
Environmental and Ecological Statistics
https://doi.org/10.1007/s10651-022-00542-7

Bayesian multi-species N-mixture models for unmarked
animal communities

Niamh Mimnagh1,2 · Andrew Parnell1,2,3 · Estevão Prado1,2,3 ·
Rafael de Andrade Moral1,2

Received: 11 July 2022 / Revised: 11 July 2022 / Accepted: 10 August 2022
© The Author(s) 2022

Abstract
We propose an extension of the N-mixture model that enables the estimation of
abundances of multiple species as well as the correlations between them. Our novel
multi-species N-mixture model (MNM) is the first to address the estimation of both
positive and negative inter-species correlations, which allows us to assess the influ-
ence of the abundance of one species on another.We provide extensions that permit the
analysis of data with excess of zero counts, and relax the assumption that populations
are closed through the incorporation of an autoregressive term in the abundance. Our
approachprovides amethodof quantifying the strength of association between species’
population sizes and is of practical use to population and conservation ecologists. We
evaluate the performance of the proposed models through simulation experiments in
order to examine the accuracy of both model estimates and coverage rates. The results
show that the MNM models produce accurate estimates of abundance, inter-species
correlations and detection probabilities at a range of sample sizes. The MNM mod-
els are applied to avian point data collected as part of the North American Breeding
Bird Survey between 2010 and 2019. The results reveal an increase in Bald Eagle
abundance in south-eastern Alaska in the decade examined.
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1 Introduction

Abundance in animal communities is of great interest in ecology, particularly in the
areas of conservation andwildlifemanagement (Witmer 2005;Nichols andMacKenzie
2004). Count data is an attractive option for estimating abundance due to the relative
affordability with which it may be collected and the reduced risk of harm to both
animals and humans when compared to more direct data collection methods (Verdade
et al. 2013). However, count data for animal abundance has a tendency to suffer from
imperfect detection (i.e., the recorded information is usually imperfect in the sense that
it does not represent the total abundance). Furthermore, when the detection probability
is small, there is a tendency towards the underestimation of abundance. Due to the
characteristics of these data, traditional modelling techniques, such as generalised
linear models (McCullagh and Nelder 1989), cannot be applied directly to the data,
as they do not accommodate imperfect detection.

N-mixture models (Royle 2004) constitute a class of models which may be used to
estimate abundance from count data. These models assume that the population under
analysis is closed, i.e., it is constant in terms of births, deaths, and migration. The
counts at each site and time are considered independent and identically distributed
(i.i.d) random variables that follow a Binomial distribution. In the original N-mixture
model, the detection probability is estimated using the data, without the specification
of any prior distribution with fixed parameters. The population size at each site is
treated as a random effect, with an assumed probability distribution. The distributions
that are typically considered for the population size at each site are the Poisson and
Negative Binomial, although any other non-negative discrete distribution could also
be considered.

The ability to estimate correlations between species abundances allows us to relax
any assumption of independent species abundances. This is the aim of the multi-
species N-mixture (MNM) models presented in this paper—a new class of models
which estimate abundance for multiple species simultaneously while accounting for
imperfect detection, and estimate inter-species correlations, which are intended to
allow for inferences about the relationships between different species.

The remainder of the paper is organised as follows. In Sect. 3, we introduce our
novel modelling framework to estimate abundance and inter-species correlations in
animal communities based on spatio-temporal count data. We also describe the model
formulation, estimation procedure, and the computation of the inter-species correla-
tions. In Sect. 4, we present the data obtained from the North American Breeding Bird
Survey (NABBS) (Pardieck et al. 2020), which will be used to illustrate our modelling
approach. Later, in Sect. 5, we compare results of model fit on the NABBS data to
obtain the best fit. Finally, in Sect. 6, we present a general discussion.

2 Related works

Several multi-species modelling frameworks have been developed previously which
allow for the analysis of occurrence-data (Dorazio and Royle 2005; Yamaura et al.
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2011) or count-data (Yamaura et al. 2012; Golding et al. 2017; Gomez et al. 2017) of
multiple species.

Dorazio and Royle (2005) developed a model for estimating the size of a biological
community by modelling the probability of detection as a Binomial random variable,
and the probability of occurrence as a Bernoulli random variable. They allow rates
of detection and occurrence to vary among species, and not every species is assumed
to be present at every location. However, the aim of their model is to determine the
number of species, not the number of individuals of each species, as is the aim of
N-mixture models.

Yamaura et al. (2011) developed a multi-species model that estimates the animal
abundance from occurrence-data. This is an extension of the single-species model
developed by Royle and Nichols (2003), in which binary detection/non-detection data
is linked to abundance. Yamaura et al. (2012) extended this model to count data. The
assumption behind these models is that the abundances or detection probabilities of
species in the community might be linked by species-level or functional group-level
characteristics. However, inter-species abundance correlations are not explored within
these models.

Gomez et al. (2017) developed a multi-species N-mixture model whose aim was
to allow for the estimation of abundance of rare species by borrowing strength from
other species in the community. This was done by assuming detection probabilities
are drawn at random from a Beta distribution. Another multi-species N-mixture model
was developed by Golding et al. (2017), which used the dependent double-observer
method to create a multi-species dependent double-observer abundance model. This
allowed them to address an issue of false-positive errors in detection. The focus of
both Gomez et al. (2017) and Golding et al. (2017) was an improvement in detection
probability. None of the preceding multi-species models allow us to make inferences
as to the relationships within an ecological community, as we propose to do with our
multi-species N-mixture model.

Moral et al. (2018) developed an extension to the single-species N-mixture model,
which allowed for the estimation of abundances of two species, and the correlations
between these abundances. However, this model only examines two species, and is
therefore not as complete as the model we propose here, which allows us to examine
whole communities.

Dorazio and Connor (2014) developed a multi-species N-mixture model which
allowed for abundances of specieswith similar traits to be correlated.However, to guar-
antee positive definite correlations, they only allow for positive correlations through
the use of a distancemetric d coupledwith a spatial autocorrelation structure of the type

e− d
φ . The framework we present here is more complete in that we guarantee positive

definiteness of the correlation matrix via an elegant prior setup. We also explore ways
of incorporating zero-inflation and open population dynamics, which is not something
attempted by Dorazio and Connor (2014).

Finally, Niku et al. (2019) describe generalised linear latent variable models—a
modelling technique which allows for obtaining correlation matrices in an elegant
manner. However, these models do not allow for the incorporation of imperfect detec-
tion.
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3 Methods

The models developed in the following Section are a multi-species extension to the
original N-mixture model of Royle (2004), which allows for accurate estimation of
both the latent abundances and inter-species correlations, while accounting for imper-
fect detection and relaxing the closure assumption.

3.1 Multi-species N-mixture model (MNMModel)

Consider a study which sees count data Yits collected, where Yits is the num-
ber of individuals observed for S different species (s = 1, . . . , S) from R sites
(i = 1, . . . , R). Consider also that these samples are taken from each site on T occa-
sions (t = 1, . . . , T ). The true abundance at site i for species s is given by Nis . We
observe Nis with detection probability pits , and it is assumed that species populations
are closed with respect to births, deaths and migration (i.e., that the population sizes
do not change due to any of these factors, akin to the N-mixture model proposed by
Royle (2004)). Our model assumes that Nis follows a Poisson distribution, and may
be written as:

Yits | Nis, pits ∼ Binomial(Nis, pits),

Nis | λis ∼ Poisson(λis),

logit(pits) = z�
i tbs,

log(λis) = ais + x�
i βs,

ai | μa,�a ∼ MVN(μa,�a),

where ai = (ai1, . . . , ai S)�. The Poisson rate parameter λis represents the mean
abundance at site i , and ai is an S-dimensional vector that contains the random effects
ais that allow us to estimate inter-species correlations. In the above model, covariates
may be incorporated in the detection probability and the abundance, with z�

i t the i t-th
row of the design matrix Z of dimension RT × qp, bs the qp × 1 parameter vector
for the probability of detection, x�

i the i-th row of the design matrix X of dimension
R×qλ, and β the qλ×1 parameter vector for the abundance. Here, qp and qλ represent
the number of covariates associated with the detection probability and the abundance,
respectively. Note that different covariate effects may be estimated per species, and
other species-level random effects may also be included.

3.2 Hurdle–Poissonmodel (MNM-Hurdle model)

In this Section, we develop a further extension of the multi-species N-mixture model,
appropriate for scenarios in which the number of zero-counts exceeds those expected
under a Poisson distribution. We now allow the counts to follow a Hurdle-Poisson
distribution, with λis defined as in theMNMModel, and θ the probability of obtaining
a zero-count.
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The Hurdle-Poisson distribution consists of two separate processes. The first is a
Bernoulli process, which determines whether a site is occupied (count is non-zero) or
unoccupied (count is zero). If the count is non-zero, a second random variable with a
zero-truncated Poisson distribution determines the value of the count, i.e.,

Occupancyis ∼ Bernoulli(1 − θ),

Countis ∼ Zero Truncated Poisson(λis).

We then define the latent abundances Nis as

Nis =
{
0 if Occupancyis = 0

Countis if Occupancyis = 1
,

which yields

Nis ∼ Hurdle-Poisson(λis, θ).

If the Bernoulli process is equal to 0, then the site is unoccupied and Nis is equal to
0. However, if the Bernoulli process is equal to 1, then the hurdle is crossed, and the
value of Nis is determined by the zero-truncated Poisson process. Similar to theMNM
model, populations are assumed to be closed.

We assume a single probability of obtaining a zero count θ . However, θ may also be
allowed to vary by site and/or species, and may depend on covariates through a logit
link. All other parameters are distributed as described in the MNMmodel in Sect. 3.1.

3.3 Autoregressive model (MNM-ARmodel)

In order to model populations over multiple years, a further extension to the multi-
species N-mixture model is proposed, which allows us to relax the assumption that
species populations are closed with respect to births, deaths and migration. We do this
through the inclusion of an autoregressive term in the abundance parameter.

The study design now consists of data collected over K years (k = 1, . . . , K ) for
S species at R locations, each with T sampling occasions. The observed abundance
(Y ) and actual abundance (N ) are now allowed to vary by year:

Yitks ∼ Binomial(Niks, ps),

Niks ∼ Poisson(λiks).

If k = 1, then λi1s is defined as before:

log(λi1s) = ais + x�
i βs .

However, for k > 1, we allow λiks to depend on the latent abundance at year k − 1:

log(λiks) = ais + x�
i βs + φs log(Ni(k−1)s + 1).
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The term log(Ni(k−1)s + 1) is used here rather than the simpler Ni(k−1)s to avoid the
rapid increase in sampled λ values when N values are large (Fokianos and Tjøstheim
2011).

3.4 Hurdle-autoregressive model (MNM-Hurdle-ARmodel)

A straightforward combination of the MNM-Hurdle model and the MNM-AR model
produces the MNM-Hurdle-ARmodel. This model accommodates excess zeros while
also accounting for an autoregressive structure in the data. The zero-inflation is intro-
duced as in the MNM-Hurdle model, i.e.,

Yitks ∼ Binomial(Niks, ps),

Niks ∼ Hurdle-Poisson(λiks, θ),

where

log(λiks) =
{
ais + x�

i βs, for k = 1

ais + x�
i βs + φs log(Ni(k−1)s + 1), for k > 1

.

3.5 Model estimation

The models described in this paper are implemented using a Bayesian framework.
Each of the above models were implemented in R (R Core Team 2020a) through the
probabilistic programming software JAGS (Plummer et al., 2003; Plummer, 2017)
using four chains with 50,000 iterations each, of which the first 10,000 were discarded
as burn-in, and a thinning of five to reduce autocorrelation in the MCMC samples.
Parameter convergence was determined using the potential scale reduction factor (R̂),
a diagnostic criteria proposed by Gelman and Rubin (1992). An R̂ value that is very
close to one is an indication that the four chains have mixed well. If the R̂ value was
less than 1.05, the chains were considered to have mixed properly, and the posterior
estimates of the parameters were considered reliable.

Prior distributions were assigned as follows:μa , the vector of means of the random
effect a, was assigned amultivariate Normal prior with a diagonal variance-covariance
matrix �0 and mean vector μ0. �a , the variance-covariance matrix of a was assigned
an inverse-Wishart prior with a diagonal scale matrix�, and S+1 degrees of freedom
v which results in a Uniform(-1,1) prior on the correlations (Plummer 2017):

μa ∼ Normals(μ0,�0),

�a ∼ Inverse-Wishart(�, v).

An inverse-Wishart distribution is specified as the prior for the covariance matrix
of the random effect a. Criticisms of the inverse-Wishart prior include the dependency
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imposed between correlations and variances, and the fact that there is a single degree
of freedom parameter which determines the uncertainty for all variance parameters. It
is demonstrated by Alvarez et al. (2014) that when the variance is small relative to the
mean, the correlation is biased towards zero, and the variance is biased towards larger
values, though when working with count data, typically variances are large relative to
the mean. Despite these issues, the inverse-Wishart distribution is a prior distribution
commonly assigned to a covariance matrix in Bayesian analysis due to its conjugacy
with the Normal distribution, and for these models the inverse-Wishart distribution
provides a good solution due to its guarantee of providing a positive definite covariance
matrix.

In the Hurdle and Hurdle-AR models, θ is assigned a Beta prior with the value of
both shape parameters equal to one, which is equivalent to a vague uniform prior:

θ ∼ Beta(1, 1).

In the AR and Hurdle-AR models, φ is assigned a Multivariate Normal prior, with
hyperpriors μφ and diagonal matrix �φ :

φs ∼ MVN(μφ,�φ),

Extensive simulation studies were carried out to examine the accuracy of parameter
estimates; see Appendix B for more details.

3.6 Inter-species correlations

The presence of the multivariate normal random effect a in the abundance provides a
link between species’ abundances. The correlation matrix for the random effect, �a ,
may be estimated directly from the Bayesian model. In this sense, the inter-species
correlations for the latent abundances Ns and Ns′ , for all s �= s′, are calculated for
each model as:

ρ(Ns, Ns′) = Cov(Ns, Ns′)√
(Var(Ns))(Var(Ns′))

.

The derivation of Cov(Ns, Ns′) can be found in Appendix A.
The inter-species correlations for the MNM model and Hurdle model are assumed

not to vary by year, so thesemodels have a single analytic correlationmatrix. However,
in the AR and Hurdle-ARmodel, we assume latent abundances change by year, which
requires the computation of K analytic correlation matrices. Note that the MNM and
AR models required the use of properties of conditional variance and covariance to
determine analytic correlations. In the Hurdle and Hurdle-AR models, the proper-
ties of conditional variance and covariance were merged with second-order Taylor
approximations to make their computation feasible.
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Fig. 1 Location of sites in Alaska marked in red, with the Alexander Archipelago—the location of the
Alaskan Bald Eagle population—outlined in black

4 Case study: North American Breeding Bird Survey

In this section, we describe the application of the multi-species N-mixture models to
a real world case study, to examine bird populations using data collected as part of the
North American Breeding Bird Survey (NABBS).

The North American Breeding Bird Survey (Pardieck et al. 2020) was first con-
ducted in 1966, and now provides data annually on more than 400 bird species across
3700 routes in the United States and Canada. Each of these routes is approximately
24.5 miles long and is composed of 50 stops, approximately 0.5 miles apart. At each
stop, every bird seen or heard within a 0.25-mile radius is recorded. For the sake of
our models, each of these routes is considered a site, and each of the 50 stops along a
route is a sampling occasion.

We examine data collected in Alaska in the 10-year period 2010–2019. There are
94 routes in Alaska (Fig. 1) at which data was collected during this time, and each of
these routes are composed of 50 sampling locations, totalling 4700 observations per
bird species.

Bald Eagle populations in Alaska are estimated at between 8000 and 30,000 birds,
accounting for roughly half of the global population (Hodges 2011; Hansen 1987;
King et al. 1972). For this reason, Bald Eagles were chosen as a species of interest.
Several other species were chosen; these included waterbirds such as geese, swans
and snipes which were chosen for their relationships with Bald Eagles, as Bald Eagles
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are known to prey on waterbirds such as ducks, geese and grebes when fish are in
short supply (Dunstan and Harper 1975; Todd et al. 1982; McEwan and Hirth 1980).
Additionally, a selection of specieswith inland habitats, such as thrushes and swallows,
were examined. In total, 10 species were selected for analysis, of the 233 total species
present in Alaska within the 10-year period. The full list of species selected and the
frequency with which they were observed is given in Table 1.

The models described in Sect. 3 were fitted to the NABBS data. Each was fitted
three times, varying the dimension of the detection probability. Initially, detection
probability was allowed to vary by site, species and year. Subsequently, models were
fitted inwhich detection probability varies only by site and species, and then by species
alone.

Initially, themodels were fittedwithout covariates, and results were compared using
their Bayesian Information Criterion (BIC) (Delattre et al. 2014) values. Subsequently,
latitude, longitude and their interaction term latitude × longitude were included in the
linear predictors for the abundance parameters, andmodelswere again compared using
BIC values. All covariates were scaled to have zero-mean and unit variance.

Initial examination of this data revealed that 93.2% of observations (438,040 of a
total of 470,000 observations) consisted of zero counts. This suggested that a model
with a hurdle component might provide an appropriate framework for this data. Fur-
thermore, this data was collected over the course of a decade. For this reason, wemight
expect that an autoregressive term may be useful to incorporate the time dependence.

Each model was fitted using four chains with 50,000 iterations each, of which
the first 10,000 were discarded as burn-in, using a thinning value of five. All prior
distributions were assigned as described in Sect. 3.5.

5 Results

Initially, the models were fitted without covariates and were compared using BIC
values. The result of this comparisonwas that theHurdle-ARmodel, inwhich detection
probability varies by species (Hurdle-AR(C)), provided the best fit for the NABBS
data. However, the addition of a response surface for latitude and longitude in the
linear predictors for the abundance parameters results in the Hurdle model in which
detection probability varies by species (Hurdle(C)) producing the lowest BIC value.
This suggests that, within the range of models produced, this model provides the best
fit for our data. The variance which was initially explained by the addition of the
autoregressive term is now explained by the latitude and longitude covariates, which
render the autoregressive component unnecessary. The result of this comparison is
given in Table 2.

The latent inter-species correlations are given in Fig. 2, while the derivation of
analytic correlations, which vary by site and year, are given in Appendix A. The latent
correlations are obtained after the probability of detection and other covariates are
taken into account. They may be interpreted as an interaction strength metric, which
allows for the study of the influence of one species’ abundance on the others (Berlow
et al. 2004; Moral et al. 2018).
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Table 2 Number of estimated parameters and BIC values comparing model fits on NABBS data

No covariates Covariates
Model Parameters BIC Parameters BIC

MNM(A) 9465 291,860 9471 291,899

MNM(B) 1005 194,592 1011 194,743

MNM(C) 75 183,587 81 183,940

MNM-AR(A) 9467 291,648 9473 291,808

MNM-AR(B) 1007 194,767 1013 194,805

MNM-AR(C) 77 183,922 83 183,540

MNM-Hurdle(A) 9466 291,699 9472 291,596

MNM-Hurdle(B) 1006 194,964 1012 194,915

MNM-Hurdle(C) 76 183,890 82 183,349

MNM-Hurdle-AR(A) 9468 291,597 9474 291,652

MNM-Hurdle-AR(B) 1008 194,859 1014 195,044

MNM-Hurdle-AR(C) 78 183,572 84 183,644

(A) contains detection probability which varies by site, species and year, (B) contains detection probability
which varies by site and species, (C) contains detection probability which varies only by species. Smallest
BIC values for each case are indicated in bold

Fig. 2 Estimated latent inter-species correlation matrix, produced by the Hurdle(C) model fitted to the
NABBS data, including covariates in the linear predictor for the abundance parameter

6 Discussion

We have proposed a multi-species extension to the N-mixture model, which allows
for the estimation of inter-species abundance correlations through the addition of a
random variable in the abundance. Results of simulation studies (see Appendix B)
reveal that this model performs well under a range of scenarios, with abundances and
detection probabilities that range from low to high. For this reason, we believe that this
approach represents an attractive framework for examining multi-species abundances.

Issues with parameter convergence were encountered when fitting the Hurdle and
Hurdle-ARmodels. When zero-inflation and abundance are large, and detection prob-
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ability is small, issues with convergence occurred in up to 20% of parameters. While
this convergence issue does not appear to negatively affect the relative biases of
parameter estimates (as can be seen in Appendix B, Tables 3 and 4), coverage prob-
ability for detection probability p and random effect mean μa is negatively impacted
(AppendixD). In the samemodels,we see larger coverage for N . This is to be expected,
and is due to zero counts being perfectly predicted.

Previous works have demonstrated that N-mixture models can sometimes suffer
from issues with identifiability (Dennis et al. 2015) wherein probability of detection
estimates are very close to zero and abundance estimates are infinite. To address this
issue, we have performed extensive simulation studies, detailed in Appendix B, in
which we assess the estimates of abundance and detection probability for a large
range of sample sizes, detection probabilities, abundance sizes, and in the case of the
Hurdle and Hurdle-AR models, zero-count probabilities. The result was a simulation
study which demonstrated no evidence that this modelling framework suffers from
these identifiability issues.

The models presented here all use the Poisson distribution to model the latent
abundances. However, any other count distributionmight instead be used, for example,
the Negative Binomial. Our calculations for the analytic correlations, however, reflect
only the use of the Poisson distribution.

Case study results reveal that the difference in BIC values between the model with
the lowest BIC value (Hurdle(C) with covariates) and the model with the second-
lowest BIC value (Hurdle-AR(C) without covariates) is 223. This sizeable difference
in BIC values suggests that the Hurdle(C) model with covariates provides a better fit
than the Hurdle-AR(C) model without covariates.

Case study detection probability values range from 0.047 (Tree Swallow) to 0.564
(Swainson’s Thrush). Estimates of the maximum latent abundance N per species are
provided in Appendix C, which reveals that while N-mixture models occasionally
suffer from identifiability issues as described above, this does not appear to be an
issue for this case study.

The estimates for Bald Eagle abundance produced by this model are plotted by site
and year in Fig. 3. Of the 94 possible sites in Alaska, the Bald Eagle population is
concentrated at 18 sites at the southeastern coast, along a 300-mile stretch of islands
called the Alexander Archipelago. Examination of this figure suggested a possible
increase in Bald Eagle abundance in this area between 2010 and 2019. The mean
abundance was calculated per year (Fig. 4), and a one-sidedMann-Kendall test (Mann
1945; Kendall 1948) for an increasing trend in time series data was performed. The
result of this was a Kendall’s τ value of 0.6 and a p-value of 0.0082, indicating that
it was appropriate to reject the null hypothesis that no increasing trend exists. We can
therefore conclude that Bald Eagle abundances increased in the area of the Alexander
Archipelago in the decade between 2010 and 2019.

In the models that contain an autoregressive component, we obtain separate
Corr(Ns, Ns′) per year. As a feature ofmodel formulation, the correlation between two
species does not change sign from year to year. We can accommodate a change in sign
by allowing for an unstructured covariance matrix of the autocorrelation coefficient
�φ , and this particular extension is subject of ongoing work. Furthermore, the models
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Fig. 3 Estimated Bald Eagle abundances at sites in the Alexander Archipelago, produced by the Hurdle(C)
model fitted to the NABBS data

Fig. 4 Annual mean abundance for Bald Eagles in the Alexander Archipelago, estimated by the Hurdle(C)
model fitted to the NABBS data. The light-blue ribbon represents the 95% credible interval for the mean

presented in this paper assume that sites are independent of one another. A further
extension we are currently working on is the incorporation of spatial dependence.
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A Analytic correlations

In this section, we present the analytical expressions for the correlation between the
latent abundances (Ns and Ns′ ) for all s �= s′ for the MNM model. For convenience
of notation, we drop the dependence on i and t , Ys = ({Yits}), Ns = ({Nis}), ps =
({pits}), λs = ({λis}). We need the expectation, variance and covariance of the log-
normally distributed λs , which are given by

E(λs) = eμs+ 1
2�ss ,

Var(λs) = eμs+μs+ 1
2 (�ss+�ss )(e�ss − 1)e2μs+�ss (e�ss − 1),

Cov(λs, λs′) = eμs+μs′+ 1
2 (�ss+�s′s′ )(e�ss′ − 1).

123

https://www.sciencebase.gov/catalog/item/52b1dfa8e4b0d9b325230cd9
https://www.sciencebase.gov/catalog/item/52b1dfa8e4b0d9b325230cd9
https://github.com/niamhmimnagh/MNM
https://github.com/niamhmimnagh/MNM
http://creativecommons.org/licenses/by/4.0/


Environmental and Ecological Statistics

where μ = μa + xiμβ and � = �a + x2i �β . As Ns ∼ Poisson(λs) and Ys ∼
Binomial(Ns, ps), we can write the conditional expectation and variance directly:

E(Ns | λs) = Var(Ns | λs) = λs,

Var(Ys | Ns) = Ns ps(1 − ps).

The unconditional expectation and variance of Ns , and the unconditional covariance
between Ns and Ns′ , can be derived using the laws of total expectation, variance and
covariance as follows:

E(Ns) = Eλs (ENs (Ns | λs)) = Eλs (λs) = eμs+ 1
2�ss .

Var(Ns) = Eλs (VarNs (Ns | λs)) + Varλs (ENs (Ns | λs))

= Eλs (λs)Varλs (λs) = eμs+ 1
2�ss + e2μs+�ss (e�ss − 1).

Cov(Ns , Ns′) = Eλsλs′ (Cov(Ns , Ns′ | λs , λs′) + Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′)).

We assume that, given the correlated effects a, the latent and observed abundances are
independent, which means that Cov(Ns, Ns′ | λs, λs′) = 0. So,

Cov(Ns, Ns′) = Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′)),

= Cov(λs, λs′) = eμs+μs′+ 1
2 (�ss+�s′s′ )(e�ss′ − 1),

= (eμs+ 1
2�ss )(eμs′+ 1

2�s′s′ )(e�ss′ − 1) = E(Ns)E(Ns′)(e
�ss′ − 1).

The correlations between Ns and Ns′ can be estimated in a similar way for the other
models presented in this paper. The models with a hurdle component require the use
of Hurdle-Poisson E(Ns | λs) and Var(Ns | λs), which results in the need for an
approximation of E(Ns) and Var(Ns) and Cov(Ns, Ns′) based on quadratic Taylor
expansions. Correlations for models with an autoregressive component follow the
same form as the MNM model, with the following substitution for λ

λs ∼ MVLN(eμi+ 1
2�i i , (eμi+μ j+ 1

2 (�i i+� j j ))(e�i j − 1)),

where

μ = μa + xiμβ + log(Ni,k−1,s + 1)μφ and

� = �a + x2i �β + log(Ni,k−1,s + 1)2�φ.

B Simulation study

In this section, we describe the simulation studies which were used to determine the
accuracy of the estimates produced by the multi-species N-mixture models.

To determine if ourmodelling framework produces accurate estimates at contrasting
sample sizes, a series of simulations were run in which we varied the number of sites,
R ∈ {10, 100}, the number of sampling occasions, T ∈ {5, 10}, and the number
of species observed, S ∈ {5, 10}. Within these simulations, we varied the detection
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probability p, and the mean number of individuals per site λ. Small values for p lay
between 0.1 and 0.4, while large values for p lay between 0.5 and 0.9. Small values
for λ had a median value of 7 and standard deviation of 10, while large values for λ

had a median value of 55 and standard deviation of 74.
In the case of the Hurdle and Hurdle-AR models, we also varied the probability

of a zero-count occurring, θ ∈ {0.2, 0.7}. For each combination of parameters, we
simulated 100 datasets and estimated N , �a , and p. We also estimated values for θ

and φ, in the case of the Hurdle and AR models, respectively. Relative mean bias was
calculated for the estimated probability of obtaining a zero count θ̂ , autocorrelation
coefficient φ̂, probability of detection p, and mean of the abundance random effects
μa . The smaller the value for relative bias, the closer to the true value our estimated
parameters were. We compared N̂ to N using the concordance correlation coefficient
(Lin 1989), which is given by the formula:

ρc = 2ρσ̂σ

σ̂ 2 + σ 2 + (μ̂ − μ)2
,

where ρ is Pearson’s correlation coefficient, σ and μ are the standard deviation and
mean of the true values of N , and σ̂ and μ̂ are the standard deviation and mean of the
estimated values of N . The Pearson correlation coefficient is a measure of the strength
of a linear association between two variables. However, the Pearson correlation is
invariant under changes in location and scale. If two variables exhibit a linear relation-
ship, but are very different in terms of their location or scale, the Pearson correlation
coefficient will not reveal this. The concordance correlation coefficient, however, does
take into account differences in location and scale. For this reason, the concordance
correlation coefficient was chosen as a measure of the linear relationship between the
true abundance and estimated abundance, rather than the Pearson correlation coeffi-
cient. The higher the value of the concordance correlation coefficient, the closer our
estimates for N were to the true values.

We compared our estimated correlationmatrix to the true value using the correlation
matrix distance (Herdin et al. 2005), which is given by the following formula:

CMD(X1,X2) = 1 − tr(X1X2)

‖X1‖ f ‖X2‖ f
,

where X1 and X2 are two correlation matrices, tr(X1X2) is the trace of the product of
these two matrices, and ‖.‖ f denotes the Frobenius norm.

Additionally, the coverage probabilities for each parameter were determined as the
proportion of simulations in which the 50% credible interval contained the true param-
eter value. We expect that approximately 50% of the time, the estimated 50% credible
interval for the parameter will contain the true value of that parameter (Appendix D).
Each of these scenarios were simulated 100 times. All data was simulated using the R
statistical software version 4.0.2 (R Core Team 2020b), and all Bayesian models were
implemented using the R2jags package (Su and Yajima 2020).
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B.1 Simulation study results

The results of the small-scale simulation study, which was composed of data simulated
for five species at 10 sites, over five years, is shown in Table 3. The results of the large-
scale simulation study, which contained 10 species, 100 sites and 10 years, is shown
in Table 4.

B.1.1 MNMmodel

The large-scale simulation study (Table 4) produced reliable estimates for latent abun-
dance N at every combination of p and λ, with CCC values between 0.97 and 0.99.
Estimates of N from the small-scale simulation study (Table 3) appear more depen-
dent on the detection probability p, with greater CCC values associated with larger
detection probabilities.

From Table 4, the relative bias for the estimate of p shows that when R, T and
S are large, the model produces estimates for p which are accurate to two decimal
places. When, R, T and S are small (Table 3), the relative bias for the estimate of p
is larger for small median p. When R, T and S are small, larger values of p produce
more reliable estimates of p.

Estimates for the correlation matrix andμa improve with larger values of λ. In both
Tables 3 and 4, the relative bias for μa and the CMD decrease when λ is larger. Larger
values of R, T and S produce more accurate estimates of the inter-species correlations
and μa , as can be seen by the decrease in the sizes of the CMD and RB(μa) between
Tables 3 and 4.

Coverage probabilities (Appendix D) for this model reveal that both small- and
large-scale simulations produce parameters whose true value lie within the 50% cred-
ible interval approximately 50% of the time, as expected.

B.1.2 Autoregressive model

Atboth small- (Table 3) and large-scale simulations (Table 4), the autoregressivemodel
produced reliable estimates for N , with CCC values above 0.9 for all simulations. Both
the Tables 3 and 4 see CMD values accurate to two decimal places. Relative bias for
p decreases as median p increases. This can be seen for both small (Table 3) and
large (Table 4) values of R, T , and S. In Table 3, relative bias for the autocorrelation
coefficient φ is much larger for small abundance. In this situation, the estimates for
the autocorrelation coefficient φ cannot be relied upon. This is an issue that persists,
though not as severely, as R, T and S increase in Table 4.

All parameters in this model have coverage probabilities of approximately 50%, as
is expected for the 50% credible intervals (Appendix D).

B.1.3 Hurdle model

Similar to theMNMmodel, when R, T and S are large (Table 4), consistently accurate
estimates of latent abundance N are produced, with CCC values between 0.948 and
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Table 3 Results of small-scale simulation ((R, T , S, K ) = (10, 5, 5, 5)): Concordance Correlation Coeffi-
cient (CCC) for the estimates of latent abundance N , Correlation Matrix Distance (CMD) for the estimate
of the inter-species correlations, and relative biases for probability of detection (p), probability of obtaining
a zero count (θ ), and autocorrelation coefficient (φ)

Median p Median λ θ CCC CMD RB(p) RB(μa ) RB(θ ) RB(φ)

MNM

0.3 7 – 0.7871 0.1037 0.2512 0.1269 – –

0.3 55 – 0.8689 0.0641 0.2256 0.0554 – –

0.8 7 – 0.9847 0.0768 0.0612 0.0379 – –

0.8 55 – 0.9878 0.0522 0.0579 0.013 – –

Hurdle

0.3 7 0.2 0.772 0.146 0.437 0.2499 0.241 –

0.3 7 0.7 0.808 0.196 0.418 0.3485 0.116 –

0.3 55 0.2 0.799 0.081 0.418 0.1065 0.191 –

0.3 55 0.7 0.816 0.152 0.469 0.1194 0.134 –

0.8 7 0.2 0.96 0.114 0.071 0.1385 0.242 –

0.8 7 0.7 0.928 0.167 0.094 0.1923 0.13 –

0.8 55 0.2 0.927 0.074 0.085 0.0712 0.201 –

0.8 55 0.7 0.946 0.125 0.103 0.0811 0.114 –

AR

0.3 7 – 0.9475 0.0638 0.1529 0.14 – 1.9807

0.3 55 – 0.9818 0.0515 0.1479 0.0663 – 0.0515

0.8 7 – 0.999 0.0652 0.0153 0.1149 – 1.8982

0.8 55 – 0.9999 0.0598 0.0168 0.0538 – 0.0598

Hurdle-AR

0.3 7 0.2 0.9227 0.0602 0.1919 0.1475 0.1145 2.758

0.3 7 0.7 0.8899 0.1262 0.3228 0.2084 0.0329 12.365

0.3 55 0.2 0.9716 0.0709 0.1866 0.0752 0.0959 0.649

0.3 55 0.7 0.9223 0.0918 0.3575 0.0941 0.0356 4.206

0.8 7 0.2 0.994 0.0718 0.0386 0.1183 0.1024 2.088

0.8 7 0.7 0.974 0.0972 0.0787 0.1457 0.0316 6.459

0.8 55 0.2 0.9977 0.0636 0.0355 0.0497 0.1112 0.419

0.8 55 0.7 0.9322 0.1101 0.0986 0.0775 0.0308 5.505

0.999. In Table 3 we see that CCC values depend more on the detection probability,
with more accurate estimates of N produced when detection probability is high. Both
Tables 3 and 4 show higher accuracy in estimates of the inter-species correlations
when zero-inflation is small, and abundance is large. CMD values are greater when
θ = 0.7 or median λ = 7 than for θ = 0.2 or median λ = 55. From both Tables 3
and 4, the Hurdle model sees much smaller relative bias for p when median p is large
compared to when median p is small. Relative bias for θ decreases when θ increases,
indicating that θ is estimated with more accuracy when zero-inflation is large. Table 4
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Table 4 Results of large-scale simulation ((R, T , S, K ) = (100, 10, 10, 10)): Concordance Correlation
Coefficient (CCC) for the estimates of latent abundance N , Correlation Matrix Distance (CMD) for the
estimate of the inter-species correlations, and relative biases for probability of detection (p), probability of
obtaining a zero count (θ ), and autocorrelation coefficient (φ)

Median p Median λ θ CCC CMD RB(p) RB(μa ) RB(θ ) RB(φ)

MNM

0.3 7 – 0.9735 0.0315 0.0661 0.0163 – –

0.3 55 – 0.9902 0.0197 0.0613 0.0100 – –

0.8 7 – 0.9972 0.0260 0.0162 0.0104 – –

0.8 55 – 0.9990 0.0176 0.0171 0.0041 – –

Hurdle

0.3 7 0.2 0.9530 0.0490 0.1830 0.0881 0.0580 –

0.3 7 0.7 0.9480 0.1930 0.2780 0.1310 0.0160 –

0.3 55 0.2 0.9640 0.0220 0.1920 0.0420 0.0610 –

0.3 55 0.7 0.9280 0.1520 0.4620 0.0879 0.0150 –

0.8 7 0.2 0.9970 0.0410 0.0190 0.0389 0.0580 –

0.8 7 0.7 0.9970 0.1790 0.0330 0.0569 0.0150 –

0.8 55 0.2 0.9990 0.0230 0.0240 0.0180 0.0460 –

0.8 55 0.7 0.9990 0.2060 0.0340 0.0546 0.0130 –

AR

0.3 7 – 0.9923 0.0174 0.0500 0.0443 – 0.2799

0.3 55 – 0.9971 0.0182 0.0469 0.0192 – 0.0802

0.8 7 – 0.9997 0.0182 0.0044 0.0320 – 0.2433

0.8 55 – 0.9999 0.0204 0.0054 0.0160 – 0.0704

Hurdle-AR

0.3 7 0.2 0.9937 0.0200 0.0567 0.0417 0.0248 0.2690

0.3 7 0.7 0.9892 0.0257 0.0679 0.0535 0.0109 0.4340

0.3 55 0.2 0.9779 0.0143 0.0662 0.0223 0.0276 0.0690

0.3 55 0.7 0.9678 0.0168 0.0943 0.0258 0.0128 0.1090

0.8 7 0.2 0.9994 0.0178 0.0078 0.0335 0.0227 0.3150

0.8 7 0.7 0.9992 0.0241 0.0096 0.0371 0.0123 0.3960

0.8 55 0.2 0.9967 0.0187 0.0136 0.0158 0.0245 0.0490

0.8 55 0.7 0.9976 0.0166 0.0179 0.0180 0.0179 0.1120

sees smaller relative bias for θ than Table 3, revealing that the strength of zero-inflation
θ is estimated more accurately when R, T and S are large.

Issues with parameter convergence were encountered when fitting the Hurdle
model. When zero-inflation and abundance are large, and detection probability is
small, issues with convergence occurred in up to 20% of parameters. While this con-
vergence issue does not appear to negatively affect the relative biases of parameter
estimates, as can be seen in Tables 3 and 4, coverage probability for detection prob-
ability p and random effect mean μa is negatively impacted (Appendix D). We also
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see coverage for N which is larger than 50%. This is to be expected, and due to zero
counts being perfectly predicted.

B.1.4 Hurdle-autoregressive model

In Table 3, CCC values demonstrate that the Hurdle-ARmodel produces estimates for
N which are more accurate when the probability of obtaining a zero count is smaller.
However, increasing R, T , and S (Table 4) reduces this dependence on θ , and all CCC
values produced are greater than 0.95.

The small-scale simulation (Table 3) has CMD values and relative biases for p and
μa which increase when the probability of obtaining a zero count increases, indicating
that the inter-species correlations, p and μa are estimated more accurately when the
degree of zero-inflation is low. The same is true for the large-scale simulation (Table 4),
though the differences in CMD and relative biases between small θ and large θ are not
as large, revealing that the increase in R, T and S renders the increase in zero-inflation
less important in the estimation of these parameters.

TheHurdle-ARmodel sufferswith the same issue estimatingφ when the probability
of obtaining a zero count is high. This issue is more severe in Table 3, and estimates of
φ cannot be trusted when R, T and S are small but θ is large. Like the AR model, this
issue is not as acute in Table 4, as an increase in R, T and S appears to compensate
for the problems caused by large zero-inflation.

C Estimated abundances

In this section, we provide a comparison of the maximum observed abundance with
the maximum abundance estimated from the Hurdle(C) Model, fitted to the NABBS
data.

Table 5 Maximum observed
and estimated abundances per
species, produced by the
Hurdle(C) model

Species Max. Y Max. N

Bald Eagle 29 39

Canada Goose 24 46

Hammond’s Flycatcher 4 10

Red-breasted Sapsucker 4 22

Steller’s Jay 6 14

Swainson’s Thrush 12 71

Tree Swallow 50 53

Trumpeter Swan 38 39

Varied Thrush 21 70

Wilson’s Snipe 6 43
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D Coverage probabilities

Table 6 Proportion of
small-scale simulations
((R, T , S, K ) = (10, 5, 5, 5)) in
which the true parameter value
lies within the estimated 50%
credible interval

True Median Value Coverage

p λ θ N � p μa θ φ

MNM

0.3 7 – 0.55 0.53 0.49 0.49 – –

0.3 55 – 0.49 0.51 0.48 0.45 – –

0.8 7 – 0.56 0.52 0.47 0.54 – –

0.8 55 – 0.52 0.52 0.51 0.58 – –

Hurdle

0.3 7 0.2 0.61 0.57 0.45 0.52 0.54 –

0.3 7 0.7 0.72 0.60 0.47 0.50 0.6 –

0.3 55 0.2 0.59 0.51 0.49 0.51 0.45 –

0.3 55 0.7 0.70 0.52 0.51 0.52 0.50 –

0.8 7 0.2 0.64 0.51 0.53 0.51 0.42 –

0.8 7 0.7 0.73 0.55 0.53 0.55 0.54 –

0.8 55 0.2 0.60 0.52 0.52 0.52 0.53 –

0.8 55 0.7 0.69 0.56 0.46 0.56 0.54 –

AR

0.3 7 – 0.59 0.53 0.54 0.52 – 0.52

0.3 55 – 0.53 0.54 0.53 0.49 – 0.45

0.8 7 – 0.54 0.51 0.52 0.48 – 0.50

0.8 55 – 0.52 0.52 0.51 0.49 – 0.47

Hurdle-AR

0.3 7 0.2 0.66 0.54 0.54 0.56 0.42 0.47

0.3 7 0.7 0.85 0.53 0.51 0.56 0.46 0.46

0.3 55 0.2 0.62 0.49 0.50 0.51 0.52 0.49

0.3 55 0.7 0.84 0.51 0.52 0.50 0.48 0.50

0.8 7 0.2 0.66 0.52 0.55 0.50 0.54 0.51

0.8 7 0.7 0.87 0.51 0.46 0.47 0.54 0.50

0.8 55 0.2 0.63 0.52 0.58 0.49 0.48 0.48

0.8 55 0.7 0.84 0.52 0.47 0.50 0.54 0.41
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Table 7 Proportion of
large-scale simulations
((R, T , S, K ) =
(100, 10, 10, 10)) in which the
true parameter value lies within
the estimated 50% credible
interval

True median value Coverage

p λ θ N � p μa θ φ

MNM

0.3 7 – 0.55 0.53 0.46 0.50 – –

0.3 55 – 0.49 0.52 0.45 0.47 – –

0.8 7 – 0.52 0.52 0.49 0.43 – –

0.8 55 – 0.51 0.53 0.50 0.42 – –

Hurdle

0.3 7 0.2 0.61 0.53 0.38 0.39 0.43 –

0.3 7 0.7 0.84 0.54 0.37 0.38 0.51 –

0.3 55 0.2 0.51 0.54 0.36 0.36 0.46 –

0.3 55 0.7 0.78 0.55 0.30 0.25 0.54 –

0.8 7 0.2 0.62 0.51 0.53 0.52 0.44 –

0.8 7 0.7 0.85 0.53 0.51 0.51 0.57 –

0.8 55 0.2 0.61 0.55 0.49 0.48 0.58 –

0.8 55 0.7 0.85 0.56 0.50 0.41 0.6

AR

0.3 7 – 0.58 0.56 0.48 0.45 – 0.48

0.3 55 – 0.52 0.50 0.51 0.52 – 0.51

0.8 7 – 0.52 0.53 0.48 0.51 – 0.52

0.8 55 – 0.49 0.47 0.53 0.47 – 0.46

Hurdle-AR

0.3 7 0.2 0.66 0.53 0.46 0.53 0.45 0.50

0.3 7 0.7 0.78 0.51 0.50 0.45 0.56 0.52

0.3 55 0.2 0.60 0.56 0.49 0.49 0.40 0.48

0.3 55 0.7 0.74 0.54 0.47 0.52 0.40 0.53

0.8 7 0.2 0.63 0.56 0.47 0.48 0.48 0.45

0.8 7 0.7 0.76 0.53 0.48 0.47 0.44 0.50

0.8 55 0.2 0.59 0.54 0.49 0.49 0.42 0.49

0.8 55 0.7 0.74 0.55 0.41 0.44 0.40 0.50
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