a product code appear to be error-free, then the row decoding can

be skipped, halving the energy and latency cost of decoding. This comes at the

32

3.3. Iterative GRAND

Algorithm 2: IGRAND decoding.
1 foreach component i do // initialise flags

2 Si ← 0;
3 end

4 ϕ← 1;
5 while ϕ ≤ t do
6 decode columns with GRAND, distance bound ϕ;
7 decode rows with GRAND, distance bound ϕ;
8 if Si = 1 ∀ i then // all codewords decoded successfully

9 return;

10 else if no bits changed or Si 6= 0 ∀ i then // stuck

11 if Si 6= 2 ∀ i then // bound increase won't help, give up

12 return;

13 else // bound increase might help

14 ϕ← ϕ+ 1;
15 foreach component i do
16 if Si = 2 then // retry failed codewords

17 Si ← 0;

18 end

19 end

Algorithm 3: GRAND decodes the ith component, xn, which should be
a codeword of an [n, k] codebook C.
1 zn,∗ ← 0n; // start with most likely noise effect

2 while wH(z
n,∗) ≤ ϕ do

3 cn,∗ ← xn 	 zn,∗ ; // undo putative noise effect

4 if cn,∗ ∈ C then // found codeword, successful decoding

5 overwrite xn with cn,∗;
6 foreach a�ected component j 6= i do
7 Sj ← 0 ; // decode these components again

8 end

9 Si ← 1;
10 return;

11 zn,∗ ← next most likely noise sequence;

12 end

13 Si ← 2; // couldn't find decoding within distance bound

33

3.3. Iterative GRAND

cost of occasionally missing an error that would have been corrected by the row

decoding. Here we derive the probability that this scheme results in an e�ciency

gain, and the approximate probability that it results in a decoding mistake. Later

we will estimate the e�ect that this approach has on the e�ciency of IGRAND

decoding.

Consider the transmission of a 2-dimensional product code through a BSC with

bit-�ip probability p ≤ 1/2. Assume that a particular [n, k, dmin] code is used to

encode both rows and columns of the product code. Let the Bernoulli random

variable Xi,j : Ω → {0, 1}, parameterised by p, represent whether the bit at the

intersection of the i-th row and j-th column is received in error. Following the

assumptions of a BSC, the {Xi,j} are independent. The number of errors in the

j-th column is a binomial random variable Cj : Ω → {0, 1, ..., n}, parameterised

by n and p, with Cj =
∑

i=1Xi,j. The {Cj} also are independent and identically

distributed.

Let G be the event that none of the columns have any errors. The probability of

this event is

P (G) = P (C1 = 0, C2 = 0, ..., Cn = 0)

=
∏

1≤j≤n

P (Cj = 0)

=
∏

1≤j≤n

(1− p)n

= (1− p)n2

,

where the second equality is due to the independence of the {Cj}.

It is also possible that su�ciently many errors occur in certain columns that these

columns appear to be codewords and error-free, while the remaining columns are

genuinely error-free. This will result in an erroneous decoding event, denoted M .

Let C : Ω → {0, 1, ..., n} be a random variable with the same distribution as any

individual Cj, C =
∑n

i=1Xi for n Bernoulli random variables {Xi} parameterised

34

3.3. Iterative GRAND

by p. Let E be the event {C ≥ dmin, (X1, X2, . . . , Xn) ∈ C}, where C is the code-

book of minimum distance dmin and (X1, X2, . . . , Xn) is the error vector a�ecting

the transmitted message. E is the event that a column appears to be a codeword

despite containing errors.

Based on the earlier de�nition of a decoding mistake,

P (M) =
n∑
l=1

(
n

l

)
P (E)lP (C = 0)n−l

= (P (E) + P (C = 0))n − P (C = 0)n

= (P (E) + (1− p)n)n − (1− p)n2

.

To approximate P (E), assume that the codebook was created uniformly at random

while ensuring a minimum distance dmin, and that, given an error sequence con-

taining dmin or more errors, there is a 2k/2n probability that it is a codeword. This

approximation is supported by the fact that a length-n binary sequence chosen

uniformly at random has probability 2k/2n of being in any given [n, k] codebook.

Thus

P (E) = P (C ≥ dmin, (X1, X2, . . . , Xn) ∈ C)

= P (C ≥ dmin)P ((X1, X2, . . . , Xn) ∈ C|C ≥ dmin)

≈ P (C ≥ dmin)
2k

2n
.

Applying this approximation to the expression for P (M) and expanding the bino-

mial probability P (C ≥ dmin) gives

P (M) ≈

(
2k

2n

(
1−

dmin−1∑
i=0

(
n

i

)
pi(1− p)n−i

)
+ (1− p)n

)n

− (1− p)n2

, (3.1)

and this approximation is denoted by P̂ (M).

35

3.4. Empirical Results

Figure 3.4 and Figure 3.5 show the values of P (G) and P̂ (M) for a selection

of product codes with 31-bit and 127-bit component codes, respectively. The

bit-�ip probability p is varied. Product codes with the same component code

parameters will be examined for their error correction capability and e�ciency

in the sections to come. Together, these �gures show that the probability of

committing a decoding mistake is negligible with most component codes and under

most channel conditions. Using a component code with low minimum distance

increases the likelihood of a mistake, but even with dmin = 3 the probability reaches

a maximum of approximately 6 × 10−6 at the code lengths and noise conditions

considered. Meanwhile, columns-only decoding is almost certain to save energy

and latency in low-noise channels.

3.4 Empirical Results

3.4.1 Experimental setup

We compare the performance of IGRAND with that of two existing iterative de-

coding algorithms, using GRAND as their component code decoder: the Elias

algorithm, which doesn't apply a distance bound; and the Al-Dweik algorithm,

which applies a distance bound in the �rst iteration of decoding. GRAND en-

ables the Elias and Al-Dweik algorithms to decode any product code. As with

IGRAND, the GRAND-adapted Al-Dweik algorithm passes the distance bound as

a parameter to GRAND. The Elias and Al-Dweik algorithms are parameterised

by the maximum number of decoding iterations. As an upper bound on perfor-

mance, we also run the Elias algorithm for 5 iterations with the so-called genie

from [45] as its component decoder, which has side-channel access to the true chan-

nel noise and undoes noise e�ect zn from a t-error-correcting component codeword

if wH(zn) ≤ t. The genie entirely avoids miscorrections, and the only remaining

errors are caused by uncorrectable patterns or patterns that require more than 5

iterations to correct. While not practically realisable, it provides a performance

bound.

We run simulations under a BSC model with bit-�ip probability p. We relate p

to Eb/N0 using the usual BPSK formula p = Q(
√

2REb/N0) [42], where R is the

36

3.4. Empirical Results

10 5 10 4 10 3 10 2

p

10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2
pr

ob
ab

ilit
y

P(G), n=31
P(M), [31, 26, 3]
P(M), [31, 21, 5]
P(M), [31, 16, 7]

Figure 3.4: The probability of the event G, that columns-only decoding
is applied successfully to a product code with 31-bit component codes;
and the approximate probability of the decoding mistake event M . The
bit-�ip probability p is varied. The probability of G does not vary with
the code rate, only the code length. The approximate mistake probabil-
ity varies with the code rate and minimum distance, and so it is shown
for a selection of product codes with the following component code pa-
rameters [n, k, dmin]: [31, 26, 3], [31, 21, 5] and [31, 16, 7]. These particular
parameters were taken from BCH codes.

code rate. These channel models and parameters were discussed more fully in

Chapter 2.

3.4.2 Error correction performance

We �rst evaluate the decoding accuracy of IGRAND, the Elias algorithm us-

ing GRAND, and the Al-Dweik algorithm using GRAND when applied to two

types of product code: one with BCH(31,21,5) component codes, and one with

CRC(31,21,5) component codes. The corresponding product codes have parame-

ters [n, k] = [312, 212] = [961, 441] and their code rate is R ≈ 0.46. The Al-Dweik

algorithm was tested with this particular BCH product code in [8]. Though CRCs

37

3.4. Empirical Results

10 5 10 4 10 3 10 2

p

10 72

10 62

10 52

10 42

10 32

10 22

10 12

10 2

pr
ob

ab
ilit

y

P(G), n=127
P(M), [127, 120, 3]
P(M), [127, 113, 5]
P(M), [127, 106, 7]

Figure 3.5: Same as Figure 3.4 but for 127-bit product codes with
the following component code parameters: [127, 120, 3], [127, 113, 5] and
[127, 106, 7].

are traditionally used for error detection, GRAND can use them for error correction

[11]. The CRC polynomial we use is represented as 0x2b9 in Koopman notation

and was obtained from [55]. Figure 3.6 shows the BER of decoded bits under

varying channel conditions. The BCH and CRC product codes have near-identical

decoding accuracy. Independent of code type, IGRAND consistently provides a

coding gain of more than 0.5dB over the Al-Dweik-GRAND algorithm, and 1dB

over the Elias-GRAND algorithm. IGRAND's performance comes within 1dB of

the theoretical genie decoder, which has full knowledge of the channel noise. Fig-

ure 3.7 depicts the results from the same experiment but with a BCH(63, 51, 5)2

product code, with IGRAND once again consistently achieving a 0.5dB gain over

Al-Dweik-GRAND.

Figure 3.8 shows the decoding accuracy of IGRAND when applied to a broader

selection of product codes. It can once again be seen that CRC codes match the

performance of BCH codes, despite typically being used for error detection. The

random linear code (RLC) performs relatively poorly as a component code, despite

38

3.4. Empirical Results

3 4 5 6 7
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

IGRAND BCH(31,21,5)
IGRAND (with CRC)
Elias with GRAND (1)
Elias with GRAND (2)
Elias with GRAND (5)
Al-Dweik with GRAND
Genie

Figure 3.6: BER of a product code with BCH(31,21,5) component codes.
In one case, a CRC(31,21,5) component code is used instead, and gives
identical performance to the BCH code. The Elias and Al-Dweik algo-
rithms are adapted to use GRAND as their component decoder. The
maximum iterations parameter of the Elias algorithm is indicated in the
legend. At the code rate of these product codes, R = (21/31)2 ≈ 0.46, an
SNR per bit of Eb/N0 = 3 dB corresponds to a channel BER of approxi-
mately p = 8.7× 10−2.

product codes with RLC component codes being capacity-achieving in the in�nite

block length regime (see Appendix A). Of �nal note is the CA-Polar code, widely

used in modern communications standards, which underperforms relative to BCH

and CRC codes of similar length and rate. As reported in [11], the error correction

power of CA-Polar codes comes primarily from the CRC, and the polar bits can

almost be considered to weaken the code.

Further exploring the performance of the RLC class of codes, Figure 3.9 depicts

the decoding accuracy of the BCH(31, 21, 5) code considered earlier versus a RLC

with a minimum Hamming distance of 4, purposefully constructed to be slightly

weaker than the BCH in terms of minimum distance. As standalone codes, their

performance is similar, but when used as component codes, the performance gap is

magni�ed. This can be attributed to the properties of product codes: as described

39

3.4. Empirical Results

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

IGRAND
Elias with GRAND (1)
Elias with GRAND (2)
Elias with GRAND (5)
Al-Dweik with GRAND
Genie

Figure 3.7: A plot of decoding accuracy with the same parameters as
Figure 3.6 except with a BCH(63, 51, 5)2 product code, which has a code
rate of R = (51/63)2 ≈ 0.65.

in Section 2.5, the minimum Hamming distance of a product code is the square of

the minimum Hamming distance of its component code (assuming a single type

of component code). This exacerbates any weakness in the codebook structure of

an RLC, or indeed of any code, as the minimum Hamming distance becomes even

smaller relative to the code length.

3.4.3 Complexity

We compare decoding complexity in terms of energy usage and latency, based

on measurements from a hardware implementation of GRAND [67]. Table 3.1

gives the average energy and latency required by the GRAND chip to decode a

3-error-correcting code of length n = 128.

Based on these hardware measurements, we compare the complexity of IGRAND,

the Elias-GRAND algorithm (1, 2 & 5 iterations) and the Al-Dweik-GRAND algo-

rithm (5 iterations) when applied to a 16,129-bit product code of code rate R ≈ 0.7

with BCH(127,106,7) component codes. Figure 3.10 plots average energy usage

as a function of −log10(p), with p denoting the bit-�ip probability of the BSC.

This scale is used for the x-axis instead of Eb/N0 because it is typical for hardware

40

3.4. Empirical Results

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Eb/N0 (dB)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

RLC(128, 114)2

CAPOLAR(128, 112)2

BCH(31, 21, 5)2

CRC(65, 53, 5)2

CRC(127, 113, 5)2

eBCH(128, 113, 6)2

BCH(63, 51, 5)2

BCH(63, 45, 7)2

Figure 3.8: The decoding accuracy of IGRAND when applied to a large
selection of product codes: RLC(128, 114)2, the class of product codes
with random linear component codes, where a new component code was
randomly generated for each transmission so that no row or column of the
parity matrix was all-zero; CAPOLAR(128, 112)2 with the 11-bit CRC
from the uplink scenario of 5G [1]; BCH(31, 21, 5)2, BCH(63, 51, 5)2 and
BCH(63, 45, 7)2; CRC(65, 53, 5)2 and CRC(127, 113, 5)2 with CRC poly-
nomials 0xbae and 0x212d [55], respectively; and eBCH(128, 113, 6)2, an
extended BCH code with a single additional parity check.

comparisons [67]. The decoding has a base energy cost of 62pJ/bit, as seen in

low noise channels. This is the cost of performing a single codebook check for all

2× 127 = 254 components to con�rm that they're error-free. In noisier channels,

the distance bound becomes signi�cant and IGRAND uses signi�cantly less energy.

At p = 10−2.5, IGRAND uses roughly half as much energy as Al-Dweik-GRAND,

and almost an order of magnitude less energy than Elias-GRAND.

Figure 3.11 plots the average decoding latency, which bottoms out at roughly

18,000 cycles. In noisier channels, IGRAND achieves signi�cantly lower latency

than the other algorithms. Latency can be improved further by decoding in par-

allel, which increases hardware footprint but not energy expenditure. Figure 3.12

plots the average latency and throughput of IGRAND when up to 128 decoding

branches are used in parallel. With 128 decoding branches, latency can be as low

41

3.5. Discussion

3.0 3.5 4.0 4.5 5.0 5.5 6.0
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

RLC(31,21,4)
BCH(31,21,5)
RLC(31, 21, 4)2

BCH(31, 21, 5)2

Figure 3.9: The decoding accuracy of BCH(31, 21, 5) compared to a par-
ticular random linear code RLC(31, 21, 4), both as the component codes
of a product code and as standalone codes. The performance gap is exac-
erbated by using them in product codes.

as 142 cycles, which is the cost to con�rm that the columns (71 cycles) and the

rows (71 cycles) are error-free.

Finally, in less noisy channels, the latency (and energy) could be halved again

by performing columns-only decoding, which would reduce the latency with 128

decoding branches to 71 cycles. Figure 3.13 shows the estimated reduction in

IGRAND decoding latency with columns-only decoding, con�rming that the base-

line latency is halved.

3.5 Discussion

We have introduced IGRAND, an iterative decoding algorithm that can decode

any product code. IGRAND improves decoding accuracy over other BDD-based

algorithms by attempting to keep the distance bound as low as possible throughout

decoding. This approach to BDD could be adapted by any iterative decoding

algorithm, and is complementary to product code decoding techniques such as

anchor decoding and erasure-marking. IGRAND also achieves lower complexity

42

3.5. Discussion

2.5 3.0 3.5 4.0 4.5 5.0
log10(p)

0

50

100

150

200

250

300

350
Av

er
ag

e
En

er
gy

 P
er

 B
it

(p
J/b

it)
IGRAND
Al-Dweik with GRAND
Elias with GRAND (1)
Elias with GRAND (2)
Elias with GRAND (5)

Figure 3.10: Estimated energy cost per bit of decoding a BCH(127, 106, 7)2

code using GRAND hardware.

2.5 3.0 3.5 4.0 4.5 5.0
log10(p)

0

10000

20000

30000

40000

50000

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

IGRAND
Al-Dweik with GRAND
Elias with GRAND (1)
Elias with GRAND (2)
Elias with GRAND (5)

Figure 3.11: Estimated latency of decoding a BCH(127, 106, 7)2 code with
GRAND hardware. The actual latency would be lower due to the hard-
ware's pipelining design.

43

3.5. Discussion

1 2 4 8 16 32 64 128
Decoder hardware branches

0

2500

5000

7500

10000

12500

15000

17500
Av

er
ag

e
La

te
nc

y
(c

yc
le

s)
Latency
Throughput

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (G

b/
s)

Figure 3.12: Estimated latency and throughput when IGRAND decodes
a BCH(127,106,7)2 code, with an increasing number of parallel decoding
branches. Channel noise is �xed at p = 10−5, which is the best case in
terms of e�ciency. Hardware is assumed to run at 70MHz. Full paralleli-
sation is attained at 127 branches.

2.5 3.0 3.5 4.0 4.5 5.0
log10(p)

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

original
columns-only

Figure 3.13: IGRAND decoding latency of a BCH(127, 106, 7)2 product
code when a columns-only decoding strategy is applied.

44

3.5. Discussion

Energy (pJ/bit) Latency (cycles)
W Average Worst Average Worst
0 31 31 71 71
1 42.3 50.5 110 142
2 1160 2260 2154 4238
3 26,700 45,940 16,869 29,500

Table 3.1: Average and worst case energy usage and latency of n = 128
bit GRAND chip. Quantities are conditioned on W , the Hamming weight
of the underlying error pattern. Energy is per bit, and must be multiplied
by n to derive the total. In the worst case, GRAND processes all noise
patterns of weight W rather than half of them, in addition to all patterns
of lower weight. This is the cost when GRAND exhausts all error patterns
within the distance bound ϕ and then terminates.

than other GRAND-adapted iterative decoding algorithms, because GRAND is

more e�cient when the distance bound is kept low.

We have estimated that using a hardware implementation of GRAND to decode

a 16,129-bit product code of rate 0.68, with a single decoding branch, would have

a base cost of 1 µJ (62pJ/bit) and 18,000 cycles. Product code structure enables

a trade-o� between latency and hardware footprint, and we have shown that the

fully-parallelised decoding of such codes, with a separate decoder for each compo-

nent, would require as few as 142 cycles, at no extra energy cost. Columns-only

decoding would halve this again to 71 cycles in low-noise channels, and we have

shown that columns-only decoding adds negligible risk of a decoding mistake.

The components of a product code can be transmitted through heterogeneous

coded systems as long as there is a corresponding decoder for each system. GRAND

adds to this �exibility, allowing the outputs of all systems to be decoded using a

single decoder. This applies even when the codes are picked at random, and to

this end we have explored product codes with random linear component codes,

which o�er a broad selection of high-performing codes, though they underperform

in terms of accuracy at the code lengths and rates considered here.

45

3.5. Discussion

Code Length Rate Decoder BER 10−3 BER 10−5

BCH(31, 21, 5)2 961 0.46 IGRAND 4.16 dB 5.04 dB
" " " Al-Dweik 4.73 dB 5.59 dB
" " " Elias 5.12 dB 6.12 dB

BCH(63, 51, 5)2 3969 0.65 IGRAND 4.1 dB 4.61 dB
" " " Al-Dweik 4.56 dB 5.06 dB
" " " Elias 4.86 dB 5.47 dB

RLC(128, 114)2 16384 0.79 IGRAND 5.4 dB 6.36 dB
CAPOLAR(128, 112)2 " 0.77 " 4.45 dB 5.52 dB

CRC(65, 53, 5)2 4225 0.66 " 4.12 dB 4.61 dB
CRC(127, 113, 5)2 16129 0.79 " 4.52 dB 4.78 dB
eBCH(128, 113, 6)2 16384 0.78 " 4.17 dB 4.52 dB
BCH(63, 45, 7)2 3969 0.51 " 3.76 dB 4.05 dB

Table 3.2: Summary of results from this chapter. Shows the Eb/N0 at
which BERs of 10−3 and 10−5 were achieved for various combinations of
code and decoder. Linear interpolation between measured datapoints (or,
if necessary, extrapolation) was used to estimate the exact Eb/N0.

46

CHAPTER 4
Block turbo decoding with

ORBGRAND

Block turbo decoding is an iterative soft-input soft-output decoding algorithm for

product codes. Similar to hard-input decoding of product codes, it requires a decoder

for each component code, with the di�erence that they must be soft-input decoders

that output a list of codewords. In this chapter it is established that, through the

use of list decoding, soft-input variants of GRAND can replace the Chase algorithm

as the component decoder in the turbo decoding of product codes. In addition to

being able to decode arbitrary product codes, rather than just those with dedicated

hard-input component code decoders, turbo decoding results show that ORBGRAND

achieves a coding gain of up to 0.7dB over the Chase algorithm with an equal list

size. A summary of the decoding accuracy results is presented in Table 4.1. Parts

of this chapter have been published in [38].

4.1 Introduction

Product codes, as already described in Section 2.5, are a class of long, high-

redundancy codes that are constructed by concatenating shorter component codes.

The IGRAND algorithm was established in the previous chapter, adapting GRAND

for accurate hard-input iterative decoding of arbitrary product codes.

47

4.2. Background

Here we establish that GRAND can decode product codes with the aid of soft

information, which enables much greater accuracy than with hard information

alone. This is achieved through block turbo decoding, a technique introduced by

Pyndiah in the 1990s [65]. Block turbo decoding achieves near-optimal soft-input

decoding of product codes by using a soft-input component decoder, customarily

the Chase algorithm [18], to generate a selection of candidate decodings for a row

or column of the product code. The soft information for each bit in that row or

column is then updated using a heuristic devised by Pyndiah.

To achieve turbo decoding with GRAND, we reconsider soft-input GRAND as a

list decoding algorithm and use it to replace the Chase algorithm. The decoding

list produced by GRAND can be used to update the bit reliabilities as before, with

the bene�t that GRAND's code-agnosticism allows it to turbo decode any product

code. We present results for block turbo decoding with ORBGRAND, a soft-input

variant of GRAND that is particularly suited to hardware implementation [5, 69].

We also provide analytical support for list decoding with GRAND algorithms, and

consider the standalone list decoding performance of ORBGRAND.

4.2 Background

4.2.1 List decoding

List decoding [33] is a decoding procedure in which the decoder outputs a list of

L codewords. The study of list decoding has been reinvigorated in recent years

by the success of polar codes [12], which have been incorporated into the control

plane protocol of the 5G New Radio standard [1] and which are typically decoded

using successive cancellation list decoding [82].

As explored in Chapter 2, a GRAND algorithm achieves maximum-likelihood de-

coding when its guesses are in order of decreasing noise e�ect probability. ORB-

GRAND uses an approximate order that is almost optimal in low-SNR conditions,

but sub-optimal at higher SNR. While the basic model used by ORBGRAND is

accompanied by an improved statistical model that results in a better guessing

order for low-noise conditions [25], other approaches have also been investigated.

In particular, in a form of list decoding, Abbas et al. [3] proposed an extension to

48

4.2. Background

basic ORBGRAND in which, after the �rst codeword has been identi�ed, further

codewords are accumulated that have a logistic weight within some distance of the

�rst one. The most likely codeword in the resulting list is then selected as the

hard output. This was shown to improve accuracy in low-noise channels.

4.2.2 Turbo decoding

Berrou et al. [15] introduced the turbo decoding technique for convolutional codes

in 1993. Turbo decoding gradually converges to the correct decoding output by

re�ning soft information over multiple iterations. Pyndiah [65] extended this idea

from convolutional codes to product codes. As envisioned by Pyndiah, soft output

from row decoding should inform the soft input of the column decoding, and vice

versa.

To do this required a method of extracting soft output from the decoding of an

individual component. While the Viterbi algorithm can be adapted to provide

soft output from the decoding of convolutional codes [66], no such general method

existed for block codes, and this was where Pyndiah made an insightful contribu-

tion. Pyndiah's idea was to use a list decoder to produce a list of codewords. The

soft output could then be based on the relative distances of these codewords to

the received signal. If, when modulated, the most likely codeword in the list is

close to the received signal and the second-most-likely codeword is far, then the

soft output should indicate that the decoding is very reliable. If, when modulated,

the most likely and second-most-likely codewords are about equally far from the

received signal, then the decoding is not reliable.

To produce a decoding list, Pyndiah proposed using the Chase [18] algorithm. The

Chase algorithm accepts as input a binary sequence xn ∈ {0, 1}n and associated

soft information indicating the reliability of each bit. It produces a list of code-

words {un,1, un,2, . . . , un,2ρ} by trying all combinations of bit �ips of the ρ least

reliable bits. A hard-input decoder D : {0, 1}n → C then maps each of these se-

quences to a codeword, resulting in a decoding list {D(un,1),D(un,2), . . . ,D(un,2
ρ
)},

which may include duplicates.

In Pyndiah's block turbo decoding algorithm, the decoding of a single component

49

4.2. Background

(row or column) of the product code, with accompanying per-bit soft channel

output R ∈ Rn, goes as follows:

1. Apply Chase decoding to produce a list of codewords L ⊆ C, where C is the

codebook of the component code and 1 ≤ |L | ≤ 2ρ for some small positive

integer ρ.

2. Select D ∈ argminC∈L |R − C|2 as the new value of the component, where

|R−C|2 is the Euclidean distance between R and the modulated form of C.

3. Update the soft information of each bit in the component. If there is a codeword

that disagrees with D on the value of the i-th bit, C∗ ∈ argmin{C∈L :Ci 6=Di}|R−
C|2, then the soft output for that bit is given by

ri =
(2Di − 1)(|R−C∗|2 − |R−D|2)

4
.

4. If argmin{C∈L :Ci 6=Di}|R −C|2 is empty, then instead use ri = β for some con-

stant β ≥ 0.

Only the next-nearest codeword that disagrees with the decision D is used to

determine the reliability, because comparing D to all codewords in the codebook

is impractical. Step (4) is a further approximation: if Chase decoding does not

identify any codeword that disagrees with D, then the nearest one is assumed to

be far away and the decision is considered reliable. The parameter β, introduced in

step (4), should increase with the number of iterations, since, intuitively speaking,

the decoding should converge and become more reliable as more iterations are

completed.

The �nal detail of the block turbo decoding algorithm is how to calculate the soft

input for each iteration. Let R denote the n × n matrix of soft information for

an n × n product code, with each value in the matrix corresponding to a single

demodulated bit. The extrinsic information extracted from the decoding process

up to the m-th iteration is denoted by the matrix W (m). The soft input for the

m-th iteration is

50

4.3. List decoding with GRAND

R(m) = R + α(m)W (m),

where α(m) is a so-called damping factor that weighs the extrinsic information

versus the original channel output, and that should increase with the number of

iterations to re�ect increasing con�dence in the decoding outcome. Given that the

m-th iteration produces soft output S(m) by following the steps detailed above, the

extrinsic information for the m+ 1-th iteration becomes

W (m+1) = S(m) −R(m).

Since the introduction of Pyndiah's block turbo decoding algorithm, various at-

tempts have been made to improve its accuracy and e�ciency. For instance, ac-

curacy can be improved slightly by dynamically computing the value of the β

parameter based on the soft input to each iteration [53]. Mahran et al. [62] pro-

pose adapting the Chase algorithm so that candidate codewords outside a certain

Hamming radius from the hard channel output are discarded, improving both

accuracy and complexity. They also propose [61] to reduce the number of hard

decoding operations by not, in the test sequence generation phase of the Chase al-

gorithm, �ipping any bits that meet a reliability criteria. Alternative list decoding

algorithms besides Chase have also been investigated [23, 81], including Kaneko's

algorithm [52], which takes a di�erent approach to generating test sequences for

hard-input decoding. Most recently, turbo decoding has been applied to stair-

case codes [84], a generalisation of product codes that achieve superior decoding

accuracy.

4.3 List decoding with GRAND

Here we provide analytical support for list decoding with any GRAND algorithm,

based on theorems from [27]. In GRAND's original formulation, it sequentially

guesses possible decodings from most to least likely and stops after identifying

the �rst, and thus most likely, codeword that it encounters. Instead of stopping,

GRAND can continue this guessing procedure and accumulate codewords until it

has a list of the desired size L. This new procedure is described in Algorithm 4.

51

4.3. List decoding with GRAND

Algorithm 4: GRAND list decoding of hard channel output y, possi-
bly with soft output r informing the likelihood of noise e�ects. Given a
codebook C, code length n and a target list size L.
1 L ← {};
2 z∗ ← 0n; // all-zero is most likely

3 while |L | < L do

4 c∗ ← y 	 z∗; // undo noise effect

5 if c∗ ∈ C then
6 add c∗ to L ;

7 end

8 z∗ ← next most likely noise e�ect;

9 end

10 return L ;

From an analytical perspective, in Section 2.4 it was explored how GRAND's

guessing procedure is a race between two random variables: the number of guesses

G(Nn) to �nd the true channel noise e�ect Nn : Ω → {0, 1}n, and the number

of guesses Un : Ω → {1, ..., 2n} before GRAND identi�es an incorrect codeword.

GRAND identi�es the correct decoding when G(Nn) < Un.

We now examine the case of list decoding with GRAND, and its approximate

complexity. Consider a random binary code of length n with 2k codewords. For

list size L = 2l, denote the position of the i-th incorrect codeword in GRAND's

guessing order by the random variable Ui : Ω→ {1, ..., 2n}, where 1 ≤ i ≤ 2k − 1.

As the codebook is constructed uniformly at random, the {Ui} appear uniformly

in the guesswork order {1, ..., 2n}. Let the codewords be ordered such that U1 <

U2 < ... < U2k−1, let Y n : Ω→ {0, 1}n be the hard channel output and let Ci ∈ C
be the i-th codeword. Then Ui = G(Y n ⊕Ci), since Ci = Y n 	 (Y n ⊕Ci). The

total number of guesses to accumulate L codewords is ΥL = U1 +
∑L

i=2(Ui−Ui−1).

The expected total number of guesses E[ΥL] is derived as follows. Since

52

4.3. List decoding with GRAND

E[U1] =
∑
u

E[U1|U2 = u]P (U2 = u)

= (1/2)
∑
u

uP (U2 = u)

=
E[U2]

2
,

the expected guesses from the �rst codeword to the second is

E[U2 − U1] = E[U2]− E[U1]

=
E[U2]

2

= E[U1].

A similar argument proves that E[Ui−Ui−1] = E[U1] for all i, and E[2n−U2k−1] =

E[U1], which is the expected number of guesses from the �nal codeword to the last

binary sequence that GRAND can guess; thus, E[ΥL] = LE[U1]. The expected

number of guesses to cover all 2n possible noise e�ects is

E

 2k∑
i=1

Ui − Ui−1

 = 2kE[U1] = 2n,

where U0 = 0 and U2k = 2n. Hence, E[U1] = 2n−k and

E[ΥL] = LE[U1] = 2n−k+l.

The above argument informs the choice of list size and code rate in coding scheme

design. As n becomes large, G(Nn) ≤ 2nH with high likelihood, where H is the

Shannon entropy of the channel noise [20]. The correct codeword ends up on

the decoding list with high likelihood when G(Nn) < E[ΥL], which is true when

2nH < E[ΥL] = 2n−k+l = 2n(1−R)+l. Letting l = nθ for θ > 0, the requirement

53

4.4. Turbo decoding with GRAND

becomes 2nH < 2n(1−R+θ), or H < 1−R+ θ. Stated in a form closer to the noisy-

channel coding theorem [78], R < 1−H + θ. This tells us that by increasing the

list size we can perform e�ective channel coding at higher code rates, as asserted

in [33].

Regarding complexity, 2n−k+l is an upper bound on the expected number of GRAND

queries for random codebooks. From this arises a design trade-o� between list size

and the number of parity bits. To keep the complexity bound constant, a parity

bit must be removed if the list size is doubled. The bound corresponds to the ex-

pected number of queries to identify L incorrect codewords, although in practice

the correct codeword will typically be added to the list after a small number of

queries and fewer overall queries will be required as a result.

4.4 Turbo decoding with GRAND

4.4.1 Description and complexity

A soft-input list decoding variant of GRAND can replace the Chase algorithm

in step (1) of the block turbo decoding algorithm, with the remainder of the

algorithm untouched. Indeed, a variant of ORBGRAND has independently been

proposed [22] for use in Pyndiah-style soft-input soft-output iterative decoding of

OFEC codes, another form of concatenated code. Iterative soft-input soft-output

GRAND decoding has also recently been considered in [74].

We have described how 2n−k+l is an upper bound on the expected number of

GRAND queries for list decoding of a random n-bit code with list size L = 2l.

This leads to a bound on the average decoding complexity of block turbo decoding

with GRAND. Given a product code whose row and column codes are random

codes of length n with k information bits, and given a maximum of N decoding

iterations where 2n component codes are decoded in each iteration, an upper bound

on the average number of GRAND codebook queries during block turbo decoding

is nN2n−k+l+1.

An advantage of GRAND as a component decoder is that it can decode any com-

ponent code, and thus can turbo decode any product code. The Chase algorithm

54

4.4. Turbo decoding with GRAND

0 5 10 15 20 25 30
rank order

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e

re
lia

bi
lit

y

L=
1

L=
2

L=
4

L=
8

L=
16

7 turbo updates
6 turbo updates
5 turbo updates
4 turbo updates
3 turbo updates
2 turbo updates
1 turbo updates
0 turbo updates
basic ORBGRAND

Figure 4.1: The average distribution of rank-ordered soft input throughout
turbo decoding of an eBCH(32, 26, 4)2 product code with a Chase compo-
nent decoder, where Eb/N0 = 4dB and ρ = 4. The distribution converges
around the 5th update. Also shown is a linear model, as might be used by
basic ORBGRAND, which becomes less capable of �tting the reliablility
distribution as turbo decoding progresses. The vertical red lines indicate
the bit of highest rank that would, on average, be �ipped during the guess-
ing process for a given list size L. At L = 4, only the top 20 least reliable
bits are ever �ipped on average.

requires that a specialised hard-input decoder exists for the component codes,

which is not the case for RLCs and CRC codes. GRAND also distinguishes itself

by populating its list with codewords in maximum-likelihood order, assuming its

query order is correct, while Chase makes no such guarantees and may output

duplicate codewords.

4.4.2 1-line ORBGRAND for turbo decoding

ORBGRAND is a practical component decoder for turbo decoding, given its ac-

curacy and e�ciency. As turbo decoding converges, however, the distribution of

reliability values shifts upwards, as in Figure 4.1, which tends to make basic OR-

BGRAND's linear approximation a poorer �t. We thus propose to turbo decode

with the full ORBGRAND algorithm, parameterised to use a single line. This

enables ORBGRAND's model to have a non-zero intercept and so better capture

the reliability distribution during later iterations of turbo decoding.

55

4.4. Turbo decoding with GRAND

Figure 4.1 also indicates that, on average, the most reliable bits will never even

be tried as errors in GRAND's guessing process, and so it is not critical to model

their reliability values accurately. This is possible to determine because, as already

established, GRAND makes no more than 2n−k+l queries on average for list size

2l. The number of noise guesses at a particular logistic weight wL corresponds

to the number of partitions of the integer wL, which can be counted using the

landslide algorithm. If this count is denoted g(wL), then, on average, the highest

rank of any bit that will be considered a potential error by GRAND will be roughly

max{wL ∈ Z+ :
∑wL

m=1 g(m) ≤ 2n−k+l}, where Z+ denotes the positive integers.

In Algorithm 5, we present a simple method to construct noise sequences for 1-line

ORBGRAND that has similar implementation complexity as basic ORBGRAND.

Noise sequences are generated in order of their total weight, wT . For each wT , we

iterate over all pairs of non-negative integers (wH , wL) such that wT = cwH +wL,

where c is the integer parameter that captures the slope and y-axis intercept of

the line, as described in Section 2.4. The landslide algorithm [25] then generates

all noise sequences for each pair. Parity constraints [72] may be used to halve the

number of codebook queries performed by this algorithm. For even-parity codes,

such as eBCH codes, the parity of the noise e�ect zn can be inferred from yn, since,

given codeword cn,
∑n

i=0 y
n
i =

∑n
i=0(c

n
i + zni) =

∑n
i=0 c

n
i +

∑n
i=0 z

n
i ≡

∑n
i=0 z

n
i

(mod 2), which is the parity of the noise e�ect. Incorrect-parity Hamming weights

can then be skipped, avoiding entire branches of noise e�ect guesses.

We now introduce a simple and e�ective method to pick the parameter c for a

particular instantiation {ri} of sorted reliability values. Fitting the line by regres-

sion is inappropriate, since it would give equal weight to each point (i, ri) when in

fact the least reliable bits are the most important to accurately approximate; as

explained previously, at practical list sizes, the most reliable bits are rarely even

considered as potential errors. For this reason, we propose to �t a line through

the points (1, r1) and (bn/2c, rbn/2c), where n is the code length. Then the slope

of the line is γ = (rbn/2c − r1)/(bn/2c − 1) and c = max(0, [(r1 − γ)/γ]), where

[.] rounds to the nearest integer. This gives the best estimate of (1, r1), which is

the least reliable and thus most signi�cant point, and accurately approximates the

remaining points if they follow a line-like distribution as in Figure 4.1.

56

4.5. Performance evaluation

Algorithm 5: Noise e�ect generation algorithm for 1-line ORBGRAND,
given integer parameter c ≥ 0 and code length n.
1 yield 0n; // all-zero is most likely

2 wT ← c+ 1; // minimum possible weight

3 while wT ≤ cn+ n(n+1)
2 do

4 wH ← max(1, d1+2(n+c)−
√

(1+2(n+c))2−8wT
2 e);

5 while wH ≤ n do

6 wL ← wT − cwH ;

7 if wL < wH(wH+1)
2 then

8 break ; // invalid pair

9 end

10 yield noise e�ects generated by Landslide(wH , wL, n);
11 wH ← wH + 1;

12 end

13 wT ← wT + 1;

14 end

4.5 Performance evaluation

We begin with a study of ORBGRAND's list decoding performance, since this is

critical to its performance as a turbo component decoder. Then we evaluate the

accuracy and complexity of ORBGRAND as a turbo component decoder. We run

simulations using an AWGN channel model with BPSK modulation.

4.5.1 List decoding

Figure 4.2 shows the list decoding BLER of basic ORBGRAND versus that of

Chase decoding for an extended BCH code [57], eBCH(32, 26, 4), which is one of

the component codes from [65]. A list decoding block error occurs when, given

transmitted codeword C and output decoding list L , C /∈ L . The list size L

ranges from 4 to 16 and L = 2l corresponds to a Chase parameter of ρ = l. At

a BLER of 10−5 and L = 16, basic ORBGRAND provides a coding gain of 1 dB

over Chase. That ORBGRAND outperforms Chase as a list decoder is a promising

indicator of its potential as a turbo component decoder.

Figure 4.3 shows the basic ORBGRAND list decoding BLER of a BCH code,

BCH(31, 21, 5), versus a random linear code, RLC(31, 21, 4). The RLC was pur-

57

4.5. Performance evaluation

3 4 5 6 7
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

BL
ER

ORBGRAND (L=4)
ORBGRAND (L=8)
ORBGRAND (L=16)
Chase (L=4)
Chase (L=8)
Chase (L=16)

Figure 4.2: List decoding BLER of an eBCH(32, 26, 4) code with ORB-
GRAND and Chase as list decoders, and list size L. ORBGRAND con-
sistently provides a coding gain over Chase, even with smaller list size.

posely constructed to have a lower minimum distance. Its decoding is only enabled

by ORBGRAND's code-agnosticism. As the list size increases, the performance of

the two codes converges, which is consistent with Elias's claim that a larger list

size should compensate for structural weakness in a code [33]. While this suggests

that powerful product codes can be constructed from imperfect component codes,

later results will demonstrate that this is not true.

Figure 4.4 shows the list decoding accuracy of a further selection of codes with ba-

sic ORBGRAND: eBCH(32, 26, 4), RLC(32, 26, 3) and CRC(32, 26, 3). The CRC

polynomial is 0x33 in Koopman notation [55]. The list size ranges from 4 to 16.

Performance is essentially equivalent at these list sizes, despite the RLC and CRC

having lower minimum distance.

4.5.2 Turbo decoding accuracy

Figure 4.5 and Figure 4.6 show the BER of eBCH(32, 26, 4)2 and eBCH(64, 57, 4)2

product codes with block turbo decoding. 1-line ORBGRAND and Chase are used

as component decoders. These codes were tested in [65], and, as in that paper, we

run turbo decoding for 4 iterations and use the same set of values for Pyndiah's α

and β parameters. The list sizes are 4, 8 and 16. Decoding is halted if the rows

58

4.5. Performance evaluation

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Eb/N0 (dB)

10 5

10 4

10 3

10 2
BL

ER

BCH (L=1)
BCH (L=2)
BCH (L=4)
BCH (L=8)
RLC (L=1)
RLC (L=2)
RLC (L=4)
RLC (L=8)

Figure 4.3: List decoding BLER of a BCH(31, 21, 5) code and an
RLC(31, 21, 4) code, with basic ORBGRAND decoding and list size L.
The RLC was purposely constructed to have a lower minimum distance,
demonstrating that its performance converges to that of the BCH regard-
less of minimum distance.

1 2 3 4 5 6
Eb/N0 (dB)

10 5

10 4

10 3

10 2

10 1

BL
ER

CRC (L=4)
CRC (L=8)
CRC (L=16)
RLC (L=4)
RLC (L=8)
RLC (L=16)
eBCH (L=4)
eBCH (L=8)
eBCH (L=16)

Figure 4.4: List decoding BLER of eBCH(32, 26, 4), RLC(32, 26, 3) and
CRC(32, 26, 3) codes, with basic ORBGRAND decoding.

59

4.5. Performance evaluation

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10 5

10 4

10 3

10 2

10 1

BE
R

1-line ORBGRAND (L=4)
1-line ORBGRAND (L=8)
1-line ORBGRAND (L=16)
Chase (L=4)
Chase (L=8)
Chase (L=16)
Error Floor

Figure 4.5: BER of an eBCH(32, 26, 4)2 product code (n = 1024, k =
676, d = 16) with block turbo decoding. 1-line ORBGRAND and Chase
are used as component decoders with list size L.

or columns are error-free at the beginning of any iteration. Also shown are the

analytically-derived error �oors of these product codes, taken from [19].

Figure 4.5 concerns an eBCH(32, 26, 4)2 code (n = 1024, k = 676, R = 0.66). With

L = 16, 1-line ORBGRAND provides a coding gain over Chase of approximately

0.15dB at a BER of 10−5. Even with L = 4, 1-line ORBGRAND achieves nearly

the same performance, whereas the performance of Chase degrades rapidly as the

list size decreases. The performance of both decoding algorithms converges to the

error �oor as the channel becomes less noisy; a gap of 0.5dB remains between the

error �oor and 1-line ORBGRAND at a BER of 10−5.

Figure 4.6 shows results for an eBCH(64, 57, 4)2 code (n = 4096, k = 3249 R =

0.79). With L = 16, 1-line ORBGRAND provides a coding gain of approximately

0.2dB at a BER of 10−5, and Chase performance again degrades more severely

with decreasing list size. There remains about 1.5dB between 1-line ORBGRAND

and the error �oor at a BER of 10−6.

Figure 4.7 shows the turbo decoding accuracy of product codes whose component

codes are the same as in Figure 4.4, with 1-line ORBGRAND decoding. Despite

having equivalent list decoding performance, the RLC and CRC fare worse than

60

4.5. Performance evaluation

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

1-line ORBGRAND (L=4)
1-line ORBGRAND (L=8)
1-line ORBGRAND (L=16)
Chase (L=4)
Chase (L=8)
Chase (L=16)
Error Floor

Figure 4.6: BER of an eBCH(64, 57, 4)2 product code (n = 4096, k =
3249, d = 16) with block turbo decoding. Decoding parameters are the
same as those described in Figure 4.5. With L = 4 the gain is 0.7 dB for
BLER 10−4.

1.0 1.5 2.0 2.5 3.0 3.5
Eb/N0 (dB)

10 5

10 4

10 3

10 2

10 1

BE
R

CRC (L=4)
CRC (L=8)
CRC (L=16)
RLC (L=4)
RLC (L=8)
RLC (L=16)
eBCH (L=4)
eBCH (L=8)
eBCH (L=16)

Figure 4.7: BER of CRC(32, 26, 3)2, RLC(32, 26, 3)2, and eBCH(32, 26, 4)2

product codes with 1-line ORBGRAND turbo decoding, list size L.

the eBCH code as component codes, and so product codes appear to compound

structural weakness in their component codes.

Figure 4.8 compares the decoding accuracy of IGRAND versus that of turbo de-

coding with 1-line ORBGRAND, using the eBCH(32, 26, 4)2 product code already

considered here and the BCH(31, 21, 5)2 product code from the previous chapter.

61

4.5. Performance evaluation

1 2 3 4 5 6
Eb/N0 (dB)

10 6

10 5

10 4

10 3

10 2

10 1

BE
R

IGRAND, eBCH(32, 26, 4)2

IGRAND, BCH(31, 21, 5)2

Turbo (L=4), eBCH(32, 26, 4)2

Turbo (L=16), eBCH(32, 26, 4)2

Turbo (L=2), BCH(31, 21, 5)2

Turbo (L=8), BCH(31, 21, 5)2

Figure 4.8: Accuracy of IGRAND compared with the accuracy of turbo
decoding with 1-line ORBGRAND. The BERs of eBCH(32, 26, 4)2 and
BCH(31, 21, 5)2 product codes are considered.

Both codes see a coding gain of 2-2.5dB with turbo decoding, which is typical of

the gains o�ered by soft information [57].

4.5.3 Turbo decoding complexity

Figure 4.9 shows the average number of codebook queries, a standard measure of

GRAND complexity [3, 25], performed by 1-line ORBGRAND with parity con-

straints [72] during turbo decoding of eBCH(32, 26, 4)2 and eBCH(64, 57, 4)2 prod-

uct codes. The use of parity constraints to reduce complexity was possible because

extended BCH codes enforce even parity on their codewords. Figure 4.10 shows the

same data but as a ratio over the average codebook queries when L = 4. These re-

sults support the analysis of Section 4.3, which posited that the complexity should

at most double when the list size doubles.

Finally, Figure 4.11 compares the complexity of IGRAND versus that of turbo

decoding with 1-line ORBGRAND, using the same product codes from Figure 4.8.

When decoding a row or column of a product code, IGRAND makes fewer code-

book queries, since it halts the guessing process upon identifying the �rst codeword.

In turbo decoding, the guessing must continue until a full list of codewords has

been accumulated. Interestingly, however, turbo decoding of the eBCH(32, 26, 4)2

62

4.5. Performance evaluation

1.0 1.5 2.0 2.5 3.0 3.5
Eb/N0 (dB)

25

26

27

Av
er

ag
e

Qu
er

ie
s P

er
 B

it

eBCH(32, 26)2 (L=4)
eBCH(32, 26)2 (L=8)
eBCH(32, 26)2 (L=16)
eBCH(64, 57)2 (L=4)
eBCH(64, 57)2 (L=8)
eBCH(64, 57)2 (L=16)

Figure 4.9: Average number of codebook queries per bit performed
by 1-line ORBGRAND during turbo decoding of eBCH(32, 26, 4)2 and
eBCH(64, 57, 4)2 product codes, conditioned on list size L.

1.0 1.5 2.0 2.5 3.0 3.5
Eb/N0 (dB)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Qu
er

ie
s P

er
 B

it
(ra

tio
)

eBCH(32, 26)2 (L=4)
eBCH(32, 26)2 (L=8)
eBCH(32, 26)2 (L=16)
eBCH(64, 57)2 (L=4)
eBCH(64, 57)2 (L=8)
eBCH(64, 57)2 (L=16)

Figure 4.10: Average number of codebook queries per bit, as in Figure 4.9,
except as a ratio over the average number of codebook queries per bit when
L = 4. As predicted by the analysis in Section 4.3, doubling the list size
leads to, at most, double the average number of codebook queries.

63

4.6. Discussion

1 2 3 4 5 6
Eb/N0 (dB)

100

101

102

103

Av
er

ag
e

Qu
er

ie
s P

er
 B

it

IGRAND, eBCH(32, 26, 4)2

IGRAND, BCH(31, 21, 5)2

Turbo (L=4), eBCH(32, 26, 4)2

Turbo (L=16), eBCH(32, 26, 4)2

Turbo (L=2), BCH(31, 21, 4)2

Turbo (L=8), BCH(31, 21, 4)2

Figure 4.11: Average number of codebook queries per bit when IGRAND
and turbo decoding with 1-line ORBGRAND are used to decode
eBCH(32, 26)2 and BCH(31, 21, 5)2 product codes.

product code with list size L = 4 is shown to have roughly equivalent complex-

ity to IGRAND decoding of the BCH(31, 21, 5)2 product code, despite the former

seeing a coding gain of about 1.5dB over the latter. This can be understood

through the GRAND complexity bounds discussed throughout this chapter and

Chapter 2. GRAND list decoding of the eBCH(32, 26, 4) component code with

list size L = 2l = 4 has an upper bound on the average codebook queries of

2n−k+l = 232−26+2 = 28, while the upper bound for regular GRAND decoding of

the BCH(31, 21, 5) code is 2n−k = 210. While these are upper bounds, they provide

some intuition for the similarity of the complexity.

4.6 Discussion

GRAND algorithms can list decode accurately, and soft-input list decoding GRAND

algorithms are a viable replacement for Chase as the component decoder in block

turbo decoding. We have presented a code for which basic ORBGRAND list

decoding gains as much as 1dB over Chase at a list BLER of 10−5. For turbo

decoding, the distribution of rank-ordered soft information shifts so that the full

version of ORBGRAND is required for e�ective component decoding. Turbo de-

coding simulations show that 1-line ORBGRAND gains up to 0.7dB over Chase

at a BER of 10−5 for two di�erent product codes, an improvement in accuracy

64

4.6. Discussion

that may be explained by the maximum-likelihood guarantees on GRAND's list

decoding output. Turbo decoding with 1-line ORBGRAND is also shown to gain

2-2.5dB over the IGRAND algorithm, as is typical with the incorporation of soft

information [57]. A gap still exists between turbo decoding performance and the

error �oors of the product codes considered here, suggesting that there is potential

for further optimisation. One such optimisation would be to dynamically compute

the β parameter during turbo decoding. Other improvements to the block turbo

algorithm are discussed in [7, 17]. Performance may also be improved by param-

eterising the ORBGRAND component decoder to use more lines in its multiline

model of the reliability distribution.

We have characterised the list and turbo decoding complexity of GRAND, and with

the recent low-energy synthesised ORBGRAND chip [69], it will be possible to esti-

mate the energy consumption of block turbo decoding with ORBGRAND. As with

any component decoder, the choice of list size is a trade-o� between accuracy and

complexity. Another way to control complexity is to terminate GRAND's guessing

procedure early and increase the reliability of all bits if it identi�es a codeword

within a small number of guesses, this idea being based on [53] and [22]. GRAND's

universality allows list and turbo decoding to be applied to codes without bespoke

decoders, such as CRCs, as well as product codes that are concatenations of those

codes. This leads to the possibility of new channel coding applications.

65

4.6. Discussion

Code Length Rate Decoder BER 10−3 BER 10−5

eBCH(32, 26, 4)2 1024 0.66 Turbo-ORBGRAND 2.41 dB 2.97 dB
" " " Turbo-Chase 2.56 dB 3.13 dB

eBCH(64, 57, 4)2 4096 0.79 Turbo-ORBGRAND 2.99 dB 3.31 dB
" " " Turbo-Chase 3.16 dB 3.51 dB

CRC(32, 26, 3)2 1024 0.66 Turbo-ORBGRAND 2.55 dB 3.75 dB
RLC(32, 26, 3)2 " " Turbo-ORBGRAND 2.56 dB 3.71 dB
eBCH(32, 26, 4)2 " " IGRAND 4.76 dB 6.25 dB
BCH(31, 21, 5)2 961 0.46 Turbo-ORBGRAND 1.71 dB 2.22 dB

" " " IGRAND 4.16 dB 5.04 dB

Table 4.1: Summary of results from this chapter, comparing the Eb/N0

at which BERs of 10−3 and 10−5 are achieved, as described in Table 3.2.
Principally, this is a comparison between block turbo decoding with the
Chase algorithm as a component decoder and with 1-line ORBGRAND as
a component decoder, with the largest list size assumed (either L = 8 or
L = 16). Some IGRAND results are included as well for convenience.

66

CHAPTER 5
Alternative soft output for GRAND

In this chapter we develop a method through which any soft-input GRAND algo-

rithm can produce probabilistic soft output. To the best of our knowledge, no prior

method exists to provide soft output for block codes without the added complexity of

list decoding. Forney [34] and Pyndiah [65] introduced methods to compute block-

level and bit-level soft output, but these methods rely on list decoding with a list

size of at least 2. Our method, in contrast, computes soft output for decoding lists

of any size, including a single codeword. Being probabilistic, the soft output we

provide is easily interpretable and integrated with applications, unlike the list de-

coding approach of Pyndiah. It indicates the likelihood of a codeword, decoding list,

or individual decoded symbol being correct. While Forney's method is probabilistic,

it is conditioned on the true codeword being in the decoding list; our approach is

not conditioned but includes an output for the likelihood that the codeword is not

in the list, making it a true probability mass function and making the soft out-

put more accurate. Implementing our approach adds negligible computation and

memory overhead to GRAND. Among the many potential applications of the soft

output, it permits tuning the balance between undetected errors and block errors for

arbitrary moderate-redundancy codes, including CRCs. Simulation results explore

the application of the method to error detection and establish that it is accurate for

structured codes as well as random codes. Parts of this chapter have been published

in [40].

67

5.1. Introduction

5.1 Introduction

Soft output acts as a measure of con�dence in the correctness of a decoded block.

In the previous chapter we explored how GRAND algorithms can produce soft

output by list decoding and then applying Pyndiah's approximate formula to the

decoding list. List decoding, however, is computationally expensive, and so in this

chapter we investigate an alternative and more analytical approach to calculating

GRAND soft output.

Soft output is a generally desirable feature of error correction decoders. It can be

used to make control decisions such as retransmission requests or to tag blocks as

erasures for an erasure-correcting code to then rectify [57]. A common method

of establishing a binary measure of decoding con�dence is to append a CRC to

a transmitted message [48, 76] prior to error correction encoding that can then

be used post-decoding to assess consistency. When the block length is large, the

addition of a CRC has a negligible e�ect on the code rate. One of the goals of

modern communications standards such as 3GPP 5G [1], however, is ultra-reliable

low-latency communications (URLLC), which requires the use of short packets

[31]. The addition of a CRC to short packets has a signi�cant e�ect on the code

rate, and so alternative solutions to evaluate decoding con�dence are a topic of

active interest, e.g. [76].

In seminal work on error exponents, Forney [34] proposed an approximate com-

putation of the correctness probability of a decoded block. Forney's approach,

like Pyndiah's approach to per-bit soft output, requires the use of a list decoder,

which signi�cantly restricts its applicability. In addition to this constraint, we

shall show that Forney's approximation provides an inaccurate estimate in chan-

nels with challenging noise conditions, which, due to the likely need for retrans-

mission requests, are a primary area of interest. Despite these limitations, the

potential utility of Forney's approximation has warranted further investigation,

e.g. [49, 76], particularly with the recent introduction of CA-Polar codes and the

associated CRC-assisted successive cancellation list (CA-SCL) list decoding algo-

rithm [13, 56, 63, 82] to communications standards [1]. For convolutional or trellis

codes, the Viterbi algorithm [35] can be modi�ed to produce soft output at the

68

5.2. Background

sequence level [66], which has been used in coding schemes with multiple layers

of decoding [44] and to inform repeat transmission requests [66, 87], but this does

not extend to block codes.

The soft output measure we develop for GRAND is an extremely accurate estimate

of the a posteriori probability that a decoding is correct or, in the case of list de-

coding, the probability that the correct codeword is in the list. Based on the block-

level probability, a per-bit error probability can be calculated as well. In contrast

with the existing methods described above, this GRAND soft output can be read-

ily used with any moderate-redundancy block code, can be evaluated without the

need to list decode, and remains accurate in noisy channel conditions. We derive

the probabilities for uniform at random codebooks and demonstrate empirically

that the resulting formulae continue to provide accurate soft output for structured

codebooks. The formulae can be used with any algorithm in the GRAND family

so long as soft input is available. Calculating the soft output requires only that the

code length and code rate are known, and that the probability of each noise e�ect

query is accumulated during GRAND's normal operation. Thus, it does not in-

crease the decoder's algorithmic complexity or memory requirements. In practical

terms, the approach provides accurate soft output for hard-output or list-output

decoding of any moderate-redundancy code of any length and any structure.

5.2 Background

We �rst de�ne notation used in the rest of the chapter. Let C be a codebook

containing 2k binary codewords each of length n. Let Cn : Ω→ C be a codeword

drawn uniformly at random from the codebook and let Nn : Ω → {0, 1}n denote

the binary noise e�ect that the channel has on that codeword during transmis-

sion; that is, Nn encodes the binary di�erence between the demodulated received

sequence and the transmitted codeword, rather than the potentially continuous

channel noise. Then Y n = Cn ⊕ Nn is the demodulated channel output, with ⊕
being the element-wise binary addition operator. Let Rn : Ω → Rn denote soft

channel output. Lowercase letters represent realizations of random variables, with

the exception of zn, which is the realization of Nn.

69

5.2. Background

5.2.1 GRAND

Here we revisit a few concepts of GRAND that were given a detailed treatment in

Chapter 2, while introducing new notation. Also relevant is Algorithm 4, which

describes the GRAND list decoding procedure for generating a decoding list of

size L.

First recall that GRAND makes a series of noise e�ect guesses; in this chapter we

denote the i-th of these noise guesses as zn,i ∈ {0, 1}n. Also recall that underlying
GRAND is a race between two random variables: the number of guesses until the

true codeword is identi�ed, and the number of guesses until an incorrect code-

word is identi�ed. The guesswork function G : {0, 1}n → {1, . . . , 2n}, which may

be informed by soft information, maps a noise e�ect sequence to its position in

GRAND's guessing order, so that G(zn,i) = i. Thus G(Nn) is a random variable

that encodes the number of guesses until the transmitted codeword would be iden-

ti�ed. IfW(i) : Ω→ {1, . . . , 2n−1} is the number of guesses until the i-th incorrect
codeword is identi�ed, not accounting for the query that identi�es the correct code-

word, then GRAND returns a correct decoding whenever G(Nn) ≤ W(1) and a list

of length L containing the correct codeword whenever G(Nn) ≤ W(L). Analysis of

the race between these two processes leads to the derivation of the soft output.

5.2.2 Previous work on soft output

Forney's work on error exponents [34] resulted in an approximation for probabilistic

soft output. Given channel output rn and a maximum-likelihood decoding output

cn,∗ ∈ C, the probability that the decoding is correct is

P (Cn = cn,∗|Rn = rn) =
P (Rn = rn|Cn = cn,∗)∑
cn∈C P (Rn = rn|Cn = cn)

.

Based on this formula, Forney derived an optimal threshold for determining whether

a decoding should be marked as an erasure. Computing the sum in the formula is

infeasible for codebooks of practical size, so Forney suggested that, given the sec-

ond most likely codeword, cn,∗∗ ∈ C, the correctness probability be approximated

by

70

5.3. GRAND soft output

P (Rn = rn|Cn = cn,∗)

P (Rn = rn|Cn = cn,∗) + P (Rn = rn|Cn = cn,∗∗)
, (5.1)

which is necessarily no smaller than 1/2. More generally, given a decoding list

L ⊆ C, the denominator can be replaced by
∑

cn∈L P (Rn = rn|Cn = cn) resulting

in an estimate of the correctness probability that is no smaller than 1/|L |. Having
the codewords of highest likelihood in the decoding list will give the most accurate

approximation, as their likelihoods dominate the sum. The resulting approximate

probability is conditioned on the true codeword being in the decoding list, which is

not necessarily the case, and we will see through our approach how the soft output

is improved by removing this conditioning. Another downside of Forney's approach

is that it requires a list of codewords, which most decoders do not provide. For

this reason, a method has recently been proposed to estimate the likelihood of the

second most likely codeword given the �rst [36]. A variety of alternative schemes

have also been suggested for making erasure decisions, a summary of which can

be found in [47].

Speci�cally relating to GRAND, recent work by Sarieddeen et al. [74, 75] in-

vestigated how to produce improved per-bit soft output from crude soft input.

Their approach used Euclidean distance metrics for each guessed word to inform

an improved demodulation of the transmitted bits, enabling multiple iterations of

decoding to improve accuracy. In contrast, the soft output method we propose

here is based on probabilistic formulae and, crucially, incorporates the likelihood

of all codewords in the decoding list, which, out of all the codewords in the code-

book, have the greatest impact on the per-bit reliability. The probabilistic soft

output is readily interpretable for applications such as error detection.

5.3 GRAND soft output

Throughout this section, we shall assume that the codebook, C, consists of 2k

codewords drawn uniformly at random from {0, 1}n, although the derivation gen-

eralises to higher-order symbols. We �rst derive exact expressions, followed by

readily computable approximations, for the probability that the transmitted code-

word is not in the GRAND decoding list and, as a corollary, that a single-codeword

71

5.3. GRAND soft output

GRAND output is incorrect. In Section 5.5 we demonstrate that the formulae pro-

vide excellent estimates for structured codebooks.

Theorem 1 (A posteriori likelihood of an incorrect GRAND list decoding for

a uniformly random codebook). Let G(Nn) be the number of codebook queries

until the noise e�ect sequence Nn is identi�ed. Let W1, . . . ,W2k−1 be selected

uniformly at random without replacement from {1, . . . , 2n − 1} and de�ne their

rank-ordered version W(1) < · · · < W(2k−1). With the true noise e�ect not counted,

W(i) corresponds to the location in the guesswork order of the i-th erroneous de-

coding in a codebook constructed uniformly-at-random. De�ne the partial vectors

W j
(i) = (W(i), . . . ,W(j)) for each i ≤ j ∈ {1, . . . , 2k − 1}

Assume that a list of L ≥ 1 codebooks are identi�ed by a GRAND decoder at query

numbers q1 < . . . < qL. De�ne the associated partial vectors qji = (qi, . . . , qj) for

each i ≤ j ∈ {1, . . . , 2k − 1}, and

q
L,{i}
1 = (q1, . . . , qi−1, qi+1 − 1, . . . , qL − 1), (5.2)

which is the vector qL1 but with the entry qi omitted and one subtracted for all

entries from qi+1 onwards. De�ne

P (A) = P (G(Nn) > qL)P (WL
(1) = qL1),

which is associated with the transmitted codeword not being in the list, and, for

each i ∈ {1, . . . , L− 1},

P (Bi) = P (G(Nn) = qi)P (WL−1
(1) = q

L,{i}
1),

which is associated with the transmitted codeword being the i-th element of the list,

and

P (BL) = P (G(Nn) = qL)P (WL−1
(1) = qL−11 ,W(L) ≥ qL),

which is associated with the transmitted codeword being the �nal element of the

list. Then the probability that the correct decoding is not in the list is

P (A)

P (A) +
∑L

i=1 P (Bi)
. (5.3)

72

5.3. GRAND soft output

Proof. For q ∈ {1, . . . , 2n}, de�ne W(i),q = W(i) + 1{W(i)≥q}, so that any W(i) that is

greater than or equal to q is incremented by one. Note that W(i),G(Nn) encodes the

locations of erroneous codewords in the guesswork order of a randomly constructed

codebook given the value of G(Nn) and, in particular, W(i),G(Nn) corresponds the

number of queries until the i-th incorrect codeword is found given G(Nn).

We identify the event that the decoding is not in the list as

A =
{
G(Nn) > qL,W

L
(1) = qL1

}
and the events where the decoding is the i-th element of the list by

Bi =
{
W i−1

(1) = qi−11 , G(Nn) = qi,

WL−1
(i) + 1 = qLi+1,W(L) ≥ qL

}
where the �nal condition is automatically met for i = {1, . . . , L − 1} but not for
i = L. The conditional probability that a GRAND decoding is not one of the

elements in the list given that L elements have been found is

P

(
A

∣∣∣∣∣A
L⋃
i=1

Bi

)
= P (A)

/
P

(
A

L⋃
i=1

Bi

)
. (5.4)

As all of the A and Bi events are disjoint, to compute eq. (5.4) it su�ces to

simplify P (A) and P (Bi) for i ∈ {1, . . . , L} to evaluate the a posteriori likelihood

that the transmitted codeword is not in the list.

Consider the numerator,

P (A) = P (G(Nn) > qL,W
L
(1) = qL1)

= P (G(Nn) > qL)P (WL
(1) = qL1),

where we have used the fact that G(Nn) is independent of WL
(1) by construction.

In considering the denominator, we need only be concerned with the terms P (Bi)

corresponding to a correct codebook being identi�ed at query qi, for which

P (Bi) =P (G(Nn) = qi,

W i−1
(1) = qi−11 ,WL−1

(i) + 1 = qLi+1,W(L) ≥ qL)

=P (G(Nn) = qi,W
L−1
(1) = q

L,{i}
1 ,W(L) ≥ qL)

=P (G(Nn) = qi)P (WL−1
(1) = q

L,{i}
1 ,W(L) ≥ qL),

73

5.3. GRAND soft output

where we have used the de�nition of qL,{i}1 in eq. (5.2) and the independence.

Thus the conditional probability that the correct answer is not found in eq. (5.4)

is given in eq. (5.3).

Specializing to a list size L = 1, the formula in eq. (5.3) for the a posteriori

likelihood that decoding is incorrect can be expressed succinctly, as presented in

the following corollary.

Corollary 1 (A posteriori likelihood of an incorrect GRAND decoding for a uni-

formly random codebook). The conditional probability that a GRAND decoding is

incorrect given a codeword is identi�ed on the q-th query is

P (G(Nn) > q)P (W(1) = q)

P (G(Nn) = q)P (W(1) ≥ q) + P (G(Nn) > q)P (W(1) = q)
.

where W(1) is equal in distribution to the minimum of 2k − 1 numbers selected

uniformly at random without replacement from {1, . . . , 2n − 1}.

In order to compute the a posteriori probability of an incorrect decoding in Theo-

rem 1, we need to evaluate or approximate: 1) P (G(Nn) = q) and P (G(Nn) ≤ q);

and 2) P (WL
(1) = qL1) and P (WL−1

(1) = qL−11 ,W(L) ≥ qL). During a GRAND algo-

rithm's execution, the precise evaluation of 1) can be achieved by calculating the

likelihood of each noise e�ect query as it is made, P (G(Nn) = q) = P (Nn = zn,q),

and retaining a running sum, P (G(Nn) ≤ q) =
∑q

j=1 P (Nn = zn,j). For 2),

geometric approximations whose asymptotic precision can be veri�ed using the

approach described in [27][Theorem 2] can be employed, resulting in the following

corollaries for list decoding and single-codeword decoding, respectively.

Corollary 2 (Approximate a posteriori likelihood of an incorrect GRAND list

decoding for a uniformly random codebook). If each W(i) given W(i−1) is assumed

to be geometrically distributed with probability of success (2k − 1)/(2n − 1), eq.

(5.3) describing the a posteriori probability that list decoding does not contain the

74

5.3. GRAND soft output

transmitted codeword can be approximated as(
1−

qL∑
j=1

P (Nn = zn,j)

)(
2k − 1

2n − 1

)
L∑
i=1

P (Nn = zn,qi) +

(
1−

qL∑
j=1

P (Nn = zn,j)

)(
2k − 1

2n − 1

) (5.5)

Proof. De�ne the geometric distribution's probability of success to be φ = (2k −
1)/(2n − 1). Under the assumptions of the corollary, we have the formulae

P
(
WL

(1) = qL1
)

= (1− φ)qL−L φL,

for i ∈ {1, . . . , L− 1}

P
(
WL−1

(1) = q
L,{i}
1

)
= (1− φ)qL−L φL−1,

and

P
(
WL−1

(1) = qL−11 ,W(L) ≥ qL

)
= (1− φ)qL−L φL−1.

Using those expressions, simplifying eq. (5.3) gives eq. (5.5).

To a slightly higher precision, the following approximation can be used, which ac-

counts for eliminated queries and is most succintly expressed for a single-codeword

decoding.

Corollary 3 (Approximate a posteriori likelihood of an incorrect GRAND de-

coding for a uniformly random codebook). If W(1) is assumed to be geometrically

distributed with probability of success (2k−1)/(2n−q) after q−1 failed queries, eq.

(5.3) describing the a posteriori probability that a decoding found after q1 queries

is incorrect can be approximated as(
1−

q1∑
j=1

P (Nn = zn,j)

)
2k − 1

2n − q1

P (Nn = zn,q1) +

(
1−

q1∑
j=1

P (Nn = zn,j)

)
2k − 1

2n − q1

. (5.6)

75

5.3. GRAND soft output

Proof. Under the conditions of the corollary,

P (W(1) = q1) =

q1−1∏
i=1

(
1− 2k − 1

2n − i

)
2k − 1

2n − q1
,

from which eq. (5.3) simpli�es to (5.6).

Figure 5.1 illustrates sample output from (5.6). The probability of incorrect de-

coding is shown as a function of the number of GRAND codebook queries for a

[128, 116] code, assuming a maximum-likelihood guessing order. The log-likelihood

ratio (LLR) for an error occurring at the i-th most unreliable bit is set to −βi,
which matches the basic ORBGRAND model. A higher value of β indicates that

bits are more reliable. It can be seen that the soft information has a signi�cant

e�ect on the crossover point where a decoding error becomes more likely than not.

By abandoning the decoding before this crossover point, a signi�cant amount of

computation can be saved while avoiding a probable decoding error. The jagged-

ness in the curves is explained by the stepped probability distribution of the noise

e�ects; all noise e�ects of the same logistic weight have the same probability, and

a particular noise e�ect becomes relatively more likely to be the correct one as

other noise e�ects of the same logistic weight are eliminated.

76

5.4. GRAND soft output per bit

20 22 24 26 28 210 212 214

Queries

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r P

ro
ba

bi
lit

y

Probability of 1/2

2n
k q

ue
rie

s

= 0.1
= 0.2
= 0.5

Figure 5.1: Probability of a block error given that a codeword is discovered
after a given number of GRAND codebook queries. The LLR of an error
occurring at the i-th bit in sorted order, according to the soft output of
the channel, is set to −βi, where β is varied. A higher β value means the
channel output is more reliable.

5.4 GRAND soft output per bit

Having derived the probability of error at the granularity of a codeword or decoding

list, the probability of error can be derived for individual bits or symbols in the

decoding output. For a random codebook, this does not have a uniform e�ect on

the bit reliabilities. Depending on the guessing order, some bits may be a�ected

more than others. To illustrate this point with an extreme example, if n = 3 for a

binary message and GRAND has eliminated the noise e�ects {000, 001, 010, 011},
then the only remaining possible noise e�ects are {100, 101, 110, 111}, and it is

known with full certainty that the value of the �rst bit is 1, while the second and

third bits remain ambiguous.

Corollary 4 (A posteriori probability of an individual bit in GRAND hard output

77

5.4. GRAND soft output per bit

being incorrect for a uniformly random codebook.). Let dn be the hard decoding

output of GRAND list decoding, picked from the decoding list L , and let zn,∗ =

yn	dn be the noise guess that yields that hard output. Let cn,i be the i-th codeword

in L . De�ne A and Bi, as before, to be the events that the transmitted codeword

is not in the list and that the transmitted codeword is the i-th element in the list,

respectively. Then, the probability that the j-th bit of the hard output dn is incorrect

is

∑
i:1≤i≤L,cn,ij 6=dnj

P (Bi)

P (A) +
∑L

i=1 P (Bi)

+
P (A)

P (A) +
∑L

i=1 P (Bi)

P (Nn
j 6= zn,∗j)−

∑
i:i≤qL,zn,ij 6=z

n,∗
j
P (Nn = zn,i)

1−
∑qL

i=1 P (Nn = zn,i)
. (5.7)

Proof. The probability P

(
Cn
j 6= dnj

∣∣∣∣A⋃L
`=1B`

)
of the j-th bit of hard output

being incorrect can be expressed using the law of total probability as

P

(
L⋃
i=1

Bi, C
n
j 6= dnj

∣∣∣∣A L⋃
`=1

B`

)
+ P

(
A,Cn

j 6= dnj

∣∣∣∣A L⋃
`=1

B`

)

=
L∑
i=1

P

(
Bi

∣∣∣∣A L⋃
`=1

B`

)
P (Cn

j 6= dnj |Bi) + P

(
A

∣∣∣∣A L⋃
`=1

B`

)
P (Cn

j 6= dnj |A).

Since P (Cn
j 6= dnj |Bi) = 1 only if the i-th codeword in the list agrees with the

hard output on the value of the j-th bit, and P (Cn
j 6= dnj |Bi) = 0 otherwise, this

becomes

∑
i:1≤i≤L,cn,ij 6=dnj

P

(
Bi

∣∣∣∣A L⋃
`=1

B`

)
+ P

(
A

∣∣∣∣A L⋃
`=1

B`

)
P (Cn

j 6= dnj |A).

This is reduced, by the application of (5.3), to

78

5.4. GRAND soft output per bit

∑
i:1≤i≤L,cn,ij 6=dnj

P (Bi)

P (A) +
∑L

i=1 P (Bi)
+

P (A)

P (A) +
∑L

i=1 P (Bi)
P (Cn

j 6= dnj |A), (5.8)

and it remains only to derive the value of P (Cn
j 6= dnj |A). Note that P (Cn

j 6=
dnj |A) = P (Nn

j 6= zn,∗j |A), since the correctness of the decoding output depends on

the correctness of the guessed noise e�ect. Following the law of total probability

and Bayes' Rule gives

P (Cn
j 6= dnj |A) = P (Nn

j 6= zn,∗j |A)

=
∑

i:i>qL,z
n,i
j 6=z

n,∗
j

P (Nn = zn,i|A)

=

∑
i:i>qL,z

n,i
j 6=z

n,∗
j
P (Nn = zn,i)

1−
∑qL

i=1 P (Nn = zn,i)
. (5.9)

Finally, given that P (Nn
j = zn,∗j) =

∑
i:i≤qL,zn,ij =zn,∗j

P (Nn = zn,i)+
∑

i:i≥qL,zn,ij =zn,∗j
P (Nn =

zn,i) and hence
∑

i:i≥qL,zn,ij =zn,∗j
P (Nn = zn,i) = P (Nn

j = zn,∗j)−
∑

i:i≤qL,zn,ij =zn,∗j
P (Nn =

zn,i), eq. (5.9) becomes

P (Nn
j = zn,∗j)−

∑
i:i≤qL,zn,ij =zn,∗j

P (Nn = zn,i)

1−
∑qL

i=1 P (Nn = zn,i)
,

which can be substituted for P (Cn
j 6= dnj |A) in eq. (5.8) to �nish the proof.

This expression for the error probability of an individual bit is expressed in terms

of the block error probability and in terms of the probabilities of the noise e�ects

that were guessed throughout GRAND decoding. Like the block error probability

itself, it is thus possible to compute the expression with negligible overhead, as

long as there is a way to compute the probabilities of individual noise e�ects.

79

5.5. Performance evaluation

5.5 Performance evaluation

5.5.1 Accuracy of soft output

Armed with the approximate a posteriori probabilities in eq. (5.5) and (5.6),

we investigate their precision for random and structured codebooks. Figure 5.2

depicts the accuracy of formula (5.6) when used for the class of random linear

codes RLC(64, 56). For context, Forney's approximation with a list size L ∈ {2, 4}
is also shown. Transmissions were simulated using an AWGN channel with BPSK

modulation. 1-line ORBGRAND was used for soft-input decoding, which produced

decoding lists of the appropriate size for both soft output methods. The codeword

yielded by the highest-probability noise e�ect was selected as the hard output.

Figure 5.2 plots the empirical BLER given the predicted block error probabil-

ity evaluated using eq. (5.6). If the estimate were precise, then the plot would

follow the line x = y, as the predicted error probability and the BLER would

match. As RLCs are linear, codewords are not exactly distributed uniformly in

the guesswork order, but the formula is nevertheless shown to provide an accurate

estimate. In contrast, Forney's approximation signi�cantly underestimates the er-

ror probability, degrades in noisier channels, and has an estimate of no greater

than 1/L. Moreover, GRAND's prediction has been made having identi�ed only

a single codeword.

The same comparison is made in Figure 5.3 and Figure 5.4 but for RLC(127, 120)

and RLC(31, 21) codes, respectively. In addition, GRAND soft output is evaluated

for L = 2. Again, Forney's approximation is shown to underestimate the error

probability and to degrade in noisier channels.

Figure 5.5 shows the prediction accuracy of GRAND soft output for list errors,

which occur when the transmitted codeword is not in the decoding list. The

measured list BLER is plotted against the predicted list BLER given by eq. (5.5).

The prediction can be seen to be robust to channel condition, list size, and code

structure. A comparison with Forney's approximation is not possible because it

provides an estimate only for individual codewords in the list and not the whole

list.

80

5.5. Performance evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Predicted block error probability

0.0

0.2

0.4

0.6

0.8

1.0

BL
ER

Forney, L=2, 2dB
Forney, L=2, 4dB
Forney, L=4, 2dB
Forney, L=4, 4dB
ORBGRAND, L=1, 2dB
ORBGRAND, L=1, 4dB

Figure 5.2: The accuracy of soft output when 1-line ORBGRAND is used
to decode RLC(64, 57) codes. The predicted block error probability is com-
pared to the measured BLER. If the soft output were perfectly accurate,
then the data would follow the line x = y.

Figure 5.6 compares the estimated error probability for individual bits, based on eq.

(5.7), to their measured BER. Again, the estimate closely follows the line x = y,

indicating the accuracy of the prediction for a variety of code types, list sizes and

channel conditions. Pyndiah's soft output approximation for bits, as explored in

Section 4.2.2, is based on Euclidean distance and thus cannot be interpreted as a

probability and compared to GRAND soft output.

While the plots shown thus far indicate that the proposed soft output accurately

captures the probability of error, alternative evaluations of the accuracy are pos-

sible. A longer decoding list must, in some sense, provide more information about

the probability of a codeword being correct; after the �rst codeword has been

identi�ed by GRAND, for instance, its probability of correctness will vary greatly

depending on whether the next codeword is discovered after 1 guess or 1000 guesses,

which can only be determined with a list size of L > 1. Yet, the prediction results

81

5.5. Performance evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Predicted block error probability

0.0

0.2

0.4

0.6

0.8

1.0

BL
ER

Forney, L=2, 2dB
Forney, L=2, 4dB
Forney, L=4, 2dB
Forney, L=4, 4dB
GRAND, L=1, 2dB
GRAND, L=1, 4dB
GRAND, L=2, 2dB
GRAND, L=2, 4dB

Figure 5.3: The accuracy of soft output when 1-line ORBGRAND is used
to decode RLC(127, 120) codes.

shown previously follow the line x = y for both L = 1 and L > 1. Intuitively,

a longer list should lead to more informative predictions, because it clari�es the

structure of the codebook and gives a more informative prior.

For this reason, we next compare the soft output methods using a scoring rule.

Scoring rules

. . . assess the quality of probabilistic forecasts, by assigning a numerical

score based on the predictive distribution and on the event or value that

materializes. . . ,

as per [41]. Measures from information theory have been investigated as scoring

rules [71]; here, we use the kl! (kl!) divergence, also called the relative entropy, to

capture the di�erence between the true distribution of error probability and the

predicted distribution. Suppose that, after decoding has been performed, the true

82

5.5. Performance evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Predicted block error probability

0.0

0.2

0.4

0.6

0.8

1.0

BL
ER

Forney, L=2, 2dB
Forney, L=2, 4dB
Forney, L=4, 2dB
Forney, L=4, 4dB
GRAND, L=1, 2dB
GRAND, L=1, 4dB
GRAND, L=2, 2dB
GRAND, L=2, 4dB

Figure 5.4: The accuracy of soft output when 1-line ORBGRAND is used
to decode RLC(31, 21) codes.

error probability is pi and the predicted error probability is fi. The KL divergence

of these probabilities is

−pi log2

fi
pi
− (1− pi) log2

1− fi
1− pi

which gets larger as the prediction diverges further from the true probability, and

is minimised by fi = pi [71].

More speci�cally, suppose that, in the i-th sample, a codeword is identi�ed by

GRAND after q1 guesses. An estimate fi of error probability is calculated using

one of the GRAND soft output formulae or using Forney's approximation. If the

2k codewords in the codebook are yielded by noise e�ects zn,q1 , zn,q2 , . . . , zn,q2k ,

then the true error probability for the �rst codeword is

83

5.5. Performance evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Predicted list error probability

0.0

0.2

0.4

0.6

0.8

1.0

Lis
t B

LE
R

RLC, L=2, 2dB
RLC, L=2, 4dB
RLC, L=4, 2dB
RLC, L=4, 4dB
eBCH, L=2, 2dB
eBCH, L=2, 4dB
eBCH, L=4, 2dB
eBCH, L=4, 4dB

Figure 5.5: The accuracy of the predicted list error probability com-
pared to the measured list BLER. Same parameters as in Figure 5.2, but
with varying channel noise, varying list size L ∈ {2, 4}, and code types
RLC(64, 57) and eBCH(64, 57).

pi =
P (Nn = zn,q1)∑2k

j=1 P (Nn = zn,qj)
,

and from this the KL divergence of pi and fi can be determined.

Figure 5.7 illustrates the KL divergence for the class of [15, 7] random linear codes,

with both GRAND soft output and Forney soft output used to predict the error

probability of the �rst codeword in the decoding list. The error probability of the

�rst codeword is the only suitable point of comparison because it can be evaluated

regardless of list size. 1-line ORBGRAND is used for list decoding. For reasons of

complexity, this approach to evaluating prediction accuracy is restricted to small

values of k (here, k = 7), since its calculation involves all 2k codewords in the

codebook. It can be seen that the performance of both GRAND soft output and

84

5.5. Performance evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Predicted bit error probability

0.0

0.2

0.4

0.6

0.8

1.0

BE
R

RLC, L=1, 2dB
RLC, L=1, 4dB
RLC, L=2, 2dB
RLC, L=2, 4dB
eBCH, L=1, 2dB
eBCH, L=1, 4dB
eBCH, L=2, 2dB
eBCH, L=2, 4dB

Figure 5.6: Estimated probability of error per bit compared to the mea-
sured BER. Same parameters as in Figure 5.5. Varying channel noise,
varying list size L ∈ {2, 4}, and code types RLC(64, 57) and eBCH(64, 57).

Forney soft output degrades in noisier channels, though this is more severe for

Forney's approximation. GRAND soft output scores better or as well as Forney's

approximation for same list size, depending on the channel conditions. Under the

noisiest channel conditions, the GRAND soft output provides a better prediction

than Forney, even with a decoding list of half the size. While these results give

a preliminary insight into the accuracy of GRAND soft output, further e�ort is

required to explore the vast range of possible scoring rules and to fully analyse its

behaviour.

5.5.2 Application to error detection.

A common method used to detect errors is to append a CRC to a message and de-

clare an erasure at the receiver if there is an inconsistency. As GRAND algorithms

can decode any code, one use of GRAND soft output is to upgrade CRCs so that

they are used for both error correction and error detection, by decoding the block

85

5.5. Performance evaluation

0 1 2 3 4 5 6
Eb/N0

10 10

10 8

10 6

10 4

10 2

100

102

Av
er

ag
e

KL
 d

iv
er

ge
nc

e

GRAND, L=1
GRAND, L=2
GRAND, L=4
GRAND, L=8
GRAND, L=16
Forney, L=2
Forney, L=4
Forney, L=8
Forney, L=16

Figure 5.7: KL divergence of per-block probabilistic predictions for [15, 7]
RLCs. In a given simulated transmission, probabilistic soft output is call-
culated by using 1-line ORBGRAND to produce decoding lists of varying
size L. Forney's approximation and the GRAND soft output formula in
eq. (5.6) are then used to estimate the probability that the �rst codeword
in the decoding list is the correct one. Finally, they are compared in terms
of KL divergence to the true correctness probability, which is determined
based on an exhaustive evaluation of the full codebook. For L = 1 only
GRAND soft output can be calculated.

86

5.5. Performance evaluation

3.0 3.5 4.0 4.5 5.0 5.5
Eb/N0 (dB)

10 4

10 3

10 2

10 1

100
BL

ER
 /

UE
R

CRC
= 0.025
= 0.1
= 0.5

Figure 5.8: The UER (dotted lines) and BLER (solid lines) of a
CRC(64, 56) code with two methods of error control: 1) CRC used for er-
ror detection; 2) ORBGRAND performs error correction using the CRC,
then erasures are declared if the predicted block error probability exceeds
ε.

but returning an erasure if the decoding is too unreliable. The BLER that results

from this process is composed of both undetected block errors and erasures.

Figure 5.8 depicts the undetected error rate (UER) and BLER of a CRC(64, 56)

code. Two methods of error control are compared: 1) the CRC is checked for

consistency and an erasure is declared if it fails; 2) ORBGRAND is used to correct

errors and an erasure is declared if the estimated error probability is greater than

a threshold ε. The advantage of 2) is that error correction with GRAND results

in signi�cantly reduced BLER while tailoring the error detection to a target UER

by modifying the threshold accordingly.

As another example, Figure 5.9 depicts the error detection and correction perfor-

mance of an eBCH(64, 51) code with ORBGRAND decoding when an error prob-

ability threshold ε is used for erasure decisions. Shown for comparison is CA-SCL

decoding [82] of a (64, 51 + 6) 5G polar code [1] concatenated with the 6-bit CRC

87

5.6. Discussion

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Eb/N0 (dB)

10 4

10 3

10 2

10 1

BL
ER

 /
UE

R

CA-SCL, L=8
ORBGRAND, = 0.15
ORBGRAND, = 0.3
ORBGRAND, = 0.6

Figure 5.9: The error detection and correction performance of: 1) a
(64, 51 + 6) 5G polar code concatenated with the 6-bit CRC 0x30 and
with CA-SCL decoding; (2) an eBCH(64, 51) code with ORBGRAND de-
coding and a threshold-based erasure decision with threshold ε = 0.15.
Solid lines correspond to BLER, dashed lines to UER.

0x30, generating a list of 8 candidates from which the most likely of those whose

CRC is consistent is declared to be the decoding. If no element of the CA-SCL

list has a CRC that matches, it is treated as an erasure. With an appropriately

chosen ε, both methods achieve a similar BLER, but ORBGRAND is shown to

achieve a UER that is almost an order of magnitude lower than CA-SCL in the

2dB to 3dB range. In less noisy conditions, it still achieves a gain of 0.5dB.

5.6 Discussion

We have established that soft-input GRAND algorithms can, during their execu-

tion, evaluate a predicted likelihood that the decoded block, list, or bits are in

error. We have derived exact formulae along with readily computable approxima-

tions. While the formulae assume random codebooks, we have empirically shown

them to be accurate for structured codebooks.

88

5.6. Discussion

There are many potential applications of this soft output. It can be used to reduce

the rate of undetected errors during decoding, or, for URLLC, to do so more

cheaply, as GRAND can use a CRC or any other code for both error correction

and reduction of undetected errors. In hybrid automatic repeat request (HARQ)

schemes, the predicted correctness probability could be used to determine whether

to request retransmission, reducing the number of requests. It has been shown

[28] that GRAND soft output can be used to compromise the security of wiretap

channels. As shown in the previous chapter, soft output can be used in the turbo

decoding of product codes. The con�dence measure could also be used to determine

the most reliable decoding from a collection of decodings, which could help to select

a lead channel in noise recycling [21, 68].

89

CHAPTER 6
Discussion

This thesis began with an introduction to the channel coding problem. Channel

coding was launched as a �eld in 1948 with the publication of Claude Shannon's

magnum opus, A Mathematical Theory of Communication [78]. Signi�cant e�ort

has been expended since then to discover new channel codes and e�cient decoding

algorithms for those codes. For many years, the dominant paradigm has been based

on long codes with e�cient, specialised decoders, such as LDPC codes [73]. New

requirements for modern communications systems, however, lead to the possibility

of new paradigms. In particular, the requirement of URLLC in modern standards

[31] necessitates the use of short, high-rate codes. Such codes are amenable to

decoding by universal decoders that are not speci�c to any particular code.

Throughout this thesis we have investigated a recently-introduced universal de-

coder called GRAND. GRAND has been established as a practical, accurate de-

coder for arbitrary codes with a moderate amount of redundancy, as indicated by

the development of two e�cient hardware implementations for hard- and soft-input

decoding [67, 69]. One unexplored topic, however, has been how to apply GRAND

to codes with large amounts of redundancy. To that end, in Chapter 3 and Chap-

ter 4 we explored how GRAND can be used to decode a class of high-redundancy

codes known as product codes.

Chapter 3 introduced the IGRAND algorithm for hard-input decoding of product

90

Chapter 6. Discussion

codes. IGRAND adopts the strategy of iterative decoding, in which the rows and

columns of a product code are individually decoded over multiple iterations. This

approach decomposes the decoding problem into many easier problems, resulting in

lower complexity than if the entire product code were decoded by GRAND at once.

To further reduce complexity and to improve accuracy, IGRAND undoes errors in

a component of the product code only when the number of errors falls within some

distance bound, which is kept as low as possible. This distinguishes it from other

iterative decoding algorithms and enables it to achieve superior performance in

terms of both accuracy and complexity, as shown by experimental results in which

IGRAND gained up to 0.5dB over the next-best comparable decoding algorithm

for a selection of long product codes. This chapter used real measurements from a

hardware implementation of GRAND [67] to estimate the decoding complexity of

IGRAND, and explored the latency and throughput improvements from decoding

in parallel, which is enabled by the structure of product codes.

Chapter 4 was a natural progression from hard-input to soft-input decoding of

product codes. This was achieved by re-conceptualising GRAND as a list decoder,

allowing it to produce soft output based on the method of Pyndiah [65]. Given the

availability of soft output, GRAND could then be used as a component decoder

in the turbo decoding of product codes. ORBGRAND [25] was found to be an

e�ective soft-input list decoder, and in list decoding experiments it was signi�-

cantly more accurate than the Chase algorithm that is typically used for block

turbo decoding. Experiments also validated the theoretical prediction of Elias [33]

that larger list sizes compensate for weakness in the structure of a code. Finally,

experiments showed the accuracy of ORBGRAND as a turbo component decoder,

as it achieved coding gains of up to 0.7dB over the Chase algorithm for a variety

of product codes. These simulation-based results were accompanied by an analyt-

ical derivation of GRAND list decoding complexity, and it was proven that, for

random codes, doubling the list size doubles the upper bound on average decoding

complexity.

In Chapter 4, soft output was used in the turbo decoding of product codes. Gener-

ally, list decoding is required to compute soft output for block codes, bringing with

it a large complexity overhead. Chapter 5 investigated the question of whether

91

6.1. Future work

accurate soft output can be calculated from GRAND decoding, with or without a

decoding list. This investigation yielded a probabilistic soft output for the GRAND

algorithm, indicating the correctness probability of a codeword, decoding list, or

individual decoded symbol. The output is computed by a lightweight accounting

of the noise guesses, and thus adds negligible overhead. When compared with For-

ney's approximate method for probabilistic soft output, the GRAND soft output

was shown to be more accurate, particularly under the noisiest channel conditions.

The availability of soft output opens up many applications, including error detec-

tion, turbo decoding and the triggering of retransmission requests. The application

to error detection was tested in simulations and compared to the use of a CRC.

Simulations showed that the probabilistic soft output permits an easily-tunable

balance between undetected errors and decoding errors while avoiding the CRC's

impact on code rate.

All chapters considered, this thesis has demonstrated the use of GRAND to decode

high-redundancy codes. While these codes, product codes, can also be decoded by

specialised component decoders, GRAND has the advantage of being able to de-

code arbitrary product codes and with high accuracy. The alternative soft output

in Chapter 5 o�ers the potential to calculate soft output without the overhead of

list decoding, and enables many new applications of the GRAND algorithm.

6.1 Future work

Continuing the theme of applying GRAND to long, high-redundancy codes, one

possible future direction is to apply the algorithms considered here to other types

of such codes. In particular, staircase codes [79], a generalisation and improvement

of product codes, are an excellent candidate for IGRAND or turbo decoding, and

are under consideration for use in the latest standards of optical transport networks

[85]. In a recent paper [89], we have also considered the application of iterative

soft-input soft-output GRAND decoding to another variant of product codes called

generalized LDPCs (GLDPCs) [59].

Besides examining state-of-the-art error correction codes, another avenue is to syn-

thesise the di�erent ideas we have presented here. More speci�cally, the GRAND

92

6.1. Future work

soft-output from Chapter 5 can be used for iterative soft-input soft-output decod-

ing of product codes, as an alternative to the turbo-style decoding seen in Chap-

ter 4. We recently explored this idea in [89], which showed that iterative decoding

of product codes with GRAND soft output o�ers decoding performance that is

similar or superior to LDPC codes from the 5G standard. Given that LDPCs are

ubiquitous in modern communications standards, from 5G [1] to ATSC 3.0 [54],

any ECC and decoding algorithm that perform competitively must therefore be of

great relevance to the future of channel coding, and merit further investigation.

To improve on the turbo decoding results of Chapter 4, another approach is to

incorporate optimisations of the block turbo algorithm that have been developed

since Pyndiah's original work. A summary of some of these improvements can be

found in [7]. In particular, it has been shown that the decoding accuracy can be

improved by dynamically computing the reliability of a bit if all codewords in the

decoding list agree on its value, as opposed to setting the reliability to a constant.

It may also be possible to tweak the balance between complexity and accuracy

by employing other soft-input GRAND algorithms instead of ORBGRAND, such

as SGRAND [80] (higher complexity, higher accuracy) and Symbol Reliability

GRAND (SRGRAND) [29] (lower complexity, lower accuracy).

Regarding the GRAND soft output technique, it's possible that alternative for-

mulae can be developed that specialise on particular code structures in order to

improve the soft output accuracy. For example, our assumption of a random

codebook, while encompassing all possible codes, does not account for relevant

properties of linear codes such as the minimum Hamming distance. While this

idea may contradict the code-independent philosophy of GRAND, it has already

been exploited to reduce GRAND complexity [72], and may yield improvements

in decoding accuracy and soft output accuracy. It also remains to investigate al-

ternative scoring rules for evaluating GRAND soft output, such as those detailed

in [71].

Due to GRAND's code-agnosticism, its use in coding schemes is extremely �exible,

and it can be employed in ways that non-universal decoders cannot, for example

in [43]. For this reason, it is possible that entirely new applications of soft output

93

6.1. Future work

can be invented. In addition to the applications proposed in Chapter 5, other ex-

isting applications of soft output include turbo equalization of single-input single-

output Inter-Symbol Interference channels and Multiple-Input Multiple-Output

(MIMO) frequency selective fading channels; iterative decoding of MIMO �at fad-

ing channels; and multi-user detection and equalization in coded Direct-Sequence

Code-Division Multiple-Access systems [86].

94

APPENDIX A
Capacity-achieving proof for

random linear product codes

A.1 Random linear product codes

Chapter 3 demonstrates the e�cacy of IGRAND with known structured codes.

Here we examine random linear product codes (RLPCs), a class of product codes

that IGRAND can decode and that non-universal decoders cannot. RLPCs are

product codes whose component codes are RLCs. We prove that RLPCs achieve

capacity in hard-decision channels and so o�er a wide selection of high-performing

product codes.

A.2 Notation

Let x, ~x, X denote a scalar, vector and matrix, respectively. Let ~x,X denote a

random vector and random matrix, respectively. Let Fq denote a �nite �eld of

order q.

A.3 Construction of RLPCs

Recall that a systematic [n, k] linear code over Fq is de�ned by a generator matrix

G = [I|P], where I is the k × k identity matrix and P is a k × (n − k) parity

95

A.4. Proof that RLPCs are capacity-achieving

matrix over Fq. The codebook C of a given linear code is the image of G, namely

C = {~c ∈ Fnq : ∃~u ∈ Fkq ,~c = ~uG}. A random systematic linear code is one where

entries in the parity check matrix, P , are chosen independently and uniformly at

random. It is known that every linear code has an equivalent systematic linear

code, so we limit the discussion here to systematic codes alone [70]. The encoding

of product codes, and hence RLPCs, is described in section 2.5. The component

codes of RLPCs are systematic RLCs.

A.4 Proof that RLPCs are capacity-achieving

Since the work of Shannon, it has been known that random codes are capacity-

achieving [78]. It was later shown that con�ning the discussion to RLCs still

yields capacity-achieving codes [64]. We prove that RLPCs are capacity-achieving

in hard-decision channels. To do so, we use the following lemma, taken from [70],

and its corollary.

Lemma 2. Let ~a, ~x ∈ Flq, ~a being a non-zero vector. Let f(~x) =
∑l

i=1 aixi. Then

each element of Fq is the image under f of exactly ql−1 vectors in Flq.

Corollary 5. Let ~a ∈ Fq be a non-zero vector, let b ∈ Fq, and let ~x be uniformly

distributed over Flq. Then
∑l

i=1 aixi + b is uniformly distributed over Fq.

To prove that RLPCs achieve capacity, we follow the proof of Theorem 16.2 from

Chapter 16 of [64], which establishes that RLCs are capacity-achieving. The steps

are unchanged, except that we adapt step 2 for RLPCs.

Theorem 3. Let P~z be the probability distribution of additive noise ~z over Fnq .
Then for every k there exists an [n, k] RLPC with error probability:

Pe ≤ E
[
q
−
(
n−k−logq 1

P~z(~z)

)+
]
, (A.1)

where x+ = max(x, 0).

Proof. Let ~u, ~u ′ ∈ Fnq be uniformly distributed and independent, let G be a

generator matrix of an [n, k] RLPC, and let ~h ∈ Fnq be a uniformly distributed

dithering vector independent of (~u, ~u ′).

96

1. Encode with dithering: ~x = ~uG+~h, ~x ′ = ~u ′G+~h are uniformly distributed

over Fnq .

2. We have to show that ~x ′ = ~x+ (~u ′ − ~u)G is uniformly distributed over Fnq ,
independent of the realisation of ~u, ~x. In particular, we have to show that the

di�erent elements of ~x ′ are uniformly distributed over Fq and independent

of each other (and of ~u, ~x). The systematic part is given, as the elements of

~u ′ − ~u are distributed uniformly and independent of each other. It remains

to show that this also holds for the parity symbols, which is achieved by

corollary 5.

3. Repeat the argument in proving the dependence-testing bound for symmetric

and pairwise independent codewords.

4. Compute information density i(~x;~y) = logq
P~y|~x(~y|~x)
P~y(~y)

, where ~y = ~x + ~z. This

leads to an upper bound Pe ≤ E
[
q
−
(
n−k−logq 1

P~z(~z)

)+
]
.

5. Remove ~h, as shifting the codebook has no impact on its performance.

The proof holds for any number of component codes d and any number of parity

symbols, as long as there is at least one non-zero element in each dimension of

the parity matrix P . Otherwise, there will be constant zero parity symbols in the

codeword. This problem also arises in the original proof of [64] (third note), and

can be avoided in a similar fashion. One such way is to draw at least one of the

elements of P in each dimension from Fq \ {0} rather than Fq.

97

List of Figures

List of Figures

1.1 Diagram of a digital communication system. 3

1.2 An example transmission through a communication system. 5

2.1 Illustration of minimum Hamming distance concept. 12

2.2 Illustration of a binary symmetric channel. 13

2.3 Illustration of binary phase shift keying modulation. 13

2.4 GRAND and ORBGRAND chip implementations. 16

2.5 Reliability distribution as a function of channel noise. 20

2.6 GRAND decoding region. 22

2.7 Product code diagram. 23

3.1 GRAND decoding region, expanded. 26

3.2 Error patterns a�ecting a product code 28

3.3 Detailed illustration of IGRAND algorithm. 32

3.4 Probability of e�ciency gain and decoding mistake with columns-only

decoding, n = 312. 37

3.5 Probability of e�ciency gain and decoding mistake with columns-only

decoding, n = 1272. 38

3.6 Bit error rate of IGRAND and comparable decoding algorithms, ap-

plied to a product code with BCH(31, 21, 5) component codes. 39

3.7 Bit error rate of IGRAND and comparable decoding algorithms, ap-

plied to a product code with BCH(63, 51, 5) component codes. 40

3.8 IGRAND performance on a selection of codes. 41

3.9 RLC vs BCH. 42

3.10 Estimated energy cost per bit of decoding a BCH(127, 106, 7)2 code

using GRAND hardware. 43

3.11 Estimated latency of decoding a BCH(127, 106, 7)2 code with GRAND

hardware. 43

3.12 Estimated latency and throughput when IGRAND decodes a BCH(127,106,7)2

code, with an increasing number of parallel decoding branches 44

98

List of Figures

3.13 IGRAND columns-only decoding latency. 44

4.1 Distribution of soft input during turbo decoding. 55

4.2 List decoding BLER of an eBCH(32, 26, 4) code with basic ORB-

GRAND and Chase as list decoders. 58

4.3 List decoding BLER of BCH and RLC codes. 59

4.4 List decoding BLER of a selection of codes. 59

4.5 Block turbo decoding BER of an eBCH(32, 26, 4)2 product code. . . . 60

4.6 Block turbo decoding BER of an eBCH(64, 57, 4)2 code. 61

4.7 Block turbo decoding BER of a selection of product codes. 61

4.8 Accuracy comparison of IGRAND versus turbo decoding. 62

4.9 Block turbo decoding complexity in terms of raw number of queries

per bit. 63

4.10 Block turbo decoding complexity in terms of ratios. 63

4.11 Complexity comparison of IGRAND and turbo decoding. 64

5.1 Error probability as a function of the number of codebook queries. . . 77

5.2 Accuracy of GRAND soft output for RLC(64, 57). 81

5.3 Accuracy of GRAND soft output for RLC(127, 120). 82

5.4 Accuracy of GRAND soft output for RLC(31, 21). 83

5.5 Accuracy of list-level soft output. 84

5.6 Accuracy of bit-level soft output. 85

5.7 KL divergence of probabilistic predictions. 86

5.8 UER and BLER comparison of CRC and ORBGRAND. 87

5.9 Error detection and correction comparison of CA-SCL and ORB-

GRAND. 88

99

Bibliography

[1] 3GPP. NR; Multiplexing and channel coding. Technical Speci�cation (TS)

38.21, 3rd Generation Partnership Project (3GPP), 2019. Version 15.5.0.

[2] S. M. Abbas, M. Jalaleddine, and W. J. Gross. High-Throughput VLSI Ar-

chitecture for GRAND Markov Order. In IEEE Workshop Sig. Proc. Sys.,

2021.

[3] S. M. Abbas, M. Jalaleddine, and W. J. Gross. List-GRAND: A Practical

Way to Achieve Maximum Likelihood Decoding. IEEE Trans. on VLSI Sys.,

31:43�54, 2023.

[4] S. M. Abbas, T. Tonnellier, F. Ercan, and W. J. Gross. High-Throughput

VLSI Architecture for GRAND. In IEEE Workshop on Sig. Proc. Sys., pages

681�693, 2020.

[5] S. M. Abbas, T. Tonnellier, F. Ercan, M. Jalaleddine, and W. J. Gross. High-

Throughput and Energy-E�cient VLSI Architecture for Ordered Reliability

Bits GRAND. IEEE Trans. on VLSI Sys., 30(6), 2022.

[6] N. Abramson. Cascade decoding of cyclic product codes. IEEE Trans. Com-

mun., 3(16):398�402, 1968.

[7] P. Adde and R. Pyndiah. Recent simpli�cations and improvements in Block

Turbo Codes. In Int. Symp. on Turbo Codes & Rel. Topics, pages 133 � 136,

Brest, France, Sept. 2000.

[8] A. J. Al-Dweik and B. S. Sharif. Non-sequential decoding algorithm for hard

iterative turbo product codes. IEEE Trans. Commun., 57:1545�1549, 2009.

100

Bibliography

[9] A. J. Al-Dweik and B. S. Sharif. Closed-chains error correction technique for

Turbo Product Codes. IEEE Trans. Commun., 59(3):632�638, 2011.

[10] W. An, M. Médard, and K. R. Du�y. Keep the bursts and ditch the inter-

leavers. In IEEE GLOBECOM, 2020.

[11] W. An, M. Médard, and K. R. Du�y. CRC codes as error correcting codes.

In IEEE ICC, 2021.

[12] E. Arikan. Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels. IEEE

Trans. Inf. Theory, 55(7):3051�3073, 2009.

[13] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg. LLR-based succes-

sive cancellation list decoding of Polar codes. IEEE Trans. Signal Process.,

63(19):5165�5179, 2015.

[14] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability

of certain coding problems (corresp.). IEEE Trans. Inf. Theory, 24(3):384�

386, 1978.

[15] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-

correcting coding and decoding: Turbo-codes. In IEEE ICC, volume 2, 1993.

[16] G. Bosco, G. Montorsi, and S. Benedetto. A new algorithm for �hard� iterative

decoding of concatenated codes. IEEE Trans. Commun., 51(8):1229�1232,

2003.

[17] N. Chapalain, A. Guéguen, D. Castelain, and R. Pyndiah. A Way to Combat

the Sub-optimality of Turbo Decoding of Product Codes. EPMCC, 2001.

[18] D. Chase. Class of algorithms for decoding block codes with channel mea-

surement information. IEEE Trans. Inf. Theory, 18(1):170�182, 1972.

[19] F. Chiaraluce and R. Garello. Extended Hamming product codes analyti-

cal performance evaluation for low error rate applications. IEEE Trans. on

Wireless Comm., 3(6):2353�2361, 2004.

101

Bibliography

[20] M. M. Christiansen and K. R. Du�y. Guesswork, Large Deviations, and

Shannon Entropy. IEEE Trans. Inf. Theory, 59(2):796�802, 2013.

[21] A. Cohen, A. Solomon, K. R. Du�y, and M. Médard. Noise recycling. In

IEEE Int. Symp. on Inf. Theory, 2020.

[22] C. Condo. Iterative soft-input soft-output decoding with ordered reliability

bits GRAND, 2022. arXiv:2207.06691.

[23] S. Dave, J. Kim, and S. Kwatra. An e�cient decoding algorithm for block

turbo codes. IEEE Transactions on Communications, 49:41�46, 01 2001.

[24] K. R. Du�y. Ordered reliability bits guessing random additive noise decoding.

In IEEE ICASSP, 2021.

[25] K. R. Du�y, W. An, and M. Medard. Ordered reliability bits guessing random

additive noise decoding. In IEEE Trans. Sig. Proc., volume 70, pages 4528 �

4542, 2022.

[26] K. R. Du�y, M. Grundei, and M. Médard. Using channel correlation to im-

prove decoding � ORBGRAND-AI, 2023. arXiv:2303.07461.

[27] K. R. Du�y, J. Li, and M. Médard. Capacity-achieving guessing random

additive noise decoding. IEEE Trans. Inf. Theory, 65(7):4023�4040, 2019.

[28] K. R. Du�y and M. Medard. Soft detection physical layer insecurity, 2023.

arXiv:2212.05309.

[29] K. R. Du�y, M. Médard, and W. An. Guessing random additive noise de-

coding with symbol reliability information (SRGRAND). In IEEE Trans.

Commun., volume 70, pages 3�18, 2022.

[30] K. R. Du�y, A. Solomon, K. M. Konwar, and M. Médard. 5G NR CA-Polar

maximum likelihood decoding by GRAND. In Ann. Conf. on Inf. Sci. Sys.,

2020.

[31] G. Durisi, T. Koch, and P. Popovski. Toward Massive, Ultrareliable, and

Low-Latency Wireless Communication With Short Packets. Proceedings of

the IEEE, 104(9):1711�1726, 2016.

102

Bibliography

[32] P. Elias. Error-free Coding. Trans. IRE Prof. Group Inf. Theory, 4(4):29�37,

1954.

[33] P. Elias. List decoding for noisy channels. In IRE WESCON Convention

Record, 1957.

[34] G. Forney. Exponential error bounds for erasure, list, and decision feedback

schemes. IEEE Trans. Inf. Theory, 14(2):206�220, 1968.

[35] G. Forney. The Viterbi algorithm. Proc. of the IEEE, 61:268�278, 1973.

[36] J. Freudenberger, D. Nicolas Bailon, and M. Sa�eh. Reduced complexity

hard- and soft-input BCH decoding with applications in concatenated codes.

IET Circ. Device Syst., 15(3):284�296, 2021.

[37] R. Gallager. Low-density parity-check codes. IRE Trans. Inf. Theory, 8:21�28,

1962.

[38] K. Galligan, M. Médard, and K. R. Du�y. Block turbo decoding with ORB-

GRAND. In CISS, pages 1�6, 2023.

[39] K. Galligan, A. Solomon, A. Riaz, M. Médard, R. T. Yazicigil, and K. R.

Du�y. IGRAND: decode any product code. In IEEE GLOBECOM, 2021.

[40] K. Galligan, P. Yuan, M. Médard, and K. R. Du�y. Upgrade error detection

to prediction with GRAND. In IEEE GLOBECOM, 2023.

[41] T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and

estimation. Journal of the American Statistical Association, 102(477):359�

378, 2007.

[42] A. Goldsmith. Wireless Communications. CUP, 2005.

[43] J. Gri�n, P. Yuan, P. Popovski, K. R. Du�y, and M. Médard. Code at the

Receiver, Decode at the Sender: GRAND with Feedback. In IEEE Inf. Theory

Workshop (ITW), pages 341�346, 2023.

[44] J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-decision outputs

and its applications. In IEEE GLOBECOM, volume 3, pages 1680�1686, 1989.

103

Bibliography

[45] C. Häger and H. D. P�ster. Approaching miscorrection-free performance of

product codes with anchor decoding. IEEE Trans. Commun., 66(7):2797�

2808, 2018.

[46] R. W. Hamming. Error detecting and error correcting codes. The Bell System

Technical Journal, 29(2):147�160, 1950.

[47] T. Hashimoto. Composite scheme LR+Th for decoding with erasures and its

e�ective equivalence to Forney's rule. IEEE Trans. Inf. Theory, 45(1):78�93,

1999.

[48] T. Hashimoto and M. Taguchi. Performance of explicit error detection and

threshold decision in decoding with erasures. IEEE Trans. Inf. Theory,

43(5):1650�1655, 1997.

[49] E. Hof, I. Sason, and S. Shamai. Performance bounds for erasure, list, and

decision feedback schemes with linear block codes. IEEE Trans. Inf. Theory,

56(8):3754�3778, 2010.

[50] J. Justesen. Performance of Product Codes and Related Structures with

Iterated Decoding. IEEE Trans. Commun., 59(2):407�415, 2011.

[51] J. Justesen, K. Larsen, and L. Pedersen. Error correcting coding for OTN.

IEEE Comm. Mag., 48:70 � 75, 10 2010.

[52] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa. An e�cient maximum-

likelihood-decoding algorithm for linear block codes with algebraic decoder.

IEEE Trans. Inf. Theory, 40(2):320�327, 1994.

[53] S. Kerouedan, P. Adde, and R. Pyndiah. How do we implement block turbo

codes? In Turbo Codes, Error-correcting codes of widening application, In-

novative technology, Inf. sys. and networks, pages 127 � 141. Hermes Penton

Science, 2002.

[54] K.-J. Kim, S. Myung, S.-I. Park, J.-Y. Lee, M. Kan, Y. Shinohara, J.-W.

Shin, and J. Kim. Low-density parity-check codes for atsc 3.0. IEEE Trans.

on Broadcasting, 62(1):189�196, 2016.

104

Bibliography

[55] P. Koopman and T. Chakravarty. Cyclic redundancy code (CRC) polynomial

selection for embedded networks. In Int. Conf. on Dep. Sys. and Net., 2004.

[56] X. Liang, J. Yang, C. Zhang, W. Song, and X. You. Hardware e�cient and

low-latency ca-scl decoder based on distributed sorting. In IEEE GLOBE-

COM, pages 1�6. IEEE, 2016.

[57] S. Lin and D. J. Costello. Error control coding: fundamentals and applications.

Pearson/Prentice Hall, 2004.

[58] M. Liu, Y. Wei, Z. Chen, and W. Zhang. ORBGRAND Is Almost Capacity-

Achieving. IEEE Trans. on Inf. Theory, 69(5):2830�2840, 2023.

[59] G. Liva, W. E. Ryan, and M. Chiani. Quasi-cyclic generalized ldpc codes with

low error �oors. IEEE Trans. on Comm., 56(1):49�57, 2008.

[60] D. J. MacKay. Information theory, inference and learning algorithms. Cam-

bridge university press, 2003.

[61] A. Mahran and M. Benaissa. Adaptive chase algorithm for block turbo codes.

Electronics Letters, 39(7):1�2, 2003.

[62] A. Mahran and M. Benaissa. Iterative decoding with a hamming threshold

for block turbo codes. IEEE Communications Letters, 8(9):567�569, 2004.

[63] K. Niu and K. Chen. CRC-aided decoding of Polar codes. IEEE Commun.

Letters, 16(10):1668�1671, 2012.

[64] Y. Polyanskiy. 6.441 Information Theory.

[65] R. Pyndiah. Near-optimum decoding of product codes: block turbo codes.

IEEE Trans. Commun., 46(8):1003�1010, 1998.

[66] A. Raghavan and C. Baum. A reliability output Viterbi algorithm with ap-

plications to hybrid ARQ. IEEE Trans. Inf. Theory, 44:1214�1216, 1998.

[67] A. Riaz, V. Bansal, A. Solomon, W. An, Q. Liu, K. Galligan, K. R. Du�y,

M. Medard, and R. T. Yazicigil. Multi-Code Multi-Rate Universal Maximum

Likelihood Decoder using GRAND. In ESSCIRC, 2021.

105

Bibliography

[68] A. Riaz, A. Solomon, F. Ercan, M. Medard, R. T. Yazicigil, and K. R. Du�y.

Interleaved Noise Recycling Using GRAND. In IEEE ICC, pages 2483�2488,

2022.

[69] A. Riaz, A. Yasar, F. Ercan, W. An, J. Ngo, K. Galligan, M. Médard, K. R.

Du�y, and R. T. Yazicigil. A sub-0.8pJ/b 16.3Gbps/mm2 universal soft-

detection decoder using ORBGRAND in 40nm CMOS. In IEEE ISSCC,

2023.

[70] R. Roth. Introduction to Coding Theory. CUP, 2006.

[71] M. S. Roulston and L. A. Smith. Evaluating probabilistic forecasts using

information theory. Monthly Weather Review, 130(6):1653�1660, 2002.

[72] M. Rowshan and J. Yuan. Constrained Error Pattern Generation for GRAND.

In IEEE Int. Symp. on Inf. Theory, 2022.

[73] W. Ryan and S. Lin. Channel codes: classical and modern. Cambridge Uni-

versity Press, 2009.

[74] H. Sarieddeen, M. Médard, and K. R. Du�y. Soft-Input, Soft-Output Joint

Detection and GRAND. In IEEE GLOBECOM, 2022.

[75] H. Sarieddeen, P. Yuan, M. Médard, and K. R. Du�y. Soft-input, soft-output

joint data detection and GRAND: A performance and complexity analysis.

In IEEE Int. Symp. on Inf. Theory, 2023.

[76] A. Sauter, B. Matuz, and G. Liva. Error detection strategies for CRC-

concatenated polar codes under successive cancellation list decoding. In CISS,

2023.

[77] M. Scholten, T. Coe, and J. Dillard. Continuously-Interleaved BCH (CI-BCH)

FEC delivers best in class NECG for 40G and 100G metro applications. Proc.

Opt. Fiber Commun. Conf., pages 1�3, 03 2010.

[78] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379�423, 1948.

106

Bibliography

[79] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge. Staircase

Codes: FEC for 100 Gb/s OTN. J. Light. Technol., 30(1):110�117, 2012.

[80] A. Solomon, K. R. Du�y, and M. Médard. Soft maximum likelihood decoding

using GRAND. In IEEE Int. Commun. Conf., 2020.

[81] V. Sudharsan, V. Karthik, J. Vaishnavi, S. Abirami, and B. Yamuna. Per-

formance enhanced iterative soft-input soft-output decoding algorithms for

block turbo codes. Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), 8(5):105�110, 2016.

[82] I. Tal and A. Vardy. List Decoding of Polar Codes. IEEE Trans. Inf. Theory,

61(5):2213�2226, 2015.

[83] V. Tam Van and S. Mita. A novel error correcting system based on product

codes for future magnetic recording channels. IEEE Trans. Magn., 47, 2012.

[84] D. Truhachev, K. El-Sankary, A. Karami, A. Zokaei, and S. Li. E�cient

Implementation of 400 Gbps Optical Communication FEC. IEEE Trans.

Circuits and Sys., 68(1):496�509, 2021.

[85] G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and

I. Tomkos. A survey on fec codes for 100 g and beyond optical networks.

IEEE Comm. Surveys and Tutorials, 18(1):209�221, 2016.

[86] K. K. Y. Wong. The soft-output M-algorithm and its applications. Queen's

University, 2006.

[87] H. Yamamoto and K. Itoh. Viterbi decoding algorithm for convolutional codes

with repeat request. IEEE Trans. Inf. Theory, 26(5):540�547, 1980.

[88] C. Yang, Y. Emre, and C. Chakrabarti. Product Code Schemes for Error

Correction in MLC NAND Flash Memories. IEEE Trans. Very Large Scale

Integr. Syst., 20(12):2302�2314, 2012.

[89] P. Yuan, M. Medard, K. Galligan, and K. R. Du�y. Soft-output (SO) GRAND

and long, low rate codes to outperform 5 LDPCs, 2023. arXiv:2310.10737.

107

	Abstract
	Acknowledgements
	Funding acknowledgements
	Publications
	Acronyms
	Introduction
	Background
	Iterative GRAND
	Block turbo decoding with ORBGRAND
	Alternative soft output for GRAND
	Discussion
	Capacity-achieving proof for random linear product codes
	List of Figures
	Bibliography

