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a b s t r a c t

In this paper, we consider a problem of packet scheduling in the setting of remote estimation with
usage-dependent Markovian packet losses. A sensor measures the state of a discrete-time linear
process, computes the estimate via a local Kalman filter, and sends the packets to a remote estimator
via a network. The link state evolves as a two-state Markov chain, and its state transition depends on
the network usage. The aim is to design the scheduling policy which balances the estimation quality
and the energy consumption. We identify the problem as a Markov decision process (MDP) and prove
the structural properties of the optimal policy. Furthermore, based on the structural properties, we
derive the sufficient and necessary condition of the mean square stability of the remote estimator.
Simulation examples are provided to illustrate the results.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

With fast developments in the electronic techniques, the num-
er of devices embedded with the computation and wireless
ommunication capabilities has a dramatic increase over the last
ecade (Gunes et al., 2014). The systems which integrate the
hysical world with the computation and communication capac-
ties have been known as the Cyber-physical systems (CPSs) (Ra-
kumar et al., 2010). An important class of CPSs is the networked
tate estimation systems, like environment monitoring and multi-
gent tracking (Lee, 2008), where sensors are deployed to collect
ata from the physical system and transmit the signals over a
etwork. The design of such networked state estimation system
aces several challenges. The uncertainties like packet losses or
elays in the data transmission have strong influence on the
ystem performance. As the sensors are usually powered by the
atteries, the energy saving mechanism is also crucial as well.
The time-average error covariance of the remote estimate

as been widely used as a performance metric to describe the
stimation quality. Despite the fact that the time-average error
ovariance serves as the nice performance metric for stable LTI
ystems, it can be unbounded for some unstable systems and thus
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fails to capture the system characteristics. The condition which
ensures the stability of remote estimator is needed. Sinopoli et al.
(2004) studied the mean-square stability under the assumption
that packet dropping processes are i.i.d., and derived a thresh-
old condition that ensures the stability of the remote estimator.
Fletcher et al. (2004) modeled the packet dropping processes as a
finite state Markov chain, proposed a suboptimal linear estimator,
and studied the stability using the linear matrix inequality. Huang
and Dey (2007) studied a similar problem, and derived sufficient
conditions for the stability of the optimal estimator in the general
vector case. The results have been extended by Xu et al. (2018) to
more general cases under signal-to-noise ratio constraint, which
presented a necessary and sufficient condition for mean-square
stability of second-order system.

Motivated by the important role which resource scheduling
plays in the online operation, the design problem of optimal
scheduling policy has been widely studied in recent years. There
are mainly two types of packet scheduling policies in the lit-
erature. The first type is offline where the data transmission
operation solely depends on the realization of packet dropping
processes, e.g. Leong et al. (2017) and Trimpe and D’Andrea
(2014). Compared with online polices, the offline policies are
much easier to obtain via numerical algorithm and to be imple-
mented. The second type is online and the data transmission also
depends on the realization of the system state (or measurement).
Threshold-type online policy has been studied in Battistelli et al.
(2012), Lipsa and Martins (2011), Ren et al. (2018) and Wu
et al. (2013). The online policies usually outperform the offline
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olicies. However, the optimal design of online policies in gen-
ral vector state space inevitably involves a partially observable
arkov decision process, which is computationally intractable (or
SPACE-complete) (Papadimitriou & Tsitsiklis, 1987). In this work
e will focus on the offline polices which in general are more
omputationally efficient.
Most existing results are established on the assumption that

he transition of the link state is independent of the network
sage, wherein we use the term link state to denote the quality
f the network service. However, in many scenarios where the
hannel access is contention-based (e.g. Avrachenkov et al., 2013;
üßler et al., 2003; Kong et al., 2004), the simultaneous data
ransmission without coordination between users may easily lead
o the congestion, which results in the performance degeneration
f the overall system. For example, in the scheme of K (user’s)
lows sharing a bottleneck router, the probability of successful
ata transmission relies on the number of packets in the buffer
f the router. In this particular example, the number of packets
n the buffer indicates the quality of network service, and its
ransition is influenced by the transmission decision of users.
o capture this effect, we model the link state as a two-state
arkov chain, and the results can be easily generalized to any

inite-state Markov chains. We note that the previous results
bout Markovian packet losses cannot be directly applied, for
he link state transition depends on both the link state and the
cheduling policy. We extend the results in Huang and Dey (2007)
y considering the correlation between network usage and link
tate transition. We study the optimal transmission scheduling
nder Markovian packet losses, and then identify the problem as
n Markov decision process (MDP). Further, the stability of the
emote state estimator is addressed. The main contributions of
he paper are summarized as follows,

1 Unlike previous works where the link state transition solely
depends on the current link state, we consider the corre-
lation between the link state transition and the network
usage, and model the link state transition as a switched
two-state Markov chain.

2 We formulate the packet scheduling over the Markovian
packet dropping network as an MDP, and prove the struc-
tural property of the optimal policy.

3 Based on the above structural result, we provide the neces-
sary and sufficient condition of the stability of the remote
estimator under the optimal policy. We are able to recover
the results in Huang and Dey (2007) for scalar systems.

The remainder of this paper is organized as follows. In
ection 2, the mathematical model of the considered problem is
iven. In Section 3, the problem is identified as an MDP, and the
tructural properties of the optimal policy is proved. Based on
he structural properties, the necessary and sufficient condition
f the stability of the remote estimator is derived. In Section 4,
umerical examples are given to demonstrate the results. In
ection 5 we state our conclusions. All proofs are reported in
ppendix.

otations. The set of real numbers is denoted as R, the set of
positive) natural number is denoted as N (N+). When a matrix X
is positive definite (semidefinite), we write X ≻ 0 (X ⪰ 0). For a
matrix X , X⊺, TrX and ρ(X) denotes its transpose, trace, and spec-
tral radius, respectively. Pr(·) (Pr(·|·)) denotes the (conditional)
probability, and E(·|·), (E(·|·)) denotes the (conditional) expecta-
tion. B(S) denotes the collection of bounded function mapping
from S to R. For a given policy π , Eπ denotes the expectation
under the policy π . For a function h and an integer i, hi denotes
ith function composition of h.
2

Fig. 1. System model.

2. Problem setup

2.1. System model

We consider the remote state estimation of a linear time-
invariant system. The processes dynamics and sensor measure-
ment equation are given as follows:

xk+1 = Axk + wk, (1)

yk = Hxk + vk, (2)

where xk ∈ Rn is the state of the process at time k, yk ∈ Rm

is the sensor measurement, The noises wk ∈ Rn and vk ∈ Rm

are i.i.d. zero-mean white Gaussian random vectors with finite
covariance Σw ≥ 0, Σv ≥ 0, respectively. The initial state x0
is also a zero-mean Gaussian with covariance Σ0 ≥ 0, which is
independent from wk, vk, k ∈ N . We assume that the pair (A, Σw)
is stabilizable, and the pair (A,H) is detectable.

The sensor is assumed to be smart in the sense that it has
sufficient computation capability to run a local Kalman filter to
compute the optimal MSE estimate. We denote by x̂sk the optimal
MSE at the sensor,

x̂sk ≜ E[xk|y0, . . . , yk]. (3)

As the error covariance matrix of a Kalman filter reaches its
steady state exponentially fast, without loss of generality, we
make the following assumption:

Assumption 1. The error covariance matrix of the local estimate
x̂sk has reached its steady state, which is denoted by P ≜ E[(xk −

ˆsk)(xk − x̂sk)
⊤
].

The sensor is equipped with a transmission scheduler (See
Fig. 1), which determines whether or not the local estimate
x̂sk should be sent to the estimator via the network, and the
transmission mechanism will be explained in detail in the next
part.

2.2. Transmission model and mechanism

We start to introduce the transmission model of the network
which delivers the data packet from the sensor to the remote
estimator. There exist a group of other network users which also
have access to the network, and the load of the network varies
with the network usage. The link state at time k is denoted by
the random variable ok: ok = 1 denotes the network is of low
load (good state); ok = 0 denotes the network is of high load
(bad state). It is assumed that to avoid the persistent congestion,
the active queue management, such as the random early detec-
tion (RED) method (Floyd & Jacobson, 1993), is adopted in the
network, which affects the packet-dropping probability.

The link state evolves as a two-state Markov chain, and an
illustration of its transition is shown in Fig. 2. Since the data
transmission of the sensor leads to the load change, the transition
of the link state depends on both the current link state and the

transmission decision of the sensor. Let uk ∈ {0, 1} denote the
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Fig. 2. Illustration of data transmission processes. (G) is for good state or low
load, and (B) is for bad state or high load.

communication decision of the sensor at time k: if uk = 1,
he data packet containing the local estimate x̂sk is sent to the
stimator via the network; otherwise it is not sent. We define
he following transition probabilities to describe the transition of
he link state,

r(ok+1 = 1|ok = 1, uk = 0) = a0,
r(ok+1 = 0|ok = 0, uk = 0) = b0,
r(ok+1 = 1|ok = 1, uk = 1) = a1,
r(ok+1 = 0|ok = 0, uk = 1) = b1,

here 0 ≤ a0, b0, a1, b1 < 1. Since the data transmission of the
ensor leads to higher probability of the high load (or congestion),
e further assume that 0 ≤ a1 ≤ a0 ≤ 1, 0 ≤ b0 ≤ b1 ≤ 1.
The uncertainty in the data transmission processes is modeled

y a packet-dropping process, which is denoted by a binary
andom variable γk. If γk = 1, the data packet containing the local
tate estimate x̂sk is successfully received by the remote estimator;
k = 0 means that the packet is dropped. The packet-dropping
rocess is mainly due to the fading effects during the wireless
ommunication and the intentional packet rejection caused by
ED mechanism in the bottleneck device. γk is fedback to the
ensor as the acknowledgment (ACK) by the remote estimator.
ere we assume that compared with the time scale of the process,
he transmission delay related to γk can be neglected, which is
alid for applications like process control (Cao et al., 2016) and
nvironmental monitoring (Huang et al., 2010). Nevertheless, our
esult could be extended straightforwardly if the instantaneous
ink state ok is not available but with a fixed delay d, say, the
ensor only knows ok−d at time k for every k. This can be done by
ugmenting the state space of the considered MDP problem to
e (ok−d, uk−1). We make the following assumption on the data
ransmission processes and the initial state.

ssumption 2. Given the link state ok and uk, the data trans-
ission γk at time k is conditionally independent with the data

ransmission process at other time steps. The probability of
uccessful transmission are given by

r(γk = 1|ok, uk) =

⎧⎨⎩
p0, if ok = 0, uk = 1,
p1, if ok = 1, uk = 1,
0, otherwise,

(4)

where 0 ≤ p0 ≤ p1 ≤ 1. To facilitate the analysis, without loss
of generality, we assume that the initial packet transmission at
k = 0 is successful, i.e., γ = 1.
0

3

Since under RED mechanism the probability of packet rejec-
tion for high load (ok = 0) is higher that for low load (ok = 1),
it is assumed that p0 ≤ p1. The link state ok is broadcast by the
network to inform the network users of potential congestion.

2.3. Optimal estimator

The MMSE estimate of the system state at the remote estima-
tor is the conditional mean of the system state, which is denoted
by

x̂ek ≜ E(xsk|γ0x̂s0, . . . , γ
s
k x̂

e
k, γ0, . . . , γk).

It is shown in Shi et al. (2011) that the optimal estimate x̂ek at
the remote estimator and corresponding error covariance Pe

k can
be computed as

x̂ek =

{
x̂sk, if γk = 1,

Ax̂ek−1, otherwise.
(5)

Pe
k =

{
P, if γk = 1,

h(Pe
k−1), otherwise.

(6)

where h(X) ≜ AXA⊺
+Σw , and hj denotes jth function composition

of h. We denote by τk the number of successive packet drops at
time k, ∀k ∈ N+,

τk ≜ k − 1 − max{j|γj = 1, 0 ≤ j ≤ k − 1}. (7)

By the basic algebra, from (6) we have

Pe
k−1 = hτk (P). (8)

2.4. Problem of interests

At time k the scheduler determines the transmission decision
k based on both the number of successive packet drops τk and
he link state ok. An admissible (deterministic) policy π of the
ransmission scheduler is a sequence of functions {π1, . . . , πk,
. .} mapping from the number of successive packet drops τk and
he link state ok to the action uk, i.e.,

k = πk(τk, ok).

e denote by Π the collection of all admissible policies. A policy
is stationary if the policy is time-invariant, i.e. πk = π1, ∀k ∈

N+.
In many applications of wireless networks, the data trans-

mission processes are heavily energy-consuming while the size
of battery is limited. We assume that the transmission action
uk = 1 results in a energy consumption E > 0. We denote by
l : N × {0, 1} → R+ the one-stage cost of the system,

l(τk, uk) ≜ Trhτk (P) + λEuk, (9)

where the constant λ can be interpreted as a Lagrange multiplier
which balances the estimation quality of the remote estimator
against the energy consumption of data transmissions. For an
application where the energy consumption is very crucial, a large
λ is selected and the sensor is more likely to reduce the frequency
of data transmission in order to save the energy consumption.
On the contrary, if λ is selected to be quite small, it implies that
the transmission energy consumption is minor compared with
estimation error.

In this work, we consider the system performance under the
average criteria, and the expected average cost over the infinite
horizon is given by

L(π ) ≜ Eπ
[
lim sup
T→∞

1
T

T∑
k=1

l(τk, uk)
]
, (10)

where Eπ stands for the expected value when using the policy π .
We are interested in the following optimization problem.
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roblem 1.

in
π∈Π

L(π ).

In this work, we focus on both the feasibility of Problem 1
nd its optimal solution, which is denoted by π∗. We note that
he feasibility of Problem 1

(
C(π∗) < ∞

)
is same with the

tability of the remote state estimator
(
Eπ∗

(TrPe
k ) < ∞, ∀k ∈ N

)
.

he link state transition has a strong influence on the stability
f the remote estimator, and for unstable systems, Problem 1
an be infeasible. In other words, the remote estimator can be
nstable under any admissible policies. The following simple
xample serves as a special case when the stability condition can
e derived easily. Suppose that the system parameters are given
y

= 2, C = 1, Σw = 1, Σv = 1, E = 0,

0 = 0.5, b0 = 0.7, p0 = 0,

1 = 0, b1 = 1, p1 = 1.

ne can easily verify that the optimal policy π∗ is to transmit the
ata packets only if the link state is good, i.e.,

∗(τk, ok) =

{
1, if ok = 1,

0, otherwise.

or this particular case, the system under the optimal policy can
e viewed as an identical system sending data packets over an
.i.d. packet dropping network with the probability of successful
ransmission p = 1 − b0 = 0.3. For ρ(A)2(1 − p) = 2.8 > 1,
the remote state estimator is unstable under the optimal policy
(Theorem 3 in Sinopoli et al., 2004). For the general cases when
p0 > 0, it remains difficult to directly obtain the optimal policy as
in the above example. The transition of the link state ok depends
on the transmission action uk, and this coupling results in the
difficulty in analyzing the stability of the remote estimator. Before
obtaining the optimal policy π∗, it remains formidable to analyze
the stability of the remote estimator under the policy π∗.

3. Main results

We first formulate Problem 1 as an MDP problem, and ana-
lyze the structural properties of the optimal policy π∗. Based on
the threshold structure, we derive the sufficient and necessary
condition of the stability of the remote state estimator.

3.1. MDP formulation

In this section, we formulate Problem 1 as an MDP problem
with denumerable state and finite action space. We define a tuple
{S,U,P(·|·, ·), c(·, ·)} to describe the MDP.

(1) The state space S = N×{0, 1}: the state sk = (τk, ok) is the
combination of the holding time of the system τk and the
link state ok.

(2) The action space U = {0, 1}: the action uk is the transmis-
sion action uk ∈ {0, 1}.

(3) The transition kernel P(·|·, ·): the transition kernel
P(sk+1|sk, uk) describes the transition of the state sk when
action uk is chosen. We have

P(sk+1|sk, uk) = Pr(τk+1|τk, ok, uk)Pr(ok+1|ok, uk)
where

4

Pr(τk+1|τk, ok, uk)

=

⎧⎪⎪⎨⎪⎪⎩
pj, if uk = 1, τk+1 = 0, ok = j,
1 − pj, if uk = 1, τk+1 = τk + 1, ok = j,
1, if uk = 0,
0, otherwise,

Pr(ok+1|ok, uk)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

aj, if uk = j, ok+1 = 1, ok = 1,
1 − aj, if uk = j, ok+1 = 0, ok = 1,
bj, if uk = j, ok+1 = 0, ok = 0,
1 − bj, if uk = j, ok+1 = 1, ok = 0,
0, otherwise.

(4) The one-stage cost function c(·, ·): the one-stage cost
c(sk, uk) is the immediate cost received when choosing
action uk at state sk, which is in accordance with the one-
stage cost l defined in (9),

c(sk, uk) ≜ l(τk, uk)

= Trhτk (P) + λEuk. (11)

For an admissible policy π , the expected average cost is

C(π ) ≜ Eπ
[
lim sup
T→∞

1
T

T∑
k=0

c(sk, uk)
]
. (12)

We formulate Problem 1 as an MDP as follows.

roblem 2.

in
π

C(π ).

We note that as the above MDP is a reformulation of the origi-
al Problem 1, under the same policy π , the expected average cost
(π ) is equal to the expected average cost L(π ) in Problem 1. We
enote by π∗ the optimal solution of Problem 2. Recall that the
tability of the remote estimator is equivalent to the feasibility
f Problem 2. The following theorem shows that the optimal
olicy π∗ satisfies the Bellman optimality equality if Problem 2
s feasible.

heorem 1. If Problem 2 is feasible, then for the optimal policy π∗,
here exist a constant µ∗

≥ 0, a function q : S → R and a stationary
nd deterministic policy π∗

∈ Π such that (µ∗, q, π∗) satisfies the
verage reward optimality equation (ACOE); that is,
∗
+ q(s) = min

u∈U
[c(s, a) +

∑
s′∈S

q(s′)P(s′|s, u)]

= c(s, π∗(s)) +

∑
s′∈S

q(s′)P(s′|s, π∗(s)), (13)

or all s ∈ S. Moreover, π∗ is the optimal policy and µ∗ is the
orresponding optimal averaged cost.

.2. Structural properties of optimal policies

Before deriving the condition ensuring the stability of the
emote estimator, we need some preliminary results about the
tructure of the optimal policy π∗. In this section, we assume that
he optimal policy π∗ exists and C(π∗) < ∞.

heorem 2. The optimal policy π∗ has a threshold structure,
.e., there exist two nonnegative integers τg , τb ∈ N ∪ {∞}, such
hat for any state sk = (τk, ok) ∈ S,

∗(sk) =

⎧⎨⎩
1, if τ ≥ τg , ok = 1,
1, if τ ≥ τb, ok = 0, (14)

0, otherwise,
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here τg and τb denote the thresholds of data transmission for the
ink state ok = 1 and ok = 0, respectively. Furthermore, when other
arameters are kept fixed.

The above theorem shows that the optimal policy π∗ processes
threshold structure. Intuitively, for a fixed link state o, larger the
olding time τ is, more reward the system can gain through the
ata transmission.

.3. Stability of remote estimator

Based on the structural properties of the optimal policy π∗, we
erive the sufficient and necessary condition of the mean square
tability of the remote estimator under π∗.

heorem 3. The remote estimator is mean square stable under the
ptimal policy π∗ iff

ρ(A)2 · min
[
ρ(B1), ρ(B2)

]
< 1, (15)

here

1 ≜

[
a1(1 − p1) 1 − b0

(1 − a1)(1 − p1) b0,

]
(16)

B2 ≜

[
a1(1 − p1) (1 − b1)(1 − p0)

(1 − a1)(1 − p1) b1(1 − p0)

]
. (17)

Remark 3.1. We are able to recover Theorem 8 in Huang and
Dey (2007) for scalar systems by directly setting a0 = a1, b0 = b1.
The results can be generalized to the network with multiple link
states. Similarly, the set of {Bj} matrices can be constructed by
the permutation, and the stability condition can be checked by
computing the spectral radius of each element.

Corollary 1. If the optimal policy π∗ exists (C(π∗) < ∞) and the
inequality ρ(A)2ρ(B2) ≥ 1 holds, then the threshold parameter τb in
(14) is ∞.

The above result can be interpreted that in the case when the
congestion plays the crucial role

(
ρ(A)2ρ(B2) ≥ 1

)
, whenever

there exists a congestion (link state is o = 0), the sensor ceases
to transmit the packet (u = 0) and transmission restarts until
the congestion vanishes (link state is o = 1).

4. Simulation

To illustrate our results, we provide several numerical exam-
ples in this section. We first consider a two-dimensional system
with the following parameters,

A =

[
1.2 1
0 1,

]
C = [1, 1], Σw =

[
1 0
0 0.5,

]
Σv = 1,

a0 = 0.8, b0 = 0.1, p0 = 0.1, (18)
a1 = 0.6, b1 = 0.8, p1 = 0.8.

Theorem 3 shows that the value of the energy consumption E
is irrelevant to the stability of estimator under the optimal policy
π∗. The parameters in (15) can be computed as

ρ(A)2ρ(B1) = 0.5451 < 1,

ρ(A)2ρ(B2) = 1.0701 > 1.

By Theorem 3 the remote estimator is mean square stable under
π∗.

We use the MDP toolbox (Chadès et al., 2009) to obtain the
optimal policy π∗ with different energy consumption λE ≥ 0, and
the results are shown in Table 1. We observe that the threshold

τg is monotonically non-decreasing w.r.t. the energy consumption

5

Table 1
Numerical experiments with various energy consumption λE ≥ 0 for p0 = 0.1.
λE Value

p0 = 0.1

τg τb C(π∗)

0 0 ∞ 5.0314
10 1 ∞ 11.0828
50 2 ∞ 27.2118
100 3 ∞ 42.9965
200 4 ∞ 70.3328
600 5 ∞ 155.2087

Table 2
Numerical experiments with various energy consumption λE ≥ 0 for p0 = 0.5
nd p0 = 0.8.
λE Value

p0 = 0.5 p0 = 0.8

τg τb C(π∗) τg τb C(π∗)

0 0 0 4.7264 0 0 2.4025
10 1 3 10.8257 1 1 9.0335
50 2 5 26.9770 3 3 24.5553
100 3 6 42.6988 3 3 39.2614
200 4 7 69.9775 4 4 64.6199
600 5 9 154.9411 5 5 148.7552

λE , and another threshold τb remains to be ∞ regardless of
he energy consumption λE . The results are in accordance with
orollary 1.
We continue to consider the system with different value of p0

hile other parameters remain fixed. For the case when p0 = 0.5,
he parameters in (15) can be computed as

(A)2ρ(B1) = 0.5451 < 1,

(A)2ρ(B2) = 0.6136 < 1.

or the case when p0 = 0.8, the parameters in (15) can be
omputed as

(A)2ρ(B1) = 0.5451 < 1,

(A)2ρ(B2) = 0.2880 < 1.

imilarly, we compute the optimal policy π∗ with different values
f the energy consumption λE , and the results are shown in
able 2. We observe that for the case when p0 is either 0.5 or 0.8,
he threshold τb is always finite, and is monotonically increasing
ith respect to the energy consumption λE . The optimal policy
∗ is also threshold-type, and what is different from the first case
s that the sensor will transmit the data packet regardless the link
tate ok if the holding time τk is large enough.
To illustrate the performance of the remote estimator, we then

onsider a stable system with the following parameters,

=

[
0.8 1
0 0.8,

]
λE = 10,

nd the other parameters are the same with that in (18). One
ealization of the first element of the local estimate x̂sk and that of
he remote estimate x̂ek are shown in Fig. 3, and we observe that
oth local and remote estimators provide good estimates of the
hysical plant.

. Conclusion

In this paper, we study a problem of packet scheduling for
emote state estimation with Markovian packet losses. We iden-
ify the problem as an MDP, and show that the optimal policy
rocesses a structural property. Based on the structural property,
e derive the necessary and sufficient condition of the stability of
he remote estimator. Consequently the stability of the estimator
an be efficiently checked.
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Fig. 3. The first element of true state xk , local estimate x̂sk , and remote estimate
x̂ek .
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ppendix A. Proof of Theorem 1

The theorem is proved separately for stable and unstable
ystems. For the stable systems (ρ(A) < 1), we use Theorem 8.4.5
n Puterman (2014) to prove Theorem 1. We start by showing
ome preliminary properties of h(·).

emma 1 (Lemma A.2. Shi et al., 2010). The function h(·) is mono-
onically nondecreasing on N, i.e.,
τ (P) ⪯ hτ ′

(P), ∀τ ≤ τ ′.

Lemma 2 (Lemma 1 Wang et al., 2020). For stable system (ρ(A) <

), the following limit of function composition exists, i.e.,

lim
→∞

hj(P) = Y ,

here Y is the solution to the Lyapunov function AYA⊺
+ Σw = Y .

We continue to show that for any stable system, the model
an be approximated by an MDP with a finite state space. By
emma 2, the error covariance matrix Pe

k converges to its upper
ound Y as the holding time τk goes to infinity.
For any ϵ > 0, the sets Tϵ,0 and Tϵ,1 are defined as

ϵ,0 ≜ {sk = (τ , ok)|TrY − Trhj(P) ≤ ϵ, ok = 0},

ϵ,1 ≜ {sk = (τ , ok)|TrY − Trhj(P) ≤ ϵ, ok = 1}.

e truncate the countable state space S to be finite by aug-
enting Tϵ,0 and Tϵ,1 as two single states with the following cost

unction,

(Tϵ,1, u) = c(Tϵ,0, u) = TrY + λEu.

t is easy to see that the difference between the optimal value
f the original MDP problem and that of the truncated one is
 m

6

ounded by ϵ. Then Problem 2 can be approximated to an arbi-
rary degree of closeness by the truncated version by setting the
alue of ϵ. By Theorem 8.4.5 in Puterman (2014), for the truncated
DP there exists a stationary average optimal policy π∗ satisfies

ACOE (13). It follows from Theorem 16.3 in Altman (1999) that
the optimal policy π , which satisfies ACOE, is a limit of optimal
stationary policies for the truncated MDP (as ϵ tends to 0).

For unstable systems, we prove the theorem by verifying the
conditions (C1)(C2) of Theorem 2 in Cavazos-Cadena and Sennott
(1992). The condition (C1) trivially holds since we assume the
existence of the policy π ′ that C(π ′) < ∞. For any unstable
system, the function h(·) is unbounded and nondecreasing on N.
hus for any M > 0, the set {s|c(s, a) < M} is finite, which

implies the condition (C2). By Theorem 2 in Cavazos-Cadena
and Sennott (1992) we can show the existence of the stationary
average optimal policy π∗. The proof is thus completed.

Appendix B. Proof of Theorem 2

To prove the theorem, it suffices to show that if there exists a
state s = (τ , o) such that π∗(s) = 1, then for any s′ = (τ ′, o) ∈

S, τ ′
≥ τ , we have

∗(s′) = 1. (B.1)

Before proving (B.1),

Definition 1. A measurable function v : S → R is monotonically
nondecreasing on S if for any τ ≤ τ ′,

(τ , 0) ≤ v(τ ′, 0),
(τ , 1) ≤ v(τ ′, 1).

efinition 2. A measurable function v : S → R is submodular
n S if the function f (τ ) = v(τ , 1) − v(τ , 0) is monotonically
ondecreasing on N.

emma 3. If the optimal policy π∗ exists, then the value function
(·) is monotonic and submodular on S.

roof. We start to prove that the value function can be obtained
y the value iteration if π∗ exists. We use the vanishing discount
pproach in Hernández-Lerma and Lasserre (2012) to analyze the
alue function q(·). For any policy π and the initial state s, the
iscounted average reward with the discounted factor 0 < α < 1
s defined as

α(π, s) ≜ (1 − α)Eθ
s

[
∞∑
k=1

αkc(sk, uk)

]
. (B.2)

The optimal discounted cost C∗
α (s) and the discounted relative

alue function Qα(s) are defined as follows,

C∗

α (s) ≜ min
π

Cα(θ, s), (B.3)

α(s) ≜ C∗

α (s) − C∗

α (s
0), (B.4)

here s0 = (0, 0) ∈ S. The relative value function q(·) is a limit of
sequence of the discounted value function Qα(s) with a discount
actor α approaching 1 (Hernández-Lerma & Lasserre, 2012), i.e.,

(s) = lim
α→1

Qα(s), ∀s ∈ S. (B.5)

The value iteration can be viewed as a dynamic programming
DP) operator operating on the function space B(S). We then
ntroduce the DP operator Tα related to the discounted cost

odel.
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efinition 3. Given a measurable function v : S → R and a
iscounted factor α ∈ (0, 1), the operator Tα is defined by

αv(s) ≜ min
u∈A

[c(s, u) + α
∑
s∈S

v(s)P(s|s, u)], s ∈ S. (B.6)

It is known that the value function q can be obtained by the
value iteration algorithm (Bertsekas, 1995).

To prove that q is monotonic and submodular on S, it suffices
to show that for any v ∈ B(S), the monotonicity and submod-
ularity of v : S → R are preserved by Tα . We start to show
the monotonicity. Suppose that v is monotonic on S, then the
following inequalities hold for any τ ≤ τ ′, u ∈ U,

c((τ , 0), u) + α
∑
s∈S

v(s)P(s|(τ , 0), u)

≤ c((τ ′, 0), u) + α
∑
s∈S

v(s)P(s|(τ ′, 0), u),

c((τ , 1), u) + α
∑
s∈S

v(s)P(s|(τ , 1), u)

≤ c((τ ′, 1), u) + α
∑
s∈S

v(s)P(s|(τ ′, 1), u),

which imply that the monotonicity of v(·) propagates through Tα .
imilarly, to prove that q is submodular, it suffices to show that
or any τ ∈ N the following inequality holds,

(τ , 1) − q(τ , 0) ≤ q(τ + 1, 1) − q(τ + 1, 0). (B.7)

e will continue to use mathematical induction to prove (B.7).
o be more specific, suppose that for any τ ∈ N, v(τ , 1) + v(τ +

, 0) ≤ v(τ +1, 1)+v(τ , 0), we intend to show that for any τ ∈ N,

αv(τ , 1) + Tαv(τ + 1, 0) ≤ Tαv(τ + 1, 1) + Tαv(τ , 0). (B.8)

Notice that the form of the term Tαv(τ , 1) depends on the
operator Tα defined in (B.6), and we use the case analysis to prove
(B.7). Recall the assumption that 0 ≤ a1 ≤ a0 ≤ 1, 0 ≤ b0 ≤ b1 ≤

1. Suppose that the following equalities hold,

Tαv(τ , 1) = c((τ , 0), 1) + α
∑
s∈S

v(s)P(s|(τ , 0), 1), (B.9)

αv(τ , 0) = c((τ , 1), 1) + α
∑
s∈S

v(s)P(s|(τ , 1), 1), (B.10)

nd then (B.8) follows from the basic algebra. For other cases,
B.8) can be obtained in a similar way, and the details are omitted
ere.
For the monotonicity and the submodularity propagate

hrough the DP operator Tα for any α ∈ (0, 1), one can initialize
α(·) with Qα(s) = 0, ∀s ∈ S, and thus by the mathematical
nduction, one obtains that Qα(·) is monotonic and submodular
n S for any α ∈ (0, 1). Recall that q(·) is the limit of the sequence
f Qα(·) as α goes to 1(B.5), which implies that q(·) is monotonic
nd submodular on S.

We are now ready to prove the theorem. Suppose that there
xists a certain state s = (τ , o) satisfying π∗(s) = 1, and then the
COE equation (13) implies that

(s, 1) +

∑
s∈S

q(s)P(s|s, 1) ≤ c(s, 0) +

∑
s∈S

q(s)P(s|s, 0).

s a consequence of the above lemma, for any s′ = (τ ′, o), τ ′
≥ τ ,

e have

(s′, 1) +

∑
s∈S

q(s)P(s|s′, 1) ≤ c(s′, 0) +

∑
s∈S

q(s)P(s|s′, 0),

hich implies that for any s′ = (τ ′, o), τ ′
≥ τ , the equality

∗(s′) = 1 holds. Thus the proof is completed.
 l

7

Appendix C. Proof of Theorem 3

In Theorem 2, We have shown that the optimal policy π∗

as a threshold structure which can be characterized by two
arameters τg , τb ∈ N ∪ {∞}. The structure of the optimal policy
∗ depends on the finiteness of the parameters τg , τb, which can
e divided into the following four cases:

) τg < ∞, τb = ∞.2) τg < ∞, τb < ∞.

3) τg = ∞, τb < ∞.4) τg = ∞, τb = ∞.

For any state sk = (τk, ok) ∈ S, we define the following four
policies π1, π2, π3, π4 as

π1(sk) =

{
0, if ok = 0,
1, otherwise,

(C.1)

π2(sk) = 1, (C.2)

π3(sk) =

{
0, if ok = 1,
1, otherwise,

(C.3)

π4(sk) = 0, (C.4)

which corresponds to the above four cases, respectively. The
following lemma builds relation between the stability of the
remote estimator under π∗ and the stability of the estimator
under π1, π2, π3 or π4.

Lemma 4. The remote estimator is stable under the optimal policy
π∗ iff the remote estimator under one of the policies {π1, π2, π3, π4}

is stable, i.e., C(π∗) < ∞ iff min{C(π1), C(π2), C(π3), C(π4)} < ∞.

Proof. As a consequence of Theorem 2, for sufficiently large τ ,
the structure of π∗ is the same with one particular policy of
π1, π2, π3, π4. We note that the stability of the estimator is not
affected by the actions taken on the finite subset of the state space
S, thus the stability of the estimator under π∗ is directly related
to the threshold structure in Theorem 2.

We continue to recall the definition of the matrices B1, B2 and
hen define the matrices B3, B4 as follows,

1 ≜

[
a1(1 − p1) 1 − b0

(1 − a1)(1 − p1) b0,

]
2 ≜

[
a1(1 − p1) (1 − b1)(1 − p0)

(1 − a1)(1 − p1) b1(1 − p0)

]
,

3 ≜

[
a0 (1 − b1)(1 − p0)

1 − a0 b1(1 − p0)

]
,

4 ≜

[
a0 1 − b0

1 − a0 b0

]
.

e remark that the matrices B1, B2, B3, B4 correspond to the
bove four policies τ1, τ2, τ3, τ4, respectively. The following
emma shows the relation between the stability of π1 and the
pectral radius of the matrix B1.

emma 5. The estimator under π1 is stable iff ρ(A)2 · ρ(B1) < 1.

roof. The indicator function of the link state o ∈ {0, 1} is defined
s

{o}(w) ≜
{
1, if w = o,
0, otherwise.

We note that under the policy π1, the action of the sensor
epends solely on the link state. For the link state o ∈ {1, 0},[

ˆe
]

et Pk,o ≜ E Var(xk − xk)1{o}(ok) be the expected error variance
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o
f x̂ek when ok = o. Then one obtains that for k ≥ 1, o ∈ {1, 0},
under the policy π1, there holds

Pk+1,o =

∑
j∈{1,0}

(1 − pj)Pr(ok+1 = o|ok = j)APk,jA + Σw.

Vectorizing the above equation for each m yields[
Pk+1,1
Pk+1,0

]
= B⊺

1 ⊕ (A ⊕ A)
[
Pk,1
Pk,0

]
+

[
1
1

]⊺

⊕ Σw,

where ⊕ denotes the Kronecker product. It is easy to see that the
estimator under π1 (π2) is stable iff

ρ(B⊺
1 ⊕ (A ⊕ A)) = ρ(B1) · ρ2(A) < 1.

Thus the proof is finished.

Similarly, we can show that the estimator under πi (i ∈

{1, 2, 3, 4}) is stable iff ρ(A)2 · ρ(Bi) < 1. As a consequence of the
above lemma, we obtain that C(π∗) < ∞ iff one of π1, π2, π3, π4
is stable, i.e.,

ρ(A)2 · min
[
ρ(B1), ρ(B2), ρ(B3), ρ(B4)

]
< 1. (C.5)

The spectral radius of any positive matrix is upper bounded by
its maximal column sum, and is lower bounded by its minimal
column sum. Hence, we have

1 − p1 ≤ρ(B1) ≤ 1,
1 − p1 ≤ρ(B2) ≤ 1 − p0,
1 − p0 ≤ρ(B3) ≤ 1,

ρ(B4) = 1,

which implies ρ(B1) ≤ ρ(B4) and ρ(B2) ≤ ρ(B3). Then it follows
that the inequality (C.5) can be rewritten as (15). The proof is
thus completed.

Appendix D. Proof of Corollary 1

We prove the result by the contradiction. Suppose that the
threshold parameter τb in (14) is finite. Because the stability of
the estimator is not affected by the actions taken on the finite
subset of the state space S, by Lemma 4 the estimator should be
stable under one of the polices {π2, π3, π4}. By Theorem 3, we
have

ρ(A)2ρ(B2) < 1,

which contradicts the inequality ρ(A)2ρ(B2) ≥ 1. Thus τb = ∞

and the proof is completed.
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