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Quantum control, which refers to the active manipulation of physical systems described by the laws of
quantum mechanics, constitutes an essential ingredient for the development of quantum technology. Here
we apply differentiable programming (DP) and natural evolution strategies (NES) to the optimal transport
of Majorana zero modes in superconducting nanowires, a key element to the success of Majorana-based
topological quantum computation. We formulate the motion control of Majorana zero modes as an opti-
mization problem for which we propose a new categorization of four different regimes with respect to
the critical velocity of the system and the total transport time. In addition to correctly recovering the
anticipated smooth protocols in the adiabatic regime, our algorithms uncover efficient but strikingly
counterintuitive motion strategies in the nonadiabatic regime. The emergent picture reveals a simple but
high-fidelity strategy that makes use of pulselike jumps at the beginning and the end of the protocol with
a period of constant velocity in between the jumps, which we dub the jump-move-jump protocol. We pro-
vide a transparent semianalytical picture, which uses the sudden approximation and a reformulation of the
Majorana motion in a moving frame, to illuminate the key characteristics of the jump-move-jump control
strategy. We verify that the jump-move-jump protocol remains robust against the presence of interactions
or disorder, and corroborate its high efficacy on a realistic proximity-coupled nanowire model. Our results
demonstrate that machine learning for quantum control can be applied efficiently to quantum many-body
dynamical systems with performance levels that make it relevant to the realization of large-scale quantum
technology.
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I. INTRODUCTION

Through the use of a wide array of promising experi-
mental platforms ranging from superconducting qubits [1]
to trapped ions [2–4], optical lattices [5], and nitrogen-
vacancy centers [6,7], scientists are exploring ground-
breaking ways to build quantum technology with an
eye on deepening our understanding of complex natural
systems, improving artificial intelligence, and impacting
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industry more broadly. While promising, several funda-
mental and practical difficulties must be overcome for
quantum machines to become practical [8]. Quantum con-
trol, which studies the manipulation of physical systems
whose behavior is dominated by the laws of quantum
mechanics, remains a fundamental ingredient in the quest
for practical quantum technology. Thus, the development
of principles and strategies for quantum control [9–13]
remains an essential task for future quantum technologies
[14], e.g., in the preparation of complex quantum states in
quantum computing and quantum simulators.

The practical encoding and manipulation of quantum
information has, however, been hampered by the pres-
ence of noise and decoherence inherent to brittle quantum
devices. Majorana zero modes, which are special zero-
energy quasiparticles with non-Abelian braiding statis-
tics that can potentially be realized in proximity-coupled
superconductors [15–24], represent a promising alternative
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FIG. 1. (a) In the Majorana game, the agent moves the left Majorana γL from a position xA to a position xB by tuning the external
potential profile V(x, t). (b) The agent attempts different movement paths and tries to find the optimal one that minimizes the infidelity
I(T). (c) Different Majorana control regimes and their corresponding strategies [boxes in (d)]: (I) critical regime (vavg > vcrit), (II)
subcritical regime (vcrit/2 < vavg < vcrit), (III) short time T, low-velocity regime, and (IV) (super)adiabatic regime (long time T and
low-velocity vavg). (d) In regimes (I)-(II)-(III) we find the jump-move-jump (JMJ) strategy whereas in regime (IV) we recover a
smooth superadiabatic protocol. The infidelities are I(T) = 0.3575 in regime (I), I(T) = 0.1589 in (II), I(T) = 0.0057 in (III) and
I(T) = 0.0005 in regime (IV); the parameters for the JMJ strategies displayed in regimes (I), (II), (III) can be found in Appendix G
and we set xL(0) = xA = 5.0 to ensure a smooth potential profile V(x, t).

approach due to their nonlocal nature and anticipated topo-
logical protection against local errors [25–30]. The key to
manipulating this topologically encoded quantum infor-
mation is the development of protocols to transport the
Majoranas, as will be necessary for their braiding and
measurement. While the simplest approaches proposed to
move the Majoranas adiabatically, decoherence processes
such as quasiparticle poisoning [31], motivate the need for
faster and more efficient control protocols.

In this context, machine learning (ML) offers a pow-
erful and unifying approach to the study, design, bench-
marking, and control of quantum systems and devices.
Motivated by a series of remarkable technological break-
throughs in research areas as diverse as computer vision
[32], natural language processing [33], and genomics [34],
physicists have started to explore the potential of ML
for fundamental research [35]. In particular, researchers
interested in quantum many-body physics have initi-
ated the development of a machine-learning perspective
on the many-body problem [36] with recent advances
such as neural-network representation of quantum states
[37–48], neural-network tomography [49–51], machine-
learning classification of phases [38], as well as advances
in quantum chemistry [52–54], density-functional theory

[55,56], and the acceleration of Monte Carlo simulations
[57–59], preparation of quantum states [60,61], quantum
feedback [62], among many others [36,63]. ML applica-
tions in the context of quantum control [64–67] are largely
based on reinforcement-learning (RL) techniques, which
are the key ingredient behind major artificial intelligence
breakthroughs in game play [68,69]. A RL perspective
on quantum control has been developed in the context
of quantum-state preparation [64], where the authors re-
examine the quantum-state preparation in terms of a mod-
ified version of the Watkins Q-learning algorithm [70].
Likewise, Ref. [65] considers the problem of gate synthesis
from a RL viewpoint.

In this work we exploit differentiable programming (DP)
[71] and natural evolutionary strategies (NES) [72] to find
optimal strategies to transport Majorana zero modes. We
reformulate the complex task of transporting a Majorana
zero mode as a quantum control optimization problem
amenable to advanced ML techniques. This can be most
easily understood from a reinforcement-learning perspec-
tive, where the movement of the Majoranas can be recast
as a “game”, see Fig. 1. In this game the player (agent)
has to move a Majorana from a position xA to a position
xB in a fixed amount of time T. At the end of the game the
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agent gets rewarded depending on how well the Majorana
reached its target state at position xB. The objective of the
agent is to learn the best strategy (path of the Majorana)
that maximizes the reward.

Our machine-learning techniques discover a novel and
counterintuitive approach to transporting Majorana zero
modes, here dubbed the jump-move-jump approach and
exemplified in Fig. 1, which yields a high-fidelity con-
trol significantly superior in terms of speed and quality
to previous strategies applied to this problem [73–75].
The jump-move-jump protocol, which is relevant for trans-
porting Majoranas over a large distance l in a short time
T, makes use of pulselike jumps at the beginning and
end of the protocol [see regions (I)–(III) of Fig. 1], with
a period of nearly constant velocity between the jumps.
This is particularly interesting given the previous results
for other models showed that bang-bang protocols [74]
were the most efficient approach to this form of quantum
control.

Using the insight gleaned from our ML-inspired control
protocols, we construct the core strategy for these paths
and provide a theoretical understanding for the protocol by
analyzing the motion of the Majoranas in a moving frame.
We find that these protocols simultaneously use the sta-
bility of the system at finite velocities together with the
fact that small sudden jumps in wall position do not sig-
nificantly reduce the ground-state fidelity. In contrast, in
the limit where there is a significant total time T to move
a relatively small distance l, the best approach is to fol-
low smooth protocols that follow an adiabatic path. Our
ML technology recovers these protocols without any prior
knowledge [see region (IV) of Fig. 1]. In addition, we
verify that the jump-move-jump protocol retains its use-
fulness in the presence of interactions or disorder, and also
corroborate its high efficacy using the more experimen-
tally relevant proximity-coupled semiconductor nanowire
model.

We structure this paper as follows: in Sec. II we intro-
duce the setup of the Majorana control problem. In Sec. III
we introduce the optimization methods, DP and NES, for
which we provide the optimization results in Sec. IV,
which we benchmark against a standard simulated anneal-
ing method. In Sec. IV we also highlight some of the
advantages of the DP and NES methods compared to oth-
ers. We describe and analyze the physical mechanisms
behind the jump-move-jump strategy in Sec. V. Then we
provide some numerical results of the robustness of the
jump-move-jump strategy with respect to interactions or
disorder in Sec. VI before concluding our work.

We also include several appendices where we provide
extra details regarding the moving frame in Appendix A,
ML methods in Appendices B, C, and E, extra results
for the proximity-coupled semiconductor nanowire in
Appendix F, and the robustness of the JMJ strategy with
respect to interactions and disorder in Appendix H. Finally

in Appendices G and I we discuss extra details for the
analysis of the JMJ strategy.

II. SETUP OF THE MAJORANA CONTROL
PROBLEM

To model the movement of the Majorana zero modes
in superconducting nanowires we use a one-dimensional
(1D) Kitaev chain [25] described by the Hamiltonian

H(t) = −
N∑

x=1

[μ(x)− V(x, t)](c†
xcx − 1/2)

− w
N−1∑

x=1

(c†
xcx+1 + h.c)+�

N−1∑

x=1

(c†
xc†

x+1 + h.c.),

(1)

where c(†)x are fermionic annihilation (creation) opera-
tors, μ(x) the onsite chemical potential, V(x, t) a time-
dependent external potential, w the hopping amplitude,
and � the p-wave superconducting gap. This model can
be realized effectively in variety of setups by proxim-
ity coupling to a conventional s-wave superconductor
[15–17,19,20,76–78]. When |μ| ≥ |2w| the gap in the
energy spectrum closes inducing a transition to a topologi-
cal trivial phase [25,79]. For an open chain, a pair of Majo-
rana zero modes are found to reside on the edges of the
wire if the bulk is topologically nontrivial. The existence of
such Majorana modes implies the existence of a degener-
ate space of ground states. The ground state of the system is
protected by a robust topological energy gap, which in the
continuum limit of the model is given by min[μc,�ckF ].
As a consequence of this protection, two pairs of Majo-
rana zero modes can be used to produce a qubit whose
information content is protected nonlocally [27].

Manipulation of the information encoded in the ground
state requires the braiding of the Majorana quasiparticles
[18,26,28,29,80–83], while staying as much as possible
within the degenerate ground-state space. To achieve this,
a generic strategy is to try to perform the braiding adia-
batically. An adiabatic path generically must have a total
time T larger than the inverse gap; in practice, the size
of the topological gap makes such a strategy prohibitively
slow in view of numerous sources of decoherence in
proximity-coupled setups [31,84–91].

In light of this, our strategy in what follows (see also
Refs. [73,75,92]), is to attempt to move Majoranas as
quickly and efficiently as possible. To this end, and to
have smooth control over the position of the Majorana
bound states on the lattice, we encode the external potential
profile as

V(x, t) = Vheight{ f [x − xL(t)] + f [xR − x]}, (2)
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where Vheight is the maximum height of the outer potential
walls and f (x) = 1/[1 + exp(x/σ)] is a sigmoid func-
tion shifted by the wall positions xL(R) [Fig. 1(a)]. The
Majoranas are localized at the outer edges of the potential
profile, which can be seen as domain walls between topo-
logical and nontopological phases since Vheight � 2w. The
position of these domain walls can be controlled through
xL(R); to move the left Majorana we give the agent control
over xL(t) as a function of time.

The motivation for this specific form of potential profile
comes from experimental proposals for moving the Majo-
rana by the so-called piano-key potentials [18,73,93]. In
this proposal the position of the domain wall in the wire is
controlled by applying gate electrodes [94]. At variance
with protocols found in Ref. [74], the presence of non-
linearities in the potential profile implies that bang-bang
protocols, which are expected for linear control [95,96],
may no longer be optimal. As a consequence of this,
it is conceivable that the space of possible solutions is
expanded in our setting.

The Majorana game starts at t = 0 with the system in the
ground state of Eq. (1) with xL(0) = xA. The aim is to reach
the ground state |�B〉 with xL(T) = xB located at a distance
xB − xA = l spending a total time T. A natural choice to
quantify the accuracy of the protocol is the infidelity

I(T) = 1 − | 〈ψB|T e−i
∫ T

0 H(t)dt |ψA〉 |2 ≡ 1 − F(T). (3)

Here, H(t) is the time-dependent Hamiltonian that
describes the Majorana wire setup, Eq. (1), during the
protocol. Whereas I(T) = 0 means that we have fully
preserved the encoded quantum information, I(T) = 1
implies that information has been completely lost.

A key timescale related to the control problem is Tres =
2π
�kF

, which naturally arises from the response of the
system to boundary-wall oscillations (see Ref. [75] and
Appendix A). Tres corresponds to the time above which one
can make changes slowly enough for genuinely superadia-
batic motion [73,97,98]. Superadiabaticity in this scenario
allows the static ground state to be accelerated into the
ground state of a moving frame, provided the transition
is done slowly enough, i.e., in times large compared to
Tres. Another important additional physical constraint is
the presence of a critical velocity vcrit = � [73,92] above
which the moving-frame Hamiltonian becomes gapless
(Appendix A) and the ground states lose their topological
protection.

Based on this we divide up the Majorana control prob-
lem into four different regimes [(I)–(IV)] [see Fig. 1(c)].

(a) Regime (I) corresponds to the critical regime in
which the Majorana must move on average vavg =
l/T above the critical velocity. In this regime the
ground-state fidelity is expected to rapidly decrease
to zero.

(b) Regime (II) is the subcritical regime for which
the velocity is on average close to but nonetheless
below vcrit. This regime is open ended in both time
T and length l. The key feature distinguishing this
regime from regime (IV) below is the character of
the found optimal protocols.

(c) Regime (III) is again a subcritical regime, defined
for the times that are short with respect to the reso-
nance time Tres but also has low velocity. This region
cannot be used to efficiently move Majorana states
over long distances, but we expect it to be relevant
for braiding protocols based on small relative move-
ments that change the effective couplings between
Majoranas.

(d) Finally, regime (IV) is the adiabatic regime in which
we are above Tres and we have sufficient time to
expect that slow ramp-up and ramp-down protocols
[73,75] from earlier studies to be optimal. Ideally
one would always like to be in this regime, however
a gradual build up of noise and decoherence may
make it necessary to get things done more quickly.

A. Relevance to other braiding schemes

It is worth mentioning here that the aforementioned
trade-off between adiabaticity and the need to perform
operations quickly has led to the emergence of other
approaches to braiding. These schemes seek to circum-
vent the need to manipulate and shuttle Majorana’s over
excessively long distances. This includes local [18,99,100]
and nonlocal [101,102] Majorana coupling in wire net-
works, and the implementation of one-way computation
schemes [103,104] via projective charge measurements
[30,105–109].

All of these methods still require some level of adia-
batic control, or some effective short cutting thereof (see,
e.g., Refs. [110,111]) and there can also be some addi-
tional downsides. The interaction and coupling schemes,
for example, require precise control of the couplings
between neighboring Majoranas and the loss of some topo-
logical protection [87,112]. In implementations of wire
measurement-only schemes one must also tune a coupling
between wire and a quantum dot [30,107] and accept state
manipulation that is inherently probabilistic [109].

The phase diagram that we outline above is directly
applicable to the local coupling schemes, where the rel-
ative Majorana position can be seen as a proxy for the
coupling strength. A similar proxy may also hold for
measurement-only schemes via the distance between topo-
logical boundary and quantum dot, although the con-
nection here is harder to make directly because one
should also account for fermion number conservation
[30,105–108]. That said, the DP and NES methods we
apply below do have direct relevance for even more
sophisticated numerical treatments of this problem. We
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refer to our concluding remarks for further discussion of
this point.

III. MACHINE-LEARNING METHODS

In our study we apply two machine-learning strategies,
namely differentiable programming and natural evolution
strategies, to minimize the infidelity, Eq. (3), with respect
to the position of the domain wall xL(t) [113]. In this
section we introduce these methods in a way that directly
applies to our Majorana control setup. For the interested
reader we provide the corresponding programming codes
in Ref. [114].

A. Differentiable programming

DP is a programming paradigm to evaluate gradients of
computer programs [115] that has been recently introduced
as an optimization method in physics applications like ten-
sor networks [116,117], Monte Carlo [40,118,119], and
optimal control [67,120]. DP obtains numerically exact
gradients with similar computational-time complexity as
the forward evaluation of the computer program due to the
use of backward propagation [121–123].

In our Majorana control optimization problem we are
interested in the total derivative of the infidelity with
respect to the control dI(T)

dxL(t)
. As shown in Appendix B,

the algorithm to compute I(T) consists of a sequence of
elementary operations fi, in DP language known as prim-
itives, which maps the input control xL(t) to the value
of the infidelity by I(T) = fn ◦ fn−1 ◦ · · · ◦ f1[xL(t)]. More-
over, the derivatives of each individual operation fi are
known and the total derivative dI(T)/dxL(t) can be assem-
bled by recursively applying the chain rule with automatic
differentiation (see Appendix B).

In practice, we write a code to evaluate the real-time
dynamics of the Majorana induced by the time-dependent
profile V(x, t) such that all the individual operations are
differentiable. To obtain the necessary gradients we use a
language that supports automatic differentiation, which in
our case is the JAX library [124]. The gradients are used
to minimize the infidelity of the final state using gradi-
ent descent (GD) and ADAM [125]. For GD this is done
iteratively, where at each iteration of the algorithm the pro-
tocol is updated as xL(t) → xL(t)− ∇xL(t)I(T). Moreover,
since neural networks consist of differentiable elementary
operations, we also explore representing and training the
control xL(t) as the output of a neural network for which
the weights are updated with the standard update scheme
ADAM.

B. Natural evolution strategies

Evolution strategies are a family of black-box optimiza-
tion algorithms inspired by natural evolution [72,126].
These methodologies have been recently revisited in the

context of machine learning [127], in particular, in rein-
forcement learning [128], where OpenAI demonstrated
that a particular incarnation of the algorithm called natural
evolution strategies offers a powerful alternative to popu-
lar Markov-decision process-based reinforcement-learning
methods [129].

NES starts with an objective function F(φ) that acts on
parameters φ from a population described by a distribution
pθ , where θ parameterizes the population distribution. In
our work, we choose the objective function F(φ) to be the
infidelity I(T,φ) in Eq. (3). Depending on the setting, the
parameter φ corresponds to either the position profile xL(t),
the velocity vL(t) = ẋL(t) or the parameters of a neural
network whose output is xL(t) = NNφ(t).

The NES algorithm proceeds to optimize the expecta-
tion value of the objective function Eφ∼pθ [I(T,φ)] over
the population. We choose pθ to be a Gaussian distribution
with mean θ and diagonal covariance matrix
 = σ 2I with
σ = 0.1, i.e., N (θ , σ 2I). It follows that the gradient of the
cost function is (see Appendix C)

∇θEφ∼N (θ ,σ 2I) [I(T,φ)] = ∇θEε∼N (0,I) [I(T, θ + σε)]

= Eε∼N (0,I) [I(T, θ + σε)ε/σ ] .
(4)

This equation provides an efficient way for com-
puting gradients without differentiation, but instead
through the expectation of the objective function.
Notice that Eε∼N (0,I)[I(T, θ)ε/σ ] = 0, which implies the
above equation is equivalent to Eε∼N (0,I){[I(T, θ + σε)−
I(T, θ)]ε/σ }. This means that the estimation of the gradi-
ent can be seen as the finite difference of the objective func-
tion with random search [128]. To update the parameters θ ,
we apply gradient descent to θ with Eq. (4).

IV. MACHINE-LEARNED STRATEGIES FOR
MAJORANA CONTROL

Our main objective is to investigate the use of DP and
NES for the motion of the Majorana modes in the four
different movement regimes (I)–(IV). We choose four dif-
ferent points (l, T) (which fixes vavg = l/T) each of which
belongs to a different regime. For each of these points we
apply the optimization algorithms to minimize the infi-
delity I(T) in Eq. (3) with respect to the control of the
domain wall. The control can be parameterized by either
the wall position xL(t), the wall velocity vL(t), or a neural
network xL(t) = NNθ (t), where θ represent the parameters
in the neural network. We test all these different param-
eterizations (see Appendix D) and in the following we
focus on the parameterization choices that give the best
performance (the lowest infidelity values).

For the DP optimization, we first parameterize the wall
position by a neural network xL(t) = NNθ (t) and use
ADAM [125] to optimize the parameters. We then take
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the resulting real-space profile xL(t) and directly reopti-
mize it in the position representation with GD. We find
that this two-step process is beneficial; while the initial
NN stage allows a quick convergence to a smooth nearly
optimal control profile, the second step allows for addi-
tional fine tuning and more abrupt changes in the protocol.
The neural network NNθ (t) used for these simulations
consists of three layers of 100 neurons with rectified lin-
ear (ReLU) activation functions followed by one output
neuron with a sigmoid activation function. The learning
rate for the ADAM optimization algorithm is determined
empirically by running a range of values and picking the
one that showed the best convergence, a method which is
similar to the one used in Ref. [125]. The NES optimiza-
tion in regimes (I) and (II) operates directly on the wall
position xL(t) and in regimes (III) and (IV) it operates on
the wall velocity vL(t) from which the wall position can
be extracted via integration xL(t) = xA + ∫ t

0 vL(t′)dt′. The
uncertainty parameter for NES can be viewed as a trade-off
of exploration and exploitation [70] and was determined
empirically by testing a range of values. We note that in
Ref. [128] it was shown that NES is a robust method with
respect to different hyperparameters in different learning
settings.

The time-dependent simulations of the fermionic sys-
tem are discretized over time with a small time resolution
dt = 0.01. We allow the ML algorithms control over only
a coarse-grained time scale�t ≥ 10dt such that in the con-
tinuous time limit dt �→ 0 we get a continuous protocol
xL(t) and the domain-wall position is not discontinuously
changing every single discrete time step dt. Moreover, to
probe the susceptibility of the optimized protocols to ini-
tial conditions, we repeat the optimizations a few times for
several different starting configurations to ensure that the
results are independent of the initialization.

The results for these optimizations [130] in the four dif-
ferent regimes are shown in Figs. 2(a)–2(h) and can be
summarized as follows. In the regimes (I)-(II)-(III) we
can identify clear similarities between all of the optimized
strategies, which display sudden movements (jumps) at the
beginning and end, and more gradual rates of changes in
the middle of the protocol. The initial sudden movements
can be roughly characterized by a rapid jump forward,
followed by a less abrupt backward motion. The jumps
near the end of the protocol display analogous move-
ments in the reverse order, although these are generally
less pronounced. The middle of the protocols consists of
an approximately constant-velocity forward motion that

DP

Regime IIIRegime II Regime IVRegime I

NES

SA

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 2. Overview of the optimal controls in the four different Majorana motion regimes [(I)–(IV)] obtained after optimization with
DP, NES, and simulated annealing (SA). In all panels we plot the domain-wall position xL(t) as a function of time starting from
xL(0) = xA = 5.0. The red dotted line in regime (I) has a slope equal to the critical velocity. Regimes (I)–(III) show a pulselike motion
at the edges and an on average constant velocity in the bulk of the protocol. In regime (IV) the strategy is to slowly build up to
constant speed and then slow down again. In these simulations we set N = 110, μ = 1, w = 1, � = 0.3, Vheight = 30.1, and σ = 1.
The constraint parameters (l, T) are given by {(4.32, 12), (4.95, 22), (0.48, 8), (2.4, 40)} for regimes (I), (II), (III), and (IV), respectively.
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is dressed to various degrees with high-frequency oscilla-
tions. We observe that the velocity in the middle part of the
protocols is typically lower than vcrit even for regime (I),
where the the total average velocity vavg (including the sud-
den movements) is above vcrit. The size and character of the
additional oscillations largely depends on the optimization
strategy being used.

The infidelity values we find in regimes (I)-(II)-(III)
are significantly better compared to strategies like lin-
ear motion xL(t) = vavgt or bang-bang as shown in
Appendix D. In the critical regime (I) we get an infidelity
of about I(T) ≈ 0.35 compared to I(T) = 0.47 for a lin-
ear protocol whereas in regime (II) we get I(T) ≈ 0.15
versus I(T) = 0.22 for linear. In the low average veloc-
ity regime (III) we get infidelities as low as I(T) ≈ 0.006
while linear motion gives I(T) = 0.012. The infidelity
value improvement in regime (I) is rather surprising given
that the Majorana moves on average above the critical
velocity. Below, we explain why the jumps in this scenario
are particularly beneficial.

In regime (IV) the results show a globally different
strategy: in this regime the optimal protocol is to slowly
accelerate the Majorana up to some finite velocity and then
slowly decelerate back down to the target position. This
type of protocol was discussed in earlier work [73,75] in
regimes where there is enough time to accelerate to a mov-
ing frame, i.e., regime (IV). We note that due to the nearly
adiabatic motion in regime (IV), the values of infidelity are
the lowest I(T) ≈ O(10−4). These infidelity values make
regime (IV) optimal for braiding of Majoranas in an ideal
experimental setup. However, due to imperfection in the
devices and their coupling to a noisy environment, bal-
ancing the infidelity associated with shorter protocols with
respect to the infidelity induced by dephasing in a longer
time protocol makes controlling Majorana movement in
faster regimes relevant for near-term experiments.

Compared to previous studies, however, [73,75,89] we
find that the starting velocity vL(t = 0) of the protocols
in regime (IV) can be finite if one allows for small but
finite infidelity values I(T) ≈ O(10−4). In the obtained
protocols, for example, we have vL(t = 0) �= 0 followed
by an approximately smooth gradual build up and down of
the velocity. Moreover, the optimization techniques with
which these protocols are obtained have an additional
advantage that they can fine tune the protocols up to a
finer level (bigger search space) than the previously stud-
ied parameterized adiabatic protocols [75], as we show
in Appendix D. This advantage of our methods might be
particularly beneficial for finding optimal protocols in the
presence of disorder in the wires as discussed briefly in
Sec. VI B and Appendix H.

Note that although we focus on the Kitaev-chain
model in Eq. (1) the results and conclusions discussed
here remain true on the more realistic proximity-coupled
nanowire models, where the JMJ protocol is optimal in the

nonadiabatic regime (see details of the proximity-coupled
nanowire simulations in Appendix F). Additionally, the
results on the proximity-coupled nanowire in Appendix F
are compatible with a smooth protocol in the adiabatic
regime, as well as consistent with the results on the
Kitaev chain in the large Zeeman field and large strong
spin-orbit-coupling limits.

A. Comparison between simulated annealing and DP
and NES optimization

We now benchmark the results of the DP and NES
algorithms against the standard simulated-annealing (SA)
method following Ref. [74] closely. In the SA method the
wall velocity vL(t) of the domain wall is iteratively updated
by choosing two random intervals of length �t of which
one interval is increased by �v and the other is decreased
by �v. The new infidelity Ii is calculated for the updated
velocity profile and the move is accepted with a probabil-
ity e−δI/TSA , where δI = Ii − Ii−1 is the difference in the
infidelity with respect to previous iteration. The annealing
temperature TSA is slowly cooled down to zero. The results
of this benchmark in each of the four regimes are shown in
Figs. 2(i)–2(l) and are qualitatively similar to the results
obtained with NES and DP [Figs. 2(a)–2(h)].

In practice, we find that SA is significantly more com-
putationally demanding than NES or DP since a typical
SA simulation entails the evaluation of the many-body
infidelity for each SA update step. To obtain results with
comparable infidelities, the SA simulation requires a total
of 105 evaluations of the infidelity while for DP we need
only 440 update steps each involving a single infidelity and
gradient evaluation (the latter requiring similar computa-
tional complexity as the infidelity calculation); the NES
algorithm requires 50 update steps each with 100 parallel
evaluations to reach convergence.

This difference may be partially attributed to the fact that
SA does not take advantage of any gradient signal. Beyond
these practical observations, a careful scaling analysis of
the convergence of these methods requires an analysis of
the convexity properties of the infidelity landscape as a
function of the control parameters. This can be either done
analytically for simple infidelity landscapes [131], but
may require a numerical investigation for control problems
exhibiting a glassy landscape [132].

Overall, we highlight that DP offers a powerful tool
for quantum control as long as an accurate and differen-
tiable physical model is available. It is found that direct
gradient-based methods are usually more stable and effi-
cient than RL [133]. In contrast, NES can optimize nondif-
ferentiable and discrete control protocols, both of which
remain challenging for DP. NES can also be directly
applied to experimental settings as long as a suitable
objective function, such as the expectation value of a Her-
mitian observable or the fidelity, is available. For instance,
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recent experiments demonstrate the teleportation of Majo-
rana modes in a quantum simulation of a small Majorana
chain [134], including access to the fidelity of the pro-
tocol. This possibility makes NES a viable tool for con-
trolling and designing quantum simulations of Majorana
modes.

Additional discussions detailing connections, compar-
isons, advantages, and disadvantages of the machine-
learning approaches in relation to other advanced methods
used in quantum control are presented in Appendix E.

V. JUMP-MOVE-JUMP [JMJ] MAJORANA
CONTROL STRATEGY

The main features of the ML strategies in regimes (I),
(II), and (III) can be encapsulated in a simple model strat-
egy, the jump-move-jump strategy as shown in Fig. 3(a),
amenable to semianalytical and numerical analysis. This
strategy consists of two dressed jumps in the position of the
domain wall at the beginning and end of the protocol inter-
luded by a period of motion at a constant velocity v. The
initial dressed jump comprises an instantaneous forward
jump over a distance �xforward followed by a rapid back-
ward movement over a distance �xback in a time �tback.
Similarly, the last pulse starts with a rapid backward move-
ment �xback followed by a forward jump over a distance
�xforward. In what follows, we assume that jumps at the
beginning and end of the protocol are symmetric and are
described by the same parameters.

The simplicity of this model allows us to develop an
understanding for the key mechanisms behind the ML
strategies and estimate the value of the infidelity of the
JMJ strategy for a wide range of parameters l, T in regimes
(I)–(III) [see Fig. 5 and Fig. 3(b)]. In Sec. V A below
we first argue that when we disregard the backward
movements, i.e., �xback = 0, the overall strategy can be
explained via a trade-off (Fig. 4) between the amount of
fidelity loss due to the boundary jumps and the loss due to
sudden changes in velocity.

In Sec. V B we also explore how this mechanism
can be better controlled with the backward movements
�xback �= 0, which, for a certain subset of parameters
(�xforward,�xback), leads to a model strategy with infideli-
ties that compare competitively with the best machine-
learned protocols [see the discussion in Appendix G and
Figs. 1(d) and 2]. Our analysis shows that this dressed pro-
tocol allows one to better target the ground state of the
system in a moving (constant velocity) frame.

A. Bare jump-move-jump (�xback = 0)

For the case �xback = 0 we minimize the infidelity,
Eq. (3), with respect to the velocity v of the bulk of
the protocol, which fixes the instantaneous forward jump
to �xforward = (l − vT)/2 ≡ δ. To make analytic analy-
sis simpler we focus on the case that both the left and
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FIG. 3. (a) Setup of the ML-inspired simple control strategy
consisting of two edge pulses with a forward jump �xforward and
backward jump �xback together with a constant linear motion in
between the dressed jumps. (b) Infidelity I(T) surface plot for
the scans over the free parameters �xforward and �xback of the
model strategy with �tback = 0.07w−1 and �tforward = 0.01w−1

in regime (I) (l = 4.32, T = 12). The red line indicates the line
where the size of the forward jump �xforward is equal to the total
movement length l. The parameters of the Majorana control setup
are the same as in Fig. 2. The optimal dressed jumps appear at a
diagonal set of parameters �xforward −�xback ∼ C, where C ≈
0.96. We note that the best protocol has a jump size bigger than
the movement length �xforward > l, which means that it jumps
over the target position xL(T) = xB and then jumps back within
the range xA < xL < xB, as can be seen in Fig. 1 (d) [for regimes
(I) and (III)].

the right domain-wall positions are being evolved simul-
taneously with the JMJ strategy. This means that the
right wall position xR in Eq. (2) becomes time depen-
dent via xR(t) = xL(t)+ Cx with Cx a fixed constant. This
two-wall scenario makes it possible to evaluate the strat-
egy in the moving frame basis (Appendix A), which
allows the key rationale behind the JMJ strategy to be
revealed.

To evaluate this strategy we expand the infidelity after
the first jump xL = xA �→ xL = xA + δ in terms of the
eigenbasis |ψ i

A+δ〉 of the Hamiltonian, Eq. (1), with the
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FIG. 4. The jump-move-jump protocol maximizes the product
of the two functions Oδ [Eq. (8)] and Ov [Eq. (9)]. Here l = 4.32
and T = 12 [regime (I)] and we use s = 2.45 and β = 0.065. The
ground-state projection analysis (solid blue) captures the key fea-
tures of the ML-inspired (one-wall) JMJ strategy (blue stars) for
low velocities v but tends to overestimate the penalty for moving
at velocities near vcrit.

wall at position xL = xA + δ giving

I(T) = 1 −
∣∣∣∣∣
∑

i

〈ψB| U(T) |ψ i
A+δ〉 〈ψ i

A+δ|ψA〉
∣∣∣∣∣

2

(5)

in which U(T) = T e−i
∫ T

0 H(t)dt is the time-ordered evolu-
tion operator with H(t) following the time dependence of
the strategy. We break this equation up into two separate
terms

I(T) = 1 − | 〈ψB| U(T) |ψ0
A+δ〉 〈ψ0

A+δ|ψA〉
+

∑

i>0

〈ψB| U(T) |ψ i
A+δ〉 〈ψ i

A+δ|ψA〉|2, (6)

which allows for an approximate analysis of the separate
contributions. Here we focus on the ground-state contribu-
tion (first line), making the assumption that the second line
is small in comparison.

To approximate the ground-state contribution we insert
projections onto the ground state |ψ0

v 〉 of a moving-frame
Hamiltonian H(v) with a velocity v equal to the bulk
velocity of the strategy and finally a projection onto the
ground state |ψ0

B−δ〉 of the Hamiltonian, Eq. (1), with the
wall at position xL = xB − δ (just before the final jump)
resulting in

I(T) ≈ 1 − |〈ψB|ψ0
B−δ〉〈ψ0

B−δ|ψ0
v 〉

× 〈ψ0
v | U(T) |ψ0

v 〉 〈ψ0
v |ψ0

A+δ〉〈ψ0
A+δ|ψA〉|2. (7)

FIG. 5. Contours showing the infidelity I for the bare (one-
wall) jump-move-jump strategy [Eq. (10)] as a function of dis-
tance l and time T using the same fitted parameters as Fig. 4.
The red dashed line indicates when vavg = l/T = vcrit, which can
be used to distinguish the different Majorana motion regimes as
defined in Fig. 1 (c). The jump-move-jump protocol allows for
low infidelities even in cases where the average velocity exceeds
vcrit [regime (I)].

The 〈ψA(B)±δ〉ψA(B) represent the initial and final jumps in
position space of size δ, which by fitting to our numerical
model can be characterized as

Oδ = |〈ψxL |ψxL+δ〉|2 ∼ exp(−δ2/s2), (8)

where s ∼ ε + αλF with λF the Fermi wavelength and the
fitting parameters (ε,α) = (−0.33, 0.44) for one wall and
(−0.12, 0.3) for two walls when � = 0.3. In Appendix I
we discuss this in more details, showing also how the fit s
scales with the coherence length ξ of the Majorana mode.

The amplitude 〈ψ0
v 〉ψ0

A+δ represents the overlap
between the static ground state and that of a moving frame
with a constant velocity v. We estimate this as follows:

Ov = |〈ψ0
xL

|ψ0
v 〉|2 ∼ 1 − β

( ν
�

)2
γ , (9)

with γ = 1/
√

1 − v2/�2. One way to argue for this form
is to use the results of Ref. [75] that showed that the energy
of the moving-frame ground state with respect to the static
frame goes as E ∼ γMv2, where M ∝ kF/�. The over-
lap can be related to this energy via Ov ∼ 1 − E/kF�.
We arrive at a value of β ∼ 0.13 by fitting Eq. (9) to
moving-frame (two-wall) numerical simulations for v �
vcrit. For single-wall motion we can calculate a value of
β ∼ 0.065 by slowly accelerating the wall up to v � vcrit
and comparing the evolved state with the instantaneous
ground state. Note that this analysis also holds for the more
general proximity-coupled semiconducting nanowire with
different values for fitting parameters α and β.
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If we assume a symmetric strategy (e.g., jumps of the
same size at the beginning and end) then the fidelity
function F(T) ≈ |OδOν |2 [where I(T) = 1 − F(T)] to be
maximized is approximated as

F(T) ≈ exp
(

− (l − vT)2

2s2

)
×

[
1 − βγ

( v
�

)2
]2

, (10)

where we substitute δ = (l − vT)/2. The first function is
maximized by making v as large as possible while the sec-
ond prefers to have small v, with a very severe penalty
kicking in as v approaches the critical velocity�. In Fig. 4
we show how this function behaves for the protocol in
regime (I), which indicates that the analysis accurately cap-
tures the behavior of the fidelity at small v/� but also
displays overall qualitative agreement with the numerical
results for a wide range of values of v/�, including the
presence of a maximum in the fidelity.

An important part of the strategy are the jumps at the
beginning and end of the protocol that allow for a con-
stant middle motion at lower velocities. In Fig. 5 we show
how the infidelity behaves for a range of movement lengths
l and times T obtained from maximizing Eq. (10) with
respect to v. By comparing with Fig. 1(c) we see that
in regime (I) the bare JMJ strategy gives infidelities of
I(T) > 0.25, in regime (II) (between the dashed lines)
about 0.04 < I(T) < 0.25 and in the short l-short T regime
(III) (below the blue dashed line) performs particularly
well with infidelities I(T) ∼ O(10−2).

This method is only effective, however, if the jumps
needed are not too large [δ ∼ O(λF)]. Interestingly, as the
overlap behavior of Ov is relatively unaffected by changes
to the chemical potential, this suggests that a chemical
potential nearer to the bottom of the band, μ → −2w can
help to extend the range of the protocol.

B. Dressed jump-move-jump (�xback �= 0)

On top of the bare jump-move-jump structure, the ML
algorithms dress the protocols with additional forward and
backward movements. In this section we show that the pri-
mary purpose behind these additional motions is to better
target the moving-frame ground state in the move part of
the jump-move-jump protocol.

To proceed we focus on the simple upgraded JMJ pro-
tocol that also allows backward motions over distances
�xback �= 0, see Fig. 3(a). Our first key observation is that
the optimal protocols here tend to choose a combined jump
size �xforward −�xback ∼ C, see Fig. 3 (b), where C is a
fixed constant. This indicates the same primary goal as
the JMJ strategy: to allow a period of optimal and roughly
constant subcritical motion.

To understand why the backward motion is a further
benefit we examine the instantaneous infidelity in both
the static and moving frames for a series of protocols

with the fixed bulk velocity v, see Fig. 6(a). The instan-
taneous infidelity is defined as I(t) = 1 − | 〈ψ(t)〉ψ0

ins(t)|2
with |ψ(t)〉 = T e−i

∫ t
0 H(t′)dt′ |ψA〉 in which H(t) follows the

time dependence of the dressed JMJ strategy and |ψ0
ins(t)〉

corresponds to the instantaneous ground state (at the fixed

(a)

(b)

FIG. 6. (a) Instantaneous infidelity I(t) with respect to the
static (lab) frame ground state (main panel) and moving-frame
ground state (inset) as a function of the protocol time t for various
dressed jumps in regime (I), which are depicted by the differ-
ent colors (red, blue, green, gray) and shown in the inset of (b).
The optimal dressed jump (blue) has the minimum infidelity with
the moving-frame ground state and becomes the strategy with
the minimum static frame infidelity after about t ≈ 4. (b) The
time-evolved state |ψ(t)〉 expanded in the single and two particle
excitations |ψ i

v〉 of the moving-frame basis with energies Ei
v at

t = T/2 for a forward jump (red), an optimal dressed jump (blue),
and nonoptimal dressed jump (green) for regime (I) as given in
the inset. The occupation probabilities (δ functions) are convo-
luted for visualization purposes. The forward jump strategy (red)
occupies the excitations close to the bottom of the band in the
moving frame (Ei

v ≈ 0.08) more compared to the dressed jumps
(blue and green). In this figure all times are in units of 1/ω.
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time t) of the static frame Hamiltonian H(t) [Eq. (1)] or
the moving-frame Hamiltonian Hv(t) [Eq. (A2)]. The static
frame perspective shows that the optimal jump finds a
state that slowly becomes the lowest infidelity state after
some time. However, a more revealing picture emerges if
we examine the same set of protocols in a moving frame
(inset). Here we see that the objective of the initial jumps
is to maximize the overlap with the ground state of the
moving frame.

Using the same methodology we can also reveal what
moving-frame bulk excitations |ψ i

v〉 with many-body
energy Ei

v (restricting here to single- and two-particle exci-
tations only) the dressed protocol occupies during the
evolution, see Fig. 6(b). For protocols close to the bare JMJ
strategy (shown in red) one finds that the dominant exci-
tations have energies close to the moving-frame bulk gap
(Ei
v ≈ 0.08). The dressed jumps (in blue and green), how-

ever, are able to lower the amplitudes of these excitations,
but at the cost of also exciting some higher-energy quasi-
particles. For dressed jumps that are too large (in green)
these higher-energy excitations eventually dominate and
one gets an increase in the ground-state infidelity.

Before ending this section, we now briefly summarize
why similar JMJ strategies work in regimes (I)–(III). The
first advantage of the JMJ strategy is that, with abrupt ini-
tial and final costs, it allows for an effective reduction in the
distance l. This is especially obvious in the case of regime
(I), where, by definition, simple linear motion implies a
need to move above the critical velocity.

The other crucial aspect of the dressed protocols is that
they can better target the ground state of the moving sys-
tem through the combination of jumping and moving. This
allows the system to be rapidly accelerated to a near con-
stant velocity frame where there is no additional infidelity
cost. For a fixed distance l, the JMJ strategy therefore gen-
erally allows for a reduced time by cutting out the slow
acceleration parts of regime (IV), allowing regime (III),
regime (II) and, to a lesser extent, regime (I) exploit the
property of superadiabaticity.

Of course it is always possible to define scenarios deep
in regime (I) where the distance and time constraints would
lead to large infidelity even for the dressed JMJ protocols.
However, they do allow, under the same spatial and tempo-
ral constraints, for Majoranas to be moved more efficiently
than that of linear motion or slow ramp-up ramp-down
protocols.

VI. ROBUSTNESS OF THE JMJ PROTOCOL
WITH RESPECT TO INTERACTIONS AND

DISORDER

In the space between our simplified theoretical setups
[the Kitaev chain in Eq. (1) and proximity-coupled semi-
conductor in Appendix F] and actual topological quantum
devices there are many additional layers of complexity,

and one might wonder, which aspects of the JMJ protocol
remain robust. In this section, we assess the robustness of
our optimal JMJ protocols obtained in the clean noninter-
acting system when applied in a system with interactions
(see, e.g., [135–141]), and separately applied in a system
with disorder, see [76,142,143]. We find that the fidelity
loss due to the jumps of the JMJ protocol remains robust
and that the overall protocol still outperforms the naive lin-
ear benchmark protocol significantly. Finally, we comment
on the extension of our ML methods to include these more
complex scenarios.

A. The effect of interactions

Interactions are modeled by adding the nearest-neighbor
density-density interaction term Hint = ∑N−1

x=1 uxc†
xcxc†

x+1
cx+1 with interaction strength ux to the Kitaev-chain
Hamiltonian in Eq. (1), H(t) = H(t)+ Hint. Since Hint
is quartic in the creation and annihilation operators, the
Bogolyubov-de-Gennes (BdG) time-evolution algorithm
used before (see Appendix B) cannot be applied directly
and we consider a time-dependent variational princi-
ple with matrix product states (MPS TDVP) [144,145]
approach to simulate the dynamics.

In Fig. 7 we show how the optimal protocol obtained in
the noninteracting system in regime (I) performs for var-
ious finite interaction strengths (see Appendix H for the
other regimes). From the instantaneous infidelity plot in

FIG. 7. Main panel: instantaneous infidelity I(t) of the opti-
mal JMJ protocol from the noninteracting system in regime (I)
run in a system with several different finite interaction strengths
u. The jumps are robust against interactions whereas infidelity
increases during the move part of the protocol. Inset: the final
infidelity values I(T) increase approximately linearly with inter-
action strength for both a linear as well as the best JMJ protocol.
For all interaction strengths the JMJ protocol outperforms the lin-
ear protocol. The other parameters for these simulations are the
same as in Fig. 2 and the parameters of the JMJ protocol can be
found in Appendix G.
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the main panel we can see that the fidelity loss due to the
jumps remains robust with increasing interaction strength
whereas in the bulk (move part) the loss increases. As a
consequence the final infidelity I(T) increases with inter-
action strength (see the inset in Fig. 7), but the performance
remains superior to a naive linear protocol at all interaction
strengths. The increase of infidelity with interaction can be
argued for on the basis of mean-field theory, where one
expects repulsive interactions to lower the effective gap
(leading to a lower critical velocity) and the appearance
of nonuniformity in the effective coupling parameters near
the system boundary.

Since we did not perform the optimization directly in
the presence of interactions, we cannot argue that the
optimal JMJ protocol from the noninteracting system is
also the optimal protocol in the interacting system. We
note, however, that our ML optimization methods can be
directly extended for this task. Firstly, the NES algorithm
is a black-box optimization method and can be combined
with any method that generates the dynamics such as the
MPS-TDVP algorithm. Secondly, to apply DP one needs
to make the code for the MPS-TDVP algorithm differen-
tiable. In this regard, we note that the DMRG algorithm to
find ground states in interacting systems has been recently
made differentiable [116].

B. The effect of disorder

Disorder in the wires can be modeled by adding a ran-
dom Gaussian noise term μ̃(x) with mean 0 and standard
deviation λ to the chemical potential μdis(x) = μ(x)+
μ̃(x) [76,142,143]. It has been shown that this form of dis-
order leads to an increase in the effective coherence length
ξeff of the Majorana, which in the continuum limit leads to
1/ξeff = 1/ξ − 1/2ldis. Here ldis = v2

F/λ
2 is the characteris-

tic disorder length scale. When the disorder strength is such
that 2ldis = ξ , the effective Majorana coherence length ξeff
diverges and the topological phase is destroyed. Another
consequence of disorder is that the critical velocity is
significantly reduced [92] and the ground-state fidelity is
expected to rapidly decrease upon smoothly moving the
Majoranas over a disordered medium.

In Fig. 8 we show the performance of the JMJ proto-
col in regime (I) for various different disorder strengths
compared to a linear benchmark protocol. Regimes (II),
(III), and (IV) are detailed in Appendix H. From the aver-
aged instantaneous infidelity 〈I(t)〉 in Fig. 8 it can be seen
that the infidelity associated with the jumps is robust to the
presence of disorder but there is a relatively strong fidelity
loss associated with the linear motion of the move part.
This is in line with the expectations given the lower critical
velocity and longer coherence length induced by disorder.
While the final infidelity value I(T) of the JMJ proto-
col remains reasonably high in regime (I), for longer time
and distance regimes [e.g., deep in regimes (II) and (IV)]

FIG. 8. Main panel: disorder averaged instantaneous infidelity
〈I(t)〉 of the optimal JMJ protocol from the clean wire in regime
(I) for different disorder strengths λ. The jumps are robust against
weak disorder whereas the infidelity increases during the move
part of the protocol. The disorder averaging is done over 500
realizations. Inset: the final infidelity values 〈I(T)〉 increase
approximately quadratically with disorder strength for both a lin-
ear as well as the best JMJ protocol. For all disorder strengths the
JMJ protocol outperforms the linear protocol. The other param-
eters for these simulations are the same as in Fig. 2 and the
parameters of the JMJ protocol can be found in Appendix G.

I(T) worsens significantly, which suggests that additional
protocol optimization in the presence of disorder may be
required to achieve comparable infidelities.

The protocol optimization in the presence of disorder
can be achieved through the NES method since the com-
putational complexity grows linearly with the number of
disorder realizations, all of which can be simulated in par-
allel. The DP method can also be applied because the
disorder averaging is a differentiable operation, i.e., DP
can access the disorder-averaged infidelity ∇θ 〈I(T)〉 with
respect to the control parameters. For example, Ref. [146,
147] considers DP for stochastic optimization tasks.

VII. CONCLUSION AND FURTHER WORK

We apply two state-of-the-art machine-learning tech-
niques, namely differentiable programming and natural
evolution strategies, to the problem of manipulating Majo-
rana bound states in a topological superconductor. For DP
we show that the entire dynamical evolution of any free-
fermion system can be functionally differentiated, allowing
for efficient optimization protocols. This in turn provides
an ability to tackle computationally harder problems and
allows the dynamical optimization to be integrated seam-
lessly with both direct and neural-network parameteriza-
tions of quantum control protocols.

In addition to this, we show how the Majorana con-
trol problem itself can be naturally formulated as a game.
This allows the application of reinforcement-learning
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approaches and NES to zero-mode manipulation. The key
advantage here is both speed and flexibility compared to,
e.g., the standard MC methods such as simulated anneal-
ing. Beyond the advantages observed in our numerical
experiments there are a number of additional conceptual
and practical ingredients, which can be taken advantage
of in the reinforcement-learning setup, including a flexi-
ble exploration step, delayed rewards, partial observations,
and the ease of accounting for the stochastic nature of the
reward function, all of which may be particularly relevant
to experimental setups.

Note that these machine-learning approaches are not
specific to Majorana bound-state control, and could also be
applied to different dynamical many-body problems with
radically different motivations and cost functions (e.g., log
likelihood [148], Fisher information [149], or the trace
distance [150]).

On the theoretical level we introduce a framework for
dividing up the Majorana control problem into four dis-
tinct transport regimes. This has deepened the understand-
ing of the problem and helped to establish a connection
with optimal control theory more broadly. Remarkably,
our numerical simulations displays an innate awareness
of this rich landscape and uncovered important hidden
aspects of the underlying physics. In particular, they have
identified a new class of protocol that radically outper-
forms other known strategies (adiabatic and bang-bang)
when there are both spatial and temporal constraints. We
show that this family of protocols, and the associated clas-
sification of Majorana motion, also holds for the richer
proximity-coupled semiconductor nanowire model, which
is directly relevant for experiments. In principle, since
the defining criteria are related to topological gap, sim-
ilar protocols should also apply to related models such
as the Su-Schrieffer-Heeger chain [151] or multichannel
topological wires variants [152].

The core of this alternative strategy is a sudden jump
followed by a period of constant velocity motion and
then another jump. A theoretical analysis of this dynamics
shows that the strategy simultaneously exploits the mod-
els stability at constant velocities below a certain thresh-
old, and the property that small instantaneous changes in
the domain-wall position do not dramatically reduce the
ground-state fidelity. Further analysis of dressed JMJ pro-
tocols reveals that more complex initial jump sequences
can, in addition to allowing a subcritical velocity, better
target the ground state of the moving frame.

The protocol resembles the parallel recent development
of the Bang-Anneal-Bang protocols [96] for ground-state
preparation in noisy intermediate-scale quantum devices.
Our theoretical analysis illuminates why this type of strat-
egy works so successfully and we are hopeful that this
approach will motivate more general theoretical analysis
of related protocols. In this context it would also be inter-
esting to see the same types of protocols also emerge in

more realistic materials. Our results for the semiconductor
model suggest that similar protocols are indeed relevant.
However, in that example, it is important to note that
boundary motion does not strongly couple between bands
with different spin orientations. In real materials one might
expect that sudden boundary change would couple the
ground state to bands at larger energies and this may
restrict the range of motions that one can achieve.

Another natural direction to explore is the application of
our methods to the problem of Majorana braiding, which
is the ultimate goal behind the study and control of zero
modes in the context of topological quantum computing.
It remains an interesting open question whether aspects of
our protocols remain robust if one models specific devices
more closely. We emphasize, however, that the strength of
the RL setup is that one can easily encode other exper-
imental restrictions on the control by including them in
the reward or action spaces [153]. As such the application
of these methods can be readily extended to other more
complicated models, such as models including the effect of
interactions [135], different simulation techniques such as
the time-dependent density-matrix renormalization group
[154], and to measurement-based Majorana devices [106].

In a broader sense we believe our work shows that
machine learning for quantum control can be done at
a scale, speed, and precision that is relevant to mod-
ern experimental devices. As such we believe that it will
be used to overcome obstacles to realizing large-scale
quantum computation, quantum-communication networks,
quantum thermal machines, analog quantum simulations,
and control of other quantum many-body dynamical sys-
tems more broadly.
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APPENDIX A: DERIVATION OF THE CRITICAL
VELOCITY AND MOVING-FRAME PICTURE

In this appendix we first introduce some back-
ground theory related to the critical velocity and the
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Majorana-mode wave function in the moving frame. After-
wards we derive the resonance time scale Tres for Majorana
shuttling from the Fermi golden rule and finally we show
the emergence of this resonance time scale in numerical
simulations for forward oscillating motion.

1. Dispersion and Majorana mode in the moving frame

To find the critical velocity we start from the peri-
odic (N+1=1) Kitaev-chain Hamiltonian [Eq. (1) with
V(x, t) = 0] in the continuum, which reads after a Fourier
transformation

Hk = �dk · �σ =

⎛

⎜⎝

k2

2m
− μ i�k

−i�k − k2

2m
+ μ

⎞

⎟⎠ , (A1)

with �dk = [0, −�k, (k2/2m)− μ], momentum k, and
�σ the Pauli spin matrices. Solving for the energy
eigenvalues gives mode dispersion εk = ±| �dk| = ±√
(k2/2m − μ)2 +�2k2. The moving frame can now be

obtained by a Galilean transformation in terms of the
unitary rotation U(t) = e−ik

∫ t
0 v(t

′)dt′ , which is the time-
dependent translation operator that rotates to a frame with
domain-wall velocity v(t). Applying this to Eq. (A1) gives
the moving-frame Hamiltonian

Hv(t) = U†(t)HkU(t)+ i
dU†

dt
U(t)

=

⎛

⎜⎝

k2

2m
− μ+ v(t)k i�k

−i�k − k2

2m
+ μ+ v(t)k

⎞

⎟⎠ .

(A2)

The moving frame has an extra term v(t)k on the diagonal,
which means the moving-frame energy dispersion is εk =
±| �dk| = ±

√
(k2/2m − μ)2 +�2k2 + vk [73]. This results

in a tilted dispersion as shown in Fig. 9, when v = �

the tilt causes the gap to close and we have a topological
phase transition. This velocity defines the critical velocity
vcrit = �.

Besides the energy dispersion, we can also look at the
wave function of the Majorana zero modes in the moving
frame. To find this wave function we solve for the zero-
energy solutions of the moving-frame Hamiltonian (A2),
which results in ψ = [φ, −φ]ᵀ with

φ(x) ∝ e−x/(γ ξ) sin[
√

k2
F + 1/(γ ξ)2x]. (A3)

The difference with the Majoranas in the lab frame is
that the localization length ξ = 1/�m is dilated by a
factor γ = 1/

√
1 − v2/�2 causing the Majorana modes

to become spatially more extended (delocalized) in the
moving frame. When v = vcrit = � the localization length
becomes infinite indicating that the local character is lost
and hence a topological phase transition occurs as shown
in Fig. 9.

2. Derivation and numerical analysis of the resonant
time scale

To derive the time scale for resonant Majorana motion
we consider a scenario in which we are shuttling the left
Majorana back and forth by using

vL(t) = vmax sinωt (A4)

for the velocity of the left domain wall in Eq. (2). When
vmax is not too large, i.e., the amplitude of the left domain-
wall position can be considered small compared to the

(a) (b)

FIG. 9. (a) Mode dispersion in the moving frame for several different velocities. (b) Localization of the Majorana zero modes in the
moving frame for several different velocities. It can be seen that the gap closes for v = vcrit = � and simultaneously the Majoranas
delocalize in the moving frame.
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total length of the wire N , we can treat this motion as a
time-dependent perturbation and apply perturbation the-
ory. In this case we write the external potential as V =
V0 + δV sinωt in which V0 is the static domain-wall profile
in Eq. (2) and δV sinωt a time-dependent fluctuation on top
of it. From Fermi’s golden rule for a harmonic perturbation
[155] we can find the infidelity rate to be

lim
T �→∞

I(T)
T

= lim
T �→∞

1
T

[1 − | 〈ψ0| exp −i
∫ T

0
H(t)dt |ψ0〉 |2]

= lim
T �→∞

1
T

∑

i�=0

| 〈ψi| exp −i
∫ T

0
H(t)dt |ψ0〉 |2

(A5)

= 2π
∑

i�=0

[δ(Ei − E0 + ω)+ δ(Ei − E0 − ω)]|

× 〈ψi| δV |ψ0〉 |2 (A6)

in which |ψi〉 are the eigenstates of the Hamiltonian with
the static domain-wall profile V0, which have energy Ei.

From this equation we can read off that there are reso-
nances in the infidelity whenever ωres = ±(Ei − E0), for
the first excited state ωres = Ei − E0 = �kF is equal to the
gap in the system and we arrive at the resonance time
Tres = 2π/ωres = 2π/�kF . The resonances for the higher
energy bands are suppressed with the transition amplitude
| 〈ψi| δV |ψ0〉 |2. When ω �→ ∞ there are no resonances
and the infidelity becomes zero; the intuition for this is
that the static system H0 does not notice the harmonic per-
turbation because it oscillates at a much higher frequency.
Similarly, when ω < ωres there are also no resonances

because the frequencies are smaller than the gap which
corresponds to adiabatic Majorana motion.

In the Majorana motion problem in the main text we are,
however, looking at moving the left domain wall forward
from xA to xB. As shown in Fig. 10 we see that the same
resonance time scale emerges for forward motion with

vL(t) = vmax
1 − cosωt

2
. (A7)

For ω �→ ∞ we get the same rate as constant motion
with vmax

2 , which can be explained for low velocities from
adiabaticity.

APPENDIX B: ALGORITHM AND ANALYSIS OF
THE DERIVATIVE OF THE INFIDELITY

In this appendix we first outline the algorithm we use to
compute the many-body overlap, Eq. (3), for the Majorana
wire setup. Afterwards we argue that all operations in this
algorithm are differentiable and we can obtain the deriva-
tive of the fidelity with respect to control parameters using
automatic differentiation. In the end we show the numerical
obtained derivatives and check them with finite-difference
methods.

To find the fidelity we first write the Hamiltonian,
Eq. (1), in Bogolyubov-de-Gennes (single-particle) form
[79,156]

H(t) = 1
2

C†HBdG(t)C, (B1)

(a) (b)

FIG. 10. (a) Infidelity as a function of frequency ω, the black dashed line indicates the resonance frequency ωres = �kF = 0.3. At
ω �→ ∞ the infidelity is the same as for constant linear motion with xL(t) = (vmax/2)t. (b) Infidelity as a function of frequency and
vmax. For velocities vmax > vcrit = 0.3 there are no low adiabatic frequencies anymore. The parameters used in these simulations are
N = 140, μ = 1, w = 1, � = 0.3, and σ = 1.
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with C† ≡ [c†
1 · · · c†

i · · · .c†
N c1 · · · ci · · · .cN ] and

diagonalize it

HBdG(t)W(t) = E(t)W(t) (B2)

in which the columns of W(t) =
[

u(t) v(t)∗
v(t) u(t)∗

]
are the eigen-

modes (quasiparticle modes) of the BdG Hamiltonian and
E(t) is the diagonal matrix of the mode energies [E]ii(t) =
εi(t). To compute the final many-body overlap at time
t = T we then use the Onishi formula

F(T) = | 〈ψB〉ψ(T)|2 = det[u∗
Bu(T)+ v∗

Bv(T)], (B3)

which relates the BdG quasiparticle picture to the many-
body picture. In this u(T) and v(T) can be obtained from
W(T) = T e−i

∫ T
0 Hbdg(t′)dt′W(0) and uB and vB from the diag-

onalization of the instantaneous BdG Hamiltonian with
the domain wall at position xB. F(T) can now be used to
compute the infidelity I(T) in Eq. (3) in the main text.

From a programming perspective, a code to compute
the infidelity from Eqs. (B3) and (3) consists of a series
of elementary operations (primitives) fi that map the input
control xL(t)with t ∈ [0, T] to the output I(T) = fn ◦ fn−1 ◦
· · · ◦ f1[xL(t)]. The required primitives for this algorithm
are matrix multiplications, diagonalization of a hermitian
matrix Eq. B2 and taking the determinant Eq. (B3). Each
of these operations has a known forward and reverse mode
derivative [157] that can be recursively assembled in the
chain rule

dI
dxL

= dfn
dfn−1

dfn−1

dfn−2
· · · df1

dxL
(B4)

to find the derivative of the infidelity with respect to the
control.

An automatic differentiation package, like the JAX
library [124], computes all the derivatives of the primitives
in a code automatically and assembles them in the chain
rule to evaluate the total gradient of a computer program.
We apply this method to the code to compute the infidelity
and use the gradient for the optimizations described in the
main text. In Fig. 11(a) we show an example for the gra-
dient obtained in this way for a linear motion protocol in
regime (I), which we check with finite difference to make
sure it is working correctly. We observe that for this proto-
col the gradient is the biggest at the boundary, which might
explain the jumping behavior at the beginning and end of
the protocols we found with the ML optimizations (Fig. 2).

To compute the matrix exponential required for the com-
putation of W(T) = T e−i

∫ T
0 HBdG(t′)dt′W(0) we discretize

the continuous time variable t in individual time steps
of size dt and apply the Trotter-Suzuki expansion to
write T e−i

∫ T
0 HBdG(t′)dt′ ≈ �

T/dt
j =1 e−iHBdG(jdt)dt. This means

that while the time complexity of the back-propagation
algorithm is similar to the forward evaluation, the memory
complexity grows linearly with the number of discrete time
steps T/dt. A method to circumvent this growth in memory
complexity is the use of adjoint sensitivity methods [158],
which avoid back propagating through the time-evolution
differential equation (Schrödinger equation) by solving a
second differential equation backwards in time. In practice,
the memory complexity did not turn out to be a bottle-
neck in our simulations, however, and it is sufficient to
use the backpropagation algorithm as described above. For
extending our methods to include disorder and interactions
or for simulating very long times T ∼ O(103) the adjoint
method might be a good option to explore and we refer
the interested reader to Ref. [159] for comparative studies
between the adjoint and backprogagation algorithms.

(a) (b) (c)

FIG. 11. (a) Comparison between the gradient of the infidelity I with respect to the control xL obtained with automatic differentiation
(AD) and finite difference. The gradients dI/dxL are evaluated for a linear protocol xL(t) = vavgt as a function of time t in regime (I).
The AD gradient matches up with the finite-difference gradient and we note that at the beginning and end of the protocol the magnitude
of the gradient is the largest. (b),(c) Optimized parameterized bang-bang protocols in regimes (II) (b) and (IV) (c) with the simulated
annealing method. The position profiles xL(t) are plotted in the main panels and the velocity profiles vL(t) in the insets. The bang-bang
protocols seem to approximate the JMJ protocol in regime (II) and superadiabatic protocol in regime (IV). The parameters for these
simulations are the same as in Fig. 2 in the main text.
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APPENDIX C: GRADIENT FORMULA FOR
NATURAL EVOLUTION STRATEGIES

Denote pθ (φ) for the Gaussian distribution
φ ∼ N (θ , σ 2I) with σ fixed. It follows that [127]

∇θEφ∼N (θ ,σ 2I) [I(T,φ)]

= ∇θ

∫
pθ (φ)I(T,φ)dφ (C1)

=
∫

pθ (φ)∇θ logpθ (φ)I(T,φ)dφ (C2)

=
∫

pθ (φ)
(φ − θ)

σ 2 I(T,φ)dφ. (C3)

With change of variable φ = θ + σε, we have

∇θEφ∼N (θ ,σ 2I) [I(T,φ)] =
∫

pI(ε)I(T, θ + σε)ε/σdε

(C4)

= Eε∼N (0,I) [I(T, θ + σε)ε/σ ] .
(C5)

APPENDIX D: COMPARING STANDARD
BENCHMARK PROTOCOLS AND DIFFERENT

PARAMETERIZATIONS OF THE CONTROL

In addition to the SA benchmark results in the main
paper, in this appendix we compare the ML results to
optimized parameterized standard bang-bang [74,95] and
superadiabatic ramp-up-down protocols [75]. We also
show results for ML optimizations of different parameteri-
zations of the control xL(t).

For a standard bang-bang protocol the velocity of the
domain wall vL is at all times only allowed to take either
the value vL = vmin or the value vL = vmax, a switch
between these two discrete velocities is called a bang. To
search for the optimal bang-bang protocols we fix the min-
imum time between two consecutive bangs to be �t = 0.1
and perform a simulated annealing search similar to the
one described in the main text. In this SA search we impose
an additional constraint (compared to the free search in the
main text) in which each update steps consist of chang-
ing vmax to vmin and vice versa to retain the bang-bang
character of the protocols. We note that a version of this

method is used in Ref. [132] to search for optimal bang-
bang protocols in a spin system. We use vmin = 0 similar to
the bang-bang protocols in Ref. [74] and we scan different
values of the maximum velocity 0 < vmax < 8vavg. This
means that for some of the bang-bang protocols in regimes
(I) and (II) vmax ≥ vcrit, which is not the case for the proto-
cols in Ref. [74], however, we observe that increasing vmax
leads to lower infidelities even when making vmax bigger
than the critical velocity.

The ramp-up-down protocols are a family of superadia-
batic protocols in which the velocity is slowly built up from
zero to some maximum velocity vmax and then ramped
down again to zero as given by

vL(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vmax
1 − cosωt

2
, 0 ≤ t ≤ π

ω

vmax,
π

ω
≤ t ≤ π

ω
+ T

vmax
1 − cos(ωt − ωT)

2
,
π

ω
+ T ≤ t ≤ 2π

ω
+ T

0, otherwise

(D1)

in which ω is the parameter that determines how quickly
the velocity is accelerated to vmax. To find the best ramp-
up-down protocol in each regime we scan over a large
range of values of the free parameter ω (vmax is fixed by
the average velocity constraint).

In Table I we summarize the best results (lowest infi-
delity) of these protocols. We compare these results to
protocols obtained with the ML methods as described in
the main text and see that in all regimes the ML proto-
cols outperform the standard benchmark protocols signifi-
cantly. The optimal bang-bang protocols obtained with the
SA method in regimes (II) and (IV) are plotted in Fig. 11. It
can be seen that the protocols start to approximate the opti-
mal JMJ and superadiabatic protocols obtained with the
other methods. To be able to fully approximate the optimal
JMJ protocols with a bang-bang protocol one needs to test
even higher maximum velocities than we did here and also
consider a negative minimum velocity vmin < 0.

We also test the NES and DP optimization algorithms
for different parameterizations of the control of the domain
wall on a smaller system size N = 50 before fixing the spe-
cific parameterizations as used and described in the main

TABLE I. Results for the infidelity I(T) of different benchmark protocols (first three columns) in regimes (I)–(IV) compared to
results obtained with SA, AD, and NES. For these simulations (l, T) are {(4.32, 12), (4.95, 22), (0.48, 8), (2.4, 40)}, N = 110 and the
other parameters of the Majorana wire setup are the same as for Fig. 2 in the main text.

Regime Linear Bang-bang Ramp-up-down SA DP NES

(I) 0.4738 0.3923 0.4817 0.3801 0.3546 0.3431
(II) 0.2236 0.1713 0.2350 0.1637 0.1549 0.1514
(III) 0.0120 0.0067 0.0125 0.0062 0.0056 0.0071
(IV) 0.0077 0.0004 0.0045 0.0004 0.0005 0.0009
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TABLE II. Comparison of the lowest infidelity values between optimizations of AD and NES with respect to different parameteri-
zations of the control [position xL(t), velocity vL(t) and neural net xL(t) = NNθ (t)]. Based on these testing values we determine which
parameterizations to use for the optimizations in the main text. These simulations are run for a system size of N = 50 and all the other
parameters are the same as the parameters in Fig. 2 in the main text.

Regime DP neural net DP position NES position NES velocity NES neural net

(I) 0.3910 0.4159 0.3945 0.4008 0.4586
(II) 0.1541 0.1531 0.1453 0.1509 0.1842
(III) 0.0064 0.0070 0.0120 0.0069 0.0084
(IV) 0.0001 0.0024 0.0148 0.0004 0.0007

text for the big system N = 110. We compare parameter-
izing the control by the position xL(t), the velocity vL(t)
or a neural network xL(t) = NNθ (t) and show the results
in Table II. The optimization with NES gives the lowest
infidelity when we parameterize by position in regimes (I)
and (II) and by velocity in regimes (III) and (IV). For the
DP optimization the best infidelity optimizes a neural net-
work in regimes (I), (III), and (IV) and optimizes over the
position in regime (II).

APPENDIX E: DISCUSSION ON OTHER
METHODS FOR QUANTUM CONTROL

We now briefly discuss the NES and DP methods
in relation to traditional quantum-control algorithms and
RL methods. First we note that DP provides a general
framework to automatically evaluate gradients of com-
puter programs, which can be integrated into traditional
quantum-control techniques such as the Krotov method
[160], Gradient-based pulse engineering [161], and other
gradient-based control techniques. In this context, a key
advantage of DP is its ability to ease the implementation
of gradient-based techniques, where, e.g., the incorpora-
tion of physical constraints, such as the restrictions in the
amplitude of the controls, requires only adding the con-
straints to the main objective function. This avoids com-
plex and potentially error-prone analytical calculations. In
addition, the implementation of control protocols to widely
different physical scenarios (e.g., free fermion or boson
Hamiltonians or alternative simulation strategies) typically
requires only the coding of the forward propagation of the
simulation with minimal changes to the optimization sub-
routines. In addition, quantum optimal control algorithms
based on DP can easily harness the acceleration afforded
by graphics processing units (GPUs), which may speedup
quantum-control calculations by more than an order of
magnitude [120]. This is most easily achieved using freely
available open-source packages such as JAX [124].

Compared to RL and other gradient-free methods, the
DP method used here remains a powerful method as long
as the physical model is differentiable, as is the case in
our work since the BdG algorithm (Appendix) B used to
compute the many-body infidelity is fully differentiable.

DP and all gradient-based methods provide a strong opti-
mization signal and typically converge faster than RL tech-
niques, which often require high sample complexity for
good convergence. In addition, the use of gradients avoids
the reward function design problem in RL [162,163]. This
allows us to efficiently extend DP to the many-particle
Hamiltonian required for the Majorana transport.

On the other hand, NES exhibits multiple advantageous
features. First, as a gradient-free black-box optimization
method, NES is the most flexible among the methods
implemented in our work since it can be applied to controls
that are discrete and continuous. Second, it can optimize
nondifferentiable control problems, as well as problems
where the gradient estimation is numerically unstable in
a way that makes the application of DP challenging. NES
is also easily parallelizable across multiple processors for
a fast collection of sufficient samples for optimization.
Lastly, compared to RL, we mention that NES can be
directly applied to any desired objective function. This
avoids the problem of the design of reward function com-
monly encountered in RL algorithms, which is necessary
to avoid sparse learning signals that may hamper the
efficiency of RL methods in quantum control.

We also briefly mention that RL techniques such as
the Watkins Q-learning algorithm [70] and policy gradi-
ent, tabular Q learning, and deep Q learning have recently
been shown to be capable of achieving high performance
in other quantum-control setups [66]. Reference [66] pro-
vides a detailed comparison between tabular Q learning,
deep Q learning, and policy gradient [70], and gradient
descent and Krotov algorithms applied to the problem
of preparing a target quantum state. Gleaned from their
numerical experiments, the authors in Ref. [66] conclude
that the deep Q learning and policy gradient algorithms
tend to outperform other RL and traditional control algo-
rithms when the problem allows for discrete values of the
control parameters, and when the problem is scaled up to
large system sizes.

Finally, we comment on well-established adiabatic
shortcut methods [12], in particular, counter diabatic driv-
ing (CDD) and Lewis-Riesenfeld invariants (LRI), in the
context of the Majorana game problem. We note that
an attempt to implement these in our setup encounters
an array of problems. In CDD for example, the control
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protocols required a level of Hamiltonian control far
beyond what would be experimentally feasible, where
a full time-dependent and spatial control of a problem
Hamiltonian is required. Lastly, LRI requires finding a suit-
able invariant, which to the best our knowledge, is not
known for the Majorana wire.

APPENDIX F: SEMICONDUCTING NANOWIRE
SPIN-ORBIT COUPLED TO S-WAVE

SUPERCONDUCTOR

The Kiteav-chain model for topological p-wave super-
conductivity [25] used for the simulations in the main text
can be realized effectively in a semiconducting nanowire
proximity coupled to a conventional s-wave supercon-
ductor in a Zeeman field [15–17]. In this appendix, we
first introduce the proximity-coupled model and discuss in
which limits the Kitaev-chain toy model can be obtained.
Then we show how the critical velocity vcrit and resonance
frequency can be obtained such that we can define the
same Majorana motion regimes as in the main text. Finally
we show numerical optimization results obtained with AD
and NES in each of those regimes for two different sets of
parameters of the proximity-coupled model (with one set
outside the Kitaev-chain limit).

1. Hamiltonian and energy dispersion

The Hamiltonian for the proximity-coupled semicon-
ducting nanowire (NW) for periodic boundary conditions,
a homogeneous potential V(x) = V and chemical potential
μ(x) = μ in the continuum momentum representation is

given by

HNW = 1
2

∫
dk�†

k H BdG(k)�k, (F1)

with �†
k = [c†

k↑c†
k↓c−k↑c−k↓] and

H BdG(k) =
(

k2

2m
+ V − μ+ Bσx + αkσy

)
τz +�σyτx

(F2)

in which σi acts on the spin degrees of freedom and τi on
the particle-hole space. In here we have an external mag-
netic field B in the x direction, spin-orbit coupling with
strength α in the y direction and a standard s-wave super-
conducting term with gap �. Note the main difference
with the Kiteav chain in Eq. (A1) is the spin degrees of
freedom s = {↑↓}, which result in Zeeman splitting, spin-
orbit interaction and s-wave superconductivity instead of
spinless p-wave superconductivity.

The energy dispersion can be found by solving the
characteristic equation for H BdG Eq. (F2), which leads to

ε2
±(k) = ξ 2 + B2 + α2k2 + |�|2

± 2
√

B2|�|2 + ξ 2B2 + α2k2ξ 2 (F3)

in which we define ξ(k) = k2/2m + V − μ. In this four-
band model various parameter choices lead to a gapped
dispersion with in some phases Majorana zero modes, see
for a complete discussion, e.g., Ref. [17]. Moreover, in two
specific limits (large Zeeman field B � α,� or for large
spin-orbit coupling α � B,�) this proximity-coupled NW

(a) (b)

FIG. 12. (a) Energy dispersion of the Hamiltonian, Eq. (F4), in the moving frame for three different velocities. The velocity tilts
the dispersion and the gap closes when v = vcrit. The model parameters used for this dispersion are B = α = 1.0,� = 0.5 and μ =
−0.55, V = 0.0. (b) Excitation energy eigenvalues En of the NW model on a lattice for open-boundary conditions as a function of the
chemical potential μ. The red dashed line indicates μ = −0.55. The other parameters are the same as for (a). We get a zero mode (blue
line) but also some Andreev bound states (e.g., orange line) that come down when we bring μ closer to the bottom of the band.
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9e-6

FIG. 13. Overview of the optimal controls in the four different Majorana motion regimes (I–IV) obtained after optimization with
DP, NES, and the parameterized JMJ protocols for the proximity-coupled NW model as given by Eq. (F2). In all panels we plot the
domain-wall position xL(t) as a function of time starting from xL(0) = xA = 5.0. The red dotted line in regime (I) has a slope equal
to the critical velocity vcrit ≈ 0.27 for(a) and (e) and vcrit ≈ 0.28 for (i) and (m). The obtained strategies are similar to the strategies
obtained for the Kitaev chain in the main text with pulselike motion at the beginning and end in regimes (I)-(II)-(III) being smoother
motion in the middle and in regime (IV) a smooth adiabatic protocol. In the simulations for (a)–(h) we set N = 100, μ = 0.0, w = 1,
� = 0.8, B = 2, α = 0.8, Vheight = 30.1, and σ = 1 and for (i)–(s) we set N = 100, μ = −0.55, w = 1, � = 0.5, B = 1, α = 1.0,
Vheight = 30.1, and σ = 1. The constraint parameters (l, T) are given by {(4.32, 12), (4.95, 22), (0.48, 8), (2.4, 40)} for regimes (I), (II),
(III), and (IV), respectively.

model can be projected onto the lower bands (reduces to
two similar blocks) resulting in the Kitaev-chain model
with p-wave superconducting gap �′ = α�/B (large B)
or �′ = �/mα (large α), respectively [73,152].

2. Critical velocity and resonance frequency

To bring the NW in Eq. (F2) into the moving frame
we apply the same techniques as for the Kitaev chain
discussed earlier in Appendix A, i.e., we apply the
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time-dependent translation operator U(t) = e−ik
∫ t

0 v(t
′)dt′ to

rotate the Hamiltonian Eq. (F2), which results in the
moving-frame Hamiltonian

H BdG
v (k) =

(
k2

2m
+ V − μ+ Bσx + αkσy

)
τz

+�σyτx + vk14. (F4)

Like for the Kitaev chain this transformation gives an addi-
tional contribution vk to the energy dispersion that tilts
it as shown in Fig. 12. In the regimes when the system
is originally gapped the gap closes due to this tilt when
v ≡ vcrit = Egap/kF . For most parameters finding the gen-
eral expression for the energy gap and critical velocity
is too complicated and we need to obtain it numerically.
However, things simplify in the Kitaev-chain limit for
B � α,�, which gives vcrit ≈ α�/B and when α � B,�
we obtain vcrit ≈ �/mα [73].

The resonance frequency in this model is like for the
Kitaev chain defined as the being equal to the gap ωres =
Egap. With these associations for the critical velocity and
resonance frequency the definition of the Majorana motion
regimes originally in terms of parameters of the Kitaev
chain can be extended to include the proximity-coupled
model as well; regime (I) is defined to be for vavg > vcrit,
regime (II) close but below the critical velocity, regime
(III) low velocity and short time scales with respect to the
energy gap and finally the (super)adiabatic regime (IV) for
long times and low velocities with respect to the gap.

3. Optimization results

By putting the NW model, Eq. (F2), on a lattice, open-
ing up the boundary condition and imposing the smooth
potential profile in Eq. (2) we acquire the same control of
the position of the Majorana zero mode as for the Kitaev
chain in the main text. In Fig. 12(b) we show an example
of the excitation energies for a set of parameters outside
the Kitaev-chain limit in which we have a Majorana zero
mode and also Andreev bound states.

We then optimize the transport of the Majoranas in
this NW model with the same AD and NES techniques
as used before. We show the results for these simula-
tions for the same parameters as in Fig. 12 from dif-
ferentiable programming and natural evolutionary strate-
gies in Figs. 13(i)–13(p) and from JMJ protocols in
Figs. 13(q)–13(s). For completeness in Figs. 13(a)–13(h)
we include results obtained by choosing parameters that
approximate the Kitaev-chain limit (high B field).

It can be seen that for these two sets of parameters
we obtain qualitatively similar strategies for Majorana
transport in the proximity-coupled NW as for the simpler
Kitaev-chain model as shown in Fig. 2 in the main text.
That is, in regions (I)-(II)-(III) we get the JMJ strategy
with a pulselike motion at the beginning and end of the

protocol and an on average constant motion with a veloc-
ity vcrit in the middle of the protocol. For the parameters
outside the Kitaev limit, the initial and final dressed jumps
are comprised of three parts: a forward jump, a backward
jump, and another forward jump. For these parameters we
observe a much smoother protocol in regime (II) compared
to the Kitaev chain. In regime (IV) for both sets of param-
eters we again recover the expected smooth adiabatic
protocols.

To show that the JMJ strategy (together with its analysis
discussed in the main text) is also a robust strategy for
the proximity-coupled NW model we scan again over
the different parameters �xforward and �xback outside the
Kitaev limit. The optimal JMJ protocols obtained in this
way together with the infidelity values are shown in
Figs. 13(q)–13(s). It can be seen that the infidelity val-
ues for the dressed JMJ protocol are competitive to the
protocols obtained with DP and NES. Compared to the
Kitaev-chain results [(d) in Fig. 1] it can be seen that
for this proximity-coupled NW model the dressing of the
jumps is slightly less pronounced.

APPENDIX G: PARAMETERS AND
INTERPOLATION OF THE OPTIMIZED JMJ

MODEL STRATEGY

In this appendix we give the parameters of the optimized
JMJ strategies in regimes (I), (II), and (III) as shown in
Fig. 1(d) in the main text and verify how close these strate-
gies are to the protocols obtained with the ML methods.
In the main text we observe that dressed JMJ protocols
with the lowest infidelities have a linear relation between
�xforward and �xbackward as Fig. 3 shows. To attain the
best JMJ protocols in regimes (I)-(III), we scan through
�xforward and �xback with respect to the linear relation in
each regime and pick the one that gives the overall lowest
infidelity. The parameters of the resulting JMJ strategies
are provided in Table III and the strategies are shown in
Fig. 1.

We linearly interpolate these best JMJ model strate-
gies to the machine-learning protocols in the main paper
(Fig. 2) to see whether there are additional protocols that
are better in terms of infidelity. The results for this in
regime (III) with the DP strategy are shown in Fig. 14 from
which we can see that the DP strategy is slightly better than

TABLE III. Best dressed JMJ model strategy parameters
and their corresponding infidelities obtained from scans over
�xforward, �xback, and �tback. The corresponding profiles are
shown in Fig. 1 in the main paper.

Regime �xforward �xback �tback Infidelity

(I) 7.992 7.5060 0.05 0.3575
(II) 1.9093 1.5496 0.31 0.1589
(III) 0.5482 0.4571 0.33 0.0057
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(a) (b)

DP

JMJ

Interpolated profile number

FIG. 14. (a) The DP optimized majorana motion strategy in regime (III) (T = 8, l = 0.48) on top of the optimized (scans over the
free parameters) JMJ model strategy. The optimal JMJ model strategy captures the main features (jumps) of the DP strategy well. (b)
Infidelity I(T) obtained for 100 linearly interpolated profiles between the DP strategy and JMJ model strategy as shown in (a). We
observe a convex decreasing function towards the more flexible DP result.

the JMJ (due to more free parameters) and that there are no
other local minima in between them. For the other regimes
and interpolations from the NES strategy we obtain similar
results.

APPENDIX H: EXTRA RESULTS ON
ROBUSTNESS OF THE JMJ STRATEGY WITH

RESPECT TO INTERACTIONS AND DISORDER

In Fig. 15 we show simulation results when running
the optimal protocols obtained in the clean system in a

system with disorder and separately interactions. In sum-
mary we see that in regimes (I), (II), and (III) the ML
protocols in the clean noninteracting system outperform
a naive linear benchmark protocol. On the other hand,
in regime (IV) after large enough interaction strengths
or disorder strengths the linear protocols outperform the
superadiabatic protocols found before in the literature.
Moreover, the infidelity values get worse by more than
an order of magnitude in this regime, which empha-
sizes the importance of looking for alternative strategies

(e) (f) (g) (h)

Regime IIIRegime II Regime IVRegime I

(a) (b) (c) (d)

Superadiabatic

Superadiabatic

FIG. 15. Overview of simulation results of running the optimal protocols obtained in the clean noninteracting system in a system
with interactions (top row) or disorder (bottom row) in all four regimes. In all regimes the infidelity increases with disorder strength λ
and also with interaction strength u. The parameters for these simulations are the same as in Fig. 2 in the main text and the disorder
averaging is done over 500 disorder realizations.
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(a) (b)

FIG. 16. In the p-wave model the Oδ ∼ exp(−δ2/s2) have an interesting relationship to the two key length scales. The fit parameter
s is reduced by a factor of about 1/2 when the coherence length ξ = 1/(m�) is made very large. On the other hand, its value tends to
increase linearly in proportion to λF = 2π/kF . The topological gap Egap ∼ �kF = 2π/(mξλF) is, however, inversely proportional to
both length scales.

that can be more efficient than the smooth superadiabatic
protocols.

The observation that the infidelity values generally
get worse with increasing interaction strength can be
explained, at least partially, due to a lowering of effec-
tive critical velocity. This comes about in two main ways.
Firstly on a mean-field level we know that including repul-
sive on-site interactions results in a lower topological
energy gap Egap (see, e.g., [135]). This would result in, as
shown in Ref. [164], the resonance frequency ωres becom-
ing lower, which means that the resonance time scale, and
consequently regime (IV), get pushed to longer time scales
T.

Another feature that may be at play here is the fact
that interactions, on a mean-field level, typically induce
nonuniformity in the effective couplings (found, for exam-
ple, by running some suitable Hartree-Fock-Bogoliubov
minimization [156]). The result in this case would be simi-
lar to the scenario encountered in the disordered situations,
where moving the wall over changing landscape amounts
to a time-dependent perturbation (see, e.g., Ref. [92]). For
future studies it would be interesting to investigate if one
can use NES or DP to improve these values further by
optimizing in the presence of disorder or interactions.

APPENDIX I: JUMP INFIDELITY COSTS WITH
SYSTEM PARAMETERS

In this appendix we examine the infidelity cost of a sin-
gle jump as a function of the important physical length
scales λF = 2π/kF and ξ = 1/(m�). Our numerical test
suggests a near Gaussian drop off in the infidelity as a
function of jump distance: Oδ ∼ exp(−δ2/s2). Generally
speaking, the larger the value of s, the larger one can jump.

In Fig. 16 we plot the value of s that we obtain from
a numerical fitting the Oδ drop off. We see that the value
of the superconducting parameter � (and hence ξ ) do play
a role: the value of s tends to go down, but not dramat-
ically so, as � gets smaller (and ξ gets larger). Perhaps
more importantly we see the that the s parameter is linearly
related to λF . This means the jump size can, in principle,
get bigger if one tunes the chemical potential towards the
bottom of the single particle valence band.

[1] J. M. Gambetta, J. M. Chow, and M. Steffen, Building
logical qubits in a superconducting quantum computing
system, npj Quantum Inf. 3, 2 (2017).

[2] J. I. Cirac and P. Zoller, Quantum Computations with Cold
Trapped Ions, Phys. Rev. Lett. 74, 4091 (1995).

[3] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A.
M. Rey, M. Foss-Feig, and J. J. Bollinger, Quantum spin
dynamics and entanglement generation with hundreds of
trapped ions, Science 352, 1297 (2016).

[4] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J.
M. Sage, Trapped-ion quantum computing: Progress and
challenges, Appl. Phys. Rev. 6, 021314 (2019).

[5] C. Gross and I. Bloch, Quantum simulations with ultracold
atoms in optical lattices, Science 357, 995 (2017).

[6] B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Here-
mans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk,
and D. D. Awschalom, Accelerated quantum control using
superadiabatic dynamics in a solid-state lambda system,
Nat. Phys. 13, 330 (2017).

[7] F. Casola, T. van der Sar, and A. Yacoby, Probing
condensed matter physics with magnetometry based on
nitrogen-vacancy centres in diamond, Nat. Rev. Mater. 3,
17088 (2018).

[8] D. P. DiVincenzo, The physical implementation of quan-
tum computation, Fortschritte der Physik 48, 771 (2000).

020332-23

https://doi.org/10.1038/s41534-016-0004-0
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1063/1.5088164
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/nphys3967
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E


LUUK COOPMANS et al. PRX QUANTUM 2, 020332 (2021)

[9] A. Baksic, H. Ribeiro, and A. A. Clerk, Speeding up Adi-
abatic Quantum State Transfer by Using Dressed States,
Phys. Rev. Lett. 116, 230503 (2016).

[10] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K.
Kompa, Whither the future of controlling quantum phe-
nomena?, Science 288, 824 (2000).

[11] X. Wang, M. Allegra, K. Jacobs, S. Lloyd, C. Lupo,
and M. Mohseni, Quantum Brachistochrone Curves as
Geodesics: Obtaining Accurate Minimum-Time Protocols
for the Control of Quantum Systems, Phys. Rev. Lett. 114,
170501 (2015).

[12] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-
rontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts
to adiabaticity: Concepts, methods, and applications, Rev.
Mod. Phys. 91, 045001 (2019).

[13] A. del Campo and K. Sengupta, Controlling quantum crit-
ical dynamics of isolated systems, Eur. Phys. J. Spec. Top.
224, 189 (2015).

[14] A. G. J. MacFarlane, J. P. Dowling, and G. J. Milburn,
Quantum technology: The second quantum revolution,
Philos. Trans. R. Soc. London. Ser. A: Math., Phys. Eng.
Sci. 361, 1655 (2003).

[15] L. Fu and C. L. Kane, Superconducting Proximity
Effect and Majorana Fermions at the Surface of a
Topological Insulator, Phys. Rev. Lett. 100, 096407
(2008).

[16] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majo-
rana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys.
Rev. Lett. 105, 077001 (2010).

[17] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids
and Majorana Bound States in Quantum Wires, Phys. Rev.
Lett. 105, 177002 (2010).

[18] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P.
A. Fisher, Non-abelian statistics and topological quantum
information processing in 1d wire networks, Nat. Phys. 7,
412 (2011).

[19] M. Kjaergaard, K. Wölms, and K. Flensberg, Majorana
fermions in superconducting nanowires without spin-orbit
coupling, Phys. Rev. B 85, 020503 (2012).

[20] M. Leijnse and K. Flensberg, Introduction to topological
superconductivity and majorana fermions, Semicond. Sci.
Technol. 27, 124003 (2012).

[21] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A.
M. Bakkers, and L. P. Kouwenhoven, Signatures of majo-
rana fermions in hybrid superconductor-semiconductor
nanowire devices, Science 336, 1003 (2012).

[22] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff,
and H. Q. Xu, Anomalous zero-bias conductance peak in a
Nb–InSb nanowire–Nb hybrid device, Nano Lett. 12, 6414
(2012).

[23] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Zero-bias peaks and splitting in an Al–InAs
nanowire topological superconductor as a signature of
majorana fermions, Nat. Phys. 8, 887 (2012).

[24] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwen-
hoven, P. Krogstrup, C. M. Marcus, and Y. Oreg, Majo-
rana zero modes in superconductor–semiconductor het-
erostructures, Nat. Rev. Mater. 3, 52 (2018).

[25] A. Y. Kitaev, Unpaired majorana fermions in quantum
wires, Phys.-Usp. 44, 131 (2001).

[26] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (N. Y.) 303, 2 (2003).

[27] S. D. Sarma, M. Freedman, and C. Nayak, Majorana
zero modes and topological quantum computation, npj
Quantum Inf. 1, 1 (2015).

[28] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S.
Das Sarma, Non-abelian anyons and topological quantum
computation, Rev. Mod. Phys. 80, 1083 (2008).

[29] T. D. Stanescu and S. Tewari, Majorana fermions in
semiconductor nanowires: Fundamentals, modeling, and
experiment, J. Phys.: Condens. Matter 25, 233201 (2013).

[30] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,
J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
Marcus, K. Flensberg, and J. Alicea, Milestones toward
Majorana-Based Quantum Computing, Phys. Rev. X 6,
031016 (2016).

[31] D. Rainis and D. Loss, Majorana qubit decoherence by
quasiparticle poisoning, Phys. Rev. B 85, 174533 (2012).

[32] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Pro-
topapadakis, Deep learning for computer vision: A brief
review, Comput. Intell. Neurosci. 2018, 7068349 (2018).

[33] T. Young, D. Hazarika, S. Poria, and E. Cambria, Recent
Trends in Deep Learning Based Natural Language Pro-
cessing, arXiv:1708.02709 [cs] (2018).

[34] G. Eraslan, Ž. Avsec, J. Gagneur, and F. J. Theis, Deep
learning: New computational modelling techniques for
genomics, Nat. Rev. Genet. 20, 389 (2019).

[35] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,
N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine
learning and the physical sciences, Rev. Mod. Phys. 91,
045002 (2019).

[36] J. Carrasquilla, Machine learning for quantum matter,
Adv. Phys.: X 5, 1797528 (2020).

[37] I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural
network methods in quantum mechanics, Comput. Phys.
Commun. 104, 1 (1997).

[38] J. Carrasquilla and R. G. Melko, Machine learning phases
of matter, Nat. Phys. 13, 431 (2017).

[39] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[40] D. Kochkov and B. K. Clark, Variational optimization
in the AI era: Computational graph states and supervised
wave-function optimization, arXiv:1811.12423 (2018).

[41] D. Luo and B. K. Clark, Backflow Transformations via
Neural Networks for Quantum Many-Body Wave Func-
tions, Phys. Rev. Lett. 122, 226401 (2019).

[42] D. Pfau, J. S. Spencer, A. G. de G. Matthews, and
W. M. C. Foulkes, Ab-initio solution of the many-
electron Schrödinger equation with deep neural networks,
arXiv:1909.02487 [physics.chem-ph] (2019).

[43] J. Hermann, Z. Schtzle, and F. No, Deep neural net-
work solution of the electronic Schrödinger equation,
arXiv:1909.08423 [physics.comp-ph] (2019).

[44] O. Sharir, Y. Levine, N. Wies, G. Carleo, and A. Shashua,
Deep Autoregressive Models for the Efficient Variational
Simulation of Many-Body Quantum Systems, Phys. Rev.
Lett. 124, 020503 (2020).

[45] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko,
and J. Carrasquilla, Recurrent neural network wave func-
tions, Phys. Rev. Res. 2, 023358 (2020).

020332-24

https://doi.org/10.1103/PhysRevLett.116.230503
https://doi.org/10.1126/science.288.5467.824
https://doi.org/10.1103/PhysRevLett.114.170501
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1140/epjst/e2015-02350-4
https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1038/nphys1915
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1155/2018/7068349
http://arxiv.org/abs/arXiv:1708.02709
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1016/S0010-4655(97)00054-4
https://doi.org/10.1038/nphys4035
https://doi.org/10.1126/science.aag2302
http://arxiv.org/abs/arXiv:1811.12423
https://doi.org/10.1103/PhysRevLett.122.226401
http://arxiv.org/abs/arXiv:1909.02487
http://arxiv.org/abs/arXiv:1909.08423
https://doi.org/10.1103/PhysRevLett.124.020503
https://doi.org/10.1103/PhysRevResearch.2.023358


PROTOCOL DISCOVERY FOR THE QUANTUM CONTROL... PRX QUANTUM 2, 020332 (2021)

[46] S. Lu, X. Gao, and L.-M. Duan, Efficient representation
of topologically ordered states with restricted Boltzmann
machines, Phys. Rev. B 99, 155136 (2019).

[47] X. Gao and L.-M. Duan, Efficient representation of quan-
tum many-body states with deep neural networks, Nat.
Commun. 8, 662 (2017).

[48] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and
J. I. Cirac, Neural-Network Quantum States, String-Bond
States, and Chiral Topological States, Phys. Rev. X 8,
011006 (2018).

[49] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R.
Melko, and G. Carleo, Neural-network quantum state
tomography, Nat. Phys. 14, 447 (2018).

[50] G. Torlai and R. G. Melko, Latent Space Purification via
Neural Density Operators, Phys. Rev. Lett. 120, 240503
(2018).

[51] J. Carrasquilla, G. Torlai, R. G. Melko, and L. Aolita,
Reconstructing quantum states with generative models,
Nat. Machine Intelligence 1, 155 (2019).

[52] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von
Lilienfeld, Fast and Accurate Modeling of Molecular
Atomization Energies with Machine Learning, Phys. Rev.
Lett. 108, 058301 (2012).

[53] M. Rupp, Machine learning for quantum mechanics in a
nutshell, Int. J. Quantum. Chem. 115, 1058 (2015).

[54] K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller,
and R. J. Maurer, Unifying machine learning and quan-
tum chemistry with a deep neural network for molecular
wavefunctions, Nat. Commun. 10, 5024 (2019).

[55] J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and
K. Burke, Finding Density Functionals with Machine
Learning, Phys. Rev. Lett. 108, 253002 (2012).

[56] L. Li, J. C. Snyder, I. M. Pelaschier, J. Huang, U.-N.
Niranjan, P. Duncan, M. Rupp, K.-R. Müller, and K.
Burke, Understanding machine-learned density function-
als, Int. J. Quantum. Chem. 116, 819 (2016).

[57] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Self-learning monte
carlo method, Phys. Rev. B 95, 041101 (2017).

[58] L. Huang and L. Wang, Accelerated Monte Carlo simu-
lations with restricted Boltzmann machines, Phys. Rev. B
95, 035105 (2017).

[59] S. Pilati, E. M. Inack, and P. Pieri, Self-learning projective
quantum Monte Carlo simulations guided by restricted
Boltzmann machines, Phys. Rev. E 100, 043301 (2019).

[60] A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M.
Tiersch, A. Zeilinger, and H. J. Briegel, Active learning
machine learns to create new quantum experiments, Proc.
Natl. Acad. Sci. 115, 1221 (2018).

[61] J. Yao, L. Lin, and M. Bukov, Reinforcement Learn-
ing for Many-Body Ground State Preparation based on
Counter-Diabatic Driving, arXiv:2010.03655 [cond-mat,
physics:physics, physics:quant-ph] (2020).

[62] T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt, Rein-
forcement Learning with Neural Networks for Quantum
Feedback, Phys. Rev. X 8, 031084 (2018).

[63] V. Dunjko and H. J. Briegel, Machine learning & artificial
intelligence in the quantum domain: A review of recent
progress, Rep. Prog. Phys. 81, 074001 (2018).

[64] M. Bukov, A. G. R. Day, D. Sels, P. Weinberg, A.
Polkovnikov, and P. Mehta, Reinforcement Learning in

Different Phases of Quantum Control, Phys. Rev. X 8,
031086 (2018).

[65] M. Y. Niu, S. Boixo, V. N. Smelyanskiy, and H. Neven,
Universal quantum control through deep reinforcement
learning, npj Quantum Inf. 5, 1 (2019).

[66] X.-M. Zhang, Z. Wei, R. Asad, X.-C. Yang, and X. Wang,
When does reinforcement learning stand out in quantum
control? A comparative study on state preparation, npj
Quantum Inf. 5, 1 (2019).

[67] F. Schäfer, M. Kloc, C. Bruder, and N. Lörch, A differen-
tiable programming method for quantum control, Machine
Learning: Sci. Technol. 1, 035009 (2020).

[68] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A.
K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wier-
stra, S. Legg, and D. Hassabis, Human-level control
through deep reinforcement learning, Nature 518, 529
(2015).

[69] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M.
Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
Mastering the game of go with deep neural networks and
tree search, Nature 529, 484 (2016).

[70] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (A Bradford Book, Cambridge, MA, USA,
2018).

[71] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, Automatic differentiation in machine learning: A
survey, J. Mach. Learn. Res. 18, 5595 (2017).

[72] I. Rechenberg, Evolutionsstrategie: Optimierung Technis-
cher Systeme Nach Prinzipien der Biologischen Evolution
(Frommann-Holzboog, Stuttgart, 1973).

[73] M. S. Scheurer and A. Shnirman, Nonadiabatic processes
in majorana qubit systems, Phys. Rev. B 88, 064515
(2013).

[74] T. Karzig, A. Rahmani, F. von Oppen, and G. Refael, Opti-
mal control of majorana zero modes, Phys. Rev. B 91,
201404 (2015).

[75] A. Conlon, D. Pellegrino, J. K. Slingerland, S. Doo-
ley, and G. Kells, Error generation and propagation in
majorana-based topological qubits, Phys. Rev. B 100,
134307 (2019).

[76] P. W. Brouwer, M. Duckheim, A. Romito, and F. von
Oppen, Probability Distribution of Majorana End-State
Energies in Disordered Wires, Phys. Rev. Lett. 107,
196804 (2011).

[77] S. B. Chung, H.-J. Zhang, X.-L. Qi, and S.-C.
Zhang, Topological superconducting phase and majorana
fermions in half-metal/superconductor heterostructures,
Phys. Rev. B 84, 060510 (2011).

[78] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yaz-
dani, Proposal for realizing majorana fermions in chains
of magnetic atoms on a superconductor, Phys. Rev. B 88,
020407 (2013).

[79] B. Bernevig and T. Hughes, Topological Insulators and
Topological Superconductors (Princeton University Press,
Princeton, 2013).

020332-25

https://doi.org/10.1103/PhysRevB.99.155136
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1103/physrevx.8.011006
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevLett.120.240503
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1002/qua.24954
https://doi.org/10.1038/s41467-019-12875-2
https://doi.org/10.1103/PhysRevLett.108.253002
https://doi.org/10.1002/qua.25040
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1103/PhysRevE.100.043301
https://doi.org/10.1073/pnas.1714936115
http://arxiv.org/abs/arXiv:2010.03655
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1038/s41534-018-0113-z
https://doi.org/10.1038/s41534-018-0113-z
https://doi.org/10.1088/2632-2153/ab9802
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature16961
https://doi.org/10.1103/PhysRevB.88.064515
https://doi.org/10.1103/PhysRevB.91.201404
https://doi.org/10.1103/PhysRevB.100.134307
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevB.84.060510
https://doi.org/10.1103/PhysRevB.88.020407


LUUK COOPMANS et al. PRX QUANTUM 2, 020332 (2021)

[80] N. Read and D. Green, Paired states of fermions in two
dimensions with breaking of parity and time-reversal sym-
metries and the fractional quantum Hall effect, Phys. Rev.
B 61, 10267 (2000).

[81] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum
Vortices in p-Wave Superconductors, Phys. Rev. Lett. 86,
268 (2001).

[82] A. Stern, F. von Oppen, and E. Mariani, Geometric phases
and quantum entanglement as building blocks for non-
abelian quasiparticle statistics, Phys. Rev. B 70, 205338
(2004).

[83] M. Stone and S.-B. Chung, Fusion rules and vortices
in px + ipy superconductors, Phys. Rev. B 73, 014505
(2006).

[84] J. C. Budich, S. Walter, and B. Trauzettel, Failure of
protection of majorana based qubits against decoherence,
Phys. Rev. B 85, 121405 (2012).

[85] F. Konschelle and F. Hassler, Effects of nonequilibrium
noise on a quantum memory encoded in majorana zero
modes, Phys. Rev. B 88, 075431 (2013).

[86] H. T. Ng, Decoherence of interacting majorana modes,
Sci. Rep. 5, 12530 (2015).

[87] F. L. Pedrocchi and D. P. DiVincenzo, Majorana Braiding
with Thermal Noise, Phys. Rev. Lett. 115, 120402 (2015).

[88] Y. Hu, Z. Cai, M. A. Baranov, and P. Zoller, Majorana
fermions in noisy kitaev wires, Phys. Rev. B 92, 165118
(2015).

[89] C. Knapp, M. Zaletel, D. E. Liu, M. Cheng, P. Bonder-
son, and C. Nayak, The Nature and Correction of Diabatic
Errors in Anyon Braiding, Phys. Rev. X 6, 041003 (2016).

[90] C. Knapp, T. Karzig, R. M. Lutchyn, and C. Nayak,
Dephasing of majorana-based qubits, Phys. Rev. B 97,
125404 (2018).

[91] Y. Huang, A. M. Lobos, and Z. Cai, Dissipative majorana
quantum wires, iScience 21, 241 (2019).

[92] T. Karzig, G. Refael, and F. von Oppen, Boosting Majo-
rana Zero Modes, Phys. Rev. X 3, 041017 (2013).

[93] B. Bauer, T. Karzig, R. V. Mishmash, A. E. Antipov, and J.
Alicea, Dynamics of majorana-based qubits operated with
an array of tunable gates, SciPost Phys. 5, 4 (2018).

[94] For a more detailed discussion of these effects in more
complicated geometries see Refs. [165,166]. For a discus-
sion on alternative braiding schemes see Sec. II A.

[95] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and
C. Chamon, Optimizing Variational Quantum Algorithms
Using Pontryagin’s Minimum Principle, Phys. Rev. X 7,
021027 (2017).

[96] L. T. Brady, C. L. Baldwin, A. Bapat, Y. Kharkov, and A.
V. Gorshkov, Optimal protocols in quantum annealing and
QAOA problems, arXiv:2003.08952 [quant-ph] (2020).

[97] M. V. Berry, Quantum phase corrections from adiabatic
iteration, Proc. R. Soc. London A: Math. Phys. Sci. 414,
31 (1987).

[98] M. Deschamps, G. Kervern, D. Massiot, G. Pintacuda,
L. Emsley, and P. J. Grandinetti, Superadiabaticity in
magnetic resonance, J. Chem. Phys. 129, 204110 (2008).

[99] J. D. Sau, D. J. Clarke, and S. Tewari, Controlling non-
abelian statistics of majorana fermions in semiconductor
nanowires, Phys. Rev. B 84, 094505 (2011).

[100] B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea,
and F. von Oppen, Adiabatic manipulations of majorana

fermions in a three-dimensional network of quantum
wires, Phys. Rev. B 85, 144501 (2012).

[101] B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and
C. W. J. Beenakker, Coulomb-assisted braiding of majo-
rana fermions in a josephson junction array, New J. Phys.
14, 035019 (2012).

[102] M. Burrello, B. van Heck, and A. R. Akhmerov, Braiding
of non-abelian anyons using pairwise interactions, Phys.
Rev. A 87, 022343 (2013).

[103] P. Bonderson, M. Freedman, and C. Nayak, Measurement-
Only Topological Quantum Computation, Phys. Rev. Lett.
101, 010501 (2008).

[104] P. Bonderson, Measurement-only topological quantum
computation via tunable interactions, Phys. Rev. B 87,
035113 (2013).

[105] S. Vijay and L. Fu, Teleportation-based quantum informa-
tion processing with majorana zero modes, Phys. Rev. B
94, 235446 (2016).

[106] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M.
B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge,
Y. Oreg, C. M. Marcus, and M. H. Freedman, Scalable
designs for quasiparticle-poisoning-protected topological
quantum computation with majorana zero modes, Phys.
Rev. B 95, 235305 (2017).

[107] S. Plugge, A. Rasmussen, R. Egger, and K. Flens-
berg, Majorana box qubits, New J. Phys. 19, 012001
(2017).

[108] C. Knapp, J. I. Väyrynen, and R. M. Lutchyn, Number-
conserving analysis of measurement-based braiding with
majorana zero modes, Phys. Rev. B 101, 125108
(2020).

[109] C. Zeng, G. Sharma, T. D. Stanescu, and S. Tewari,
Feasibility of measurement-based braiding in the quasi-
majorana regime of semiconductor-superconductor het-
erostructures, Phys. Rev. B 102, 205101 (2020).

[110] E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Mod-
ugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X.
Chen, and J. G. Muga, in Advances In Atomic, Molecu-
lar, and Optical Physics, Advances in Atomic, Molecular,
and Optical Physics Vol. 62, edited by E. Arimondo, P.
R. Berman, and C. C. Lin (Academic Press, Cambridge
Massachusetts, 2013), Chap. 2, p. 117.

[111] T. Karzig, F. Pientka, G. Refael, and F. von Oppen, Short-
cuts to non-abelian braiding, Phys. Rev. B 91, 201102
(2015).

[112] G. Kells, V. Lahtinen, and J. Vala, Kitaev spin models
from topological nanowire networks, Phys. Rev. B 89,
075122 (2014).

[113] We note that the control can also be represented by
the velocity or a neural-network parameterization of
the domain wall from which the position xL(t) can be
extracted.

[114] L. Coopmans, D. Luo, G. Kells, B. K. Clark, and J.
Carrasquilla, Protocol discovery for the quantum con-
trol of majoranas by differential programming and natural
evolution strategies, github repository (2020).

[115] R. E. Wengert, A simple automatic derivative evaluation
program, Commun. ACM 7, 463 (1964).

[116] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, Differen-
tiable Programming Tensor Networks, Phys. Rev. X 9,
031041 (2019).

020332-26

https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevB.70.205338
https://doi.org/10.1103/PhysRevB.73.014505
https://doi.org/10.1103/PhysRevB.85.121405
https://doi.org/10.1103/PhysRevB.88.075431
https://doi.org/10.1038/srep12530
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevB.92.165118
https://doi.org/10.1103/PhysRevX.6.041003
https://doi.org/10.1103/PhysRevB.97.125404
https://doi.org/10.1016/j.isci.2019.10.025
https://doi.org/10.1103/PhysRevX.3.041017
https://doi.org/10.21468/SciPostPhys.5.1.004
https://doi.org/10.1103/PhysRevX.7.021027
http://arxiv.org/abs/arXiv:2003.08952
https://doi.org/10.1063/1.3012356
https://doi.org/10.1103/PhysRevB.84.094505
https://doi.org/10.1103/PhysRevB.85.144501
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1103/PhysRevA.87.022343
https://doi.org/10.1103/PhysRevLett.101.010501
https://doi.org/10.1103/PhysRevB.87.035113
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1103/PhysRevB.101.125108
https://doi.org/10.1103/PhysRevB.102.205101
https://doi.org/10.1103/PhysRevB.91.201102
https://doi.org/10.1103/PhysRevB.89.075122
https://doi.org/10.1145/355586.364791
https://doi.org/10.1103/PhysRevX.9.031041


PROTOCOL DISCOVERY FOR THE QUANTUM CONTROL... PRX QUANTUM 2, 020332 (2021)

[117] H. Xie, J.-G. Liu, and L. Wang, Automatic differentiation
of dominant eigensolver and its applications in quantum
physics, Phys. Rev. B 101, 245139 (2020).

[118] S. Sorella and L. Capriotti, Algorithmic differentiation
and the calculation of forces by quantum Monte Carlo, J.
Chem. Phys. 133, 234111 (2010).

[119] S.-X. Zhang, Z.-Q. Wan, and H. Yao, Automatic
differentiable Monte Carlo: Theory and application,
arXiv:1911.09117 [physics.comp-ph] (2019).

[120] N. Leung, M. Abdelhafez, J. Koch, and D. Schuster,
Speedup for quantum optimal control from automatic dif-
ferentiation based on graphics processing units, Phys. Rev.
A 95, 042318 (2017).

[121] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learn-
ing representations by back-propagating errors, Nature
323, 533 (1986).

[122] W. Baur and V. Strassen, The complexity of partial deriva-
tives, Theor. Comput. Sci. 22, 317 (1983).

[123] J. Morgenstern, How to compute fast a function and all its
derivatives: A variation on the theorem of Baur-Strassen,
SIGACT News 16, 60 (1985).

[124] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C.
Leary, D. Maclaurin, and S. Wanderman-Milne, JAX:
Composable transformations of Python+NumPy programs
(2018).

[125] D. P. Kingma and J. Ba, in 3rd International Confer-
ence on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7–9, 2015, Conference Track Proceedings,
edited by Y. Bengio and Y. LeCun (2015).

[126] H.-P. Schwefel, Numerische Optimierung von Computer-
Modellen mittels der Evolutionsstrategie, ISR Vol. 26
(Birkhaeuser, Basel/Stuttgart, 1977), p. 390.

[127] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters,
and J. Schmidhuber, Natural evolution strategies, J. Mach.
Learn. Res. 15, 949 (2014).

[128] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever,
Evolution Strategies as a Scalable Alternative to Rein-
forcement Learning, arXiv:1703.03864 [cs, stat] (2017).

[129] R. S. Sutton and A. G. Barto: Reinforcement Learning: An
Introduction (The MIT Press, 2018), 2nd ed.

[130] Here we discuss the results obtained in the Kitaev chain
while in Appendix F we show the results obtained
for the more general proximity-coupled semiconducting
nanowire.

[131] R. Chakrabarti and H. Rabitz, Quantum control land-
scapes, Int. Rev. Phys. Chem. 26, 671 (2007).

[132] A. G. R. Day, M. Bukov, P. Weinberg, P. Mehta, and D.
Sels, Glassy Phase of Optimal Quantum Control, Phys.
Rev. Lett. 122, 020601 (2019).

[133] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysen-
bach, and S. Levine, Learning to reach goals via iterated
supervised learning, arXiv:1912.06088 [cs.LG] (2020).
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