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Abstract
In this paper it is shown that the dynamics of a conventional type of blended multiple model system are

only weakly related to the local models from which it is formed.  A novel class of velocity-based blended
multiple model systems is proposed for which the dynamics are directly related to the local models.
Indeed, the solution to the blended multiple model system, locally to a specific operating point, is
approximated by the weighted linear combination of the solutions to the local models.  Moreover, in
contrast to conventional blended multiple model systems, the velocity-based blended multiple model
systems employs linear local models, thereby providing a degree of continuity with established linear
methods and, consequently, facilit ating analysis and design.

Notation

~, ~,~,~x w y ρρ state, state velocity, output and scheduling variable of blended multiple model system (both

conventional and velocity-based since no scope for confusion).
r input.
µi validity function associated with i th local model.
x w yi i i, , state, state velocity and output of i th local model.� � �
x w y, , state, state velocity and output of first-order series expansion (also perturbation forms

δ δ
� �
x y, ).

x,w,y,ρρ state, state velocity, output and scheduling variable of general nonlinear system.� � �
x w y* * *, , weighted linear combinations of solutions to velocity-based local models.
~ , ~ , ,~x w r yc c c c  state, state velocity, input and output of velocity-based blended multiple controller.

yref reference input to controller.
x w yc c ci i i

, , state, state velocity and output of i th local controller.

εε εε εε
w y w* *, , residual terms.

subscript 1 denotes evaluation at some specific operating point; for example, (x1, r1).

1. Introduction

Under quite general conditions, the solution to a nonlinear system approximates the solution to another
nonlinear system over any finite time interval provided the terms in the differential equations describing the
two systems are sufficiently similar (see, for example, Khalil 1992 Theorem 2.5).  Hence, by employing a
sufficiently accurate representation of the terms in the differential equation describing a nonlinear system, a
nonlinear system may be obtained which is an approximation to the original system.   The representation of
the nonlinear mappings associated with differential equations describing nonlinear systems is currently
receiving considerable attention in the literature (see, for example, the review by Johansen & Murray-smith
1997).  However, a common difficulty is the so-called “curse of dimensionality” whereby the number of
parameters in the representation increases extremely rapidly as the order of the nonlinear dynamic system
increases.  This strongly motivates the investigation of representations which can accurately describe high
order nonlinear systems with a relatively small number of parameters.

One  promising class of representations is blended multiple model systems wherein a small number of
relatively simple dynamic systems are,  in some sense, blended together.   Blended multiple model systems



have been studied in a number of quite diverse fields (Johansen & Murray-Smith 1997).  In the context of
fuzzy inference systems, Takagi & Sugeno (1985) consider the approximate decomposition of an algebraic
nonlinear mapping into a set of fuzzy rules each of the form “ IF system is in operating region i THEN
output is <affine function of inputs>” .  Whilst Takagi & Sugeno (1985) restrict consideration to linear-type
membership functions and to algebraic mappings, the extension to more general forms of membership
function and to dynamic systems is  straightforward (see, for example, Johansen & Murray-Smith 1997).
In the context of neural networks, Johansen & Foss (1993) consider the approximation of the discrete-time
nonlinear dynamic system, y(t)=F(ψψ(t-1))+e(t) with ψψ(t-1)=[yT(t-1), yT(t-2),…,uT(t-1),uT(t-2),…,eT(t-

1),eT(t-2),…]T, by a local model network of the form, y F w e( )
~

( ( ))~ ( ( )) ( )t t t ti
i

= − − +∑ ψψ ψψ1 1i , where y is the

output, u and e are the inputs, F and ~w i  are smooth nonlinear functions, and 
~
Fi  are aff ine local models.

Gawthrop  (1995) considers the approximation of a continuous-time nonlinear dynamic system, in the
vicinity of the equili brium operating points, by a continuous-time local model network.

Typically, each simple system is a local model which describes the dynamics of the nonlinear system in
some small region of the operating space.  The role of the blending is to provide smooth interpolation, in
some sense, between the local models with the aim of achieving an accurate representation with only a
small number of local models.   The blending is, therefore, central to the utility of  the approach.  Since the
operating regions, in which no single local model dominates and several local models contribute
significantly to the blended multiple model system, constitutes the greater part of the operating space, it is
the investigation of the characteristics of the blended multiple model system in these regions that is of
primary concern and which is the subject of the present paper.  Whilst central to the utili ty of blended
multiple model representations, this issue is largely neglected in the literature (with the notable exception
of Shorten et al. 1998).  It should be noted that another motivation for adopting a blended multiple model
systems is to support a divide and conquer philosophy whereby the operating space of a nonlinear system is
decomposed into operating regions within which the dynamics are described by a particular model.  Each
model in the blended multiple model system is valid in an extended operating region and blending is
confined to small transition regions at the boundaries between these main operating regions.  In this
context, blending plays a relatively minor role and the approach is more akin to piecewise approximation.
In this paper, consideration is confined to the former situation; that is, to blended multiple model systems
where blending is employed to interpolate between a small number of local models and for which the
operating regions where a number of local models are blended together include the greater part of the
operating space.

The paper is organised as follows.  In section 2, the conventional type of blended multiple model
system is investigated.  In section 3, the velocity-based linearisation approach proposed in Leith & Leithead
(1998a) is briefly reviewed and a novel class of velocity-based blended multiple model systems is proposed
and analysed.  An example is presented in section 4 and the conclusions are summarised in section 5.

2. Blended multiple model systems

Consider the conventional type of blended multiple model system

 ~
�

(~, ) (~)x F x r= ∑ i i
i

 µ ρρ , ~ (~, ) (~)y G x r= ∑ i i
i

 µ ρρ (1)

~ρρ ( ~x ,r)=∇x
~ρρ ~x +∇r

~ρρ r (2)

where, ~ , ,~x r y∈ℜ ∈ℜ ∈ℜn m p , ~ρρ ( x~ ,r)∈ℜq.  The Fi and G i  are differentiable nonlinear functions with

Lipschitz continuous first derivatives. The µi are differentiable mappings, with Lipschitz continuous first

derivatives, from the operating space, 
�
Φ ⊆ℜn×ℜm, onto the positive real l ine such that µ i

i
(~)ρρ∑ = 1.  The

quantity, ρρ(x,r), embodying the dependence of the blending on the state and input, is assumed to be linear
in the state, ~x , and input, r: no loss of generali ty is involved since any nonlinear dependence can be
absorbed into the validity functions, µi.   It is assumed, in addition, that the input and initial conditions are

restricted such that the solution to (1) lies within the operating space, 
�
Φ .    This class of blended multiple

model systems is similar to that considered by, for example, Gawthrop  (1995) and Shorten et al. (1998)



and is closely related to the systems considered by Johansen & Foss (1993), albeit in a continuous-time
rather than discrete-time setting.

The local models associated with the blended multiple model system are

 
�

( , )x F x ri i i= , y G x ri i i  = ( , ) (3)

Typically (Johansen & Foss 1993, Johansen & Murray-smith 1997), aff ine local models are employed; that
is,

F x r A x B ri i i i( , ) = + +αα , G x r C x D ri i i i = +( , ) ββ + (4)

where αα ββi i i i i i,, , , ,A B C D are constants.  It should be noted that, when the blended multiple model system

describes a smooth nonlinear system, a corresponding smoothness requirement is imposed on the right-
hand sides in (1) which,  for a particular choice of the validity functions, constrains the choice of local
models.   This constraint can be included during learning/identification by, for example, the classical
regularisation approach of Tikhonov & Arsensin (1977), originally developed in the context of optimisation
theory, whereby the identification cost function is augmented with a penalty term which is related to the
non-smoothness of the blended multiple model system.

To determine the dynamic behaviour of the blended multiple model system, (1), locally to an operating
point, ( x~ 1,r1), consider the first-order series expansion of (1) relative to the operating point,

δ δ δ
� ��

(~ , ) (~ ) (~ , ) (~ ) (~ , ) (~ ) ~ (~ , ) (~ ) (~ , ) (~ ) ~x F x r F x r F x r x F x r F x r r1 1 1 x 1 1 1 1 x r 1 1 1 1 1 1 r= +∑ ∇ + ∇µ ∇∑ + ∇ + ∇µ ∇∑i i  
i

i i  i i  
i

i i  i i  
i

µ µ µρρ ρρ ρρ ρρ ρρ ρρ ρρ1 1

� � � �
(5)

δ δ δ
� �
y G x r G x r x G x r G x r rx 1 1 1 1 1 1 x r 1 1 1 1 1 1 r= ∇ + ∇µ ∇∑ + ∇ + ∇µ ∇∑i i  i i  

i
i i  i i  

i
(~ , ) (~ ) (~ , ) (~ ) ~ (~ , ) (~ ) (~ , ) (~ ) ~µ µρρ ρρ ρρ ρρ ρρ ρρ

	 
 	 

(6)

where

~ρρ 1=∇x
~ρρ ~x 1+∇r

~ρρ r 1,   δr = r - r1 ,    �y G x r1 1 1= ∑ i i
i

 (~ , ) (~ )µ ρρ  + δ �y ,   �x  = δ �x  + ~x 1, � �x  = δ � �x (7)

It should be noted that the expansion is carried out relative to the fixed operating point, ( x~ 1,r1), as opposed
to a trajectory passing through ( x~ 1,r1), and the derivative of x~ 1 is, therefore, zero.  It is emphasised that
(5)-(7)  is a well-defined system in its own right, distinct from the nonlinear system (1), with state δ �x .
Furthermore, the point, ( x~ 1,r1), need not be an equili brium operating point and, indeed, may lie far from
the locus of equili brium operating points.   When ( x~ 1,r1) is an equili brium operating point, the
inhomogeneous term in (5) is zero in which case the dynamics of (5)-(7) are determined solely by the terms
in δ �x and δr (note that, in general, the contributions to these terms from both µi and ∇µ i  are significant).

However, when ( x~ 1,r1) is a non-equilibrium operating point the inhomogeneous term may be extremely
large and can dominate the solution to (5)-(7).

Combining (5) and (6) with the local input, output and state transformations, (7), the first-order
representation, (5)-(7), may be reformulated as


�

(~ , ) (~ ) (~ , ) (~ ) (~ , ) (~ ) ~ ~ (~ , ) (~ ) (~ , ) (~ ) ~

(~ , ) (~ ) (~ , ) (~ ) ~

x F x r F x r F x r x F x r F x r r

F x r F x r x

1 1 1 x 1 1 1 1 x 1 r 1 1 1 1 1 1 r 1

x 1 1 1 1 x

= − ∇ + ∇µ ∇∑ ∇ + ∇µ ∇∑∑

∇ + ∇µ ∇∑ +

i i  i i  i i  
i

i i  i i  
ii

i i  i i  
i

-

                             +

µ µ µ

µ

ρρ ρρ ρρ ρρ ρρ ρρ ρρ

ρρ ρρ ρρ

1 1

1 1

� � � �
� �

∇ + ∇µ ∇∑ r 1 1 1 1 1 1 rF x r F x r ri i  i i  
i

(~ , ) (~ ) (~ , ) (~ ) ~µ ρρ ρρ ρρ
� �

�
�y G x r G x r G x r x G x r G x r r

G x r G x r x

1 1 1 x 1 1 1 1 1 1 x 1 r 1 1 1 1 1 1 r 1

x 1 1 1 1 1 1 x

= − ∇ + ∇µ ∇∑ ∇ + ∇µ ∇∑∑

+ ∇ + ∇µ ∇

i   i  i i  i i  
i

i i  i i  
ii

i i  i i  
i

 -

                         

(~ , ) (~ ) (~ , ) (~ ) (~ , ) (~ ) ~ ~ (~ , ) (~ ) (~ , ) (~ ) ~

(~ , ) (~ ) (~ , ) (~ ) ~

µ ρρ ρρ ρρ ρρ ρρ ρρ ρρ

ρρ ρρ ρρ

µ µ

µ

	 
 	 

	 


∑ + ∇ + ∇µ ∇∑ r 1 1 1 1 1 1 rG x r G x r ri i  i i  
i

(~ , ) (~ ) (~ , ) (~ ) ~µ ρρ ρρ ρρ
	 


(8)
In contrast to (5)-(7), the state, input and output are now the same at every operating point, ( x~ 1,r1).  When
the local models are affine, (4), the first-order representation, (8), is 

 
�

(~ ) ) (~ )~

( (~ ) ) (~ ) ~)~ ( (~ ) ) (~ ) ~)

x A x B r

A A x B r x B A x B r r

1 1 1 1 1

1 1 1 1 x 1 1 1 1 r

= − + + ∇µ∑

∑ + + + ∇µ ∇ + + + + ∇µ ∇∑

αα ρρ αα ρρ ρρ

ρρ αα ρρ ρρ ρρ αα ρρ ρρ

i i  i i i i   
i

i i  
i

i i i i  i i  i i i i  
i

(

           + ( (

µ

µ µ

� �
(9)



� �
� � �y C x D r

C C x D r x D C x D r r

1 1 1 1 1

1 1 1 x 1 1 1 r

= − + ∇µ∑

+ +∑ + ∇µ ∇ + + + ∇µ ∇∑

ββ ρρ ββ ρρ ρρ

ββ ρρ ρρ ββ ρρ ρρ

i i  i i  i  i   
i

i
i

i i  i  i  i i i  i  i  
i

 +

                 + +

µ (~ ) ( ) (~ )~

( ( ) (~ ) ~) ( ( ) (~ ) ~)

� �
(10)

The blending in a blended multiple model system is required to provide smooth interpolation, in some
sense, between the local models to achieve an accurate representation over the whole operating space with
only a small number of local models.  The operating regions, in which no single local model dominates and
several local models contribute significantly to the blended multiple model system, constitute the greater
part of the operating space.  However, to facil itate analysis and design, the dynamics of the blended
multiple model system in these regions are still required to be directly related to the local models.   This
property, for example, underlies control design approaches such as that of Hunt & Johansen (1997),
whereby a linear controller is designed for each local model and the members of the family of linear
controllers obtained are blended to obtain a nonlinear controller.   Locally to the operating point, ( x~ 1,r1),
the solution, ~x , to the blended multiple model system is approximated by the solution, �x , to the first-order
series expansion  (8) (Leith & Leithead 1998a; see also section 3.1).  However, it is evident from (8) that
the relationship between the first-order series expansions and the local models is not straightforward.  The
dynamics of the blended multiple model system are not described by a simple blend of dynamics of the
local  models.  Indeed, in operating regions where the derivative, ∇µi, of any validity function is large, the
dynamics of the first-order series expansions may be strongly influenced by the varying nature of the
validity functions and only weakly related to the dynamics of the local models.  Hence, the utility of this
class of blended multiple model systems is diminished considerably.   Furthermore, although widely
employed in the literature, it is noted that affine local models do not provide continuity with established
linear methods and, in particular, do not possess the superposition property which is fundamental to linear
systems.  It is emphasised that the magnitude of the inhomogeneous term in an affine local model may be
extremely large and can strongly influence the solution.  When the inhomogeneous term varies from one
local model to another, it introduces an implicit feedback from the state and/or input of the overall blended
multiple model system. Hence, the inhomogeneous term cannot, in general, simply be treated as a
disturbance or small approximation error.

3. Velocity-based blended multiple model systems

Two difficulties with the conventional approach to blended multiple model systems using aff ine local
models are noted above; namely, the lack of a direct relationship, between the dynamics of the blended
multiple model system and the dynamics of the local models, and the lack of linearity of the local models
themselves. To circumvent these difficulties the velocity-based representation of nonlinear dynamics
systems of Leith & Leithead (1998a) is adopted; that is, the dynamics are represented by a velocity-based
nonlinear system or, equivalently, a velocity-based linearisation family.

3.1 Velocity-based linearisation families

Before proceeding, the velocity-based approach of Leith & Leithead (1998a) is briefly reviewed.
Consider nonlinear plants with dynamics,�

x = F(x, r), y = G(x, r) (11)
where F(·,·) and G(·,·) are differentiable nonlinear functions with Lipschitz continuous first derivatives and
r∈ℜm denotes the input to the plant, y ∈ ℜp the output and x ∈ ℜn the states.  The set of equili brium
operating points of the nonlinear plant, (11), consists of those points, (xo, ro), for which

F(xo, ro) = 0 (12)
and the corresponding equili brium output is

yo = G(xo, ro) (13)
Let Φ:ℜn×ℜm denote the space consisting of the union of the states, x, with the inputs, r.  The set of
equili brium operating points of the nonlinear plant, (11), forms a locus of points, (xo, ro), in Φ and the
response of the plant to a general time-varying input, r(t), is depicted by a trajectory in Φ.

The nonlinear system, (11), may be reformulated, equivalently, as�
x = Ax + Br + f(ρρ), y = Cx + Dr + g(ρρ) (14)



where A, B, C, D are appropriately dimensioned constant matrices, f(•) and g(•) are nonlinear functions
and ρρ(x,r)∈ℜq, q≤m+n, embodies the nonlinear dependence of the dynamics on the state and input with
∇xρρ, ∇rρρ functions of ρρ alone.  Trivially, this reformulation can always be achieved by letting ρρ = [xT  rT]T,
in which case q=m+n.  However, the nonlinearity of the system is frequently dependent on only a subset of
the states and inputs, in which case the dimension, q, of ρρ is less than m+n.  Since ∇xρρ, ∇rρρ are functions of
ρρ alone, the variable, ρρ(x,r), equals the constant value, ρρ1, upon a surface of co-dimension q in Φ and ∇xρρ
and ∇rρρ are constant over each surface.  Hence, the normal to each surface is identical at every point on the
surface and each surface is, therefore, affine.  Moreover, to ensure that ρρ is a unique function of x and r,
these surfaces must be parallel for all ρρ.  Consequently, it may in fact be assumed, without loss of
generality, that ∇xρρ and ∇rρρ are constant.

  Suppose that the nonlinear system, (14), is evolving along a trajectory, (x(t), r(t)), in Φ and at time, t1,
the trajectory has reached the point, (x1, r1).  It is emphasised that the point, (x1, r1), need not be an
equili brium operating point and, indeed, may lie far from the locus of equili brium operating points.  From
Taylor series expansion theory, the subsequent behaviour of the nonlinear system can be approximated,
locally to the point, (x1, r1), by the first order representation,

δ � �x  = (Ax1+Br1+f(ρρ1)) + (A+∇f(ρρ1) ∇xρρ )δ �x  + (B+∇f(ρρ1) ∇rρρ )δr (15)
δ �y  = (C+∇g(ρρ1) ∇xρρ )δ �x  + (D+∇g(ρρ1) ∇rρρ )δr (16)

ρρ1=ρρ(x1,r1),   δr = r - r1 ,   �y  = Cx1 + Dr1 + g(ρρ1) + δ �y ,   �x  = δ �x  + x1, � �x  = δ � �x (17)

provided x1+δ �x  ⊆ Nx r1+δr⊆ Nr, where the neighbourhoods, Nx and Nr, of, respectively,  x1 and r1 are
sufficiently small .  When δ �x (t1) is zero,�x (t1) = x1 = x(t1) (18)� �x (t1) =  Ax1+Br1+f(ρρ1) = 

�
x (t1) (19)

 x��� (t1) = (A+∇f(ρρ1) ∇xρρ 
�
x (t1)) � �x (t1) + (B+∇f(ρρ1) ∇rρρ )

�
r (t1) = 

� �
x (t1) (20)

�y (t1) = Cx1 + Dr1 + g(ρρ1) = y(t1) (21)� �
y (t1) = (C+∇g(ρρ1) ∇xρρ ) � �x (t1)+(D+∇g(ρρ1) ∇rρρ )

�
r (t1) = �y (t1) (22)

Hence, the solution, �x (t), to (15)-(17), initially at time t1, is tangential to the solution, x(t), of (14).  Indeed,
locally to time t1, �x (t) provides a first-order approximation to 

�
x (t) and a second-order approximation to

x(t) and �y (t) provides a first-order approximation to y(t).

The solution, �x (t),  to the first-order series expansion, (15)-(17), provides a valid approximation only
while the solution, x(t), to the nonlinear system remains in the vicinity of the operating point, (x1, r1).
However, the solution, x(t), to the nonlinear system need not stay in the vicinity of a single operating point.
Consider the time interval, [0,T]; the initial time can, without loss of generali ty, always be taken as zero.
An approximation to x(t) is obtained by partitioning the interval into a number of short sub-intervals.  Over
each sub-interval, the approximate solution is the solution to the first-order series expansion relative to the
operating point reached at the initial time for the sub-interval (with the initial conditions for each sub-
interval chosen to ensure continuity of the approximate solution).  The number of local solutions employed
is dependent on the duration of the sub-intervals, but the local solutions are accurate to second order; that
is, the approximation error is proportional to the duration of the sub-interval cubed.  Hence, as the number
of sub-intervals increases, the approximation error associated with each rapidly decreases and the overall
approximation error also decreases.  Indeed, the overall approximation error tends to zero as the maximum
size of the sub-intervals tends to zero.  Hence, the family of first-order series expansions, with members
defined by (15)-(17), can provide an arbitrarily accurate approximation to the solution of the nonlinear
system.  Moreover, this approximation property holds throughout Φ and is not confined to the vicinity of a
single equilibrium operating point or even of the locus of equili brium operating points.

It should be noted that the state, input and output transformations, (17), depend on the operating point
relative to which the series expansion is carried out.  When the solution to the nonlinear system is confined
to a neighbourhood about a single operating point, the transformations, (17), are static and the dynamic
behaviour is described by the system, (15)-(16), alone.  However, when the solution to the nonlinear system
traces a trajectory which is not confined to a neighbourhood about a single operating point, the
transformations, (17), are no longer static and the dynamic behaviour is no longer described solely by the



system, (15)-(16).  Instead, the dynamic behaviour is described by (15)-(17).  Combining (15) and (16)
with the local input, output and state transformations, (17), each member, (15)-(17), of the family of first-
order representations may be reformulated as,� �x  = {  f(ρρ1)-∇f(ρρ1)∇xρρ x1-∇f(ρρ1)∇rρρ r1 } + (A+∇f(ρρ1)∇xρρ ) �x  + (B+∇f(ρρ1)∇rρρ )r  (23)�y  = {  g(ρρ1)-∇g(ρρ1)∇xρρ x1-∇g(ρρ1)∇rρρ r1 } + (C+∇g(ρρ1)∇xρρ ) �x +(D+∇g(ρρ1)∇rρρ ) r   (24)

In contrast to the representation, (15)-(16), the state, input and output are now the same for all members of
the reformulated family.  The dynamics, (23)-(24), of an individual member of the family are aff ine rather
than linear even when (x1, r1) is an equili brium operating point.  The inhomogeneous terms in (23)-(24)
may, in general, be extremely large and can dominate the solution.

On differentiating (23)-(24)� �x  = �w (25)� �w = (A+∇f(ρρ1) ∇xρρ ) �w  + (B+∇f(ρρ1) ∇rρρ )
�
r (26)� �

y  = (C+∇g(ρρ1) ∇xρρ ) �w  + (D+∇g(ρρ1) ∇rρρ )
�
r  (27)

The system, (25)-(27), is dynamically equivalent to the system, (23)-(24), in the sense that with appropriate
initial conditions, namely,�x (t1) = x1, �w (t1) =  A x1+Br1+f(ρρ1), �y (t1) = Cx1+Dr1+g(ρρ1) (28)

the solution, �x ,  to (25)-(27), is the same as the solution, �x , to (23)-(24).  However, in contrast to (23)-(24)
, the transformed system, (25)-(27), is linear.  The relationship between the nonlinear system and its
velocity-based linearisation, (25)-(27), is direct.  Differentiating (14), an alternative representation of the
nonlinear system is�

x  = w (29)�
w = (A+∇f(ρρ) ∇xρρ )w + (B+∇f(ρρ) ∇rρρ )

�
r (30)�y  = (C+∇g(ρρ) ∇xρρ )w + (D+∇g(ρρ) ∇rρρ )

�
r  (31)

Dynamically, (29)-(31), with appropriate initial conditions corresponding to (28), and (14) are equivalent
(have the same solution, x).  (When w = F(x, r), y = G(x, r) is invertible for every (x, r), so that x may be
expressed as a function of w, r and y, then the transformation relating (29)-(31) to (14) is, in fact,
algebraic).  When�x (t1) = x(t1),  �w (t1) =  w(t1),   �y (t1) = y(t1) (32)

it follows from (25)-(27) and (29)-(31) that

x�� (t1) =  �w (t1) = 
�
x (t1) (33)

 x��� (t1) = (A+∇f(ρρ1) ∇xρρ 
�
x (t1)) �w (t1)  + (B+∇f(ρρ1) ∇rρρ )

�
r (t1) = 

� �
x (t1) (34)� �w (t1) = (A+∇f(ρρ1) ∇xρρ 

�
x (t1)) �w (t1)  + (B+∇f(ρρ1) ∇rρρ )

�
r (t1) = 

�
w (t1) (35)� �

y (t1) = (C+∇g(ρρ1) ∇xρρ ) �w (t1)+(D+∇g(ρρ1) ∇rρρ )
�
r (t1) = �y (t1) (36)

Hence, �x (t) and  �y (t)  still provide a second- and first-order approximation to, respectively,  x(t) and  y(t)

and  �w (t) provides a first-order approximation to w(t).  Clearly, the velocity-based linearisation, (25)-(27),
is simply the frozen form of (29)-(31) at the operating point, (x1, r1).

There exists a velocity-based linearisation, (25)-(27), for every point in Φ.  Hence, a velocity-based
linearisation family, with members defined by (25)-(27), can be associated with the nonlinear system, (14).
Similarly to the family of first-order expansions, the solutions to the members of the family of velocity-
based linearisations, (25)-(27), can be pieced together (with the initial conditions for each sub-interval
chosen to ensure continuity of �x , �w and �y ) to approximate the solution to the nonlinear system, (29)-(31)

to an arbitrary degree of accuracy.  However, it should be noted that, for any particular partition of [0,T],
the approximate solutions, obtained using the family of velocity-based linearisations and the family of first-
order expansions, differ even though both converge on the solution to (14).

There exists a rigorous, and direct, relationship between the dynamic characteristics of a nonlinear
system and those of a related family of linear systems, namely, the velocity-based linearisation family, and
a related family of affine systems, namely the first-order series expansion family. Since the solutions to the
members of the famili es  can be combined to approximate the solution to the nonlinear system arbitrarily
accurately, the families embody the entire dynamics of the nonlinear system, (14), with no loss of
information and therefore provide alternative representations of the nonlinear system.   Whilst these
representations are equivalent in the sense that they each embody the entire dynamics of the nonlinear



system, they are not necessarily equivalent with respect to other considerations.  In particular, the direct
relationship between the velocity-form of the nonlinear system and the velocity-based linearisation family
and the linearity of the members of the latter family provides continuity with established linear theory
which, for example, facilitates analysis (Leith & Leithead 1998a) and controller design (Leith & Leithead
1998c).

3.2 Velocity-based blended multiple model systems

 Instead of using the direct forms of the local models, consider constructing a blended multiple model
system using the velocity-based forms; that is, consider the velocity-based blended multiple model system
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where φφ φφ γγ γγx r x r
i i i i and , ,  are constant matrices.  The corresponding local models, from which the blended

multiple model system is constituted, are
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and φφ(•,•) and γγ(•,•) are differentiable nonlinear functions with Lipschitz continuous first derivatives.
Each local model then corresponds to the velocity-based linearisation, at the operating point ( ~x i ,ri), of the

nonlinear system� ( , ), ( , )x x r y x r= =φφ γγ   (41)

Since the functions,  φφ(•,•) and γγ(•,•), are arbitrary (other than being required to be smooth), this
requirement is simply a smoothness condition which serves a role similar to the regularisation measures
required with blended multiple model systems, (1).   In the extreme situation where an infinite number of
local models are employed and the ( ~x i ,ri) form a continuum in the operating space, this condition can be

interpreted as an integrabili ty condition: whilst always satisfied in the scalar case, it is a rather strong
condition in the multi-dimensional case when n and/or m are greater than unity.  However, in the situation
considered in this paper, where the number of local models is finite and small , the condition is very weak
since it only requires that the coefficients of the local models can be interpolated by integrable functions.

Suppose that the blended multiple model system is evolving along a trajectory in Φ and at time, t1, the
trajectory has reached the point, ( ~x1 , r1).  Similarly to the discussion in section 3.1 concerning the

relationship of (25)-(27) to (29)-(31), the solution to the frozen form of (37) at the operating point ( ~x1 ,r1)
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� � �x x w w y y( ) ~( ), ( ) ~( ), ( ) ~( )t t    t t   t t1 1 1 1 1 1= = = (43)

is, initially at time t1, tangential to the solution to the blended multiple model system, (37).  Indeed, �x  is a
second-order approximation to ~x , �w  is a first-order approximation to ~w  and �y  is a first-order

approximation to ~y .  Hence, the dynamics of the blended multiple model system, locally to the operating

point ( ~x1 ,r1), are indicated by the dynamics of the corresponding frozen-form linear system, (42).  Clearly,

the frozen-form, (42), of the blended multiple model system is directly related to the local models, (38),
from which it is constructed.  Specifically, the frozen-form at the operating point, ( x~ 1,r1), is a weighted
linear combination of the local models with the weighting assigned to each local model just the value of the
corresponding validity function at ( x~ 1,r1).  Hence, the dynamics of the blended multiple model system are
directly related to the local models as required; that is, the dynamics are described by a straightforward
blend of the local models.

The weighted linear combination of the solutions to the local models, (38), satisfies
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It follows that, provided εε εε
w y* * and  are suff iciently small , the solution to the frozen form is described by

the weighted linear combination of the solutions to the local models.   Since φφ γγx xx r x r(~, ) (~, ) and  are

Lipschitz continuous in 0Φ , there exists a positive finite constant, L, such that

εε ρρ ρρ
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Hence, the magnitudes of εε εε
w y* * and  are proportional to the distance between the centres, ( x~ i,ri), of the

local models and the overlap in the validity functions,  µi.  Evidently, εε εε
w y* * and  tend to zero as the

distance between the centres tends to zero provided the overlap is confined to neighbouring local models
and the solutions, w i , are bounded.  When the magnitudes of εε εε

w y* * and  are sufficiently small , they can

be neglected in  (45).  In these circumstances, the solution to (42) (and therefore the solution, locally to
( x~ 1,r1), to the blended multiple model system) can be approximated by the weighted linear combination of
the solutions to the local models.  Of course, the degree of accuracy to which this approximation
corresponds, like the degree of accuracy of representation of the blended multiple model system, is related
to the number of local models and a suitable, contextually dependent, compromise must be reached to keep
this number small .



Furthermore, consider the nonlinear system, (14), for which the velocity-based linearisation family is
(25)-(27) and let
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When µi(
~x i ,ri) is unity and µj(

~x i ,ri), j≠i, is zero, the frozen-form of the blended multiple model system at

the operating point ( ~x i ,ri) is precisely the velocity-based linearisation of (14) at ( ~x i ,ri).   At other

operating points, ( ~x1 ,r1), the frozen form, (42),  is the approximation to the velocity-based linearisation of

(14)  obtained by interpolating, using the validity functions, between the velocity-based linearisations at the
operating points, ( ~x i ,ri).   A frozen form, (42), is associated with every operating point and the resulting

family of frozen forms is an approximation to the velocity-based linearisation family of (14).  Hence, the
blended multiple model system, (37), is an approximation to the velocity-form, (29)-(31), of the nonlinear
system, (14), and the solution x~  to the blended multiple model system approximates the solution x to (14)
over any finite time interval (see, for example, Khalil 1992 Theorem 2.5).   Indeed, locally to the operating
point, ( x~ 1,r1), the solution x to the nonlinear system, (14),  is approximated by the solution to the velocity-
based linearisation, (25)-(27), which in turn is approximated by the solution �x  to the approximate velocity-
based linearisation, (42).

3.3 Higher-order local models

In section 3.2, it is assumed that φφ φφ γγ γγx r x r
i i i i and , ,  are constant in the local models, (38).  However, the

analysis is essentially unchanged when φφ φφ γγ γγx r x r
i i i i and , ,  are allowed to vary with x~  and r.  For example,

when the local models are
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each local model approximates the velocity-based linearisations of the nonlinear system, (14), in a
neighbourhood about the operating point, ( ~x i ,ri), thereby augmenting the interpolation provided by the

validity functions.  Of course, the associated potential improvement in accuracy must be balanced against
the increased complexity of the local models.

3.4 Velocity-based blended multiple controllers

The requirement for a direct relationship between the dynamics of a blended multiple model system and
the local models is motivated, in part, by control design requirements.  For example, in the context of local
model networks, Hunt & Johansen (1997) consider the design of a nonlinear controller whereby a linear
controller is designed for each local model and the members of the family of linear controllers obtained are
blended to obtain a nonlinear controller.   However, the design procedure is complicated considerably by
the lack of a direct relationship between the dynamics of such blended multiple model systems and the
local models on which the control design is based.   Moreover, the local models employed are affine and do
not provide continuity with established linear methods.  In particular, they do not possess the superposition
property which is fundamental to linear systems.  The magnitude of the inhomogeneous term in an aff ine
local model may be extremely large and can strongly influence the solution.  Furthermore, when the
inhomogeneous term varies from one local model to another, it introduces an implicit feedback from the
state and/or input of the overall blended multiple model system. Hence, the inhomogeneous term cannot, in
general, simply be treated as a small disturbance to be rejected by the controller and this leads to Hunt &



Johansen (1997) introducing slow variation requirements which are quite distinct from those encountered in
conventional gain-scheduling.

In contrast to conventional blended multiple model systems, the dynamics of the velocity-based blended
multiple model system, (37), in the blended regions are directly related to the local models.  Moreover, the
local models are linear.  Control design based on a blended multiple model plant representation is thereby
considerably facilit ated.  Consider the nonlinear plant, (37), and the nonlinear controller
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where ~rc
m∈ℜ c denotes the input to the controller, ~yc ∈ℜ pc the output and ~xc ∈ℜ nc the state.  Since the

requirement is to design a feedback controller, to facilit ate the analysis it is assumed the input, ~r , to the
plant is the output, ~yc , of the controller and the input vector, ~rc , to the controller is the error, ~ ~y yref − .

Assume, in addition, that γγ r
i and γγ rc

i are zero.   These assumptions are employed only to simplify the

analysis and it is straightforward to extend to analysis to include more general configurations, including
two degree of freedom controllers and situations where γγ r

i and γγ rc

i are not zero.   The combined closed-loop

dynamics are
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The perturbation term, εεw , vanishes when
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with C and Cc constant matrices.  This requires the output of the plant and the output of the controller,
respectively, to be linearly related to the state of the plant and the state of the controller.  More generally,
the magnitude of εεw is dependent on the distance between the centres, ( ~x i ,ri), of the local models and the

overlap in the validity functions,  µi (similarly to εε εε
w y* * and ).   Clearly, the discussion following (48)-(49)

is section 3.2 also applies to εεw and, when required, the magnitude of εεw can be kept suff iciently small that
it can be neglected.

Observe that the dynamics of the closed-loop combination of the i th individual plant local model and the
i th individual controller local model are
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It is evident that, provided the perturbation term, εεw, is sufficiently small , the closed-loop dynamics, (54),
of the blended multiple model system are described simply by the weighted combination of the closed-loop



local models.  Owing to this very direct relationship, and the linearity of the  local models, the velocity-
based blended multiple model approach clearly offers the potential to facilit ate controller design.

3.5 Realisation of velocity-based blended multiple model systems

Owing to the differentiation and integration operations associated with the velocity-form local models,
the order of the velocity-based blended multiple model system, (42), is greater than the order of (1).
Moreover, some care is required when realising the blended multiple model system, (42), since the input is�
r  rather than r.

Regarding the order of (42), it should be noted that the quantity, ~x , only affects the input-output
characteristics of (42) through its influence on ~(~, )ρρ x r , and thereby on µi.  Hence, (42) can be reformulated

equivalently as
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Since the degree of ~ρρ  is often lower than that of ~x , the order of the formulation, (58), is frequently lower

than that of  (42).   In the context of system identification, the initial condition of ~ρρ in (58) can be chosen

arbitrarily since any constant offset is absorbed within the nonlinear validity functions, µi.  When the
mapping from ( ~x ,r)  is invertible in the sense that ~x  may be expressed as a function of ~w , r and ~y , then
~ρρ  is related algebraically  to ( ~w , r, ~y ) and the order of the blended multiple model system can be further

reduced.
Regarding the input being 

�
r  rather than r in the velocity-based form, when the blended multiple model

satisfies an integrabili ty condition it may, by integrating,  be reformulated as a nonlinear system of the
form, (14) (Leith & Leithead 1996, 1998b; see also the example in section 4 below).  The input to the
reformulated system is r but the terms in the resulting integrated system are related to the terms in the
blended multiple model system by an integral equation.  Alternatively, when the local models contain
integral action, the blended multiple model system can be realised in velocity-based form (Leith &
Leithead 1996, 1998b).   This has the distinct advantage that the elements in the realisation are related
directly to (42).  In the context of control systems, pure integral action is frequently encountered.  In the
context of system identification and modelli ng, the plant under consideration can be readily augmented
with integral action.  For example, system identification and modell ing require the design and application
of a suitable test input  to provide information regarding the plant dynamics; rather than designing a test
input corresponding to r, it is straightforward to design instead a test input corresponding to 

�
r which is

then integrated to obtain the test input applied to the actual plant.  Alternatively, when a control system
associated with the plant contains integral action, this can be included with the plant dynamics for
modelling purposes.   The realisation of velocity-based systems, including situations where integral action
is not present, is discussed in detail i n Leith & Leithead (1996, 1998b)

4. Example

Consider the second-order nonlinear system�� )
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where Q = 29.46, b=1.21.  The nonlinearity is dependent on x1 and consideration is confined to the
operating space where x1∈[0, π].  The first-order series expansion of (59) about the operating point
(x1o,x2o,ro) is
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A blended multiple model system with aff ine local models, obtained by directly blending the first-order
series expansions about the operating points at which x1 is 0,  π/2 and π, is
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x11= 0, x12 = π/2, x13 = π and  the µi are as depicted in figure 1.  In figure 2a, the right-hand side of the
differential equation for x2 in (59) is compared with the right-hand side of the differential equation for ~x 2

in the blended multiple model system, (61) (with x2 and r zero).  It can be seen that, owing to the blending
of the inhomogeneous terms in the aff ine local models, an offset exists in the blended multiple model
system compared to the nonlinear system, (59).  The offset causes a considerable difference in the output of
the blended multiple model system when compared to the output of the nonlinear system, (59).   At the cost
of weakening the connection between the local models and the first-order series expansions, (60),  this
offset is reduced by adjusting the inhomogeneous terms in the local models to
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It can be seen from figure 2b that the right-hand side of the differential equation for ~x 2 in the modified
blended multiple model system is a somewhat better approximation to right-hand side of the x2 equation in
(59).   The output of the nonlinear system, (59), in response to a test input is depicted in figure 3a.  The test
input is quite demanding since it is selected so that the nonlinear system operates near the mid-point
between two local models, where x1 is approximately π/4.  The difference between the output of (59) and
the output of the modified blended multiple model system, in response to the same input, is shown in figure
3b.  The output of the modified blended multiple model system is a reasonable approximation to the output
of the nonlinear system, (59), although a steady offset is still evident.   In figure 4, the output, ~y , from the

modified blended multiple model system is compared with the weighted linear combination of the outputs,�y i , from the local models (with weighting µi(0.75) for the solution to the i th local model since the mean

value of x1, for the test input considered, is approximately 0.75 rad).   Clearly, and in accordance with the
analysis in section 2, the solution to the blended multiple model system is not a straightforward blend of the
solutions to the local models.

The velocity-form of the nonlinear system, (59), is��xx w
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and the velocity-based linearisation at an operating point, (x1o,x2o,ro), is obtained by simply “ freezing” (64)
at that operating point.  A velocity-based blended multiple model system, obtained by blending the
velocity-based linearisations associated with the operating points at which x1 is 0,  π/2 and π, is
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where a1= Qcos(0), a2= Qcos( π/2), a3= Qcos(π).  In figure 5, the right-hand side of the differential equation
for ~w 2  in the velocity-based blended multiple model system is compared to the right-hand side of the

differential equation for w2 in (64) (with w2 and 
�
r  zero).  The difference between the output of (59) and the



output of the velocity-based blended multiple model system, in response to the same input, is depicted in
figure 3b.  It is evident that the output of the velocity-based blended multiple model system is a rather
accurate approximation to the output of the nonlinear system, (59).   The corresponding state solution, ~w 2 ,

to the velocity-based blended multiple model system is shown in figure 6a .   The difference between ~w 2

and the weighted linear combination of the solutions to the local models is shown in figure 6b.  Similar
results are obtained with regard to ~w1 , and it is clear that the solution to the velocity-based blended

multiple model system is very closely related to the solutions to the local models, as expected from the
analysis in section 3.2.

The velocity-based blended multiple model system , (64), is depicted in figure 7a.   Of course, since
pure derivative action cannot be realised,  (64) cannot, in general, be realised as in figure 7a unless 

�
r  is

available.   However,  by integrating, (64) may be reformulated equivalently as
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where
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The realisation, (66), depicted in figure 7b, does not necessitate a differentiation element.

5. Conclusions

The blending in a blended multiple model system is required to provide smooth interpolation, in some
sense, between the local models with the aim of achieving an accurate representation with only a small
number of local models.  The operating regions, in which no single local model dominates and several local
models contribute significantly to the blended multiple model system, constitute the greater part of the
operating space and it is required that dynamics of the blended multiple model system in these regions are
directly related to the local models.   However, it is shown that the conventional type of blended multiple
model system does not meet this requirement.  Furthermore, although widely employed in the literature, it
is noted that affine local models do not provide continuity with established linear methods and, in
particular, do not possess the superposition property which is fundamental to linear systems.  The
magnitude of the inhomogeneous term in an aff ine local model may be extremely large and can strongly
influence the solution.  When the inhomogeneous term varies from one local model to another, it introduces
an implicit feedback from the state and/or input of the overall blended multiple model system.    Hence, the
inhomogeneous term cannot, in general, simply be treated as a disturbance or small error.

A novel class of velocity-based blended multiple model systems is proposed which resolves these
diff iculties.  For blended multiple model systems in this class,
• the dynamics are directly related to the local models: the solution to a velocity-based blended multiple

model system, locally to a specific operating point, is described by the solution to the linear system
obtained by “ freezing” the blended multiple model system at the relevant operating point.  The
resulting frozen system is simply a weighted linear combination of the local models.

• the solution to the blended multiple model system, locally to a specific operating point, is
approximated by the weighted linear combination of the solutions to the local models.

• the local models are linear, thereby providing a degree of continuity with established linear methods
and, consequently, facilitating analysis and design.

• when combined with a corresponding velocity-based blended multiple model controller, the closed-
loop dynamics are approximately described by the weighted combination of the closed-loop local
models, thereby facilit ating controller design and analysis.

These benefits stem directly from the adoption of the velocity-based linearisation framework for the
analysis of nonlinear systems.
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Figure 1 Validity functions used in Example.

  (a) (b)
Figure 2 Fit of conventional blended multiple model system to exact nonlinear system.

(a)   (b)
Figure 3 Output of exact nonlinear system compared with the outputs of modified conventional blended
multiple model system and velocity-based multiple model system.

blended multiple model system

µ3

µ2

µ1

x1 (rad)
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

x1 (rad)
0 1 2 3 4

-35

-30

-25

-20

-15

-10

  -5

   0

   5

x1 (rad)
0 1 2 3 4

-30

-25

-20

-15

-10

  -5

   0

   5

exact nonlinear system

y (rad)

time (s)
0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

velocity-based

modified conventional

error (rad)

time (s)
0 2 4 6 8 10

-0.02

0

0.02

0.04

0.06

0.08



Figure 4 Output, ~y , from the modified conventional blended multiple model system and the weighted

linear combination of the outputs, �y i , from the local models.

Figure 5 Fit of velocity-based blended multiple model system to exact velocity-based nonlinear system.

(a)   (b)
Figure 6 Solution, ~w 2, to velocity-based blended multiple model system compared the weighted linear
combination of the corresponding solutions, w2i

, to local models.
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Figure 7 Realisations of velocity-based blended multiple model system.


