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It is by now well recognized that the naive application of the projection postulate on composite quantum
systems can induce signalling between their constituent components, indicative of a breakdown of causality
in a relativistic spacetime context. Here we introduce a necessary and sufficient condition for an ideal
measurement of an observable to be nonsignalling. As well as being particularly simple, it generalizes
previous no-signalling conditions in that it allows for degeneracies and can be applied to all bounded self-
adjoint operators. The condition is used to establish that arbitrary sums of local observables will not signal,
in accordance with our expectations from relativistic quantum field theory. On the other hand, it is shown
that the measurement of the tensor product of commuting local observables, for example bipartite operators
of the form A ⊗ B, can in fact signal, contrary to the widely held belief that such measurements are always
locally realizable. The implications for the notion of measurement in relativistic quantum field theory are
addressed; it appears that the most straightforward application of the standard quantum formalism
generically leads to violations of causality. We conclude that either the class of observables that can be
measured should be restricted and/or that the naive translation of the measurement framework of quantum
theory, in particular the projection postulate, to quantum field theory should be reevaluated.
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I. INTRODUCTION

The violation of the Bell inequality by entangled
quantum states [1] rules out1 local hidden variable models
[2]. In this sense quantum theory is nonlocal. However, as
is well known, entanglement does not allow for instanta-
neous signalling; Beolagh’s (receiver) marginal probabil-
ities are independent of Aoife’s (sender) measurement
choices. Einstein’s “spooky action at a distance” charac-
terization notwithstanding, entanglement and causality are
happy bedfellows. Yet, as has been long recognized [3–15],
the tension between quantum theory and causality persists
for more elementary reasons.
The conventional account of ideal measurement leads to

superluminal signalling when straightforwardly applied, in
the sense precisely captured in [9], to certain observables in
spacetime [9–12]. Examples of such observables in rela-
tivistic quantum field theory (QFT) include one-particle
wave-packet states [9,12], Unruh-DeWitt detectors with
nonlocal field couplings [12] and Wilson loops in non-
Abelian gauge theories [16]. Such causality violations
imply that it is impossible to perform an ideal measurement

of one of these observables, within its associated spacetime
region.
On the other hand, there are numerous examples of

signalling in nonrelativistic quantum theory, incomplete
Bell basis measurements [9,10] for example. This does not
mean that such observables cannot be ideally measured
(they are routinely), only that the constituent systems must
be brought into causal contact to realize the measurement.
Let us elaborate for clarity. In the nonrelativistic setting

we consider composite multiparty systems (laboratories),
that are strictly isolated in the sense that no signal may
propagate from one component to another. This could be
due to the fact that the laboratories are spacelike separated,
or it could be imposed by some other physical obstruction
(or for the purposes of argument, simplify imposed by fiat).
This is precisely the situation for Bell-type experiments. To
close the “locality loophole” one would like to ensure that
no signal can pass between the laboratories, to be sure that
any violations of the Bell-type inequalities are really due to
entanglement and not some hidden signalling. In practice,
this can indeed be achieved by making the laboratories
spacelike separated [17].
Given such isolated joint systems, one can ask if there

are joint observables whose ideal measurement could be
used to induce a signal between the two isolated labora-
tories. As already emphasized, and as we shall show,
generalizations of Bell-type measurements (which are
manifestly local) on the joint system cannot induce
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signalling. On the other hand, we shall show that other,
seemingly innocuous, joint observables can induce signal-
ling. This does not mean that they cannot be ideally
measured, only that they must be brought into causal
contact to do so. Indeed, experimental implementations
of signalling measurements can be performed, but if the
constituents are separated it is always the case that the
measurement will take at least the light travel time between
them to complete.
It is therefore meaningful, in relativistic or nonrelativistic

quantum theory, to discuss causal constraints on what
observables may be ideally measured in a given spacetime
region [10,11]. In particular, in [11] they consider bipartite
systems with tensor product Hilbert spaces and give a
comprehensive causal characterization of quantum chan-
nels, which includes ideal measurement as a special case,
separating quantum operators into those that are (semi)
localizable, (semi)causal, and signalling.
The proper setting for studying causal constraints on

measurements is QFT, where causality is encoded through
the (anti)commutation of field operators at spacelike
separated points. This ensures, for example, that correlation
functions will always respect causality. It does not, how-
ever, protect us against signalling through the naive
application of the projection postulate [9]. QFT is our very
best framework for making predictions for the probabilities
of the outcomes of measurements and there are certainly
observables we can measure, scattering amplitudes being
the prime example. In this case however, the asymptotic
nature of the S-matrix washes away all causal consider-
ations. The question still remains, however, whether one
can do ideal measurements of the many other observables
in QFT; smeared field operators for example. Furthermore,
if ideal measurements of certain observables are not
possible, what sort of measurements are? Can one get
arbitrarily close to an ideal measurement?
Here we revisit the conditions under which an ideal

measurement will not signal. We begin by articulating an
expression of the projection postulate robust enough to
accommodate all observables, i.e., arbitrary self-adjoint
operators, and is therefore robust enough to be applied to
the continuum setting of QFT, which differs in several
meaningful ways from the discrete case.2 Our expression of
the projection postulate relies on the notion of a measure-
ment resolution B, a set of disjoint Borel subsets covering
the real line. Physically, it can be interpreted as the ability
for the measurement apparatus to distinguish the possible
outcomes for a given observable. Then, a general criterion
for no-signalling is derived which can be applied to any
state update map, E, including projection operator-valued

measures (POVMs) and the case of interest here—ideal
measurements. We then apply the criterion to two simple
cases. First, it is used to rederive the result [12] that sums of
local compact self-adjoint operators cannot signal, which
accords with our expectations from QFT and subsumes the
Bell-type measurements. Second, it is used to show that the
tensor product of local compact self-adjoint operators can
indeed signal, and we give a simple two-qubit example
using a separable state. This somewhat surprising result
contradicts the claim that such observables are locally
realizable and hence causal [11]. Indeed, such observables
are routinely used in various quantum information theoretic
contexts. Finally, the possible implications of these results
are considered in the relativistic context of QFT.
It should be stressed that our no-signalling criterion is

agnostic to the particular experimental setup or the meas-
urement model adopted. This is because it is formulated in
terms of the state update map, which is general enough to
encompass any current description of quantum measure-
ment. Our criterion should therefore be understood as a
theoretical limit on what is possible, independent of how it
is attempted. The evidence presented here indicates that this
limit depends intimately on the precise form of the QFT
observable under consideration.

II. THE SETUP

Consider the usual textbook notion of an ideal meas-
urement of an observable: (i) the measurement outcomes
are the eigenvalues of the self-adjoint operator correspond-
ing to the observable; (ii) the probability of a specific
outcome is given by the Born rule; (iii) the postmeasure-
ment state of the system is given by the projection
postulate.
Let us consider (i)–(iii) more carefully. Take some

quantum system with Hilbert space H. We denote the
algebra of operators on H by A. A compact self-adjoint
operator O has a discrete spectrum of eigenvalues and may
be written as

O ¼
X
n

λnEn; ð1Þ

where λn are the distinct eigenvalues and En are the
associated (not necessarily rank-1) projectors onto the
corresponding eigenspaces, which resolve the identity, i.e.,

X
n

En ¼ 1: ð2Þ

Following a measurement of O, yielding outcome λn on
an initial state ρ, the corresponding postmeasurement
density matrix, ρn, is given by the projection postulate:

ρ ↦ ρn ¼
1

pn
EnρEn; ð3Þ

2For example, in contrast to the discrete case, the total Hilbert
space of a continuum QFT is not a tensor product of local Hilbert
spaces associated to each point in space (see the split property
discussion in [18]).
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where pn ¼ trðρEnÞ is the probability of observing λn. If
one conditions on the outcome λn, the state ρn is used to
calculate probabilities of any subsequent measurement. If
one does not condition on any particular outcome of the
initial measurement one must consider the distribution over
all possible postmeasurement states, ρn, weighted by their
respective probabilities pn:

ρ ↦ ρ0 ¼
X
n

pnρn ¼
X
n

EnρEn: ð4Þ

This is the projection postulate for a nonselective meas-
urement [5].
The preceding account relies on the existence of a

discrete spectrum. Nevertheless, for an arbitrary self-
adjoint operator O the spectral theorem states

O ¼
Z

∞

−∞
λdEðλÞ; ð5Þ

where Eð·Þ is the projection-valued measure for O. That is,
Eð·Þ maps Borel subsets B ⊆ R to projectors on H [19].
This allows the projection postulate to be articulated for
arbitrary self-adjoint operators. Consider a set of mutually
disjoint Borel sets B ¼ fBngn∈I (where I is some count-
able indexing set) that covers R. For example, B ¼
f½n; nþ 1Þgn∈Z. Physically, each Bn corresponds to a
possible bin that the measurement outcome can fall into,
and in this way B specifies the resolution of the measure-
ment apparatus. The corresponding projectors, En≔EðBnÞ,
resolve the identity, i.e.,

P
n∈I En ¼ 1. Following a non-

selective measurement of O, with resolution B, the pro-
jection postulate is given by

ρ ↦ ρ0 ¼ EO;BðρÞ ≔
X
n∈I

EnρEn; ð6Þ

where we have defined the trace-preserving map
EO;B∶A↦A. The conditions trðρÞ ¼ 1 and trðρA†AÞ ≥ 0

for any A ∈ A are preserved by EO;B, so that ρ0 is a
valid state.

III. SIGNALLING

Let us now consider the straightforward application of
ideal measurement to sequences of observables in a space-
timeM, following the framework introduced in [9]. To each
region of spacetime, R ⊂ M, there is a subalgebra of
operators AðRÞ ⊆ A, such that ½AðRÞ;AðR0Þ� ¼ 0 for R
andR0mutually spacelike.3 As stated above, this is the usual
way in which causality is encoded in QFT through (anti)
commutation relations, but as we will see, it is not strong

enough on its own to prevent superluminal signalling under
ideal measurements.
We consider three parties whose actions on a shared

quantum system are restricted to lie in three separate
spacetime regions: Aoife in R1, Beolagh in R3, and
Caoimhe in R2. The regions are such that every point in
R1 is spacelike to every point in R3, while there are some
points of R2 that are to the future (past) of some points in
R1 (R3) (see Fig. 1). This means that Aoife’s actions inR1

can affect Caoimhe in R2, and that Caoimhe’s actions can
affect Beloagh in R3, but that Aoife’s actions cannot
influence Beolagh; to do so would violate causality. We
implicitly assume that there are many independent dupli-
cates of the quantum system, such that each party can make
multiple simultaneous measurements to build up statistics.
The protocol, as seen from the lab frame, is as follows.

The initial state of the shared quantum system is ρ0.
First, Aoife applies a local unitary “kick” Uγ ¼ eiγO1 ,
for some self-adjoint O1 ∈ AðR1Þ, of “strength” γ ∈ R:

ρ0 ↦ ργ ¼ Uγρ0U
†
γ : ð7Þ

Then, Caoimhe measures some self-adjoint O2 ∈ AðR2Þ
with measurement resolution B. Since there is no commu-
nication between Caoimhe and the other parties, the state is
updated as

ργ ↦ ρ0γ ¼ EO2;BðργÞ: ð8Þ

Finally, Beolagh measures the expectation value,

hO3i ¼ trðρ0γO3Þ; ð9Þ

FIG. 1. Spacetime diagram of the protocol in the lab frame.
Light rays are at 45°. Aoife kicks locally with Uγ in the spacetime
region R1, Caoimhe measures O2 in R2, then Beolagh measures
O3 in R3. Aoife’s kick can causally affect Caoimhe’s measure-
ment, as Caoimhe’s region is partly in the future of Aoife’s
region. Caoimhe’s measurement can similarly affect Beolagh’s
measurement, as it is partly in the past of Beolagh’s region.
Aoife’s kick cannot causally affect Beolagh however, as their
regions are spacelike; light from Aoife cannot reach Beolagh in
time for his measurement.

3Here we are working in the Heisenberg picture, where the
operators carry the dynamics.
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of some self-adjoint operator O3 ∈ AðR3Þ. Note that
Caoimhe does not need to communicate the results of
her measurement to Aoife and Beolagh.
Recall that Aoife’s local actions cannot influence

Beolagh in our setup. If Beolagh can determine in any
way that Aoife has kicked the state, then causality is
violated, thus implying that some part of the preceding
protocol cannot be implemented in a lab. Mathematically, a
dependence on Aoife’s actions in Beolagh’s measurement
amounts to a dependence on the kick strength γ in
Beolagh’s expectation value hO3i. That is, if hO3i is a
function of γ we have a superluminal signal. Crucially, such
a dependence can only be due to Caoimhe’s measurement,
as if she had not measured we would have ργ ¼ ρ0γ , and
hence hO3i ¼ trðργO3Þ ¼ trðρ0O3Þ, using the fact that
½Uγ; O3� ¼ 0. hO3i is clearly independent of γ in this case.
The above protocol then serves to test whether Caoimhe’s
ideal measurement of O2 is possible in the region R2.
It is worth noting that we are using spacetime causality

here to separate Aoife and Beolagh as ultimately we have in
mind measurements in QFT. However, we shall also
address operators in nonrelativistic quantum theory. In that
case one could simply consider them as isolated laborato-
ries—Aoife and Beolagh only have access to their respec-
tive factors of the Hilbert space—imposing that there be no
signalling in the usual sense that Aoife’s local actions
cannot affect Beolagh’s statistics.
For any given O2 and measurement resolution B one

must check whether there is some initial state ρ0 and
observables O1, O3 for which there is a signal. One could
argue that only the operators O2 and resolutions B that do
not signal can be ideally measured in reality. Alternatively,
it could be taken as motivation to reassess the notion of
measurement in a relativistic context (see [20,21] for
example, and further discussion below). Either way, it
would be helpful to have a clear no-signalling condition:
Claim 1 (The causal criterion).—An operator O2 ∈

AðR2Þ with resolution B, will not enable signalling iff
½EO2;BðO3Þ; O1� ¼ 0, as an operator equation, for all
O1;3 ∈ AðR1;3Þ.
We argue as follows. Using the cyclicality of the trace

and Uγ ¼
P∞

n¼0
ðiγÞn
n! On

1, the expectation value hO3i can be
written

hO3i ¼
X∞
n¼0

ðiγÞn
n!

trðρ0½EO2;BðO3Þ; O1�nÞ; ð10Þ

where ½X; Y�0 ≔ X and ½X; Y�nþ1 ≔ ½½X; Y�; Y�n. No signal-
ling implies hO3i is independent of γ, so each summand of
(10) must vanish for n > 0, for all ρ0 and O1;3 ∈ AðR1;3Þ.
The condition ½EO2;BðO3Þ; O1� ¼ 0 looks to be sufficient to
ensure no-signalling, as one expects ½EO2;BðO3Þ; O1� ¼ 0 to
imply ½EO2;BðO3Þ; O1�n ¼ 0 for n > 1. This is the case if we
restrict our attention to operator algebras A that are

bounded and densely defined on H, as we shall assume
for the rest of this argument.4 Note that such a class of
algebras includes the type III von Neumann algebras
underpinning algebraic QFT.
Under the same assumptions, the vanishing of the

commutator is also a necessary condition for no-signalling.
Denoting ½EO2;BðO3Þ; O1� by O and using (10) at order
n ¼ 1, no-signalling implies hψ jOjψi ¼ 0, for all physical
pure states ρ0 ¼ jψihψ j. Since iO is self-adjoint, this
implies Ojψi ¼ 0 for all jψi: for any element of an ortho-
gonal basis set fjeiig we have heijOjeii ¼ 0. Consider
jζi¼ajeiiþbjeji and jζ0i¼ajeiiþibjeji, where a; b ∈ R.
Then hζð0ÞjiOjζð0Þi ¼ 0 implies abheijOjeji ¼ 0 for all
a; b ∈ R and, hence, all matrix elements of O vanish, thus
establishing our claim.
It is now clear why operators O2 generically signal.

While ½O1; O3� ¼ 0, in general ½O1;3; O2� ≠ 0. Since the
projectors En associated to O2, for any choice of B, belong
to AðR2Þ, typically ½En;O1;3� ≠ 0, so it seems plausible
that ½EO2;BðO3Þ; O1� ≠ 0 would be reasonably generic. Of
course, it might be the case that ½En;O1;3� ≠ 0 for all n ∈ I ,
while ½EO2;BðO3Þ; O1� ¼ 0. Hence, it is important to inves-
tigate specific operators O2 and resolutions B. In doing so,
we encounter seemingly innocuous operators that signal, as
we shall describe below.
It is worth noting that the above claim applies more

generally to state update maps that are not necessarily ideal
measurements. Specifically, one could replace the ideal
measurement update map, EO2;B, in the above claim/argu-
ment by any other state update map, E, for which hO3i
remains well defined. This includes POVMs and the probe
prescription in [20,21]. Furthermore, the fact that the probe
prescription in [20,21] does not signal is consistent with our
criterion in the sense that the probe update map, EP,
satisfies the above condition: ½EPðO3Þ; O1� ¼ 0 for all
O1;3 ∈ AðR1;3Þ.
Applying our condition to state update maps more

generally, we can go further and rephrase the causal
criterion in a way that is independent of observables
O1;3 and their respective regions R1;3. First, one notices
that for any pair of spacelike regions, R1 and R3, the
respective subalgebras satisfy AðR3Þ ⊆ AðR1Þ0, where A0
denotes the commutant of A, i.e., the space of all
observables that commute with all observables in A. For
a product Hilbert space, HA ⊗ HB, we have ðBðHAÞ ⊗
1BÞ0 ¼ 1A ⊗ BðHBÞ and ðBðHAÞ ⊗ 1BÞ00 ¼ BðHAÞ ⊗ 1B,
where BðHÞ denotes the set of bounded operators on H.
The commutator condition for a given update E can now

be rephrased in terms of a single regionR and its associated
subalgebra AðRÞ. Specifically, ½EðXÞ; Y� ¼ 0 for all self-
adjoint Y ∈ AðRÞ and all self-adjoint X ∈ AðRÞ0. This

4This can be seen by using the bounded linear transform
theorem [19].
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immediately implies that ½EðXÞ; Y� ¼ 0 for all Y ∈ AðRÞ
and all X ∈ AðRÞ0, and hence EðAðRÞ0Þ ⊆ AðRÞ0. For E to
be causal this must hold for all regions R, which leads to
the intuitively sensible
Claim 2.—A state update, E, will not enable a super-

luminal signal iff it is commutant nonincreasing.
By commutant nonincreasing (c.n.i.) we mean that

EðAðRÞ0Þ ⊆ AðRÞ0 for all regions R. Clearly the c.n.i. pro-
perty is also sufficient: if EðXÞ ∈ AðRÞ0, then EðXÞ com-
mutes with every Y ∈ AðRÞ, implying our no-signalling
condition.
For a more in-depth analysis of an update map’s effect on

spacetime subalgebras see [22].

IV. EXAMPLES

Focusing again on observables and their associated ideal
measurements, let us consider some simple examples
where H ¼ HA ⊗ HB, where Aoife and Beolagh have
access to only HA and HB respectively. That is, O1 ¼
OA ⊗ 1B and O3 ¼ 1A ⊗ OB.

A. Direct sum of local compact observables

We shall use the causal criterion to show that the direct
sum of local observables cannot signal, in agreement with
expectations. In particular, this subsumes the case of the
manifestly local Bell-type experiments, which of course
cannot be used to signal and are realizable in local isolated
laboratories.
Specifically, for Caoimhe’s measurement we consider

sums of local operators,

O2 ¼ CA ⊗ 1B þ 1A ⊗ CB; ð11Þ

for some compact self-adjoint operators Ci, i ¼ A, B, on
their respective Hilbert spacesHi. As we shall demonstrate,
such operators cannot signal since the conditions of Claim I
are met for all Ci. First, we diagonalize Ci and write it as

Ci ¼
X
n¼1

μðnÞi EðnÞ
i ; ð12Þ

where the distinct eigenvalues μðnÞi are ordered in decreas-

ing magnitude, and EðnÞ
i are the corresponding projectors

(not necessarily rank-1). If Ci has a kernel, we denote the

corresponding projector as Eð0Þ
i and write μð0Þi ¼ 0. We can

now write O2 as

O2 ¼
X
n;n0¼0

ðμðnÞA þ μðn
0Þ

B ÞEðnÞ
A ⊗ Eðn0Þ

B : ð13Þ

Since O2 is also compact and self-adjoint, we can write it
similarly as

O2 ¼
X
a¼1

σðaÞPðaÞ; ð14Þ

where, in general, a given projector PðaÞ will be a sum of

terms of the form EðnÞ
A ⊗ Eðn0Þ

B . For every choice of n and n0,
EðnÞ
A ⊗ Eðn0Þ

B will appear in one and only one PðaÞ and, more
importantly, PðaÞ cannot contain two (or more) terms that

share a factor EðnÞ
i . For example, if

PðaÞ ¼ EðnÞ
A ⊗ Eðn0Þ

B þ EðnÞ
A ⊗ Eðm0Þ

B þ � � � ð15Þ

for n0 ≠ m0, then μðnÞA þμðn
0Þ

B ¼μðnÞA þμðm
0Þ

B ⇒μðn
0Þ

B ¼μðm
0Þ

B , in

contradiction with our initial setup with distinct μðnÞi .
Given the above conditions on the form of the projectors

PðaÞ, one can show that

EO2
ðO3Þ ¼

X
a¼0

PðaÞ · 1A ⊗ OB · PðaÞ

¼
X
n;n0¼0

EðnÞ
A ⊗ ðEðn0Þ

B OBE
ðn0Þ
B Þ

¼ 1A ⊗ ECB
ðOBÞ; ð16Þ

where we have omitted the resolution B as O2 is compact
self-adjoint, and we assume our measurement apparatus
perfectly resolves the eigenvalues. Finally, given O1 ¼
OA ⊗ 1B, it follows that ½EO2

ðO3Þ; O1� ¼ 0, and hence
there can be no signal. From the last line above we also see
that EO2

is commutant nonincreasing, as it outputs an
operator that is trivial on HA.
This nonsignalling nature of sums of local observables

agrees with the expectation that smearings of local field
operators ϕðxÞ over (subsets of) spacelike hypersurfaces,
will not signal [12]. It does not however address the
physically relevant case (in that the operators are well
defined) of smearing over spacetime subregions of M, as
we shall discuss in our concluding remarks.

B. Tensor product of local compact observables

Let us now turn to an example that does signal:
O2 ¼ CA ⊗ CB. This contradicts the standard expectation
that measurements of operators of the form A ⊗ B are
locally realizable [11]. As we shall see, the signal requires
that O2 be degenerate, which may explain why it was not
observed in [11], where the observables were assumed to be
nondegenerate.
Using the decompositions in (12) we can write O2 ¼

CA ⊗ CB as

O2 ¼
X
a¼1

σðaÞPðaÞ ¼
X
n;n0¼1

μðnÞA μðn
0Þ

B EðnÞ
A ⊗ Eðn0Þ

B : ð17Þ
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For any a > 0 we have the same conditions on the
projectors PðaÞ that we had in the previous example.
However, if Ci have nontrivial kernels, then there is an

important difference: Eð0Þ
A ⊗ EðnÞ

B and EðnÞ
A ⊗ Eð0Þ

B project a
state into the kernel of O2, and hence Pð0Þ is given by

Pð0Þ ¼ Eð0Þ
A ⊗ 1B þ Eð0Þ⊥

A ⊗ Eð0Þ
B ; ð18Þ

where Eð0Þ⊥
i ¼ 1i − Eð0Þ

i . We now have that

EO2
ðO3Þ ¼ Eð0Þ

A ⊗ OB þ Eð0Þ⊥
A ⊗ Eð0Þ

B OBE
ð0Þ
B

þ
X
n;n0¼1

EðnÞ
A ⊗ Eðn0Þ

B OBE
ðn0Þ
B

¼ Eð0Þ
A ⊗ OB þ Eð0Þ⊥

A ⊗ ECB
ðOBÞ; ð19Þ

and, hence,

½EO2
ðO3Þ; O1� ¼ ½Eð0Þ

A ;OA� ⊗ ðOB − ECB
ðOBÞÞ: ð20Þ

If (i) CA has a kernel projector, Eð0Þ
A , which does not

commute with OA, and if (ii) the nonselective map ECB
has

a nontrivial action on OB,
5 then there will be a signal. The

last line of (19) can be rewritten as

EO2
ðO3Þ ¼ 1A ⊗ ECB

ðOBÞ
þ Eð0Þ

A ⊗ ðOB − ECB
ðOBÞÞ; ð21Þ

which shows that EO2
ðO3Þ is only in the commutant of

BðHAÞ ⊗ 1B if (i) or (ii) is false. Note, the above derivation
can also be used in the case where Ci has no kernel by

multiplying every Eð0Þ
i by 0.

These rather generic conditions are easily met, as
demonstrated by the following simple two-qubit example.
Let the initial state be ρ0 ¼ jψihψ j, where

jψi ¼ j0i ⊗ 1ffiffiffi
2

p ðj0i þ j1iÞ: ð22Þ

Aoife kicks ρ0 with the operator Uγ ¼ eiγO1, where
O1 ¼ σx ⊗ 1.6 Next, Caoimhe measures

O2 ¼ j1ih1j ⊗ σz; ð23Þ

which has the kernel projector Pð0Þ ¼ j0ih0j ⊗ 1, and two
other projectors Pð1Þ ¼ j1ih1j ⊗ j0ih0j and Pð2Þ ¼
j1ih1j ⊗ j1ih1j corresponding to the eigenvalues þ1 and

−1 respectively. Note, Caoimhe’s observable is rather
pedestrian; it is nothing out of the ordinary being a
separable tensor product of observables on the constituent
systems.
Finally, Beolagh measures the expectation value of

O3 ¼ 1 ⊗ σx. One can verify that

hO3i ¼ cos2ðγÞ: ð24Þ

Since the expectation value depends on γ, Aoife can signal
to Beolagh.
It may seem counterintuitive that an ideal measurement

of a separable operator O2 on a separable state enables a
signal. To gain some intuition for why this is so, we can
“realize” the ideal measurement of O2 via a causally
connected two stage protocol, specifically a local oper-
ations and classical communications (LOCC) protocol:
Caoimhe first measures the z-spin on qubit A. If the spin
on qubit A is down, then Caoimhe does nothing on qubit B.
If the spin on A is up, then Caoimhe measures the z-spin on
qubit B. One can verify that this LOCC protocol amounts to
the map EO2

ð·Þ. Clearly, this LOCC protocol requires a
signal to propagate from qubit A to B, as Caoimhe’s
operation on qubit B is conditioned on the result on
qubit A.
Given that this LOCC realization of an ideal measure-

ment of O2 exists, one might be skeptical that an experi-
menter could implement an ideal measurement of O2 faster
than the light travel time from A to B. An optimistic
experimenter, on the other hand, may still be hopeful that
some faster realization of the measurement exists. The fact
that EO2

ð·Þ fails our criterion, however, illustrates that any
such realization is impossible, as it would enable a super-
luminal signal from A to B.

V. CONCLUSIONS

The appropriate context for quantum causal consider-
ations is relativistic QFT, which elegantly captures the
notions of locality and causality in its very foundations
[23]. This is not in dispute. What the present and previous
related [9–12] results imply is that the most general,
logically consistent, application of the quantum measure-
ment framework to observables in spacetime, as given in
[9], is problematic, whether it be in QFT or otherwise.
There are a variety of attitudes one could take. First

would be to place causal constraints on the class of
observables that may be measured [10,11]. In this case,
as well as various nonseparable observables [9–12], we
have lost (a subset of) observables of the form A ⊗ B, with
the obvious generalization to multipartite systems. Local
sums, A ⊗ 1þ 1 ⊗ B, are causality respecting, at least for
compact A and B. This supports the expectation that local
field operators smeared over spacelike hypersurfaces will
not signal. However, the objects of algebraic QFT are
(un)bounded operators in open subsets of spacetime, which

5For instance, if ½CB;OB� ¼ 0 (which is the case if CB and OB
belong to subalgebras of mutually spacelike regions) then
ECB

ðOBÞ ¼ OB.
6Here σx;y;z denote the usual Pauli matrices.
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may signal yet in an interacting theory. Consider a scalar
field ϕðxÞ smeared against a test function with bounded
spacetime support in some region R. This operator can be
mapped back to an operator, O, on the intersection of any
spacelike hypersurface and the causal past of R. In a free
theory, ϕðxÞ at x can be written as a linear sum of field
operators on the intersection of any spacelike hypersurface
and the causal past of x. By linearity, O is also a linear sum
of field operators and, naively, we should not expect any
signalling. However, in an interacting theory this fails, O
will not generically be a linear sum of field operators and, in
light of our second example, this is suggestive of signalling.
Establishing this possibility is a technically challenging
question and will be treated elsewhere. Since the projection
postulate and no-signalling criterion can be applied to the
operators of type III von Neumann algebras, this impinges
on the question of measurement in algebraic QFT.
This motivates the second possibility: to reassess the

applicability of the standard measurement prescription to
QFT, or at least to reevaluate how to apply the projection
postulate. The best known proposal, that the projection
takes place on the past light cone of the measurement region
[5], certainly does not address the issue of signalling.
It has been noted that restricting the use of the projection

postulate to measurement regions that are totally timelike/
spacelike related rules out signalling by fiat [9], but this can
break down in spacetimes where the spatial slices (surfaces
of constant time) are compact. More specifically, consider
an ultrastatic spacetime7 with compact spatial slices, and
some measurement region, R, that is small enough to not
contain an entire spatial slice. The total future ofR, i.e., the
set of spacetime points that are to the future of every point
of R, contains an entire spatial slice. In the Heisenberg (or
algebraic QFT) picture it is then clear that the subalgebra of
observables associated with the total future of R is in fact
the entire algebra of all observables. The seemingly safe
position of adopting the projection postulate for only those
observables in the total future ofR amounts, in this case, to
adopting it for all observables, including the troubling
cases matching the setup in Fig. 1.
Even if one assumes a spatially noncompact universe,

one is still compelled to give an account of what happens
for sets of measurements that are not totally timelike/
spacelike related. For example, how are we to describe the
situation in which a second measurement region partially
intersects the future of the first measurement region? There
is no a priori reason to expect that such a pair of experi-
ments cannot be done in nature.
Leaving these subtleties aside, constructing a complete

and causality respecting measurement model of QFT is
highly nontrivial. There are, for example, causal QFT
measurement models in the spirit of von Neumann

[20,21,24,25]. The probe prescription [20,21] in particular
offers a physically motivated causal measurement model,
whereby a probe quantum field is locally coupled to the
main quantum field of interest. The probe field is measured
and the result is interpreted as a measurement of the main
field. After this measurement the probe field is discarded,
meaning that no further observables of the probe field can
be measured. If one wishes to make subsequent measure-
ments of the main field, one must further couple (distinct)
probe fields and measure them. The state update maps
arising in this prescription (by tracing out the probe fields)
satisfy the no-signalling condition due to the locality of the
coupling in the setup.
On the other hand, in the spirit of von Neumann, this

model also pushes back the problem of signalling to the
probe observables. If one wishes to discuss subsequent
measurements on the probe field, in a way that is non-
signalling, one must further introduce a probe for the probe,
and so on ad infinitum. This chain can of course be halted if
one restricts the set of allowed probe observables à la the
above discussion. In [20,21] it is halted by construction,
since the abandoning of the probe field postmeasurement
means we cannot measure any of its observables again. The
act of discarding the probe is typical of measurement
models in nonrelativistic quantum theory, but it is more
suspect when the probe is itself a quantum field, especially
if the field is considered to be sufficiently fundamental. For
example, if we make a single measurement of an electron’s
position, using light as a probe, we do not want to prohibit
subsequent measurements of observables of the electro-
magnetic quantum field.
Nonetheless, the probe prescription generates a concrete

class of physically motivated, and causal, state update maps
for QFT. In contrast, our criterion—which poses a theo-
retical limit for allowed state update maps—can currently
only rule out measurements of observables in an ad hoc
manner. An interesting question, then, is whether the
theoretical limit matches the probe state update maps. In
other words, does every causal state update map arise from
some locally coupled probe setup?
An alternative viewpoint to all of the above is to interpret

signalling as a causal constraint on the measurement
resolution achievable within a given spacetime region.
For any operator O2 one can always coarse-grain the
measurement resolution B such that the signal is killed.
For example, if the measurement apparatus for our two-
qubit example, where O2 ¼ j1ih1j ⊗ σz, is not able to
distinguish the�1 eigenvalues, signalling is not possible. It
is also interesting to note that the realization of Caoimhe’s
measurement as a LOCC protocol reduces, in this case, to a
single measurement of the z-spin of qubit A, meaning that
no signal needs to propagate from A to B.
The final possibility is to couch the foundations of QFT

and measurement entirely within the manifestly relativistic
framework of the sum-over-histories approach pioneered
by Dirac and Feynman, forgoing the complementary
picture of Hilbert space, operators and transformation

7In an ultrastatic spacetime the metric is of the form:
g ¼ −dt2 þ hijdxidxj, i.e., a fixed spatial geometry “cross” time.
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theory. This perspective has been advocated for indepen-
dent reasons, that nonetheless are ultimately related to the
issue of signalling [26–30].
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