
PHYSICAL REVIEW E 103, 042109 (2021)

Eigenstate thermalization scaling in approaching the classical limit
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According to the eigenstate thermalization hypothesis (ETH), the eigenstate-to-eigenstate fluctuations of
expectation values of local observables should decrease with increasing system size. In approaching the ther-
modynamic limit—the number of sites and the particle number increasing at the same rate—the fluctuations
should scale as ∼D−1/2 with the Hilbert space dimension D. Here, we study a different limit—the classical or
semiclassical limit—by increasing the particle number in fixed lattice topologies. We focus on the paradigmatic
Bose-Hubbard system, which is quantum-chaotic for large lattices and shows mixed behavior for small lattices.
We derive expressions for the expected scaling, assuming ideal eigenstates having Gaussian-distributed random
components. We show numerically that, for larger lattices, ETH scaling of physical midspectrum eigenstates
follows the ideal (Gaussian) expectation, but for smaller lattices, the scaling occurs via a different exponent. We
examine several plausible mechanisms for this anomalous scaling.
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I. INTRODUCTION

During the past decade and a half, a considerable amount of
research has focused on understanding how isolated quantum
systems can relax and thermalize. A cornerstone of this un-
derstanding is the Eigenstate thermalization hypothesis (ETH)
[1–9]. According to the ETH, the diagonal matrix elements
of observables in the eigenstate basis of the Hamiltonian, the
eigenstate expectation values (EEV), coincide locally with
the microcanonical ensemble. This means that the EEVs vary
smoothly as a function of energy eigenvalues. The smoothness
is quantified as the fluctuations of the EEVs being exponen-
tially small as a function of the system size.

A standard quantitative statement of ETH states that the
matrix elements of an operator A representing a typical phys-
ical observable should have the form [3,4]

〈Eα|A|Eβ〉 = δαβ f (1)
A (Ē ) + e−S(Ē )/2 f (2)

A (Ē , ω)Rαβ, (1)

where S is the entropy, |Eα〉 is an energy eigenstate with
eigenenergy Eα , Ē = (Eα + Eβ )/2, and ω = Eβ − Eα . The
f (1/2)
A are smooth functions, and Rαβ is a (pseudo)random

variable with zero mean and unit variance. For systems with
finite Hilbert space dimension D, the entropy scales as S ∼
log D. Thus, a crucial aspect of ETH is the scaling of the
width of the distribution of either diagonal or off-diagonal
matrix elements: When approaching the thermodynamic limit,
this width falls off as e−S/2 ∼ D−1/2, i.e., exponentially with
system size. This scaling can be understood using the similar-
ity between typical many-body eigenstates and random states
[10–12]. This behavior contrasts sharply with integrable sys-
tems, which do not obey ETH scaling—the width of diagonal
matrix element distributions generally have power law decay
with system size [11,13–19], and the off-diagonal matrix ele-
ment generally has a non-Gaussian distribution [12,18,20].

Evidence from a large number of numerical studies
strongly suggests that ETH is satisfied for eigenstates from
the bulk of the spectrum of generic nonintegrable systems
and for physical observables [5,9–12,18,19,21–46]. In par-
ticular, several studies have examined the decrease of the
width of matrix element distributions as the thermodynamic
limit is approached, both for chaotic and integrable systems
[11–19,28,31,36,40,43–45,47–49]. For lattice systems, the
thermodynamic limit involves increasing both the lattice size
and the particle number simultaneously, keeping the average
density fixed. In the present work, we will instead explore ap-
proaching the classical limit—we consider increasing particle
numbers in fixed lattice topologies. We investigate the scaling
behavior of EEV fluctuations as a function of Hilbert space
dimension, as the classical limit is approached.

We focus on Bosonic systems and study the Bose-Hubbard
Hamiltonian on fixed numbers of sites. The dynamics of these
systems in the classical limit have been extensively studied,
where they are described by a discrete nonlinear Schröedinger
equation. Because of the existence of a classical limit, Bose-
Hubbard systems have also been extensively used as a testbed
for semiclassical methods [50–69]. Quantum dynamics of
these systems have also been compared with the dynamics of
the corresponding classical limit [70–76].

We consider N particles in k sites, arranged linearly. We
approach the large limit of large Hilbert space dimension
(D → ∞) by keeping k fixed and increasing N , as opposed
to the usual thermodynamic limit for which the ratio N/k
would be kept fixed. The two-site system (Bose-Hubbard
dimer, k = 2) is integrable, and hence we omit this case in
the present work on ETH scaling. We focus on lattices with
sizes from k = 3 up to k = 10. The case of k = 3 (and to a
lesser extent k = 4) is particularly interesting: although not
integrable, the classical phase space in this case is known
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to be highly “mixed” [53,72,76–81], and the behavior of
the finite-N quantum system shows deviations from fully
chaotic behavior. For larger site numbers, k � 5, the Bose-
Hubbard systems tend to behave as quantum-chaotic systems
[74,82–85].

Assuming the eigenstates to be perfectly ergodic “infinite-
temperature” states in the sense of having Gaussian-
distributed random coefficients, an exact formula for the EEV
fluctuations is available. This relation [Eq. (7)] only depends
on trace expressions of operators, and holds for all operators,
as long as the “Gaussian eigenstates” approximation is valid.
It mathematically connects the Gaussianity of eigenstates to
finite size scaling of ETH, and provides an alternate derivation
of ETH scaling.

The class of observables generally considered in ETH in-
vestigations (observables of physical interest) are few-body
operators or sums thereof, i.e., “local” operators. However,
having k fixed and small means that the notion of “local”
operators has to be re-examined. When considering k → ∞,
two-site operators are local in the sense that 2 � k. This is
no longer true for our constant k; in particular it is strongly
violated for k = 3. Therefore, we re-examine the expected
scaling of EEV fluctuations, first for Gaussian eigenstates.
We show that the expected behavior for N � k is ∼D−e0

with e0 = 1
2 − 1

k−1 . The exponent ranges from e0 = 0 for the
three-site case (k = 3) to e0 → 1

2 for large k (N � k � 1).
The scaling exponent e0 being different from 1/2 for mod-

erate k can be traced to the unboundedness of the operators
in the N → ∞ limit. The D−1/2 scaling could be retrieved
by renormalizing the operators A and considering operators
Ā = A/N .

For the actual midspectrum eigenstates of the Bose-
Hubbard chains, we show numerically that the EEV fluctu-
ations match the behavior predicted by the Gaussian ansatz,
once k is large enough. For small k, the dependence on
D is seen to be a power law but with a different ex-
ponent e 	= e0. This is a remarkable manifestation of the
“mixed” nature of the three-site and four-site Bose-Hubbard
systems.

At present, we do not have a predictive explanation for
the observed exponents. Small or subleading deviations from
Gaussian behavior (from random-matrix behavior) has been
noted previously in midspectrum eigenstates of chaotic many-
body systems. Such deviations can be seen in the eigenstate
coefficient distribution in the configuration basis [37,86–88],
in the entanglement entropy of eigenstates [20,89–91], and in
the fluctuations of off-diagonal matrix elements [45]. Since
the present k = 3 system has strong nonchaotic features, it
is not surprising that there is even stronger deviation from
Gaussian-state behavior. Perhaps unexpectedly, EEV fluctua-
tions show a clear power law dependence on the Hilbert space
dimension, but the exponent is markedly different from the
random-matrix prediction. This demonstrates that eigenstates
of small-k Bose-Hubbard chains have nonrandom correla-
tions. We examine the most straightforward ways in which
physical eigenstates could be different from ideally ergodic
eigenstates, e.g., non-Gaussian coefficient distributions and
two-point correlations between the eigenstate coefficients. We
demonstrate that none of these effects explain our observed
scaling. The observed scaling exponent thus results from more

subtle structures in the eigenstate coefficients, which seems
challenging to characterize or identify.

In Sec. II we introduce the system, notations, and the
numerical procedure for extracting EEV fluctuations σ .
Section III is the heart of the paper and reports the main
results: analytically derived trace expressions and scaling
laws for σ in the case of idealized (Gaussian) eigenstates
(Sec. III A), and results of extensive numerics showing where
these predictions succeed and where they fail (Sec. III B). In
Sec. IV we examine possible reasons for the few site systems
(particularly k = 3) deviating from the Gaussian prediction
and displaying anomalous exponents in the D-dependence of
σ . We conclude that the anomalous scaling is due to subtle
higher-order correlations among the eigenfunction coeffi-
cients which cannot be captured by the two-point correlations
among eigenfunction components. Sec. V provides context
and concluding discussion.

The Appendices present further details, data and clarifica-
tion. We show the dependence on the interaction parameter
and justify the interaction value used in the main text
(Appendices A and B). We display the structure of covariance
matrices of the physical eigenstates (C). Appendices D and E
contain the derivations of the analytic results announced in the
main text.

II. PRELIMINARIES—SYSTEMS AND OBSERVABLES

In this section, we introduce the system Hamiltonian
(Sec. II A), discuss how to define the fluctuations of the EEVs
(Sec. II B), and introduce notation to be used in this paper.

A. Hamiltonians

We will investigate Bose-Hubbard systems restricted to
open-boundary chains of length k, with nearest-neighbor hop-
pings and onsite interactions. The Hamiltonian is

H = −1/2
∑
〈i, j〉

Ji, ja
†
i a j + U

2

k∑
j=1

n j (n j − 1), (2)

where 〈i, j〉 denotes summation over adjacent sites ( j = i ± 1),
a†

j and a j are the Bosonic creation and annihilation operators

for the jth site and n j = a†
j a j is the corresponding occupation

number operator. Ji, j = Jj,i is the symmetric tunneling coeffi-
cient and U is the two-particle onsite interaction strength. We
choose J1,2 = 1.5 and Ji, j = 1 for i, j � 2 to avoid reflection
symmetry. The particle number N is conserved by the Hamil-
tonian. We introduce the tuning parameter � = UN .

In the limits � → 0 and � → ∞ the system is integrable.
If � = 0, then the free Bosonic system is solvable in terms of
single-particle eigenstates, while � → ∞ effectively means
J can be neglected, so that Eq. (2) is diagonal already. For
intermediate � the systems behave chaotically, i.e., the spec-
trum approximately obeys Wigner-Dyson statistics. For the
smallest chain length k = 3, there are stronger deviations,
but nevertheless the spectral statistics near the middle of the
spectrum is close to Wigner-Dyson form (Appendix A).

The Hilbert space size is D = (N + k − 1
k − 1

) = (N + k − 1
N

)
,

which scales for fixed k in the large N limit as D ∼ Nk−1.
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Therefore, for fixed k in the large D limit, N scales as
N ∼ D1/(k−1).

The operators we focus on are the tunnel operator a†
2a1

from site 1 to site 2 and the number operator n1 on
site 1. We have checked that the overall scaling behaviors
are the same for a†

i a j with other i, j. Note that a†
2a1 is

non-Hermitian. If hermiticity is required, we will instead in-
vestigate (a†

2a1 + a†
1a2). This change results in an additional

factor of 2 in the corresponding EEV fluctuation.

B. Defining EEV fluctuations

We denote by |Eα〉 the eigenstate of the Hamiltonian
H belonging to the eigenvalue Eα . If the ETH holds,
Aαα = 〈Eα|A|Eα〉 is constant on small energy windows
[Eα − δ, Eα + δ] around Eα for suitable (small) δ, up to finite
size fluctuations. Further, Aαα coincides with the microcanon-
ical average

〈A〉(Eα,δ) = 1

NEα,δEα

∑
β:Eβ∈[Eα−δ,Eα+δ]

Aββ. (3)

A quantitative measure of how well the EEVs coincide with
the microcanonical average is the magnitude of the finite
size fluctuations, i.e., the statistical standard deviation of
Aαα − 〈A〉(Eα,δ),[

1

N�E

∑
Eα in �E

(Aαα − 〈A〉(Eα,δ) )
2

]1/2

, (4)

over some energy window �E , where N�E is the number of
eigenvalues Eα in �E . Graphically this measures the width of
the distribution of Aαα values.

The above definition involves a choice of the window
width δ; this choice may depend on various parameters of the
physical model. To avoid larger scale changes of Aαα (e.g.,
as visible in Fig. 1), the window should not be too wide.
The window should also not be too small, so as to ensure
that sufficiently many EEVs are within the window around
Eα to get a statistically significant estimate of the fluctuations.
Choosing δ can thus be a tricky balancing act.

We can avoid these technicalities by noting that ETH im-
plies that the quantity Aαα will vary smoothly as a function of
Eα , up to finite size fluctuations. If the ETH holds in this sense,
then, by definition of smoothness, Aαα should be locally linear.
We divide the energy spectrum into 10 equal-length, disjoint
intervals �E . In these intervals the large scale change of Aαα

in our case is indeed linear to an excellent approximation,
as seen in the lower panels of Fig. 1. We fit linear functions
Eα → b + mEα , on each interval to Aαα . We then investigate
the fluctuations around these functions, i.e.,

σ 2(A,�E ) = 1

N�E

∑
Eα in �E

|Aαα − b − mEα|2. (5)

Since we are primarily interested in midspectrum eigen-
states, we will show data from the 5th, 6th and 7th energy
intervals. In shorthand these will be labeled as �E = 5,
�E = 6, �E = 7, with �E referring to the label and not the
interval width. In Fig. 1, we display the EEV’s for the full

FIG. 1. Eigenstate expectation values Aαα of the tunnel operator
A = a†

2a1, plotted against eigenenergies, for a Bose-Hubbard chain
with (a) k = 3 sites and (b) k = 10 sites. The numbers of particles
N are listed in legends. In panel (a) the larger cluster corresponds
to N = 175 particles, while the smaller cluster on the left corre-
sponds to N = 60 particles. The interaction parameter is � ≈ 2.477
as explained in the text. Top panels show full spectra. Bottom panels
zoom into the 5th of ten equal energy intervals, as indicated by the
shorthand label “�E = 5.” Dotted lines are fitted linear functions.

spectrum and for the �E = 5 interval, for two different values
of k. Unless indicated otherwise, we present data for an inter-
mediate value of the interaction parameter �=UN around
which the systems are found to be significantly chaotic,
namely, � = 1013/33 ≈ 2.477. Appendix A provides further
details on this choice of �.

III. EEV FLUCTUATION SCALING

In this section we first (Sec. III A) consider Gaussian-
random states, e.g., eigenstates of matrices drawn from the
GOE ensemble. We present expressions for the EEV fluc-
tuations for such idealized eigenstates. For operators of the
type A = a†

i a j , we show that the scaling of EEV fluctuations,
σ ∼ D−e0 , occurs with exponent e0 = 1

2 − 1
k−1 in the classical

limit (N → ∞, fixed k). For normalized operators Ā = A/N ,
the exponent is e0 = 1

2 . In comparison, in the usual thermody-
namic limit (N → ∞, fixed k/N), the exponent is e0 = 1

2 for
local operators.

Next (Sec. III B), we present numerically calculated scal-
ing results for Bose-Hubbard chains. We show that the EEV
fluctuations have power-law dependence on the Hilbert-space
dimension, ∼D−e. The exponent e matches the Gaussian-state
prediction e0 for larger chains, but differs substantially for
small k.
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A. Derivation for random Gaussian states

The EEV’s calculated for random states do not have large-
scale smooth variation as a function of energy, in contrast
to Fig. 1. Thus, the statistical standard deviation of EEV’s,
σ , can be directly compared with our measurement of EEV
fluctuations in the physical eigenstates. The assumption of
eigenstates being effectively random has been previously used
to derive scaling properties of EEV’s in the thermodynamic
limit [10,11,45]. Here, we provide explicit expressions for σ

in terms of trace properties of the operator matrix, and then
specialize to both thermodynamic and classical limits. We
present the important expressions here, and relegate derivation
details to Appendices D and E.

1. Trace expressions

Let A be a D × D square matrix representing the operator
of interest, and |Z〉 be a D-dimensional, multivariate random
state with identically and independently distributed (i.i.d.)
components Zi, each with mean 0. Then the statistical variance
of 〈A〉 = 〈Z|A|Z〉 can be expressed as

σ 2(〈A〉) = (
E

[
Z4

1

] − 3E
[
Z2

1

]2)∑
i

A2
ii

+ E
[
Z2

1

]2
[tr(A2) + tr(AA†)]. (6)

Here E [·] represents the expectation value. The manipulations
leading to this expression can be found in Appendix D.

Equation (6) is valid irrespective of the distribution of the
i.i.d. variables Zi. Simplifications are achieved by specializing
to the case of GOE eigenstates, widely considered as rea-
sonable models for the behavior of midspectrum eigenstates
of chaotic Hamiltonians. Eigenstates of D-dimensional Gaus-
sian matrices are uniformly distributed on the D-dimensional
unit sphere. In the large D limit their components can be
regarded as independently normally distributed with mean 0
and variance 1/D. If we take Zi to be normally distributed with
variance 1/D, in addition to the previous constraints, then the
first term in Eq. (6) vanishes. Thus,

σ 2(〈A〉) = 1

D2
[tr(A2) + tr(AA†)] (7)

for random states with Gaussian-distributed coefficients.
The second of the two traces, tr(AA†), is the squared

Hilbert-Schmidt norm or the Frobenius norm of the opera-
tor. For Hermitian A the two trace terms are equal: tr(A2) =
tr(AA†). As tr(A2) and tr(AA†) are invariant under a basis
change, so is the variance Eq. (7). In contrast, Eq. (6) is not
basis-invariant, due to the first term. Expressions equivalent or
analogous to Eq. (7) have appeared previously in the literature,
e.g., in Refs. [92–95].

For observables of the form A = a†
j ai, the trace expression

is shown in Appendix E to be given by

tr(A2) + tr(AA†) = N (N + k)

k(k + 1)
D i 	= j, (8a)

tr(A2) + tr(AA†) = 2N (2N + k − 1)

k(k + 1)
D i = j. (8b)

In the usual thermodynamic limit, the fraction multiplying D
has O(D0) scaling in either case. Thus, one obtains σ 2 ∼ D

D2 ,

i.e., the usual σ∼D−1/2 scaling for EEV fluctuations in the
thermodynamic limit.

2. Scaling in the classical limit

We now consider the classical limit, k � N . If A is a
linear combination of terms like a†

j ai, then the trace expression
scales as

tr(A2) + tr(AA†) ∼ N2D. (9)

Since N ∼ D1/(k−1) in the classical limit, the variance scales
as

σ 2(〈A〉) ∼ D · D2/(k−1)

D2
= D−2e0 , (10)

where

e0 = e0(k) = 1

2
− 1

(k − 1)
(11)

is the scaling exponent announced previously. For k � 1,
but still k � N , the second term becomes negligible and we
obtain σ ∼ D−1/2 scaling similar to the thermodynamic limit.

For numbers of sites that are not too large, the EEV scaling
of two-point operators (of the type a†

j ai or their linear com-
binations) is different for the classical limit compared to the
thermodynamic limit. Mathematically, this difference can be
attributed to the operators A scaling with N . If we renormalize
A to Ā = A/N , then the traces (9) scale as D rather than as
N2D, so that the variance scales for all k as

σ 2(〈Ā〉) ∼ D

D2
= D−1. (12)

Summarizing: In the classical limit, the EEV fluctuation scal-
ing is ∼D−1/2 for normalized operators Ā = A/N for all k and
also for unnormalized operators A in the k � 1 limit. This is
the same exponent e0 = 1

2 familiar from the thermodynamic
limit [11,45]. However, for moderate k and for the operator
A, the scaling is according to the exponent e0 = 1

2 − 1
(k−1) of

Eq. (11)

B. Numerical results: Bose-Hubbard eigenstates

In Fig. 2 we show the fluctuations σ of the EEVs for
different energy windows near the middle of the spectrum,
plotted against D. Each panel shows a different (fixed) number
of sites k; in each case the classical limit is approached by
increasing N . Generally, the sequences follow clear power-law
dependencies, σ ∼ D−e. The power-law behavior sets in at
relatively small values of D already.

It is clear from the k = 3 data, panel (a), that the exponent
e does not match the value predicted for Gaussian-random
states, Eq. (11), which is e0 = 0 for k = 3. The EEV fluc-
tuation for the system eigenstates increases with a positive
exponent (e < 0) instead of being flat as a function of D.
Similarly, for the four-site chain the exponent e is seen to
be slightly negative—σ increases slowly with system size—
whereas the predicted value is e0 = +1/6.

The calculations rely on full numerical diagonalization,
and hence are limited by the Hilbert space size D. Our limit
was D � 105. For each k, we increased the particle number
N as far as possible such that D did not exceed 100 000. For
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(a)

(c) (d)

(b)

FIG. 2. EEV fluctuations σ of the operator A = a†
2a1 against

Hilbert space size D for various chain lengths k. Data shown
for eigenstates in energy windows �E = 5 (blue circles), 6 (red
squares), 7 (green inverted triangles). The σ vs D data sequences
are arranged reasonably linearly in all cases in the log-log plots, sug-
gesting σ ∼ D−e behavior. The slopes of fitted lines (i.e., numerical
estimates of −e) are given in the legends. The Gaussian predictions
e0 for the exponents are 0, 1

6 ≈ 0.1667, 0.25, and 7
18 ≈ 0.3889 re-

spectively for k = 3, 4, 5, and 10.

small k, this provides a satisfactory number of available N
values, and extracting the exponent e from a fit to σ ∼ D−e is
quite reliable. For large k, only a few N values are available.
For the largest lattice (k = 15), only three data points (N = 4,
N = 5, and N = 6) were used. This means a large uncertainty
in the estimation of e (Fig. 3 inset). It also means that the
regime N � k is not reached.

In Fig. 3 we present the exponents e extracted from the
numerical data. In addition to the exponents for the op-
erator a†

2a1 (corresponding to Fig. 2), we also show the
exponents for the operator n1. For small k, the numerically
observed exponents e fall significantly below the Gaussian-
random case, for both operators. For larger k values, the
Bose-Hubbard systems show EEV fluctuations closer to the
Gaussian-random case, at least for �E = 5, 6. (The �E = 7
window shows larger deviation, presumably becuase it is
closer to the edges of the spectrum.) We interpret this as a
signature of the large-k Bose-Hubbard systems being more
chaotic, so that midspectrum eigenstates are better approxi-
mated by Gaussian-random states. The deviation for small k
represents the “mixed” (chaotic+regular) nature of the few-
site Bose-Hubbard Hamiltonians.

Figure 3 also shows numerically calculated exponents for
EEV fluctuations in Gaussian-random states (pink triangles),
and compares with the k � N prediction, Eq. (11) (pink
dashed curve). The agreement is good for all k and excellent
for small k. At larger k, computer memory limitations prevent
our calculations from reaching particle numbers N � k. This

(a) (b)

FIG. 3. The exponent e versus the chain length k for Bose-
Hubbard eigenstates in different energy windows, and for Gaussian-
random states. The pink dashed curve is the predicted formula for
exponents, e0, which tends to 1/2 (solid horizontal line) for large
k. Inset to left panel shows the error bars for the estimation of e
from �E = 5 data. The error bars are omitted elsewhere and will
be omitted in later figures.

explains the (minor) deviation of the numerical exponents
from the N � k prediction.

One can view the same effects through the fluctuations of
the normalized (Ā) operators a†

2a1/N and n1/N . For these op-
erators, the predicted exponent is 1/2 for all k. We present the
numerical exponents for such operators in Fig. 4; however, we
normalize by factors slightly different from N . The prediction

(a)

(b) (c)

FIG. 4. Similar data as in Figs. 2 and 3 but with normalized
operators Ā. The operators are normalized by factors ∼N ; the precise
factors are explained in the text. (a) Points and fits are from top to
bottom k = 3, k = 4, k = 7, and k = 10.
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e0 = 1/2 was obtained in the previous subsection by assuming
N � k. In particular in the trace expressions of Eq. (8), this
led to N (N + k) ≈ N2 and 2N (2N + k − 1) ≈ 4N2. In our
numerical calculations, for larger k we do not have access to N
values in this regime. Therefore, we normalize the operators
by the factor

√
N (N + k) for A = a†

i a j with i 	= j and by
the factor

√
N (2N + k − 1) for i = j. With this modification,

the numerically calculated exponents using Gaussian-random
states (pink triangles) do not deviate systematically from 1/2
at large k, even though the N � k regime is not reached. The
observed physical exponents (for Bose-Hubbard eigenstates)
are significantly different from the predicted e0 = 1/2 for
small k, but approach this value as k is increased.

Summarizing our numerical findings: Power-law depen-
dence of EEV fluctuations on D is seen for all k. The
exponent at larger k (more fully chaotic systems) matches
well the Gaussian prediction. For smaller k (mixed systems),
there are significant deviations from the Gaussian prediction.
Remarkably, for small k, the departure of the eigenstates
from Gaussian-random or ergodic behavior does not destroy
the power-law dependence of EEV fluctuations with D but
changes the exponent substantially. In fact, for the smallest
sizes (k = 3 and k = 4) the numerically measured exponent
e even turns negative for unnormalized operators, so fluctua-
tions of EEVs actually grow with N .

In the following section we will examine possible explana-
tions for this phenomenon.

IV. NONREASONS FOR ANOMALOUS SCALING

The mismatch with predicted scaling for small k must
be due to the eigenstates of few-site Bose-Hubbard systems
deviating from idealized Gaussian-random states, which we
refer to as “ergodic” states. In this section, we examine various
types of deviation from the idealized case, and rule out several
plausible explanations for the anomalous scaling.

One could imagine that the eigenstates effectively occupy
a smaller fraction of the Hilbert space than a random state,
and that this fraction has sublinear scaling with D. This
can be quantified through analysis of the participation ratio
or multifractal dimensions of the eigenstates. Therefore, in
Sec. IV A, we discuss the participation ratio Pα . We show
how Pα ∼ D1 scaling implies the expected EEV fluctuation
scalings that we have derived previously in Sec. III A. We also
show that Hilbert space occupancy is not the explanation for
our anomalous EEV scaling exponents, because eigenstates of
the k = 3 system have Pα ∼ D1 scaling.

One could also imagine that the anomaly of scaling expo-
nents is due to the eigenstate components not being identically
distributed. In Sec. IV B we present data showing that this is
not the reason for the anomalous scaling of EEV fluctuations.

These results show that the nonergodic scaling must be
due to correlations present in the eigenstates. In Sec. IV C we
examine the simplest (and most prominent) type of correla-
tions between eigenstate coefficients, namely, those captured
in the covariance matrix. Perhaps surprisingly, we find that
these correlations do not explain the anomalous scaling either.
The anomalous scaling exponent for k = 3 EEV fluctuations
is thus caused by more subtle (higher-order) correlations.

A. Participation ratios

For this subsection it will be convenient to consider our
operator A to be Hermitian. We expand the eigenstates |Eα〉 of
the Hamiltonian in the eigenstate basis |φγ 〉 of the operator A

|Eα〉 =
∑

γ

c(α)
γ |φγ 〉, (13)

where c(α)
γ = 〈φγ |Eα〉. If we denote the eigenvalues of A as

aγ , then the EEVs can be written as

Aαα =
D∑

γ=1

∣∣c(α)
γ

∣∣2
aγ . (14)

We regard the coefficients c(α)
γ to be random variables, with

each eigenstate index (α) denoting a different sample from
the same underlying distribution. The distribution is assumed
to be the same for every γ . As usual, this framework will
not capture large-scale dependencies of the EEVs Aαα on the
energies Eα . This is acceptable because we are interested in
the fluctuations only.

The variance of the EEVs is

var

(
D∑

γ=1

|cγ |2aγ

)
=

D∑
γ=1

var(|cγ |2)a2
γ

= var(|cγ |2) tr(A2). (15)

The variance of |cγ |2 can be written as

var(|cγ |2) = E [|cγ |4] − (E [|cγ |2])2 = 1

DP
− 1

D2
, (16)

where we have used the definition of the participation ratio to
be

Pα =
(

D∑
γ=1

∣∣c(α)
γ

∣∣4

)−1

= (
D × E

[∣∣c(α)
γ

∣∣4])−1
. (17)

We thus have the prediction for the EEV variance

σ 2 =
(

1

DP
− 1

D2

)
tr(A2) =

(
1

DP
− 1

D2

)
tr(AA†) (18)

for Hermitian operators. For Gaussian states, P = D/3, so
that this expression for σ 2 reduces to Eq. (7). More generally,
as long as the participation ratio scales linearly with D, the
factor in brackets ∼1/D2, so that we obtain the same scaling
as for Gaussian states. For nonergodic states P ∼ DK with
K < 1, the first term in brackets would dominate and one
would obtain different scaling.

In Fig. 5 we show the behavior of the participation ratio in
the basis of eigenstates of (a†

2a1 + a†
1a2). The midspectrum Pα

is close to the Gaussian expectation for highly chaotic (larger
k) systems. For k = 3 the deviation from Gaussianity (P =
D/3) is strong. However, in both cases the scaling of Pα with
Hilbert space dimension D is very linear (lower panels).

Thus, Hilbert space occupancy does not explain the ob-
served anomalous exponent of EEV fluctuations.

B. Nonidentical distribution of eigenstate coefficients

The analysis in Secs. IV A and III A are based on eigenstate
coefficients being identically distributed and independent.
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(a) (b)

(c) (d)

FIG. 5. Participation ratio in the basis of eigenstates of the oper-
ator a†

2a1 + a†
1a2. Horizontal lines indicate the Gaussian expectation

(= 1
3 ). Top panels: Normalized participation ratio Pα/D of energy

eigenstates, versus corresponding energy eigenvalues. Lower panels:
average normalized participation ratio for different energy intervals
plotted against Hilbert space dimension D, for fixed chain length k
and increasing particle number N .

Could it be that the failure to capture the EEV fluctuation
scaling at small k results from the eigenstate components
having nonidentical distributions?

To check, we drop the condition that the eigenstates have
identically distributed components and only assume that the
components are independent. In Fig. 6 we show the EEV
fluctuations obtained from an estimation of the underlying dis-
tributions of the eigenstate components of the Bose-Hubbard
systems. We sampled uniformly from components of all
eigenstates of the Bose-Hubbard model in a specific energy
interval. Effectively, for each component of the state, we ran-
domly picked an eigenstate in the energy interval and used the
entry of the corresponding component. The EEV fluctuations
are then calculated from such sampled states. The resulting
data are marked “independent” in Fig. 6. The results match
well with the EEV fluctuations obtained from Gaussian states
and do not match the EEV fluctuations of the actual physical
systems for small k.

We conclude that any model for the wave functions
with independent components does not explain the observed
anomalous scaling at small k. In other words, the root cause
of the phenomenon is not the eigenstate coefficients having
nonidentical or non-Gaussian distributions, or insufficient oc-
cupancy of the Hilbert space. Rather, we have traced the cause
to the fact that the eigenstate coefficients are not independent.

C. Eigenstate Correlations

Continuing our effort to identify what feature of small-k
eigenstates is responsible for the anomalous ETH scaling, we
relax the constraints on the model states even further. Now,
we assume that eigenstates are drawn independently from a
multivariate distribution Z , but the D components of Z are

(a)

(c)

(b)

FIG. 6. The operator in all plots is a†
2a1. Blue dots: eigenstates of

physical Bose-Hubbard system. Red squares: Gaussian states with
i.i.d. components. Green down triangles: vectors with independent
but nonidentically distributed components, each component sampled
from system eigenstates. Purple up triangles: multivariate Gaussian
states with covariance matrix estimated from system eigenstates. (a),
(b) EEV fluctuations. The dashed purple line is the prediction by
Eq. (20). (c) The exponent e, such that σ ∼ D−e, versus the number
of sites k for the same distributions as in panels (a), (b).

allowed to be correlated. Given a multivariate distribution Z ,
the statistical correlations between components are quantified
by the covariance matrix �. The covariance matrix in the case
of eigenstates can be estimated by regarding the eigenstates
within a specific energy interval as different samples of Z .

It is reasonable to assume that the mean of all components
of Z is zero, as components of midspectrum eigenstates gen-
erally have zero mean. Then an estimate of � is given by

� = N−1
�E

∑
Eα in �E

|Eα〉〈Eα|, (19)

where Eα and |Eα〉 denote eigenvalues and eigenstates, respec-
tively, and N�E is the number of eigenstates in the energy
window �E . Eq. (19) follows directly from the definition of
the sample covariance matrix of Z , where the samples are the
eigenstates |Eα〉.

In Appendix C, Fig. 9, we have provided visualizations
of estimated covariance matrices for k = 3 and k = 6. The
k = 3 case is seen to have significant off-diagonal elements
(arranged in intriguing patterns), indicating nonnegligible cor-
relations between the eigenstate components.

Once we have constructed the correlation matrix � from
the actual eigenstates, we can sample D-component vectors
whose components have a Gaussian distribution and are corre-
lated according to the matrix �. In Fig. 6 the EEV fluctuations
obtained from such sampled states are marked as “corre-
lated.” The values of the fluctuations thus obtained are larger
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than those obtained from the independent-component random
states, and more comparable to the fluctuations obtained from
the physical eigenstates. In the chaotic cases (large k), all of
these cases have the same scaling. However, in the k = 3 case,
the scaling exponent is close to the ergodic (Gaussian) case
and does not reproduce the anomalous scaling at all. This is
seen Figs. 6(a) and 6(c), where the fitted exponents are plotted.
The fitted exponent is slightly off the Gaussian value for small
k, but far from the anomalous values of the physical system.

These results show that the deviation of the physical system
from expected ‘ergodic’ behavior is only partially captured by
the two-point correlations between the eigenstate components.
This suggests that the small-k eigenstates deviate from ran-
domness in some more drastic manner, which does not seem
easy to quantify.

In addition to the direct numerical verification discussed
above, one can use analytic results to argue (nonrigorously)
that inclusion of reasonable two-point correlations in the
model of random states should not change the EEV fluctuation
scaling exponent. Given a multivariate Gaussian distribution
with mean zero and covariance matrix �, we can show (details
in Appendix D) that the variance of EEV fluctuations is given
by

var(〈A〉) = 1

D2
[tr((D�A)2) + tr(D�AD�At )]. (20)

This is Eq. (7) with the change A → D�A. The variance of
components of the wave function is not fixed by normalization
of the eigenstates any more. But it is reasonable to assume
that it still scales as ∼1/D, and we have checked numerically
that this scaling holds for the midspectrum eigenstates of all
our physical systems, including k = 3. Since the variances
of the wave function components are the diagonal entries of
�, the diagonals of D� scale (at most) as constant in D. By
the Cauchy-Schwartz theorem the off-diagonal terms of � are
bounded by the diagonal, so every component of D� is (at
most) constant in D.

Without making assumptions about the detailed structure
of �, we cannot derive rigorously the scaling of the traces
in Eq. (20), which was possible for Eq. (8) or Eq. (9). How-
ever, since D� is elementwise at most ∼D0, and assuming
� is not too exotic, one can argue that the derivation in
Appendix E should hold for this case as well. In other words,
for “reasonable” �, one expects the same scaling as in the
case of independent Gaussian eigenstates. This is consistent
with Fig. 6, where the matrix � is estimated numerically from
the physical eigenstates.

V. DISCUSSION AND CONTEXT

Motivated by questions relating quantum dynamics to
statistical mechanics, we have undertaken a study of the
eigenstate thermalization hypothesis in the scaling sense, but
considering increasing Hilbert space dimensions along the
(semi)classical limit rather than the usual thermodynamic
limit. This has led to a characterization of the distinctive
properties of few-site Bose-Hubbard systems in terms of
anomalous scaling exponents.

A. Summary of analytic results

For GOE eigenstates, i.e., states whose components can be
approximated by Gaussian-distributed random variables, we
have used trace expressions for the EEV fluctuation σ , Eq. (7).
For operators of the type A = a†

j ai, the trace operators can be
expressed as Eq. (8). Based on these main expressions, we are
able to predict ideal scaling behaviors of EEV fluctuations in
the classical limit, for both unnormalized operators of the type
A and normalized operators Ā = A/N . Of course, the usual
ETH scaling of the thermodynamic limit also follows from
these expressions.

In the classical limit N � k, the EEV fluctuations are
found for such idealized eigenstates to behave as σ ∼ D−e0 ,
with e0 = 1

2 − 1
(k−1) for unnormalized A operators and e0 =

1/2 for normalized Ā operators.
In addition, we have presented expressions for σ for a

number of related cases, e.g., for i.i.d. distributed eigenstate
components with the distribution not assumed to be Gaussian,
Eq. (6), in terms of the participation ratio, Eq. (18), and for
the more general case where the eigenstate components are
allowed to be correlated according to a covariance matrix,
Eq. (20).

B. Summary of numerical results

We have explored the scaling exponent for various lattice
lengths k, increasing the boson number N with fixed k to
approach the classical limit. At larger k, the exponent matches
the random-eigenstate prediction. At small k, the fluctua-
tion appears to have power-law dependence σ ∼ D−e on the
Hilbert space dimension, i.e., e is well-defined, but the value
of e differs markedly from the ergodic prediction. Through a
series of additional numerical tests, we have shown that this
anomalous scaling is not explained by two-point correlations
between eigenstate components.

The small-size Bose-Hubbard systems thus have mid-
spectrum eigenstates which violate the usual randomness
approximation in some subtle higher-order manner.

C. Deviation from Ergodicity

The deviation of quantum many-body systems from er-
godicity has been the subject of interest from multiple
viewpoints in recent years. Other than the strong viola-
tions of ETH/ergodicity due to integrability or many-body
localization [33,96], more subtle departures have also been
addressed or observed. For example, some otherwise chaotic
systems display “many-body scars” [97], an exponentially
small fraction of eigenstates possessing integrablelike prop-
erties. In addition, in many-body systems that are nominally
chaotic, midspectrum states are largely well-modeled by ran-
dom states, but small or subleading deviations have been
observed in various properties [20,37,45,86–91]. However,
scaling properties in these systems generally follow random-
state predictions. In the small-k Bose-Hubbard systems, we
have shown a striking exception: a system which is not inte-
grable or many-body localized, but nevertheless violates the
usual scaling behavior expected in chaotic systems.

The three-site and four-site Bose-Hubbard systems are
widely known to be imperfectly chaotic, in particular because
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their classical phase space has been explored and is known
to have both chaotic and regular regions [53,72,76–81]. With
the current interest in chaos in many-body eigenstates, it is
important to characterize such deviations from chaoticity. In
this work, ETH scaling (i.e., the scaling of EEV fluctuations)
has turned out to be fruitful approach to characterize these
special systems.

D. Open questions and ideas arising from this work

The present work opens up a number of new questions
deserving investigation:

(1) We have found that the small-k Bose-Hubbard systems
display EEV fluctuations scaling with exponents that appear
numerically well-defined but very clearly different from the
random-state prediction. An analytic explanation for these ob-
served new exponents is currently not available, and remains
an open question. The anomalous scaling is related to the
insufficient chaoticity of few-site systems, which is closely
connected to the mixed phase space of the corresponding
classical system. Hence a tempting conjecture is that some
property measuring the degree of chaos in the classical limit
might explain the exponents.

(2) Our analytic results have focused on essentially infinite-
temperature states. It would be interesting to develop trace
expressions for finite temperatures. This is likely not possible
to do in complete generality without making assumptions
on the system Hamiltonian, but perhaps some results can be
derived with minimal assumptions, such as locality of the
Hamiltonian.

(3) For the thermodynamic limit, the EEV fluctuations of
integrable systems generally show power-law scaling in N or
k [11,13–19], which translates into ∼ ln D scaling. For the
classical limit, however, power-law scaling in N would mean
power-law scaling in D as well. Our numerics (Appendix B)
shows that fitting σ ∼ D−e in the integrable regime yields
e = −1/(k − 1) for A-type operators and e = 0 for Ā-type
operators. A detailed understanding and explanation of these
exponents remains a task for future research.

(4) Bose-Hubbard systems are, of course, not the only
quantum systems with a classical limit. It remains to
be discovered how generic our findings are. Comparing
chaos-related properties between quantum systems and the
corresponding classical systems has also been of interest
in few-spin systems [98–109] and in spin-boson systems
[106,107,110–119]. (The classical system is obtained in the
limit of large spin quantum number.) Studying the behav-
ior of EEV fluctuations in such systems when approaching
the classical limit would provide interesting characterizations
of ergodicity, e.g., of how well randomness approximations
work.

(5) As part of our effort to address the anomalous scaling
at small k, we have briefly examined the covariance matrix of
eigenstates, treating each eigenstate as a sample drawn from
the distribution of eigenstates, according to Eq. (19). Study-
ing the thus-defined covariance matrix might be fruitful for
various quantum systems, as the departure of this matrix from
the identity matrix tells us how different the eigenstates are
from infinite-temperature states. A further significance of this
covariance matrix is that the same object is the microcanonical

FIG. 7. Top: Level ratios r̃ averaged over the whole spectrum,
as a function of interaction strength � = UN , shown in the range
� ∈ (0.1, 100). The horizontal lines are 〈r̃〉integr (lower green) and
〈r̃〉GOE (upper red). The vertical line indicates � = 1013/33 ≈ 2.477.
Bottom: Mean level ratio against ten evenly spaced energy windows
�E , labeled 1 through 10 and plotted against these labels, for � ≈
2.477, various system sizes. The match to the GOE value is better
away from spectral edges.

density matrix, and hence its structure should provide insights
into the connection betwen quantum eigenstates and thermo-
dynamics.
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APPENDIX A: LEVEL SPACING STATISTICS

The distribution of energy eigenvalue spacings, sα =
Eα+1 − Eα for ordered Eα < Eα+1, is often used as an indi-
cator for quantum chaos. Measuring this distribution involves
unfolding the spectrum. This is bypassed by investigating the
distribution of spacing ratios [120,121],

rα = sα+1

sα

and r̃α = min

(
rα,

1

rα

)
.

The latter has the advantage that it is bounded. Quantum
Hamiltonians are considered chaotic when the distribu-
tions follow that of the relevant Wigner-Dyson ensemble,
which in our case is the GOE ensemble. The mean r̃
for GOE is 〈r̃〉GOE ≈ 4 − 2

√
3 ≈ 0.53590. For an integrable

Hamiltonian, the level spacing distribution is Poissonian (ex-
ponential); this leads to 〈r̃〉integr = 2 log 2 − 1 ≈ 0.38629.

Figure 7 (top) shows that, with increasing interaction
strength � = UN , the Bose-Hubbard systems turn from inte-
grable to chaotic and back to integrable. Some anomalies are
visible for short chains (small k). First, the distributions of the
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(a)

(b) (c)

FIG. 8. Exponent e obtained from σ ∼ D−e fits, as a function
of the interaction parameter � = UN . Results are shown for both
unnormalized operator A = a†

2a1 and its normalized version Ā, with
Ā = A/N for the k = 3 system (top) and Ā = A/

√
N (N + k) for the

k = 6 system (bottom).

level ratios for very small � or very large � match neither
GOE nor Poisson statistics. Also, for small k, in the most
chaotic regime, the peak of 〈r̃〉 is still noticeably lower than
the GOE value ≈0.534. As k increases, the peak gets closer
and closer to the GOE value, consistent with the intuition that
larger-k chains are more chaotic.

Our grid of � values contains 100 values spaced logarith-
mically from 0.1 to 100. Among these values, � = 1013/33 ≈
2.477 is found to be close to the location of the chaotic peak,
for all k. Therefore, in this work we have shown data for this
value of the interaction parameter.

Of course, we do not expect that the full spectrum obeys
GOE statistics—the spectral edges are expected to deviate.
This can be observed in Eq. (7) (bottom panel), where we plot
〈r̃〉 against different energy windows.

APPENDIX B: DEPENDENCE OF EEV SCALING
ON INTERACTION STRENGTH �

In the main text we focused on the value of the interaction
parameter � = UN at which our systems are most chaotic.
Here, we show how changing � affects the scaling of EEV
fluctuations. Fitting the fluctuation data to σ ∼ D−e, we ex-
tract exponents e which we show in Fig. 8 as a function of
�. We compare the smallest Bose-Hubbard chain with k = 3
sites with a larger, thus more chaotic chain with k = 6.

We show data both for the operator A = a†
2a1 and the nor-

malized operator Ā ≈ a†
2a1/N . For k = 3, we show results for

Ā = a†
2a1/N . (As the data for small k extends into the N � k

regime, it is reasonable to approximate
√

N (N + k) ≈ N .) For
larger k values, the regime N � k is difficult to reach numer-
ically. Therefore, it is appropriate to normalize with the factor√

N (N + k) instead of the factor N , as the approximation

√
N (N + k) ≈ N made for Eq. (8) or Eq. (E9) may not be

accurate.
Since N ∼ D1/(k−1), the exponent e for σ (Ā) is shifted

upwards compared to that for σ (A) by 1/(k − 1). This is seen
in Fig. 8 for both k = 3 (shift of 1

3−1 = 0.5) and for k = 6
(shift of 1

6−1 = 0.2).
At intermediate values of �, when the system is (partially)

chaotic, the value of e is near that discussed in the main
text. If we had fully chaotic (Gaussian) eigenstates, then we
would expect e = 0.5 for the normalized operators Ā and
e = 0.5 − 0.5 = 0 (k = 3) or e = 0.5 − 0.2 = 0.3 (k = 6) for
the unnormalized operators A. Compared to the Gaussian pre-
diction, the observed exponents are significantly smaller for
the k = 3 system, and somewhat smaller for the k = 6 system,
as discussed in detail in the main text.

For small or large �, the system is (near-)integrable. In
these limits, the fluctuations for normalized operators Ā do not
have power-law dependence on D, and the fit to D−e results
in e = 0. Thus, eigenstate fluctuation scaling of normalized
operators Ā = A/N in the classical limit is analogous to that
of local operators in the thermodynamic limit: e → 0 in the
integrable limits and e ≈ 0.5 in the chaotic regime [11]. For
local operators in the thermodynamic limit, the fluctuations
have power-law dependence on system size [11,13–19], i.e.,
logarithmic dependence on D. A detailed study of the (near-
)integrable models in the classical limit remains an interesting
task for future studies.

Because e for Ā settles to zero for � → 0 and � → ∞,
the exponent for the normalized operator A = a†

2a1 settles to
−1/(k − 1) in these limits, i.e., to −0.5 for the trimer and to
−0.2 for k = 6. This is clearly seen in Fig. 8.

APPENDIX C: ESTIMATED COVARIANCE MATRICES
FROM PHYSICAL EIGENSTATES

In Sec. IV C we discussed results incorporating the
two-point correlations between eigenstate components, as em-
bodied in the covariance matrix. The covariance matrix for
physical midspectrum eigenstates is calculated according to
Eq. (19), i.e., as an equal-weight mixture of the density ma-
trices |Eα〉〈Eα| corresponding to each eigenstate in the energy
window. Here we show the structure of the covariance ma-
trices obtained in this way, i.e., we visualize the two-point
correlations present in the physical eigenstates.

To visualize the structure of covariance matrices one has to
fix a basis of the Hilbert space. In Fig. 9 we show covariance
matrices with respect to the defining basis B. The elements
of B are the mutual eigenstates of all number operators nj =
a†

j a j , denoted by |n1, . . . , nk〉 where n1 + · · · + nk = N . For
two states |ψ〉 = |n1, . . . , nk〉 and |φ〉 = |m1, . . . , mk〉 we say
that |ψ〉 < |φ〉 if and only if the states interpreted as (N + 1)-
adic numbers satisfy (ψ )N+1 < (φ)N+1, i.e.,

|ψ〉 < |φ〉 ⇐⇒
k∑

j=1

n j (N + 1) j <

k∑
j=1

mj (N + 1) j . (C1)

The basis states in B are in descendent order with respect to
the ordering given by Eq. (C1). For example, for k = 3 and
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FIG. 9. Normalized estimated covariance matrix D� of mid-
spectrum eigenstates (energy window �E = 5) for Bose-Hubbard
chains with k sites and N particles. The estimate � is defined in
Eq. (19). The absolute values of matrix entries, |D · �i j |, correspond-
ing to basis B described in text, are shown. The tick labels are row
and column indices, e.g., in the top left is the entry |D · �11|. N had
to be chosen significantly smaller than in the rest of the paper to
visualize the patterns without zooming. The patterns are stable for
increasing N .

N = 2, B is ordered as

B = (|0, 0, 2〉, |0, 1, 1〉, |0, 2, 0〉, |1, 0, 1〉, |1, 1, 0〉, |2, 0, 0〉).

(C2)

If the components of eigenstates of Bose-Hubbard chains
would be independent, then their estimated covariance ma-
trix would be close to the identity matrix. Figure 9 shows
that, even for k = 6, there are significant off-diagonal terms,
indicating that the eigenstate components are not indepen-
dent. The deviation from the identity matrix suggests that
the midspectrum states deviate from infinite-temperature
states, even for significantly chaotic states, consistent with
Refs. [20,37,45,86–91]. For small k, nonzero off-diagonal ele-
ments are even more pronounced, and these appear in intricate
patterns [Fig. 9(a)].

APPENDIX D: VARIANCE AND COVARIANCE OF EEVS
OF RANDOM EIGENSTATES

In this section, we provide derivations of some of the equa-
tions that were announced and used in the main text without
proof. First, we derive the results announced in Section III
for random eigenstates with independent and identically dis-
tributed (i.i.d.) components (Sec. D 1). Next, we prove the
result Eq. (20), announced in Sec. IV C, for random vectors
whose components are not independent, with two-point cor-
relations described by a covariance matrix (Sec. D 2).

1. Random vectors with i.i.d. components

Let A be a D × D square matrix and Z be a D-dimensional,
multivariate random state with identically and independently
distributed components Zi, each with mean 0. The statistical
variance of 〈A〉 = 〈Z|A|Z〉 is given by

var(〈A〉) =
D∑

i, j,i′, j′=1

Ai, jAi′, j′ cov(ZiZ j, Zi′Zj′ ), (D1)

where

cov(ZiZ j, Zi′Zj′ ) = E [ZiZ jZi′Zj′ ] − E [ZiZ j] · E [Zi′Zj′ ]

= E [ZiZ jZi′Zj′ ] − δi jδi′ j′E
[
Z2

i

]2
. (D2)

By the independence of Zi, Zj for i 	= j, E [ZiZ jZi′Zj′ ] is only
nonzero if there is no index i, j, i′, j′ different to the other
three. The only possibilities for this are

i = j = i′ = j′,

i = j and i′ = j′,

i = i′ and j = j′,

i = j′ and j = i′, (D3)

so

E [ZiZ jZi′Zj′ ] = δi jδii′δi j′E
[
Z4

i

] + (1 − δi jδii′δi j′ )

× [
δi jδi′ j′E

[
Z2

i

]2 + δii′δ j j′E
[
Z2

i

]2

+ δi j′δ ji′E
[
Z2

i

]2]
. (D4)

Then we get

var(〈A〉) = E
[
Z4

1

] ∑
i

A2
ii + E

[
Z2

1

]2

×
[∑

i 	=i′
AiiAi′i′ +

∑
i 	= j

A2
i j +

∑
i 	= j

Ai jA ji

]

− E
[
Z2

1

]2 ∑
i,i′

AiiAi′i′ (D5)

and

var(〈A〉) = (
E

[
Z4

1

] − E
[
Z2

1

]2)∑
i

A2
ii

+ E
[
Z2

1

]2

[∑
i 	= j

A2
i j +

∑
i 	= j

Ai jA ji

]

= (
E

[
Z4

1

] − 3E
[
Z2

1

]2) ∑
i

A2
ii

+ E
[
Z2

1

]2
[tr(A2) + tr(AA†)]. (D6)

This is Eq. (6) of the main text. It is a rather general result,
not assuming a particular distribution of the components, only
that they should be independent and identically distributed and
have mean 0.

Now, we specialize to the case that the components Zi

are each normally distributed with mean 0 and variance 1/D.
Then

E
[
Z2

i

] = 1

D
E [(

√
DZi )

2] = 1

D
(D7)

and

E
[
Z4

i

] = 1

D2
E [(

√
DZi )

4] = 3

D2
, (D8)

because
√

DZi is normally distributed with mean 0
and variance 1. Plugging this into the above formula,
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we get

var(〈A〉) =
(

3

D2
− 3

D2

) ∑
i

A2
ii

+ 1

D2
[tr(A2) + tr(AA†)t] (D9)

= 1

D2
[tr(A2) + tr(AA†)]. (D10)

This concludes the proof of Eq. (7).

2. Including two-point correlations

We now relax the assumption of independence and allow
the wave function components to have two-point correlations.
The trace expression in this case is Eq. (20), which we will
now prove.

Assume Z = LX , where X is a vector whose indepen-
dent components are Gaussian-distributed with mean zero and
variance 1, and L is the Cholesky root of a nonrandom D × D
(covariance-) matrix �, i.e., � = LLt . Then Z has mean zero
and the covariances between components of Z are given by �.
We compute the statistical variance of the EEVs as

var(〈A〉) = var((LX )t ALX )

= var(X t Lt ALX )

= var(1/
√

DX t DLt AL1/
√

DX ). (D11)

Because the components of 1/
√

DX are normally distributed
with mean 0 and variance 1/D, we can use Eq. (7) with A
replaced by Lt AL. This leads to

var(〈A〉) = 1

D2
(tr(D2(Lt AL)2) + tr(D2Lt AL(Lt AL)t )

= 1

D2
(tr((D�A)2) + tr(D�AD�At ), (D12)

which concludes the proof of Eq. (20).

APPENDIX E: SCALING OF OPERATORS

In this section we derive results announced in the main text
concerning the scaling of the traces. For A = a†

j ai we prove
the trace expression of Eq. (8). For the classical limit, we
prove the scaling relation, Eq. (9), for A being a (finite) linear
combination of terms of the type a†

j ai.
Considering A to be such a linear combination, A2 and A†A

can be written as a sum of terms a†
j aia

†
j′ai′ . Consider a defining

basis state |ψ〉 = |n1, . . . , nk〉, which has n j particles on site
j. Then

a†
j ai|ψ〉 = δi jni|ψ〉

+ (1 − δi j )
√

n j + 1
√

ni| . . . , ni − 1, n j + 1, . . . 〉.
(E1)

Using Eq. (E1) twice we get

〈ψ |a†
j aia

†
j′ai′ |ψ〉

= δi′ j′δi jni′ni + (1 − δi′ j′ )(1 − δi j )δi j′δ ji′ (n j′ + 1)ni′ .

(E2)

Now we will calculate tr(a†
j aia

†
j′ai′ ). First, let i = j = i′ =

j′. Using that there are
(N − l + k − 2

k − 2

)
states with l particles on

site i, we get

tr
(
n2

i

) =
N∑

l=0

l2

(
N − l + k − 2

k − 2

)
. (E3)

Writing l2 in terms of binomial coefficients and exploiting an
upper index Vandermonde identity, namely,

n∑
l=0

(
l

c1

)(
n − l

c2

)
=

(
n + 1

c1 + c2 + 1

)
, (E4)

for constants n, c1 and c2, we get

tr
(
n2

i

) = N (2N + k − 1)

k(k + 1)
D. (E5)

Now let i = j and i′ = j′ but i 	= i′. There are(N − l − s + k − 3
k − 3

)
many states with l particles on site i and s

particles on site i′, so

tr(nini′ ) =
N∑

l=0

N−l∑
s=0

ls

(
N − l − s + k − 3

k − 3

)
. (E6)

Invoking the Vandermonde identity Eq. (E4) twice gives us

tr(nini′ ) = N (N − 1)

(k + 1)k
D. (E7)

The case i 	= j and i′ 	= j′, but j = i′ and i = j′, works
exactly the same as i = j and i′ = j′ but i 	= i′. Using Eq. (E4)
twice on

tr(a†
j aia

†
i a j ) =

N∑
l=0

N−l∑
s=0

(l + 1)s

(
N − l − s + k − 3

k − 3

)
(E8)

results in

tr(a†
j aia

†
i a j ) = N (N + k)

k(k + 1)
D. (E9)

In the classical limit, k � N , Eqs. (E5), (E7), and (E9) all
scale as ∼N2D, so the corresponding trace expressions of all
typical observables scale as

tr(A2) + tr(A†A) ∼ N2D. (E10)

In the thermodynamic limit, k = ρN for a density ρ not
depending on N nor k and k, N → ∞, the trace expressions
scale as

tr(A2) + tr(A†A) ∼ D, (E11)

because the leading order of k and N is quadratic in both
the numerators and the denumerators in Eqs. (E5), (E7), and
(E9). By combining this with the results in Appendix D
we rediscover the D−1/2 dependence of the EEV fluctua-
tions in the thermodynamic limit for Gaussian states and
observables A.
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