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Enhanced Exploration Least-Squares Methods
for Optimal Stopping Problems
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Abstract—This letter presents an Approximate Dynamic
Programming (ADP) least-squares based approach for solv-
ing optimal stopping problems with a large state space. By
extending some previous work in the area of optimal stop-
ping problems, it provides a framework for their formulation
and resolution. The proposed method uses a combined
on/off policy exploration mechanism, where states are gen-
erated by means of state transition probability distributions
different from the ones dictated by the underlying Markov
decision processes. The contraction mapping property of
the associated projected Bellman operator is analysed as
well as the convergence of the resulting algorithm.

Index Terms—Optimal stopping problem, Markov deci-
sion process, approximate dynamic programming.

I. INTRODUCTION

OPTIMAL stopping problems can be regarded as a specific
class of Markov Decision Processes (MDPs), wherein the

associated system dynamics evolve according to the under-
lying state transition probability distributions until a specific
termination action is used. The theory of optimal stopping
problems concerns the selection of a proper time at which
to perform such termination action with the aim of minimis-
ing expected total costs [1]–[3]. Optimal stopping problems
can be found in various fields, such as statistics and eco-
nomics [1], [4]. The scientific literature presents optimal
stopping problems in both discrete and continuous time,
see [3], [5], [6] for their application to event-triggered control
problems.

Optimal stopping problems can be written in the form of
a Bellman equation, and therefore can be solved by using
Dynamic Programming (DP) based approaches [1], [2]. In
principle, exact DP algorithms (e.g., the Value Iteration) can be
used to solve the related stochastic optimization problem and
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calculate the optimal policy, which gives a mapping between
states and optimal decisions (or control actions) over the whole
time horizon [7]. However, it is well known that such exact DP
algorithms suffer from the so-called curse of dimensionality,
which is due to the state space explosion of real-world appli-
cations, and from the availability of the system model [7], [8].
Such issues also occur for the case of optimal stopping prob-
lems [2]. It is then natural to consider Approximate Dynamic
Programming (ADP) based approaches in order to compute a
suitable approximation to the optimal cost function (the latter
defined as the expected cumulative cost when starting from a
specific state, and then applying the optimal policy [7]). As
for the modeling of the system at hand, we assume either to
have an estimate of the underlying state transition probabil-
ity distributions or a representative system simulator able to
generate states according to them [7].

This letter proposes an ADP least-squares projection based
approach, and as such, it relies on cost function approxi-
mation (via a more compact parametric representation) in
conjunction with Monte Carlo simulations (the latter to solve
the optimality condition associated to the projected Bellman
equation [7], [9]). As known from the literature, ADP least-
squares projection approaches are convergent when states
are sampled with the frequencies natural to the underlying
Markov decision process, which means sampling according to
its invariant probability distribution [10]–[12]. As for optimal
stopping problems, a linear function approximation and an on-
policy sampling mechanism (i.e., system states explored via
the natural frequencies of the underlying Markov process) are
used in [1], [2]. Sampling according to the natural frequencies
of the system can have some drawbacks for the cost function
approximation, since it can bias the Monte Carlo simula-
tions, i.e., states that are less likely to occur by applying such
invariant probability distributions can be disregarded [7], [12].

This letter proposes a novel combined on/off policy explo-
ration based algorithm to solve optimal stopping problems.
After outlining some background in Section II, the paper
addresses the following aspects, which constitutes its main
contributions: (i) the extension of the results presented
in [1], [2] to solve optimal stopping problems via the above-
mentioned on/off policy mechanism, see Sections III and IV;
(ii) the analysis of the contraction mapping property of
the optimal stopping problem Bellman operator w.r.t. some
steady-state probability distributions different from the ones
associated to the system natural frequencies, see Section IV;
(iii) the combined on/off policy exploration based algorithm
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(derived from the Least-Squares Policy Evaluation (LSPE),
see [13], [14]) along with its convergence analysis, see
Section V. An illustrative example is provided in Section VI,
where a comparison of the presented approach with the
on-policy LSPE algorithm [1], [7] is shown. Section VII
concludes the paper.

II. OPTIMAL STOPPING PROBLEMS

An optimal stopping problem can be defined as follows [2].
Let us consider a Markov chain with the state space � =
{1, . . . , n} and transition probabilities pij, where i, j are two
generic states belonging to �. P ∈ R

n×n is defined as the state
transition probability matrix with the associated elements pij.
For any given state i, two actions (or decisions) are foreseen:
either to terminate and incur a positive cost G(i), or to continue
and incur a positive cost g(i) (in a vector form, we have G ∈
R

n+ and g ∈ R
n+, where each element is denoted by G(i) and

g(i), respectively). We consider the situation that there is no
control affecting the actual transition from state i to j.

We define a stopping time τ to be a discrete random vari-
able with non negative integer values and with respect to
the natural filtration of the given stochastic process [1]. To
each stopping time τ , we associate the following cost function
Jτ (i) : � → R+

Jτ (i) = E

[
τ−1∑
t=0

αtg(it) + ατ G(iτ )|i0 = i

]
, (1)

where it denotes the state of the process at time t and 0 <

α < 1 is the discount factor. The optimal stopping time τ ∗
satisfies the expression Jτ∗

(i) = minτ [Jτ (i)], and is given by
(see [1, Th. 1])

τ ∗ = min{t : G(it) ≤ J∗(it)}. (2)

In order to solve such minimization problem, we introduce
the DP operator T for optimal stopping problems [1]

TJ = min{G, g + αPJ}, (3)

where J ∈ R
n+ is the vector with components J(i), with

J(i) : � → R+ being a generic cost function. By assuming
that the Markov chain is irreducible, i.e., P has a unique
steady-state probability vector ξ = (ξ1, . . . , ξn) with positive
components, the operator T becomes a contraction mapping
with modulus α w.r.t. the weighted Euclidean norm ‖·‖ξ , see
Lemma 2 reported in [1]. In particular, for any pair of cost
functions J1, J2 ∈ R

n+, we have∥∥∥TJ1 − TJ2

∥∥∥
ξ

≤ α

∥∥∥J1 − J2

∥∥∥
ξ
. (4)

Being a contraction mapping with modulus α, T has a
unique fixed point J∗, which satisfies the Bellman equation
J∗ = TJ∗ [7]. Such fixed point J∗ is equal to Jτ∗

[1].
Hereinafter, for simplicity, we use J∗ (and J∗(i)) instead of Jτ∗

(and Jτ∗
(i)). The optimal cost function J∗(i) is given by [1]

J∗(i) =
{

G(i), if G(i) ≤ g(i) + α
∑n

j=1 pijJ∗(j)
g(i) + α

∑n
j=1 pijJ∗(j), otherwise. (5)

Note that J∗(i) = G(i) for the states where the stopping
decision is taken. In order to address the curse of dimension-
ality, we can replace the cost function J(i) with a parametric
approximation architecture by using a restricted set of selected

m feature functions. The choice of such parametric approx-
imation architecture is significant for the success of the
approximation approach. One possibility is to use the linear
feature-based approximation (for the case of the continuation
decision),

J̃(i) =
m∑

l=1

rlφl(i), (6)

where rl is the l−th component of a parameter vector r ∈ R
m,

which has to be computed, and φl(i), l ∈ {1, . . . , m}, are the
given feature functions [7]. Thus, for each state i, the approx-
imate value J̃(i) can be written as the inner product φ(i)′r,
where φ(i) = [φ1(i), . . . , φm(i)]′. In matrix form, it is J̃ = �r,
where � ∈ R

n×m is the feature matrix whose rows are set to
φ(i)′. In this letter, we assume the columns of the feature
matrix are linearly independent and m 	 n. In view of the
next sections, the weighted least-squares projection operator
is defined as � = �(�′	�)−1�′	, where 	 ∈ R

n×n is a
diagonal matrix with the components of the steady-state prob-
ability vector ξ on its diagonal. From the contraction property
of T and the non-expansiveness of the projection operator �,
by implication the projected DP operator �T is a contraction
mapping of modulus α w.r.t. the weighted Euclidean norm
‖·‖ξ [1].

III. A PROJECTED ENHANCED EXPLORATION

METHOD FOR MARKOV CHAINS

This section analyses the contraction mapping property of
the following two DP operators

FJ = g + αPJ, (7)

F̄J = g + αP̄J, (8)

where P̄ ∈ R
n×n is an irreducible state transition probability

matrix different from P with the unique steady-state distribu-
tion ξ̄ = (ξ̄1, . . . , ξ̄n). Note that F coincides with the optimal
stopping problem DP operator when the decision to continue
is taken and addresses its underlying Markov chain, while F̄
can be viewed as an enhanced exploration DP operator for
such a Markov chain.

Exploration plays a relevant role in ADP based
approaches [7], [15], [16], when a suitable approxima-
tion to the optimal cost function is computed by using an
approximation architecture for cost functions in conjunction
with Monte Carlo simulations. As for the latter, simulation
trajectories can be generated according to the underlying
irreducible Markov chain to preserve the contraction property
of F w.r.t the weighted Euclidean norm ‖ · ‖ξ [7], [17]. In
the literature this method is often called on policy approach.

However, sampling according to the probability distribution
ξ can bias the Monte Carlo simulation by disregarding states
that are less likely to occur under such probability distribu-
tion. For instance, this can affect the policy improvement step
of the approximate Policy Iteration algorithm [7]. The same
issue can occur when solving approximately optimal stopping
problems. As shown later, the DP operator F determines the
sampling mechanism for optimal stopping problems, since a
new simulation trajectory has to be initialised whenever the
stopping action is taken. Such sampling mechanism can be
enriched by also using the matrix P̄.
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In this letter, we adopt an off-policy based mechanism for
exploration enhancement. The irreducible matrix P̄ is defined
as [7]

P̄ = (I − B)P + BQ, (9)

where B is a diagonal matrix with diagonal components
βi ∈ [0, 1) and Q is another transition probability matrix.1

In this framework, at state i, the next state j is generated with
probability 1 −βi according to transition probabilities pij, and
with probability βi according to transition probabilities qij.
Note that a computer program can be used to generate state
transitions according to P̄. To implement such off-policy based
mechanism, pairs (i, j) with qij > 0 need not correspond to
physically plausible transitions [7].

Since the underlying Markov chain is assumed to be irre-
ducible, the DP operator F is a contraction mapping with
modulus α w.r.t. the weighted Euclidean norm ‖ · ‖ξ , and
thus the corresponding Bellman equation has a fixed point [7].
The same applies to the DP operator F̄, but with the con-
traction mapping referred to ‖ · ‖ξ̄ . Finding the fixed point
of equations (7) and (8) for large scale DP problems can be
impractical due to the curse of dimensionality. This calls for
approximation, e.g., using the linear parametric approximation
architecture along with Monte Carlo simulations.

As for the former, it is important to employ the weighted
least-squares projection operator. Besides the projection oper-
ator � (linked to the on-policy based exploration mechanism,
thus determined by the matrix P), we introduce the following
projection operator (which accounts for the off-policy based
exploration mechanism, thus determined by the matrix P̄)

�̄ = �(�′	̄�)−1�′	̄, (10)

where 	̄ ∈ R
n×n is the diagonal matrix, having ξ̄i (i =

1, . . . , n) along its diagonal. Thanks to the non-expansiveness
of the weighted least-squares projection operators � and �̄,
the projected DP operators �F and �̄F̄ are contraction map-
pings w.r.t ‖·‖ξ and ‖·‖ξ̄ , respectively. Thus, they have a fixed
point satisfying the corresponding projected Bellman equa-
tion [7], i.e., there exists a unique parameter vector r∗ which
satisfies the following (on policy) projected Bellman equation

�r = �F(�r). (11)

Likewise, there exists a unique parameter vector r̄∗ satisfy-
ing the following projected Bellman equation

�r = �̄F̄(�r). (12)

Hereafter, we analyse the contraction mapping property of
the DP operator �̄F to guarantee the existence of the unique
fixed point of the associated (off policy) projected equation

�r = �̄F(�r), (13)

where �̄ is still the projection w.r.t. the norm ‖·‖ξ̄ correspond-
ing to the steady-state distribution ξ̄ of P̄. In Section IV, the
results of this analysis will be applied to the optimal stopping
problem to provide sufficient conditions for the contraction
property of its DP operator T, when using the off-policy explo-
ration mechanism. By extending the result of [10, Lemma 1],
the following lemma shows that the projected operator �̄F is a

1In our case, P̄ is irreducible if P is.

contraction mapping w.r.t. the norm ‖·‖ξ̄ . As a result, the pro-
jected equation (13) has a unique fixed point. The following
proof also provides the interval of values for βi to guarantee
the contraction property of the operators F and �̄F.

Lemma 1: Assume that P̄ is an irreducible state transition
probability matrix and that ξ̄ is its unique steady-state proba-
bility vector with positive components. Then, F and �̄F are
contraction mappings with respect to ‖·‖ξ̄ , and the associated
modulus of contraction is at most equal to ᾱ, where

ᾱ = α/
√

1 − β, with β = max
i=1,...,n

βi. (14)

Proof: For any J ∈ R
n+, we have

∥∥∥αPJ
∥∥∥2

ξ̄
=

n∑
i=1

ξ̄i

⎛
⎝ n∑

j=1

αpijJ(j)

⎞
⎠

2

= α2
n∑

i=1

ξ̄i

⎛
⎝ n∑

j=1

pijJ(j)

⎞
⎠

2

≤ α2
n∑

i=1

ξ̄i

n∑
j=1

pijJ
2(j) ≤ α2

n∑
i=1

ξ̄i

n∑
j=1

p̄ij

1 − βi
J2(j)

≤ α2

1 − β

n∑
j=1

n∑
i=1

ξ̄ip̄ijJ
2(j) = ᾱ2

n∑
j=1

ξ̄jJ
2(j) = ᾱ2

∥∥∥J
∥∥∥2

ξ̄
, (15)

where the first inequality follows from the convexity of the
quadratic function, the second inequality follows from the fact
(1 − βi)pij ≤ p̄ij (see (9)), and the step before the last equal-
ity follows from the property of the steady-state probabilities∑n

i=1 ξ̄ip̄ij = ξ̄j. By using the non-expansiveness of �̄, the def-
inition FJ = g + αPJ and (15), we have ‖�̄FJ1 − �̄FJ2‖ξ̄ ≤
‖FJ1 −FJ2‖ξ̃ = ‖αP(J1 − J2)‖ξ̄ ≤ ᾱ‖J1 − J2‖ξ̄ , for any cost
function J1, J2 ∈ R

n+. Hence both F and �̄F are contractions
of modulus ᾱ with respect to ‖·‖ξ̄ .

Note that the relation β < 1−α2 has to be fulfilled for �̄F
to be a contraction mapping w.r.t. 0 < ᾱ < 1.

Since �̄F is a contraction mapping w.r.t. ξ̄ and by exploiting
the assumption that � has full rank m, it is easy to prove the
following lemma, which extends the [7, Proposition 6.3.1].

Lemma 2: Let the assumptions of Lemma 1 hold, and let
the matrix � be of full rank m. Then, we have∥∥∥JF − �r∗,ξ̄

∥∥∥
ξ̄

≤ 1/(
√

1 − ᾱ2)

∥∥∥JF − �̄JF
∥∥∥

ξ̄
,

where r∗,ξ̄ is the unique solution of the projected Bellman
equation (13) and JF is the fixed point of the mapping F.

Since � is full rank, the unique fixed point of the operator
�̄F can be represented by a unique parameter vector r∗,ξ̄ . By
using (6), the high-dimensional original cost function can be
represented via the lower-dimensional parameter vector r (with
m 	 n). Since all the considered projected DP are contraction
mappings, the associated Bellman equation can be solved by
means of the Projected Value Iteration (PVI) algorithm [7]. As
for the projected DP operator �F (11), the parameter vector
r∗ can be iteratively computed by

r∗
k+1 = arg min

r∈Rm

n∑
i=1

ξi

⎛
⎝φ(i)′r −

n∑
j=1

g(i) + αpijφ(j)′r∗
k

⎞
⎠

2

, (16)

where r∗
k+1 is the approximate value of r∗ computed at the

iteration k of the PVI algorithm (note that the algorithm
starts from k = 0 with an initial guess r0). Since �F is a
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contraction mapping, it follows that the sequence {r∗
k } con-

verges to r∗. Solving each iteration step (16) of the PVI
algorithm implies massive calculation since we have to com-
pute the low-dimensional vector r∗

k by using high-dimensional
calculations (note that two nested summations over n have
to be performed in (16)). To solve this issue, we can use
a Monte Carlo simulation-based implementation of the PVI
iteration (16). The resulting algorithm is called Least-Squares
Policy Evaluation (LSPE), see [7]. More specifically, as for the
projected DP operator �F, the LSPE algorithm implies the
generation of an infinitely long trajectory (i0, i1, . . . ) accord-
ing to the state transition probability matrix P and the update
of r∗

k+1 after each state transition (ik, ik+1). In particular,
the simulation-based PVI iteration step can be expressed as
follows

r∗
k+1 = arg min

r∈Rm

k∑
t=0

(
φ(it)

′r − g(it) − αφ(it+1)
′r∗

k

)2
. (17)

By setting the gradient of (17) to 0, we have

r∗
k+1 =

(
k∑

t=0

φ(it)φ(it)
′
)−1( k∑

t=0

φ(it)
(
g(it) + αφ(it+1)

′r∗
k

))
. (18)

The convergence analysis of the LSPE method can be found
in [14], [17]. In Section V, an LSPE based algorithm for
optimal stopping problems is presented, where samples are
collected by applying a combined on/off policy exploration
approach. Before describing this algorithm, it is necessary to
investigate the contraction mapping property of the optimal
stopping problem operator T (and its projected operator �T)
w.r.t. the enhanced exploration steady-state distribution ξ̄ .

IV. THE ENHANCED EXPLORATION DP OPERATOR FOR

OPTIMAL STOPPING PROBLEMS

In this section, we analyse the contraction mapping property
of the operator T w.r.t. the steady-state probability distribution
ξ̄ of the enhanced exploration transition probability matrix P̄
given by (9) in order to verify the existence of the fixed point
of the enhanced exploration projected Bellman equation

�r = �̄T(�r). (19)

By using the results provided by the previous section, the
following theorem can be proved.

Theorem 1: Assume that the enhanced exploration matrix
P̄ is an irreducible state transition probability matrix. Then,
the optimal stopping problem DP operator T is a contraction
mapping with respect to ‖·‖ξ̄ , with the modulus of contraction
at most equal to ᾱ (see (14)).

Proof: For any two cost functions J1, J2 ∈ R
n+ evaluated at

a given state i and by applying the DP operator T (3), we can
have the following three cases: 1) If we decide to continue for
both cost functions, it is

∣∣(TJ1)(i) − (TJ2)(i)
∣∣ = α

∣∣ n∑
j=1

pij(J1(j) − J2(j))
∣∣

= ≤ α

n∑
j=1

pij
∣∣J1(j) − J2(j)

∣∣.

2) If we decide to stop for both cost functions, it is

∣∣(TJ1)(i) − (TJ2)(i)
∣∣ = G(i) − G(i) ≤ α

n∑
j=1

pij
∣∣J1(j) − J2(j)

∣∣.
3) If we decide to stop for J1 and to continue for J2 (or vice-
versa), it is

∣∣(TJ1)(i) − (TJ2)(i)
∣∣ = ∣∣G(i) −

⎛
⎝g(i) + α

n∑
j=1

pijJ2(j)

⎞
⎠∣∣

= ≤ α
∣∣ n∑

j=1

pijJ1(j) −
n∑

j=1

pijJ2(j)
∣∣ ≤ α

n∑
j=1

pij
∣∣J1(j) − J2(j)

∣∣,
where, as for the first inequality, we have exploited the defi-
nition of the optimal stopping problem operator (3) to replace
G(i) with g(i) + α

∑n
j=1 pijJ1(j).

Thus, for all the three cases, we can write in vector notation
|TJ1 − TJ2| ≤ αP|J1 − J2|, where |J1 − J2| denotes a vector
whose components are the absolute values of the components
of J1−J2. By using the fact that, given any two vectors X ∈ R

n

and Y ∈ R
n with components X(i) and Y(i) such that |X(i)| ≤

|Y(i)|, ∀i = 1, . . . , n, it is ‖X‖ ≤ ‖Y‖,2 then we can write∥∥∥TJ1 − TJ2

∥∥∥
ξ̄

≤ α

∥∥∥P(J1 − J2)

∥∥∥
ξ̄

≤ ᾱ

∥∥∥J1 − J2

∥∥∥
ξ̄
,

where the last inequality follows from the relation α‖PJ‖ξ̄ ≤
ᾱ‖J‖ξ̄ , see the proof of Lemma 1.

From Theorem 1 and Lemma 2, the next result follows.
Corollary 1: Since T is a contraction with respect to ‖·‖ξ̄

(with the modulus of contraction at most equal to ᾱ) and the
projection operator �̄ is non-expansive, the mapping �̄T is
also a contraction with respect to ‖·‖ξ̄ with the modulus of
contraction ᾱ. Moreover, we have∥∥∥J∗ − �r∗,ξ̄

∥∥∥
ξ̄

≤ 1/(
√

1 − ᾱ2)

∥∥∥J∗ − �̄J∗
∥∥∥

ξ̄
, (20)

where J∗ is given by (5) and �r∗,ξ̄ = �̄T(�r∗,ξ̄ ).
The relation (20) provides a bound for the expected error

between the optimal cost function J∗ and its feature-based
approximate value J̃ = �r∗,ξ̄ . For simplicity we denote with
the same notation r∗,ξ̄ the fixed points of both the explo-
ration enhanced projected Bellman operators �̄T and �̄F
(such fixed points are generally different since the opera-
tor F does not apply the termination action). Moreover, no
approximation onto the feature subspace is needed in case
J∗(i) = G(i), see (5). Since J∗(i) cannot be computed
for optimal stopping problems with a large state space, we
simply set the approximate cost function to G(i) whenever
J̃(i) = φ(i)′r∗,ξ̄ ≥ G(i).

V. THE LSPE BASED ALGORITHM FOR SOLVING

OPTIMAL STOPPING PROBLEMS

This section presents the LSPE based algorithm for
addressing optimal stopping problems. This algorithm solves
approximately the enhanced exploration projected Bellman
equation (19) by generating multi-trajectories Monte Carlo
simulations with a combined on/off policy sampling mech-
anism.

2This property holds for the any weighted Euclidean norm ‖·‖ξ , see [1].
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Being �̄T a contraction mapping, the associated Bellman
equation (19) can be solved by means of the PVI algorithm [7].
So as in Section III, the fixed point r∗,ξ̄ can be computed by
applying iteratively

r∗,ξ̄
k+1 = arg min

r∈Rm

n∑
i=1

ξ̄i

×
(
φ(i)′r + −g(i) − α

n∑
j=1

pij min
{

G(j), φ(j)′r∗,ξ̄
k

})2

, (21)

where r∗,ξ̄
k+1 is the approximate value of r∗,ξ̄ computed at the

iteration k of the PVI algorithm. Note that (21) only shows the
case when a decision to continue is taken. In case of stopping
for a state i, its related term in the summation becomes φ(i)′r−
G(i).

Thanks to the contraction mapping of the operator �̄T,
the sequence {r∗,ξ̄

k } converges to r∗,ξ̄ . However, solving each
iteration step (21) of the PVI algorithm can imply massive
calculations. To address this issue, we can apply an LSPE
based algorithm to the (21). In particular, instead of produc-
ing a long trajectory, we can generate a sequence of states
{i0, i1, . . . } according to the enhanced exploration steady-
state probability distribution ξ̄ , and a sequence of transitions
{(i0, j0), (i1, j1), . . . } with probabilities pij. As a result, we
have a multi-trajectory algorithm, with the length of each tra-
jectory set to 1. From the sequence of state transitions (it, jt),
we can formulate the following least square minimization
problem at each step k

r∗,ξ̄
k+1 = arg min

r∈Rm

k∑
t=0

(
φ(it)

′r − g(it) − α min
{
G(jt), φ(jt)

′r∗,ξ̄
k

})2
,

whose solution is

r∗,ξ̄
k+1 =

∑k
t=0 φ(it)

(
g(it) + α min

{
G(jt), φ(jt)′r∗,ξ̄

k

})
∑k

t=0 φ(it)φ(it)′
. (22)

Note that (21) and (22) use the same notation for the com-
puted parameter vector. The update of the parameter vector
r∗,ξ̄

k is skipped when the stopping decision has to be taken for
the transition (ik, jk) since the approximate cost function for
the sampled state ik can be set to G(ik). In other words, the
transition (ik, jk) is discarded, and the algorithm selects for
the current iteration k another state sampled according to the
enhanced exploration probability distribution ξ̄ .

A. Convergence Analysis

The convergence analysis of the proposed algorithm has
been derived from [2] by extending its results to the off-
policy sampling mechanism case. At each step k, the iteration
formula (22) can be replaced by

r∗,ξ̄
k+1 =

∑n
i=1

ˆ̄ξk,iφ(i)
(

g(i) + αp̂k,ij min
{

G(j), φ(j)′r∗,ξ̄
k

})
∑n

i=1
ˆ̄ξk,i φ(i)φ(i)′

, (23)

where the following two elements are used

ˆ̄ξk,i =
∑k

t=0 δ(it = i)

k + 1
, p̂k,ij =

∑k
t=0 δ(it = i, jt = j)∑k

t=0 δ(it = i)
. (24)

In a more compact form, we have �r∗,ξ̄
k+1 = ˆ̄�kT̂k(�r∗,ξ̄

k ),

where the mappings ˆ̄�k and T̂k are simulation-based approx-
imations to �̄ and T, and can expressed as follows

ˆ̄�k = �(�′ ˆ̄	k�)−1�′ ˆ̄	k,
ˆ̄	k = diag(. . . , ˆ̄ξk,i, . . . ), (25)

T̂kJ = g + αP̂k min{G, J}, ∀J ∈ R
n+. (26)

Thanks to the ergodicity of the involved Markov chain, as
we proceed in the simulation, we have ˆ̄ξk,i → ξ̄i, ˆ̄ξk → ξ̄ ,
p̂k,ij → pij, see [13], [14]. Moreover, we have the following
facts [2]:

1) For any ε > 0 and a sample trajectory with converging
sequences ˆ̄ξk, there exists a time k̄ such that for all k > k̄

1/(1 + ε) ≤ ˆ̄ξi/ξ̄i ≤ (1 + ε), ∀i. (27)

2) When (27) holds, then for any J ∈ R
n+, for all k > k̄

it is ∥∥∥J
∥∥∥

ξ̄
≤ (1 + ε)

∥∥∥J
∥∥∥ ˆ̄ξk

. (28)

By extending the proof of [2, Lemma 2] to the off-policy
sampling mechanism, it is easy to prove the following lemma.

Lemma 3: Let ˆ̄α ∈ (ᾱ, 1). Then, with probability 1, ˆ̄�kT̂k
is a ‖·‖ξ̄ contraction with modulus ˆ̄α for all k sufficiently large.

In particular, by letting ε be such that (1 + ε)2ᾱ < ˆ̄α < 1,
it is possible to see that ˆ̄�kT̂k is a ‖·‖ξ̄ contraction mapping
with modulus ˆ̄α for all k sufficiently large.

Theorem 2: The parameter vector r∗,ξ̄
k computed by (22)

converges to r∗,ξ̄ with probability 1.
Proof: We select k̄ such that, for all k ≥ k̄, the contraction

mapping property of Lemma 3 applies. For all such k, it is∥∥∥�r∗,ξ̄
k+1 − �r∗,ξ̄

∥∥∥
ξ̄

=
∥∥∥ ˆ̄�kT̂k(�r∗,ξ̄

k ) − �̄T(�r∗,ξ̄ )

∥∥∥
ξ̄

=
∥∥∥ ˆ̄�kT̂k(�r∗,ξ̄

k ) + ˆ̄�kT̂k(�r∗,ξ̄ ) − ˆ̄�kT̂k(�r∗,ξ̄ ) − �̄T(�r∗,ξ̄ )

∥∥∥
ξ̄

≤ ˆ̄α
∥∥∥�r∗,ξ̄

k − �r∗,ξ̄
∥∥∥

ξ̄
+ εk,

where εk =
∥∥∥ ˆ̄�kT̂k(�r∗,ξ̄ ) − �̄T(�r∗,ξ̄ )

∥∥∥
ξ̄
. Since∥∥∥ ˆ̄�kT̂k(�r∗,ξ̄ ) − �̄T(�r∗,ξ̄ )

∥∥∥
ξ̄

→ 0, we have εk → 0.

Moreover, since ˆ̄α < 1, we have that �r∗,ξ̄
k → �r∗,ξ̄ (or

equivalently, r∗,ξ̄
k → r∗,ξ̄ ).

VI. AN ILLUSTRATIVE EXAMPLE

In this section, the resource allocation problem formulation
presented in [15], [16] is tailored to model an urban parking
lot management system as an optimal stopping problem. Let
us consider a car factory storing its products into a parking
lot before sending them to its car dealer group. The parking
lot manager selects a price cl, l = 1, . . . , h, among h possible
choices. The car factory can hold the allocated spot to the nec-
essary extent with the proposed price, and only one spot can
be allocated at each time slot. The time slot duration is chosen
so that, for each price cl, at most one allocated spot can be
released. By denoting with il the number of cars in the parking
lot associated to the price cl, we can define the generic state of
the MDP associated to the parking lot as i = [i1, i2, . . . , ih]′.
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Fig. 1. Evolution of r∗,ξ̄

k components in on/off policy LSPE.

The car factory can either continue to use and request for a
spot and incur a positive cost g(i) = ∑h

l=1 clil or terminate and
incur a positive cost G(i). We assume the termination cost is
the same for all states i, i.e., G(i) = 120$. As for the linear
feature-based approximation, we define the m = 1 + h feature
functions as φ1(i) = 1, φl(i) = il−1, l = 2, . . . , m. With a
parking capacity N = 10, a number of prices h = 3, the car-
dinality of the state space is n = 286 (see [16] for modeling
details). We set the price vector c = [0.9 1 1.1]′, the discount
factor α = 0.95 and β = 0.00353 to satisfy the condition
β < 1 − α2. By using the proposed on/off policy LSPE based
algorithm, we can compute the approximate parameter vec-
tor r∗,ξ̄

k . The convergence is reached after 4000 iterations (see
Fig. 1), and the computed approximate parameter vector value
is r∗,ξ̄

4000 = [44.9 8.9 9.8 9.1]′. This value can be used to gen-

erate the stopping time τ̃off = min{t|G(it) ≤ (�r∗,ξ̄
4000)(it)}.

In particular, we set 1000 experiments of 100 time slots in
length to simulate our parking lot management system and
computed τ̃off associated to each experiment. By averaging
such stopping times, we computed the approximate optimal
stopping time τ̃ ∗

off = 24.
To make a comparison, we applied the on-policy LSPE

algorithm in [1] to solve the optimal stopping problem asso-
ciated to the same parking lot management system. The
components of the computed approximate parameter vector
r∗

k converged after 105 iterations. The parameter vector is
r∗

105 = [82 8.5 3 1.6]′. We computed τ̃on like the on/off policy
algorithm case with the same experimental setup. By averaging
the generated stopping times, we computed the approximate
optimal stopping time τ̃ ∗

on = 20. The proposed on/off policy
LSPE algorithm manages to explore better the system state
when computing the approximate parameter vector. Indeed,
the approximate parameter vector r∗

105 computed by the on-
policy LSPE is more biased towards the first component of
the feature subspace and the values associated to the third
and forth components are smaller. This affects the computed
stopping times τ̃ ∗

on and τ̃ ∗
off . As a result, the car factory man-

ages to utilize better the parking lot resources thanks to the
exploratory enhancement property of the proposed approach.

VII. CONCLUSION

This letter has proposed a combined on/off policy explo-
ration based algorithm to solve optimal stopping problems
with a large state space. By extending some results available
in the literature, it has first provided a framework to formu-
late and solve optimal stopping problems. It has been proven

that the associated Bellman operator is also a contraction map-
ping with respect to the steady-state probability distributions of
enhanced exploration irreducible transition probability matri-
ces. Thanks to this, it is possible to perform Monte Carlo
simulations with a combined on/off policy sampling approach
to solve approximately the corresponding projected Bellman
equation, i.e., to compute an approximate parameter vector in
the feature subspace. Finally, the convergence of the proposed
on/off policy exploration based algorithm has been analysed.
The main assumption for our approach to work is the avail-
ability of good features, which is challenging in general. As
for future work, we plan to apply the proposed framework
to event-triggered control problems for discrete-time systems
and to extend it by integrating deep neural networks to learn
proper features from real life optimal stopping training data.
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