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Abstract

We show that after forming a connected sum with a homotopy sphere, all (2j−1)-
connected 2j-parallelisable manifolds in dimension 4j+1, j ≥ 2, can be equipped with
Riemannian metrics of 2-positive Ricci curvature. The condition of 2-positive Ricci
curvature is defined to mean that the sum of the two smallest eigenvalues of the Ricci
tensor is positive at every point. This result is a counterpart to a previous result of
the authors concerning the existence of positive Ricci curvature on highly connected
manifolds in dimensions 4j−1 for j ≥ 2, and in dimensions 4j+1 for j ≥ 1 with torsion-
free cohomology. A key technical innovation involves performing surgery on links of
spheres within 2-positive Ricci curvature.

1 Introduction

We begin by recalling that the term ‘highly connected manifold’ means a manifold M
of dimension 2s or 2s+1 which is (s−1)-connected, that is, for which all homotopy
groups up to and including πs−1(M) vanish. We will assume without further comment
that all manifolds in this paper are closed, connected and oriented unless stated oth-
erwise. In [CW] the authors established the result below for positive Ricci curvature
on highly connected manifolds in dimensions 4j−1, and highly connected manifolds in
dimensions 4j+1 with torsion-free cohomology. We recall that a manifold is said to be
l-parallelisable if its tangent bundle restricted to some l-skeleton is trivial.

Theorem 1.1 ([CW]; Theorems A and D). Consider a (2j−2)-connected manifold
M4j−1 for j ≥ 2. If j ≡ 1 mod 4 assume further that M is (2j−1)-parallelisable.
Then there is a homotopy sphere Σ4j−1 such that M♯Σ admits a metric of positive
Ricci curvature. If N4j+1, j ≥ 1, is a (2j−1)-connected 2j-parallelisable manifold with
torsion-free (integer) cohomology, then there is a homotopy sphere Σ̃4j+1 such that
N♯Σ̃ admits a Ricci positive metric.

The question of which manifolds admit metrics of positive Ricci curvature consti-
tutes a major problem in Riemannian geometry. One might hope that some form of
topological ‘simplicity’ might facilitate the existence of Ricci positive metrics, and the
above theorem illustrates that being highly connected in dimensions 4j−1 is an appro-
priate interpretation of this term. Note that we cannot in general hope to remove the
ambiguity created by having to form connected sums with homotopy spheres. It has
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long been known ([Hi]) that there exist homotopy spheres which do not even satisfy
the weaker positive scalar curvature condition, so there are highly-connected manifolds
which definitely do not admit positive Ricci curvature.

It is natural to look for a counterpart to Theorem 1.1 involving highly-connected
manifolds M in dimensions 4j+1 which goes beyond the highly-restrictive torsion-
free cohomology requirement in that theorem. Unfortunately the techniques used to
establish Theorem 1.1 do not apply when H2j(M

4j+1) contains torsion. (Here and
throughout integer coefficients for (co)homology are omitted.) The existence of positive
Ricci curvature metrics on the manifolds of dimension 4j−1 in Theorem 1.1 follows
from the fact that one can express these manifolds as the boundaries of plumbed
manifolds, where all the plumbings involve D2j-bundles over S2j . The relevance of the
plumbing construction to issues of positive Ricci curvature stems from the fact that
on the boundary, the effect of plumbing two disc bundles over spheres is precisely a
surgery on a fibre sphere of one of the bundles. Under limited circumstances (see [Wr3]
for example) one can extend a Ricci positive metric over a surgery, and crucially these
circumstances are fulfilled in the case of surgeries arising from such plumbings. Now
one can also use plumbings of this type to construct manifolds in dimensions 4j+1,
but it turns out that these manifolds belong to a short list of well-known objects, all
having torsion-free integer cohomology: spheres, products or spheres and connected
sums of products of spheres. These manifolds are all known to admit Ricci positive
metrics (see for example [SY], [Wr4], [BG3]).

Even though plumbing does not help in dimensions 4j+1 when torsion is present
in H2j(M), one can still hope to make progress using more general kinds of surgery.
To this end we establish the following purely topological result:

Theorem 1.2. Let M4j+1 be a (2j−1)-connected 2j-parallelisable manifold. Then
there is a homotopy sphere Σ4j+1, a natural number r ≥ 0, and if r > 0 integers
m1, ...,mr with each mi ≥ 2, such that M is diffeomorphic to a connected sum

M0♯Σ (r = 0) or M0♯M1♯ · · · ♯Mr♯Σ (r > 0).

Here M0 is a connected sum of the total spaces of linear S2j-bundles over S2j+1 or
possibly the empty connected sum M0 = S4j+1, and each Mi for i > 0 is constructed by
performing surgery on a link of two embedded 2j-spheres in S4j+1 for which the linking
number is equal to mi.

We remark that the linking number referred to in the above theorem is the oriented
intersection number between one of the 2j-spheres and a disc D2j+1 bounding the other
sphere (see [ST, p. 288] for more details).

We also remark that the manifolds appearing in Theorem 1.2 we classified up to
connected sum with homotopy spheres by Wall [Wa2, Theorem 7]; the novelty of this
theorem is the explicit description of the manifolds Mi. When j = 1 or 3 the manifolds
Mi for i > 0 have a long history in differential topology, featuring in Smale’s early
classification theorems for handlebodies and their boundaries [Sm, §6]. (Note that
Smale uses the notation Mmi

for Mi.)
Turning our attention to geometry, the dimension 4j+1 analogue of the dimen-

sion 4j−1 statement in Theorem 1.1 is unfortunately still out of reach. This is a
consequence of Theorem 1.2: even though this is best topological description of highly-
connected manifolds in dimension 4j+1 at our disposal, we are nonetheless presented
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with a decomposition involving connected sums. The connected sum construction
presents a problem for positive Ricci curvature. In the presence of non-trivial fun-
damental groups, it follows from the classical Bonnet-Myers Theorem that connected
sums of Ricci positive manifolds do not in general admit positive Ricci curvature. This
obstruction disappears in the simply-connected case, however little is known in this
situation about the conditions under which Ricci positivity can be extended across
connected sums. There are many examples of Ricci positive connected sums in the
literature, but in all cases there is an alternative description of the manifolds which
avoids the use of connected sums.

On the other hand, if we are prepared to weaken the curvature condition slightly, it
turns out that we can indeed prove a counterpart theorem. The curvature condition in
question is that the sum of the two smallest eigenvalues of the Ricci tensor is everywhere
positive. (Of course for positive Ricci curvature we need all the eigenvalues positive, so
this new condition allows at most one eigenvalue to be negative at any point, but with
smaller magnitude than the smallest of the positive eigenvalues.) Following Wolfson
([Wo1]) we make the following definition:

Definition 1.3. We say that an n-dimensional Riemannian manifold (N, g) has k-
positive Ricci curvature if the sum of the k smallest eigenvalues of the Ricci tensor is
positive at all points. We will write this as Rick > 0.

Thus we see that n-positive Ricci curvature is just positive scalar curvature, and
1-positive Ricci curvature is the same as positive Ricci curvature. The condition we
will be interested in is 2-positive Ricci curvature.

We note that a recent result of Wolfson, [Wo2], establishes that closed manifolds
which admit metrics of 2-positive Ricci curvature have virtually free fundamental
groups. This contrasts with the case of positive Ricci curvature, where by the Bonnet-
Myers Theorem fundamental groups must be finite.

The main aim of this paper is to establish:

Theorem 1.4. Let M4j+1 be a (2j−1)-connected 2j-parallelisable manifold, j ≥ 2.
Then there is a homotopy sphere Σ4j+1 such that M♯Σ admits a metric of 2-positive
Ricci curvature.

Given the topological description presented in Theorem 1.2, we remark that it is
well known that linear S2j-bundles over S2j+1 admit metrics of positive Ricci curvature
(see for example [Na, Corollary 3.6]). Moreover connected sums of such bundles also
admit Ricci positive metrics by [CW, Theorem 2.4] in conjunction with [Wr2, Theorem
2.2]. Thus from a metric perspective, it is clear from Theorem 1.2 that Theorem 1.4 will
follow if we can perform surgeries on links of 2j-spheres in S4j+1 within 2-positive Ricci
curvature, and if we can perform connected sums preserving 2-positive Ricci curvature.
This second point is contained in the following surgery result due to Wolfson ([Wo1],
but see also [Ho]). To the best of our knowledge, this is the only result to date in
the literature concerning the existence of 2-positive Ricci curvature metrics, (but see
[WW] and [Kor] which consider spaces of metrics).

Theorem 1.5 ([Wo1],[Ho]). Let Mn be a closed Riemannian manifold with k-positive
Ricci curvature, 2 ≤ k ≤ n. Then any manifold obtained from M by performing
surgeries in codimension q with q ≥ max{n + 2 − k, 3} also admits a metric of k-
positive Ricci curvature. In particular if M1 and M2 are manifolds of dimension n ≥ 3
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which admit metrics of 2-positive Ricci curvature, then the connected sum M1♯M2 also
admits a metric of 2-positive Ricci curvature.

It is therefore clear that our main metric focus in this paper will be to establish the
existence of 2-positive Ricci curvature metrics on the manifoldsMi, i > 0, appearing in
Theorem 1.2. Performing the necessary metric surgeries presents considerable technical
difficulties, and finding an approach to overcoming these problems is perhaps the most
novel aspect of this paper. The key idea is to create a metric on the (4j + 1)-sphere
which is adapted to the topology of the embedded 2j-spheres on which we will perform
surgery.

A major difference between surgery preserving positive scalar curvature and surgery
preserving Ric2 > 0 (or positive Ricci curvature) is that the former surgery is local
in nature, whereas the latter is not. The known Ricci positive surgery results require
large normal bundles compared to the size of the surgery sphere. In contrast, the
obvious picture of linked spheres involves small normal bundles compared to the size
of the links. Indeed one of the principal problems in extending the scope of Ricci
positive surgery theory is understanding when and how one can handle surgery on
linked spheres. Very little is known about this at present. However, the ideas used
in proving Theorem 1.4 for the weaker Ric2 > 0 condition might offer a blueprint for
making progress in positive Ricci curvature.

The techniques we use to establish Theorem 1.4 unfortunately fail in dimension
five. It seems likely, however, that with some adaptation of the constructions we make,
it might be possible to extend our results to include simply-connected five-manifolds.
We therefore propose

Conjecture 1.6. Every simply-connected 5-manifold admits a metric of 2-positive
Ricci curvature.

Conjecture 1.6 is of interest as there is a long-standing open question as to whether
all simply-connected 5-manifolds admit metrics of positive Ricci curvature. There is a
classification simply-connected 5-manifolds due to Barden ([Ba], but see also [Sm] for
the spin case). These manifolds fall into two infinite families depending on whether
they are spin or non-spin. In the spin case, most of the manifolds were shown to admit
Ricci positive metrics by the work of Boyer and Galicki on Sasakian geometry ([BG1],
[BG2]), though this existence result still omits inifinitely many objects in the spin class.
In contrast, until very recently only two of the non-spin 5-manifolds have been known
to admit Ricci positive metrics, though this set has now been expanded in [CGG].

We also note that in the analogous - though much stronger - context of the cur-
vature operator of a Riemannian manifold, the 2-positive condition has received much
attention, culminating in the work of Böhm and Wilking [BW].

By summing the k smallest eigenvalues of the Ricci tensor we obtain in a simple
way a natural family of curvatures which interpolate between scalar curvature and
Ricci curvature. This raises an obvious question: given a phenomenon which holds for
positive scalar curvature say, but which might not hold for positive Ricci curvature,
for which of these intermediate curvatures does the phenomenon hold? The analysis of
this question clearly has the potential to offer a deeper insight into properties observed
in the more classical worlds of scalar and Ricci curvatures. In the simply-connected
case, there is no known difference between the class of closed positive scalar curvature
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manifolds and closed Ricci positive manifolds in dimensions at least 5, and therefore
no known difference between these classes and the class of k-positive Ricci curvature
manifolds for any k. In fact it was shown in ([Wo1]; Theorem 2.3) that the class of closed
simply-connected n-manifolds (n ≥ 5) which admit positive scalar curvature is precisely
the same as the corresponding class of (n−1)-positive Ricci curvature manifolds. On
the other hand there are differences between positive scalar curvature and k-positive
Ricci curvature for 1 ≤ k < n in the non-simply-connected case. To see this consider
the Riemannian product manifold Sm(R) × (Mk, g) where the first factor is a round
sphere of radius R and dimension m ≥ 2, and the second factor is a closed hyperbolic
spin manifold of dimension k ≥ 2. Then for R sufficiently small this product manifold
has (k + 1)-positive Ricci curvature, as any collection of k + 1 linearly independent
tangent directions must include a direction with a component in TSm. However this
manifold does not support a metric of k-positive Ricci curvature, since if it did, this
would mean that Mk admits a positive scalar curvature metric, as this is not possible
by [GL2].

In the context of the above discussion, it seems natural to pose the following

Question 1.7. To what extent do the classes of simply-connected closed manifolds ad-
mitting positive scalar curvature metrics and 2-positive Ricci curvature metrics differ?
In particular, do these two classes agree?

Note that Theorem 2.5 answers the latter question affirmatively for 3-connected
4-parallelisable 9-manifolds.

In the same way that there is a natural gradation of curvatures between scalar and
Ricci, there are similarly natural notions of curvature intermediate between the Ricci
and sectional curvatures. If we fix a tangent vector u and extend it to an orthogonal
(k+1)-frame {u, v1, ..., vk}, we can form the sum of sectional curvatures

∑k
i=1K(u, vi).

A manifold is said to have k-positive curvature if these sums are all positive. This
condition has been studied much more than k-positive Ricci curvature: see for example
[Ha], [Sh1], [Sh2], [Wu], [Wi], [GX], [GW1], [GW2], [GW3], [Mo1], [Mo2].

We note, however, that the terminology for these intermediate curvature notions is
not fixed in the literature. For example in [GW1], [GW2], [GW3] what we have called
k-positive curvature above is referred to as the kth-intermediate Ricci curvature, and
denoted Rick. In [Wi] it is called the kth-Ricci curvature. There is an obvious and
significant potential for confusion here.

We should also mention that there are other notions of curvature which are in some
sense intermediate between classical curvatures. These include Labbi’s p-curvature,
see for example [La], [BL1], and the σk and Γk curvatures defined in terms of the
eigenvalues of the Schouten tensor, see for example [BL2].

This paper is laid out as follows. In §2 we study the topology of highly connected
manifolds in dimensions 4j+1, leading to a proof of Theorem 1.2. In §3 we show how
to embed pairs of 2j-spheres into S4j+1 in a geometrically nice way, so as to realize
any given linking number. In §4 we show how to construct a Ric2 > 0 metric on
S4j+1 which facilitates our final step, which is to perform 2-positive Ricci curvature
surgery on the link. This is carried out in §5, concluding with the proof of Theorem
1.4. There is also an Appendix which explains some of the more intricate curvature
formulas appearing in the main body of the paper.
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2 (2j−1)-connected (4j+1)-manifolds

2.1 The general case

To state our main topological result, Theorem 2.1 below, we first recall some notation
from [CW]. Let πsm = limi→∞πm+i(S

i) be the stable m-stem and Jm : πm(SO) → πsm
the J-homomorphim. By [KM] there is an exact sequence

0 → bP4j+2 → Θ4j+1
Φ−−→ Coker(J4j+1) → 0,

where Θ4j+1 is the group of oriented diffeomorphism classes of homotopy (4j+1)-
spheres and bP4j+2 ⊂ Θ4j+1 is the subgroup of those homotopy spheres which bound
parallelisable manifolds.

Recall that M is a (2j−1)-connected (4j+1)-manifold. For the majority of this
section we also assume that the tangent bundle of M is trivial over any 2j-skeleton
of M ; i.e. that M is 2j-parallelisable. In [CW, §5.1] we recalled the bordism group

Ω
O〈2j〉
4j+1 of 2j-parallelisable manifolds and showed that an orientation onM determines a

bordism class [M, ν̄] ∈ Ω
O〈2j〉
4j+1 , where ν̄ :M → BO〈2j+1〉 is a lift of the map M → BO

which classifies the stable normal bundle of M , and BO〈2j+1〉 → BO is the 2j-
connected covering of BO. By [CW, Theorem 7.1] there is a homotopy sphere Σ such

that [M, ν̄] = [Σ] ∈ Ω
O〈2j〉
4j+1 . It follows that the natural map η : Coker(J4j+1) → Ω

O〈2j〉
4j+1

is onto and we define
Σ(M) ⊂ Θ4j+1

to be the set of homotopy spheres Σ such that η(Φ(Σ)) = −[M, ν̄] ∈ Ω
O〈2j〉
4j+1 .

Theorem 2.1. Let M4j+1 be a (2j−1)-connected 2j-parallelisable manifold. Then
there is a natural number r ≥ 0, and if r > 0 a collection of integers m1, ...,mr with
each mi ≥ 2 such that for every homotopy sphere Σ ∈ Σ(M), M#Σ is diffeomorphic
to a manifold M0 (if r = 0) or to a connected sum

M0♯M1♯ · · · ♯Mr,

where M0 is a connected sum of the total spaces of linear S2j-bundles over S2j+1 or
possibly the empty connected sum M0 = S4j+1, and each Mi for i > 0 is constructed
by performing surgery on a two component link of embedded 2j-spheres in S4j+1 for
which the linking number is equal to mi.

Regarding the linking numbers mi, we can restrict to the case mi ≥ 2 for the
following reasons: if mi = 1, then the outcome of surgery on the corresponding link
is a homotopy sphere, if mi = 0, then the outcome of surgery is diffeomorphic to
the connected sum of two S2j-bundles over S2j+1 and if mi < 0, then the outcome
of surgery is diffeomorphic to the outcome of surgery on −mi. As discussed in the
introduction, the manifolds described in Theorem 2.1 were classified up to connected
sum with homotopy spheres in [Wa2, Theorem 7].
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To give the proof of Theorem 2.1 we must first recall foundational results of Smale
and Wall on certain handlebodies. We have already summarised these results in [CW
§4] and we use the notation and setting we developed there. We define a handlebody
W of dimension 4j+2 to be a smooth manifold obtained by attaching (2j+1)-handles
to the (4j+2)-disc D4j+2, so that

W = D4j+2 ∪φ (⊔si=1D
2j+1 ×D2j+1), (1)

where φ : ⊔si=1 D
2j+1 × S2j → S4j+1 is a smooth embedding. We define

H4j+2 := {W |W ∼= D4j+2 ∪φ (⊔si=1D
2j+1 ×D2j+1)}

to be the set of diffeomorphism classes of handlebodies.
We next review Wall’s classification of H4j+2 [Wa1]. Recall from [CW §3] the

quadratic form parameter

π2j{SO(2j+1)} =
(
π2j(SO(2j+1)),Z,h,p

)
.

An extended quadratic form with values in π2j{SO(2j+1)} is a triple (H,λ, µ) where
H is a finitely generated free abelian group, λ : H×H → Z is a skew-symmetric bilinear
form and µ : H → π2j(SO(2j+1)) is a function such that

µ(x+ y) = µ(x) + µ(y) + p(λ(x, y)) and h(µ(x)) = λ(x, x).

There are obvious notions of isometry and orthogonal sum for extended quadratic
forms. Given a handlebody W there is a well-defined function,

µW : H2j+1(W,∂W ) → π2j(SO(2j+1)), x 7→ νx̂,

which is defined by taking the isomorphism class of the normal bundle νx̂ of an embed-
ding x̂ : S2j+1 → W which represents the Poincaré dual of x. Moreover, Wall showed
that if λW : H2j+1(W,∂W ) ×H2j+1(W,∂W ) → Z is the intersection form of W , then
the triple

(H2j+1(W,∂W ), λW , µW )

defines an extended intersection form with values in π2j{SO(2j+1)} and proved the
following

Theorem 2.2 ([Wa1, p. 168]). For all j ≥ 1, the assignment of its extended intersection
form to a handlebody defines a bijection,

H4j+2 ≡ F4j+2, W 7→ (H2j+1(W,∂W ), λW , µW ),

which maps the boundary connected sum of handlebodies to the orthogonal sum of forms;

W0♮W1 7→ (H2j+1(W0, ∂W0), λW0
, µW0

)⊕ (H2j+1(W1, ∂W1), λW1
, µW1

).

Moreover, every isomorphism of extended intersection forms,

A : (H2j+1(W1, ∂W1), λW1
, µW1

) ∼= (H2j+1(W0, ∂W0), λW0
, µW0

),

is realised by a diffeomorphism fA : W0
∼=W1.
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Example 2.3. If W is obtained from D4j+2 by attaching a single (2j+1)-handle, so
that s = 1 in (1), then the embedding φ : D2j+1 × S2j → S4j+1 is a framed 2q-sphere
which has self-linking number 0. In this case the extended quadratic form of W is
given by (

H2j+1(W,∂W ), λW , µW
) ∼= (Z(x1), 0, γ1) ,

where µW (x1) = γ1 ∈ π2j(SO(2j+1)).

Example 2.4. If W is obtained from D4j+2 by attaching two (2j+1)-handles, so that
s = 2 in (1), then the embedding φ : (D2j+1×S2j

1 )⊔ (D2j+1×S2j
2 ) → S4j+1 is a framed

link with two components which has a linking numberm ∈ Z. In this case the extended
quadratic form of W is given by

(
H2j+1(W,∂W ), λW , µW

) ∼=
(
Z
2(x1, x2),

(
0 m

−m 0

)
,

(
γ1
γ2

))
,

where µW (xi) = γi ∈ π2j(SO(2j+1)).

Proof of Theorem 2.1. By [CW, Theorem 7.1] M#Σ is diffeomorphic to the boundary
of a handlebody W . For brevity let (H,λ, µ) := (H2j+1(W,∂W ), λW , µW ) be the
extended intersection form of W and define the radical of λ, H0 ⊂ H, by

H0 := {x ∈ H |λ(x, y) = 0 ∀y ∈ H}.

There is an orthogonal decomposition (H,λ, µ) = (H0, 0, µ0)⊕ (Ht, λt, µt), where Ht ⊂
H is a complementary summand to H0 and λt := λ|Ht×Ht is non-degenerate. Note that
it is possible that Ht = 0, in which case r = 0. By the classification of non-degenerate
skew symmetric forms, see [VF, §14], there is an isometry

(Ht, λt) ∼=
r⊕

i=1

(Hi, λi),

where for every i, there is a positive integer mi and an isometry

(Hi, λi) ∼=
(
Z
2(xi1, xi2),

(
0 mi

−mi 0

))
.

It follows that there are isometries of extended quadratic forms

(Ht, λt, µt) ∼=
r⊕

i=1

(
Z
2(xi1, xi2),

(
0 mi

−mi 0

)
,

(
γi1
γi2

))

and

(H,λ, µ) ∼=
s⊕

l=1

(
Z(xl), 0, γl

)
⊕

r⊕

i=1

(
Z
2(xi1, xi2),

(
0 mi

−mi 0

)
,

(
γi1
γi2

))
,

where {x1, . . . , xs} is a basis for H0 and we allow s = 0 or r = 0, in which case the
corresponding summand is empty. By Theorem 2.2 and Examples 2.3 and 2.4 it follows
that W is either diffeomorphic to D4j+1 or to a boundary connected sum of the form

W ∼= ♮sl=1Wl, or W ∼= ♮ri=1Wi, or W ∼=
(
♮sl=1Wl

)
♮
(
♮ri=1Wi

)
,
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where every Wl, l = 1, . . . , s, is the total space of a D2j+1-bundle over S2j+1 and
every Wi, i = 1, . . . , r, is obtained by attaching two (2j+1)-handles to D4j+2. Now
the manifold Ml := ∂Wl, l = 1, . . . , s, is the total space of an S2j-bundle over S2j+1

and the manifold Mi := ∂Wi, i = 1, . . . , r, is constructed by performing surgery on a
two component link of embedded 2j-spheres in S4j+1 for which the linking number is
equal to mi. Since there is a diffeomorphismM#Σ ∼= ∂W = (#s

l=1Ml)#(#r
i=1Mi), the

theorem follows.

2.2 3-connected 4-parallelisable 9-manifolds

Let M be a 3-connected 9-manifold. Up to equivalence, M admits a unique spin
structure, and a spin 9-manifold (M,s) has an α-invariant α(M,s) ∈ KO9 = Z/2
defined by taking the index of the Dirac operator associated to s. Hence M has a
well-defined α-invariant

α(M) := α(M,s) ∈ KO9.

Theorem 2.5. Let M be a 3-connected 4-parallelisable 9-manifold. Then the following
are equivalent:

(a) α(M) = 0 ∈ KO9;

(b) M admits a metric of positive scalar curvature;

(c) M admits a metric of 2-postive Ricci curvature.

Proof. We have that (a) and (b) are equivalent by [St]. The implication from (c) to (b) is
trivial. Finally we show that (a) implies (c). The α-invariant defines a homomorphism
α : Coker(J9) → KO9. By [BCS, Lemma 5.8] there is a homotopy sphere Σ for which
Φ(Σ) generates ker(α) and which is the boundary of a plumbing manifold W which is
obtained from D10 by adding a 4-handle and a 6-handle. By [Wr2], Σ admits a metric
of positive Ricci curvature. Since 2-positive Ricci curvature can be preserved under
connected sums, the theorem now follows from Theorem 2.1.

3 Linked spheres in S2k+1

From now on we will work in dimension 2k + 1, assuming k ≥ 3. Although the
applications we have in mind concern dimensions 4k+1, the topological and geometric
constructions we make in this and subsequent sections generally work in dimension
2k + 1. We will therefore work in this more general setting.

The aim of this section is to show how to construct a pair of linked k-spheres
within S2k+1 which realize a given linking number m ∈ Z, and which facilitate the
metric surgery constructions to be performed in the subsequent sections.

We will view the ambient sphere as a union

S2k+1 = (Ska ×Dk+1
b ) ∪ (Dk+1

a × Skb )

=
(
Ska × {0}

)
∪
(
(0, T ) × Ska × Skb

)
∪
(
{0} × Skb

)

9



for some T > 0. The round metric on S2k+1 can be neatly expressed as a double warped
product using this last viewpoint:

ds22k+1 = dt2 + cos2(t)ds2k + sin2(t)ds2k,

where T = π/2, the warping factor cos(t) scales Ska , and sin(t) scales Skb . The metric
on S2k+1 that we will need in the next section will, in some sense, be a generalization
of this double warped product idea, though the metric restricted to the Skb will not
always be round, and in certain directions the metric will be ‘twisted’.

Let us set Zk := Ska × {0}. We will call this the core sphere. This will be one
part of the two-component link of spheres on which we will perform surgery. Choose a
basepoint ∗ ∈ Skb , and consider the disc

D :=
(
Ska × {0}

)
∪
(
(0, T ) × Ska × {∗}

)
∪
(
{0} × {∗}

)
.

As this clearly bounds the core sphere, we will call D the core disc.
Our main task in this section is to construct an embedded sphereW k ⊂ S2k+1 such

that given any m ∈ Z, we have linking number Lk(W,Z) = m.

We begin by considering a smooth function f : Ska → Skb of degree d. This gives rise
to a graph Γ(f) ⊂ Ska ×Skb , which of course is a smoothly embedded copy of Sk within
Ska × Skb . If we let π : Ska × Skb → Ska denote the standard projection map, then Γ(f) is
the image of a section for this trivial bundle.

Lemma 3.1. For any x ∈ Ska , the submanifold {x} × Skb ⊂ Ska × Skb is transverse to
Γ(f) at the point (x, f(x)).

Proof. Since Γ(f) is a graph, it is evident that the derivative map π∗ maps the tangent
space T(x,f(x))Γ(f) isomorphically onto TxS

k
a . Thus T(x,f(x))({x} × Skb ) = kerπ∗ is a

complementary subspace to T(x,f(x))Γ(f) within T(x,f(x))(S
k
a×Skb ), hence the result.

For convenience we will temporarily introduce a background metric g0 = ds2k + ds2k
on Ska×Skb . With respect to g0 we can consider the normal bundle νg0Γ(f) of Γ(f) within
Ska ×Skb . Of course the topological properties of the normal bundle are independent of
the metric, and therefore in some of our topological considerations below it will make
sense to suppress the metric from our notation.

Let Hx denote the hemisphere within {x} × Skb (as determined by g0) centered on
the point (x, f(x)), and consider the submanifold D⊥(Γ(f)) ⊂ Ska × Skb , defined by

D⊥(Γ(f)) := {Hx |x ∈ Ska}.

It is clear that there is a projection map π̂ : D⊥(Γ(f)) → Γ(f) given by (x, y) 7→
(x, f(x)), making D⊥(Γ(f)) into a disc bundle over Γ(f). We immediately deduce

Corollary 3.2. A tubular neighbourhood of Γ(f) has the structure of a disc-bundle
over Γ(f) with fibres Dk

x ⊂ {x} × Skb centered on (x, f(x)).

For each x ∈ Ska , consider the tangent space to Hx at the point (x, f(x)). Col-
lectively, these tangent spaces form a vector bundle over Γ(f) which we will denote
E(Γ(f)). Observe that D⊥(Γ(f)) can be obtained by exponentiating (with respect to
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g0) a disc bundle DE(Γ(f)). In particular, D⊥(Γ(f)) and DE(Γ(f)) are equivalent
fibre bundles.

It is easy to construct a metric on Ska × Skb for which the normal bundle at Γ(f) is
precisely E(Γ(f)), and thus we can take E(Γ(f)) as a model for ν(Γ(f)). In the next
section our aim will be to construct a particular metric of this kind, hence the choice
of notation for the bundle D⊥(Γ(f)).

Lemma 3.3. If k is even, the normal bundle ν(Γ(f)) has Euler number 2d. Thus
D⊥(Γ(f)) is non-trivial whenever k is even and d 6= 0.

Proof. We begin by observing that the graph Γ(f) is clearly represented by the homol-
ogy class (1, d) ∈ Hk(S

k
a × Skb )

∼= Z⊕ Z.
The desired Euler number is equal to the self-intersection number of Γ(f) within

Ska × Skb . We claim that this self-intersection number is 2d.
In order to compute the self-intersection, we switch from homology to cohomology

and consider cup products. The Poincaré dual of the homology class representing Γ(f)
is (1, d) ∈ Hk(Ska × Skb ), and we need to compute the cup product (1, d) ∪ (1, d) ∈
H2k(Ska × Skb )

∼= Z.
By the Künneth theorem, as rings we have H∗(Ska × Skb )

∼= H∗(Ska)⊗H∗(Skb ), and
therefore

H2k(Ska × Skb )
∼= Hk(Ska)⊗Hk(Skb )

∼= Z⊗ Z ∼= Z and

Hk(Ska × Skb )
∼=

(
H0(Ska)⊗Hk(Skb )

)
⊕

(
Hk(Ska)⊗H0(Skb )

)
.

Let α, β denote generators of Hk(Ska) respectively Hk(Skb ). Via the last Künneth
isomorphism we can interpret (1, d) ∈ Hk(Ska × Skb ) as (1 ⊗ dβ) ⊕ (α ⊗ 1). Therefore
(1, d) ∪ (1, d) can be viewed as

(
(1⊗ dβ)⊕ (α⊗ 1)

)
∪
(
(1 ⊗ dβ) ⊕ (α⊗ 1)

)

= (1⊗ (dβ)2) + (α2 ⊗ 1) + d(1⊗ β) ∪ (α⊗ 1) + d(α ⊗ 1) ∪ (1⊗ β)

= 2d(α ⊗ β).

The last line follows as the cup product is symmetric as a consequence of k being even,
together with the fact that α2 = β2 = 0. Now H2k(Ska × Skb ) is generated by the
element α ⊗ β, so denoting the fundamental homology class of Ska × Skb by [Ska × Skb ]
we conclude that (

(1, d) ∪ (1, d)
)
∩ [Ska × Skb ] = 2d,

which establishes the claim.

For each point (x, y) ∈ Ska × Skb , the background metric g0 allows us to unambigu-
ously identify the ‘Skb -antipodal point’ (x,−y). Thus we obtain an ‘antipodal section’

to Γ(f) which we will denote Γ̂(f).We obtain a disc bundle D⊥(Γ̂(f)) over this antipo-
dal section exactly as we did for Γ(f). Clearly D⊥(Γ(f)) and D⊥(Γ̂(f)) are equivalent
fibre bundles, which by Lemma 3.3 are non-trivial whenever k is even and d 6= 0. We
immediately deduce
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Corollary 3.4.

Ska × Skb = D⊥(Γ(f)) ∪id D⊥(Γ̂(f)).

Notice that we can ‘combine’ the two disc bundles above to obtain a single bundle
given by π̄ : Ska ×Skb → Γ(f), where π̄(x, y) = (x, f(x)). If we let σ : Γ(f) → Ska denote
the diffeomorphism σ(x, f(x)) = x, then the composition σ ◦ π̄ clearly agrees with the
standard projection map π : Ska × Skb → Ska . Thus π̄ defines a trivial bundle structure,
despite being decomposable into a union of typically non-trivial bundles over the same
base space.

Definition 3.5. Let W denote the k-sphere

W := {T/2} × Γ(f) ⊂ (0, T ) × Ska × Skb ⊂ S2k+1.

Proposition 3.6. Lk(W,Z) = d.

Proof. We begin by noting the following result ([Ko, p. 72]): if h : (Mn, ∂M) →
(Nn, ∂N) has degree δ, then δ = I(Γ(h),Mp), where Γ(h) is the graph of h in M ×N,
Mp = M × {p} ⊂ M × N is any ‘M -slice’ through the product, and I denotes the
oriented intersection number. In our situation this means that d is the intersection
number of Γ(f) ⊂ Ska×Skb with any {x}×Skb . Now observe that this intersection number
is trivially also the intersection number of W with the core disc, i.e. d = I(W,D).
Finally, as D bounds the core sphere Z, by the definition of linking numbers (see for
example [ST, p. 288]) we have d = I(W,D) = Lk(W,Z) as claimed.

Lemma 3.7. The normal bundle ν(Γ(f)) is stably-trivial.

Proof. As the topological properties of the any normal bundle are independent of the
Riemannian metric, for simplicitly let us equip S2k+1 with the round metric, which
we can view as a double warped product as outlined at the start of this section. We
then have a smooth one-parameter family of embeddings of Sk into S2k+1 given by
{t} × Γ(f) for t ∈ [0, π/4], which starts with Z and ends with W . Notice that when
t = 0 the sphere Skb collapses to a point, and hence the graph Γ(f) should be interpreted
as Z = Ska ×{0}. Thus within S2k+1, Z and W must have isomorphic normal bundles.
Clearly the normal bundle of Z is trivial, and thus it follows that the normal bundle of
W is also trivial. Finally, we observe that ν(Γ(f))⊕R agrees with the normal bundle
of W within S2k+1.

4 Metrics on S2k+1

The aim of this section is to define a metric on S2k+1 with Ric2 > 0 which will allow
surgery on Z and W preserving the curvature condition. We will view S2k+1 as a
product [0, T ]×Ska ×Skb for some T >> 0 (to be determined later), or more accurately
as (

Ska × {0}
)
∪
(
(0, T ) × Ska × Skb

)
∪
(
{0} × Skb

)
.
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The desired metric will be defined in three pieces: the ‘ends’, which correspond
to t ∈ [0, T/9] and t ∈ [8T/9, T ]; a middle region corresponding to t ∈ [T/3, 2T/3] in
which the metric is chosen so as to facilitate surgery on W ; and two ‘transition phases’
corresponding to t ∈ [T/9, T/3] and t ∈ [2T/3, 8T/9], in which the metric interpolates
between those in the middle and end phases.

For t ∈ [0, T/9] we will choose the metric to be a warped product

dt2 + ρ20ds
2
k + q2(t)ds2k.

Here ρ0 is a small constant to be chosen later, and q is a smooth function with the
following properties: q′′(t) ≤ 0; q′(t) ∈ [0, 1]; q(t) = sin(t) if t ∈ [0, ζ], for some choice
of ζ ∈ (0, 1/10); q(t) = ρ1, a small constant to be chosen later, for all t ∈ [2ζ, T/9].
The form of q close to t = 0 ensures that the metric is smooth there.

For future reference, let us note the Ricci curvatures of the following single and
double warped products. For a real interval I, the Ricci curvatures of the warped
product (I × Sn; dt2 + p2(t)ds2n) are given by

Ric(∂t, ∂t) = −np′′/p,
Ric(U/p,U/p) = −p′′/p + (n − 1)(1 − p′2)/p2,

where ∂t is short for ∂/∂t, and where U is a unit vector in the Sn-direction with respect
to ds2n. The Ricci curvatures of the double warped product

(I × Sn × Sm; dt2 + p2(t)ds2n + q2(t)ds2m)

are given by

Ric(∂t, ∂t) = −np′′/p −mq′′/q

Ric(U/p,U/p) = −p′′/p+ (n− 1)(1 − p′2)/p2 −mp′q′/pq

Ric(V/q, V/q) = −q′′/q + (m− 1)(1 − q′2)/q2 − np′q′/pq

Ric(U/p, V/q) = 0,

where ∂t and U are as above, and V is a unit vector in the Sm-direction with respect
to ds2m.

It is now easy to see that the ‘end’ metric dt2+ρ20ds
2
k+ q

2(t)ds2k for S2k+1 will have
Ric ≥ 0 and Ric2 > 0. Moreover we have Ric > 0 for t ∈ [0, ζ].

At the other end, we proceed similarly, introducing a metric dt2+ p2(t)ds2k+ ρ
2
1ds

2
k.

We assume that p′′(t) ≤ 0 and p′(t) ∈ [−1, 0] for all t ∈ [8T/9, T ]. We further assume
that for some ζ ′ ∈ (0, 1/10), p takes the form

p(t) = cos
(π
2
+ t− T

)

for t ∈ [T − ζ ′, T ], and p(t) = ρ0 for t ∈ [8T/9, T − 2ζ ′]. Again, the resulting metric has
Ric ≥ 0, Ric2 > 0, and for t close to T it is Ricci positive.

Notice that these warped product ‘end’ metrics are essentially independent of T ,
in the sense that different values of T (provided they are sufficiently large) affect
neither the choice of ζ and ζ ′, nor the form of the scaling functions for t ∈ [0, 2ζ]
and t ∈ [T − 2ζ ′, T ], nor the constant values of the scaling functions at other values of
t.
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We next select the metric on the middle region, corresponding to t ∈ [T/3, 2T/3].

The basic idea for the region [T/3, 2T/3]× Ska × Skb is to design our metric so as to
reflect the topology of the embedded sphere W and its normal bundle. We will first
considerW as a submanifold of {T/2}×Ska ×Skb (to simplify the notation we will write
W ⊂ Ska × Skb ), construct a W -adapted submersion metric g on Ska × Skb , then extend
trivially as a product to the whole neighbourhood.

At this point let us recall a result of Vilms (see [Vi] or [Be, 9.59]). Given a fibre
bundle with Lie structure group, there is a submersion metric on the total space of the
bundle with totally geodesic fibres which is uniquely determined by the following data:
a metric on the base, a metric on the fibre invariant under the action of the structure
group, and a principal connection on the associated principal bundle. The submersion
metric is complete if the base and fibre metrics are both complete.

To obtain the desired metric on Ska × Skb , we first consider creating a submersion
metric on the disc bundle D⊥(W ) := D⊥(Γ(f)) ⊂ Ska×Skb (introduced before Corollary
3.2). We will do this in such a way that we automatically obtain a smooth submersion
metric on the double of this bundle, i.e. on Ska × Skb .

With the above Vilms result in mind, we begin our construction by specifying a base
metric: on W choose the pull-back of the unit round metric via σ, i.e. set ǧ = σ∗(ds2k),
where σ : W → Ska is the diffeomorphism introduced after Corollary 3.4.

For the connection, observe that our background metric g0 induces Riemannian
metrics in the fibres of E(W ) := E(Γ(f)) (introduced after Corollary 3.2). This allows
a reduction of the structure group to SO(k). Let P denote the principal SO(k)-bundle
associated to E(W ). Notice that P will also serve as the associated principal bundle
for the disc bundle D⊥(W ). We fix an arbitrary principal connection ∇ on P . Now in
the generic case where d 6= 0, P must be non-trivial by Lemma 3.3, so consequently
no choice of principal connection can be globally flat. The metric we will construct on
Ska × Skb = D⊥(W ) ∪D⊥(W ) therefore cannot be a product metric in this case.

For the fibres we choose a rotationally symmetric metric ĝ so as to be invariant
under the structure group action. As such a metric is a single warped product, it
follows from the above curvature formulas that the Ricci curvature will be positive
provided the warping function is everywhere concave down. In fact we will choose this
function so that the double approximates a long, thin, capped cylinder, which displays
Z2-symmetry with respect to interchanging the poles. The precise form of this warping
function will be crucial, and we will discuss this below.

We can now define a metric on D⊥(W ) via the Vilms construction, starting with
the data ǧ, ĝ and (P,∇) above. For convenience, let us denote this metric by

ν(ǧ, ĝ,∇),

and similarly for other metrics we will consider which arise from the Vilms construction.
The desired metric g on Ska × Skb is then the double of ν(ǧ, ĝ,∇).

We now present the finer details of the fibre metric. Given that we want to work
with the double of the disc bundle D⊥(W ), it will be convenient to define the fibre
metric on the whole of the sphere bundle fibre Skb , with the disc metric being ‘half’ of
this.

This standard fibre metric will take the form ds2 +ψ2(s)ds2k−1 for s ∈ [0,Λ], where
the function ψ is given by

ψ(s) = Λθ(s/Λ)
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for some large constant Λ and a function θ defined below. Thus in terms of the notation
introduced above we have

g = ν(ǧ, ds2 + ψ2(s)ds2k−1,∇).

We will specify a value for Λ in Section 5, but assume for the moment that a suitable
value for this constant has been fixed, and that Λ > π. We therefore need to describe
the function θ(x) where x ∈ [0, 1]. We proceed as follows.

Consider the functions
1

πΛ
sin(πΛx)

for x ∈ [0, 1
2Λ ],

1

πΛ
sin

(
πΛ(x− 1 +

1

Λ
)
)

for x ∈ [1− 1
2Λ , 1], and

c sin(π(x+ 1)/3)

for x ∈ [−1, 2]. Here c > 0 is a very small constant. Notice that the first two functions
taken together on the specified intervals display symmetry about x = 1/2, as does the
third function. It is clear that for c sufficiently small (depending on Λ), the graphs of
the first and third functions above must intersect at a unique point x1 ∈ (0, 1/2), and
the graphs of the second and third must intersect at a point x2 ∈ (1/2, 1). Moreover
given any ǫ > 0, by choosing c smaller if necessary, we can ensure that x1 ∈ (0, ǫ) and
x2 ∈ (1− ǫ, 1).

Let θ0(x) be the following continuous, piecewise-smooth function:

θ0(x) =





1
πΛ sin(πΛx) if x ∈ [0, x1]

c sin(π(x+ 1)/3) if x ∈ (x1, x2)
1
πΛ sin

(
πΛ(x− 1 + 1

Λ)
)

if x ∈ [x2, 1].

In order to obtain θ we smooth θ0. Specifically, we deform θ0 in very small neigh-
bourhoods of x = x1 and x = x2 in such a way that the strict concavity of the function
is preserved. It is clear that we can make such adjustments keeping |θ(x) − θ0(x)|
arbitrarily small, and so that θ′(x) changes approximately linearly between its values
on either side of the deformation regions. Moreover, to create Z2-symmetry about
x = 1/2, we will assume that the two deformations performed will be mirror-images of
one-another.

We remark that the ‘ends’ of the metric ds2 + ψ2(s)ds2k−1, corresponding to s ≈ 0
and s ≈ Λ, are round of radius 1/π.

With an eye towards curvature computations, we prove the following

Lemma 4.1. For any suitably small choice of c > 0, θ0 can be smoothed to a function
θ(x) which satisfies

1. −θ′′/θ > 1;

2. (1− θ′2)/θ2 > 1;

for all x ∈ [0, 1].
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Proof. We first check the above inequalities hold for θ0 on the intervals [0, x1) and
(x1, x2), then argue that these inequalities must continue to hold when θ0 is smoothed
to θ. By the Z2-symmetry, this will then suffice to establish the Lemma.

For x ∈ [0, x1) we have −θ′′0/θ0 = π2Λ2 > 1. For x ∈ (x1, x2) we have

−θ′′0/θ0 = π2/9 > 1.

Given that

lim
x→x−

1

θ0(x) = cos(πΛx1) and lim
x→x+

1

θ0(x) =
πc

3
cos(π(x1 + 1)/3),

we see that provided c is sufficiently small, the smoothing process must locally make
the second derivative more negative, while keeping the function values arbitrarily close
to the original θ0 values. Thus it is clear that we can perform the smoothing so that
the inequality (1) holds.

For the second inequality we have (1 − θ′20 )/θ
2
0 = π2Λ2 when x ∈ [0, x1). For x ∈

(x1, x2) we have

1− θ′20 (x)

θ20(x)
=

1− π2

9 c
2 cos2(π(x+ 1)/3)

c2 sin2(π(x+ 1)/3)
,

and clearly this exceeds 1 if c is small.
As θ0 is smoothed to θ, provided the interval of smoothing is sufficiently short,

(1 − θ′2)/θ2 will interpolate between its values on either side of the deformation to
within any desired degree of accuracy. As the inequality holds on either side, it will
therefore hold throughout.

We immediately deduce

Corollary 4.2. For any suitably small value of c, the following inequalities hold for
all s ∈ [0,Λ]:

1. −ψ′′/ψ > 1/Λ2;

2. (1− ψ′2)/ψ2 > 1/Λ2.

Note that the required values for c and Λ needed to construct ψ will emerge natu-
rally from the surgery considerations in Section 5.

In order to state the Ricci curvature formulas for the metric g on Ska × Skb , we
introduce a Riemannian Sk−1-bundle over W which will serve as a sort of ‘comparison
bundle’ to π̄ : Ska × Skb → W. This bundle, which we will denote B, is the Sk−1-
bundle associated to the principal SO(k)-bundle P , equipped with the submersion
metric gB := ν(ǧ, ds2k−1,∇). (Recall that this is the metric determined via the Vilms
construction by the base metric ǧ, the fibre metric ds2k−1, and principal connection
∇.) The O’Neill formulas for the curvature of Riemannian submersions then describe
the Ricci curvatures of B in terms of the corresponding A-tensor, see [Be, §9C] for
details. Note that B is essentially a sub-bundle of π̄ : Ska × Skb → W corresponding to
a constant value of s ∈ (0,Λ), and up to fibre scaling, the metric gB agrees with the
metric induced on B by g. In particular a vector V tangent to a fibre of B can (and in
the Lemma below will) also be viewed as tangent to a fibre of π̄.
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Lemma 4.3. The Ricci curvatures of the metric g on Ska × Skb are as follows:

Ric(V/ψ, V/ψ) = −ψ
′′

ψ
+ (k − 2)

1 − ψ′2

ψ2
+ ψ2(AV,AV );

Ric(∂s, ∂s) = −(k − 1)
ψ′′

ψ
;

Ric(X,X) = (k − 1)− 2ψ2(AX , AX);

Ric(V/ψ,X) = −ψ(δ̌A(X), V );

with all other mixed Ricci curvature terms vanishing. Here V is a unit vector for
(Sk−1, ds2k−1), where S

k−1 is a cross-section of a fibre Skb corresponding to any fixed
s ∈ (0,Λ), ∂s is shorthand for ∂/∂s, and X is a unit vector tangent to the base W .
The A-tensor terms are those for the comparison bundle (B, gB) (which in particular
are independent of ψ).

For details behind these and many other curvature formulas appearing in this paper,
see the Appendix.

Combining Lemma 4.3 with Corollary 4.2, the following result is evident:

Proposition 4.4. There is a c0 > 0 (depending on Λ and ∇) such that for each
c ∈ (0, c0), the resulting function ψ yields a metric g which has all Ricci curvatures
strictly positive.

We will assume from now on that our choices of Λ and c ensure that Ric(g) > 0.
To complete the construction of middle-phase metric on [T/3, 2T/3] × Ska × Skb we

simply form the product dt2 + g.

It remains therefore to describe the transition phase metrics corresponding to t ∈
[T/9, T/3] and t ∈ [2T/3, 8T/9].

For the transition phases, and indeed also for surgery considerations in the next
section, the following basic feature of k-positive Ricci curvature will be very useful:

Lemma 4.5. Given a path of Rick > 0 metrics gt, t ∈ [0, 1], on a closed manifold M ,
there exists χ ≥ 1 such that the metric dy2+ gL(y) on [0, χ]×M has Rick+1 > 0, where
L denotes the linear function [0, χ] → [0, 1] given by L(y) = y/χ. In particular, any
path of Ricci positive metrics on M can be stretched in this way to give a Ric2 > 0
metric on [0, χ]×M.

Proof. We begin by observing that for fixed t = t1, the product metric dt2 + gt1 has
Rick+1 > 0: Rick > 0 restricted to M -directions, and zero Ricci curvature in the
t-direction.

Given ǫ > 0, by choosing the value of χ sufficiently large, we can ensure that the
metric dy2 + gL(y) in a neighbourhood of y = χt1 is C2 ǫ-close to the Rick+1 > 0
product metric dy2 + gt1 . As curvature only depends on the metric in a C2-sense, by
the openness of the Rick+1 > 0 condition, we conclude that the metric dy2 + gL(y) also
has Rick+1 > 0 in this neighbourhood for ǫ sufficiently small. By the compactness of
the interval [0, χ], we can therefore choose a value for χ which gives Rick+1 > 0 for the
metric dy2 + gL(y) globally.
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By Lemma 4.5, it suffices to show that there is a path of Ricci positive metrics on
Ska ×Skb linking g above with the product metric ρ20ds

2
k + ρ21ds

2
k on Ska ×Skb for suitable

ρ0, ρ1 > 0. The transition phase breaks into four sub-phases: a re-scaling phase, a
twisting phase, a shape-changing phase, and then a further re-scaling phase.

• The first rescaling.

Lemma 4.6. For any ρ0, ρ1 > 0 there exists a Ricci positive path of metrics joining
ρ20ds

2
k + ρ21ds

2
k to ds2k + ρ21ds

2
k.

Proof. As the metric µ2ds2k+ρ
2
1ds

2
k has positive Ricci curvature for all µ > 0, by varying

µ between ρ0 and 1 we obtain a path of Ricci positive metrics linking ρ20ds
2
k + ρ21ds

2
k to

ds2k + ρ21ds
2
k.

The metric in the above Lemma constitutes the first part of the transition phase.

• The twisting phase.

The basic background result here is:

Lemma 4.7. Consider a Riemannian submersion with totally geodesic fibres deter-
mined via the Vilms construction by a base metric, a fibre metric, and a connection on
the associated principal bundle. If the base and fibre metrics are Ricci positive, then
for any choice of connection there is a µ0 > 0 such that for any µ ∈ (0, µ0), rescaling
the fibre metrics by a factor of µ2 yields a Ricci positive metric on the total space.

Proof. This is an immediate consequence of the canonical variation formulas, as pre-
sented in [Be, 9.70].

Recall that the Ricci positive metric g on Ska ×Skb constructed for the middle region
is a submersion metric with totally geodesic fibres, determined by the Ricci positive
base metric (W, ǧ), a fibre metric (Skb , ds

2+ψ2(s)ds2k−1), and a principal connection ∇
on the associated principal SO(k)-bundle P .

Notice that we can also view g as a Riemannian submersion over (Ska , ds
2
k) given

by the projection map π = σ ◦ π̄. This works because the original base metric on W is
the pull-back of ds2k via σ. We are therefore justified in writing

g = ν(ds2k, ds
2 + ψ2(s)ds2k−1,∇),

with the projection map π assumed. This shift in our viewpoint will aid compari-
son with product metrics on Ska × Skb , which of course are submersion metrics for π
asssociated to the trivial (flat) principal SO(k + 1)-connection ∇triv.

Joining g to product metrics on Ska × Skb via a path of Ricci positive submersion
metrics will, in particular, require an ‘untwisting’ of ∇. However this is not possible
as things currently stand, as the associated principal SO(k)-bundle P is typically non-
trivial.

In order to address this, we first have to enlarge the isometry group of the fibres
from SO(k)×Z2 to SO(k+1), by replacing the metric ds2 +ψ2(s)ds2k−1 by the round
metric ds2k. Thus we will consider making a suitable deformation to the scaling function
ψ.
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If the unit round metric is used in the Vilms construction with the same base metric
and principal connection, we obtain a submersion metric with round totally geodesic
fibres. Call this resulting metric g1. As a consequence of the round fibres, for this
new metric we now have an associated principal SO(k+1)-bundle P1, and a principal
SO(k + 1)-connection ∇1. We can therefore write g1 = ν(ds2k, ds

2
k,∇1).

It is easy to see that P1 is a trivial bundle, since it is associated to the trivial Sk-
bundle π = σ ◦ π̄ (whereas P is associated to the generally non-trivial Sk−1-‘bundle of
equators’ within Ska × Skb determined by W ). Hence we have two principal SO(k + 1)-
connections, ∇1 and ∇triv on the trivial SO(k + 1)-bundle over Ska .

As the space of principal connections on a given principal bundle is a contractible
space, we can find a path of principal connections joining ∇triv to ∇1. This path,
together with the fixed base (Ska , ds

2
k) and fibre (Skb , ds

2
k) produces a path of submersion

metrics via the Vilms construction with round totally geodesic fibres linking g0 to g1.

Lemma 4.8. There exists ι1 ∈ (0, 1) such that for any ρ1 ∈ (0, ι1), rescaling the fibres
of each submersion metric in the above path linking g0 to g1 by the factor ρ21 yields a
path of Ricci positive metrics.

Proof. This follows from Lemma 4.7 together with the compactness of the path domain.

Let us denote the metric obtained from g by re-scaling its fibres by a factor µ2

by g(µ), and similarly for other submersion metrics, so Lemma 4.8 guarantees a Ricci
positive path from g0(ρ1) to g1(ρ1).

• The shape changing phase

We now consider changing the shape of the fibres from ρ21ds
2
k to ρ

2
1(ds

2+ψ2(s)ds2k−1).
To this end, we will need to describe a path from the round metric to ds2+ψ2(s)ds2k−1.
Now the latter metric is a warped product over the interval [0,Λ]. In order to describe
the path of metrics it will be convenient to express the round metric similarly as a
warped product over [0,Λ]. The natural way to do this is as follows:

ds2 +
Λ2

π2
sin2

(πs
Λ

)
ds2k−1.

Of course this is a round metric of radius Λ/π, i.e. Λ2π−2ds2k. Given this representation
of the round metric, we will now describe the desired path. Of course we must make
sure that all the individual metrics along this path are Ricci positive.

Let β : [0, 1] → [0, 1] be a smooth ‘bump’ function satisfying β(x) = 0 for x ∈ [0, ǫ],
where 0 < ǫ << 1, β(x) = 1 for x ∈ [1− ǫ, 1], and β′(x) ≥ 0 for all x ∈ [0, 1]. Consider
the function H : [0,Λ] × [0, 1] → R≥0 given by

H(s, x) = (1− β(x))
(Λ
π
sin

(πs
Λ

))
+ β(x)ψ(s).

Lemma 4.9. For each x ∈ [0, 1], the warped product metric ds2 + H2(s, x)ds2k−1 on

Sk is a smooth Ricci positive metric.

Clearly, this metric path begins (for x ≈ 0) with a round metric of radius Λ/π, and
ends (for x ≈ 1) with the metric ds2 + ψ2(s)ds2k−1.
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Proof. Differentiating, we have

∂H

∂s
= (1− β(x)) cos

(πs
Λ

)
+ β(x)ψ′(s),

∂2H

∂s2
= (1− β(x))

(
−π
Λ
sin

(πs
Λ

))
+ β(x)ψ′′(s).

To prove smoothness, by Z2-symmetry about s = Λ/2 it suffices to study s ≈ 0. Here
we require oddness at s = 0 and ∂H

∂s (0, x) = 1 for all x. Now a convex combination
of odd functions is clearly odd, and (Λ/π) sin(πs/Λ) and ψ(s) are individually odd.
Moreover

∂H

∂s
(0, x) = (1− β(x)).1 + β(x).1 = 1,

as required.
For Ricci positivity we observe that Hss/H < 0 for s ≥ 0 (using l’Hôpitals’s rule

to examine the case s = 0). As (1−H2
s )/H

2 is non-negative (again, using l’Hôpital to
investigate s = 0), Ricci positivity now follows from the single warped product formulas
at the start of this section.

Lemma 4.10. There exists ι2 > 0 such that for any ρ2 ∈ (0, ι2), the path of totally
geodesic submersion metrics (parametrized by x ∈ [0, 1]) with fibre

(Skb , ρ
2
2(ds

2 +H2(s, x))ds2k−1),

base (Ska , ds
2
k) and associated principal connection ∇, is a path of Ricci positive metrics.

In other words we have a path of Ricci positive metrics joining g1(Λρ2/π) to g(ρ2).

Proof. This is evident by combining Lemma 4.9 with Lemma 4.7, bearing in mind that
ds2 +H2(s, 0)ds2k−1 is a round metric of radius Λ/π.

We now need to factor ρ2 in the above Lemma into our choice of ρ1, so that this ρ1
will work for both Lemmas 4.8 and 4.10.

Corollary 4.11. For any ρ1 ∈ (0,min{ι1, ι2Λ/π}), there is a Ricci positive path of
totally geodesic submersion metrics linking g0(ρ1) = ds2k + ρ21ds

2
k and g(πρ1/Λ).

• Second scaling phase.

Lemma 4.12. There exists a path of Ricci positive metrics linking g(πρ1/Λ) and g.

Proof. Consider the path of submersion metrics taking the form g(µ) for µ ∈ (0, 1].
Since Ric(g) > 0, we obtain Ricci positivity for each metric of this form from Lemma
4.7. The result now follows from the fact that πρ1/Λ < 1. This inequality is an
elementary consequence of the fact that ρ1 < 1 (see Lemma 4.8) and Λ > π.

Proposition 4.13. There exists a Ricci positive path of metrics joining ρ20ds
2
k+ ρ

2
1ds

2
k

to the metric g.

Proof. Simply concatenate the path in Lemma 4.6 with those described by Corollary
4.11 and Lemma 4.12.
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Using Lemma 4.5 we obtain

Corollary 4.14. If T is chosen sufficiently large, and then ρ1 chosen sufficiently small,
there exists a smooth Ric2 > 0 metric on (0, 2T/3] × Ska × Skb which agrees with the
metric dt2 + ρ20ds

2
k + q2(t)ds2k for t ∈ (0, T/9], and with dt2 + g for t ∈ [T/3, 2T/3].

It remains to construct the part of the Ric2 > 0 metric on S2k+1 corresponding
to t ∈ [2T/3, 8T/9], to join smoothly with dt2 + g for smaller t, and the metric dt2 +
p2(t)ds2k + ρ21ds

2
k at larger t. However given the construction above for the transition

phase t ∈ [T/9, T/3], it is easy to see that the desired metric is essentially the mirror
image of the above.

5 Surgery on links

We begin by performing Ricci positive surgery on the sphere Z := Ska×{0}. Recall that
for t ∈ [0, ζ], the ambient metric takes the form dt2 + ρ20ds

2
k +sin2(t)ds2k. The following

result essentially follows from [SY, Lemma 1].

Proposition 5.1. If ρ0 is sufficiently small (given ζ), then surgery can be performed
on Z within the region corresponding to t ∈ [0, ζ/2], preserving Ricci positivity.

Remark 5.2. The surgery we are dealing with here is the ‘obvious’ surgery, in the sense
that the normal bundle of Z has an evident product structure, which we then use to
complete the surgery. However, given a different trivialization of the normal bundle,
one can equally perform surgery using that datum. Topologically this can result in a
different manifold, and we must consider such possibilities for each surgery we perform.
For the moment we will not worry about this point: we will work with the obvious
surgeries in the short term, and address the situation for alternative normal bundle
trivializations at the end of the section.

Given that surgery on Z is straightforward, the main focus of this section will
therefore be concerned with performing Ric2 > 0 surgery on the sphere W . Recall
that W is embedded in {T/2}×Ska ×Skb , and that the metric on [T/3, 2T/3]×Ska ×Skb
is dt2 + g.

Our first task is to identify the normal discs which will be part of the surgery
procedure. It is clear that at any point w = (T/2, x, f(x)) ∈ W , the submanifold
[T/3, 2T/3] × {x} × Skb meets W orthogonally at w. Moreover, as the fibres of the
submersion metric g are totally geodesic, the exponential map defined by g in {T/2}×
Ska × Skb gives a local diffeomorphism of the normal space to W ⊂ {T/2} × Ska × Skb at
w onto the fibre {T/2}×{x}×Skb . Thus the desired normal disc to W at w within the
ambient manifold will be some choice of disc Dk+1 ⊂ [T/3, 2T/3] × {x} × Skb .

Consider the normal distance sphere Sk about w ∈ W at some radius R. In order
for this sphere to lie wholly within the region [T/3, 2T/3]×{x}×Skb , we need to place
a lower bound on T , namely

T > 6R. (2)
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Recalling that we have a longitudinal parameter s on each Skb , observe that the normal
distance sphere corresponds to a semi-circle in the (t, s)-plane. Specifically, let γ(r),
r ∈ [0, πR], denote the radius R semi-circle

γ(r) =
(
R cos(r/R) +

T

2
, R sin(r/R)

)
.

Notice that each point of this curve for r ∈ (0, πR) picks out a copy of Sk−1 in the
appropriate fibre Skb corresponding to the s-parameter value R sin(r/R), i.e.

Sk−1 ⊂
{
R cos(r/R) +

T

2

}
× {x} × Skb ⊂ [T/3, 2T/3] × Ska × Skb .

At r = 0, πR we obtain single points instead, so topologically, the curve γ determines
a k-sphere as claimed. As a distance sphere with respect to a smooth metric, this is
clearly a smooth submanifold of S2k+1.

It turns out that R will need to be sufficiently large in order to perform Ric2 > 0
surgery on W . Clearly there has to be a relationship between R and Λ. It will be
convenient to set

Λ =
5R

2
. (3)

Collectively, i.e. considering all possible (x, f(x)) ∈ W (or equivalently all x ∈
Ska), these normal distance spheres form a trivial Sk-bundle over W , since the normal
(vector) bundle to W in S2k+1 is trivial by Lemma 3.7. Metrically, however, this
Sk-bundle is generally not trivial (that is, not a metric product), as the Sk−1 cross-
sections of the Sk fibres (corresponding to constant values of r) are subject to twisting
as one moves around the base W , as determined by the principal SO(k)-connection ∇
associated to g.

For surgery purposes we want to consider not just the copies of the normal sphere
Sk (for a given point (x, f(x)) ∈ W ), but the family of ‘concentric’ normal spheres
which (inwardly) foliate the normal disc bounded by this Sk.

For τ ≥ 0 we therefore consider the inward τ -equidistant semi-circle

γ(r, τ) =
(
(R− τ) cos(r/R) +

T

2
, (R− τ) sin(r/R)

)

for r ∈ [0, πR]. It is easily checked that the induced metric on the corresponding sphere
Skτ is (R− τ

R

)2
dr2 + ψ2

(
(R− τ) sin(r/R)

)
ds2k−1.

(Setting u = r(R− τ)/R and re-expressing the metric in terms of u, we again see that
the metric is smooth for all τ ∈ [0, R).)

Notice now that (r, τ) together form a coordinate system on part of the (t, s)-plane
- the part relevant to our surgery considerations. It will make sense to switch to using
(r, τ) coordinates from now on.

Consider the normal Dk+1 disc bundle aboutW where the fibre-disc boundaries are
determined by γ(r) = γ(r, 0). Notice that P , the principal SO(k)-bundle associated to
the normal bundle ofW ⊂ Ska×Skb , is also an associated principal bundle to our normal
Dk+1-bundle over W , (with SO(k) acting trivially in the t-direction). In particular, ∇
is the appropriate principal connection for the normal Dk+1-bundle.

22



The ambient metric in this disc bundle can then be described as a submersion
metric over (W,σ∗(ds2k)), with principal connection ∇, and with fibre metric given in
our new (r, τ) coordinate system by

dτ2 +
(R− τ

R

)2
dr2 + ψ2

(
(R− τ) sin(r/R)

)
ds2k−1.

We will initially consider τ ∈ [0, 1]. Assuming R >> 1, this will not cause us any
problems.

Our first task in the surgery process is to ‘slow down’ the evolution of concentric
normal sphere metrics as τ increases, to a point where the normal sphere metrics
are independent of τ . We achieve this by introducing a function φ : [0, 1] → [0, 1]
given by φ(τ) = τ for t ∈ [0, 1/10], φ(τ) = 1/2 for τ ∈ [9/10, 1], with φ′ ∈ [0, 1] and
φ′′ ∈ (−3/2, 0]. (It is clear that such a function exists.) Our strategy will be to replace
the metric on the normal sphere Skτ by that for Skφ(τ), so for τ ∈ [9/10, 1] the metric
does not vary with τ . Thus we want to consider instead the normal metric

dτ2 +
(R− φ(τ)

R

)2
dr2 + ψ̄2(r, τ)ds2k−1, (4)

where we have set
ψ̄(r, τ) := ψ

(
(R− φ(τ)) sin(r/R)

)
.

Since τ ∈ [0, 1] here, we are actually dealing with a normal annulus bundle, which is a
subbundle of the normal disc bundle.

Remark 5.3. Setting Λ = 5R/2 means that (R− τ) sin(r/R) < Λ/2, which ensures the
concavity of ψ̄. This will be important for curvature considerations.

To allow greater flexibility, we will also allow base scalings: instead of a fixed
metric σ∗(ds2k) on W , we will instead consider f2(τ)σ∗(ds2k) for some function f . To
join smoothly with the ambient metric outside the normal disc bundle, we clearly need
f(τ) = 1 for τ ≈ 0.

Let us denote by gφ the metric on the normal annulus bundle to W corresponding
to τ ∈ [0, 1], determined by the fibre metric (4), base metric f2(τ)σ∗(ds2k), and the
principal connection ∇. Notice that we can view this as a submersion metric over
(W,σ∗(ds2k)) followed by a base direction rescaling. A calculation described in the
Appendix shows the following.

Proposition 5.4. Suppose that the vector V is as in Lemma 4.3, and that {Xi} is an
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orthonormal frame in (W,σ∗(ds2k)). Then the metric gφ has Ricci curvatures given by

Ric
( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
=

φ′′

R− φ
+ k

φ′

R− φ

f ′

f
− k − 1

(1−R−1φ)2
ψ̄rr
ψ̄

+ (k − 1)
φ′

R− φ

ψ̄τ
ψ̄
,

Ric(V/ψ̄, V/ψ̄) =
k − 2

ψ̄2

(
1− ψ̄2

τ −
ψ̄2
r

(1−R−1φ)2

)
− 1

ψ̄

(
ψ̄ττ +

ψ̄rr
(1−R−1φ)2

)

+
( φ′

R− φ
− k

f ′

f

) ψ̄τ
ψ̄

+
ψ̄2

f4
(AV,AV ),

Ric(∂/∂τ, ∂/∂τ) =
φ′′

R− φ
− k

f ′′

f
− (k − 1)

ψ̄ττ
ψ̄
,

Ric(Xi/f,Xi/f) =
k − 1

f2
(1− f ′2)− f ′′

f
+

φ′

R− φ

f ′

f
− (k − 1)

f ′ψ̄τ
fψ̄

− 2
ψ̄2

f4
(AXi

, AXi
),

Ric(Xi/f, V/ψ̄) =− ψ̄

f3
(δ̌A(Xi), V ).

Ric(Xi/f,Xj/f) =− 2
ψ̄2

f4
(AXi

, AXj
) for i 6= j,

Ric(V/ψ̄, V ′/ψ̄) =
ψ̄2

f4
(AV,AV ′) if ds2k−1(V, V

′) = 0.

All other mixed Ricci curvature terms vanish. The A-tensor terms are those for the
comparison bundle (B, gB).

Let us now give more detail about the function f(τ) for τ ∈ [0, 1]. As noted above,
we need f(τ) = 1 for τ close to zero. Suppose we are given a very small constant δ > 0.
(This constant will have to be chosen sufficiently small for later arguments to be valid,
but this will not concern us for the moment.) Let us choose and fix a function f such
that f ′′(τ) ≤ 0, f ′′(τ) = −δ for τ ∈ [1/10, 9/10], f ′′(τ) = 0 for τ ≈ 1, and

f ′

f
> −δ.

Over the interval [1/10, 9/10], f ′ decreases by 4δ/5. It is clear that we can choose f for
the complementary values of τ in such a way that f ′(1) > −9δ/10. In turn this means
that

f(1) > 1− 9δ

10
.

Therefore the minimum value of f ′/f for τ ∈ [0, 1] occurs at τ = 1, and we have

f ′

f
(1) > − 9δ/10

1− (9δ/10)

= − 9δ

10− 9δ

> −δ, provided δ < 1/9.
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Clearly we also have −f ′′/f > δ for τ ∈ [1/10, 9/10], and −f ′′/f ≥ 0 for all τ ∈ [0, 1].

The curvature of gφ

The major task at hand is to analyse the Ricci curvature formulas for gφ in the
Proposition above. To this end, we recall that the function ψ (on which ψ̄ is based) is
defined, via a C0 function θ0, in three pieces: see Section 4 for the precise details. As
our analysis will in particular involve estimates for ψ̄ and its derivatives, we will split
our considerations in pieces corresponding to those for θ0. Of course we must also take
into account the smoothing of θ0 to θ needed to define ψ, and ultimately ψ̄.

• Near the fibre ends.

Let us recall that the non-smooth points for θ0(x) occur at x1 ∈ (0, 1/2) and
x2 ∈ (1/2, 1). Moreover, we asserted in Section 4 that given any ǫ > 0 we can choose c
sufficiently small so that x1 ∈ (0, ǫ) and x2 ∈ (1− ǫ, 1). For the moment we will ignore
all smoothing issues.

For small x ≥ 0 we have θ(x) = θ0(x) = π−1Λ−1 sin(πΛx). So for suitably small
r ≥ 0, where ‘suitably small’ here is dependent (via the defining expression for ψ̄) on
τ ∈ [0, 1], we have

ψ̄(r, τ) =
1

π
sin

(
π(R − φ) sin(r/R)

)
,

and thus the following derivative formulas apply:

− 1

(1−R−1φ)2
ψ̄rr
ψ̄

= π2 cos2(r/R) +
π

R− φ
sin(r/R) cot

(
π(R − φ) sin(r/R)

)
,

− ψ̄ττ
ψ̄

= πφ′′ sin(r/R) cot
(
π(R− φ) sin(r/R)

)
+ π2φ′2 sin2(r/R),

ψ̄τ
ψ̄

= −πφ′ sin(r/R) cot
(
π(R − φ) sin(r/R)

)
,

1− ψ̄2
τ − (1−R−1φ)−2ψ̄2

r

ψ̄2
= π2

1− cos2(π(R − φ) sin(r/R))(cos2(r/R) + φ′2 sin2(r/R))

sin2(π(R − φ) sin(r/R))
.

Let us analyse the above expressions.

The final expression is bounded below by π2, which can be seen by replacing φ′2 by
1.

The the first term in the expression for −(1 − R−1φ)−2ψ̄rr/ψ̄ is clearly positive
provided r < πR/2. The behaviour of the second term in this expression as r → 0 is
governed by

lim
r→0

sin(r/R) cot(π(R− φ) sin(r/R)).

By l’Hôpital’s rule, we easily compute

lim
r→0

sin(r/R) cot
(
π(R− φ) sin(r/R)

)
=

1

π(R− φ)
.
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Therefore overall,

− 1

(1−R−1φ)2
lim
r→0

ψ̄rr
ψ̄

= π2 +
1

(R − φ)2
.

Thus for r sufficiently small, the expression for −(1−R−1φ)−1ψ̄rr/ψ̄ is positive.
For the second expression we have, using the above,

lim
r→0

(
− ψ̄ττ

ψ̄

)
= πφ′′

1

π(R − φ)
+ 0 =

φ′′

R− φ
.

This is therefore non-positive. For τ ∈ [0, 1/10] ∪ [9/10, 1] we have φ′′ = 0, but for the
in-between values of τ this is a bad term which has to be managed. Note however that
given the choice of φ (and in particular the fact that φ′′ > −3/2), this term is at worst
−2/R, (assuming R is large).

Finally, for the remaining expression we have

lim
r→0

ψ̄τ
ψ̄

= −πφ′ 1

π(R − φ)
= − φ′

R− φ
.

Notice that this is at worst −1/(R − φ), and so we can again use a lower bound of
−2/R.

To conclude this analysis, we note note that the limiting values computed above
serve as good estimates for the relevant terms provided ǫ, or equivalently c, is chosen
small enough, (as these constants control x1, and in turn the values of r for which the
above derivative expressions are valid). Assuming this, we now use these estimates to
obtain lower bounds on the Ricci curvature terms.

We begin with Ric(V/ψ̄, V/ψ̄). Using the crude estimates φ′′ > −2, φ′ ≤ 1, φ < 1,
and δ < 1, we obtain

Ric(V/ψ̄, V/ψ̄) ≈(k − 2)π2 +
φ′′

R− φ
+ π2 +

1

(R− φ)2
−

( φ′

R− φ

)2

+ k
φ′

R− φ

f ′

f
+
ψ̄2

f4
(AV,AV ),

≥(k − 1)π2 − 2

R− φ
+

1

(R− φ)2
− 1

(R − φ)2
− kδ

R− φ
,

≥(k − 1)π2 − k + 2

R− 1
.

It is then easily checked that we obtain a positive lower bound (assuming that k ≥ 3)
if R > 2.

In the τ -direction we have

Ric(∂/∂τ, ∂/∂τ) ≈ φ′′

R− φ
− k

f ′′

f
+ (k − 1)

φ′′

R− φ
,

= k
( φ′′

R− φ
− f ′′

f

)
.
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Recalling our choices for f and φ we have for τ ∈ [1/10, 9/10]

Ric(∂/∂τ, ∂/∂τ) ≥ k
(
δ − 2

R− 1

)
.

Thus this Ricci curvature will be positive at these values of τ if δ > 2/(R − 1), or
equivalently if

R > 1 + (2/δ). (5)

For τ ∈ [0, 1/10] ∪ [9/10, 1] we clearly have Ric(∂/∂τ, ∂/∂τ) ≥ 0.
In the r-direction we have

Ric
( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
≈ φ′′

R− φ
+ k

φ′

R− φ

f ′

f
+ (k − 1)π2

+
k − 1

(R− φ)2
− (k − 1)

( φ′

R− φ

)2
,

≥− 2

R− 1
+ (k − 1)π2 − k

δ

R− 1
.

This will be positive provided

(k − 1)π2 >
2 + k

R− 1
.

Since k ≥ 3 this will be satisfied if R > 2.
Finally, we consider

Ric(Xi/f,Xi/f) ≈ (k − 1)
(1 − f ′2)

f2
− f ′′

f
+ k

φ′

R− φ

f ′

f
− 2

ψ̄2

f4
(AXi

, AXi
),

≥ (k − 1)(1 − δ2)− kδ

R− 1
− 2

Λ2c2

(1− δ)4
(AXi

, AXi
).

Clearly we can render the last term arbitrarily small by a suitable choice of c (given
the A-tensor term and a value for Λ), hence for positivity it suffices to show that

(k − 1)(1 − δ2) >
kδ

R− 1
.

Since δ (by previous considerations) is less than 1/9, it then suffices to show that

(k − 1)
80

81
>

k

9(R − 1)
.

As k ≥ 3, this will be satisfied if R > 2.
The mixed Ricci curvature terms can all be controlled (i.e. rendered arbitrarily

small) by a suitably small choice of c. This means that even though the directions
considered above might not be eigendirections for the Ricci tensor, the corresponding
values can be viewed as estimating the genuine eigenvalues to within any given degree of
accuracy. Thus the positivity of these values is sufficient for the purposes of identifying
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Ric > 0 and Ric2 > 0. There is just one direction in which we must exercise some
caution: Ric(∂/∂τ, ∂/∂τ) is only non-negative when τ ∈ [0, 1/10] ∪ [9/10, 1]. However
the mixed Ricci curvature terms involving ∂/∂τ all vanish, so the mixed terms do not
have any impact on the Ricci curvatures of directions having a component in the ∂/∂τ
direction.

In summary then, provided δ < 1/9 and R > 1+(2/δ) (which automatically ensures
R > 2), we will have Ric ≥ 0 and Ric2 > 0 if ǫ, c are chosen sufficiently small.

• Around the fibre middle region.

We now come to the ‘middle’ region for ψ̄, corresponding to where θ(x) = θ0(x) =
c sin(π(x + 1)/3). For the corresponding values of r (where again the relevant range
of r values is dependent on τ), a straightforward compuatation yields the following
derivative expressions.

− 1

(1−R−1φ)2
ψ̄rr
ψ̄

=
π2

9Λ2
cos2

( r
R

)
+

π

3Λ(R − φ)
sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))
,

− ψ̄ττ
ψ̄

=
π2

9Λ2
φ′2 sin2

( r
R

)
+

π

3Λ
φ′′ sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))
,

ψ̄τ
ψ̄

= − π

3Λ
φ′ sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))
,

1− ψ̄2
τ − (1−R−1φ)−2ψ̄2

r

ψ̄2
=
1− (π2c2/9)(φ′2 sin2(r/R) + cos2(r/R))

Λ2c2 sin2
(
π
3

(
1 + R−φ

Λ sin(r/R)
))

+
π2

9Λ2

(
φ′2 sin2(r/R) + cos2(r/R)

)
.

These expressions yield the Ricci curvature formulas below. In each case we analyse
the formula to investigate its positivity (or otherwise).

Ric(V/ψ̄, V/ψ̄) =(k − 2)
1 − (π2c2/9)(φ′2 sin2(r/R) + cos2(r/R))

Λ2c2 sin2
(
π
3

(
1 + R−φ

Λ sin(r/R)
))

+ (k − 1)
π2

9Λ2

(
φ′2 sin2(r/R) + cos2(r/R)

)

+
π

3Λ
sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))[
φ′′ +

1− φ′2

R− φ
+ kφ′

f ′

f

]

+
ψ̄2

f4
(AV,AV ).
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The first term in this expression will be positive provided c < 3/π. The second and
final terms are both non-negative. Using the fact that f ′/f > −δ, φ′ ∈ [0, 1] and
φ′′ > −2, we see that the third term is bounded below by

π

3Λ
sin(r/R) cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))[
−2− kδ

]
.

The key point here is that for any choice of Λ, as c→ 0 the first term in the expression
for Ric(V/ψ̄, V/ψ̄) tends to infinity, whereas the bad term above stays fixed. Therefore
this Ricci curvature term is guaranteed to be positive if c is sufficiently small compared
to Λ. (For the mixed Ricci curvature terms c has to be sufficiently small compared to
f−3, and we will see later that in different contexts c has to be small compared to Λ
for other reasons.)

Turning our attention next to the τ -direction we have

Ric(∂/∂τ, ∂/∂τ) =φ′′
[ 1

R− φ
+ (k − 1)

π

3Λ
sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))]

+ (k − 1)
π2

9Λ2
φ′2 sin2(r/R)− k

f ′′

f
.

Notice that the first term in this expression is generally bad, but the other terms are
good. For τ ∈ [1/10, 9/10] we have −kf ′′/f = kδ. Hence by choosing Λ (and therefore
R) sufficiently big, we obtain positivity overall since δ is chosen independently of Λ, R.
For τ ∈ [0, 1/10]∪ [9/10, 1] we have φ′′ = 0. Therefore Ric(∂/∂τ, ∂/∂τ) ≥ 0 for such τ .
Actually, for τ ∈ [0, 1/10] we have φ′ > 0, so the second term in the above expression
ensures the positivity of the Ricci curvature. Therefore overall we have Ric(∂/∂τ, ∂/∂τ)
positive for τ ∈ [0, 9/10], and non-negative for τ ∈ [9/10, 1].

In the r-direction we have

Ric
( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
=

kφ′

R− φ

f ′

f
+ (k − 1)

π2

9Λ2
cos2(r/R) +

φ′′

R− φ

+(k − 1)
π

3Λ

1

R− φ
sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))
[1− φ′2].

Since 1−φ′2 ≥ 0, we see that the final term above is non-negative. The second term is
non-negative, but is not positive as r = πR/2 belongs to the middle region. Thus we
are left trying to balance the bad terms

φ′′

R− φ
+ k

φ′

R− φ

f ′

f

with the final non-negative term. For τ ∈ [0, 1/10] we have 1− φ′2 = 0 and φ′′ = 0, so
we are left with a single bad term which we can bound below as follows:

k
φ′

R− φ

f ′

f
> −k δ

R− 1
.

Provided δ < 1/k we obtain a lower bound of −1/(R − 1) here. For τ ∈ [1/10, 9/10],
using φ′′ > −3/2 and choosing δ < 1/2k, we can estimate the bad terms collectively
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by −2/(R − 1). As φ′ ≈ 1 when τ ≈ 1/10, this is the best estimate we can give.
For τ ∈ [9/10, 1] we have Ricci positivity in the r-direction. Thus overall (i.e. for
all τ ∈ [0, 1]), we can only say that this Ricci curvature term is bounded below by
−2/(R − 1).

Finally, we consider

Ric(Xi/f,Xi/f) =(k − 1)
1− f ′2

f2
− f ′′

f
+

φ′

R− φ

f ′

f
− 2

ψ̄2

f4
(AXi

, AXi
)

+ (k − 1)
π

3Λ
φ′
f ′

f
sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))

≥(k − 1)(1 − δ2)− 2Λ2c2

(1− δ)4
(AXi

, AXi
)

− δ
[ 1

R− φ
+ (k − 1)

π

Λ
sin(r/R) cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))]
,

where we have under-estimated f by 1− δ. For large R,Λ, the sign of Ric(Xi/f,Xi/f)
will agree with that of

(k − 1)(1 − δ2)− 2Λ2c2

(1− δ)4
(AXi

, AXi
).

Thus if c is sufficiently small compared to Λ and the A-tensor term, we will have
Ric(Xi/f,Xi/f) > 0.

Given that we have not been able to guarantee positive Ricci curvature, let us turn
our attention to 2-positive Ricci curvature. From the above analysis, to guarantee
Ric2 > 0 for this region, we must consider the effect of adding −2/(R− 1) to the Ricci
curvature expressions for the Xi, τ and V directions.

For Ric(Xi/f,Xi/f), given R,Λ sufficiently large we will not alter the positivity of
this term, as for small c it is still approximated by (k − 1)(1− δ2).

In the case of Ric(V/ψ̄, V/ψ̄), our previous analysis of this term shows that adding
the term −2/(R − 1) will do no damage provided c is sufficiently small.

The case of Ric(∂/∂τ, ∂/∂τ) is a little more delicate. The sum of the Ricci curvature
terms in the τ and r directions and will be positive provided

− k
f ′′

f
+ k

φ′

R− φ

f ′

f
+ (k − 1)

π2

9Λ2

(
φ′2 sin2(r/R) + cos2(r/R)

)

+ (k − 1)
π

3Λ

1

R− φ
sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))
[1− φ′2]

+ φ′′
[ 2

R− φ
+ (k − 1)

π

3Λ
sin

( r
R

)
cot

(π
3

(
1 +

R− φ

Λ
sin

( r
R

)))]
> 0.

For τ ∈ [0, 1/10] we have φ′ = 1, φ′′ = 0, and so the last term above is identically zero,
as is the penultimate term. We are therefore left with the expression

k

f

(
−f ′′ + f ′

R− φ

)
+ (k − 1)

π2

9Λ2
.
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The second term in the line above is positive. We claim that we can arrange for

−f ′′ + f ′

R− φ
≥ 0

with a careful choice of f . Suppose that we want the downward bend of f to start
when τ = 1/20 say. For τ ∈

(
1
20 ,

1
20 + δ

100

]
, set

f(τ) = 1− exp
(
−
(
τ − 1

20

)−2
)
.

This smoothly extends f(τ) = 1 for τ ≤ 1/20, and an easy computation shows that for
τ ∈ ( 1

20 ,
1
20 + δ

100 ),

−f ′′ + f ′

R− φ
=
e−1/(τ−(1/20))2

(
τ − 1

20

)6
[
4− 6

(
τ − 1

20

)2 − 2

R− φ

(
τ − 1

20

)3]
.

It is clear that for τ ∈
(

1
20 ,

1
20 + δ

100

)
, this expression is positive. For τ ≥ 1

20 + δ
100 ,

we can use the size of R to control the term −f ′′ + f ′/(R− φ), ensuring its positivity.
Thus for τ ∈ [0, 1/10] we have

Ric(∂/∂τ, ∂/∂τ) +Ric
( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
> 0.

For τ ∈ [1/10, 9/10] we have −kf ′′/f = kδ, and we can balance this term against the
other terms by choosing R,Λ sufficiently large, so as to ensure that the sum of the
Ricci curvatures is positive. Finally, for τ ∈ [9/10, 1] all terms are non-negative, and
the term with factor (1− φ′2) is strictly positive. We can therefore conclude that

Ric(∂/∂τ, ∂/∂τ) +Ric
( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
> 0

for all τ ∈ [0, 1].
As noted earlier, since the mixed Ricci curvature terms are controlled by c, by

choosing c sufficiently small, we can keep the Ricci tensor eigenvalues as close as we
like to the Ricci curvatures in the key directions above, and hence the mixed curvature
terms will not affect Ric2 > 0.

• Smoothing issues.

It remains to discuss what happens to the Ricci curvature over the regions of
smoothing, when θ0 is smoothed to the function θ. It suffices to consider the smoothing
of θ0(x) at the point x = x1, as the symmetry of θ0 about x = 1/2 yields the same
outcome at the other smoothing point.

The smoothing region can be kept arbitrarily small, and hence in this region we
can assume θ ≈ θ0, with θ

′ decreasing rapidly between the values of θ′0 on either side
of the region. As a consequence, −θ′′ experiences a large positive ‘spike’. We need to
consider the effect this has on the terms of the Ricci curvature formulas depending on
θ (i.e. the terms involving ψ̄). The relevant expressions are treated individually below.
Note that smoothing θ0 to θ around x = x1 is equivalent to smoothing ψ, viewed as a
function on the (r, τ)-plane, in a neighbourhood of the curve determined by

R− φ(τ)

Λ
sin(r/R) = x1.
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In the case of ψ̄r, we have a linear dependence on θ′, so ψ̄2
r decreases over the

smoothing.
In the case of ψ̄τ , we also have a linear dependence on θ′, so ψ̄τ/ψ̄ and ψ̄2

τ both
decrease in magnitude over the smoothing. Note that these terms are both bad for the
curvature, so a reduction in the size of these terms is therefore good.

In the case of −ψ̄ττ/ψ̄, we have a good term (depending linearly on θ′′, assuming
the variation in θ across the smoothing region is negligible), and a bad term (which
likewise depends essentially linearly on θ′). Thus the bad term gets smaller, and the
good term spikes as it transitions between its values on either side of the smoothing.
So overall, this quantity is better over the smoothing region than at either side.

In the case of −(1−R−1φ)−2ψ̄rr/ψ̄, we have two good terms: one effectively linear in
θ′′ and the other effectively linear in θ′. The first of these improves over the smoothing,
but the second diminishes. However this does not impact on Ric2 > 0 because of the
following observation.

If we have Ric2 > 0 on either side of the smoothings, and the various terms which
make up the curvature formulas either stay approximately the same or vary approx-
imately linearly over the smoothing intervals, then the Ric2 > 0 condition will be
preserved provided we can control the deviation from being constant or varying lin-
early. In our case we can control these factors by limiting the size of the smoothing
region. We also have a term (θ′′) which is behaves in a way which is better than if it
varied linearly.

Indeed, checking all the Ricci curvature expressions (including the mixed terms), we
see that all these curvatures either improve, or in the case of the r-direction certainly
get no worse, over the smoothing regions. Hence Ric2 > 0 is preserved if these regions
are sufficiently small.

We summarize the all the above considerations in the following

Proposition 5.5. Given δ with 0 < δ < min{1/2k, 1/9}, there exists R0 = R0(δ) with
the following property. For any R > R0, there exists c0 = c0(δ,R,∇), such that after
setting Λ = 5R/2, any choice of c ∈ (0, c0) results in the metric gφ having Ric2 > 0.

Completing the surgery on W

To complete the surgery on W , it remains to ‘cap off’ W with a disc Dk+1 (having
radial parameter τ), and extend the metric gφ to a Ric2 > 0 metric over Dk+1 × Sk.

Let us focus for the moment on the normal sphere metric induced by gφ correspond-
ing to τ ≈ 1. This is, for r ∈ [0, Rπ],

(
1− 1

2R

)2
dr2 + Λ2θ2

(R− 1
2

Λ
sin

( r
R

))
ds2k−1. (6)

Recall that this sphere metric is independent of τ when τ ≈ 1.
We now want to think of this metric as a scaling of a ‘model’ fibre metric ω, which

is a single warped product metric over a fixed interval [0, π]. We set

ω = dη2 +
Λ2

(R− 1
2)

2
θ2
(R− 1

2

Λ
sin(η)

)
ds2k−1 (7)
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for η ∈ [0, π]. The metric (6) is then

(
R− 1

2

)2
ω,

where r/R has been replaced by η. For convenience we will set

θ̄(η) :=
( Λ

R− 1
2

)
θ
(R− 1

2

Λ
sin(η)

)
,

so
ω = dη2 + θ̄2(η)ds2k−1.

In order to estimate the Ricci curvatures of ω we make the derivative computations
below.

θ̄′(η) = cos(η)θ′
(R− 1

2

Λ
sin(η)

)
;

θ̄′′(η) =
(R− 1

2

Λ

)
cos2(η)θ′′

(R− 1
2

Λ
sin(η)

)
− sin(η)θ′

(R− 1
2

Λ
sin(η)

)
.

Therefore

− θ̄
′′

θ̄
= −

(R− 1
2

Λ

)2
cos2(η)

θ′′

θ

(R− 1
2

Λ
sin(η)

)
+

(R− 1
2

Λ

)
sin(η)

θ′

θ

(R− 1
2

Λ
sin(η)

)
.

Observe that a lower bound for this last expression gives a lower bound for the Ricci
curvature of ω (as |θ′| ≤ 1).

Notice that the first term in the expression for −θ̄′′/θ̄ is positive for η 6= π/2, and
the second term is positive for η 6= 0, π. As Λ = 5R/2 we see that provided R ≥ 3
(which we can assume),

R− 1
2

Λ
∈
[1
3
,
2

5

)
.

Thus

θ′
(R− 1

2

Λ
sin(η)

)
> 0 for all η ∈ [0, π].

In order to obtain a lower bound for the whole expression, we split the η-interval
[0, π] into [0, π/3] ∪ [2π/3, π] and [π/3, 2π/3].

On the union of intervals above, we have cos2(η) > cos2(π/3) = 1/4. Thus we
obtain a lower bound here for −θ̄′′/θ̄ of

− θ̄
′′

θ̄
>

1

9
× 1

4
×

(
−θ

′′

θ

)
.

By Lemma 4.1 we have −θ′′/θ > 1 and so we obtain a lower bound

− θ̄
′′

θ̄
>

1

36

on the union of intervals.
On [π/3, 2π/3] we consider the second term in the expression for −θ̄′′/θ̄. Note first

that by our choice Λ, R, the argument of θ, namely
R− 1

2

Λ sin(η), always lies between
√
3
6

and 2/5 say, over this interval. Thus the argument lies well inside the interval between
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the smoothing regions for θ0. In this middle region we have a lower bound for this
second term of

1

3
sin

(π
3

)θ′
θ

(R− 1
2

Λ
sin(η)

)
=

1

2
√
3

θ′

θ

(R− 1
2

Λ
sin(η)

)
,

and we also know that
θ′

θ
(x) =

π

3
cot

(π
3
(x+ 1)

)
.

Since the cotangent function is decreasing we have

θ′

θ

(R− 1
2

Λ
sin(η)

)
>
π

3
cot

(π
3
× 7

5

)

> 0.11.

Therefore over this middle interval, the second term in the expression for −θ̄′′/θ̄ is
bounded below by

1

2
√
3
× 0.11 ≈ 0.0318 >

1

36
.

So overall (i.e. taking the whole of [0, π] into account), we obtain the lower bound

− θ̄
′′

θ̄
>

1

36
.

Note in particular that we have a lower bound for −θ̄′′/θ̄ which is independent of all
other constants introduced so far (namely c,Λ, R, δ). (For the record, the relationship
between Λ and R was chosen so as to give such a lower bound.) Using the single warped
product formulas we immediately obtain

Proposition 5.6. For all unit vectors, the Ricci curvatures of ω are bounded below by
1/36 (independent of all choices used in the construction of ω).

We now face a situation similar to that encountered in the ‘transition phase’ of the
metric construction on S2k+1 in Section 4: the metric gφ has the wrong symmetries to
extend over Dk+1×Sk without altering the metric ω. Specifically, just as in Section 4,
we need to deform ω to a round metric, and then use the increased symmetry to flatten
the connection, so we end up with a product metric we can easily cap off. Even though
ω is not isometric to ds2+ψ2(s)ds2k−1 which was rounded in Section 4 (see Lemma 4.7
onwards), essentially the same arguments work here. However for our current purposes
we will require a more detailed analysis.

Note that the submersion metrics below are all relative to the projection π : Ska ×
Skb → Ska .

Given some λ > 0, we will join the metric ν(λ2ds2k, ρ
2ω,∇) to ν(λ2ds2k, ρ

2ds2k,∇triv)
along a path of Ricci positive metrics, for some choice of ρ > 0.

Clearly, any upper bound for ρ will depend on ∇ and λ. We claim that this is the
only thing on which ρ depends, in that the upper bound for ρ is independent of the
choices (of Λ, R = 2Λ/5, and c) used to construct ω.

For v ∈ [0, 1], set

H(η, v) := (1− β(v))θ̄(η) + β(v) sin(η),
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where β is the bump function introduced before Lemma 4.9. (Note that H here is
unrelated to the function H(s, x) which appeared in Section 4.) Consider the path of
metrics P (v) given by

P (v) = dη2 +H2(η, v)ds2k .

Observe that since H is a convex combination of odd functions and the η-derivatives
Hη(0, v) = Hη(π, v) = 1, P (v) is a smooth metric on Sk for all v ∈ [0, 1]. Moreover
P (v) is a smooth path linking ω to ds2k.

Proposition 5.7. Given λ > 0, with the path of metrics P (v), v ∈ [0, 1], as above,
there exists κ1 = κ1(∇, λ) ∈ (0, 1) such that for all ρ ∈ (0, κ1), the submersion metric

ν
(
λ2ds2k, ρ

2P (v),∇
)

has positive Ricci curvature for all v ∈ [0, 1], irrespective of the choices involved in the
construction of ω.

Proof. The Ricci positivity of the submersion metric in question depends on the base
metric, the connection, and the fibre metric. More specifically, it depends on the Ricci
curvature of the base, the A-tensor arising from the connection, and the lower bound
for the Ricci curvatures of the fibre. (See [Be, §9G].) The result follows easily from
Lemma 4.7 if we can establish that Ric(P (v)) has a lower bound independent of the
choices made to construct ω. From the single warped product formulas we see that for
each v, a lower bound for Ric(P (v)) is given by −Hηη/H. It therefore suffices to show
that −Hηη/H is positive and independent of the choices made to define ω.

Observe that for v = 1,

−Hηη

H
= −sin′′(η)

sin(η)
= 1,

and recall that for v = 0,

−Hηη

H
= − θ̄

′′

θ̄
>

1

36

(from Proposition 5.6 above). We must therefore check that for v ∈ (0, 1), −Hηη/H
maintains a positive lower bound independent of all choices. Below we consider the
cases η = 0, π and η ∈ (0, π) separately.

Suppose that η = 0. (The case η = π is essentially the same by symmetry.) As
Hηη(0, v) = H(0, v) = 0, we investigate −Hηη/H at (0, v) using l’Hôpital’s rule. This
gives

−Hηη

H
(0, v) = − lim

η→0

Hηηη

Hη
(0, v).

Now it is easily checked that Hη(0, v) = 1, and therefore

−Hηη

H
(0, v) = − lim

η→0
Hηηη(0, v).

But Hηηη is a convex combination of θ̄′′′(η) and sin′′′(η), and by l’Hôpital again we also
have

−θ̄′′′(0) = − lim
η→0

θ̄′′

θ̄
(η) >

1

36
.
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Therefore

−Hηη

H
(0, v) > (1− β)

1

36
+ β.1 ≥ 1

36
.

For η 6= 0, π, the result follows immediately from the next lemma.

Lemma 5.8. Given non-zero real-valued functions A,B defined on the same interval,
with −A′′/A and −B′′/B strictly positive, we have at any point in the domain interval

(1− β)(−A′′) + β(−B′′)
(1− β)A+ βB

≥ min
{
−A

′′

A
,−B

′′

B

}

for any β ∈ [0, 1].

Proof. Suppose without loss of generality that at some point in the domain interval
we have

−A
′′

A
≥ −B

′′

B
,

or equivalently
−A′′B ≥ −B′′A.

Then

(1− β)(−A′′) + β(−B′′)
(1− β)A+ βB

=
(1− β)(−A′′) + β(−B′′)

(1− β)A+ βB

AB

AB

≥ (1− β)(−B′′A)A+ β(−B′′A)B
(1− β)A(AB) + βB(AB)

= −B
′′A
AB

(1− β)A+ βB

(1− β)A+ βB

= −B
′′

B
.

Hence the result.

Given λ > 0, it will be convenient to choose κ1 to be supremum of the permissable
values in (0, 1) guaranteed by Proposition 5.7.

Having deformed the fibre metric to be round, we next untwist the connection. Let
∇(v), v ∈ [1, 2] say, be any path of principal connections joining ∇ to ∇triv. It follows
immediately from Lemma 4.7 that there exists κ2 = κ2(∇(v), λ) ∈ (0, 1) such that

ν(λ2ds2k, ρ
2ds2k,∇(v))

has positive Ricci curvature for each v ∈ [1, 2] and any ρ ∈ (0, κ2). Again, we will
assume that the chosen value of κ2 is the supremum of the possible values within
(0, 1).

Set ρ̄ = min{κ1, κ2}. Thus ρ̄ depends continuously on λ. Concatenating the paths
above and using Lemma 4.5 gives
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Lemma 5.9. Given λ > 0 and ρ̄ > 0 as above, for all ρ ∈ (0, ρ̄) there is a Ric2 > 0
metric on I × Sk × Sk (with the interval I parametrized by u), such that close to one
boundary component the metric agrees with du2 + ν(λ2ds2k, ρ

2ω,∇), and close to the
other it agrees with du2 + λ2ds2k + ρ2ds2k.

Corollary 5.10. With λ, ρ̄ as before, for any ρ ∈ (0, ρ̄) there is a Ric2 > 0 metric on
Dk+1×Sk such that close to the boundary the metric agrees with du2+ν(λ2ds2k, ρ

2ω,∇),
and in a neighbourhood of the centre takes the form

du2 + sin2(u)ds2k + ρ2ds2k,

where we are now taking u to be the radial parameter in Dk+1, with the centre of Dk+1

corresponding to u = 0.

Proof. We need a double warped product metric of the form

du2 + F 2(u) + ρ2ds2k

such that for u ≈ 0 we have F (u) = sin(u), and for u ≥ u0, some u0 > 0 we have
F (u) = λ. From the double warped product Ricci curvature formulas it is clear that
any concave down function F (u) satisfying the above boundary conditions will do.

It is clear that any λ > 0 will work here. However looking at the wider picture,
under suitable concatenation of parameters, we will need the function F in the proof
of the Corollary above to smoothly join the function f discussed previously. This will
certainly require λ < 1. Without loss of generality, let us choose λ = 1/2. Consider
the corresponding value ρ̄, and fix ρ ∈ (0, ρ̄).

To complete the Ric2 > 0 surgery it remains to show how to transition between gφ
and dτ2 + ν(λ2ds2k, ρ

2ω,∇) = dτ2 + ν(14ds
2
k, ρ

2ω,∇).
Near the relevant boundary, gφ takes the form dτ2 + ν(f2ds2k, (R− 1

2)
2ω,∇). Thus

to make the transition we must do two things: change the base scaling from f (≈ 1)
to λ = 1/2, and change the fibre scaling from (R − 1

2) to ρ. It will be convenient to
work in the opposite direction to that of increasing τ : to this end consider a parameter
u ≥ u0, some u0 > 0, extending the u-parameter in Corollary 5.10, with the boundary
of Dk+1 in the Corollary corresponding to u = u0. Moreover, suppose that for some
u0 + N > u0 we have u − u0 − N = 1 − τ for u ∈ [u0 + N,u0 + N + 1]. We want
the function F (u) to ‘extend’ f(τ) in the sense that F (u) = f(1 − (u − u0 − N)) for
u ∈ [u0 +N,u0 +N + 1].

We will therefore consider metrics of the form

du2 + ν(F 2(u)ds2k, h
2(u)ω,∇)

for u ≥ u0, and we will demand that h(u) = ρ for u ∈ [u0, u0 + (1/10)], and F (u) =
λ = 1/2 for u ∈ [u0, u0 + 1].

A straightforward calculation (see the Appendix) yields the following Ricci curva-
ture formulas for this metric:
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Lemma 5.11. The Ricci curvatures of the metric du2 + ν(F 2(u)ds2k, h
2(u)ω,∇) are

given by

Ric(V/hθ̄, V/hθ̄) =
1

h2

(
− θ̄

′′

θ̄
+ (k − 2)

1− θ̄′2

θ̄2

)
− (k − 1)

h′2

h2
− h′′

h

− k
h′F ′

hF
+
h2θ̄2

F 4
(AV,AV );

Ric(Xi/F,Xi/F ) =− F ′′

F
+ (k − 1)

1− F ′2

F 2
−−kh

′F ′

hF
− 2θ̄2h2

F 4
(AXi

, AXi
);

Ric(∂/∂u, ∂/∂u) =− k
F ′′

F
− k

h′′

h
;

Ric(
1

h

∂

∂η
,
1

h

∂

∂η
) =− (k − 1)

θ̄′′

θ̄

1

h2
− (k − 1)

h′2

h2
− h′′

h
− k

h′F ′

hF
;

Ric(Xi/F, V/hθ̄) =− hθ̄

F 3
(δ̌A(Xi), V ).

Here, as before V is a unit vector for (Sk−1, ds2k−1) with Sk−1 a cross-section of the
fibre, and the A-tensor terms are those for the ‘comparison’ sphere bundle (B, gB). All
other mixed Ricci curvature terms vanish.

Some estimation of terms in the above formulas will be useful later.

Lemma 5.12. The following lower bounds hold for all η ∈ [0, π]:

1. −(k − 1) θ̄
′′

θ̄
> (k − 1)/36;

2. − θ̄′′

θ̄
+ (k − 2)1−θ̄

′2

θ̄2
> (k − 1)/36.

Proof. The first inequality above was established in the proof of Proposition 5.6. The
second inequality will follow if we can show that (1− θ̄′2)/θ̄2 > 1/36. Directly from the
definition of θ̄ we see that

1− θ̄′2

θ̄2
=

(R− 1
2

Λ

)2
[
1− cos2(η)θ′2

(
R− 1

2

Λ sin(η)
)

θ2
(
R− 1

2

Λ sin(η)
)

]

≥
(R− 1

2

Λ

)2
[
1− θ′2

(
R− 1

2

Λ sin(η)
)

θ2
(
R− 1

2

Λ sin(η)
)

]

≥
(R− 1

2

Λ

)2
,

where the last line is a consequence of Lemma 4.1. But (R− 1
2 )/Λ = (2R−1)/5R, which

(assuming R ≥ 3 ) lies between 1/3 and 2/5. As (1/3)2 > 1/36, the claim follows.

Our next task is to describe the construction of the functions h and F . Let β : R →
R now denote the obvious extension of the bump function introduced before Lemma
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4.9, i.e. β(x) = 0 for x ≤ 0, β(x) = 1 for x ≥ 1, β′(x) ≥ 0 for all x ∈ R. For constants
s1, s2 > 0 (to be chosen later), set

h(u) = ρ+ s1

∫ u

u0

β(x− u0 − (1/10)) dx,

F (u) =
1

2
+ s2

∫ u

u0

β(x− u0 − 1) dx.

Notice that these functions satsify the requirements detailed above, i.e. h(u) = ρ for
u ∈ [u0, u0+(1/10)] and F (u) = 1/2 for u ∈ [u0, u0+1].Moreover, for u ≥ u0+(11/10)
respectively u ≥ u0 + 2, h and F have constant slopes s1 respectively s2.

Given the constant slope behaviour observed above, the following result will be
crucial:

Lemma 5.13. For any a, b, C,C ′ > 0, the inequalities

C

(s1x+ a)2
>

s1s2
(s1x+ a)(s2x+ b)

,

C ′

(s2x+ b)2
>

s1s2
(s1x+ a)(s2x+ b)

hold simultaneously for all x ≥ 0, provided

0 < s1 < min{1,
√
C, bC/a}

and
0 < s2 < min{1,

√
C ′, aC ′/b}.

Proof. A straightforward rearrangement of the desired inequalities shows that we need

s1 < min{
√
C, bC/(s2a)} and s2 < min{

√
C ′, aC ′/(s1b)}.

Restricting s1, s2 to the interval (0, 1) then means that we can replace s1 and s2 in the
above minima by 1.

Corollary 5.14. There exist s1 = s1(ρ, k) and s2 = s2(ρ, k, s1) in the interval (0, 1),
with s2 < s1, such that for the resulting functions F (u), h(u) defined above, the metric

du2 + ν(F 2(u)ds2k, h
2(u)ω,∇)

has Ric2 > 0 (and Ric ≥ 0) for u ∈ [u0, u0 +N ], for any given N > 2, provided c is
chosen sufficiently small depending on the other parameters.

Proof. We analyse the formulas in Lemma 5.11, given the form of the functions h and
F .

We begin by observing that

θ̄max =
Λ

R− 1
2

c.

Since Λ = 5R/2 we see that assuming R ≥ 3, the maximum value of Λ/(R − 1
2) is 3.

We can therefore estimate θ̄max by 3c, and so by choosing c sufficiently small, we can
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render the A-tensor terms as small as we like over any given compact interval. Since
we are working on the compact interval u ∈ [u0, u0 + N ], this means in effect that
we can ignore the A-tensor terms appearing in the curvature formulas: if setting the
A-tensor terms temporarily to zero results in Ric2 > 0, then by the openness of this
condition, we can simply choose c sufficiently small so that the curvature condition is
preserved when the A-tensor terms are re-introduced. We will therefore assume that
the A-tensor expressions all vanish, and consider any u ≥ u0.

It follows trivially from Lemma 5.11 that for u ∈ [u0, u0+(1/10)] we have Ric2 > 0
and Ric ≥ 0. For u ∈ [u0 + (1/10), u0 + (11/10)], the function h bends upwards to
achieve a constant slope s1. By the openness of the Ric2 > 0 condition, it is clear that
for s1 sufficiently small, the metric will continue to have Ric2 > 0 over this interval.
Temporarily fix such a value of s1.

Now repeat the same argument for F over the interval [u0+1, u0+2]: if s2 is small
enough, by openness we will have Ric2 > 0 over this interval. Temporarily fix such an
s2, subject to the condition that s2 < s1.

For u ≥ u0 + 2, both h and F have constant slope. To show that the Ric2 > 0
condition continues to hold for all such u, we use Lemma 5.13 in conjunction with
Lemma 5.12. By the latter Lemma, it suffices to ensure the positivity of the following
expressions, arising from the V and η directions in the first case, and the Xi direction
in the second:

(k − 1)
1

h2

( 1

36
− s21

)
− k

s1s2
hF

;

(k − 1)
1 − s22
F 2

− k
s1s2
hF

.

If we assume that s1 ∈ (0, 1/
√
72) and s2 ∈ (0, 1/

√
2), it then suffices to show that

k − 1

72h2
− k

s1s2
hF

> 0;

k − 1

2F 2
− k

s1s2
hF

> 0.

Setting x = u − u0 − 2, a = h(u0 + 2), b = F (u0 + 2), C = k−1
72k and C ′ = k−1

2k ,
Lemma 5.13 gives conditions on s1, s2 which guarantee this desired positivity. Given
that

∫ 1
0 β(x) dx < 1, we see that ρ < a < ρ + 1 and 1/2 < b < 3/2. Thus in order to

comply with the restrictions from Lemma 5.13 it suffices to ensure that

0 < s1 < min
{
1,
√
C,

C

2(ρ+ 1)

}

and

0 < s2 < min
{
1,
√
C ′,

2ρC ′

3

}
.

If our choices of s1, s2 already satisfy these conditions, then we are done. If s1 satisfies
the condition but s2 does not, simply choose a smaller value of s2: re-choosing s2 in
this way has no other consequences. If, on the other hand, s1 does not satisfy the
above inequality, we must first re-choose it so as to comply with this restriction. Even
if s2 satisfies its inequality, it might happen that the condition s2 < s1 is violated by
the smaller choice of s1. Either way, we might be forced us to choose a lower value for
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s2, but again, we are free to do this if necessary. Thus in all circumstances, we can
find values of s1, s2 as in the statement of the Corollary.

We can now smoothly glue the metric du2 + ν(F 2(u)ds2k, h
2(u)ω,∇) defined on

[u0, u0 + N ] × Sk × Sk to the metric on Dk+1(u0) × Sk from Corollary 5.10, to give
a metric on Dk+1(u0 +N) × Sk. Our final surgery task is to smoothly join this to gφ
within Ric2 > 0.

Before explaining how to complete the surgery, we are now in a position to to choose
all the constants and functions needed for our constructions.

We begin by choosing a suitable value for ρ0 in Proposition 5.1: this has no other
consequences. We have already chosen ρ above, and by Corollary 5.14 we can choose
and fix a suitable value for s1, and a corresponding (but temporary) value for s2. Next,
pick a value for δ such that

δ ∈
(
0,min{s2, 1/(2k), 1/9}

)
. (8)

Having selected this δ, choose and fix a suitable function f(τ) (see the criterion after
the statement of Proposition 5.4) for τ ∈ [0, 1]. Notice that f ′(1) > −δ.We will assume
without loss of generality that f(1) > 1/2.

Now re-choose and fix s2 so that s2 = −f ′(1). This is a smaller value then was
temporarily selected above, but notice that choosing s2 smaller has no consequences
for Corollary 5.14. The key point here is that setting s2 = −f ′(1) facilitates the
creation of a C1-join where f and F meet.

With s1 and s2 selected, we have now in effect determined the functions h(u) and
F (u).

Next fix R > R0(δ) as in Proposition 5.5. (As R > 1 + (2/δ) and δ < 1/9, we see
that R > 19.) Then set Λ = 5R/2.

Now choose T > 6R in accordance with Corollary 4.14, and then select ρ1 as
indicated in the same result. We can then fix functions p(t), q(t) as introduced at the
start of Section 4, as both ρ0 and ρ1 have been chosen.

As h′ > F ′ (i.e. s1 > s2) for u ≥ u0 + 2, limu→∞ h(u)/F (u) = ∞. In particular
there exists N > 2 such that

R− 1
2

f(1)
=
h

F
(u0 +N).

(We have R− 1
2 > 37/2 by the above, and f(1) < 1. Hence the ratio on the left-hand

side above is > 13/2. In contrast, h/F takes the value 2ρ < 2 when u = u0. Since
h′ < 1, it follows that N > 2.) Fix this value of N .

Finally, we choose c sufficiently small so as to simultaneously satisfy Proposition
4.4, Proposition 5.5 and Corollary 5.14. This completes the selection of data needed
for our construction.

In order to complete the surgery we globally rescale the metric onDk+1(u0+N)×Sk.
The rescaling factor is chosen so that the function h̄ obtained by rescaling h has the
value R − 1

2 at the boundary, which (by the choice of N) forces the value of F̄ , the
rescale of F , to have value f(1).

We make a small concave down adjustment to h̄ near the boundary to render it
constant with value R− 1

2 , making an arbitrarily small C0 change to the function over
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the deformation. As is clear from the Ricci curvature formulas above, this only has a
positive effect on the Ricci curvature.

Notice that the global rescale does not affect the scaling functions’ first derivative
behaviour at the boundary. In particular, we obtain a C1-join between F and f at
u = u0 +N, equivalently τ = 1. Thus we can glue the rescaled metric, which of course
still has Ric2 > 0, to gφ to create a C1-join. Standard arguments now apply to make
the metric C2 by smoothing the C1-join between f and F̄ . This can be done keeping the
values of the (common) function and its first derivatives approximately the same, with
second derivatives interpolating approximately linearly between their original values
either side of the join. As the Ricci curvature is linear in the second derivatives of the
metric, we can clearly smooth preserving the Ric2 > 0 condition.

This completes the metric construction for the surgery on W , and establishes that
this operation can be performed within Ric2 > 0 as claimed.

In order to prove Theorem 1.4 we still have to consider the possibility of surg-
eries performed with alternative trivialisations of the normal bundle. This applies to
both the surgery on W as considered above, and also the surgery on Z addressed in
Proposition 5.1.

The issue of different trivialisations is discussed in detail in [Wr3, §1], but see also
the synopsis in [Wr5, §3]. For the benefit of the reader, we will outline below the basic
arguments needed.

Consider again the situation of Corollary 5.10, which shows how the original surgery
onW can be metrically capped-off. Specifically, we have a metric on the ‘cap’Dk+1×Sk
which near its centre is isometric to the product of a unit round metric on the Dk+1

factor, and a round metric of some small radius ρ on the Sk factor.
Now consider removing a small neighbourhood of {0} × Sk ⊂ Dk+1 × Sk from

within the region where the metric is a product. Using a different trivialisation for the
surgery then amounts to gluing back this smaller copy of Dk+1 ×Sk using a boundary
diffeomorphism which is different from the identity. The diffeomorphism in question
will of course depend on the trivialisation being used.

There is, however, an alternative viewpoint from which we can look at this con-
struction. Consider a neighbourhood N of the small copy of Dk+1 × Sk which has
undergone the twisted gluing into the ambient manifold, that is, consider the small
Dk+1 × Sk together with a collar. Assume this collar is so small that it lies within the
region where the original cap metric is a product. Now imagine cutting out N , and
then gluing it back using the identity map on the boundary. This clearly gives the
same topological result as obtained by our previous ‘twisted’ gluing. We can under-
stand this new viewpoint by regarding N as a non-trivial Sk-bundle over Dk+1 with
a fixed trivialisation near the boundary. To make sense of this, note that Dk+1 × Sk

is only a trivial bundle over Dk+1 if we equip it with a globally defined trivialisation.
However, if we fix the standard trivialisation on a neighbourhood of the boundary, we
can equipDk+1×Sk with non-trivial bundle structures, that is, such that the boundary
trivialisation cannot be extended to a diffeomorphism on all of Dk+1 × Sk.

We now choose a submersion metric on N with base Dk+1, for which the base and
fibre metrics agree with the original choices (i.e. base metric du2 + sin(u)ds2k−1 and
fibre metric ρ2ds2k), which glues smoothly into the ambient manifold. Thus near the
boundary we need the metric to be a product, however since we are viewing N as a
non-trivial Sk-bundle with fixed boundary trivialisation, it is clear that the submersion
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metric cannot globally have a product structure. In other words, our choice of normal
bundle trivialisation for the surgery results in us having to choose a non-flat connection
for our submersion metric, though we are free to choose this so as to be flat in a
neighbourhood of the boundary, thus guaranteeing the desired product structure in
this region.

It now follows from [Wr3, Theorem 0.3] that if ρ is chosen sufficiently small, the
Ricci curvature of the resulting submersion metric will be strictly positive, irrespective
of the connection used. More precisely, there is a constant κ̄ > 0 depending on the
choice of connection, such that for any ρ ∈ (0,min{ρ̄, κ̄}), the submersion metric will
be Ricci positive. Thus in the case of a non-standard trivialisation, we must factor the
upper bound κ̄ into our choice of ρ after Corollary 5.10.

Exactly the same arguments apply to the surgery on Z in Proposition 5.1, showing
that this surgery can also be performed within (local) Ricci positivity for any choice
of normal bundle trivialisation, provided our choice of ρ0 is sufficiently small.

Given that we can perform surgery within global Ric2 > 0 on both Z and W with
any normal bundle trivialisations, this completes the proof of Theorem 1.4.

A Appendix

In this appendix we outline the derivation of three sets of Ricci curvature formulas
which appear in the main body of the paper without justification. These are the
expressions in Lemma 4.3, Proposition 5.4, and Lemma 5.11. We will take each set of
formulas separately, however all rely on the following result. This appeared in [Wr1],
where each expression is carefully derived (using the Kozsul formula).

Lemma A.1. Suppose that g is a submersion metric on the total space of a Riemannian
submersion with totally geodesic fibres. Let r̂ denote the Ricci curvature of the fibre
metric, ř the Ricci curvature of the base metric, let U, V be mutually orthogonal unit
vectors with respect to the fibre metric, and X,Y unit vectors with respect to the base
metric. Suppose that the fibre metric is then rescaled by a function µ2 defined on the
base. Then if the fibre has dimension p, the Ricci curvatures of the resulting metric
are as follows.

rµ2(U/µ,U/µ) =
1

µ2
r̂(U,U)− (p− 1)

‖∇µ‖2
µ2

− ∆µ

µ
+ µ2(AU,AU);

rµ2(U/µ, V/µ) =
1

µ2
r̂(U, V ) + µ2(AU,AV );

rµ2(X,Y ) = ř(X,Y )− 2µ2(AX , AY )−
p

µ
Hessµ(X,Y );

rµ2(X,U/µ) = (p+ 2)(AXU,∇µ)− µ(δ̌A(X), U).

Here, rµ2 denotes the Ricci curvature of the scaled metric, and the A-tensor terms are
the usual terms for the unscaled metric. All other mixed Ricci curvature terms vanish.
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The formulas of Proposition 5.4.

The formulas in this Proposition are the Ricci curvatures of the metric gφ. This
was built in two stages: firstly one constructs a submersion metric on a normal annulus
bundle to W with base (W, ǧ), fibre

(
Ak+1, dτ2 + (1− φ/R)2dr2 + ψ̄(r, τ)2ds2k−1

)
,

and connection ∇. Secondly, we rescale the base metric by a function f2(τ). For our
current purposes however, it will be convenient to view this metric in a different way.

Observe that we can also think of gφ as a submersion metric with base

(
[0, 1] × (0, Rπ)×W ; dτ2 +

(
1− φ(τ)

R

)2
dr2 + f2(τ)ǧ

)
,

fibre (Sk−1; ψ̄(r, τ)2ds2k−1), and connection ∇̄, where ∇̄ is the trivial extension of ∇ in r
and τ directions. This change of viewpoint is possible since the r and τ directions split
off: all twisting, both topological and metric is ‘contained’ in the comparison bundle
B.

With this new viewpoint, we can use Lemma A.1 to compute the Ricci curvatures.
In order to use the Lemma, we first need to compute the Ricci curvatures of the base,
the gradient, Hessian and Laplacian of ψ̄ on the base, and the A-tensor terms.

We first deal with the base curvatures. By computing Christoffel symbols, a
straightforward calculation reveals the Ricci curvatures of

(
R
2; dτ2 + (1− φ(τ)/R)2dr2

)

to be

Ric
( 1

1− φ/R

∂

∂r
,

1

1− φ/R

∂

∂r

)
=

φ′′

R− φ
;

Ric
( ∂

∂τ
,
∂

∂τ

)
=

φ′′

R− φ
;

Ric
( ∂

∂r
,
∂

∂τ

)
= 0.

(For convenience we have extended φ here in the obvious way to a function φ : R → R.
Below, it will also be convenient to view f as a function f : R → R, restricting as
appropriate on [0, 1].)

Following on from this, the warped product formulas in [Be, 9J] allow us to compute
the Ricci curvature of the base metric dτ2 + (1 − φ/R)2dr2 + f2ǧ by viewing this as
a warped product with fibre (W, ǧ) (which is of course isometric to (Sk, ds2k)), base(
R
2; dτ2+(1−φ(τ)/R)2dr2

)
, and warping function f2. For this, we need the gradient,
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Hessian and Laplacian of f on the (r, τ)-plane. A simple calculation shows these to be:

∇f = f ′
∂

∂τ
;

Hessf
( ∂
∂τ
,
∂

∂τ

)
= f ′′;

Hessf
( ∂
∂τ
,
∂

∂r

)
= 0;

Hessf

( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
= −f ′ φ′

R− φ
;

∆f = f ′′ − φ′

R− φ
f ′.

Using these expressions in the the warped product formulas from [Be, 9J] (bearing
in mind that the sign convention for the Laplacian in [Be] is opposite to ours) we
immediately obtain the following base-direction Ricci curvatures:

Ric(Xi/f,Xi/f) =
k − 1

f2
(1− f ′2)− f ′′

f
+

φ′

R− φ

f ′

f
;

Ric(∂/∂τ, ∂/∂τ) =
φ′′

R− φ
− k

f ′′

f
;

Ric
( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
=

φ′′

R− φ
+ k

φ′

R− φ

f ′

f
;

Ric(Xi/f, ∂/∂τ) = Ric(Xi/f, ∂/∂r) = Ric(∂/∂τ.∂/∂r) = 0.

We now turn our attention to the A-tensor terms. We start with the A-tensor
for the comparison bundle (B, gB). We will denote these terms by A as usual. Recall
that the base of B is W ∼= Sk, and that the metric gB := ν(ǧ, ds2k−1,∇). Initially, we
consider the metric dτ2 + (1 − R−1φ(τ))2dr2 + ǧ on R

2 ×W . We then define a new
metric on R

2 ×B by

ḡB := ν
(
dτ2 + (1−R−1φ)2dr2 + ǧ, ds2k−1, ∇̄

)
.

Denote the A-tensor of this new metric by Ā. As ḡB is simply the product metric(
dτ2 + (1−R−1φ)2dr2

)
+ gB , we see immediately that

Ā∂/∂r• ≡ Ā∂/∂τ• ≡ 0,

and by symmetry
Ā•∂/∂r ≡ Ā•∂/∂τ ≡ 0,

with Ā = A otherwise (i.e. when evaluating on vectors tangent to B). Similarly
δ̌Ā = δ̌A restricted to TB.

Next we introduce the scaling function f(τ) for the W factor in the base. Thus we
consider a new metric

ḡfB := ν
(
dτ2 + (1−R−1φ)2dr2 + f2(τ)ǧ, ds2k−1, ∇̄

)
.
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A term-by-term computation via the Koszul formula (analogous to that carried out in
[Wr1] to prove Lemma A.1) yields the following, where Āf denotes the A-tensor terms

for ḡfB .

ĀfHH
′ = ĀHH

′ for any horizontal vectors H,H ′;

ĀfXi
V =

1

f2
ĀXi

V ;

Āf∂/∂τ• ≡ 0;

Āf∂/∂r• ≡ 0;

(δ̌Āf (Xi), V )
ḡf
B

=
1

f2
(δ̌Ā(Xi), V )ḡB

δ̌Āf (∂/∂τ) = δ̌Āf (∂/∂r) = 0.

In essence, the above expressions show that the Āf terms reduce to scalings of the
A-tensor terms for (B, gB) for vectors tangent to this bundle, and vanish otherwise.
This is consistent with the observation that all the twisting in our extended bundle
actually occurs within B.

It follows immediately from the above that the metric ḡfB also gives the following
terms which appear in the formulas in Lemma A.1:

(
ĀfU, ĀfV

)
ḡf
B

=
1

f4
(AU,AV )gB ;

(
ĀfX , Ā

f
Y

)
ḡf
B

=
1

f2
(AX , AY )gB ;

(δ̌Āf (Xi), V )
ḡf
B

=
1

f2
(δ̌A(Xi), V )gB ;

ĀXi
V =

1

f2
AXi

V.

Our last task is to introduce the scaling function ψ̄(r, τ) into the Sk−1 fibres of our
bundle, resulting in the desired metric gφ. By Lemma A.1 again, we need to know the
gradient, Hessian and Laplacian of ψ̄ on the base

(
[0, 1]) × (0, Rπ) ×W ; dτ2 + (1−R−1φ)2dr2 + f2(τ)ǧ

)
.

A computation of Christoffel symbols establishes the following covariant derivatives
for the above base metric (with covariant derivatives not listed below equal to 0);

D∂/∂r∂/∂r =
R− φ

R2
φ′
∂

∂τ
;

D∂/∂r∂/∂τ = − φ′

R− φ

∂

∂r
;

DXi
Xj = −ff ′δij

∂

∂τ
;

DXi
∂/∂τ = D∂/∂τXi =

f ′

f
Xi.
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The above covariant derivatives then feed in to the computation of the Hessian formulas
below.

Hessψ̄(∂/∂τ, ∂/∂τ) = ψ̄ττ ;

Hessψ̄(∂/∂r, ∂/∂r) = ψ̄rr −
R− φ

R2
φ′ψ̄τ ;

Hessψ̄(∂/∂τ, ∂/∂r) = ψ̄τr +
φ′

R− φ
ψ̄r;

Hessψ̄(Xi,Xj) = ff ′δijψ̄τ ;

Hessψ̄(Xi, ∂/∂τ) = Hessψ̄(Xi, ∂/∂r) = 0.

In particular we have

Hessψ̄

( 1

1−R−1φ

∂

∂r
,

1

1−R−1φ

∂

∂r

)
=

1

(1−R−1φ)2
ψ̄rr −

φ′

R− φ
ψ̄τ ;

Hessψ̄

( ∂

∂τ
,

1

1−R−1φ

∂

∂r

)
=

1

1−R−1φ
ψ̄τr +

Rφ′

(R− φ)2
ψ̄r;

Hessψ̄(Xi/f,Xi/f) =
f ′

f
ψ̄τ .

We also have

‖∇ψ̄‖2 = ψ̄2
τ +

1

(1−R−1φ)2
ψ̄2
r ;

∆ψ̄ = ψ̄ττ +
1

(1−R−1φ)2
ψ̄rr +

(
k
f ′

f
− φ′

R− φ

)
ψ̄τ .

Putting the above expressions involving ψ̄ together with the previous base curvature
and A-tensor expressions into the formulas in Lemma A.1 finally gives the Ricci cur-
vature expressions for gφ appearing in Proposition 5.4.

The formulas of Lemma 4.3.

This Lemma presents the Ricci curvature formulas for the metric g in terms of the
A-tensor terms for (B, gB), where gB = ν(ǧ, ds2k−1,∇).

Consider the manifold (R × B, ds2 + gB). We will view this as a submersion with
base R×W , so ds2+ gB = ν(ds2 + ǧ, ds2k−1,∇′), where ∇′ is the trivial extension of ∇
in the R-direction. It is easily checked that the A-tensor terms for this submersion are
given by A′

∂/∂s• ≡ A′
•∂/∂s ≡ 0, δ̌A′(∂/∂s) = 0, and A′ = A otherwise, where as usual

A represents that A-tensor terms of (B, gB).
Recall that g = ν(ǧ, ds2 + ψ2(s)ds2k−1,∇) with s ∈ [0,Λ], which can be re-written

as ν(ds2 + ǧ, ψ2(s)ds2k−1,∇′), as the s-direction splits off and can be ‘absorbed’ into
the base. Thus g is obtained by rescaling the fibres of the totally geodesic Riemannian
submersion ([0,Λ]×B, ds2 + gB) by ψ2(s), and of course the Ricci curvatures resulting

47



from this rescaling are described by Lemma A.1. An easy computation shows that the
gradient, Hessian and Laplacian of ψ on the base are as follows:

∇ψ = ψ′ ∂
∂s

;

Hessψ

( ∂

∂s
,
∂

∂s

)
= ψ′′, and Hessψ(•, •) = 0 otherwise;

∆ψ = ψ′′.

Using the above data in Lemma A.1 then produces the desired Ricci curvature formulas
for g.

The formulas of Lemma 5.11.

This Lemma presents the Ricci curvature expressions for the metric

du2 + ν
(
F 2(u)ds2k, h

2(u)ω,∇
)
.

It will be convenient to view this metric as

ν(du2 + F 2(u)ds2k, h
2(u)ω,∇′), (9)

where ∇′ is the trivial extension of ∇ in the u-direction. In order to apply Lemma A.1
to this metric, we first need to consider the metric

ν(du2 + F 2(u)ds2k, ω,∇′). (10)

Once we have established the curvatures of (10), Lemma A.1 then shows how to incor-
porate the fibre scalings by h2(u).

To compute the Ricci curvatures of (10), we need the Ricci curvatures of the base
and fibres, and the A-tensor terms. We also need the gradient, Hessian and Laplacian
of h on the base (R × Sk, du2 + F 2(u)ds2k). As the metrics on both base and fibre are
(single) warped products, we can simply write down these expressions in terms of F ,
θ̄, and their derivatives. Similarly, the gradient, Hessian and Laplacian of h are easily
written down, and yield analogous expressions to computations elsewhere in this paper.
The non-trivial part is understanding the A-tensor.

Our approach to identifying the A-tensor for (10) is to first observe that this metric
can be re-written in the form

ν(dη2 + du2 + F 2(u)ds2k, θ̄
2(η)ds2k−1, ∇̄), (11)

where ∇̄ is the trivial extension of ∇ in both u and η-directions. The reason this
alternative description exists is that without the h-scaling on the fibres, the η-direction
in effect splits off and can be absorbed into the base.

Ultimately we want to express the A-tensor for (10), A′, in terms of the A-tensor for
(B, gB), which as usual we will simply denote by A. However we begin by comparing
A′ with the A-tensor for (11), which we will label Ā.

As the metrics (10) and (11) are identical, even though the submersion structures
and A-tensors differ, the covariant derivatives D are the same. Therefore to compare
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A′ and Ā, we only have to keep track of vectors in the η-direction, since A′ and Ā only
differ in their interpretation of horizontal and vertical vectors, and the η-direction is
precisely the difference.

A straightforward computation, for example using the Koszul formula, shows that
the A′-tensor terms we need for the curvature formulas are either the same as the
corresponding Ā-expression when ∂/∂η is not present, or equal to zero when A′-term
is being evaluated on ∂/∂η.

The next step is to use Ā to calculate the A-tensor, Ã, of the metric

ν(dη2 + du2 + F 2(u)ds2k, ds
2
k−1, ∇̄). (12)

Here we essentially want to use the formulas of Lemma A.1 in reverse. In practice,
this involves an elementary calculation using the A-tensor transformation formulas
established in [Wr1] (which are used to prove Lemma A.1). This yields, for example,
(ĀV, ĀV ) = θ̄4(ÃV, ÃV ), (ĀX , ĀY ) = θ̄2(ÃX , ÃY ), and so on. (We have suppressed
the subscripts here from the bracketed expressions which indicate the specific metric
to be used.)

Finally, we can express the Ã-terms in terms of the A-tensor terms for (B, gB)
using the transformation formulas displayed earlier in this Appendix in relation to
Proposition 5.4, where we replace τ by u, r by η, and set φ ≡ 0.
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[Mo2] L. Mouillé, Positive intermediate Ricci curvature on products of homogeneous
spaces, arXiv:1911.03491.

[Na] J. C. Nash, Positive Ricci curvature on fibre bundles, J. Diff. Geom. 14 (1979),
241–254.

[Sh1] Z. M. Shen, A sphere theorem for manifolds of positive Ricci curvature, Indiana
Univ. Math. J. 38 (1989), 229–233.

[Sh2] Z. M. Shen, On complete manifolds of nonnegative k-th Ricci curvature, Trans.
Amer. Math. Soc. 338 (1993), 289–310.

[Sm] S. Smale, On the structure of 5-manifolds, Ann. of Math. 74 (1962), 38–46.

[St] S. Stolz, Simply connected manifolds with positive scalar curvature, Ann. of Math.
136 (1992), 511–540.

[ST] H. Seifert, W. Threlfall, A textbook of topology, Academic Press, Pure and Ap-
plied Mathematics series 89, (1980).

50

http://arxiv.org/abs/1606.04121
http://arxiv.org/abs/1808.00581
http://arxiv.org/abs/1901.05039
http://arxiv.org/abs/1911.03491


[SY] J.-P. Sha, D.-G. Yang, Positive Ricci curvature on the connected sums of Sn×Sm,
J. Diff. Geom. 33 (1990), 127–138.

[Vi] J. Vilms, Totally geodesic maps, J. Diff. Geom. 4 (1970), 73–79.

[VF] O. Veblen, P. Franklin, On matricies whose elements are integers, Ann. of
Math. 23 (1921), 1–15.

[Wa1] C. T. C. Wall, Classification of (n−1)-connected 2n-manifolds, Ann. of Math. 75
(1962), 163–189.

[Wa2] C. T. C. Wall, Classification problems in differential topology - VI, Topology, 6
(1967), 273–296.

[WW] M. Walsh, D. J. Wraith, H-space and loop space structures for intermediate
curvatures, arXiv:2008.12045.

[Wi] F. Wilhelm, On intermediate Ricci curvature and fundamental groups, Illinois J.
Math. 41 (1997), 488–494.

[Wo1] J. Wolfson, Manifolds with k-positive Ricci curvature, LMS Lecture Notes Series
394 (2012), Cambridge University Press.

[Wo2] J. Wolfson, The fundamental group of closed manifolds with two-positive Ricci
curvature, arXiv:1902.09998v2.

[Wr1] D. Wraith Exotic spheres with positive Ricci curvature, PhD Thesis, University
of Notre Dame, 1996.

[Wr2] D. Wraith, Exotic spheres with positive Ricci curvature, J. Differential Geom.
45 (1997), 638–649.

[Wr3] D. J. Wraith, Surgery on Ricci positive manifolds, J. reine angew. Math. 501
(1998), 99–113.

[Wr4] D. J. Wraith, New connected sums with positive Ricci curvature,
Ann. Glob. Anal. Geom. 32 (2007), 343–360.

[Wr5] D. J. Wraith, On the moduli space of positive Ricci curvature metrics on homo-
topy spheres, Geom. Topol. 15 (2011), 1983–2015.

[Wu] H. Wu, Manifolds of partially positive curvature, Indiana Univ. Math. J. 36

(1987), 525–548.

Diarmuid Crowley, School of Mathematics & Statistics, The University of Melbourne,
Parkville, VIC, 3010, Australia. Email: dcrowley@unimelb.edu.au

David Wraith, Department of Mathematics and Statistics, National University of Ire-
land Maynooth, Maynooth, County Kildare, Ireland. Email: david.wraith@mu.ie.

51

http://arxiv.org/abs/2008.12045
http://arxiv.org/abs/1902.09998

	1 Introduction
	2 (2j-1)-connected (4j+1)-manifolds
	2.1 The general case
	2.2 3-connected 4-parallelisable 9-manifolds

	3 Linked spheres in S2k+1
	4 Metrics on S2k+1
	5 Surgery on links
	A Appendix

