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Abstract—We study the maximum information gain that
an adversary may obtain through hacking without being de-
tected. Consider a dynamical process observed by a sensor
that transmits a local estimate of the system state to a re-
mote estimator according to some reference transmission
policy across a packet-dropping wireless channel equipped
with acknowledgments (ACK). An adversary overhears the
transmissions and proactively hijacks the sensor to repro-
gram its transmission policy. We define perfect secrecy as
keeping the averaged expected error covariance bounded
at the legitimate estimator and unbounded at the adversary.
By analyzing the stationary distribution of the expected
error covariance, we show that perfect secrecy can be at-
tained for unstable systems only if the ACK channel has
no packet dropouts. In other situations, we prove that in-
dependent of the reference policy and the detection meth-
ods, perfect secrecy is not attainable. For this scenario, we
devise a Stackelberg game to derive the optimal defensive
reference policy for the legitimate estimator and present a
branch-and-bound algorithm with global optimality to solve
the proposed game.

Index Terms—Bilevel programming, constrained Markov
decision process, remote state estimation, stealthy attack,
system security and privacy.
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Fig. 1. Remote state estimation across packet-dropping channels.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs) have been widely
applied to many critical infrastructures, including smart

grids, transportations, and industrial control systems. CPSs can
provide efficiency and versatility by merging computing and
communication with the physical world. However, the vulner-
ability of CPSs to various cyber-attacks, which compromise
measurements and actuator data availability, integrity, and confi-
dentiality, brings huge potential security and privacy issues [1].
Numerous malware targeting industrial control systems have
been discovered, such as the notorious Stuxnet, Triton, and
Havex [2], [3]. By launching a phishing attack to gain remote
access to critical components in an autonomous system, the
malware is capable of remote monitoring and potentially taking
full control of the target for espionage and sabotage [4]. This
will often circumvent a digital safety system, thus, potentially
serving as a detrimental cyber weapon of mass destruction.

Considering system security and privacy of dynamical sys-
tems, a surge of research has been carried out to investigate attack
patterns. For example, optimal jamming attacks targeting data
availability were discussed in [5] and [6] within the framework
of linear quadratic Gaussian control and remote state estimation.
False data injection attacks in electric energy systems were stud-
ied in [7] and [8] to destroy integrity. Eavesdropping attacks were
explored in [9] and [10] for confidentiality violation. From the
perspective of a defender, strategies based on encryption [11],
[12] and hypothesis testing [13], [14] were proposed for preven-
tion and detection of the attacks. Resilient approaches that take
into account the interactive decision-making process between
an agent and its adversary were developed through game theory
to counter the malicious attacks [15]–[18].

In this article, we focus on confidentiality issues in remote
state estimation of dynamical systems. In our setup, a sensor
takes measurements of the process and forwards its local esti-
mate of the system state to a remote estimator across a packet-
dropping channel; an eavesdropper overhears the transmission
to intercept system information (see Fig. 1). This setup was
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Fig. 2. Problem setup: A sensor transmits the local estimate to a
legitimate remote estimator. An adversary overhears the transmissions
for espionage. It is capable of (1) hacking the sensor; (2) sending an
acknowledgment to the sensor; (3) reprograming the transmission policy
according to the acknowledgments from the estimator and the adversary
while trying to stay undetected by the estimator.

investigated in [19]–[22]. To preserve privacy for the legitimate
estimator, Tsiamis et al. [10] introduced a control-theoretic
definition of “perfect secrecy” which requires that the user’s
expected error remains bounded while the eavesdropper’s ex-
pected error grows unbounded. The authors proved that by
applying a secrecy mechanism that randomly withholds sensor
information, perfect secrecy can be ensured on the premise that
the user’s packet reception rate is larger than the adversary’s.
Our previous work in [9] shows that the perfect secrecy can
be achieved without the prerequisite on the packet reception
rate, provided acknowledgments (ACK) on successful recep-
tion at the legitimate estimator are available to the sensor. Be-
yond that, schemes that use artificial noise, encoding–decoding
mechanism, and a combination of the two were investigated in
[10], [19], [22] for protection of the state information. These
works consider passive eavesdroppers and focus on the pre-
vention of information leakage from the position of a legiti-
mate estimator. From the adversary’s point of view, our recent
work [21] proposed an active eavesdropping scheme assuming
that the eavesdropper can overhear both the transmission and
ACK channel, and is capable of switching between a jamming
mode and an eavesdropping mode. By carefully scheduling the
two modes, a refined estimation performance can be achieved
at the eavesdropper. However, it has not yet been explored
how the legitimate party should defend against such active
adversaries.

With the development of the attacking techniques, the ad-
versaries become more powerful. Considering the malware,
including Stunex and Havex, the adversaries may be capable
of simultaneously eavesdropping and hacking into the sensor
to falsify the transmission program as discussed in [23]. In
the current work, we focus on such adversaries that intend to
form their state estimate (see Fig. 2). We aim to answer two
fundamental questions: 1) what is the maximum information
gain that an adversary may obtain through hacking without being
detected by the legitimate remote estimator; and 2) how should
the legitimate party maximally reduce the information leakage.
Motivated by this, we explore the design of the attacking and
defense mechanisms.

As an attacking mechanism, we derive the optimal malicious
policy by modeling the transmission process as a constrained
Markov decision process (MDP), where the adversary’s average
of the expected error covariance (AEEC) is minimized and a
stealthy constraint is incorporated. We show by analyzing the
convergence properties of the MDP’s stationary distribution that
the reliability of the ACK channel largely determines confiden-
tiality. For situations where the ACK channel has no packet

dropouts, we prove the existence of a reference policy that
ensures the attainability of perfect secrecy for unstable systems
even after the intrusion. In contrast, if the ACK channel has
packet dropouts, we show that there always exists a malicious
policy that ensures bounded AEEC at the adversary against any
stealthy tolerance and any reference policy that gives a bounded
AEEC at the legitimate estimator. This indicates that perfect
secrecy is unattainable if the ACK channel is not reliable. This
property also guarantees the feasibility of the constrained MDP
considered and allows us to solve the infinite-state MDP with a
finite linear program.

As a defense mechanism, we explore a resilient design of the
optimal reference policy from the perspective of the legitimate
estimator. The estimator seeks to optimize its estimation perfor-
mance and reduce information leakage. Assuming that the adver-
sary always commits to the optimal malicious policy for a given
reference policy, we formulate this hierarchical decision-making
problem as a static Stackelberg game, where the legitimate
estimator acts as a leader and the adversary acts as a follower.
This results in a bilevel program, whose lower level takes the
parameters of the malicious policy as the decision variables
and minimizes the adversary’s AEEC subject to the stealthy
constraint. Moreover, its upper level takes the parameters of
the reference policy as the decision variable and minimizes a
linear combination of the estimator’s AEEC and the negative of
the adversary’s AEEC. Meanwhile, the lower level problem is
embedded as a constraint into the upper level problem.

The contributions of this article are elaborated as follows.
� We study the design of a new attack policy for system

confidentiality in remote state estimation, which is more
advantageous compared to the passive eavesdroppers in
[19]–[22] and the active eavesdropper in [21]. In partic-
ular, compared with the active eavesdropper in [21], the
adversary considered in the current formulation, whilst
having a similar goal, is more capable since the jamming
strategies of [21] can also be realized as a special case
by withholding certain transmissions. In this sense, the
attack scenario considered in the present work is more
challenging to the legitimate party.

� We analyze the decisive role of the reliability of the
ACK channel in system confidentiality. We show that if
the ACK channel has no packet dropouts, then perfect
secrecy can be achieved under any stealthy attack. To make
this conclusion independent of the detection algorithms
being employed, we adopt a notion of stealthiness. This
is an information-theoretic quantity relating the marginal
distribution of the observations at the legitimate estima-
tor before and after the intrusion according to the MDP
discussed above. Here we depart from [21] and [23],
where stealthy constraints are designed for some specific
detection algorithms. This notion allows us to obtain a
fundamental bound on the stealthiness of the adversary
by considering the underlying hypothesis detection prob-
lem of identifying if an adversary is present, rather than
limiting ourselves to specific detection algorithms used to
solve that detection problem [24]–[27].

� From the legitimate estimator’s perspective, we derive an
optimal resilient reference policy by formulating a suitable
bilevel program. The global optimum is then obtained with
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our proposed depth-first branch-and-bound (BnB) algo-
rithm. Bilevel programs are widely known to be hard due to
their intrinsic nonconvexity and nondifferentiability [28].
Even the simplest bilevel linear programs are proved to be
NP-hard [29]. Most of the existing algorithms can only
provide a suboptimal solution [30], [31]. In this article,
we show that our problem can be simplified such that
the global optimum can be obtained aided by the duality
theorem [30], the linear structure of the objective function,
and the special shape of the feasible region. We refor-
mulate the bilevel problem based on the duality theorem
and show that the optimal solution is one of the extreme
points of the feasible region. Based on this property, the
optimal solution can be found by enumerating the extreme
points. A depth-first BnB algorithm is further devised
to accelerate the enumeration. Numerical examples are
provided for validation.

The remaining parts of the article are arranged as follows.
Section II provides the system model and problem setup; Sec-
tion III analyzes the performance at the adversary before an
intrusion is launched; Section IV details the design of the
stealthy constraint and derivation of the optimal intrusion policy;
Section V formulates a bilevel program for the synthesis of the
optimal reference policy; Section VI presents the results of the
numerical examples; and, finally, Section VII concludes.

Notations: Rn is the set of n-dimensional vectors. N is the
set of natural numbers. X ∈ Rn1×n2 indicates that X is an n1

by n2 matrix. If X is a square matrix, i.e., X ∈ Rn×n, Tr(X)
refers to the trace of X . σmax(X) and |λmax(X)| denote the
singular value and spectral radius of X . X ≥ 0 denotes that the
matrix X is positive semidefinite. For any positive semidefinite
matrixX , its eigenvalues are real and non-negative. Let λmin(X)
denote the value of the smallest eigenvalue. P (Y | z) denotes
the probability of Y conditional on z. E(Y ) is the mathematical
expectation.

II. PROBLEM FORMULATION

A. System Model

Consider a discrete-time linear system as

xk+1 = Axk + wk (1)

where xk ∈ Rns is the system state. The state xk is measured
by a sensor as

yk = Cxk + vk (2)

with yk ∈ Rny denoting the measurement. wk ∈ Rns and vk ∈
Rny are process and measurement noises. Assume wk and vk
are mutually independent Gaussian process with zero mean.
The covariances of wk and vk are denoted as Q ∈ Rns×ns and
R ∈ Rny×ny . Moreover, it is assumed that the pair (C,A) is
observable and (A,

√
Q) is controllable.

As depicted in Fig. 1, we consider a sensor makes measure-
ments of the system output and optimally estimates system states
with a Kalman filter. Denote the posterior local state estimate as

x̂s
k � E[xk | y0, . . . , yk].

The corresponding error covarianceP s
k � E[(xk − x̂s

k)(xk −
x̂s
k)

� | y0, . . . , yk] exponentially converges to a steady
state [32]. Denote the steady-state value as P̄ . After obtaining
x̂s
k, the sensor broadcasts the estimate to a remote estimator.

Denote an indicator variable νk as the transmission command
such that the sensor transmits if νk = 1 and keeps silent if
νk = 0. Let γk be an indicator variable for successful reception,
i.e.,γk = 1 denoting a successful reception andγk = 0 implying
the occurrence of a packet dropout. Assume γk is i.i.d Bernoulli
distributed, namely,

P [γk = 1 | νk = 1] = λ. (3)

Define Ik as a collection of the historical information, i.e.,
Ik � {ν0γ0, . . . , νkγk, ν0γ0x̂s

0, . . . , νkγkx̂
s
k}. Given that νk is

independent of x̂s
k, the optimal estimate at the legitimate esti-

mator, denoted as x̂k, is in the form of [33]

x̂k � E[xk | Ik] =
{
x̂s
k, γkνk = 1

Ax̂k−1, γkνk = 0.
(4)

Correspondingly, the error covariance at the estimator, de-
noted as Pk, is in the form of

Pk � E[(xk − x̂k)(xk − x̂k)
� | Ik]

=

{
P̄ γkνk = 1
f(Pk−1), γkνk = 0.

(5)

Here

f(X) � AXAT +Q. (6)

Denote ηk as the holding time at the receiver, which is defined
as the number of time steps since the last successful receipt, i.e.,

ηk � min{η ≥ 0 : γk−η = 1}. (7)

Then, ηk satisfies the recursion

ηk =

{
0 νkγk = 1
ηk−1 + 1 νkγk = 0

. (8)

Using (5) and (7), Pk can be written as a function of ηk as

Pk = fηk(P̄ ).

Here fn(·) denotes the nth fold composition of f(·) with
f0(X) = X . As proved in [34], all possible values of Pk form
a totally ordered set S, i.e.,

S � {P̄ , f(P̄ ), f2(P̄ ), f3(P̄ ), . . . }
and

P̄ ≤ f(P̄ ) ≤ f2(P̄ ) ≤ · · · . (9)

After receiving the packet, the estimator sends an ACK back
to the sensor. This enables the sensor to use information about
Pk to make scheduling decisions. The ACK channel is often
assumed to be reliable [9], [21]. We go beyond this idealization
by taking into account packet dropouts across this channel. In
the following sections, we show that the reliability of the ACK
channel plays a very crucial role in system privacy. Denote λa

as the successful reception probability of the ACK signal. Let
γa
k be an indicator variable such that

γa
k =

{
1 ACK is received by the sensor
0 a packet dropout occurs .

Then, the conditional distribution of γa
k is given as

P (γa
k = 1 | γk = 1) = λa

P (γa
k = 0 | γk = 1) = 1− λa

P (γa
k = 0 | γk = 0) = 1. (10)
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B. Problem Setup

We consider a scenario that an adversary can overhear the
transmissions and hack the sensor to reschedule the transmis-
sions. Let γe

k be an indicator of a successful reception at the
adversary, such that γe

k = 1 if the transmission is overheard
by the adversary and γe

k = 0 otherwise. Assume the successful
reception probability is λe. We have

P (γe
k = 1 | νk = 1) = λe. (11)

Similar to (4) and (5), assuming that the processes γe
k and γk

are mutually independent, the adversary’s optimal estimate is in
the form of

x̂e
k =

{
x̂s
k, γe

kνk = 1
Ax̂e

k−1, γ
e
kνk = 0

(12)

P e
k =

{
P , γe

kνk = 1
f(P e

k−1), γ
e
kνk = 0

(13)

with x̂e
k � E(xk | Ie

k), P e
k = E[(xk − x̂k)(xk − x̂k)

� | Ie
k],

and Ie
k � {ν0γe

0 , . . . , νkγ
e
k, ν0γ

e
0 x̂

s
0, . . . , νkγ

e
kx̂

s
k}.

As depicted in Fig. 2, after launching the attack to the sensor,
the adversary sends an ACK signal back to the sensor such that
the holding time at the adversary, denoted as ηek, can be inferred
from the ACKs according to (14)

ηek =

{
0, νkγ

e
k = 1

ηek−1 + 1, νkγ
e
k = 0

. (14)

Transmissions can be rescheduled with ηek taken into account.
Note that since we aim to keep the intrusion undetected by the
legitimate remote estimator, rather than the sensor, sending the
ACKs from the adversary to the sensor will not increase the
probability of being detected (see Fig. 2).

Remark 1: Equation (14) is established based on the assump-
tion that the ACK channel between the adversary and the sensor
has no packet dropouts. We make this assumption since this
is the most advantageous scenario to the adversary. Studying
this will help us analyze the maximal information leakage to
the adversary. If this assumption does not hold, the design and
analysis in the following sections are still applicable by forming
a belief of ηek with the sequence of νkγ

e
k and the successful

reception rate.
We evaluate the estimation performance with an AEEC de-

fined as

Jl = lim
T→∞

1

T

T∑
k=1

tr(E(Pk)), Je = lim
T→∞

1

T

T∑
k=1

tr(E(P e
k ))

where Jl corresponds to the legitimate estimator and Je cor-
responds to the adversary. In line with [10], we study “perfect
secrecy” at the legitimate estimator, here defined as keeping Jl
bounded at the legitimate estimator and Je unbounded at the
adversary.

To study perfect secrecy, we next elucidate the optimal design
of the malicious transmission policy for the adversary in the
following section.

III. REMOTE STATE ESTIMATION WITHOUT AN INTRUSION

Before exploring the malicious transmission policy, we first
look at the estimation performance of the adversary without
intruding on the sensor. This provides a baseline for the design
of the malicious policy.

In remote state estimation, event-based transmission strate-
gies are considered to be more efficient in saving energy [35] and

preserving privacy [9]. In particular, the transmission command
νk often depends on the sensor’s belief about the remote estima-
tor’s expected error covariance Pk−1 (which is equivalent to the
belief about the holding time ηk−1). Denote this belief as ηsk−1.
If the ACK channel is reliable, i.e., λa = 1, ηk can be accurately
inferred from {γa

0 , . . . , γ
a
k} according to (10), i.e., ηsk = ηk. The

sensor can then schedule the transmissions according to
P (νk+1 = 1 | ηsk = i) = τi (15)

with 0 ≤ τi ≤ 1. The policy in (15) is referred as a reference
policy for the sensor. Different from [9] and [35], where the
transmission probability τi is either 0 or 1, we consider a
randomized covariance-based transmission policy as given in
[36] for larger design space.

If λa < 1, as discussed in [37], a belief of ηk can be esti-
mated with Bayesian methods. Since the number of belief states
exponentially increases with the time since the last γa

k = 1,
this approach will dramatically complicate the design. An easy
though suboptimal approach for the sensor is to directly update
ηsk according to the most recent ACK as

ηsk =

{
0, γa

k = 1
ηsk−1 + 1, γa

k = 0
. (16)

Note that our conclusions in the latter sections are validated
if other estimation approaches are applied to ηsk. For ease in
presentation, we assume that ηsk evolves according to Eq. (16)
in the following.

In view of (3) and (8), it can be verified that the sensor’s
holding time ηsk satisfies a Markovian property since the tran-
sition probability from ηsk to ηsk+1 solely depends on ηsk. This
enables us to formulate the evolution of ηsk as a Markov chain.
According to this, we analyze the stationary distribution of the
expected error covariance at the legitimate estimator and the
adversary.

As described in Fig. 3, we define the sensor’s holding time ηsk
as the state of the Markov chain. The value of the state is taken
from the set S = {0, 1, . . . , }. The transition probabilities can
be derived from (3) and (10) as

P (ηsk+1 = i+ 1 | ηsk = i) = 1− τiλλa

P (ηsk+1 = 0 | ηsk = i) = τiλλa. (17)
Since the transition probabilities are independent of time, the

Markov chain is time-homogeneous. Denote πs
i as the stationary

probability of the state ηsk = i. The unique stationary distribution
of ηsk follows [36]

πs
0 =

1

1 +
∑∞

l=0

∏l
m=0(1− τmλλa)

πs
i =

∏i−1
m=0(1− τmλλa)

1 +
∑∞

l=0

∏l
m=0(1− τmλλa)

, i ≥ 1. (18)

Define

Ju =

∞∑
j=0

πs
j tr(f j(P̄ )). (19)

In Proposition 1, we show that Ju is an upper bound on the
AEEC at the legitimate estimator.

Proposition 1: For any given transmission policy parameter-
ized by the transmission probability {τi}, i ∈ N, the estimator’s
averaged expected error covariance Jl is upper bounded as

Jl ≤ Ju. (20)
The equality is achieved when λa = 1.
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Fig. 3. Markov chain: P(γk|νk = 1) = λ. P(γa
k |γk = 1) = λa. The state sk = i denotes the event ηsk = i.

Proof: In view of (8), (10), and (16), we have ηk ≤ ηsk. Since
Pk = fηk(P̄ ) and the function fn(P̄ ) is nondecreasing with n,
it can be derived that

Jl = lim
T→∞

1

T

T∑
k=1

tr(E(Pk)) = lim
T→∞

1

T

T∑
k=1

tr(E(fηk(P̄ )))

≤ lim
T→∞

1

T

T∑
k=1

tr(E(fηs
k(P̄ ))) =

∞∑
j=0

πs
j tr(f j(P̄ )) = Ju.

If λa = 1, we have ηk = ηsk and the equality is achieved. �
Since the sensor can hardly infer the exact value of ηk when

λa < 1, it can take Ju, which depends on ηsk, as an index of
the legitimate estimator’s performance. Sufficient and necessary
conditions for a bounded Ju are given in Proposition 3 based on
Lemma 2.

Lemma 2: For any positive integer i, there exist scalars 0 <
cl < cu such that trf i(P̄ ) satisfies that

cl + cli|λmax(A)|2i ≤ tr(f i(P̄ )) ≤ cu + cui
2nc+1|λmax(A)|2i.

(21)
Here nc denotes the largest geometric multiplicity of A.
Proof: See Appendix A. �
Proposition 3: The legitimate estimator’s performance index

Ju is bounded if there exists an integer Nh > 0 such that when
i ≥ Nh, the transmission probability τi satisfies that

τi >
1

λλa

(
1− 1

|λmax(A)|2
)
. (22)

Meanwhile, if Ju is bounded and |λmax(A)| ≥ 1, then τi must
satisfy that

lim
l→∞

l−1∏
i=0

(1− τiλ) = 0. (23)

The proof of Proposition 3 is given in Appendix B. Next,
we investigate, without specifying the transmission policy, the
estimation performance at the adversary on the premise that Ju
is bounded.

In view of Lemma 2, the adversary’s AEEC Je is always
bounded if the system is strictly stable, i.e., |λmax(A)| < 1.
Hence, in Proposition 4, we exclude this trivial case and focus
on marginally stable and unstable systems.

Proposition 4: If a transmission policy parameterized by
{τi}, i ∈ N, can make Ju bounded, then the adversary’s AEEC
Je has the following properties.

i) If the system is marginally stable, i.e., |λmax(A)| = 1, Je
is bounded, but can be made arbitrarily large by properly
designing {τi}. Namely, given any scalar b > 0, there
exists a transmission policy {τi}, i ∈ N, such thatJe > b.

ii) If 0 < λe < 1 and the system is unstable, i.e.,
|λmax(A)| > 1, then there exists a transmission policy
ensuring perfect secrecy, i.e., Je = ∞.

Proof: See Appendix C. �
Proposition 4 suggests that by properly designing the trans-

mission policy, the sensor is capable of driving the AEEC at
the adversary to infinity if the dynamics in (1) is unstable, and
arbitrarily large if the system is marginally stable. This motivates
the adversary to secretly reschedule the transmissions to obtain
a more accurate estimate.

IV. STEALTHY MALICIOUS TRANSMISSION POLICY

In this section, we adopt the adversary’s perspective and study
how to optimize the malicious transmission policy such that it is
more advantageous to the adversary while staying undetected.
We model the transmission process as an MDP and then devise
a stealthy constraint in terms of the state–action pairs associated
with the MDP. After that, the optimal malicious policy is derived
by solving a constrained MDP. Attainability of perfect secrecy
is analyzed for unstable systems based on the feasibility of the
constrained MDP.

A. Markov Decision Process

As shown in Fig. 2, the sensor is controlled by the adversary
after the hacking, and both ηek and ηsk are known to the sensor.
This enables the adversary to modify the transmission policy
in (15) by taking into account the adversary’s covariance P e

k
(equivalent to ηek) in the general form of

P (νk+1 = 1 | ηsk = i, ηek = j) = τ̃ij , ∀i, j ∈ N. (24)

Note from (14) and (16) that both ηsk and ηek are Marko-
vian. We can formulate an MDP to derive the optimal ma-
licious transmission policy for the adversary. Define the pair
(ηsk, η

e
k) as the state Sk and the action as the transmission

command νk ∈ A with A = {0, 1}. Based on (3), (8), and
(11), the state transition probabilities for Sk = (i, j) are derived
as follows:
P (Sk+1 | Sk, νk+1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 Sk+1 = (i+ 1, j + 1), νk+1 = 0
(1− λλa)(1− λe) Sk+1 = (i+ 1, j + 1), νk+1 = 1
λλa(1− λe) Sk+1 = (0, j + 1), νk+1 = 1
(1− λλa)λe Sk+1 = (i+ 1, 0), νk+1 = 1
λλaλe Sk+1 = (0, 0), νk+1 = 1

.

(25)
In Problem 1, the action νk is determined by minimizing the

AEEC at the adversary while satisfying a stealthy constraint.
Problem 1:

min
νk

Je = lim
T→∞

1

T

T∑
k=1

tr(E(P e
k ))

s.t. stealthy constraint.

Next, we detail the design of the stealthy constraint.
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B. Stealthy Constraint

From (24), the transmission probability at ηsk follows

P (νk+1 = 1 | ηsk = i) =
∞∑
j=0

τ̃ijP (ηek = j)

which might significantly differ from the reference policy in
(15). Being aware of the potential existence of the adversary,
the legitimate estimator will proactively detect whether the
transmission policy in (15) is modified or not based on its in-
formation set Ik. This becomes a parameter estimation problem
for a hidden Markov model (HMM) [38] if we take ηsk as the
hidden states and νkγk as the observations (emissions). The
state transition probability is given in (17) and the emission
probabilities can be derived from (3), (10), (15), and (16), as
follows:

P (νkγk = 1 | ηsk = i+ 1) =
P (νkγk = 1 | ηsk−1 = i)

P (ηsk = i+ 1 | ηsk−1 = i)

= τiλ/(1− τiλλa)

P (νkγk = 0 | ηsk = i+ 1) = 1− τiλ/(1− τiλλa)

P (νkγk = 1 | ηsk = 0) = 1

P (νkγk = 0 | ηsk = 0) = 0. (26)

Both the transition probability and emission probability are
determined by the transmission policy {τi}, and thus the legit-
imate estimator can detect variations in the parameters of this
HMM by observing the indicator variables ν0γ0, . . . , νkγk. This
HMM has infinite hidden states since ηsk takes values from the
set N. It can be equivalently represented by a finite-state HMM
by aggregating the state ηsk ≥ No for any positive integer No.
From Theorem 6 in [39], the transmission probability τi with
i ∈ {0, 1, . . . , No} is generically identifiable from the marginal
distribution of No consecutive observations

ok+1:k+No
= (νk+1γk+1, . . . , νk+No

γk+No
).

This property motivates the legitimate estimator to formulate
a Hypothesis test as follows.

Hypothesis test

H0: The marginal distribution of ok+1:k+No follows the distribu-
tion P0.

H1: The marginal distribution of ok+1:k+No does not follow the
distribution P0.

Denote the distribution of ok+1:k+No
after the intrusion as

P1. To stay undetected, the adversary intends to have the
observations ok+1:k+No

follow P1 while keeping Hypothesis
H0 not rejected by the legitimate estimator. Consider that the
Kullback–Leibler distance KL(P1||P0), defined as

KL(P1||P0) =
∑
x∈Ωs

P1(x) log
P1(x)

P0(x)
(27)

gives the expected log-likelihood with which HypothesisH0 can
be rejected per event [40]. We formulate a stealthy constraint as

KL(P1||P0) ≤ εkl (28)

with εkl > 0 denoting a stealthy tolerance. A small εkl will make
the intrusion less likely being detected.

Next, we study the connections among the detection horizon
No, the stealthy tolerance εkl, the successful reception proba-
bility λa, and the reference policy (15) onto perfect secrecy. In
Theorem 5, we show that if the ACK channel is reliable, i.e.,

λa = 1, and No is large enough, then perfect secrecy can be
achieved for unstable systems.

Theorem 5. (Attainability of “Perfect Secrecy”): Given that
λa = 1, λ > 1− 1

|λmax(A)|2 , 0 < λe < 1, and |λmax(A)| > 1,
devise the reference transmission policy as

P [νk+1 = 1 | ηsk] =
{
1 ηsk > t̄
0 else (29)

with t̄ satisfying 1
|λmax(A)|2(t̄+1) < λ(1− λe). Then, Ju is en-

sured to be bounded. If No > t̄, there is no malicious transmis-
sion policy in the form of (24) that can simultaneously make Je
bounded and fulfill the stealthy constraint in (28).

Proof: See Appendix D. �
In the following section, we show an opposite conclusion

when there are packet dropouts in the ACK channel. In this
case, the state ηk and ηsk cannot be synchronized, making perfect
secrecy not attainable for any reference policy and any detection
horizon.

C. Constrained MDP for an Unreliable ACK Channel

In this section, we transform the stealthy constraint in (28)
into an l1-norm constraint on the stationary distribution of a
state–action pair, such that Problem 1 can be cast into a linear
program [41]. Based on this, we prove the nonattainability of
perfect secrecy by studying the feasibility of the constrained
MDP.

Proposition 6: Define ωs(i, a) as the stationary probability
of the state–action pair (ηsk = i, νk+1 = a) before the intrusion
and ρs(i, a) as that after the intrusion. Given that λa < 1, for any
stealthy tolerance εkl > 0 and any detection horizon No > 0,
there exists a scalar εs > 0 such that if

‖ωs − ρs‖1 ≤ εs, (30)

then the stealthy constraint in (28) is satisfied.
Proof: See Appendix E. �
According to Proposition 6, we can take (30) as the stealthy

constraint in Problem 1. Define a tensor ω such that its compo-
nent ω(i, j, a) is the stationary probability of the appearance of
the state–action pair (Sk = (i, j), νk+1 = a) with i, j ∈ N, a ∈
A before the launch of the intrusion. Similarly, we can define ρ
as the stationary distribution after the intrusion. Based on ω and
ρ, we show that Problem 1 is equivalent to a linear program.

Let us look at ρ first. Note from [41] that ρ is referred to as
an occupation measure in constrained MDP, which satisfies∑

a∈A

ρ(i, j, a)−
∑

i,′j′∈N,a∈A

ρ(i, j, a)Pi,′j,′a,i,j = 0

∑
i,j∈N,a∈A

ρ(i, j, a) = 1

ρ(i, j, a) ≥ 0, ∀i, j ∈ N ∀a ∈ A. (31)

Here Pi,′j,′a,i,j is a short form of the state transition probabil-
ity P (Sk+1 = (i, j) | Sk = (i,′ j ′), νk+1 = a) in (25). For ease
of notation, we write (31) in a compact form as ρ ∈ Ω. Moreover,
we can express Je and ρs as linear combinations of ρ, namely,

Je = lim
n→∞

∑
i∈N

∑
a∈A

⎛
⎝∑

j≤n

ρ(i, j, a)tr(f j(P̄ ))

⎞
⎠

ρs(i, a) =
∑
j∈N

ρ(i, j, a). (32)
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Similarly, we have ω ∈ Ω and ωs(i, a) =
∑

j∈N ω(i, j, a). In
addition, to be accordance with (15), ω should satisfy that

τi =
ω(i, j, a = 1)∑
a∈A ω(i, j, a)

, ∀i, j ∈ N.

If the transmission policy {τi} is fixed, the resulted Markov
chain is ergodic and thus has a unique stationary distribution,
indicating that ω, as well as ωs, is uniquely determined. Accord-
ingly, the optimal malicious policy can be derived from Problem
2 where the occupation measure ρ is taken as a decision variable.

Problem 2:

min
ρ

Je

s.t. ρ ∈ Ω∑
i∈N,a∈A

|
∑
j∈N

ρ(i, j, a)− ωs(i, a)| ≤ εs. (33)

Equation (33) arises from (30). After introducing auxiliary
variables εi,a with i ∈ N, a ∈ A, (33) can be further simplified
into a set of linear equalities as

− εi,a ≤
∑
j∈N

ρ(i, j, a)− ωs(i, a) ≤ εi,a

∑
i∈N,a∈A

εi,a ≤ εs. (34)

Therefore, Problem 2 is a linear program.
If Problem 2 is feasible, which means there is a solution

that can make Je bounded and the constraints satisfied, for
any εs and any reference policy {τi}, then perfect secrecy is
not attainable. Thus, the feasibility of this constrained linear
program determines the attainability of perfect secrecy.

In the following section, we study the feasibility of Problem
2 by truncating the original MDP into a finite-state MDP. The
truncation is also employed in the practical implementation of
the malicious policy.

D. Finite-Dimensional Approximation

We truncate the MDP with (Nt + 1)2 states reserved by
defining the state Sk as

Sk = (min(ηsk, Nt),min(ηek, Nt)) .

Here Nt is the truncation horizon. The transition probability
corresponding to the truncated MDP is revised as (cf(25))

P (Sk+1 | Sk, νk+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Sk+1=(min(i+ 1, Nt),min(j + 1, Nt))

νk+1 = 0

(1− λλa)(1− λe)
Sk+1=(min(i+ 1, Nt),min(j + 1, Nt))

νk+1 = 1

λλa(1− λe)
Sk+1 = (0,min(j + 1, Nt))

νk+1 = 1

(1− λλa)λe
Sk+1 = (min(i+ 1, Nt), 0)

νk+1 = 1
λλaλe Sk+1 = (0, 0), νk+1 = 1

.

(35)
Define a tensor ρt ∈ R(Nt+1)×(Nt+1)×2 as the occupation

measures for the states of the truncated MDP. Similar to (31),

we have ρt satisfy that∑
a∈A

ρt(i, j, a)−
∑

0≤i,′j′≤Nt,a∈A

ρt(i, j, a)Pi,′j,′a,i,j = 0

∑
0≤i,j≤Nt,a∈A

ρt(i, j, a) = 1

0 ≤ ρt(i, j, a) ≤ 1, ∀ 0 ≤ i, j ≤ Nt ∀a ∈ A. (36)

Here Pi,′j,′a,i,j denotes the transition probability in (35).
Denote (36) as ρt ∈ ΩNt

for simplicity in notation. Meanwhile,
we limit the number of design variables in the malicious policy
as

τ tij =

{
τ̃ij 0 ≤ i, j < Nt

1 i ≥ Nt or j ≥ Nt
(37)

where τ̃i,j with 0 ≤ i, j ≤ Nt are taken as free variables to be
determined and the others are fixed to be 1. In accordance to
(37), ρt(i,j,a=1)∑

a∈A ρt(i,j,a)
= 1 when i = Nt or j = Nt, which gives

ρt(i, j, a = 0) = 0, i = Nt or j = Nt. (38)

Proposition 7, stated below, shows that Je is a linear function
of ρt and the policy (37) makes Je bounded for any Nt.

Proposition 7: The averaged expected error covariance cor-
responding to the truncated policy in (37) can be expressed in
terms of ρt as

Je =
∑

i,j≤Nt, a∈A

ρt(i, j, a)tr(f
j(P̄ ))+

∑
i≤Nt

ρt(i,Nt, a = 1)

∞∑
j=0

λe(1− λe)
j−Nt trf j(P̄ ) (39)

which is bounded for any Nt ≥ 0 if λe ∈ (1− 1
|λmax(A)|2 , 1).

Proof: See Appendix F. �
This enables us to devise a linear program based on ρt as
Problem 3:

min
ρt,εi,a

Je

s.t. (36), (38)

(Stealthy constraint):

− εi,a ≤
∑

0≤j≤Nt

ρt(i, j, a)− ωs(i, a) ≤ εi,a (40)

− εNt,a ≤
∑

0≤j≤Nt

ρt(Nt, j, a)−
∞∑
Nt

ωs(i, a) ≤ εNt,a

(41)∑
0≤i≤Nt, a∈A

εi,a ≤ εs. (42)

Feasibility of Problem 3 is analyzed in the following theorem.
Theorem 8. (Feasibility): Given that λa < 1 and λe ∈ (1−

1
|λmax(A)|2 , 1), there exists an integer Nt such that Problem 3 is
ensured to be feasible for any stealthy tolerance εs > 0.

Proof: See Appendix G.
Denote the solution of Problem 3 as ρct . The associated

transmission probability τ̃ij in (37) can be determined as

τ̃i,j =
ρct(i, j, a = 1)∑
a∈A ρct(i, j, a)

, ∀ 0 ≤ i, j < Nt.
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Next, we show that by tuning the truncation horizon Nt,
the policy derived from the finite-dimension linear program in
Problem 3 can be made arbitrarily close to that of the infinite-
dimension linear program in Problem 2.

Proposition 9. (ε-Optimality of the Truncated Policy): Denote
the optimal policy derived from the infinite dimension linear
program in Problem 2 as τ � and the optimal truncated policy
derived from Problem 3 as τ c. Then, we have

Je(τ
c) ≤ Je(τ

�) + εg(Nt). (43)

In addition, with τ c implemented, the stealthy constraint in
(30) satisfies that

‖ωs − ρs‖1 ≤ εs + εω(Nt). (44)

Here limNt→∞ εg(Nt) = 0 and limNt→∞ εω(Nt) = 0.
Proof: See Appendix H. �
Combining Theorem 8 and Proposition 9, we can conclude

the nonattainability of perfect secrecy as follows.
Corollary 10 (Nonattainability of “Perfect Secrecy”): Sup-

pose that λa < 1 and λe ∈ (1− 1
|λmax(A)|2 , 1). Then perfect

secrecy cannot be attained for the legitimate estimator since for
any reference policy, any detection horizon No, and any stealthy
tolerance εkl, there exists a malicious policy that can satisfy the
stealthy constraint and make Je bounded.

Remark 2: Our analysis of perfect secrecy is mainly con-
ducted for unstable systems since for stable systems, the AEECs
of both the legitimate estimator and the adversary are always
bounded, and therefore perfect secrecy can never be attained.
Nonetheless, the design of the malicious transmission policy
proposed in this section is still valid for stable systems in terms
of maximizing the information overheard. Our previous work on
privacy-preserving transmission scheduling for stable systems
may shed a light on this point [42].

V. SYNTHESIS OF THE OPTIMAL REFERENCE POLICY

In this section, we look at the problem from the legitimate
estimator’s point of view and explore the design of the optimal
reference transmission policy for privacy enhancement. In view
of the negative result in Corollary 10, we propose a resilient
transmission strategy for the legitimate estimator that can si-
multaneously optimize its own estimation accuracy and reduce
the information leakage to the adversary.

A. Formulation of a Stackelberg Game

If we view the legitimate estimator and the adversary as
two players of a game, we may notice that they have different
objectives. The legitimate estimator would like to reduce the
estimation error and information leakage, while the adversary in-
tends to maximize the information overheard. The two decision-
making problems are coupled via the stealthy constraint. Since
the hacking occurs after the set up of the communication between
the sensor and the legitimate estimator, the legitimate estimator
has the priority to determine the reference policy before the hack-
ing. Therefore, we formulate this interactive decision-making
process as a Stackelberg game where the legitimate estimator
acts as the leader and the adversary acts as the follower [43].

In particular, we define the estimator’s performance index as
Jc, which is a linear combination of the AEEC before and after
the intrusion, i.e.,

Jc = α
(
β1Ĵu − (1− β1)Ĵe

)
+ (1− α) (β2Ju − (1− β2)Je)

Hereα, β1, β2 ∈ [0, 1]. Ju and Je evaluate the estimation per-
formance at the legitimate estimator and the adversary after the
intrusion, while Ĵu and Ĵe evaluate the estimation performance
before the intrusion. Hence, Ju and Je are determined by the
malicious policy, and Ĵu and Ĵe are determined by the reference
policy. The two policies couple via the stealthy constraint. We
outline the Stackelberg game as Problem 4.

Problem 4:

min
Reference policy

Jc

s.t. malicious policy = argmin Je

s.t. stealthy constraint.

Since, in practice, it is hard to design and implement a policy
with parameters of infinite-dimension, we limit ourselves into a
class of suboptimal policy in the form of

P (νk+1 = 1 | ηsk = i) =

{
τi 0 ≤ i < Nr

1 Nr ≤ i ≤ Nt
. (45)

It can be verified from Proposition 4 that (45) can ensure per-
fect secrecy for unstable systems before the intrusion, provided
that Nr is selected large enough.

Next, we detail Problem 4 as a bilevel program using the
notations of occupation measure. As defined in Section IV-D,
ρt denotes the occupation measure of the finite-dimension MDP
after the intrusion. Similar to the derivation of Je in (39), we can
express Ju in terms of ρt as

Ju =
∑

i,j≤Nt, a∈A

ρt(i, j, a)tr(f
i(P̄ ))

+
∑
j≤Nt

ρt(j,Nt, a = 1)

∞∑
i=0

λλa(1− λλa)
i−Nt trf i(P̄ ).

(46)

Moreover, let the tensor ωt ∈ R(Nt+1)×(Nt+1)×2 be the oc-
cupation measure of the MDP before the intrusion. Then, ωt

satisfies the general properties of occupation measure given in
(36), i.e.,

ωt ∈ ΩNt

∑
0≤i,j≤Nt,a∈A

ωt(i, j, a) = 1

ωt(i, j, a = 0) = 0, i = Nt or j = Nt (47)

and

0 ≤ ωt(i, j, a) ≤ 1. (48)

Equation (45) further gives that
ωt(i, j, a = 1)

ωt(i, j, a = 0) + ωt(i, j, a = 1)
= τi 0 ≤ i < Nr

ωt(i, j, a = 1)

ωt(i, j, a = 0) + ωt(i, j, a = 1)
= 1 Nr ≤ i < Nt (49)

for all 0 ≤ i, j ≤ Nt. Now we are ready to express Ĵu and Ĵe
with ωt as

Ĵu =
∑

i,j≤Nt, a∈A

ωt(i, j, a)tr(f
i(P̄ ))

+
∑
j≤Nt

ωt(j,Nt, a = 1)
∞∑
i=0

λλa(1− λλa)
i−Nt trf i(P̄ )

(50)
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Fig. 4. An illustration of the depth-first branch-and-bound algorithm.

Ĵe =
∑

i,j≤Nt, a∈A

ωt(i, j, a)tr(f
j(P̄ ))

+
∑
i≤Nt

ωt(i,Nt, a = 1)
∞∑
j=0

λe(1− λe)
j−Nt trf j(P̄ ).

(51)

In addition, we may notice that ωs(i, a) in Prob-
lem 3 is the marginal probability of ωt(i, j, a), i.e.,∑

0≤j≤Nt,a∈A ωt(i, j, a) = ωs(i, a). Hence, by replacing
ωs(i, a) in (40) and (41) with

∑
0≤j≤Nt,a∈A ωt(i, j, a),

Problem 4 can be detailed as
Problem 5:

min
τ,ωt,ρt

α
(
β1Ĵu − (1− β1)Ĵe

)
+ (1− α) (β2Ju − (1− β2)Je)

s.t. (39), (46)− (51),

ρt = argmin
ρt,εi,a,0≤i≤Nt,a∈A

Je

s.t. (36), (38), (40)− (42).

B. A Depth-First Branch-and-Bound Algorithm

In this section, we present a BnB algorithm to derive the
optimal solution of Problem 5. Before detailing the algorithm,
we show that the optimal reference policy is a deterministic
policy as follows.

Proposition 11 (Determinacy): The optimal solution of Prob-
lem 5 is at least one of the extreme points of the feasible region.
Therefore, the optimal reference transmission policy is a deter-
ministic policy with τi = 0 or τi = 1 for ∀i ∈ [0, Nr − 1]. �

Proof: See Appendix I. �
This proposition shows that there are at most 2Nr candidate

solutions. Therefore, if Nr is small, we can obtain the optimal
solution by enumerating all the candidate solutions. Next, we
present a BnB algorithm to accelerate the computation for the
case that Nr is relatively large.

We formulate a binary tree with Nr layers and 2Nr leaf
nodes to represent the set of the candidate solutions. In layer
i, each node denotes a choice of the transmission probability
τi. As exemplified in Fig. 4, for each layer i, the round nodes
denote τi = 0 and the triangle nodes denote τi = 1. Hence,
each path that connects the root node and the leaf node gives
a feasible solution to Problem 5. With our proposed depth-first

BnB algorithm, the nodes in the tree will be traversed from the
left to the right while pruning redundant branches to accelerate
the search. Specifically, we use l as an index of the depth of
the search. Initialize Jmin with a large value. When the search
proceeds to l + 1, τ0, . . . , τl are fixed and τl+1, . . . , τNr−1 are
to be determined. To decide whether we should go deeper to
visit the subsequent nodes, we need a lower bound on this
specific branch [for example, the branch highlighted in blue in
Fig. 4(a)]. Compare this lower bound, denoted as J , with the
candidate optimum Jmin. If J ≥ Jmin, there is no need to search
deeper since no solution can outperform the candidate optimum.
Otherwise, the subsequent nodes should be visited from the left
branch to the right branch in turn. The algorithm terminates when
the rightmost branch is either traversed or pruned. As long as
J is a lower bound of the given branch, the derived solution is
ensured to be a global optimum of Problem 5.

Next, we detail the derivation of J . We relax the problem
into two separate convex programs which together gives a lower
bound of the optimal value. In layer l + 1, fix τ0, . . . , τl. Denote
the optimal value of Problem 5 as J�

c . Consider two reference
policies T1 and T2 whose transmission probabilities are set as
[τ0, . . . , τl, 1, . . . , 1] and [τ0, . . . , τl, 0, . . . , 0]. Before the intru-
sion, the occupation measures of the corresponding MDPs are
denoted asω1

t andω0
t . When T1 is applied, the optimal malicious

policy can be derived from Problem 3. Denote the occupation
measure of the resulted MDP as ρ1t . Based upon these, a lower
bound of J�

c is provided in Theorem 12.
Theorem 12: Given τ0, . . . , τl, set

ζ =
εs

‖
∑Nt

j=0 ω
0
t (·, j, ·)−

∑Nt

j=0 ω
1
t (·, j, ·)‖1 + εs

. (52)

Denote J�
f and J�

g as the optimal value of the following two
convex programs.

Problem 6:

min
ωt,ρt

Jg = (1− α)β2Ju

s.t. (36), (38), (40)− (42)

(46)− (48), (50), (51), (53), (54).

Problem 7:

min
ωt,ρt

Jf = α
(
β1Ĵu − (1− β1)ceĴe

)
− (1− α)(1− β2)Je

s.t. (39), (46)− (48), (50), (51)

ωt(i, j, a = 1)

ωt(i, j, a = 0) + ωt(i, j, a = 1)
= τi 0 ≤ i ≤ l (53)

ωt(i, j, a = 1)

ωt(i, j, a = 0) + ωt(i, j, a = 1)
= 1 Nr ≤ i < Nt

(54)

ρt = (1− ζ)ωt + ζρ1t . (55)

Then, we have J�
f + J�

g ≤ J�
c .

Proof: See Appendix J. �

VI. NUMERICAL EXAMPLE

In this section, we verify the aforementioned results with the
linearized Pendubot example of [9], where

A =

⎡
⎢⎣

1.0058 0.015 −0.0016 0.0000
0.7808 1.0058 −0.2105 −0.0016
−0.0060 0.0000 1.0077 0.0150
−0.7962 −0.0060 1.0294 1.0077

⎤
⎥⎦
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TABLE I
COMPUTATIONAL COMPLEXITY VERSUS OPTIMALITY

C =

[
1 0 0 0
0 0 1 0

]
, R = 0.001× I

Q = qq�, q = [0.003 1.0000 − 0.0050 − 2.150]�.

The packet reception probability λ = 0.6 and λe = 0.6. The
reception probability of the ACK is set as λa = 0.95. The weight
parameters in Jc are set as α = 0.1, β1 = 0.95, and β2 = 0.5.
The truncation horizon is taken as Nt = 50.

First, we verify the efficiency of the proposed BnB algorithm.
As discussed in Proposition 11, the optimal τi is either 0 or
1. Therefore, the optimum can be derived by an exhaustive
search among the 2Nr leaf nodes. The proposed BnB algo-
rithm searches the intermediate nodes while pruning redundant
branches to reduce the computation time. Note that both methods
solve convex programs to derive the optimal malicious policy
at each node. Therefore, we demonstrate the computational
efficiency by comparing the number of nodes visited by the
two algorithms. In particular, we fix the stealthy tolerance as
εs = 0.05 and set the optimization horizon Nr as 5, 10, 15, and
20. According to the simulation, the optimal reference is in the
form of the threshold-type structure as

νk+1 =

{
0 ηsk < threshold
1 else . (56)

As shown in Table I, the proposed BnB algorithm success-
fully reduces the number of nodes visited and thus significantly
reduces the computation time. The results also show that with
the increase in optimization horizon Nr, the optimal value Jc
decreases but the number of nodes visited increases. From this
perspective, Nr can be employed to balance the suboptimality
gap and computation complexity.

Next, we examine the effects of the stealthy tolerance εs
on the estimation accuracy at the legitimate estimator and at
the adversary. We increase εs from 0 to 0.1 and derive the
corresponding optimal value of Ĵu, Ĵe, Ju, and Je by solving
Problem 5. As shown in Fig. 5, with the increase of εs, all of
Ĵu, Ĵe, Ju, and Je get smaller. However, the improvements at
the adversary are more significant after launching the attack.
This leads to the increase of the overall performance index
Jc. From this point of view, a smaller εs is helpful for the
optimization of Jc. In addition, Fig. 5 shows that the legitimate
estimator allows the sensor to transmit more often when εs
increases. This can be interpreted with Problem 5, where the
legitimate estimator regulates the information leakage via the
stealthy constraint. When the stealthy constraint becomes loose,
reducing the transmission cannot prevent information leakage.
Therefore, the legitimate estimator will give up on preventing
the information leakage and pay more effort to reduce its own
estimation error.

Fig. 5. Variations of Jc, Ĵu, Ĵe, Ju, Je and the threshold with the
stealthy tolerance εs.

VII. CONCLUSION

In this article, we study covariance-based transmission poli-
cies for remote state estimation, where an active adversary
can hack the sensor, reprogram the transmission policy, and
overhear the transmissions. From the adversary’s perspective,
we derive an optimal stealthy malicious policy to reschedule the
transmission such that the estimation performance at the adver-
sary is optimized. This is done by formulating the transmission
process as a constrained MDP where an information-theoretic
stealthy constraint is incorporated. We show that the feasibility
of the constrained MDP depends on the reliability of the ACK
channel. If the ACK channel is reliable, there exists a reference
policy, making the adversary’s AEEC unbounded. Otherwise,
the constrained MDP is ensured to be feasible with any stealthy
tolerance and any reference policy. To make the system resilient,
from the legitimate estimator’s perspective, we explore the de-
sign of the reference policy to maximally reduce information
leakage while ensuring its estimation performance. A bilevel
program is formulated for this purpose and a depth-first BnB
algorithm with global optimality is devised to solve the problem.
Numerical examples are presented to illustrate the efficacy of the
transmission policies as well as the efficiency of the proposed
optimization algorithm. Future works will include the study of
the structural properties of the optimal solutions to further reduce
computation cost and the detection algorithms for such hacking
attacks.

APPENDIX A
PROOF OF LEMMA 2

From (6), we have

f i(P̄ ) = AiP̄ (A�)i +
i−1∑
j=0

AjQ(A�)j . (57)

For any positive definite matrix X ∈ Rns and any positive
integer i, according to Von Neumann’s trace inequality, we have

tr
(
AiX(A�)i

)
≤ nsσmax(X)σmax

(
Ai(A�)i

)
= nsσmax(X)σ2

max

(
Ai

)
(58)

tr
(
AiX(A�)i

)
≥ λmin(X)λmax

(
(A�)iAi

)
= λmin(X)σ2

max

(
Ai

)
. (59)
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Conduct an eigen-decomposition of matrix A such that A =
V DV −1. Matrix D is either a diagonal matrix or a Jordan
Canonical form matrix. Denote the maximal dimension of the
Jordan block as nc. Note that nc ≤ ns and nc = 1 if matrix A
is diagonalizable.

First, according to Theorem 3.1 in [44], we have
σmax(A

i) ≥ |λmax(A)|i. The lower bounds can be obtained
from (59) by setting cl = min{λmin(P̄ ), λmin(Q)}. Next, we
derive the upper bound. Note that the matrix D is either a
diagonal matrix or a Jordan matrix. From Theorem 3.12 in [44],
we have σmax(D

i) ≤ n2
si

nc |λmax(A)|i. Since σmax(A
i) ≤

σmax(V )σmax(D
i)σmax(V

−1), we have tr(AiX(A�)i) ≤
nsσmax(X)σ2

max(A
i) ≤ n5

sσ
2
max(V )σ2

max(V
−1)σmax(X)i2nc

|λmax(A)|2i. Take cu = n5
sσ

2
max(V )σ2

max(V
−1)max{σmax(P̄ ),

σmaxQ̄)}. The right-hand side of (21) is proved.

APPENDIX B
PROOF OF PROPOSITION 3

The sufficient condition in (22) can be easily proved from
Theorem 2 in [45]. Next, we detail the proof of the necessary
condition in (23). From (18) and (19), Ju equals

tr(f0(P̄ ))

1 +
∑∞

l=0

∏l
i=0(1− τiλaλ)

+

∑∞
l=1

∏l−1
i=0(1− τiλaλ)tr(f l(P̄ ))

1 +
∑∞

l=0

∏l
i=0(1− τiλaλ)

.

If Ju is bounded, each term in the equation above should
be bounded. In the case |λmax(A)| ≥ 1, Lemma 2 shows that
tr(f l(P̄ )) increases either linearly or exponentially to infin-
ity. To make the term

∑∞
l=1

∏l−1
i=0(1− τiλ)tr(f l(P̄ )) bounded,∏l−1

i=0(1− τiλ) must converge to 0, which proves (23).

APPENDIX C
PROOF OF PROPOSITION 4

i) We prove the boundedness ofJe by analyzing the worst-case
scenario at the adversary. Given that |λmax(A)| = 1, Propo-
sition 3 ensures the existence of a positive integer N such
that the sensor transmits with a probability greater than zero
at least once between k = mN and k = (m+ 1)N for all
m ∈ N. To derive the upper bound of Je, we address the
worst scenario. In particular, we detail the transmission policy
as for k ∈ [mN, (m+ 1)N ], the sensor transmits once with
probability εt > 0. According to this policy, the probability that
all transmissions are failed at the adversary is (1− λeεt)


k/N�.
Meanwhile, (21) further gives that

P (trE(P e
k ) ≥ cu + cuk

2nc+1) ≤ (1− λeεt)

k/N�. (60)

Using the tail sum formula, we have

E ((trE(P e
k )− cu) /cu)

1
(2nc+1) ≤

∞∑
k=0

(1− λeεt)

k/N�. (61)

Since 0 < 1− λeεt < 1, E(
trE(P e

k )−cu
cu

) is bounded. Thus,
trE(P e

k ) is bounded. Denote this bound as b̄e. It can be easily
proved that Je = limT→∞

1
T

∑T
k=1 tr(E(P e

k )) < b̄e < ∞.

Next, we devise a threshold-type transmission policy to show
that Je can be made arbitrarily large by increasing the threshold.
Consider a threshold-type policy as

P (νk+1 = 1 | ηsk) =
{
1 ηsk > t̄
0 else

. (62)

The stationary probability of the event ηsk = i with i ∈ [0, t̄]
equals 1

2+t̄+ 1−λλa
λλa

according to (18). Note that when λe = 1,

all transmissions made by the sensor are successfully received
by the adversary. This is an ideal scenario for the adversary
that gives the minimum Je upon the given transmission policy.
Therefore, we can derive a lower bound of Je according to (21)
as

Je ≥
1

2 + t̄+ 1−λλa

λλa

t̄∑
i=0

(cl + cli) =
(cl + cl t̄/2)(1 + t̄)

2 + t̄+ 1−λλa

λλa

.

Define g(t̄) = (cl+cl t̄/2)(1+t̄)

2+t̄+ 1−λλa
λλa

. We may notice that g(t̄) lin-

early increases with the threshold t̄. For any given b̄, we can
select a large t̄ such that Je ≥ g(t̄) > b̄. This shows that by
increasing t̄, we can make Je arbitrarily large. In addition, note
from (18) and (19) that to make the legitimate estimator’s AEEC
bounded, t̄ should be finite, and as long as t̄ is finite, Je is finite
according to (61).

ii) If the system is unstable, according to Theorem III.6 in [9],
a threshold-type policy in the form of (62) can make Je infinite if
the threshold t̄ satisfies that λe < 1− 1/(λλa|λmax(A)|2(t̄+1)).
The existence of the threshold is ensured when λe < 1.

APPENDIX D
PROOF OF THEOREM 5

The theorem is proved in three steps. First, from Lemma III.5
in [9], we can figure out that the proposed policy makes Ju
bounded in the case that λ > 1− 1

|λmax(A)|2 . Second, we show
that to satisfy the given stealthy constraint, the malicious policy
must satisfy that

τ̃ij = 0, i ≤ t̄ and ∀j with πij > 0. (63)

Here πij denotes the stationary probability of the state sk =
(i, j) when the reference policy is applied and no intrusion is
launched. Third, we show that any malicious policy that satisfies
(63) will make Je infinite.

We prove (63) by contradiction. Assume that there exists a
malicious policy in the form of

τ̃ij =

⎧⎨
⎩

0 i ≤ t̄, i �= i0, j �= j0
1 i = i0, j = j0
1 i > t̄

(64)

that can satisfy the stealthy constraint. Here i0 ≤ t̄. i0 and j0
satisfy that πi0j0 > 0. Given that λa = 1, we can prove ηk = ηsk
from (8), (10), and (16). When the malicious policy (64) is
applied, the estimator may observe ok = {1, 0, 0, . . . , 0︸ ︷︷ ︸

i0

, 1}.

Denote observations in this form as õ. The above statement
is equivalent to P1(õ) > 0. Note that in the case that no in-
trusion is launched, No > t̄, and the reference policy is set
as (29), the probability of the presence of õ should be zero,
i.e., P0(ok = õ) = 0. According to (27), if P1(ok = õ) �= 0,
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the stealthy constraint will be violated, which contradicts the
assumption. Therefore, (63) must hold. With this prerequisite,
the minimal Je will be achieved when the transmissions are
made at all (i, j) with i > t̄. Theorem III.6 in [9] has proved
that Je is unbounded in this case. Therefore, we can obtain the
attainability of “perfect secrecy.”

APPENDIX E
PROOF OF PROPOSITION 6

The proposition is established in two steps. First, we prove
that if λa < 1, then the Kullback–Leibler divergence in (28) is
always well defined. We model the evolution of the pair (ηk, ηsk)
as a Markov chain. Define sk = (ηk, η

s
k). From (3), (8), (10),

(15), and (16), the transition probability can be derived as

P (sk+1 | sk) =

⎧⎨
⎩

τjλλa sk+1 = (0, 0)
τjλ(1− λa) sk+1 = (0, j + 1)
1− τjλ sk+1 = (i+ 1, j + 1)

(65)

with sk = (i, j) and i, j ∈ N. Denote the stationary probability
of the state sk = (i, j) as πc

i,j . From (65), we have

πc
0,0 =

∑
i,j∈N

πc
i,jτjλλa πc

0,j+1 =
∑
i∈N

πc
i,jτjλ(1− λa)

πc
i+1,j+1 = πc

i,j(1− τjλ) (66)

which indicates that πc
i,j > 0 for all j ≥ i ≥ 0. Then,

we have P (ηk = i) =
∑

j∈N πc
i,j > 0 for any i ∈ N. Since

P (ηk = i, νk+1γk+1 = 0) =
∑∞

j=i π
c
i,j(1− τjλ) and P (ηk =

i, νk+1γk+1 = 1) =
∑∞

j=i π
c
i,jτjλ, we have

P (ηk = i, νk+1γk+1 = a) > 0, a ∈ A. (67)

Note from (8) that

P (ok+1:k+No
= (i1, . . . , iNo

))

=

∞∑
l=0

P (ηk = l)P (νk+1γk+1 = i1|ηk = l) · · · ×

P (νk+No
γk+No

= iNo
|ηk = l, νk+jγk+j = ij , j ∈ [1, No))

(68)

with i1, . . . , iNo
∈ {0, 1}. Combining (67) and (68), we have

P (ok+1:k+No
= (i1, . . . , iNo

)) > 0 for any (i1, . . . , iNo
). This

ensures that the Kullback–Leibler divergence is always well
defined.

Based on this, we show that the stealthy constraint can be
satisfied by limiting ‖ωs − ρs‖1. From (66), we have

P (ηk = i, νk+1γk+1 = 0)

=
∑
j∈N

ωs(j, 1)λ

[
λa

i∏
l=0

(1− τlλ) + (1− λa)

i+1∏
l=1

(1− τj+lλ)

]

P (ηk = i, νk+1γk+1 = 1) =
∑
j∈N

ωs(j, 1)λ

×
[
λa

i−1∏
l=0

(1− τlλ)τiλ + (1− λa)

i∏
l=1

(1− τj+lλ)τj+i+1λ

]
(69)

where ωs(j, 1) is the stationary probability of (ηsk = j, νk+1 =

1) and τl =
ωs(l,1)

ωs(l,0)+ωs(l,1)
for ∀l ∈ N. With (69) and (68),

we may note that the mapping between P (ηk, νk+1γk+1)
and ωs is continuously differentiable. Therefore, the map-
ping is locally Lipschitz continuous. Then, there exists
a constant L such that ‖P (ok = (i1, . . . , iNt

))− P (o′k =
(i1, . . . , iNt

)))‖1 ≤ L‖ωs − ρs‖1, where o′k denotes the obser-
vations after the intrusion. Since P (ok = (i1, . . . , iNt

)) > 0, the
Kullback–Leibler divergence can be made arbitrarily small by
squeezing ‖ωs − ρs‖1, which completes the proof.

APPENDIX F
PROOF OF PROPOSITION 7

According to the definition of ρ and ρt, we have

ρt(i, j, a) = ρ(i, j, a) 0 ≤ i, j < Nt

ρt(i,Nt, a = 1) =
∞∑

j=Nt

ρ(i, j, a = 1), 0 ≤ i < Nt

ρt(Nt, j, a = 1) =
∞∑

i=Nt

ρ(i, j, a = 1), 0 ≤ j < Nt

ρt(Nt, Nt, a = 1) =

∞∑
i=Nt

∞∑
j=Nt

ρ(i, j, a = 1). (70)

Equation (31) gives that
∞∑
i=0

∑
a∈A

ρ(i, j + 1, a) = (1− λe)

∞∑
i=0

∑
a∈A

ρ(i, j, a), j ≥ Nt

Nt∑
i=0

ρt(i,Nt, a = 1) =

∞∑
i=0

∞∑
j=Nt

∑
a∈A

ρ(i, j, a).

When j ≥ Nt, it can be further derived from the
above two equations that

∑∞
i=0

∑
a∈A ρ(i, j, a) = λe(1−

λe)
j−Nt

∑Nt

i=0 ρt(i,Nt, a = 1). Based on these, the expression
of the AEEC at the adversary after the intrusion follows

lim
T→∞

1

T

T∑
k=1

tr(E(P e
k )) =

∞∑
j=0

∞∑
i=0

∑
a∈A

ρ(i, j, a)tr(f j(P̄ ))

=
∑

j∈[0,Nt−1]

∑
i∈[0,Nt]

∑
a∈A

ρt(i, j, a)

× tr(f j(P̄ )) +
∑

i∈[0,Nt]

ρt(i,Nt, a = 1)

×
∞∑
j=0

λe(1− λe)
j−Nt trf j(P̄ ).

Since λe > 1− 1
|λmax(A)|2 , the term

∑∞
j=0 λe(1−

λe)
j−Nt trf j(P̄ ) is bounded for any Nt from Lemma 2.

APPENDIX G
PROOF OF THEOREM 8

We prove this theorem by devising a transmission policy in
the form of

τ tij =

{
τi 0 ≤ i, j < Nt

1 i ≥ Nt or j ≥ Nt
(71)
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and show that (71) is a feasible solution that can make Je
bounded and the stealthy constraint satisfied.

We may note from the comparison with (37) that (71) is a
special form of (37) with τ̃ij set the same as τi for 0 ≤ i, j < Nt.
Note that τi is the transmission probability given by the reference
policy. Following the proof of Proposition 7, it can be proved
that the policy in (71) can make Je bounded. We focus on the
proof of the feasibility of the stealthy constraint.

Define a tensor ωt ∈ R(Nt+1)×(Nt+1)×2 as the occupation
measure of the truncated MDP when the reference policy in
(15) is applied. Following the properties of occupation measure,
we have

ωt ∈ ΩNt
and τi =

ωt(i, j, a = 1)∑
a∈A ωt(i, j, a)

(72)

for all 0 ≤ i, j < Nt. Similar to (70), it can be derived that

ωt(i,Nt, a = 0) =
∞∑

j=Nt

ω(i, j, a = 0)

ωt(Nt, j, a = 0) =

∞∑
i=Nt

ω(i, j, a = 0) (73)

for 0 ≤ i, j ≤ Nt. For simplicity in notation, we rearrange the
tensor ωt into a vector ωb such that

ωb (2(Nt + 1)i+ 2j + a) = ωt(i, j, a) (74)

and rewrite the equalities in (72) and (73) as

Mcωb = Nω. (75)

Note that there are (Nt + 1)2 nonredundant equality con-
straints in ΩNt

. Equations (72) and (73) provide another
(Nt + 1)2 nonredundant equality constraints. We have Mc ∈
R2(Nt+1)2×2(Nt+1)2 being of full-rank and thus invertible. In
addition, Nω ∈ R2(Nt+1)2 . Moreover, since ρt also denotes
occupation measure, we have ρt ∈ ΩNt

. In view of the trans-
mission policy in (71), ρt must satisfy that

τi =
ρt(i, j, a = 1)∑
a∈A ρt(i, j, a)

∀i, j < Nt (76)

ρt(i,Nt, a = 0) = 0 ρt(Nt, j, a = 0) = 0, i, j ≤ Nt. (77)

Define ρb as

ρb (2(Nt + 1)i+ 2j + a) = ρt(i, j, a). (78)

Compare (76) and (77) with (72) and (73). We may notice that
ρb should follow the equation Mcρb = Nρ, where Nρ differs
from Nω at the elements corresponding to (77). If we can prove
that

∑∞
j=Nt

ω(i, j, a = 0) and
∑∞

i=Nt
ω(i, j, a = 0) converge

to 0 with Nt, then we have limNt→∞ ‖Nω −Nρ‖1 = 0. In view
of the fact thatMc is invertible, we can prove that for any εs, there
exists an Nt such that ‖ρb − ωb‖1 = ‖M−1

c (Nω −Nρ)‖1 ≤ εs.
Note that the convergence of

∑∞
i=Nt

ω(i, j, a = 0) can
be easily obtained from (18). We focus on the proof of
limNt→∞

∑∞
j=Nt

ω(Nt, j, a = 0) = 0. Define the stationary
distribution of the state (ηsk = i, ηek = j) with i, j ∈ N as πi,j

before the intrusion. Since πi,j =
∑

a∈A ω(i, j, a), we have

ω(i, j, a = 0) ≤ πi,j , ∀i, j ∈ N. (79)

From (15) and (25), we have

π0,0 = λλe

∞∑
j=0

∞∑
i=0

τiπi,j

π0,j+1 = λ(1− λe)

∞∑
i=0

τiπi,j

πi+1,0 = (1− λ)λe

∞∑
j=0

τiπi,j

πi+1,j+1 = [(1− λ)(1− λe)τi + 1− τi]πi,j . (80)

Define πe
j =

∑∞
i=0 πi,j , it can be proved from (80) that

πe
j+1 = π0,j+1 +

∞∑
i=0

πi+1,j+1

= λλa(1− λe)

∞∑
i=0

τiπi,j +

∞∑
i=0

[(1− λaλ)(1− λe)τi

+ 1− τi]πi,j

=

∞∑
i=0

πi,j︸ ︷︷ ︸
=πe

j

−λe

∞∑
i=0

τiπi,j︸ ︷︷ ︸
=

π0,j+1
λaλ(1−λe)

= πe
j −

λeπ0,j+1

λλa(1− λe)
. (81)

Sinceπ0,j+1 ≥ 0, we haveπe
j ≥ πe

j+1. Considering thatπe
j ≥

0 and
∑∞

j=0 π
e
j = 1, we may conclude that πe

j is a Cauchy
sequence and, thus, limNt→∞

∑∞
j=Nt

πe
j = 0. From (79), it

can be further proved that limNt→∞
∑∞

j=Nt
ω(Nt, j, a = 0) ≤

limNt→∞
∑∞

j=Nt
πe
j = 0. The proof is completed. �

APPENDIX H
PROOF OF PROPOSITION 9

First, we prove (44) assuming the convergence of∑
a∈A

∑∞
i=Nt

ωs(i, a) and
∑∞

Nt

∑
a∈A ρs(i, a). According

to the definition of ρt and ωs, the stealthy constraints
in Problem 3 can be written as

∑Nt−1
i=0 ‖ωs(i, a)−

ρs(i, a)‖1 + ‖
∑∞

Nt
ωs(i, a)−

∑∞
Nt

ρs(i, a)‖1 ≤ εs.
Moreover, if limi=Nt→∞

∑
a∈A

∑∞
i=Nt

ωs(i, a) = 0 and
limNt→∞

∑∞
Nt

∑
a∈A ρs(i, a) = 0, we have

‖ωs − ρs‖1 ≤
Nt−1∑
i=0

‖ωs(i, a)− ρs(i, a)‖1︸ ︷︷ ︸
≤εs

+
∑
a∈A

∞∑
Nt

ωs(i, a) + ρs(i, a)

︸ ︷︷ ︸
converge to 0 with Nt

(82)

such that (44) is proved. Next, we articulate the convergence
of

∑
a∈A

∑∞
Nt

ωs(i, a). For each i, from the definition
of ωs(i, a), we have

∑
a∈A ωs(i+ 1, a) ≤

∑
a∈A ωs(i, a)

and 0 ≤
∑

a∈A ωs(i+ 1, a) ≤
∑∞

i=0

∑
a∈A ωs(i, a) = 1.

Then,
∑

a∈A ωs(i, a) constitutes a Cauchy sequence and
therefore its tail sum converges to 0. The convergence of∑∞

i=Nt

∑
a∈A ρs(i, a) can be proved similarly.
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Second, we prove (43) by devising a candidate policy τf in
the form of

τfij =

{
τ�ij 0 ≤ i, j < Nt

1 i ≥ Nt or j ≥ Nt
. (83)

We show that Je(τf ), which denotes the AEEC of the adver-
sary when (83) is applied, gives that

|Je(τf )− Je(τ
�)| ≤ εa(Nt) (84)

Je(τ
c) ≤ Je(τ

f ) + εb(Nt) (85)

where limNt→∞ εa(Nt) = 0 and limNt→∞ εb(Nt) = 0. Set
εg(Nt) = εa(Nt) + εb(Nt). The expression in (43) can be
obtained. Note that the policy τf is obtained from τ�

by setting all the values of τij with i or j greater than
Nt to 1. From Proposition 7 and Theorem 8, both τf

and τ� give bounded AEECs. Then, the discrepancy be-
tween Je(τ

f ) and Je(τ
�) diminishes with Nt, which gives

(84). Denote the value of
∑Nt−1

i=0 ‖ωs(i, a)− ρs(i, a)‖1 +
‖
∑∞

Nt
ωs(i, a)−

∑∞
Nt

ρs(i, a)‖1 as εu(Nt). From (82), we
have limNt→∞ |εu(Nt)− εs| = 0. Thus, the policy τf can be
viewed as a feasible solution to Problem 2 with the stealthy
tolerance εs perturbed with |εu(Nt)− εs|. Following the local
sensitivity analysis in Section 5.6 of [46], we prove (85). Equa-
tions (84) and (85) together establish (43).

APPENDIX I
PROOF OF PROPOSITION 11

We prove this proposition in three steps. First, we rearrange
the constraints into linear equalities and inequalities. Second,
we transform the bilevel program into a single-level nonlinear
program based on the duality theorem. Third, we show that the
optimum is one of the extreme points.

Define a vector ωb ∈ R2(Nt+1)2 according to (74), such that
we can express the constraints in (47) and (48) as linear equalities
and inequalities in terms of ωb, i.e.,

Maωb = ma, Mcωb ≤ mc. (86)

Here Ma ∈ R(Nt+1)2×2(Nt+1)2 and Mc ∈
R4(Nt+1)2×2(Nt+1)2 . Equation (49) is simplified as

Mb(τ)ωb = mb. (87)

Here the coefficient matrix Mb ∈ R(Nt+1)2 depends on the
transmission probabilities. Moreover, Ĵu and Ĵe can be written
as functions of ωb as

Ĵu = cuωb Ĵe = ceωb (88)

where cu, ce ∈ R1×2(Nt+1)2 . Similarly, we can transform ρt to
ρb according to (78). For any fixedωs, the lower level of Problem
5 can be simplified into a linear program as

Problem 8:

min
ρb,ε

ceρb

s.t. M1ρε ≤ m1, ρε = [ρ�b , ε
�]� (89)

M21ρε +M22ωb ≤ m2

ε = [ε0,0, ε0,1, ε1,0, ε1,1, . . . , εNt−1,0, εNt−1,1]
�.
(90)

Here M1 ∈ R6(Nt+1)2+2(2Nt+1) × 2(Nt+1)2 , M21 ∈
R(Nt+2)×(2(Nt+1)2+Nt+1), and M22 ∈ R(Nt+2)×2(Nt+1)2 .

Next, we transform the bilevel program into a single-level
nonlinear program. In particular, the dual of Problem 8 is in the
form of

max
y

y(
[
m�

1 m�
2

]� −
[
0� M�

22

]�
ωb)

s.t. y
[
M�

1 M�
21

]� ≥ [ce 0]. (91)

According to the duality theorem, the duality gap of this linear
program should be zero, i.e.,

y(
[
m�

1 m�
2

]� −
[
0� M�

1

]�
ωb) = ceρb. (92)

Based on this, we can replace the lower level of Problem 5
with inequalities (89), (90), and (92) such that Problem 5 is
transformed into a single-level problem as

min
ωb,τ,y,ρε

Jc

s.t. (86), (87), (89), (90), (92). (93)

Equation (87), which is derived from (49), is bilinear with
respect to the decision variables τ and ωb. Equation (92) is
also bilinear with respect to the decision variables y and ωb.
The objective function is linear in terms of the decision vari-
ables and the remaining constraints are convex in terms of
the decision variables. Define two vectors z1 = [τ�, y�]� and
z2 = [ω�

b , ρ
�
ε ]

�. For any fixed z2, the optimization in (93) is
equivalent to minimizing a concave function. Hence, according
to [47], the optimal value of z1 must be among the extreme
points of the feasible region. Since each τi is a component in
z1 and both τi = 0 and τi = 1 are attainable for all 0 ≤ i < No,
we can conclude that the optimal value of τi should be either
0 or 1. This property indicates that for each state i, the optimal
reference policy will let the sensor either transmit or not transmit
with a probability of 1. Therefore, the optimal reference policy
is a deterministic policy.

APPENDIX J
PROOF OF THEOREM 12

Briefly, we derive the lower bound by removing the bilinear
constraints and replacing the lower level with a suboptimal
solution which has a closed-form expression. We use � to mark
the optimal solution of Problem 5 when τ0, . . . , τl are fixed
and J�

c is the corresponding optimal value of Problem 5. First,
we prove that (ω�

t , (1− ζ)ω�
t + ζρ1t ) is a feasible solution of

Problem 7. For simplicity in notation, denote (1− ζ)ω�
t + ζρ1t

as ρct . Compare Problem 7 with Problem 5. Problem 7 has a
larger feasible region since the constraints (49) are removed
for i ∈ (l, No). Therefore, ω�

t can satisfy all the constraints and
(ω�

t , ρ
c
t) is naturally a group of feasible solution to Problem 7.

Denote (ω�
t , ρ

�
t) as the optimal solution of Problem 7. According

to its optimality, we have

Jf (ω
�
t , ρ

�
t) ≤ Jf (ω

�
t , ρ

c
t). (94)

Next, we prove that

Jf (ω
�
t , ρ

c
t) ≤ α

(
β1Ĵu(ω

�
t )− (1− β1)Ĵe(ρ

�
t )
)

− (1− α)(1− β2)Je(ρ
�
t ) (95)
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by showing that ρct is feasible to the constraints in the lower level
of Problem 5 when ωt = ω�

t . The satisfaction of (36) and (38)
can be easily checked from (47), (48), and the definition of ρ1t .
We need to further check the satisfaction of (40)–(42). Note from
the definition of ρct that ‖

∑Nt

j=0(ρ
c
t(·, j, ·)− ω�

t (·, j, ·))‖1 ≤
ζ‖

∑Nt

j=0(ω
�
t (·, j, ·)− ρ1t (·, j, ·))‖1 ≤ ζ(‖

∑Nt

j=0(ω
�
t (·, j, ·)−

ω1
t (·, j, ·))‖1 + ‖

∑Nt

j=0(ω
1
t (·, j, ·)− ρ1t (·, j, ·))‖1). More-

over, according to the definition of ρ1t , we have
‖
∑Nt

j=0(ω
1
t (·, j, ·)− ρ1t (·, j, ·))‖1 = εs. It can be checked

with the expressions of the stationary distribution given in (18)
that for any ωt satisfying the constraints in Problem 7, we have
‖
∑Nt

j=0(ωt(·, j, ·)− ω1
t (·, j, ·))‖1 ≤ ‖

∑Nt

j=0(ω
0
t (·, j, ·)−

ω1
t (·, j, ·))‖1. Therefore, for ζ given in (52), we have

‖
∑Nt

j=0(ρ
c
t(·, j, ·)− ω�

t (·, j, ·))‖1 ≤ εs, which is equivalent to
(40)–(42). Now we have proved that ρct is a feasible solution to
the lower level of Problem 5. According to the optimality of ρ�t ,
we have Je(ρ

c
t) ≥ Je(ρ

�
t ). Therefore, we have Jf (ω

�
t , ρ

c
t) =

α(β1Ĵu(ω
�
t )− (1− β1)Ĵe(ρ

c
t))− (1− α)(1− β2)J

�
e (ρ

c
t) ≤

α(β1Ĵu(ω
�
t )− (1− β1)Ĵe(ρ

�
t ))− (1− α)(1− β2)J

�
e (ρ

�
t ),

which proves (95).
Next, we prove that J�

g ≤ (1− α)β2J
�
u . Compare Problem

6 with Problem 5. We may notice that the feasible region of
Problem 5 is a subset of Problem 6. Therefore, (ω�

t , ρ
�
t ) should

be a feasible solution of Problem 6. Then, with the optimality
of J�

g , we have J�
g ≤ Jg(ω

�
t , ρ

�
t ) = (1− α)β2J

�
u . This, together

with (94) and (95), proves Theorem 12.
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