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Abstract

The velocity-based analysis framework provides dired suppart for divide and conquer design approaches,
such as the gain-scheduling control design methoddogy, whereby the design of a nonlinea system is
decompaosed into the design of an associated family of linea systems. The velocity-based gain-scheduling
approach is quite general and diredly supparts the design of feedbadk configurations for which the dosed-
loop d/namics are nonlinea. However, the present paper concentrates on the velocity-based design of
controll ers which, when combined with anonlinea plant, attain linea closed-loopdynamics. The resulting
approach is a dired generalisation to nonlinea systems of classicd frequency-domain pole-zero inversion
which is, in many ways, complementary to the Input-Output Lineaisation approach. In particular the
former is dynamic and reduces to open-loopinversion in the linea case whil st the latter is esentially static
and utilises full state feedback.

1. Introduction

The velocity-based analysis framework recently developed in Leith & Leithead (1998hc,d) establishes
an aternative description of anonlinea system in terms of afamily of linea systems; namely, the velocity-
based lineaisation family. This approach rigoroudy generalises and extends the @rnventional series
expansion lineaisation at an equili brium operating point and asociates a lineaisation with every operating
point, not just equili brium operating points. It is emphasised that the velocity-based formulation involves
no lossof information and, in particular, is not confined to equili brium operating points alone but instead
encompasses every operating point, including those far from equili brium.

The velocity-based analysis framework provides dired suppat for divide and conquer design
approadhes, such as the gain-scheduling control design methoddogy, whereby the design of a nonlinear
system is decomposed into the design of an associated family of linea systems (Leith & Leithead 199&).
Spedficdly, since a velocity-based lineaisation family is associated with the nonlinea plant, a
corresponding linea controller family can be obtained by designing alinea controller for eady member of
the plant family. A nonlinea controller may then be determined for which the velocity-based lineaisation
family is the designed linea controller family. It should be noted that the velocity-based gain-scheduling
approach resolves many of the deficiencies of the mnventional gain-scheduling approach including the
restriction to a possbly excessvely small neighbourhood d the equilibrium operating points (Leith &
Leithead 199&). By allowing information about the plant dynamics at non-equili brium operating points to
be diredly incorporated into the cntroller design, both sustained non-equilibrium operation and dynamic
trangitions between equili brium operating points, including those which take the system far from
equili brium, can be acommodated. In addition, conventional gain-scheduling design approaches employ a
number of different, and quite distinct, lineaisations (Leith & Leithead 199&). Consequently, since the
anaysis and design frameworks employ different lineaisations it is difficult to incorporate insight provided
by analysis into the controller design. In contrast, the velocity-based approach provides a @nsistent,
unified design and analysis framework.

The velocity-based gain-scheduling approach is quite general and dredly supparts the design of
feedbadk configurations for which the dosed-loop d/namics are nonlinea. However, the purpaose of this
paper is to study the velocity-based design of controllers which, when combined with a nonlinea plant,
attain linea closed-loop dynamics. Whilst of interest in its own right, an additional motivation for this
study is to investigate the relationship, if any, between velocity-based gain-scheduling and dynamic
lineaisation approaches such as | nput-Output Lineaisation (see for example, Isidori 19%6).

The paper is organised as follows. In section 2, the velocity-based analysis framework is briefly
reviewed. The dynamic lineaisation of a dass of square MIMO nonlinea systems using the velocity-



based approadch is investigated in sedion 3 and, in sedion 4, the assumptions in section 3 are relaxed and
the analysis is extended to include avery broad classof square MIMO nonlinea systems. The dynamic
lineaisation of a nonlinea system in the @sence of plant measurements is briefly considered in sedion 5.
In sedion 6, the velocity-based approach is compared with the Input-Output Lineaisation approac and the
conclusions are summarised in sedion 7.

2. Review of velocity-based analysis

In this dion, the gproac of Leith & Leithead (1998b) to the analysis of a nonlinea system, by
relating its dynamic charaderistics to those of an assciated family of linea systems, is briefly reviewed.
Consider nonlinea plants with dynamics,

X=F(r), y=G(x,r) (D)
where F(-,) and G(+,) are differentiable nonlinea functions with Lipschitz continuous first derivatives and
rO0™ denotes the input to the plant, y O O the output and x 0 0" the states. The set of equili brium
operating points of the nonlinea plant, (1), consists of those paints, (X, o), for which

F(Xo, Fo) =0 ()]
and the corresponding equili brium output is
Yo = G(Xo, o) ©)

Let ®:0"xO™ denote the space onsisting of the union of the state, x, with the input, r. The set of
equili brium operating points of the nonlinea plant, (1), forms a locus of paints, (X, o), in @ and the
response of the plant to a general time-varying input, r(t), is depicted by atrgedory in ®.
The nonlinea system, (1), may be reformulated, equivalently, as
X=Ax+Br +f(p), y=Cx+Dr +g(p) 4

where A, B, C, D are gpropriately dimensioned constant matrices, f(+) and g(*) are nonlinea functions
and p(x,r)d09% g<m+n, embodes the nonlinea dependence of the dynamics on the state and input with
O,p, O,p functions of p aone. Trivially, this reformulation can always be ahieved by letting p = [x" r']",
in which case g=m+n. However, the nonlineaity of the system is frequently dependent on only a subset of
the dements of the state and input, in which case the dimension, g, of p islessthan m+n. Since Oup, O;p
are functions of p aone, the variable, p(x,r), equals the mnstant value, p;, upon a surfaceof co-dimension
gin @ and Oxp and [0;p are mnstant over eat surface Hence the normal to ead surfaceis identicd at
every point on the surfaceand ead surfaceis, therefore, affine. Moreover, to ensure that p is a unique
function of x and r, these surfaces must be paralel for al p. Conseguently, it may in fad be asumed,
without lossof generality, that O,p and [;p are mnstant.

Suppacse that the nonlinea system, (4) , is evolving along a trajedory, (X(t), r(t)), in ® and at time, ty,
the trgjedory has readed the paint, (x;, r;). It is emphasised that the point, (x;, r1), need not be an
equili brium operating point and, indeed, may lie far from the locus of equili brium operating points. From
Taylor series expansion theory, the subsequent behaviour of the nonlinea system can be gproximated,
locdly to the paint, (X4, 1), by the first order representation,

3% = (Axy+Bri+f(py) + (A+0f(py) Dyp )3X + (B+0f(py) Orp )3r ©)
8y = (C+0g(p1) Oxp )0 X + (D+0g(py) Crp )Or (6)
P1=p(Xy,r1), Or =r-ry, ¥ =Cxy+Dry+g(p) +0y, X =0X +Xy, % =8% @)

provided x;+0X [0 Ny ri+0r0 N;, where the neighbourhoods, Ny and N,, of, respedively, x; and r; are
sufficiently small. When X (t) is zero,

X (t2) = x1 = x(t) 8)
?Af (t) = Ax+Bra+f(py) = X (tl) 9
X (ty) = (A+0f(py) Okp X (t2)) X (ta) + (B+Of(py) Orp ) 1 (t) = X (o) (10)
¥ (t1) = Cx1 + Dry+ g(p1) = y(ty) (11)
¥ (t2) = (C+0g(py) 0xp ) X (t)+(D+0g(Pr) Trp ) ¥ (ta) = (ta) (12

Hence the solution, X (t), to (5)-(7), initialy at time ty, is tangential to the solution, x(t), of (4). Indeed,
locdly to time t;, X (t) provides a first-order approximation to x (t) and a second-order approximation to
X(t) and ¥ (t) provides afirst-order approximation to y(t).



The solution, X (t), to the first-order series expansion, (5)-(7), provides a valid approximation only
while the solution, x(t), to the nonlinea system remains in the vicinity of the operating point, (X1, r1).
However, the solution, x(t), to the nonlinea system need not stay in the vicinity of a single operating point.
Consider the time interval, [0,T]; the initial time can, without loss of generality, always be taken as zero.
An approximation to x(t) is obtained by partitioning the interval into a number of short sub-intervals. Over
ead sub-interval, the gproximate solution is the solution to the first-order series expansion relative to the
operating point readied at the initial time for the sub-interval (with the initial conditions for ead sub-
interval chosen to ensure wntinuity of the gproximate solution). The number of locd solutions employed
is dependent on the duration of the sub-intervals, but the locd solutions are acarate to second order; that
is, the gproximation error is proportional to the duration of the sub-interval cubed. Hence, as the number
of sub-intervals increases, the gproximation error asociated with eech rapidly deaeases and the overall
approximation error also deaeases. Inded, the overall approximation error tends to zero as the maximum
size of the sub-intervals tends to zero (Leith & Leithead 1998h. Hence the family of first-order series
expansions, with members defined by (5)-(7), can provide an arbitrarily acarate gproximation to the
solution of the nonlinear system. Moreover, this approximation property holds throughout @ and is not
confined to the vicinity of asingle ejuili brium operating point or even of the locus of equili brium operating
points.

The foregoing analysis shows that the solution to the nonlinea system, (4), is approximated by the
piecewise @wmbination of the solutions to the members, (5)-(7), of the family of first-order series
expansions. It should be noted that the state, input and output transformations, (7), depend on the operating
point relative to which the series expansion is caried out. When the solution to the nonlinea system is
confined to a neighbourhood about a single operating point, the transformations, (7), are static and the
dynamic behaviour is described by the system, (5)-(6), aone. However, when the solution to the nonlinear
system traces a trgjedory which is not confined to a neighbourhood about a single operating point, the
transformations, (7), are no longer static and the dynamic behaviour is no longer described solely by the
system, (5)-(6). Instead, the dynamic behaviour is described by (5)-(7). Combining (5) and (6) with the
locd input, output and state transformations, (7), ead member, (5)-(7), of the family of first-order
representations may be reformulated as,

% ={ f(py)-Df (P Uxp x0-Of () Drp ra } + (A+Df(p) Uip ) X + (B+Df(py i )r (13

¥ ={ 9(P)-09(p) Oxp x1-0g(p) Trp r1 } + (C+Og(p1)Uxp ) X +(D+0g(py)rp ) 1 (14
In contrast to the representation, (5)-(6), the state, input and output are now the same for all members of the
reformulated family. The dynamics, (13)-(14), of an individual member of the family are dfine rather than
linea even when (x4, ry) isan equilibrium operating point. The inhomogeneous termsin (13)-(14) may, in
genera, be extremely large and can dominate the solution.

On differentiating (13)-(14)

X = W (15
W = (A+Df(pr) Oup ) W + (B+Df(pr) Orp) ¢ (16
¥y =(C+Og(p) Oxp )W + (D+g(ps) Dip) ¥ 17

It should be noted that this differentiation operation is purely formal and dfferentiation of noisy
measurementsis not required. The system, (15)-(17), is dynamicdly equivalent to the system, (13)-(14), in
the sense that with appropriate initial conditi ons, namely,
X (t) =x1, W (t) = A x+Bri+f(ps), ¥ (t) = Cxy+Dri+g(ps) (18)

the solution, X, to (15)-(17), isthe same as the solution, X, to (13)-(14). However, in contrast to (13)-(14)
, the transformed system, (15)-(17), is linea. The relationship between the nonlinea system and its
velocity-based lineaisation, (15)-(17), is direct. Differentiating (4), an aternative representation of the
nonlinea system s

X =w (19
w = (A+0f(p) Oxp )w + (B+Of(p) Oip ) 1 (20)
y =(C+Ug(p) Uxp )W + (D+0g(p) Lip) ¥ (29)

Dynamically, (19)-(21), with appropriate initial conditions corresponding to (18), and (4) are equivalent
(have the same solution, x). (Whenw = F(x, r), y = G(x, r) isinvertible for every (x, r), so that x may be
expressed as afunction of w, r and y, then the transformation relating (19)-(21) to (4) is, in faa, algebraic).



Clealy, the velocity-based lineaisation, (15)-(17), is smply the frozen form of (19)-(21) at the operating
point, (X3, r1). There eists a velocity-based lineaisation, (15)-(17), for every paoint in ®. Hence a
velocity-based lineaisation family, with members defined by (15)-(17), can be a&wciated with the
nonlinea system, (4). Similarly to the family of first-order expansions, the solutions to the members of the
family of velocity-based lineaisations, (15)-(17), can be piecal together (with the initial conditions for
eadt sub-interval chosen to ensure mntinuity of X, W and ¥) to approximate the solution to the nonlinea

system, (19)-(21) to an arbitrary degreeof acaracy (Leith & Leithead 1998h.

There &ists a rigorous, and dred, relationship between the dynamic charaderistics of a nonlinea
system and those of arelated family of linea systems, namely, the velocity-based lineaisation family, and
arelated family of affine systems, namely the first-order series expansion family. Since the solutions to the
members of the families can be cmmbined to approximate the solution to the nonlinea system arbitrarily
acarately, the families embody the entire dynamics of the nonlinea system, (4), with no loss of
information and therefore provide dternative representations of the nonlinea system. The situation is
depicted in figure 1. Whilst these representations are equivalent in the sense that they eah embody the
entire dynamics of the nonlinea system, they are not necessrily equivalent with resped to ather
considerations. In particular, the direct relationship between the velocity-form of the nonlinea system and
the velocity-based lineaisation family and the lineaity of the members of the latter family provides
continuity with established linea theory. Furthermore, the velocity-based lineaisation of the
cascade/fealbadk interconnection of a plant and controller is Smply the ascade/feadbadk connedion of the
velocity-based lineaisations of the plant and controller (Leith & Leithead 199&). Hence both analysis
(Leith & Leithead 1998 and controller design (Leith & Leithead 199&) are fadlitated by adoping the
velocity-based linearisation representation.

3. Dynamic inversion of square nonlinear systemswith well-defined point-wiserelative
degree of zero

The requirement is to design a system which, when combined with the nonlinea system, (4), is
equivalent to a linea input-output map. (The former is, hereafter, often referred to as the “controller”
whilst the latter is denoted the “plant”). Moreover, in acordance with the divide and conquer phil osophy,
and to maintain continuity with well established linea methods, it is desired that the nonlinea design task
is decompased into a number of linear sub-problems.

The velocity-based analysis framework establishes a rigorous, and dired, relationship between the
dynamic charaderistics of a nonlinea system and those of a related family of linea systems; namely, the
velocity-based lineaisation family.  Since the velocity-based lineaisation of two cascaded nonlinea
systems is smply the cacade of the velocity-based lineaisations of the individual nonlinea systems
(similarly for feedbadk interconnedions, Leith & Leithead 199&), consider designing a linea controll er
for eadr member of the velocity-based lineaisation family. In view of the present requirements, seled
ead linea controller such that the input-output dynamics (of the combined plant lineaisation and
controller) are identicd in ead case. Spedficdly, consider target input-output dynamics where the output
is smply equal to the input in ead case; that is, to the identity map. This choice @rresponds to dynamic
inversion of each plant lineaisation. Because e@h member of the plant family is linea, conventional
linear design methods can be utili sed to design the members of the controller family. The solution, to the
combination of the nonlinea plant with a nonlinea controll er which hes velocity-based lineaisation family
corresponding to the designed controller family, is approximated arbitrarily acarately by the gpropriate
piecewise combination of the solutions to the members of the family of combined plant lineaisations/linea
controll ers. Owing to the uniformity of the input-output dynamics of the latter, it might be expeded that the
input/output dynamics of the nonlinea plant/controller system are linea and equal to the identity mapping;
that is, dynamic inversion of the original nonlinea plant is achieved. (It should be noted that whilst
consideration is heredter confined to identity input/output dynamics, any other linea input/output
dynamics can, of course, always be obtained by combining a suitable linea pre-compensator in cascade
with the propased dynamic inversion controll er).

Dynamic inversion of linea systems can be adieved for state feadbadk (Silverman 1969. (The
approach of Silverman (1969 is subsumed by the more recent nonlinea state feedbad lineaisation
approach (see for example, Isidori 1995)). However, since this involves repeaed differentiation of the
output, the dired relationship between the dired formulations and the velocity formulations (figure 1) is



obscured. Moreover, dynamic inversion of linea systems is more usually approached from a frequency-
domain poe-zero cancdlation perspedive which does not involve repeaed dfferentiation and has the
advantage that full state information is not required. In this approach, which is adopted heredter, the
controller zeroes are placed at the pales of the plant and the controller poles are placed at the zeoes of the
plant. The resulting controller is aredisation of the plant inverse and, provided the plant and controller are
stable, the cascade @mnnedion of the plant and controller is dable with wnity transfer function. (When the
relative degree of the plant is greder than zero, the pole-zero inverse is improper and, therefore, not
redisable. This may be resolved by augmenting the inverse with additiona poles sich that the augmented
system is proper. By pladng the alditional poles sufficiently far left in the complex plane, the augmented
inverse system approximates the exad inverse system arbitrarily acarately).

3.1 Pole-zeroinversion of linear systemswith relative degree of zero

Consider the SISO linea system
X=AXx +br, y=cx+dr (22
for which the transfer function, G(s), relating ytor is
b,s" + b8t + ... + bys+ by
G(s=Y(9/R(s) = DDOOODODOODOODO (23
S+ s+ ... +a,5+ a,
where A, b, ¢, d are gpropriately dimensioned, r, yOO, x O 0" and Y(s), R(s) are, respedively, the
Laplacetransforms of y(t) and r(t). Assume that b, is non-zero so that the transfer function hes relative
degree zeo. In addition, assume that the transfer function poles and zeroes are stable; that is, lie in the left
half complex plane. The requirement isto determine aminimal-order inverse system such that the cascade
combination of this system with the original system, (22), has unity transfer function. Working in the
frequency domain, it follows from standard linea theory that every redisation of the minimal inverse
system has transfer function
S+t + .. +a,S5+a,
G = 000000000000 (24)
b,S' + b8 + ...+ bs+ by
Although encountered less frequently, this result can, of course, be reformulated in the state-space time-
domain. Assume, without loss of generdlity, that (22) is of the form

ox, 0 C-a 1 0 .- 0 OOOx, O B'a1b1+bzg 0x, O

0, 0 O 00, O

Fon ga 01 0 09X, g p-ab, +b, 0% 0 ,
0: 0=0: i : Doi00: kO ;O y=fL 0 - 0 o0: Dby @D
0 O 0O oo oo O O 0O

Kn1d O@a 00 0 1gXniO Ganb +b, 0 X1

Exng H’an 00 -0 OHEXnE Eanb1+bn+1H Hxn E

It is graightforward to show that (25) has transfer function (23). Every linea system with transfer
function, (23), is related to (25) by alinea state transformation. It can be seen that the wefficients of the
state-space representation, (25), are diredly related to the wefficients of its transfer function, (23).
Adopting aredisation of this form for the inverse system, it isimmediately clea that a system with transfer
function (24) is o

x'=A'X'+b'v, r=cx +dv (26)
wherex' =[x'; .. x]"and
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Every linea redisation of the minimal inverse system, with transfer function, (24), is related to (26) by a
linea state transformation. To confirm that (26) is, indeed, aredisation of theinverse of (22), let

zZ=x+Xx (28)
The cacade ombination of (22) and (26) is

R R

and it follows from (25) and (27) that .
bc'+A'-A=0, bd'+b'=0, dc-c=0, dd =1 (30
Hence,

LZHAC: :M{HV v=le O]{xz‘}” (31

The dynamics of the cacade system comprise an unforced, observable amponent with state, z, and a
forced, unobservable cmponent with state x'. Since the poles and zeroes of (23) lie in the left half
complex plane, A and A' are Hurwitz and (31) is gable. It can be seen that the sub-system comprising the
state, z, is unforced and so z decas to zero exponentialy. Consequently, the aror, y-v, decays
exponentially to zero and the output, y, asymptoticaly trads the input, v, as required. When the initial
condition of x' is such that z(0) is zero, the tracking error isidenticaly zero.

3.2Point-wiserelative degree

The relative degreeof the nonlinea system, (4), is{ry(X,r),...,rg(X,r)}, where the charaderistic number,
ri(x,r), is defined as the minimum number of times that, at the operating point (x,r), the j™ output must be
differentiated such that it is diredly coupled to the input (see for example, Isidori 1995. The relative
degreeis uniform when it isthe same & every operating point, (x,r). Assciated with the nonlinea system,
(4), is the velocity-based lineaisation family, (15)-(17). The point-wise relative degree of the nonlinea
system, (4), is defined as {ry(p),....rx(P)}, where {ri(pa),....I'p(p1)} is the relative degree of the member of
the velocity-based lineaisation family associated with the operating points at which p equals p;. Letting

A(p) = A+Uf(p) Uxp, B(p) =B+Uf(p) Uip, C(p) = C+Lg(p) Uxp, D(p) =D+0g(p) Uip (32
it follows that when Dj(p,) # O, where Dj(p,) denotes the j™ row of D(py), the corresponding charaderistic
number, r;(p1), is0. When Dj(p,) = 0, rj(p,) isdefined (seg for example, Rugh 1996 Definition 14.10) by

C,(p)A“(P)B(p) =0 Ok<r,(p)-1 (33

C,(P)A" "™ (p)B(p) %0 (34
where C;(p,) denotes the j™ row of C(p,). The nonlinea system has a point-wise relative degreewhich is
uniformly zero when the daraderistic numbers, r(py), j=1,..p, are zeo for al values of p,; that is, when
every row of D(p,) is non-zero for al values of p;. The nonlinea system has a well-defined pant-wise
relative degreeof zero when, in addition, the rank of D(p,) isp for al values of p;.

The relative degree ad pdnt-wise relative degree ae not equivalent.  For example, consider the
nonlinea system



%7 % _2x1x5 ) ,
= HOA+X5 | Y =X HXX) (39

X, 0 1
for which
_2XX,
CE)B(p) =[1+X5 2x,%,] 1+xZ |=0 (36)
1
_ AX X51
C(p)A(R)B(R) = 2x,X, + T+ %2 (37)
Xz

Hence, the point-wise relative degreeis two at the operating points for which C(p,)A(p,)B(p,) is non-zero.
However, since
Oh(x)g(x) = C(py)B(p,) =0 (38)
2%, X,
Dh()Of (x)g(x) + D°h(x)g()f (x) =[1+x3 2x,x,] 142 |=0 (39)
1

it follows that the relative degreeis greaer than two. Indedd, it is graightforward to show that the relative
degreeof the nonlinea system is uniformly infinite; that is, the input never appeas at the output regardless
of the number of times that the output is differentiated. m

3.3 Nonlinear MIM O systemswith well-defined point-wise relative degree of zero

Consider the MIMO nonlinea system

Xx=Ax+Br +f(p), y=Cx+Dr +g(p) (40
for which the velocity-based lineaisation asociated with the operating points at which p equals p; is

X =W (41)

W =A(p1) W+ B(py) ¥ (42

y =C(py) w + D(py) ¥ 43

whererJ0™,y 0 0, x 0 0" and
A(py) = A+0f(py) Ok, B(py) = B+0f(py) Uip, C(pa) = C+0g(p) Ukp . D(p1) = D+Ug(py) Lip (44)
This defines a velocity-based lineaisation family as p; varies throughout its range. Since the velocity-
based lineaisation family defined by (41)-(43) is diredly related to the velocity-form of the nonlinea
system, seefigure 1, a dlight abuse of notation is adopted and the same state, input and output are used for
both the nonlinea system, (40), and the members of its velocity-based lineaisation family. Assume, for
the moment, that the nonlinea system is square and has well-defined pdnt-wise relative degree zeo; that
is, the number of inputs, m, equals the number of outputs, p, and D(p) is non-singular for al values of p.
This assumption isrelaxed later in sedion 4.

Consider the candidate inverse system, in velocity-form,

X = w (45)
w'=Al(p) w' +B'(p) v (46)
P =C'(p) w' +D'(p)) v (47)

for which the velocity-based linearisation asciated with the operating points at which p' equals p'; (that
is, the corresponding frozen form of (45)-(47)) is

X =wh o (48)
Ww'=Al(p) W.i +Bi(p'y) v (49
r =Cl(p') w' +D'(p'y) v (50)

wherevOO™, x' 0 O". Following the linear analysis of sedion 3.1, let A'(p'y) , B'(p'1) , C'(p'1) , D'(p'y) be
solutions of

B(p)C'(p') +A'(p')-A(p1)=0, B(py)D' (p'1) +B'(p') =0, D(p:)C'(p')-C(p1)="0, D(p1)D'(p'y)=1(51)



Since D(p,) is uniformly non-singular, the solution to (51) is well-defined and unique: namely,
E‘gpl, A'(p'1)=A(p1)-B(p1)D™(P1)C(p1), B'(P') = -B(p1)D(p1), C'(p')=D"(p1)C(pa), D'(p')=D"(p1) (52)
Z=W + Wi (53)
(It should be noted that the choice of transformation, (53), is not unique. Other state transformations lead
to aternative inverse system redisations, provided the same transformation is employed with every
member of the velocity-based lineaisation family; for example, z = w + Tw' where T is a non-singuar
constant matrix). It is graightforward to show (Leith & Leithead 199&) that the velocity-based
lineaisation family of the cacade nnedion of (40) and (45)-(47) consists smply of the cascade
connedion of ead member of the velocity-based lineaisation family, (41)-(43), with the @rresponding
member of the velocity-based lineaisation family of the inverse system, (48)-(50). The cacade
combination of (41)-(43) and (48)-(50) is

MM 9

{ 'z} _ {A(po B(pl)c‘(pl)fA‘(po—A(pl)}{ z_HB(pl)Di(pm B‘(pl)}v (55)
Wl o A'(p) w B'(py)
y=[C(p) D(pl)ci(pl)—C(pl)]M}D(pl)Di(pl)v (56)

Hence it follows from (52) that

o 2] *

2] [A@) 0 Tz 0o 7.
{wH 0 A‘(Jw‘HBi(m}v 9
y=[co) o]{ﬂw (59

The velocity-based lineaisation family of the cascade wnnedion of (40) and (45)-(47) is(57)-(59).

The velocity-form of the cacaded system is obtained when p is permitted to vary in (57)-(59). The
structure of the cascade system is depicted, in block diagram form, in figure 2. Assume that the inverse
system is bounded-input bounded-output stable. This ensures that in the cacade cnnedion the
unobservable w' dynamics are stable. Assume, in addition, that the unforced sub-system involving the
state, z, is exponentialy stable. Under these nditions, the tradking error velocity, y-v, decgs

exponentially to zero provided C(p) is uniformly bounded. When the initial conditions are seleded such
that z(0) iszero, y-v isidenticdly zero. When, in addition, y(0) equals v(0), it follows that y(t)-v(t) is
identicdly zero. Hence, the nonlinea system, (45)-(47), (with appropriate initial conditions) is, indeed, a
redisation of the inverse of the MIMO nonlinea system, (40).

Remark 1 Full state informationis not required in order to implement the inverse system obtained. Instead,
it is only necessary to measure, or estimate, the scheduling variable, p, which frequently depends on
only a small number of elements of the input and state vectors. Indeed, in the cae of purely linea
systems, there is no scheduling variable and, consequently, plant measurements are not required to
implement the pole-zero inverse (in contrast to an Input-Output Lineaisation controll er which always
requires full state information; for example, Isidori 1995. Sincetheinput, r, to the plant is the output
of the inverse system, plant measurements are dso not required with nonlinea systems for which the
scheduling variable, p, depends only on r; that is, when Oyp isidenticdly zero. This is discussed
further in sedion 5 below.

Remark 2 The tracking error, y-v, is
y(t)- v(t) = [,C(p)z(s)ds + y(0) - v(0) (60)

Owing to the pure integration in (60), with initial conditions other than the @ove, the tradking error
need not decay to zero. However, under mild conditions, y-v does tend to a limit asymptoticdly (see



appendix A); that is, ast - o, the output, y, follows the input, v, with a steady offset. This geady off set
may be readily removed by integral feedback. Let

v(t) = AV (9) - Y(9)ds (61)
where A=Al with A paositive and v, isthe new input. With this choiceof v,

y(t) + Ay(t) = Av, +C(p)z(s) (62
for which the solution is

y(t) = e"y(0) + ;e I(Av,(9)+C(p(s))z(s))ds (63
Since| C(p) z| tends to zero exponentially,

y(t) - [ire* ™Iy (9)ds ast- oo (64)

andy isrelated to v, by linea first-order dynamics with red polesat s=-A. From linea theory, provided
A is sufficiently large compared to the frequencies at which the spedrum of v, has sgnificant energy,

:AeM ™y (s)ds and so the output, y, asymptoticaly tracks the input, v, (without steady offset).

Example 1 - Nonlinea SISO system with well-defined pdnt-wise relative degreeof zero

Consider the SISO nonlinea system, depicted in figure 3,

X=G(p), y=x+G(p) (69
where p = r-x, G(s)=tanh(s)+0.01s. The velocity-based linearisation associated with the operating points at
which p equals p; is

X =W (66)
w =-0G(pyw + UG(py) (67)
y = (1-0G(p))w + OG(py) f (68)

and this defines a velocity-based lineaisation family as p; varies throughout its range. The velocity-based
lineaisation hastransfer function representation

V(9= 06(0)— 1 Ry (69)
TS

where R(s)and Y(s) denote, respedively, the Laplace transfer functions of () and y (). Since

0OG(p1)#0 Op4, the members of the velocity-based lineaisation family have uniformly zero relative degree
It follows from the foregoing analysis that the velocity-based lineaisation family of a rresponding
inverse system is defined by

X' =w (70)

W '=-w' -V (71

co1-06() s, 1 2
0G(p,) 0G(p)

as p; varies throughout its range. It should be noted that the velocity-form of the inverse system is
obtained when p is permitted to vary in (70)-(72). The velocity-based lineaisation (70)-(72) has transfer
function representation
R = SRy 73
0G(p) s+1

where V/(s) denotes the Laplacetransfer function of v (t). Clealy, the transfer functions (73), is the
redprocd of the transfer function, defined by (69), of the mrresponding e ocity-based lineaisation
asciated with the original system. The velocity-based lineaisation family of the cascade connedion of
(65) with the inverse system is defined by

m ) E ﬂ{ﬂ (74
S




y=[1-0G(p,) o]{v\fi } v (76)

Owing to the dired relationship between the velocity-based lineaisation family and the velocity-form of a
nonlinea system, seefigure 1, the nonlinea system obtained by all owing p to vary as afunction of x and r
in (74)-(76) is dynamicdly equivalent to the cacade wnnedion of (65) with the inverse system
corresponding to (70)-(72). Hence, it can be deduced immediately that the internal w' dynamics are linear
and stable. Moreover, since 0G(p) > 0, it follows from Lyapunov theory that the z dynamics are
exponentially stable & required (for example, a Lyapunov function is V=2?).

Example 2 - Nonlinear MIMO system with well-defined pdnt-wise relative degreeof zero
Consider the MIMO nonlinea system

% | _ —@+x3)x, +1r)] v [ X+ @+ 7

_XZ X, t1, , Y, X, *1,
for which the associated velocity formulation is
_Xl _Wl
_ 78

_Xj _Wj 78
[, _ —(1+X3) =2X(x, +1,) [ W, + -(1+x3) 0OfHh (79
| W, 0 -1 w, 0 1|,
'y, _[1 2enw,] s x3) O i (80)
Y2 0 1 jw, 0 1|,

The members of the velocity-based lineaisation family are simply the “frozen” forms of (78)-(80). It can
be seen that the members of the velocity-based lineaisation family have relative degree zeo. It follows
from the foregoing analysis that the velocity form of a wrrespondinginverse systemis

Xlll:| - |:W1ii:| (81)
L X2 W,

_Wli}:{"xi ‘szxl}{wf}{l O}Pl} (82)
W, 0 -2 |w, | |0 -1]v,

- 1 2X,T. i 1 .
f 721w ol v
.1}: 1+x5 1+x%5 {Wli}+ 1+x2 Ll} (83
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3.4 Zero dynamics
The zeo dynamics of the nonlinea system, (40), are defined as the internal dynamics arising when the
system isdriven by anon-trivial input, r, such that its output, y, isidenticdly zero (see for example, Isidori

1995athough the discussion therein concerns a subset of the dass of nonlinea systems of the form (40)).
Consider the cacade mnnedion of the nonlinea system, (40), with the inverse system, (45)-(47),

m i E’ ﬂ{ﬂ (84)
W' wole ol =

y=[cee) O]Lﬂw (®9



When z(0)=0, it follows from (84)-(86) that z(t) isidenticdly zero. Hence, when v =0, z(0)=0, y(0)=0 the
output, y(t), isidenticdly zero. It should be noted that whil st the input, v, to the cacade system is constant
(Vv iszero), theinput, r, to the nonlinea system, (40), satisfies

f=C'(p")w | (87
Clealy, r is dependent, through the evolution of the state w', on the dynamics of the inverse system. Since
z(t) isidenticaly zero,

w = -w' (89
and the internal dynamics of (40) satisfy

X =W (89)

w =A'(p)w (90

where it is noted that p may depend on both the state, x, and the input, r. The internal dynamics, (89)-(90),
are, by definition, the zeo dynamics of the nonlinea system, (40). As might be expeded by analogy with
linea system theory, it can be seen that the zero dynamics of the nonlinea system, (40), are predsely the
dynamics of the @rresponding inverse system, (45)-(47).

3.5 Integrability

The terms Of (p) Oxp , Of(p) Orp, Og(p) Oxp and Og(p) O, p in the velocity-based lineaisations of the
nonlinea system, (40), are simply the derivatives of the nonlinea mappings, f(p) and g(p), evauated at

every point in the operating space Hence, it followsimmediately that the solutions, f(p) and §(p) ,to
£ Dxp (px A Dxp yx

Cf (p){ }{ } Dg(p){ }{ } (91)
up @ t.p Y

o= 0f(p) O, @ = 0Of(p) Orp, Y« =0g(p) Uxp, v+ = 0g(p) Urp (92
exist and are, respedively, f(p) and g(p). However, this integrabil ity property requires a strong constraint
on the terms in the velocity-based lineaisation family which, whilst quite natural, is certainly not satisfied
by every choiceof @, @, yx and y,. For example, a sufficient condition for integrabili ty is that ¢, @, yx and
y: are ontinuous and differentiable functions with

O (@(0), = Ty, (@), Tp (@ (), = T, (@ (), Ok # j
Do (V< (0)), = 0, (v (@), B (v (), =0, (v, (P), Ok # ]

and p;, (@), (@ (P)),. (v.(P), and (v, (p)), denote, respedtively the " elements of p, @, @, andy;

(see for example, Vidyasagar 1993 p32). It should be noted that the analysis in the foregoing sedions
does not require that the velocity-based inverse system is integrable. The dassof nonlinea systems with
the velocity-based form

where

(93

X =W (94)
W=ap) W+ a(p) f (95
Y =WP)w+vi(p) f (96)

is ©mewhat richer than the dassof nonlinea systems, (40), and the velocity-based inverse system neel
not, in general, belong to the latter class. Indeed, whilst the analysis in the foregoing sedions takes the
nonlinea system, (40), as its darting point, thereby implicitly assuming that the plant velocity-based
lineaisation family isintegrable, thisassumption isnot used at any point in the analysis and the results are,
therefore, diredly applicable to the general class of velocity-based systems, (94)-(96), including those
which are not integrable.

3.6 Realisation of inverse system

The velocity-form of the inverse system is obtained when p is permitted to vary in the arresponding
velocity-based lineaisation family, seefigure 1.  The velocity-form has a diff erentiation operator at the
input (to oltain v from v) and an integration at the output (to oktain y from Y). When the inverse system



is augmented with integral adion, the differentiation at the input can be formally combined with the
integrator. It is emphasised that this reformulation is purely forma in neture; no unstable poe-zero
cancdlation is involved. The velocity-form of the inverse system can now be redised diredly with the
integral adion appeaing explicitly at the output. For instance the dired redisation of the velocity-form of
the inverse system in Example 1, augmented with integral adion, is shown in figure 4. It should be noted
that, in the context of control systems, integral adion is almost always required in order to mee
performance requirements. When integral adion cannot be employed, redisation of the inverse system in
dired form imposes certain integrabili ty constraints on the dass of all owable inverse system velocity-based
lineaisation familiesin order to ensure the existence of a bounded transformation from the velocity-form to
the dired form (seesection 3.5). Thisissueisdiscussed in detail in Leith & Leithead (1996 1998a) and the
implementation approach there may be realily extended to the dass of systems considered here.

4. Extension to systemswith non-zero point-wise relative degree

The analysis of section 3 generalises the linea frequency-domain pole-zero inversion approach to
square nonlinea systems with well-defined pdnt-wise relative degree of zero. In this sdion, the
extension of these results to nonlinea systems with non-zero pant-wise relative degreeis considered. In
the linea case, when the relative degree is non-zero, the pae-zero inverse system is improper and,
therefore, not redisable. However, this difficulty can be resolved by formally augmenting the origina
system with additional zeroes, such that its relative degreeis zero, and a @rresponding pole-zero inverse
can then determined. Alternatively, the (unredisable) inverse of the original system can be augmented with
additional poles sich that the augmented inverse is proper. By pladng the alditional poles sufficiently far
left in the cmplex plane, the augmented inverse system approximates the exad inverse system arbitrarily
acarately.

A nonlinea analogue of the first approacd is to formally augment the input or output of the system with
a number of differentiators. Provided the point-wise relative degree of the augmented system is well-
defined and zero, the analysis of sedion 3 can then be employed to determine an inverse of the augmented
system. It should be emphasised that the differentiators are purely formal in neture axd neel not be
implemented. When the foregoing inverse is conneded in cascade with the augmented system, the output
of the augmented system follows the input to the inverse system (after some initia transients). Hence,
when thisinverse is conneded in cascade with the original (unaugmented) system, the output of this system
is linealy related, via a tain of integrators, to the input to the inverse system. However, since this
approach involves repeaed dfferentiation of the output, the dired relationship between the dired
formulation and the velocity formulation (figure 1) is obscured. Hence, this approacd is not pursued further
here.

The second approadh, in the linea case, is to augment the (unredisable) inverse of the original system
with additional dynamics such that the augmented inverse is redisable. Consider the velocity-based
lineaisation family, (41)-(43), associated with the nonlinea system, (40). In order to fadlitate the
analysis, assume that D(p) is identicdly zero (and so the relative degreeis at least one): this involves no
lossof generality sinceit can always be adieved by augmenting the system with a suitable low-pass input
filter. Therelative degreg {ry(pa).....ro(P1)} . of the member of the family correspondingto p equal to p; is
defined by

Cj(pl)Ak(pl)B(pl):() Dk<rj(p1)_1 (97)

C(p)A"*Y (p,)B(p,) # 0 (99
where Cj(p,) denotes the j™ row of C(p;) and j=1..m. There exists an infinitesimally small perturbation, &g,
such that D(p;)+&4 is nonsingular and for which, therefore, the relative degree is zero. Similarly,
perturbing B(p1) to B(p1)+ep and C(py) to C(py)+e, it is graightforward to show that there exists
infinitesimally small €, and €. for which B(py)+e, and C(py)+e. violate the equality constraints, (97).
Moreover, the perturbations are alditive & the input and output of the system as depicted in block diagram
forminfigure 5. This latter observation is unsurprising since the perturbation is augmenting the zeoes of
the lineaisation whilst leaving the poles unchanged; for example, it can be seen that in the linea canonicd
form, (25), the zeoes are determined solely by the dements of B and D.



By analogy with the linea case, consider perturbing the nonlinea system in the é&bove manner such that
the relative degrees of the members of the perturbed velocity-based lineaisation family are uniformly well-
defined and zero. Since the perturbed system then has well -defined pdnt-wise relative degree of zero, its
inverse can be readily determined using the analysis of section 3. Similarly to the linea situation, provided
the perturbations employed are sufficiently small and that a smooth inverse doesindeed exist, the inverse of
the perturbed system is an arbitrarily accurate, redisable, inverse of the origina nonlinear system, (40)

(Appendix B).

Example 3 - Nonlinea SISO system with non-zero pant-wise relative degree
Consider the SISO nonlinea system

Xx=G(p), y=x (99
G(s)=tanh(s)+s (200
where p = r-x. The velocity-based lineaisation associated with the operating points at which p equals p; is
X =w (101
w =-0G(p)w + OG(py) f (202
y =AY (103)

and a velocity-based lineaisation family is defined as p; varies throughout its range. The velocity-based
lineaisation hastransfer function representation

; 0G(p,) ¢

Y(s)=—————R(s 10
®= 5 Do) *© (1049

where R(s) and Y(s) denote, respedively, the Laplacetransfer functions of f () and y (t). The members

of the velocity-based lineaisation family have relative degreeone. It follows from the foregoing analysis
that the velocity-based li nearisation family of a corresponding approximate inverse system is defined by

x'=w (105
Wi= —DG(pl)[1+8d]Wi EC IV (106)
€y €y
F=twely (107
€4 &4
The velocity-based lineaisation, (105-(107), has transfer function representation
R = o) __y(q (109

g4S+ey +UG(p,)
where V(s) denotes the Laplacetransfer function of v (t). Evidently, as 4 0 the transfer function, (108),
tend to the redprocd of the transfer function, (104), of the rresponding welocity-based lineaisation
asciated with the original system. Simulation results with v chosen to be sin2t and a range of values of €4
are presented in figure 6: it can clealy be seen that the aror, y- Vv, tendsto zero as g4 deaeases.

Example 4 - Nonlinea MIMO system with non-zero pant-wise relative degree
Consider the MIMO nonlinea system

Xy X, = B(X;)
. Y1 X1
Xo |Z|~AX)+1+15 |, = (109
. 2 Xy + X3
X3 —-C(x3) +1,
for which the velocity-based lineaisation associated with the operating points a which (x;, X3) equals
(X4, X5 ) IS

Xy | =W, (110




w, ] | -0B(x,) 1 0 w,| [0 O :
W, [=| -0A(x,) 0 0 w, [+|1 1{;} (111
Vv, 0 0 -0C(x;)|w,| [0 1]-?
- W
y,] [1 0 0]
= w, (112
V2] [2 0 1)
3

where A(9)=(10+sin s) s, B(9)=(5+s9)s, C(s)=tanh(s). The input and output of the velocity-based
lineaisation isrelated, in transfer function form, by

R(9+R,(9 R(9+R,(9
Y91 | +0Bx )s+OAX,) | s+ OB(x, )s+0A(X, ) "
%) | gge RO | B9 5 DB I+ (OA) 0D (113

(s+00xy,)) s+ 0B(x, )s+UA(Xy) — (s+00(K, ))(s° + OB(x,, )s+ AKX, ))

where Ri(s) and Yi (s) (i=1, 2) denote, respedively, the Laplacetransfer functions of r(t) and y;(t). The
relative degreeof the velocity-based lineaisationsis 2 for output, y,, and unity for output, y,. Following
the foregoing analysis that the velocity-based lineaisation family of a rresponding approximate inverse
system is defined by

Xl Wl
%, | =|w, (114
X5 w,'
Wli -0B(xy,) 1 0 'Wli 0 o L
. : \'
W, |=|-0Ax ) -2 0 -2 w,|+-E oL (115
2 y 2
W €y €y W &y €4 |LV2
3 3
-1 0 -mo,)-L| o -1
L €y €4 | L €4 |
, 1 0o 0w, 1 0,
Hl=| w,' |+ & . (116
ANE! 1|V 1y,
e Qe vl e
d d d

The input and output of the velocity-based lineaisation, (114)-(116), of the gproximate inverse system are
related, in transfer function form, by

R, (9)+(S" + OB(x, )s+ DAX, ))Vy(9)
R(S| | &S +e,0B(X, )s+e AKX, ) +1
{Rz(s)} | (s*+0CKs))(E4Ru(9)- Va9 + V(9))
€45+ €4LIC(x5 ) +1

(117

where V,(s) (i=1,2) denotes the Laplacetransfer function of V,(t). Evidently, as 40 the transfer
function, (117), tend to the inverse of the transfer function, (113), of the crresponding velocity-based
lineaisation associated with the original system. Owing to the dired relationship between the velocity-
based lineaisation family and the velocity-form of a nonlinea system, the nonlinea system obtained by
alowing x; and x5 to vary with timein (114)-(116) is aredisation of the inverse system. Simulation results

with v; chosen to be sin(t) and v, chosen to be @s(2t)-1 are presented in figure 7 for a range of values of g4
: it can clealy be seen that the aror, y- Vv, tendsto zero as g4 deaeases.



5. Dynamicinversion without plant measurements

The foregoing welocity-based dynamic inversion approach is a dired generalisation of the linea
frequency-domain pole-zero inverse gproach. Whilst full state information is not required to implement
the velocity-based inverse system, a measurement or estimate of the scheduling variable, p, is needed. Of
course, in the cae of purely linea systems, there is no scheduling variable and, consequently, plant
measurements are not required to implement the pole-zero inverse (in contrast to an Input-Output
Lineaisation controller which always requires full state information). In addition, since the input, r, to the
plant is the output of the inverse system, plant measurements are not required with nonlinea systems for
which the scheduling veriable, p, depends only on r; that is, when Oyp is identicdly zero. However, in
general p depends on the state of the plant and, athough p typicdly involves only a small subset of the
elementsin the full state vedor, it remains attradive to consider dynamic inverses which require aminimal
number of plant measurements.

The state, x, of the plant, (40), isrelated to velocity state, w, by

w =Ax+ Br +f(p) =F(x, r) (118
Assume that F(e,*) isinvertible in the sense that
x =F*(w,r) (119

This ensures that the velocity transformation relating the dired and velocity forms of the nonlinear system
(seefigure 1) is algebraic. It follows from the analysis of sedion 3 that the state, w', of the velocity-based
inverse system tends asymptoticaly to the negative, -w, of the state of the plant. Consider, therefore, using
the estimated scheduling variable

p'=0p X +0pr (120
where

X =FYw,r) (122)
in the inverse system, (45)-(47), rather than the exad scheduling variable, p=0O,px +0,p r. The resulting
system utilises no plant measurements. Assuming for simplicity that the point-wise relative degreeis zero,
the velocity-based form of the cascade cmbination of the plant with the resulting inverse is defined by

o

{ 'z} {A(p ) B(RIC'(p')+A'(P')-Alp )}{ Z’HB(p )D'(p")+B'(P")], (123
WI 0 Al(pl) WI B'(p')

y=[ce) DE)C'(p')-Clp )]M } +D(p )D'(p')V (1249
where _

Z=W+Ww (129

A'P)=A(P)-B(P)D(P)C(P), B'(P) =-B(P)D™(P), C'(p) =D*(P)C(p), D'(P)=D'(p) (126
This velocity-based system may be reformulated as

REEH

S v LaH
W 0 A )|w ] |B'(p)

y=[c) zs]{vji}(wmv (129
where
&, =B(P)(C'(P)-C'(P)+(A'(0')-A'(p)). & =B()D'(p')~D'(p)) +(B'(p') - B' (p)) (130
& =D(p )(C'(p' )-C'(p)). &, =D(p)(D'(p')-D'(p)) (131)

It foll ows from (125), (121) and (120) that when z(0) is zero, p' equals p and the &; are zeo. Hence owing
to the dired relationship between the velocity-based lineaisation family and the velocity-form of a
nonlinea system, seefigure 1, it can be deduced immediately that with initial condition z(0)=0, the z



dynamics in (128 are unforced and z is identicdly zero. Consequently, the & vanish and y-vis
identicdly zero as required. More generally, y—v tends to zero asymptoticdly provided the z dynamics

are ssymptoticdly stable so that transients associated with other initial conditions decy to zero.
(Sufficient conditions for stability of the z dynamics are derived in Appendix C).

6. Comparison with Input-Output Linearisation

The velocity-based gain-scheduling approach is quite general and dredly suppats the design of
feedbadk configurations for which the dosed-loop d/namics are nonlinear. However, the discusson in this
paper concentrates on the design of velocity-based controllers which, when combined with a nonlinea
plant, attain linea closed-loop d/namics. Of course, the design of lineaising controllers has recéved
considerable dtention in the literature. In particular, Input-Output Lineaisation (see for example, Isidori
19%) isawidely advocaed approac for acaommodating plant nonlineaities. It is, therefore, necessary to
compare the vel ocity-based approach with that of Input-Output Lineaisation. At a number of pointsin the
precaling sedions, spedfic fedures of the velocity-based lineaising approach are briefly compared with
the @rresponding aspeds of the Input-Output Lineaisation approach. Nevertheless in order to fadlit ate
the comparison, it is appropriate to coll ed these observations together in the present sedion.

The velocity-based approacd investigated in this paper is a dired generalisation to nonlinea systems of
the dassicd frequency-domain pole-zero inversion approach for linea systems. In contrast, the Input-
Output Lineaisation approad is a dired extension of the state-fealbadk inversion approac for linea
systems gudied by Silverman (1969. These gproadces are quite distinct, even in the linea case.
Similarly to the purely linea case, the velocity-based nonlinea pole-zero inversion approach leads to a
dynamic inverse which requires both the nonlinear system concerned and itsinverse to be, in an appropriate
sense, stable.  Input-Output Lineaisation, on the other hand, is esentially based on static state feedbadk
and only requires gability of the internal dynamics rendered unobservable by the feedbadk. Of course,
state feedbadk requires the measurement or estimation of the full state of the plant whereas the nonlinea
pole-zero inverse requires only a measurement or estimate of the scheduling variable, p. Frequently, p
depends on only a small number of elements of the state and/or input vedors. Inded, in the Gase of purely
linea systems, there is no scheduling variable and, consequently, plant measurements are not required to
implement the pole-zero inverse (in contrast to an Input-Output Lineaisation controller which aways
requires full state information).

With regard to the design task associated with each approacd, the velocity-based approach decomposes
the nonlinea design task into a number of straightforward linea sub-problems; that is, the methoddogy
supparts the divide and conquer phil osophy and maintains continuity with well established linea methods.
In this ense, it is closaly related to the gain-scheduling methoddogy. In contrast, it is difficult to discern
any relationship between the Input-Output Lineaisation design procedure and linea control design. It is
emphasised that, in pradice the importance of maintaining a degree of continuity with well established
linea methods should not be underestimated; for example, safety certification procedures are typicdly
based on experience with conventional linear methods and the st of developing and assessing entirely
new procedures is often prohibitive. Moreover, the Input-Output Lineaisation approac involves the
repeded analytic differentiation of the output of the nonlinea system concerned. Since this rapidly
bemmes intradable & the order of the system increases, the utility of the Input-Output Lineaisation
approach appears to be largely restricted to systems with relatively low order. When the nonlinea system
concerned is described by a differential equation of the form, (40), the velocity-based lineaisation
approach also requires a formal differentiation step to oltain the rresponding welocity-based
representation, (15)-(17). However, this is confined to a single formal differentiation for which the
complexity increases relatively dowly with increasing system order.  In addition, the velocity-based
representation is often a natural one and may be identified dredly from experimental data (see for
example, Leith & Leithead 1998d, in which case the forma differentiation step may be avoided
completely.

It should be noted that the Input-Output Lineaisation and nonlinea pole-zero inversion approacdhes are
extreme @ses in the sense that the former is essentialy static and utilises full state feedbadk whilst the
latter is dynamic and reduces to open-loop inversion in the linea case. Other dynamic inversion



approaches, which lie between these extremes, may be derived by utilising a combination of | nput-Output
Lineaisation and nonlinea pole-zero inversion. However, these ae not considered further here.

7. Conclusions

The velocity-based analysis framework provides dired suppat for divide and conguer design
approaches, such as the gain-scheduling control design methoddogy, whereby the design of a nonlinea
system is decompaosed into the design of an associated family of linea systems. Spedfically, since a
velocity-based lineaisation family is asociated with the nonlinea plant, a wrresponding linea controll er
family can be obtained by designing alinea controller for ead member of the plant family. The velocity-
based gain-scheduling approach is quite general and diredly supparts the design of feedbadk configurations
for which the dosed-loop d/namics are nonlinea. However, the present paper concentrates on the
velocity-based design of controllers which, when combined with a nonlinea plant, attain linea closed-loop
dynamics.

The velocity-based approach to dynamic lineaisation investigated in this paper

e isadired generalisation to nonlinea systems of the dasdcd frequency-domain pole-zero inversion
approach.

e requires, in general, only a measurement or estimate of the scheduling variable, p. Frequently, p
depends on only a small number of elements of the state and/or input vedors. Indeed, in the @ase of
purely linea systems, there is no scheduling variable and, consequently, plant measurements are not
required to implement the pole-zero inverse.

e demmposes the nonlinea design task into a number of straightforward linea sub-problems; that is, the
methoddogy suppats the divide and conquer philosophy and maintains continuity with well
established linea methods. In this snse, it is closely related to the gain-scheduling methoddogy.
However, it is emphasised that the velocity-based approach does not necesstate a slow variation
requirement.

The velocity-based dynamic lineaisation and Input-Output Lineaisation approacies are, in many ways,
complementary. In particular the former is dynamic and reduces to open-loop inversion in the linea cese
whilst the latter is essentially static and utilises full state feedbadk.
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Appendix A

The trading error satisfies
y(®)- v(t) = [,C(p)z(s)ds + y(0) - v(0) (132

Assume that C(p) is uniformly bounded; that is, |C(p)| <a Op. Since the z dynamics are exponentialy
stable, it follows that

IC(p(M)2(0)]< aye™|z(0)| (133
wherey, a ae positive finite onstants. Let
X, = Y(KT,) = v(KT,) (139

where T, isapositive anstant. It follows that

X0 =X, S| JAEC(R(9) Z()dsl< Y [ee — e
0j a

|z(0)] (135

and so, provided z(0) is bounded, [Xn-X,|—0 as m,n-o. Hence from Cauchy’s criterion for uniform
convergence (see for example Sutherland 1995 Theorem 1.2.9), X, tends to a limit, say X, as k- oo,
Moreover, it follows from (132) and (133) that

RIS [7IC(0)2(Slds + |y (0) - v(0)] < @ +|y(0)-v(0) (139

Hence, thelimit, X, isfinite provided z(0) and y(0)-v(0) are both finite. Since

YO-VO-XIs Y0~ vO-x,#x, =Xl e - e Z0)Ix, - (139

then provided z(0) is bounded, for any positive € there exists a choice of t, and k, sufficiently large that
ly(®)-v(t)-X|< ¢ Ot=t ,k=k, (138

Consequently, y(t)-v(t) tendsto afinite limit, X, ast— o

Appendix B

Consider the nonlinea system, (40), for which the velocity-based lineaisation family is (41)-(43). In
order to fadlit ate the analysis, assume that D(p) isidenticdly zero: thisinvolves no loss of generality since
it can always be atieved by augmenting the system with a suitable low-passinput filter. Perturbing D(p),
B(p), C(p) to g4, B(p)+€n, C(P)+£, the velocity-based form of the resulting perturbed nonlinea systemis

X = W (139

W=A(p)W +B(p)t (140

y =C(p) W +D(p)r (141
where

p=0pX+0pr, A(p)=A+0f(p) O, B(p)=B+0f(p) Oip+ey (142

C(p)=C+0g(p) Ohp ++&, D (P)=¢q (143
It foll ows from the analysis of sedion 3 that a @rrespondinginverse systemis

X =w - (144

w'=A'(p) w' +B'(p) v (149

t =C'(p) w' +D'(p') v (146)



where

p'=p, A'(P) = A(P)-B (p)D (P)C(p) . BI(P) =-B (p)D(p) (147)
C'(p) = D (p)C(p), D'(p) =D (p) (148

When employing the perturbed inverse system with the original nonlinea system, (40), let
p=p (149

The velocity-based form of the cacade ambination of this inverse system with the original nonlinea
system, (40), is

MM =

{ 'z} _ {A(p) —sbf)'%(p)é(p)}{ z } R {—sbffl(p)}v (153
W' 0 A'(p) w! B'(p)

y=[Clp) -C(m]m } (152
where _

Z=w+w (153

By (151), the state w, of the nonlinear system is related to the state w', of the inverse system by the
dynamics

2= A(p)z-¢,D7(p)(C(P)W' +Y) (159
Assume that the dynamics, x = A(p(t))x , are exponentialy stable. It follows (seg for example, Khalil
1992Lemma 4.8) that the dynamics, (154), are bounded-input bounded-output stable with

12i< v 120)kx [e,.D 7 (P)(CRIW' +V)| (159

where y, a and Kk are positive constants and ||+|| = supl|. In addition, assuume that the inverse system is

bounded-input bounded-output stable: since v is bounded, it follows that w' is bounded. It should be noted
that these stability conditions are just those employed in section 3 for the cae of zero relative degree

Seleding €, such that|sbf)‘1(p)| - 0aseq -0, then z tends to zero asymptotically as |gg| - O provided C(p)
is bounded:; that is, w—-w' asymptoticaly as [eq| - O.

From (146),

(t) = D™ (p())(CP(H)2(t) -~ Clp()w(t) + V(1)) (156)
Hence,

V(1) = A(p())w(t) + B(P(D)F .

= (A(p(1)) - B(p()D™ (p())C(p(t) W(t) + B(p(1)D™ (p())( V(1) + Cp(1)z(1)) (157

Assume that there exists abounded input, T (t), and assciated baunded solution, W (t), such that

W (1) = A(p(H) W (1) + B(p(t) T (1 (159

y (0 = Cp() W (1) =¥(t) +& (1) (159

where & (t) deceys asymptoticaly to zero ast— o. The inversion task is then well-pased in the sense that a
smooth solution does indeed exist. (The nonlinea relative degree when its exists, is defined as the
minimum number of times ead output must be differentiated such that the inputs are diredly coupled to

the outputs. It follows that a sufficient condition for the existence of T is that the relative degreeis
uniform in the relevant operating region and the asociated coupling is invertible). Adopting a fast/dow
time-scde separation approad, let 1=t/e be the fast time-scde and let

W= (0+W (1) (160
It foll ows that
B~ ¢ B - (A(p(en) - Bp(eT)D ™ (p(EN)Clp(EN) i) + () (163

where



N = ~eB(p(en))F (1) + £B(p(e1))D ™ (p(eT))( ~€ . W(eT) ~ & (eT) + C(p(e1))Z(£0)) (162
Assume that |B(p)| and |C(p)| are uniformly bounded and seled €. and € such that |g¢|- 0 as [eg]» 0 and
|s|5‘1(p) |is uniformly bounded (it should be noted that €. and € may depend on€g). Since W (t) and T (t)

are bounded, z(t) tends to zero asymptoticdly as [eg| » 0 and & (t) decays asymptoticdly to zero, it follows
that n decays asymptoticdly to zero as |gq] - 0. Hence provided (161) is bounded-input bounded-output
stable uniformly in €, then W (1) - 0 and w(t) - W (t) as ||~ 0. It follows immediately that v-y -0

and the gproximate inverse system is an arbitrarily accurate gpproximation to the exad inverse & |gg|- 0.
Appendix C

~ Sufficient conditions for stability of the z dynamics may, for example, be derived as follows. Provided
A'(p), B'(p), C'(p) and D'(p) are differentiable with Lipschitz continuous first derivatives, it follows from
the Mean Value Theorem (seg for example, Khalil 1992 [®8) that the magnitudes of the & are

proportional to |p'-pl, (Where |*|, denotes the Euclidean norm). In addition, provided F(,s) is
differentiable with resped to its first argument and the derivativeis Lipschitz continuous

PPl = [Dxp X - OxpXko < [DxpblF(-W', 1) - FH(w, 1)l < Buw'+wl, = Balzy (163
where 3, isapositive finite cnstant. The z dynamicsin (128) are

z=A(P)z+n (164
where

n=gw +&,v (169
Under the foregoing conditions, it follows from (163) that

N2 < BalzloAd W'l V |} (166

where 3, is a positive finite cnstant. Assume that the dynamics, (164), are exponentially stable when n is
zero. It follows (seg for example, Khalil 1992 Theorem 4.5) that there exists a Lyapunov function, V,
satisfying
ov ov
2 2 2
Oijz)," <V < azlz,, —A(P)z+—<-0,l7,", |—
1lzl2 2lzl 3z (P at al2, 9z
where the q; are positive constants. Hence, when 1 is non-zero, the derivative of V aong the solution
trajedories of (164) satisfies
dv _oVv ov oV 2 e 2
o EA(Q)Z."'E +En < a5z, +a,|z; Inl, < _(as —G4BZ{|W |2+|V|2})|Z|2 (168
Assume that the w' dynamics are bounded-input bounded-output stable with exponentialy decaying
transients; that is,

Iw' (B)], < aye™ |w' ()], +k||v| (169
where |[V]| = sup|V(t)], . In addition, assume that the input, v, and initial condition, w'(0), satisfy
t

ov
<a,lZ, (167)

2

laylw' @), +(k + D]} < a"g (170

Under these conditions, it follows from (168) that dV/dt is negative definite (with quadratic upper bound)
and the function, V is aso a Lyapunov function for the z dynamics, (164), when n is non-zero. Hence,

from standard Lyapunov theory (seg for example, Khalil 1992 Corollary 4.2), z decgys exponentially to
zero asrequired .




Dired form Series expangon family

x =F(x,r) X ={F(Xy,r1) = O, F(Xq, 1%, =0, F(Xg, 1)}

y=G(xr) < > +0,F(x,, ;)X +0, F(x,,r)r

Y ={G(x,r1) =0,G(X, )%, =0, G(Xy,r,)ry
+0,G(Xq,r )X +0,G(Xy,r)r

Ve ocity-based form Vel ocity-based lineaisation

family
> |« >
w=0,F(x,r)w+0F(x,r)r
y =0,G(x,r)w+0,G(x,r)r

X=w
w=0,F(x,,r)w+0F(x,,r)r
y = DXG(XI’ rl)W+ DrG(Xl’ rl)r

Figure 1 Alternative representations of a nonlinea system
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Figure 3 Nonlinea system with relative degree zeo considered in Example 1.
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Figure5 Structure of perturbed system
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Figure6 Variation of inversion error with g4 (Example 3)
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Figure 7 Variation of inversion error with g4 (Example 4)
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