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Abstract
The velocity-based analysis framework provides direct support for divide and conquer design approaches,
such as the gain-scheduling control design methodology, whereby the design of a nonlinear system is
decomposed into the design of an associated family of linear systems.  The velocity-based gain-scheduling
approach is quite general and directly supports the design of feedback configurations for which the closed-
loop dynamics are nonlinear.  However, the present paper concentrates on the velocity-based design of
controllers which, when combined with a nonlinear plant, attain linear closed-loop dynamics.  The resulting
approach is a direct generalisation to nonlinear systems of classical frequency-domain pole-zero inversion
which is, in many ways, complementary to the Input-Output Linearisation approach. In particular the
former is dynamic and reduces to open-loop inversion in the linear case whilst the latter is essentiall y static
and util ises full state feedback.

1. Introduction

The velocity-based analysis framework recently developed in Leith & Leithead (1998b,c,d) establishes
an alternative description of a nonlinear system in terms of a family of linear systems; namely, the velocity-
based linearisation family. This approach rigorously generalises and extends the conventional series
expansion linearisation at an equilibrium operating point and associates a linearisation with every operating
point, not just equili brium operating points.  It is emphasised that the velocity-based formulation involves
no loss of information and, in particular, is not confined to equili brium operating points alone but instead
encompasses every operating point, including those far from equilibrium.

The velocity-based analysis framework provides direct support for divide and conquer design
approaches, such as the gain-scheduling control design methodology, whereby the design of a nonlinear
system is decomposed into the design of an associated family of linear systems (Leith & Leithead 1998c).
Specifically, since a velocity-based linearisation family is associated with the nonlinear plant, a
corresponding linear controller family can be obtained by designing a linear controller for each member of
the plant family.  A nonlinear controller may then be determined for which the velocity-based linearisation
family is the designed linear controller family.  It should be noted that the velocity-based gain-scheduling
approach resolves many of the deficiencies of the conventional gain-scheduling approach including the
restriction to a possibly excessively small neighbourhood of the equili brium operating points (Leith &
Leithead 1998c).  By allowing information about the plant dynamics at non-equili brium operating points to
be directly incorporated into the controller design, both sustained non-equilibrium operation and dynamic
transitions between equili brium operating points, including those which take the system far from
equili brium, can be accommodated.  In addition, conventional gain-scheduling design approaches employ a
number of different, and quite distinct, linearisations (Leith & Leithead 1998c).  Consequently, since the
analysis and design frameworks employ different linearisations it is difficult to incorporate insight provided
by analysis into the controller design.  In contrast, the velocity-based approach provides a consistent,
unified design and analysis framework.

The velocity-based gain-scheduling approach is quite general and directly supports the design of
feedback configurations for which the closed-loop dynamics are nonlinear.  However, the purpose of this
paper is to study the velocity-based design of controllers which, when combined with a nonlinear plant,
attain linear closed-loop dynamics.  Whilst of interest in its own right, an additional motivation for this
study is to investigate the relationship, if any, between velocity-based gain-scheduling and dynamic
linearisation approaches such as Input-Output Linearisation (see, for example, Isidori 1995).

The paper is organised as follows.  In section 2, the velocity-based analysis framework is briefly
reviewed.  The dynamic linearisation of a class of square MIMO nonlinear systems using the velocity-



based approach is investigated in section 3 and, in section 4, the assumptions in section 3 are relaxed and
the analysis is extended to include a very broad class of square MIMO nonlinear systems.  The dynamic
linearisation of a nonlinear system in the absence of plant measurements is briefly considered in section 5.
In section 6, the velocity-based approach is compared with the Input-Output Linearisation approach and the
conclusions are summarised in section 7.

2. Review of velocity-based analysis

In this section, the approach of Leith & Leithead (1998b) to the analysis of a nonlinear system, by
relating its dynamic characteristics to those of an associated family of linear systems, is briefly reviewed.
Consider nonlinear plants with dynamics,�

x = F(x, r),     y = G(x, r) (1)
where F(·,·) and G(·,·) are differentiable nonlinear functions with Lipschitz continuous first derivatives and
r∈ℜm denotes the input to the plant, y ∈ ℜp the output and x ∈ ℜn the states.  The set of equili brium
operating points of the nonlinear plant, (1), consists of those points, (xo, ro), for which

F(xo, ro) = 0 (2)
and the corresponding equili brium output is

yo = G(xo, ro) (3)
Let Φ:ℜn×ℜm denote the space consisting of the union of the state, x, with the input, r.  The set of
equili brium operating points of the nonlinear plant, (1), forms a locus of points, (xo, ro), in Φ and the
response of the plant to a general time-varying input, r(t), is depicted by a trajectory in Φ.

The nonlinear system, (1), may be reformulated, equivalently, as�
x = Ax + Br + f(ρρ),  y = Cx + Dr + g(ρρ) (4)

where A, B, C, D are appropriately dimensioned constant matrices, f(•) and g(•) are nonlinear functions
and ρρ(x,r)∈ℜq, q≤m+n, embodies the nonlinear dependence of the dynamics on the state and input with
∇xρρ, ∇rρρ functions of ρρ alone.  Trivially, this reformulation can always be achieved by letting ρρ = [xT  rT]T,
in which case q=m+n.  However, the nonlinearity of the system is frequently dependent on only a subset of
the elements of the state and input, in which case the dimension, q, of ρρ is less than m+n.  Since ∇xρρ, ∇rρρ
are functions of ρρ alone, the variable, ρρ(x,r), equals the constant value, ρρ1, upon a surface of co-dimension
q in Φ and ∇xρρ and ∇rρρ are constant over each surface.  Hence, the normal to each surface is identical at
every point on the surface and each surface is, therefore, affine.  Moreover, to ensure that ρρ is a unique
function of x and r, these surfaces must be parallel for all ρρ.  Consequently, it may in fact be assumed,
without loss of generali ty, that ∇xρρ and ∇rρρ are constant.

  Suppose that the nonlinear system, (4) , is evolving along a trajectory, (x(t), r(t)), in Φ and at time, t1,
the trajectory has reached the point, (x1, r1).  It is emphasised that the point, (x1, r1), need not be an
equili brium operating point and, indeed, may lie far from the locus of equili brium operating points.  From
Taylor series expansion theory, the subsequent behaviour of the nonlinear system can be approximated,
locally to the point, (x1, r1), by the first order representation,

δ
� �
x  = (Ax1+Br1+f(ρρ1)) + (A+∇f(ρρ1) ∇xρρ )δ

�
x  + (B+∇f(ρρ1) ∇rρρ )δr (5)

δ
�
y  = (C+∇g(ρρ1) ∇xρρ )δ

�
x  + (D+∇g(ρρ1) ∇rρρ )δr (6)

ρρ1=ρρ(x1,r1),   δr = r - r1 ,   
�
y  = Cx1 + Dr1 + g(ρρ1) + δ

�
y ,   

�
x  = δ

�
x  + x1, 

� �
x  = δ

� �
x (7)

provided x1+δ
�
x  ⊆ Nx r1+δr⊆ Nr, where the neighbourhoods, Nx and Nr, of, respectively,  x1 and r1 are

sufficiently small .  When δ
�
x (t1) is zero,�

x (t1) = x1 = x(t1) (8)� �
x (t1) =  Ax1+Br1+f(ρρ1) = 

�
x (t1) (9)

 
�� �
x (t1) = (A+∇f(ρρ1) ∇xρρ 

�
x (t1))

� �
x (t1) + (B+∇f(ρρ1) ∇rρρ )

�
r (t1) = 

� �
x (t1) (10)�

y (t1) = Cx1 + Dr1 + g(ρρ1) = y(t1) (11)� �
y (t1) = (C+∇g(ρρ1) ∇xρρ )

� �
x (t1)+(D+∇g(ρρ1) ∇rρρ )

�
r (t1) =

�
y (t1) (12)

Hence, the solution, 
�
x (t), to (5)-(7), initially at time t1, is tangential to the solution, x(t), of (4).  Indeed,

locally to time t1, 
�
x (t) provides a first-order approximation to 

�
x (t) and a second-order approximation to

x(t) and 
�
y (t) provides a first-order approximation to y(t).



The solution, 
�
x (t),  to the first-order series expansion, (5)-(7), provides a valid approximation only

while the solution, x(t), to the nonlinear system remains in the vicinity of the operating point, (x1, r1).
However, the solution, x(t), to the nonlinear system need not stay in the vicinity of a single operating point.
Consider the time interval, [0,T]; the initial time can, without loss of generali ty, always be taken as zero.
An approximation to x(t) is obtained by partitioning the interval into a number of short sub-intervals.  Over
each sub-interval, the approximate solution is the solution to the first-order series expansion relative to the
operating point reached at the initial time for the sub-interval (with the initial conditions for each sub-
interval chosen to ensure continuity of the approximate solution).  The number of local solutions employed
is dependent on the duration of the sub-intervals, but the local solutions are accurate to second order; that
is, the approximation error is proportional to the duration of the sub-interval cubed.  Hence, as the number
of sub-intervals increases, the approximation error associated with each rapidly decreases and the overall
approximation error also decreases.  Indeed, the overall approximation error tends to zero as the maximum
size of the sub-intervals tends to zero (Leith & Leithead 1998b).  Hence, the family of first-order series
expansions, with members defined by (5)-(7), can provide an arbitrarily accurate approximation to the
solution of the nonlinear system.  Moreover, this approximation property holds throughout Φ and is not
confined to the vicinity of a single equili brium operating point or even of the locus of equilibrium operating
points.

The foregoing analysis shows that the solution to the nonlinear system, (4), is approximated by the
piecewise combination of the solutions to the members,  (5)-(7), of the family of first-order series
expansions.  It should be noted that the state, input and output transformations, (7), depend on the operating
point relative to which the series expansion is carried out.  When the solution to the nonlinear system is
confined to a neighbourhood about a single operating point, the transformations, (7), are static and the
dynamic behaviour is described by the system, (5)-(6), alone.  However, when the solution to the nonlinear
system traces a trajectory which is not confined to a neighbourhood about a single operating point, the
transformations, (7), are no longer static and the dynamic behaviour is no longer described solely by the
system, (5)-(6).  Instead, the dynamic behaviour is described by (5)-(7).  Combining (5) and (6) with the
local input, output and state transformations, (7), each member, (5)-(7), of the family of first-order
representations may be reformulated as,� �

x  = {  f(ρρ1)-∇f(ρρ1)∇xρρ x1-∇f(ρρ1)∇rρρ r1 } + (A+∇f(ρρ1)∇xρρ )
�
x  + (B+∇f(ρρ1)∇rρρ )r  (13)�

y  = {  g(ρρ1)-∇g(ρρ1)∇xρρ x1-∇g(ρρ1)∇rρρ r1 } + (C+∇g(ρρ1)∇xρρ )
�
x +(D+∇g(ρρ1)∇rρρ ) r  (14)

In contrast to the representation, (5)-(6), the state, input and output are now the same for all members of the
reformulated family.  The dynamics, (13)-(14), of an individual member of the family are affine rather than
linear even when (x1, r1) is an equilibrium operating point.  The inhomogeneous terms in (13)-(14) may, in
general, be extremely large and can dominate the solution.

On differentiating (13)-(14)� �
x  = 

�
w (15)� �

w = (A+∇f(ρρ1) ∇xρρ )
�
w  + (B+∇f(ρρ1) ∇rρρ )

�
r (16)� �

y  = (C+∇g(ρρ1) ∇xρρ )
�
w  + (D+∇g(ρρ1) ∇rρρ )

�
r (17)

It should be noted that this differentiation operation is purely formal and differentiation of noisy
measurements is not required.  The system, (15)-(17), is dynamically equivalent to the system, (13)-(14), in
the sense that with appropriate initial conditions, namely,�

x (t1) = x1,  
�
w (t1) =  A x1+Br1+f(ρρ1),  

�
y (t1) = Cx1+Dr1+g(ρρ1) (18)

the solution, 
�
x ,  to (15)-(17), is the same as the solution, 

�
x , to (13)-(14).  However, in contrast to (13)-(14)

, the transformed system, (15)-(17), is linear.  The relationship between the nonlinear system and its
velocity-based linearisation, (15)-(17), is direct.  Differentiating (4), an alternative representation of the
nonlinear system is�

x  = w (19)�
w = (A+∇f(ρρ) ∇xρρ )w + (B+∇f(ρρ) ∇rρρ )

�
r (20)�y  = (C+∇g(ρρ) ∇xρρ )w + (D+∇g(ρρ) ∇rρρ )

�
r (21)

Dynamically, (19)-(21), with appropriate initial conditions corresponding to (18), and (4) are equivalent
(have the same solution, x).  (When w = F(x, r), y = G(x, r) is invertible for every (x, r), so that x may be
expressed as a function of w, r and y, then the transformation relating (19)-(21) to (4) is, in fact, algebraic).



Clearly, the velocity-based linearisation, (15)-(17), is simply the frozen form of (19)-(21) at the operating
point, (x1, r1).  There exists a velocity-based linearisation, (15)-(17), for every point in Φ.  Hence, a
velocity-based linearisation family, with members defined by (15)-(17), can be associated with the
nonlinear system, (4).  Similarly to the family of first-order expansions, the solutions to the members of the
family of velocity-based linearisations, (15)-(17), can be pieced together (with the initial conditions for
each sub-interval chosen to ensure continuity of 

�
x ,

�
w and 

�
y ) to approximate the solution to the nonlinear

system, (19)-(21) to an arbitrary degree of accuracy (Leith & Leithead 1998b).
There exists a rigorous, and direct, relationship between the dynamic characteristics of a nonlinear

system and those of a related family of linear systems, namely, the velocity-based linearisation family, and
a related family of affine systems, namely the first-order series expansion family.  Since the solutions to the
members of the famili es  can be combined to approximate the solution to the nonlinear system arbitrarily
accurately, the families embody the entire dynamics of the nonlinear system, (4), with no loss of
information and therefore provide alternative representations of the nonlinear system.   The situation is
depicted in figure 1.  Whilst these representations are equivalent in the sense that they each embody the
entire dynamics of the nonlinear system, they are not necessarily equivalent with respect to other
considerations.  In particular, the direct relationship between the velocity-form of the nonlinear system and
the velocity-based linearisation family and the linearity of the members of the latter family provides
continuity with established linear theory. Furthermore, the velocity-based linearisation of the
cascade/feedback interconnection of a plant and controller is simply the cascade/feedback connection of the
velocity-based linearisations of the plant and controller (Leith & Leithead 1998c).   Hence, both analysis
(Leith & Leithead 1998b) and controller design (Leith & Leithead 1998c) are facilit ated by adopting the
velocity-based linearisation representation.

3. Dynamic inversion of square nonlinear systems with well-defined point-wise relative
degree of zero

The requirement is to design a system which, when combined with the nonlinear system, (4), is
equivalent to a linear input-output map.   (The former is, hereafter, often referred to as the “controller”
whilst the latter is denoted the “plant” ).   Moreover, in accordance with the divide and conquer philosophy,
and to maintain continuity with well established linear methods, it is desired that the nonlinear design task
is decomposed into a number of linear sub-problems.

The velocity-based analysis framework establishes a rigorous, and direct, relationship between the
dynamic characteristics of a nonlinear system and those of a related family of linear systems; namely, the
velocity-based linearisation family.   Since the velocity-based linearisation of two cascaded nonlinear
systems is simply the cascade of the velocity-based linearisations of the individual nonlinear systems
(similarly for feedback interconnections, Leith & Leithead 1998c),  consider designing a linear controller
for each member of the velocity-based linearisation family.   In view of  the present requirements, select
each linear controller such that the input-output dynamics (of the combined plant linearisation and
controller) are identical in each case.  Specifically, consider target input-output dynamics where the output
is simply equal to the input in each case; that is, to the identity map.  This choice corresponds to dynamic
inversion of each plant linearisation.   Because each member of the plant family is linear, conventional
linear design methods can be utili sed to design the members of the controller family.   The solution, to the
combination of the nonlinear plant with a nonlinear controller which has velocity-based linearisation family
corresponding to the designed controller family, is approximated arbitrarily accurately by the appropriate
piecewise combination of the solutions to the members of the family of combined plant linearisations/linear
controllers. Owing to the uniformity of the input-output dynamics of the latter, it might be expected that the
input/output dynamics of the nonlinear plant/controller system are linear and equal to the identity mapping;
that is,  dynamic inversion of the original nonlinear plant is achieved.  (It should be noted that whilst
consideration is hereafter confined to identity input/output dynamics, any other linear input/output
dynamics can, of course, always be obtained by combining a suitable linear pre-compensator in cascade
with the proposed dynamic inversion controller). 

Dynamic inversion of linear systems can be achieved for state feedback (Silverman 1969).  (The
approach of Silverman (1969) is subsumed by the more recent nonlinear state feedback linearisation
approach (see, for example, Isidori 1995)).  However, since this involves repeated differentiation of the
output, the direct relationship between the direct formulations and the velocity formulations (figure 1) is



obscured.  Moreover, dynamic inversion of linear systems is more usuall y approached from a frequency-
domain pole-zero cancellation perspective which does not involve repeated differentiation and has the
advantage that full state information is not required.   In this approach, which is adopted hereafter, the
controller zeroes are placed at the poles of the plant and the controller poles are placed at the zeroes of the
plant.  The resulting controller is a realisation of the plant inverse and, provided the plant and controller are
stable, the cascade connection of the plant and controller is stable with unity transfer function.  (When the
relative degree of the plant is greater than zero, the pole-zero inverse is improper and, therefore, not
realisable. This may be resolved by augmenting the inverse  with additional poles such that the augmented
system is proper.  By placing the additional poles sufficiently far left in the complex plane, the augmented
inverse system approximates the exact inverse system arbitrarily accurately).

3.1 Pole-zero inversion of linear systems with relative degree of zero

Consider the SISO linear system�
x =Ax + br,   y = cx+ dr (22)

for which the transfer function, G(s), relating y to r is
                                   b1s

n + b2s
n-1 + ... + bns + bn+1

G(s) = Y(s)/R(s)  =    (23)
                                     sn + a1s

n-1 + ... + an-1s + an

where A, b, c, d are appropriately dimensioned, r, y∈ℜ, x ∈ ℜn and Y(s), R(s) are, respectively, the
Laplace transforms of y(t) and r(t).  Assume that b1 is non-zero so that the transfer function has relative
degree zero.  In addition, assume that the transfer function poles and zeroes are stable; that is, lie in the left
half complex plane.  The requirement is to determine a minimal-order inverse system such that the cascade
combination of this system with the original system, (22), has unity transfer function.  Working in the
frequency domain, it follows from standard linear theory that every realisation of the minimal inverse
system has transfer function

                      sn + a1s
n-1 + ... + an-1s + an

G-1(s)  =     (24)
                   b1s

n + b2s
n-1 + ... + bns + bn+1

Although encountered less frequently, this result can, of course, be reformulated in the state-space time-
domain.  Assume, without loss of generali ty, that (22) is of the form
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It is straightforward to show that (25) has transfer function (23).  Every linear system with transfer
function, (23), is related to (25) by a linear state transformation.  It can be seen that the coefficients of the
state-space representation, (25), are directly related to the coefficients of its transfer function, (23).
Adopting a realisation of this form for the inverse system, it is immediately clear that a system with transfer
function (24) is�

x i=Aixi+ biv,   r = cixi + div (26)
where xi = [xi
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Every linear realisation of the minimal inverse system, with transfer function, (24), is related to (26) by a
linear state transformation.  To confirm that (26) is, indeed, a realisation of the inverse of (22), let

z = x + xi (28)
The cascade combination of (22) and (26) is�
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and it follows from (25) and (27) that
bci + Ai -A= 0,   bdi + bi = 0,    dci-c = 0,   ddi = 1 (30)
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The dynamics of the cascade system comprise an unforced, observable component with state, z, and a
forced, unobservable component with state xi.  Since the poles and zeroes of (23) lie in the left half
complex plane, A and Ai are Hurwitz and (31) is stable.  It can be seen that the sub-system comprising the
state, z, is unforced and so z decays to zero exponentially.  Consequently, the error, y-v, decays
exponentially to zero and the output, y, asymptotically tracks the input, v, as required.   When the initial
condition of xi is such that z(0) is zero, the tracking error is identicall y zero.

3.2 Point-wise relative degree

The relative degree of the nonlinear system, (4), is { r1(x,r),…,rp(x,r)} , where the characteristic number,
rj(x,r), is defined as the minimum number of times that, at the operating point (x,r), the j th output must be
differentiated such that it is directly coupled to the input (see, for example, Isidori 1995).  The relative
degree is uniform when it is the same at every operating point, (x,r).  Associated with the nonlinear system,
(4), is the velocity-based linearisation family, (15)-(17).  The point-wise relative degree of the nonlinear
system, (4), is defined as { r1(ρρ),…,rp(ρρ)} , where { r1(ρρ1),…,rp(ρρ1)} is the relative degree of the member of
the velocity-based linearisation family associated with the operating points at which ρρ equals ρρ1.  Letting

A(ρρ) = A+∇f(ρρ) ∇xρρ ,  B(ρρ) = B+∇f(ρρ) ∇rρρ ,   C(ρρ) = C+∇g(ρρ) ∇xρρ ,   D(ρρ) = D+∇g(ρρ) ∇rρρ (32)
it follows that when Dj(ρρ1) ≠ 0, where Dj(ρρ1) denotes the j th row of D(ρρ1), the corresponding characteristic
number, rj(ρρ1), is 0.  When Dj(ρρ1) = 0,  rj(ρρ1) is defined (see, for example, Rugh 1996 Definition 14.10) by

C A Bj
k

j   k < r( ) ( ) ( ) ( )ρρ ρρ ρρ ρρ1 1 1 10 1= ∀ − (33)

C A Bj
r j    ( ) ( ) ( )

( )ρρ ρρ ρρρρ
1

1
1 1

1 0− ≠ (34)

where Cj(ρρ1) denotes the j th row of C(ρρ1).  The nonlinear system has a point-wise relative degree which is
uniformly zero when the characteristic numbers,  rj(ρρ1), j=1,..p,  are zero for all values of ρρ1; that is, when
every row of  D(ρρ1) is non-zero for all values of ρρ1.   The nonlinear system has a well-defined point-wise
relative degree of zero when, in addition, the rank of D(ρρ1) is p for all values of ρρ1.

The relative degree and point-wise relative degree are not equivalent.   For example, consider the
nonlinear system
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Hence, the point-wise relative degree is two at the operating points for whichC A B( ) ( ) ( )ρρ ρρ ρρ1 1 1 is non-zero.

However, since
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it follows that the relative degree is greater than two.  Indeed, it is straightforward to show that the relative
degree of the nonlinear system is uniformly infinite; that is, the input never appears at the output regardless
of the number of times that the output is differentiated.

3.3  Nonlinear MIMO systems with well-defined point-wise relative degree of zero

Consider the MIMO nonlinear system�
x = Ax + Br + f(ρρ),  y = Cx + Dr + g(ρρ) (40)

 for which the velocity-based linearisation associated with the operating points at which ρρ equals ρρ1 is�
x  = w (41)�
w = A(ρρ1) w + B(ρρ1) 

�
r (42)�

y  = C(ρρ1) w + D(ρρ1) 
�
r (43)

where r∈ℜm , y ∈ ℜp, x ∈ ℜn and
A(ρρ1) = A+∇f(ρρ1) ∇xρρ ,  B(ρρ1) = B+∇f(ρρ1) ∇rρρ ,   C(ρρ1) = C+∇g(ρρ1) ∇xρρ ,   D(ρρ1) = D+∇g(ρρ1) ∇rρρ (44)
This defines a velocity-based linearisation family as ρρ1 varies throughout its range.  Since the velocity-
based linearisation family defined by (41)-(43) is directly related to the velocity-form of the nonlinear
system, see figure 1, a slight abuse of notation is adopted and the same state, input and output are used for
both the nonlinear system, (40), and the members of its velocity-based linearisation family.  Assume, for
the moment, that the nonlinear system is square and has well -defined point-wise relative degree zero; that
is, the number of inputs, m, equals the number of outputs, p, and D(ρρ) is non-singular for all values of ρρ.
This assumption is relaxed later in section 4.

Consider the candidate inverse system, in velocity-form,�
x i  = w i (45)�
w i = Ai(ρρi) w i  + Bi(ρρi) 

�
v (46)�

r  = Ci(ρρi) w i  + Di(ρρi) 
�
v (47)

 for which the velocity-based linearisation associated with the operating points at which ρρi equals ρρi
1 (that

is, the corresponding frozen form of (45)-(47)) is�
x i  = w i (48)�
w i = Ai(ρρi

1) w i  + Bi(ρρi
1) 

�
v (49)�

r  = Ci(ρρi
1) w i  + Di(ρρi

1) 
�
v (50)

where v∈ℜm , xi ∈ ℜn .  Following the linear analysis of section 3.1, let Ai(ρρi
1) , B

i(ρρi
1) , C

i(ρρi
1) , D

i(ρρi
1)  be

solutions of
B(ρρ1)C

i(ρρi
1) 

 + Ai(ρρi
1)-A(ρρ1)= 0,  B(ρρ1)D

i (ρρi
1) + Bi(ρρi

1) = 0,   D(ρρ1)C
i(ρρi

1)-C(ρρ1)= 0,  D(ρρ1)D
i(ρρi

1)= I (51)



Since D(ρρ1) is uniformly non-singular, the solution to (51) is well-defined and unique: namely,
ρρi

1=ρρ1, A
i(ρρi

1)=A(ρρ1)-B(ρρ1)D
-1(ρρ1)C(ρρ1), B

i(ρρi
1) = -B(ρρ1)D

-1(ρρ1), C
i(ρρi

1)=D-1(ρρ1)C(ρρ1), D
i(ρρi

1)=D-1(ρρ1) (52)
Let

z = w + wi (53)
(It should be noted that the choice of transformation, (53), is not unique.  Other state transformations lead
to alternative inverse system realisations, provided the same transformation is employed with every
member of the velocity-based linearisation family; for example, z = w + Twi where T is a non-singular
constant matrix).  It is straightforward to show (Leith & Leithead 1998c) that the velocity-based
linearisation family of the cascade connection of (40) and (45)-(47) consists simply of the cascade
connection of each member of the velocity-based linearisation family, (41)-(43), with the corresponding
member of the velocity-based linearisation family of the inverse system, (48)-(50).  The cascade
combination of (41)-(43) and (48)-(50) is�
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Hence, it follows from (52) that�
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The velocity-based linearisation family of the cascade connection of (40) and (45)-(47) is (57)-(59).
The velocity-form of the cascaded system  is obtained when ρρ is permitted to vary in (57)-(59). The

structure of the cascade system is depicted, in block diagram form, in figure 2.  Assume that the inverse
system is bounded-input bounded-output stable.  This ensures that in the cascade connection the
unobservable wi dynamics are stable.  Assume, in addition, that the unforced sub-system involving the
state, z, is exponentially stable. Under these conditions, the tracking error velocity, 

� �
y - v , decays

exponentially to zero provided C(ρρ) is uniformly bounded.  When the initial conditions are selected such
that z(0) is zero,  

� �
y - v  is identically zero.  When, in addition,  y(0) equals v(0), it follows that y(t)-v(t) is

identically zero.  Hence, the nonlinear system, (45)-(47), (with appropriate initial conditions) is, indeed, a
realisation of the inverse of the MIMO nonlinear system, (40).

Remark 1 Full state information is not required in order to implement the inverse system obtained.  Instead,
it is only necessary to measure, or estimate, the scheduling variable, ρρ, which frequently depends on
only a small number of elements of the input and state vectors.  Indeed, in the case of purely linear
systems, there is no scheduling variable and, consequently, plant measurements are not required to
implement the pole-zero inverse (in contrast to an  Input-Output Linearisation controller which always
requires full state information; for example, Isidori 1995).   Since the input, r, to the plant is the output
of the inverse system, plant measurements are also not required with nonlinear systems for which the
scheduling variable, ρρ, depends only on  r; that is, when ∇xρρ is identically zero.   This is discussed
further in section 5 below.

Remark 2 The tracking error, y-v, is

y v C z y v(t) - (t) = ( ) (s)ds+ (0) - (0)t ρρ0

�
(60)

Owing to the pure integration in (60), with initial conditions other than the above, the tracking error
need not decay to zero.  However, under mild conditions, y-v does tend to a limit asymptotically (see



appendix A); that is, as t→∞, the output, y, follows the input, v, with a steady offset.   This steady offset
may be readily removed by integral feedback.  Let

v v y(t) = ( (s) (s) dsr0
t ΛΛ −

�
) (61)

where ΛΛ=λI with λ positive and vr is the new input.  With this choice of v,�
y y v C z(t) + (t) = ( ) (s)rλ λ + ρρ (62)

for which the solution is

y y v C z(t) = e (0) +  e (s) + s s ds- t - t-s)
ro

tλ λ λ( ( ( )) ( )ρρ
� ��

(63)

Since | C(ρρ) z| tends to zero exponentiall y,

y v(t) e (s)ds- t-s)
ro

t→
�

λ λ(  as t→∞ (64)

and y is related to vr by linear first-order dynamics with real poles at s=-λ.  From linear theory, provided
λ is sufficiently large compared to the frequencies at which the spectrum of vr has significant energy,

λ λe (s)ds- t-s)
ro

t ( v
�

 and so the output, y, asymptoticall y tracks the input, vr (without steady offset).

Example 1 - Nonlinear SISO system with well-defined point-wise relative degree of zero
Consider the SISO nonlinear system, depicted in figure 3,�
x G( )= ρ ,    y = x + G(ρ) (65)

where ρ = r-x, G(s)=tanh(s)+0.01s.  The velocity-based linearisation associated with the operating points at
which ρ equals ρ1 is�

x  = w (66)�
w =-∇G(ρ1)w + ∇G(ρ1)

�
r (67)�

y  = (1-∇G(ρ1))w + ∇G(ρ1)
�
r  (68)

and this defines a velocity-based linearisation family as ρ1 varies throughout its range.  The velocity-based
linearisation has transfer function  representation� �

Y(s) G( )
s+1

s+ G( )
R(s)= ∇

∇
ρ1 ρ1

(69)

where 
� �

R(s) and Y(s)  denote, respectively, the Laplace transfer functions of 
�
r (t) and 

�
y (t).  Since

∇G(ρ1)≠0 ∀ρ1, the members of the velocity-based linearisation family have uniformly zero relative degree.
It follows from the foregoing analysis that the velocity-based linearisation family of a corresponding
inverse system is defined by�

x i = wi (70)�
w i=-wi -

�
v (71)�
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G( )
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ρ1

ρ
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1

∇G( )ρ1
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as ρ1 varies throughout its range.  It should be noted that the velocity-form of the inverse system  is
obtained when ρ is permitted to vary in (70)-(72).  The velocity-based linearisation (70)-(72) has transfer
function representation� �

R(s)
G( )

s+ G( )

s+1
V(s)=

∇
∇1 1

ρ1

ρ
(73)

where 
�

V(s) denotes the Laplace transfer function of 
�
v (t).  Clearly, the transfer functions (73), is the

reciprocal of the transfer function, defined by (69), of the corresponding velocity-based linearisation
associated with the original system.  The velocity-based linearisation family of the cascade connection of
(65) with the inverse system is defined by�
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Owing to the direct relationship between the velocity-based linearisation family and the velocity-form of a
nonlinear system, see figure 1, the nonlinear system obtained by allowing ρ to vary as a function of x and r
in (74)-(76) is dynamicall y equivalent to the cascade connection of (65) with the inverse system
corresponding to (70)-(72).  Hence, it can be deduced immediately that the internal wi dynamics are linear
and stable.  Moreover, since ∇G(ρ) > 0, it follows from Lyapunov theory that the z dynamics are
exponentially stable as required (for example, a Lyapunov function is V=z2).

Example 2 - Nonlinear MIMO system with well-defined point-wise relative degree of zero
Consider the MIMO nonlinear system�
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for which the associated velocity formulation is�
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The members of the velocity-based linearisation family are simply the “ frozen” forms of (78)-(80).  It can
be seen that the members of the velocity-based linearisation family have relative degree zero.  It follows
from the foregoing analysis that the velocity form of a corresponding inverse system is�
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3.4 Zero dynamics

The zero dynamics of the nonlinear system, (40), are defined as the internal dynamics arising when the
system is driven by a non-trivial input, r, such that its output, y, is identically zero (see, for example, Isidori
1995 although the discussion therein concerns a subset of the class of nonlinear systems of the form (40)).
Consider the cascade connection of the nonlinear system, (40), with the inverse system, (45)-(47),�
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When  z(0)=0, it follows from (84)-(86) that z(t) is identically zero.  Hence, when 
�
v =0, z(0)=0, y(0)=0 the

output, y(t), is identically zero.  It should be noted that whilst the input, v, to the cascade system is constant
(

�
v  is zero), the input, r, to the nonlinear system, (40), satisfies�

( )r C w= i i iρρ (87)

Clearly, r is dependent, through the evolution of the state  wi, on the dynamics of the inverse system.  Since
z(t) is identically zero,

w = -wi (88)
and the internal dynamics of (40) satisfy�

x  = w (89)�
w  = Ai(ρρ)w (90)

where it is noted that ρρ may depend on both the state, x, and the input, r.  The internal dynamics, (89)-(90),
are, by definition, the zero dynamics of the nonlinear system, (40).  As might be expected by analogy with
linear system theory, it can be seen that the zero dynamics of the nonlinear system, (40), are precisely the
dynamics of the corresponding inverse system, (45)-(47).

3.5  Integrability

The terms ∇f(ρρ) ∇xρρ , ∇f(ρρ) ∇rρρ, ∇g(ρρ) ∇xρρ and ∇g(ρρ) ∇rρρ in the velocity-based linearisations of the
nonlinear system, (40), are simply the derivatives of the nonlinear mappings, f(ρρ) and g(ρρ), evaluated at

every point in the operating space.  Hence, it follows immediately that the solutions,  ( )f ρρ  and ! ( )g ρρ , to

∇
∇
∇

�
��

�
� � =

�
��

�
� � ∇

∇
∇

�
��

�
� � =

�
��

�
� �! ( ) , ! ( )f gx

r

x

r

x

r

x

r

ρρ
ρρ
ρρ

φφ
φφ

ρρ
ρρ
ρρ

γγ
γγ

    (91)

where
φφx = ∇f(ρρ) ∇xρρ,   φφr = ∇f(ρρ) ∇rρρ,  γγx = ∇g(ρρ) ∇xρρ,  γγr = ∇g(ρρ) ∇rρρ (92)

exist and are, respectively, f(ρρ) and g(ρρ).   However, this integrabil ity property requires a strong constraint
on the terms in the velocity-based linearisation family which, whilst quite natural, is certainly not satisfied
by every choice of φφx, φφr, γγx and γγr.  For example, a sufficient condition for integrabili ty is that φφx, φφr, γγx and
γγr are continuous and differentiable functions with
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and  ρρj, φφ ρρx ( )
$ %

j
, φφ ρρr ( )

$ %
j
, γγ ρρx ( )

$ %
j
and γγ ρρr ( )

$ %
j
denote, respectively the j th elements of  ρρ, φφx, φφr, γγx and γγr

(see, for example, Vidyasagar 1993 p382).   It should be noted that the analysis in the foregoing sections
does not require that the velocity-based inverse system is integrable.  The class of nonlinear systems with
the velocity-based form�

x  = w (94)�
w = φφx(ρρ) w + φφr(ρρ) 

�
r (95)�

y  = γγx(ρρ) w + γγr(ρρ) 
�
r (96)

is somewhat richer than the class of nonlinear systems, (40), and the velocity-based inverse system need
not, in general, belong to the latter class.  Indeed, whilst the analysis in the foregoing sections takes the
nonlinear system, (40), as its starting point, thereby implicitly assuming that the plant velocity-based
linearisation family is integrable,  this assumption is not used at any point in the analysis and the results are,
therefore, directly applicable to the general class of velocity-based systems, (94)-(96), including those
which are not integrable.

3.6 Realisation of inverse system

The velocity-form of the inverse system  is obtained when ρρ is permitted to vary in the corresponding
velocity-based linearisation family, see figure 1.   The velocity-form has a differentiation operator at the
input (to obtain 

�
v  from v) and an integration at the output (to obtain y from &y ).  When the inverse system



is augmented with integral action, the differentiation at the input can be formally combined with the
integrator.  It is emphasised that this reformulation is purely formal in nature: no unstable pole-zero
cancellation is involved.  The velocity-form of the inverse system can now be realised directly with the
integral action appearing explicitly at the output.   For instance, the direct realisation of the velocity-form of
the inverse system in Example 1, augmented with integral action,  is shown in figure 4.  It should be noted
that, in the context of control systems, integral action is almost always required in order to meet
performance requirements.   When integral action cannot be employed, realisation of the inverse system in
direct form imposes certain integrabili ty constraints on the class of allowable inverse system velocity-based
linearisation families in order to ensure the existence of a bounded transformation from the velocity-form to
the direct form (see section 3.5).  This issue is discussed in detail in Leith & Leithead (1996, 1998a) and the
implementation approach there may be readily extended to the class of systems considered here.

4. Extension to systems with non-zero point-wise relative degree

The analysis of section 3 generalises the linear frequency-domain pole-zero inversion approach to
square nonlinear systems with well-defined point-wise relative degree of zero.  In this section, the
extension of these results to nonlinear systems with non-zero point-wise relative degree is considered.  In
the linear case, when the relative degree is non-zero, the pole-zero inverse system is improper and,
therefore, not realisable.  However, this difficulty can be resolved by formally augmenting the original
system with additional zeroes, such that its relative degree is zero, and a corresponding pole-zero inverse
can then determined.  Alternatively, the (unrealisable) inverse of the original system can be augmented with
additional poles such that the augmented inverse is proper.  By placing the additional poles sufficiently far
left in the complex plane, the augmented inverse system approximates the exact inverse system arbitrarily
accurately.

A nonlinear analogue of the first approach is to formally augment the input or output of the system with
a number of differentiators.  Provided the point-wise relative degree of the augmented system is well-
defined and zero, the analysis of section 3 can then be employed to determine an inverse of the augmented
system.  It should be emphasised that the differentiators are purely formal in nature and need not be
implemented.  When the foregoing inverse is connected in cascade with the augmented system, the output
of the augmented system follows the input to the inverse system (after some initial transients).  Hence,
when this inverse is connected in cascade with the original (unaugmented) system, the output of this system
is linearly related, via a chain of integrators, to the input to the inverse system.   However, since this
approach involves repeated differentiation of the output, the direct relationship between the direct
formulation and the velocity formulation (figure 1) is obscured.  Hence, this approach is not pursued further
here.

The second approach, in the linear case, is to augment the (unrealisable) inverse of the original system
with additional dynamics such that the augmented inverse is realisable. Consider the velocity-based
linearisation family, (41)-(43), associated with the nonlinear system, (40).  In order to facilit ate the
analysis, assume that D(ρρ) is identically zero (and so the relative degree is at least one): this involves no
loss of generali ty since it can always be achieved by augmenting the system with a suitable low-pass input
filter.  The relative degree, { r1(ρρ1),…,rp(ρρ1)} , of the member of the family corresponding to ρρ equal to ρρ1 is
defined by
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where Cj(ρρ1) denotes the j th row of C(ρρ1) and j=1..m.  There exists an infinitesimally small perturbation, εεd,
such that D(ρρ1)+εεd is non-singular and for which, therefore, the relative degree is zero.  Similarly,
perturbing B(ρρ1) to B(ρρ1)+εεb and C(ρρ1) to C(ρρ1)+εεc, it is straightforward to show that there exists
infinitesimally small εεb and εεc for which B(ρρ1)+εεb and C(ρρ1)+εεc violate the equality constraints, (97).
Moreover, the perturbations are additive at the input and output of the system as depicted in block diagram
form in figure 5.  This latter observation is unsurprising since the perturbation is augmenting the zeroes of
the linearisation whilst leaving the poles unchanged; for example, it can be seen that in the linear canonical
form, (25), the zeroes are determined solely by the elements of B and D.



By analogy with the linear case, consider perturbing the nonlinear system in the above manner such that
the relative degrees of the members of the perturbed velocity-based linearisation family are uniformly well-
defined and zero.  Since the perturbed system then has well -defined point-wise relative degree of zero, its
inverse can be readily determined using the analysis of section 3.  Similarly to the linear situation, provided
the perturbations employed are sufficiently small and that a smooth inverse does indeed exist, the inverse of
the perturbed system is an arbitrarily accurate, realisable, inverse of the original nonlinear system, (40)
(Appendix B).

Example 3 - Nonlinear SISO system with non-zero point-wise relative degree
Consider the SISO nonlinear system�
x G( )= ρ ,    y = x (99)

G(s)=tanh(s)+s (100)
where ρ = r-x.  The velocity-based linearisation associated with the operating points at which ρ equals ρ1 is�

x  = w (101)�
w =-∇G(ρ1)w + ∇G(ρ1)

�
r (102)�

y  = w (103)

and a velocity-based linearisation family is defined as ρ1 varies throughout its range. The velocity-based
linearisation has transfer function representation� �

Y(s)
G( )

s+ G( )
R(s)=

∇
∇

ρ
ρ
1

1

(104)

where 
� �
R(s) and Y(s)  denote, respectively, the Laplace transfer functions of 

�
r (t) and 

�
y (t).   The members

of the velocity-based linearisation family have relative degree one.  It follows from the foregoing analysis
that the velocity-based linearisation family of a corresponding approximate inverse system is defined by�

x i = wi (105)

�
w i= −∇

+
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() *+ ,G( d

d

ρ
ε

ε1
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�
r  = 

1

ε d

wi + 
1

ε d

�
v  (107)

The velocity-based linearisation, (105)-(107), has transfer function  representation� �
R(s)

s+ G( )

s+ G( )
V(s)

d d

=
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+ ∇
ρ

ε ε ρ
1

1

(108)

where 
�

V(s) denotes the Laplace transfer function of 
�
v (t).  Evidently, as εd→0 the transfer function, (108),

tend to the reciprocal of the transfer function, (104), of the corresponding velocity-based linearisation
associated with the original system.  Simulation results with v chosen to be sin2t and a range of values of εd

are presented in figure 6: it can clearly be seen that the error, 
�
y -

�
v , tends to zero as  εd  decreases.

Example 4 - Nonlinear MIMO system with non-zero point-wise relative degree
Consider the MIMO nonlinear system�
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for which the velocity-based linearisation associated with the operating points at which (x1, x3) equals
( )x ,x12 31
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where A(s)=(10+sin s) s, B(s)=(5+s2)s, C(s)=tanh(s).  The input and output of the velocity-based
linearisation is related, in transfer function form, by
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where 
� �
R (s) and Y (s)i i (i=1, 2) denote, respectively, the Laplace transfer functions of 

�
r i(t) and 

�
y i(t).  The

relative degree of the velocity-based linearisations is 2 for output, y1, and unity for output, y2.   Following
the foregoing analysis that the velocity-based linearisation family of a corresponding approximate inverse
system is defined by�
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The input and output of the velocity-based linearisation, (114)-(116), of the approximate inverse system are
related, in transfer function form, by
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where 
�

V (s) i (i=1,2) denotes the Laplace transfer function of 
�
v i (t).   Evidently, as εd→0 the transfer

function, (117), tend to the inverse of the transfer function, (113), of the corresponding velocity-based
linearisation associated with the original system.  Owing to the direct relationship between the velocity-
based linearisation family and the velocity-form of a nonlinear system, the nonlinear system obtained by
allowing x1 and x3 to vary with time in (114)-(116) is a realisation of the inverse system.  Simulation results
with v1 chosen to be sin(t) and v2 chosen to be cos(2t)-1 are presented in figure 7 for a range of values of εd

: it can clearly be seen that the error, 
�
y -

�
v , tends to zero as  εd  decreases.



5. Dynamic inversion without plant measurements

The foregoing velocity-based dynamic inversion approach is a direct generalisation of the linear
frequency-domain pole-zero inverse approach.  Whilst full state information is not required to implement
the velocity-based inverse system, a measurement or estimate of the scheduling variable, ρρ, is needed.  Of
course, in the case of purely linear systems, there is no scheduling variable and, consequently, plant
measurements are not required to implement the pole-zero inverse (in contrast to an Input-Output
Linearisation controller which always requires full state information).  In addition, since the input, r, to the
plant is the output of the inverse system, plant measurements are not required with nonlinear systems for
which the scheduling variable, ρρ, depends only on  r; that is, when ∇xρρ is identicall y zero.  However, in
general ρρ depends on the state of the plant and, although ρρ typically involves only a small subset of the
elements in the full state vector, it remains attractive to consider dynamic inverses which require a minimal
number of plant measurements.

The state, x, of the plant, (40), is related to velocity state, w, by
w = Ax + Br + f(ρρ) = F(x, r) (118)

Assume that F(•,•) is invertible in the sense that
x = F-1(w, r) (119)

This ensures that the velocity transformation relating the direct and velocity forms of the nonlinear system
(see figure 1) is algebraic.  It follows from the analysis of section 3  that the state, wi, of the velocity-based
inverse system tends asymptoticall y to the negative, -w, of the state of the plant.  Consider, therefore, using
the estimated scheduling variable

ρρ i = ∇xρρ ~x  +∇rρρ r (120)

where
~x  = F-1(-wi, r) (121)

in the inverse system, (45)-(47), rather than the exact scheduling variable, ρρ=∇xρρx +∇rρρ r.  The resulting
system utilises no plant measurements.  Assuming for simplicity that the point-wise relative degree is zero,
the velocity-based form of the cascade combination of the plant with the resulting inverse is defined by�
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where
z = w + wi (125)
Ai(ρρi)=A(ρρi)-B(ρρi)D-1(ρρi)C(ρρi),  Bi(ρρi) = -B(ρρi)D-1(ρρi),  Ci(ρρi) = D-1(ρρi)C(ρρi), Di(ρρi)=D-1(ρρi) (126)

This velocity-based system may be reformulated as�
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ξξ ρρ ρρ ρρ3 = −D C C( ) ( ) ( )i i i
- .

,   ξξ ρρ ρρ ρρ4 = −D D D( ) ( ) ( )i i i
- .

(131)

It follows from (125), (121) and (120) that when z(0) is zero, ρρi equals ρρ and the ξξi are zero.  Hence, owing
to the direct relationship between the velocity-based linearisation family and the velocity-form of a
nonlinear system, see figure 1,  it can be deduced immediately that with initial condition z(0)=0, the z



dynamics in (128) are unforced and z is identically zero.  Consequently, the ξξi vanish and 
� �
y v− is

identically zero as required.  More generally, 
� �
y v−  tends to zero asymptotically provided the z dynamics

are asymptoticall y stable so that transients associated with other initial conditions decay to zero.
(Suff icient conditions for stabili ty of the z dynamics are derived in Appendix C).

6. Comparison with Input-Output Linearisation

The velocity-based gain-scheduling approach is quite general and directly supports the design of
feedback configurations for which the closed-loop dynamics are nonlinear.  However, the discussion in this
paper concentrates on the design of velocity-based controllers which, when combined with a nonlinear
plant, attain linear closed-loop dynamics.  Of course, the design of linearising controllers has received
considerable attention in the literature.  In particular, Input-Output Linearisation (see, for example, Isidori
1995) is a widely advocated approach for accommodating plant nonlinearities.   It is, therefore, necessary to
compare the velocity-based approach with that of Input-Output Linearisation.  At a number of points in the
preceding sections, specific features of the velocity-based linearising approach are briefly compared with
the corresponding aspects of the  Input-Output Linearisation approach.  Nevertheless, in order to facilit ate
the comparison, it is appropriate to collect these observations together in the present section.

The velocity-based approach investigated in this paper is a direct generalisation to nonlinear systems of
the classical frequency-domain pole-zero inversion approach for linear systems.  In contrast, the Input-
Output Linearisation approach is a direct extension of the state-feedback inversion approach for linear
systems studied by Silverman (1969).   These approaches are quite distinct, even in the linear case.
Similarly to the purely linear case, the velocity-based nonlinear pole-zero inversion approach leads to a
dynamic inverse which requires both the nonlinear system concerned and its inverse to be, in an appropriate
sense, stable.   Input-Output Linearisation, on the other hand, is essentially based on static state feedback
and only requires stabili ty of the internal dynamics rendered unobservable by the feedback.  Of course,
state feedback requires the measurement or estimation of the full state of the plant whereas the nonlinear
pole-zero inverse requires only a measurement or estimate of the scheduling variable, ρρ.  Frequently, ρρ
depends on only a small number of elements of the state and/or input vectors.  Indeed, in the case of purely
linear systems, there is no scheduling variable and, consequently, plant measurements are not required to
implement the pole-zero inverse (in contrast to an Input-Output Linearisation controller which always
requires full state information).

With regard to the design task associated with each approach, the velocity-based approach decomposes
the nonlinear design task into a number of straightforward linear sub-problems; that is, the methodology
supports the divide and conquer philosophy and maintains continuity with well established linear methods.
In this sense, it is closely related to the gain-scheduling methodology.  In contrast,  it is difficult to discern
any relationship between the Input-Output Linearisation design procedure and linear control design.   It is
emphasised that, in  practice, the importance of maintaining a degree of continuity with well established
linear methods should not be underestimated; for example, safety certification procedures are typically
based on experience with conventional l inear methods and the cost of developing and assessing entirely
new procedures is often prohibitive.  Moreover,  the Input-Output Linearisation approach involves the
repeated analytic differentiation of the output of the nonlinear system concerned.  Since this rapidly
becomes intractable as the order of the system increases, the utili ty of the Input-Output Linearisation
approach appears to be largely restricted to systems with relatively low order.  When the nonlinear system
concerned is described by a differential equation of the form, (40), the velocity-based linearisation
approach also requires a formal differentiation step to obtain the corresponding velocity-based
representation, (15)-(17).  However, this is confined to a single formal differentiation for which the
complexity increases relatively slowly with increasing system order.   In addition, the velocity-based
representation is often a natural one and may be identified directly from experimental data (see, for
example, Leith & Leithead 1998d), in which case the formal differentiation step may be avoided
completely.

It should be noted that the Input-Output Linearisation and nonlinear pole-zero inversion approaches are
extreme cases in the sense that the former is essentially static and utilises full state feedback whilst the
latter is dynamic and reduces to open-loop inversion in the linear case.  Other dynamic inversion



approaches, which lie between these extremes, may be derived by util ising a combination of Input-Output
Linearisation and nonlinear pole-zero inversion.  However, these are not considered further here.

7. Conclusions

The velocity-based analysis framework provides direct support for divide and conquer design
approaches, such as the gain-scheduling control design methodology, whereby the design of a nonlinear
system is decomposed into the design of an associated family of linear systems.  Specifically, since a
velocity-based linearisation family is associated with the nonlinear plant, a corresponding linear controller
family can be obtained by designing a linear controller for each member of the plant family.  The velocity-
based gain-scheduling approach is quite general and directly supports the design of feedback configurations
for which the closed-loop dynamics are nonlinear.  However, the present paper concentrates on the
velocity-based design of controllers which, when combined with a nonlinear plant, attain linear closed-loop
dynamics.

The velocity-based approach to dynamic linearisation investigated in this paper

• is a direct generalisation to nonlinear systems of the classical frequency-domain pole-zero inversion
approach.

• requires, in general, only a measurement or estimate of the scheduling variable, ρρ.  Frequently, ρρ
depends on only a small number of elements of the state and/or input vectors.  Indeed, in the case of
purely linear systems, there is no scheduling variable and, consequently, plant measurements are not
required to implement the pole-zero inverse.

• decomposes the nonlinear design task into a number of straightforward linear sub-problems; that is, the
methodology supports the divide and conquer philosophy and maintains continuity with well
established linear methods.   In this sense, it is closely related to the gain-scheduling methodology.
However, it is emphasised that the velocity-based approach does not necessitate a slow variation
requirement.

The velocity-based dynamic linearisation and Input-Output Linearisation approaches are, in many ways,
complementary.  In particular the former is dynamic and reduces to open-loop inversion in the linear case
whilst the latter is essentially static and util ises full state feedback.
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Appendix A

The tracking error satisfies

y v C z y v(t) - (t) = ( ) (s)ds+ (0) - (0)t ρρ0

�
(132)

Assume that C(ρρ) is uniformly bounded; that is, |C(ρρ)| ≤α ∀ρρ.  Since the z dynamics are exponentially
stable, it follows that

| ( ) |C z zρρ(t) (t)| e (0)|-at≤ αγ (133)

where γ, a are positive finite constants.  Let
x y vk o okT (kT= −( ) ) (134)

where To is a positive constant.  It follows that
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�

≤ −ρρ αγ
(135)

and so, provided z(0) is bounded, |xm-xn|→0 as m,n→∞.  Hence, from Cauchy’s criterion for uniform
convergence (see, for example Sutherland 1995 Theorem 1.2.9),  xk tends to a limit, say x , as k→∞.
Moreover, it follows from (132) and (133) that

| |
|

x C z y v
z

y v≤
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a
+ (0) - (0)ρρ0
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(136)

Hence,  the limit, x , is finite provided z(0) and y(0)-v(0) are both finite.  Since

| | | | | | | | |y v x y v x x x z x x(t) - (t) -  (t) - (t) -
a

e e (0)|+k k
-at -akT

k
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(137)

then provided z(0) is bounded, for any positive ε there exists a choice of to and ko sufficiently large that
| | ,y v x(t) - (t) -       t t k ko o≤ ∀ ≥ ≥ε (138)

Consequently, y(t)-v(t) tends to a finite limit, x , as t→∞

Appendix B

Consider the nonlinear system, (40), for which the velocity-based linearisation family is (41)-(43).   In
order to facilit ate the analysis, assume that D(ρρ) is identically zero: this involves no loss of generali ty since
it can always be achieved by augmenting the system with a suitable low-pass input filter.  Perturbing D(ρρ),
B(ρρ), C(ρρ) to εεd, B(ρρ)+εεb, C(ρρ)+εεc, the velocity-based form of the resulting perturbed nonlinear system is

~
�
x  = ~w (139)
~

�
w = A( ~ρρ ) ~w  + 

~
B ( ~ρρ ) 

�
r (140)

~
�
y  = 

~
C ( ~ρρ ) ~w  + 

~
D ( ~ρρ ) 

�
r (141)

where
~ρρ =∇xρρ ~x + ∇rρρ r,  A( ~ρρ ) = A+∇f( ~ρρ ) ∇xρρ ,  

~
B ( ~ρρ ) = B+∇f( ~ρρ ) ∇rρρ+εεb (142)

~
C ( ~ρρ ) = C+∇g( ~ρρ ) ∇xρρ ++εεc,   

~
D ( ~ρρ ) = εεd (143)

It follows from the analysis of section 3 that a corresponding inverse system is3
x i  = w i (144)�
w i = Ai(ρρi) w i  + Bi(ρρi) 

�
v (145)�

r  = Ci(ρρi) w i  + Di(ρρi) 
�
v (146)



where

ρρi = ρρ,  Ai(ρρi) =  A(ρρ)-
~
B (ρρ)

~
D -1(ρρ)

~
C (ρρ) ,  Bi(ρρi) = -

~
B (ρρ)

~
D -1(ρρ) (147)

Ci(ρρi)  = 
~
D -1(ρρ)

~
C (ρρ), Di(ρρi) =

~
D -1(ρρ) (148)

When employing the perturbed inverse system with the original nonlinear system, (40), let
ρρi = ρρ (149)

The velocity-based form of the cascade combination of this inverse system with the original nonlinear
system, (40), is�
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where
z = w + wi (153)
By (151), the state w, of the nonlinear system is related to the state wi, of the inverse system by the

dynamics�
( )

~
( ) ( )

�
z A z D C w vb

1= − +−ρρ εε ρρ ρρ i
- .

(154)

Assume that the dynamics, 
�

( )χχ ρρ χχ= A (t) , are exponentially stable.  It follows (see, for example, Khalil

1992 Lemma 4.8) that the dynamics, (154), are bounded-input bounded-output stable with

| | | ( )|
~

( ) ( )
�

z z D C wb
1≤ + +−γ κe 0 v-at iεε ρρ ρρ

4 5
(155)

where γ, a and κ are positive constants and • = •sup| |.  In addition, assume that the inverse system is

bounded-input bounded-output stable: since 
�
v  is bounded, it follows that wi is bounded.  It should be noted

that these stability conditions are just those employed in section 3 for the case of zero relative degree.

Selecting εεb such that εε ρρb
1D

~
( )− →0 as |εεd|→0, then z tends to zero asymptotically as |εεd|→0 provided C(ρρ)

is bounded; that is,  w→-wi  asymptotically as |εεd|→0.
From (146),
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Assume that there exists a bounded input, 
�
r (t),  and associated bounded solution, w (t), such that�

w (t) = A(ρρ(t)) w (t) + B(ρρ(t)) :r (t) (158)�
y (t) = C(ρρ(t)) w (t) =

�
v(t) + ξξ (t) (159)

where ξξ (t) decays asymptoticall y to zero as t→∞.  The inversion task is then well-posed in the sense that a
smooth solution does indeed exist.  (The nonlinear relative degree, when its exists, is defined as the
minimum number of times each output must be differentiated such that the inputs are directly coupled to

the outputs.  It follows that a suff icient condition for  the existence of 
�
r  is that the relative degree is

uniform in the relevant operating region and the associated coupling is invertible).  Adopting a fast/slow
time-scale separation approach, let τ=t/εε be the fast time-scale and let

w(t)= !w (τ)+ w (t) (160)
It follows that
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(161)

where
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Assume that |B(ρρ)| and |C(ρρ)| are uniformly bounded and select εεc and ε such that |εεc|→0 as |εεd|→0 and

|ε~
( )D 1− ρρ | is uniformly bounded (it should be noted that εεc and ε may depend on εεd).   Since w (t)  and 

�
r (t)

are bounded, z(t) tends to zero asymptotically as |εεd|→0 and ξξ (t) decays asymptotically to zero, it follows
that ηη decays asymptoticall y to zero as |εεd|→0.  Hence, provided (161) is bounded-input bounded-output
stable uniformly in ε, then !w (τ)→0 and w(t)→ w (t) as  |εεd|→0.   It follows immediately that 

� �
v y− →0

and the approximate inverse system is an arbitrarily accurate approximation to the exact inverse as  |εεd|→0.

Appendix C

Sufficient conditions for stabili ty of the z dynamics may, for example, be derived as follows.  Provided
Ai(ρρ), Bi(ρρ), Ci(ρρ) and Di(ρρ) are differentiable with Lipschitz continuous first derivatives, it follows from
the Mean Value Theorem (see, for example, Khalil 1992 p68) that the magnitudes of the  ξξi are
proportional to |ρρi-ρρ|2 (where |•|2 denotes the Euclidean norm).    In addition, provided F-1(•,•) is
differentiable with respect to its first argument and the derivative is Lipschitz continuous

|ρρi-ρρ|2 = |∇xρρ ~x  - ∇xρρx|2 ≤ |∇xρρ|2|F
-1(-wi, r) - F-1(w, r)|2 ≤ β1|w

i+w|2 = β1|z|2 (163)
where β1 is a positive finite constant.  The z dynamics in (128) are�

( )z A z= +ρρ ηη (164)

where
ηη ξξ ξξ= +1 2w vi �

(165)

Under the foregoing conditions, it follows from (163) that
|ηη|2 ≤ β2|z|2{ |wi|2+|

�
v |2} (166)

where β2 is a positive finite constant.  Assume that the dynamics, (164), are exponentially stable when ηη is
zero.  It follows (see, for example, Khalil 1992 Theorem 4.5) that there exists a Lyapunov function, V,
satisfying
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where the αi are positive constants.  Hence, when  ηη is non-zero, the derivative of V along the solution
trajectories of  (164) satisfies
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Assume that the wi dynamics are bounded-input bounded-output stable with exponentially decaying
transients; that is,

| |
�

w w vi
2

-at i
2(t)| e (0)| +≤ αγ κ (169)

where 
�

|
�

)|v v 2= sup (t
t

.  In addition, assume that the input, 
�
v , and initial condition, wi(0), satisfy

αγ κ
α

α β
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�
w vi

2(0)| +( + <1 3

4 2
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(170)

Under these conditions, it follows from (168) that dV/dt is negative definite (with quadratic upper bound)
and the function, V is also a Lyapunov function for the z dynamics, (164), when ηη is non-zero.  Hence,
from standard Lyapunov theory (see, for example, Khalil 1992, Corollary 4.2), z decays exponentially to
zero as required .
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Figure 1 Alternative representations of a nonlinear system
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Figure 3  Nonlinear system with relative degree zero considered in Example 1.
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Figure 6  Variation of inversion error with εd (Example 3)
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Figure 7  Variation of inversion error with εd (Example 4)


