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Dynamical phase error in interacting topological quantum memories
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A local Hamiltonian with topological quantum order (TQO) has a robust ground-state degeneracy that makes
it an excellent quantum memory candidate. This memory can be corrupted however if part of the state leaves
the protected ground-state manifold and returns later with a dynamically accrued phase error. Here we analyze
how TQO suppresses this process and use this to quantify the degree to which spectral densities in different
topological sectors are correlated. We provide numerical verification of our results by modeling an interacting
p-wave superconducting wire.
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I. INTRODUCTION

Topological schemes to protect and manipulate quantum
information are based on fractional excitations called anyons.
In these approaches information is stored in anyon pairs and,
by moving them apart, one can encode this information in
a nonlocal way [1–6]. This is the key feature that allows
topological memories to be robust against local noise and
decoherence processes.

In these topological platforms the computational space is
a degenerate ground-state manifold that emerges when these
quasi-particle excitations are far apart (see Fig. 1). The degen-
eracy of this subspace is fundamentally important because it
protects against quantum memory corruption in the form of
unwanted qubit rotations, which arise via the accumulation
of relative dynamical phases. This feature of the ground-state
manifold arises from a more general property called topolog-
ical quantum order (TQO) [7–11]. Among other things, TQO
implies that, for states within this manifold, the expectation
values of local observables are equal up to some exponen-
tially small correction that depends on the spatial separation
between anyons.

Another mechanism which can corrupt the quantum mem-
ory with undesirable qubit rotations is dynamical phase error.
This can occur when the quantum state partially leaves the
ground-state manifold and returns later with a dynamically
altered phase. This type of error could arise on a mean-field
level if there are causally connected perturbations near differ-
ent anyons [12]. In this scenario the distance between anyons
plays an important role in delaying/reducing the onset of
this type of secondary error process. In interacting systems
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however, a different scenario for phase error still exists be-
cause the aforementioned ground-state degeneracy does not
necessarily extend to a degeneracy in bulk eigenstates. One
could then reasonably worry about processes whereby a single
localised perturbation creates, and then at a later time, returns
an excitation that has accumulated some relative dynamical
phase from its time spent in the energy mismatched bulk.

In this paper we show that, despite a mismatched bulk
spectrum, TQO guarantees that such interaction driven phase
errors are suppressed up to a time that scales with system size.

FIG. 1. (a) Schematic view of a 2D topological memory con-
sisting of 4 anyons. Information is stored nonlocally, and any local
excitation occurring near one anyon must propagate through the
system for an error to occur. (b) Slight energy mismatches between
higher energy states in different topological sectors open up an ap-
parent relative phase error loophole when a local process couples the
protected ground states to excited states. (c) As a concrete model we
consider a symmetry-protected topological quantum memory con-
sisting of two p-wave superconducting wires separated by a potential
barrier. In this setup 4 Majorana zero modes occur at the domain
boundaries, as indicated by the purple lines numbered 1–4 at the
bottom. Local fluctuating noise can be realized, for example, by
oscillating the left domain boundary, or as a quasi-particle tunneling
into the system.

2643-1564/2021/3(3)/033105(9) 033105-1 Published by the American Physical Society

https://orcid.org/0000-0001-6501-5420
https://orcid.org/0000-0002-2856-8840
https://orcid.org/0000-0001-7339-2058
https://orcid.org/0000-0002-6046-8495
https://orcid.org/0000-0003-3008-8691
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.033105&domain=pdf&date_stamp=2021-07-30
https://doi.org/10.1103/PhysRevResearch.3.033105
https://creativecommons.org/licenses/by/4.0/


L. COOPMANS et al. PHYSICAL REVIEW RESEARCH 3, 033105 (2021)

A consequence of this suppression is that, although the bulk
spectra from distinct topological sectors differ, there is neces-
sarily a high degree of correlation between spectral densities.
This correlation can be quantified by considering appropriate
Green’s functions.

We demonstrate these general results, for any system with
TQO, using a concrete example: a Majorana-based topolog-
ical memory based on interacting p-wave superconducting
wires [13–17], as shown schematically in Fig. 1(c). In this
setting we back up our key claims using a TDVP-MPS ap-
proach [18,19], which allows us to: (1) show that, even in
regimes where interactions and time-dependent perturbations
are relatively strong, there is no phase error other than what
one would expect from mean-field like effects and (2) directly
calculate spectral densities in each topological sector and
quantitatively demonstrate the degree of correlation that must
exist between them.

II. NO PHASE ERROR ARGUMENT

Consider some gapped local Hamiltonian [20] H with any-
onic quasi-particles. For simplicity, we assume there are two
ground states, |e〉 and |o〉, corresponding to even and odd
parity, respectively [21]. Crucially, we assume that for large
enough system diameter L, there is a length L∗ that scales
in some way with L (this length must satisfy L∗ � cL for
some constant c > 0), for which the ground states satisfy the
TQO property:

For every local operator, O, supported in a region of
diameter at most L∗, we have

〈e|O|e〉 = 〈o|O|o〉 + O(e−L/ξ ) , (1)

for some constant ξ > 0. That is, local operators cannot be
used to distinguish the two sectors, up to exponential correc-
tions in L.

From the TQO property one can see that the ground states
are degenerate, up to exponential corrections in the system
length L [10,22]. That is, 〈a|H |a〉 is approximately the same
for a = e, o [23]. Although TQO makes no direct claims
on the behavior of states above the gap that separates the
ground-state manifold from the bulk excited states, it can be
used however to derive certain properties, see, e.g., [10]. In
what follows we show how TQO bounds the dynamically
driven phase error, and how this results in a large number of
constraints on the bulk spectrum.

We consider two instantaneous local perturbations of the
system, separated by a time t . The unitary evolution operator
in this case is: U (t ) = eiδ′

e−iHt e−iδ, where δ and δ′ are local
Hermitian operators (possibly at different locations) that do
not mix the even and odd sectors. By a phase error we mean
that 〈a|U (t )|a〉 is different for the even and odd sectors. We
can expand in the energy eigenstates, |a, n〉, to get

〈a|U (t )|a〉 =
∑

n

e−iEa,nt 〈a|eiδ′ |a, n〉〈a, n|e−iδ|a〉, (2)

where Ea,n is the energy of the nth eigenstate in the a sector.
For special cases, where there is a degeneracy between the two
sectors for all bulk energies, i.e., Ee,n = Eo,n, and where the
overlaps 〈a, n|e−iδ|a〉 are sector independent, there is no phase

error. Neither condition necessarily holds for an interacting
system. Nevertheless, one can make the following argument
for the suppression of phase error.

First, we write

〈a|U (t )|a〉 = e−iE0t 〈a|eiδ′
O(t )|a〉, (3)

where we have defined O(t ) := e−iHt e−iδeiHt , and we have
used e−iHt |a〉 = e−iE0t |a〉 where, by the approximate ground-
state degeneracy, E0 is exponentially close between the
sectors. From the Lieb-Robinson bounds [24] we note that
we can approximate O(t ) by an operator Õ(t ), supported in
a region of size ∼v|t | about δ, up to corrections of order
O(e−(L−v|t |)/ξ ) [25]. Here v is the Lieb-Robinson speed of
propagation for H . We can then pick some T ∗ ∼ L∗/v, such
that the maximum size of Õ(t ) over the range of times |t | <

T ∗ is at most L∗, and such that Õ(t ) approximates O(t ) to
order O(e−L/ξ ). There are two cases to consider:

(i) If δ′ is contained in an L∗ sized region about δ for
sufficiently large L, then, for all times |t | < T ∗, eiδ′

Õ(t ) is
contained in a region of size at most L∗. TQO then implies that
〈a|eiδ′

Õ(t )|a〉 is sector independent to order O(e−L/ξ ). Putting
everything together, for times |t | < T ∗ ∼ L∗/v we find that
〈a|U (t )|a〉 is approximately equal between the sectors, up to
exponential corrections in L. In this situation we say there is
no phase error.

(ii) If δ′ is not contained in an L∗ sized region about δ,
then the separation between δ and δ′ must be growing with L.
The fact that the system is gapped means that 〈a|eiδ′

Õ(t )|a〉 ≈
〈a|eiδ′ |a〉〈a|Õ(t )|a〉, up to an exponential correction in the
operator separation [26,27], and hence of order O(e−L/ξ ).
For |t | < T ∗ the TQO condition implies that 〈a|Õ(t )|a〉 is
sector independent up to exponential corrections, and hence
〈a|eiδ′

Õ(t )|a〉 is too. That is, we again have exponentially
vanishing phase error for times |t | < T ∗.

Note that the exact time, T ∗, for which no phase error
arises, depends upon the specific system, the perturbations,
and their separation. The preceding argument should be un-
derstood as heuristic justification that T ∗ scales as L∗/v, and
hence as L/v. In Sec. II A we address the general scenario of
time-dependent perturbations, and we make similar arguments
for phase error suppression.

The suppression of phase error implies a large number of
constraints on the bulk spectra in the following way. From
(2) we can write the amplitude of the phase error, denoted
here by α(t ), as

α(t ) = 〈e|U (t )|e〉 − 〈o|U (t )|o〉
=

∑

n>0

λe,n,δδ′e−iEe,nt − λo,n,δδ′e−iEo,nt + O(e−L/ξ ), (4)

where λa,n,δδ′ = 〈a|eiδ′ |a, n〉〈a, n|e−iδ|a〉, and the sum runs
from n > 0 as the ground-state contribution is contained in
the exponential correction on the far right-hand side (RHS).
Above we showed that |α(t )| is exponentially suppressed.
This then implies that the magnitude of difference between
the even and the odd sums (for n > 0) on the RHS is also
exponentially suppressed in L. Crucially, this is also the case
for many pairs of local operators, δ and δ′, though the exact
form of the suppression may differ in each case. One can then
consider this constraint between the even and odd sums for
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all such pairs, resulting in a substantial number of constraints.
The effect of this on the bulk splittings is illustrated in Sec. III
for a specific model.

No phase error for time-dependent perturbations

Here we generalize the no phase error argument to
time-dependent perturbations. Consider a time-dependent lo-
cal perturbation δ(t ). The time-ordered unitary evolution
operator is then

U (t ) = T
{
e−i

∫ t
0 dt ′H+δ(t ′ )}. (5)

To show there is no phase error we need to show that
〈a|U (t )|a〉 is approximately sector independent. As U (t ) is
not a local operator we cannot immediately use the TQO
condition. However, we can turn it into a local operator times a
nonlocal operator that acts trivially on the system eigenstates:

U (t ) = e−iHt × T
{
e−i

∫ t
0 dt ′ δ̃(t ′ )}, (6)

where δ̃(t ) := eiHtδ(t )e−iHt , which essentially follows from
the interaction picture.

From the Lieb-Robinson bounds, we can approximate δ̃(t ),
and hence the time-ordered unitary involving δ̃(t ), by an op-
erator supported in a region of size ∼v|t |, up to corrections of
order O(e−(L−v|t |)/ξ ). Thus, we have

〈a|U (t )|a〉 = 〈a|e−iHt × T
{
e−i

∫ t
0 dt ′ δ̃(t ′ )}|a〉

= e−iE0t 〈a|T {
e−i

∫ t
0 dt ′ δ̃(t ′ )}|a〉, (7)

where E0 is the same in both sectors up to corrections of
order O(e−L/ξ ). For |t | < T ∗ ∼ L∗/v, we make an error of
order O(e−L/ξ ) by approximating the time-ordered unitary in
a region of size L∗. In doing so we can then use TQO to argue
that the expectation value on the last line is sector indepen-
dent to order O(e−L/ξ ), and hence 〈a|U (t )|a〉 is too, i.e., no
phase error.

If we now include a second time-dependent perturbation
δ′(t ), separated from δ(t ) such that [δ̃(t ), δ̃′(t )] ≈ 0 up to
exponential corrections in the separation between δ(t ) and
δ′(t ), then the unitary U (t ) approximately factorises as

U (t ) ≈ e−iHt × T
{
e−i

∫ t
0 dt ′ δ̃(t ′ )} × T

{
e−i

∫ t
0 dt ′ δ̃′(t ′ )}. (8)

It is straightforward to apply the gap argument from above
to show that this will also not incur a phase error for
|t | < T ∗ ∼ L∗/v.

III. A MAJORANA-BASED EXAMPLE

To demonstrate these general results we model a sim-
ple topological memory consisting of two one-dimensional
p-wave superconducting wires separated by a potential barrier,
as shown in Fig. 1(c). The 2L-site (L sites each for the left and
right wires) lattice Hamiltonian [1] for this is given by

H0 = −
2L∑

x=1

[μx − Vx](c†
xcx − 1/2)

−
2L∑

x=1

(w c†
xcx+1 + H.c) +

2L∑

x=1

(�xc†
xc†

x+1 + H.c.), (9)

where �x is the superconducting gap, μx is the on-site chem-
ical potential, Vx is the potential profile, see Appendix A,
w is the hopping parameter and the c(†)

x represent fermion
(creation) annihilation operators. Interactions are modelled
using a nearest-neighbour density-density term,

Hint =
2L−1∑

x=1

uxc†
xcxc†

x+1cx+1, (10)

where ux is the interaction strength. The fully interacting
Hamiltonian of interest is H = H0 + Hint. This model can be
effectively realized in proximity coupled systems [6,13–17],
which are backed up with extensive experimental evidence
[28–41]. For discussions on different types of noise that can
occur in these systems, see [12,42–57].

The noninteracting Hamiltonian, H0, gives rise to four
Majorana zero-energy modes � j [1], localised at the domain
walls between topological (μx + Vx � 2w) and nontopolog-
ical regions encoded by Vx, which can be paired into two
Dirac fermionic zero modes β̂

L/R
0 = 1√

2
(�1/3 + i�2/4), one for

the left (L) and one for the right wire (R). From the 4-fold
degeneracy associated with these zero modes we can, without
loss of generality, define our topologically protected ground
states from the even-parity sector (states with an even number
of excitations) as

|00{0}〉 = |0〉L|0〉R|{0}〉 |11{0}〉 = |1〉L|1〉R|{0}〉, (11)

in which |{0}〉 = |0〉⊗L−2 corresponds to the ground state of
the bulk modes and |0〉α, |1〉α are the respective unoccupied
and occupied Dirac zero mode for the α = L/R wire. In what
follows we will effectively forget about the right wire. Its pur-
pose is to keep us in the even-parity sector overall. Henceforth,
any mention of even and odd sectors, and wires, will refer to
the left wire only.

When local interactions are present (ux 
= 0) we can no
longer label many-body eigenstates of H in terms of their
quasi-particle occupation numbers. However, it can be shown
that the topological ground-state degeneracy holds (up to ex-
ponential corrections in the length of the system) provided
that the interactions do not close the gap [58], and that the
system satisfies the TQO property. However, the same degen-
eracy between the excited states can be broken by interactions
when the spectrum contains overlapping quasi-particle bands
[59–62], leaving open the possibility for phase errors to be
returned to the ground state without the need for quasi-particle
propagation. The results presented here are focused solely
upon such dynamically generated phase errors due to bulk
energy mismatches. However, based on our argument in the
previous section, this mechanism must be suppressed because
H has TQO as shown in Appendix B.

Numerical verification

To support our analytical argument we now present nu-
merical results for the more general case of a time-dependent
perturbation. Specifically, we simulate an oscillating pertur-
bation δ(t ) on the left boundary of the Majorana wire, see
Appendix A. We quantify the phase error as

Pphase(t ) := 1
4 |〈e|U (t )|e〉 − 〈o|U (t )|o〉|2 (12)
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FIG. 2. Time-averaged rate of phase error as a function of inter-
action driven ground-state splitting. TDVP can pick up an interaction
driven phase rotation (error) resulting from finite-size ground-state
splitting of order 〈δE〉 ∼ 10−10. For system sizes where no ap-
preciable splitting occurs we do not detect any systematic phase
rotation. Inset: same data as in the main figure plotted against in-
teraction strength (in units of w). In these simulations we oscillated
the left boundary wall, see Appendix A, with frequency ω = 1 and
maximum velocity vmax = 0.1. The time-averaging was done over
an O(1) multiple of the oscillation period. We also set uniform
parameters μ = −1.5 and � = 0.7.

in what follows. Note that Pphase(t ) = 0 corresponds to no
phase error.

Our numerical results are obtained using time-dependent-
variational-principle (TVDP) matrix product state (MPS)
simulations [18,19]. In Fig. 2, we examine the time-averaged
rate of phase error as a function of the the time-averaged en-
ergy difference, 〈δE〉, between the approximately degenerate
ground states for finite size systems [63]. The results clearly
show that the numerical methodology is capable of detecting
phase error in the dynamics once the ground-state splitting is
of order 〈δE〉 ∼ 10−10. When the system is large enough, such
that interactions do not make a detectable change to 〈δE〉, no
systematic increase in phase error occurs.

We also consider the case of a second oscillating per-
turbation δ′(t ) at the right boundary of the wire. Figure 3
shows that in this case, after a time T ∗ ∼ L/v there is a
sudden increase in phase error. This is well understood on
a mean field level: excitations originating at one wall re-
turn to the ground-state space at the other wall, generating
a σ z error in the ground-state space (see, e.g., [12,56]). Cru-
cially, before T ∗ we see no evidence of any other systematic
phase error, other than that attributable to the splitting in the
ground-state manifold.

In addition to these phase error results we also provide
some numerical TDVP-MPS simulation results for the qubit-
loss error (infidelity) as defined by

Ploss(t ) := 1 − |〈e|U (t )|e〉|2 − |〈o|U (t )|o〉|2. (13)

In Fig. 4 we show the response of the system to a single
oscillating boundary across a range of frequencies from the

FIG. 3. Phase error for two oscillating walls. In this simulation
we set uniform parameters w = 1, � = 0.8, μ = −1.2, L = 70,
dt = π/60, and a bond dimension of χ = 50. Both walls were os-
cillated with frequency ω = 1, and maximum velocity vmax = 0.1.

almost adiabatic regime, ω � Egap, up to frequencies far in
excess of the topological gap. The results resemble the ex-
pected local density of states in the wire, in a given parity
sector. We see that repulsive interactions lower the peak res-
onant frequency (in agreement with an expected reduction
to the band edge). We also see that the topological memory
degrades slightly across all frequencies. This is somewhat dif-
ferent from what is observed in noninteracting studies, where

FIG. 4. Averaged rate of qubit-loss versus frequency of the left
boundary wall for 4 different interaction strengths. The frequency
covers a wide regime from slow almost adiabatic oscillations, ω �
Egap, to high (nonadiabatic) frequencies ω � Egap. The resonance
peak shifts to lower frequencies with increasing interaction strength,
corresponding to an expected reduction in the gap. Moreover across
all frequencies the rate of qubit-loss increases with interaction
strength. For this plot we set L = 50, vmax = 0.1, w = 1, μ = −1,
and � = 0.5.
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FIG. 5. The single particle Green’s functions (a) |Ge(1, x, t )| and (b) the difference |D| = |Ge(1, x, t ) − Go(1, x, t )|, which shows that the
two correlators are the same up to exponentially small corrections for a time T ∗. (c) Introducing a cut-off in time, (t ) = e−.03|t |, leads to
spectral density F [ × Ga](k, ω) that is weighted around positive group velocities. The dashed line shows the free single-particle dispersion
for comparison. The resolution of F [ × Ge] is set by 1/L for momenta and 1/T ∗ ∼ v/L for frequency. At this resolution there are only
exponentially small differences between F [ × Ge] and F [ × Go].

a lower bulk gap from, say from a reduced p-wave pairing
or a lower wire electron density, can result in an improved
robustness to high-frequency perturbations [12].

IV. SPECTRAL CORRELATION

Notably, the deviations observed in phase error after T ∗
are not driven by the phase error accumulated in the bulk
states, but are associated with the fact that the dynamics
eventually make local operators nonlocal. However, the fact
that we cannot observe phase error before T ∗, for all ini-
tially local perturbations, implies that the even-odd excited
energy spectra in the interacting model are related in some
way that is unique to systems with TQO. This is most clearly
demonstrated by Fourier transforming the system’s Green’s
functions.

Consider for example taking eiδ′ = 2c†
x′cx′ − 1 and e−iδ =

2c†
xcx − 1 in U (t ) and define the Green’s function for the a

sector as

Ga(x, x′, t ) := eiE0t 〈a|U (t )|a〉, (14)

which depends on the operator positions, x and x′, and the
time t . For convenience, we fix x = 1 (the left boundary of
the wire) or x = L/2 (the middle of the wire) and consider Ga

as a function of (x′, t ) only.
No phase error implies that the difference, D := Ge − Go,

is exponentially suppressed for times |t | < T ∗, and hence so
is the integral of D over [−T ∗, T ∗]. One can then verify
that this implies that the Fourier transform, F[D](k, ω), is
exponentially suppressed when convolved with the Fourier
transform, F[], of some cut-off or box function, e.g., (t ) ∼
1 for |t | < T ∗ and ∼0 otherwise. In other words, while the
spectral functions, F[Ga](k, ω), differ between sectors, these
differences are washed out by smearing, or convolving, with
F[] [64]. It is important to note that this is not a perturbative
statement.

Extension to fermionic operators

The analytical arguments above rest heavily on the
Lieb-Robinson bounds, which are formulated as commutation
relations between local operators. Fermionic operators such as

cx are nonlocal, as they can be seen as strings of local opera-
tors through the Jordan-Wigner representation. Even powers
of such fermionic operators, on the other hand, are local.
Our analytical results, therefore, only pertain to the latter,
and hence only address time-dependent changes within parity
preserving Hamiltonians.

Despite this, in Fig. 5 we illustrate the Green’s functions
and their FT’s for fermionic operators eiδ′ = c†

x′ + cx′ and
e−iδ = c†

1 + c1. The resulting resolution in reciprocal space
[k × ω] is of the order [1/L × v/L]. One can estimate from
Fig. 3 that the Lieb-Robinson speed v ∝ u, and hence, while
increased interactions imply a coarser grained energy corre-
lation between sectors, making the system larger allows us to
systematically improve this bound. For details on how similar
arguments can apply to multiparticle Green’s functions see
Appendix C for further discussion. The numerical results, in
particular the cancellations of even and odd Green’s functions
up to a time T ∗ [Fig. 5(b)], indicate that it may be possible
to extend the analytical argument to fermionic perturbations.
The work in [27,65] likely offers a good starting point for such
generalisations.

V. CONCLUSION

We have shown that in systems possessing TQO dynamical
driven phase-errors are suppressed, which implies that spec-
tral densities in different topological sectors are always highly
correlated. This result offers a useful baseline for research into
strong zero modes and high-temperature properties of topo-
logical memories. Although the bounds presented are weaker
than the special cases of strong zero modes [59,60,62,66–73],
they are both general and nonperturbative, applying to any
material that satisfies the TQO condition. This is important,
given the growing number of novel materials with topological
features [74] of which some may satisfy the TQO condition.

More generally it might be possible to tighten rigorous
bounds such as [10] and make contact with works concern-
ing disorder and constrained thermalisation, e.g., [61,75–77].
Although it is well established that disorder prevents stray
excitations propagating across a system (see, e.g., [12]), for
free-fermion systems there is no evidence of a reduction
in the propagation time itself. The situation could be very
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different in interacting environments and so a TDVP-MPS ex-
amination of this scenario would be an interesting avenue for
further study.

ACKNOWLEDGMENTS

We would like to acknowledge D. Pellegrino, A. Con-
lon, J. K. Slingerland, A. Romito, D. Meidan, F. Pientka,
and A. Werner for fruitful discussions, and A. Kells for her
artistic renderings. L.C., K.K., S.D., and G.K. acknowledge
Science Foundation Ireland for financial support through Ca-
reer Development Award No. 15/CDA/3240. G.K. was also
supported by a Schrödinger Fellowship. I.J. is supported by a
Schrödinger Scholarship.

APPENDIX A: POTENTIAL PROFILE

We simulate the two-wire setup of the Majorana based
topological memory by utilising the potential profile:

Vx = Vouter[ f (x1 − x) + f (x − x4)]

+Vinner[ f (x − x2) − f3(x − x3)], (A1)

where xi for i = 1, 2, 3, 4, encodes the lattice site positions
of 4 domain walls, and f (x) = (1 + exp(−x/σ ))−1 is a sig-
moid function. We also choose the separating potential, and
separation |x2 − x3|, to be large enough so as to render both
wires fully disconnected. Note that any time-dependent noise
protocols above only influence the left wire, and we as-
sume that all low energy bulk excitations occur only in the
left wire.

In Figs. 2 and 3 in the main text we oscillate the walls
of the left wire. This is implemented by replacing x1,2 with
a time-dependent function x1,2(t ) = (vmax/ω) sin ωt , with a
velocity vmax and frequency ω that does not break (super-)
adiabaticity [12,55–57].

APPENDIX B: TQO INHERITANCE

Here we apply the arguments in [9] to show how the inter-
acting Majorana wire, H , inherits approximate TQO [Eq. (1)
in the main text] from some simpler system, denoted here by
H ′, with exact TQO. That is, the expectation values of any
sufficiently local operator in the even and odd ground states of
H ′ are exactly equal. For H to inherit TQO from H ′ we require
the two Hamiltonians to be quasi-adiabatically connected via
a local process that does not close the gap.

There are several choices for H ′ that satisfy these require-
ments. For particular parameters, H0 [the noninteracting wire
Eq. (9) in the main text] has exact TQO for any operator of
size at most L − 1 [1], and one can tune from H0 to H by lo-
cally tuning the interaction strength and the other parameters
in Eqs. (9) and (10) in the main text in a way that does not
close the gap.

A more useful choice for H ′, due to its proximity to H in
parameter space, is a partially interacting wire. Specifically,
we tune the couplings on one side of the wire (say the right)
to what we refer to as the special local Kitaev limit, denoted
by HK , where �L−1 = w, μL = 0 and uL−1 = 0 (recall that
the Lth site refers to the last site of the left wire). In this limit
there are interactions throughout all of the wire except the last

two sites, which allows a fully decoupled Majorana to sit on
the right hand edge, and thus guarantees a precise even-odd
degeneracy for all many-body states [59]. In the same way, HK

is guaranteed to satisfy the exact TQO condition for operators
of size at most L∗

K = L − 1, i.e., the entire length of the wire
except a single site. The fact that our fully interacting system
of interest, H , differs from HK on a single site, means that it
is relatively easy to quasi-adiabatically connect the two. This
manifests in the approximate TQO condition of H (Eq. 1 in
the main text) as a smaller exponential error than would arise
from a longer quasi-adiabatic path to H .

Taking H ′ = HK , we now follow [9] to derive approximate
TQO for H . Denoting the ground states of HK as |a〉K (for
a = e, o), we have the exact TQO condition: K〈e|O|e〉K =
K〈o|O|o〉K for every local operator O supported in a region of

size at most L∗
K = L − 1. We consider a 1-parameter family of

Hamiltonians H (t ), where H (0) = H and H (τ ) = HK , where
τ is the time we tune for. In [9] they define a unitary oper-
ator, denoted here by V , that quasi-adiabatically transitions
between H and HK . We only consider cases for which H (t )
remains gapped throughout the tuning process [58]. Since this
is a local process, H (t ) is always a sum of local terms.

Following [9], we consider some local observable O. We
then form Ol , which only acts on sites within a distance l from
the support of O. Specifically, Ol is the partial trace (up to
some constant) of V OV † over all sites more than a distance l
from the support of O. One can then show that,

〈a|O|a〉 = K〈a|Q†OlQ|a〉K + O(e−l/ξ ), (B1)

where ξ is some constant, and Q is a unitary operator acting
only within the ground-state manifold.

To use the exact TQO of the local HK limit in the RHS
above, we require Ol to be supported in a region of size at
most L∗

K = L − 1. If the length of O is dO, then the length
of Ol is dO + 2l , which is less than or equal to L∗

K if l �
1/2(L − 1 − dO). To connect up with Eq. (1) in the main text,
we further assume that dO � L∗, where L∗ is some length
satisfying cL � L∗ < L, for some constant c > 0. At worst we
then have l ∼ L, and hence the error above is order O(e−L/ξ ),
for some (possibly different) constant ξ .

Finally, given the exact TQO of the special local Kitaev
limit, and the fact that Q only acts within the ground-state
manifold, we find that the expectation value, K〈a|Q†OlQ|a〉K ,
is the same for both sectors. For the fully interacting Ma-
jorana system, H , this implies that 〈a|O|a〉 is the same for
both sectors, up to O(e−L/ξ ) for operators O of size at most
L∗. This is the approximate TQO condition in Eq. (1) in the
main text.

While the above argument concerned the special local
Kitaev limit and a locally connected H , it is clearly applica-
ble to any pair of locally connected (gapped) systems where
one is known to satisfy an exact TQO condition. This is
of course also true more generally for higher dimensional
ground-state manifolds satisfying the same condition.

APPENDIX C: EXTENSION TO MULTI-PARTICLE
GREEN’S FUNCTIONS

Here we show some results for the 2-particle spectral den-
sities. We set eiδ′ = 2c†

x′cx′ − 1 and e−iδ = 2c†
xcx − 1 in U (t )
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FIG. 6. (a) The difference |Ge(x, t ) − Go(x, t )| is negligible up to a time t = T ∗. (b) As a result, F ( × Ge) ≈ F ( × Go) for a cut-off
function (t ) that drops off after T ∗. (c) The total momentum resolved 2-particle spectral density of the noninteracting system (ux = 0) for a
system size of L = 100.

in Eq. (6) in the main text and define the Green’s function for
the a sector as

Ga(x, x′, t ) := eiE0t 〈a|U (t )|a〉, (C1)

which depends on the operator positions, x and x′, and the
time t . We also fix x = L/2 (the middle of the wire) so as
to not couple to the zero modes (which tends to blur our
spatial Fourier transform) and then plot Ge(L/2, x′, t ) and
the difference D := Ge(L/2, x′, t ) − Go(L/2, x′, t ), which is
given in a log scale for clarity. Figure 6(a) shows, up to nu-
merical errors of O(10−8) that D is exponentially suppressed
for some initial time T ∗. Furthermore, this time scales with the
system size L.

Figure 6(b) shows the shape of the 2-particle spectral den-
sity as a function of the total momentum, after cutting off
the Green’s function for t > T ∗. Figure 6(b) can be compared

against the exact density determined from the single-particle
solutions of a periodic system, given in Fig. 6(c).

The energetic resolution obtained in Fig. 6(b) is effectively
governed by the Lieb-Robinson velocity and L. However, as
we stressed above in the constraints section, we are free to
choose from a large number of local operators with which we
can generate a much larger set of spectral constraints [Eq. (4)
above]. For example, we could generate the entire 3-parameter
functions Ga(x, x′, t ) and perform a 2D Fourier transform
on the first two spatial components, from which we could
obtain a tighter k-space resolution. In further Supplemental
Material [78] we provide two animated GIF files showing how
this affects things for different momentum slices for the even
and odd sectors. While the methodology still suffers from
numerical artifacts, our key point is that movies are the same
up to exponentially small corrections when the cut-off T ∗ is
enforced by an appropriate choice of (t ).
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