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Data-driven time propagation of quantum systems with neural networks

James Nelson,1,* Luuk Coopmans ,1,2,† Graham Kells ,2,3,‡ and Stefano Sanvito1,§

1School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
2Dublin Institute for Advanced Studies, School of Theoretical Physics, 10 Burlington Rd, Dublin, Ireland

3Dublin City University, School of Physical Sciences, Glasnevin, Dublin 9, Ireland

(Received 27 January 2022; revised 17 May 2022; accepted 22 June 2022; published 1 July 2022)

We investigate the potential of supervised machine learning to propagate a quantum system in time. While
Markovian dynamics can be learned easily, given a sufficient amount of data, non-Markovian systems are non-
trivial and their description requires the memory knowledge of past states. Here we analyze the feature of such
memory by taking a simple 1D Heisenberg model as many-body Hamiltonian, and construct a non-Markovian
description by representing the system over the single-particle reduced density matrix. The number of past states
required for this representation to reproduce the time-dependent dynamics is found to grow exponentially with
the number of spins and with the density of the system spectrum. Most importantly, we demonstrate that neural
networks can work as time propagators at any time in the future and that they can be concatenated in time
forming an autoregression. Such neural-network autoregression can be used to generate long-time and arbitrary
dense time trajectories. Finally, we investigate the time resolution needed to represent the system memory. We
find two regimes: For fine memory samplings the memory needed remains constant, while longer memories
are required for coarse samplings, although the total number of time steps remains constant. The boundary
between these two regimes is set by the period corresponding to the highest frequency in the system spectrum,
demonstrating that neural network can overcome the limitation set by the Shannon-Nyquist sampling theorem.
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I. INTRODUCTION

The notion of a memory kernel arises frequently in the
study of dynamical models, where one attempts to understand
or recreate dynamical behaviours using only a subset of the
total available degrees of freedom. In particular, a kernel be-
comes necessary in situations where the subset of information
available at a given instant in time is not enough to predict
the subsequent behavior. In open quantum systems, where a
restricted number of degrees of freedom is in contact with a
bath, one formally understands this subset restriction as the
tracing out of the bath. Here, the need of a memory kernel to
obtain accurate long-time trajectories is a defining criteria that
distinguishes Markovian from non-Markovian dynamics.

A number of key techniques and approaches have emerged
enabling a systematic study of this effect. One such family
are the so-called projection techniques (e.g., the Nakajima-
Zwanzig equation [1–3] and their time-convolutionless vari-
ants [4,5]) that render the history (memory) within an
integro-differential equation and can be used to provide a
perturbative justification for the Markovian behavior. Another
approach for exploring memory effects is to embed the system
into an enlarged Hilbert space such that the non-Markovian
dynamics of the reduced system can be represented via the
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Markovian evolution of an enlarged whole [6–11]. In this
respect, a useful class of embeddings are the so-called colli-
sion models, where ancillas representing the bath interact in a
time-dependent fashion. Here the concept of memory depth
naturally arises, when one allows these ancillas to interact
between themselves.

Both the projection and embedding schemes represent intu-
itive and inherently human-learned/reasoned approaches for
investigating the interplay between a quantum system and its
associated bath. Given the now widespread application of ma-
chine learning (ML) in the domain of classical and quantum
dynamics, it is natural that one might apply machine learning
to the same domain. For a selective snapshot of this field we
refer the reader to some representative published literature
[12–18] and references therein.

When looking at the non-Markovianity of a time evolution,
in particular with embeddings and memory kernels, an ap-
proach that has recently emerged is to construct a fixed neural
network (NN) that learns the behaviours of local observables
and then attempts to match the time dependence of the observ-
ables beyond the training time. For instance, in Ref. [19] this
data-driven method was applied to learn time-local generators
of the dynamics of open quantum systems. Similarly, in [20]
a related approach was used to find an effective Markovian
embedding from which several important properties and the
exact dynamics of the reduced system could be extracted.

One of the key advantages of these data-driven methods
is their universality. In fact, machine-learning time propa-
gators can be used with any method to generate quantum
evolution and show promise for use in investigations into the
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nature of the non-Markovian evolution. In this respect, the
methodology blends features of Markovian embeddings and
integro-differential memory kernels, but where the functional
that encodes the dynamics is fixed so that the embeddings and
the kernel/memory encoding are time or state independent.

In this paper we take a broadly similar approach in that
we train a NN on a dataset of time-dependent quantum tra-
jectories and then ask it to evolve an arbitrary starting state
up to times longer than the final time of the learned trajecto-
ries. Distinguishing our paper from previous studies, we look
at the complete collection of reduced single-particle density
matrices that together make up the full (strongly interacting)
system and focus, in particular, on the accuracy of the method
with respect to the depth of the sampling history that is used
as input for the NN. While in general, as we show below, the
Markovian dynamics of the full system can be learned by only
one history sample, for the representation in terms of reduced
density matrices this is no longer the case. In fact, we find that
the sampling history needs to be increased exponentially with
system size to keep the error rates on the predicted dynamics
below a fixed threshold. Aside from studying such memory
effects, an advantage of this approach is that its malleabil-
ity allows for nonfixed time sampling and naturally protects
against oversampling error. Moreover, as the error growth on
a given NN is random we can use the idea of neural-network
ensembling to monitor and reduce errors.

We structure our paper as follows: In Sec. II we give an
overview of various methods to study memory effects in quan-
tum dynamics and introduce our specific setup and method to
generate the data of the quantum evolution. In Secs. III and
IV we present our results for Markovian and non-Markovian
dynamics, respectively, discussing the interplay between the
nonlocality in time and space. Then we conclude.

II. METHODOLOGY AND BACKGROUND

A. Brief review of existing methods

We consider a quantum system described by its density
matrix ρ̂ that consists of a total of N qubits. The reduced
density matrices of such system can be obtained by tracing
out selected degrees of freedom, here collectively called the
environment ρ̂red = TrEρ̂, where “E” stands for some environ-
ment (see Fig. 1). When the traced-out region is all but one
qubit we use the parameterisation ρ̂red = 1

2 (1 + r · σ ), where
r is the Bloch vector. Since the reduced density matrices leave
out much information they alone cannot determine the future
evolution of the entire system. Thus, for a typical dynamical
reconstruction of the reduced quantities over time one may
also need some historical knowledge of past states. Several
analytical and numerical techniques have been developed to
study the memory effects in this type of setup.

Projection methods. A technique often mentioned in
literature to render the past knowledge explicit in the
time-evolution equations is the Nakajima-Zwanzig projector
method [1–3] (see Appendix A for a quick derivation). When
the time-evolution starts (t = 0) from an initially unentangled
system and bath, ρ̂(t = 0) = ρ̂red ⊗ ρ̂E, this approach allows
one to reduce the Liouville-Von Neumann equation for the

FIG. 1. Here the two types of non-Markovian mappings are
shown. The small blue arrows symbolise the Bloch vectors of the in-
dividual qubits, while the dashed lines are the time steps. N is the
number of qubits, h is the history and m is the future time where we
map the evolution to. In the “single” case, the history of a single qubit
(evolving in the presence of the others, which then define the environ-
ment) is used to predict its future dynamics, while in the “all” case,
the history of all the qubits, is used to predict the future dynamics of
the entire system.

entire system,

∂t ρ̂ = i

h̄
[ρ̂, Ĥ ] = L̂ρ̂ , (1)

to an equation containing just the relevant reduced density
operator ρ̂red,

∂t [ρ̂red] = P̂L̂[ρ̂rel] +
∫ t

0
dt ′K̂(t ′)[P̂ ρ̂red(t − t ′)] , (2)

where

K̂(t ) = P̂L̂eQ̂L̂tQ̂L̂P̂ . (3)

Here we have introduced the Liouvillian operator L̂, and the
projectors P̂ and Q̂ = Î − P̂ (Î is the identity), which are
defined in terms of the reduced density matrix ρ̂red and a fixed
reference state ρ̂B of the environment degrees of freedom,

ρ̂red = P̂ ρ̂ = TrB(ρ̂) ⊗ ρ̂B . (4)

The memory kernel K̂(t ) includes the effects of the his-
tory of the reduced state. Solving the Nakajima-Zwanzig
equation and finding the memory kernel is in general a com-
putationally hard task. Transfer-tensor methods [21–23] have
been recently proposed as efficient techniques to reconstruct
the memory kernel. In these the individual quantum trajecto-
ries are used to learn dynamical maps that can be converted
into the so-called transfer tensors. The transfer tensors are
then directly related to the memory kernel of the Nakajima-
Zwanzig equation [21].

Embeddings and collision models. An alternative general
approach to the study of memory consists in collision models
and the so-called Markovian embeddings (see, for instance,
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[6–11]). The general idea is that the system interacts in a con-
trolled way with an environment comprising of ancillas that,
in turn, can interact amongst themselves in a variety of ways.
In this approach, which has been very fruitful for understand-
ing the boundary between Markovian and non-Markovian
dynamics, one typically employs some spin Hamiltonian,
where the interaction is turned on and off sequentially in
some predetermined fashion. For the purposes of our study we
similarly employ a one-dimensional spin description of our
system, specifically using the Heisenberg model as generator
of the dynamics. Thus the Hamiltonian reads,

H = −J

2

N∑
j=1

σ ( j) · σ ( j+1) , (5)

where σ is the vector of Pauli matrices for spin 1/2, N is the
total number of qubits and J defines the time scale of the
problem. In particular here we consider finite periodic spin
arrangements, namely rings of spins. In our case, since our
motivation is to understand how well the full dynamics can
be predicted by using a machine-learning (ML) data-driven
technique, no piecewise temporal distinctions are made.

B. Data-driven methods

The data driven approach for predictive dynamics used
here and, for instance, in references [19,20] has some clear
similarities to both the projection and the collision methods.
One defines rt

i as the Bloch vector for the ith qubit at the time
t , which is then discretized into tn = n� with n an integer and
some fundamental time �, and sets

Rtn = Rn = (rn
1, rn

2, ..., rn
N ) , (6)

namely, Rtn is the collection of all Bloch vectors at a given
time. We consider two types of mappings (in the underbraces
we show the dimensions): (i) “all”, where the entire collection
of Bloch vectors is propagated in time

(Rn, Rn−1, ..., Rn−h+1)︸ ︷︷ ︸
3×N×h

→ Rn+m︸ ︷︷ ︸
3×N

, (7)

and (ii) “single”, where the time-evolution of only one Bloch
vector is computed,

(rn, rn−1, ..., rn−h+1)︸ ︷︷ ︸
3×h

→ rn+m︸︷︷︸
3

. (8)

Here, the history h is the Markov order, which determines
the depth of the time memory, and m is the distance into
the future where the prediction will take place. Unlike when
propagating the full many-body wavefunction, which grows
as 2N , both mappings scale linearly with the number of qubits
N . A schematic of both these mappings is shown in Fig. 1.

In this set-up a Markovian evolution corresponds to the
h = 1 case, while the accurate prediction of an increasingly
non-Markovian dynamics [11] can be obtained by enlarging
the memory h. In lay terms, the ability of a NN to predict
the dynamics from only a partial knowledge of the full den-
sity matrix (the reduced density matrix) is traded off with
a nonlocality in time. An important feature of this scheme
is that we can perform autoregression, namely we can feed
the predictions at some given time back into the model to

make predictions at subsequent times. Such ability makes
our mappings to be universal time propagators, regardless of
whether the dynamics is Markovian or not. Notably, as one
can train the model to predict at arbitrary times in the future
(one can train different networks for different m’s) both short-
and long-time trajectories are accessible, with the error being
dictated by the accuracy of the specific network.

Although recurrent NNs have been used previously in the
literature to model quantum evolution [17,24], here we opt
for a fully connected NN to learn the propagator of the dy-
namics, since we only deal with inputs of a fixed size. In
particular, we use a two-layer network with 64 nodes in each
hidden layer, and the exponential linear unit (ELU) activation
function, which was found to perform best. In order to learn
the NN parameters we minimize the trace distance between
the predicted and true Bloch vectors. When applied to the
density matrix the trace distance reads D = 1

2 |σ − ρ|, while
for the Bloch vectors x and y it reduces to 1

2 |x − y|. Note
that 0 � D � 1. The neural networks have been implemented
using PyTorch [25].

C. Data generation

The time-dependent quantum trajectories used for the
training of the NN have been generated by taking two different
types of pure initial states, ρ̂(t = 0), namely random and
product states. These are, respectively, constructed from initial
wavefunctions of the form

|ψ (0)〉rand =
∑

i1=0,1

∑
i2=0,1

...
∑

iN =0,1

ai1i2...iN |i1i2...iN 〉 , (9)

|ψ (0)〉prod =
∑

i1=0,1

ai1 |i1〉
∑

i2=0,1

ai2 |i2〉...
∑

iN =0,1

aiN |iN 〉 , (10)

where the vector |in〉 spans the Fock space of the nth qubit and
the coefficients ain and ai1i2...iN are selected randomly in both
cases. Note that, on the one hand, the single-particle reduced
density matrices associated to product states have all zero von
Neumann entanglement entropy, Tr(ρ̂red log ρ̂red), and hence
there is no entanglement initially present in the system. On
the other hand, random initial states have, on average, a high
entanglement entropy, as shown in Fig. 2.

These initial states are then time evolved with the propaga-
tor of the total system (the specific time-dynamic generators
are discussed below). In particular, at a practical level the
equations of motion have been integrated numerically by
using the QUTIP Python package [26]. Then, we trace out
the environment degrees of freedom (some of the qubits) to
generate the quantum trajectories of the single qubits. In all
our numerical experiments, unless otherwise specified, we
use for each system size N , a dataset consisting of 11 000
sample trajectories. These are generated by randomising the
initial states and by propagating those forward in time with the
relevant Hamiltonian. The training set contains 8000 samples,
while the validation and test subsets are made of 2000 and
1000 samples, respectively. We employ the validation set to
determine when to halt the training. Throughout this paper all
the results shown are calculated on the test set.
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FIG. 2. The mean single-particle entropy Ssp = Tr(ρ̂red log ρ̂red ),
as a function of time for differently initialized states. The dashed
lines correspond to randomly generated initial states, while the
continuous lines are associated to product initial states. The color
encodes the total number of qubits in the system. Note that product
states have vanishing initial entropy, while the entropy of random
states grows with the number of qubits considered.

III. PREDICTING THE EVOLUTION
OF MARKOVIAN SYSTEMS

For Markovian dynamics the state of the system at a given
time contains sufficient information to predict its future evo-
lution. This is the case when the state is described by the
wavefunction or by the full density matrix. Here, since either
the Schrödinger or the von Neumann equation imply a linear
mapping between states at different times, given a set of tra-
jectories we can use a linear regression to learn the propagator.
Let the vector xn represent the wavefunction or density matrix
of a system at time step n, then the propagator, P, is a matrix
with xn+1 = Pxn. Given a dataset with p pairs of single time
step evolutions {(x(1)

n , x(1)
n+1), ..., (x(p)

n , x(p)
n+1)} we can learn the

propagator matrix by writing

P = (X T
n Xn)−1X T

n Xn+1 , (11)

where Xn is a matrix, whose ith row is x(i)
n . Thus, we can

exactly learn the propagator, if the matrix X T
n Xn is invertible.

This is the case when the number of samples p is greater
than the dimension of the vector. If � is the dimension of the
Hilbert space, then we require 2� − 1 samples to learn the
wavefunction propagator and �2 − 1 samples to learn that of
the density matrix [27].

As a warm-up example we consider a single qubit evolving
via the Lindblad master equation [28]

d ρ̂

dt
= −i[Ĥ , ρ̂] + 2L̂ρ̂L̂† − {L̂†L̂, ρ̂}, (12)

where we have chosen Ĥ = 0.5σ̂x + 0.3σ̂y + 0.2σ̂z and L̂ =√
0.1σ̂x. Note that this is nonunitary but Markovian. Here the

propagator is of the form xn+1 = Axn + a, where A is a matrix
and a is a vector. However, by defining x̃ = (1, x1, x2, ...) we
can write it in the form x̃n+1 = Px̃n and thus apply Eq. (11).

FIG. 3. Comparison between the exact time-dependent trajecto-
ries (continuous line) and those predicted by the machine-learned
regression (points). Here we plot the time-dependent expectation
values of the three Pauli operators over the evolution determined by
the Lindblad equation, Eq. (12). The predictions agree with the exact
values up to a floating point error.

Figure 3 compares the exacts Bloch vector trajectories with
those generated by the learnt propagator. Here four samples
were required to learn the propagator and the two trajectories
agree up to floating point error.

IV. PREDICTING NON-MARKOVIAN DYNAMICS

Let us now move to the non-Markovian dynamics. In this
case our Hamiltonian is the Heisenberg model of Eq. (5),
calculated for a number of qubits going from N = 2 to N = 7.
Information about the time evolution can be extracted by plot-
ting the wavefunction fidelity |〈ψ (t = 0)|ψ (t )〉|2 as a function
of time for a range of random initial states, as presented in
Fig. 4. We note that for N � 4 the fidelity appears periodic
in time over the time interval considered, with periods T2 =
π/2, T3 = 2π/3, and T4 = π , respectively for N = 2, 3, and
4 (all times are in units of 1/J). We also note that after a
time of approximately 1 (1/J) the fidelity approaches zero
regardless of N . Such time can be defined as the characteristic
de-correlation time. Next, we describe our results obtained for
the non-Markovian dynamics of single particle Bloch vectors.

A. Memory

Let us now consider the dynamics of the single-particle
reduced density matrix and evaluate the memory needed to
propagate a system initialized in a random state. In particular,
we set the time step at � = 0.08π ≈ 0.25 and predict several
times into the future. We consider two different cases. In the
first, Fig. 5, the feature vector for the NN comprises the Bloch
vectors of all qubits, namely we simultaneously follow the
dynamics of the single-particle reduced density matrices of
all the qubits. In the second case, Fig. 6, the NN propagates
the Bloch vector of a single qubit only. Note that the qubit
choice here is irrelevant and the neural network can be used to
propagate any one specific qubit. This is because the Hamil-
tonian generator of the dynamics is translation invariant. In
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FIG. 4. The fidelity of the wavefunction |ψ〉 with respect to
the initial state |ψ (t = 0)〉 is computed as a function of time for
states initialized randomly. Here, the fidelity is defined as |〈ψ (t =
0)|ψ (t )〉|2. The blue lines are the individual trajectories, while the
black lines their mean. Note that for N = 2, 3, 4 the fidelity is peri-
odic in time. The time evolution are for the Heisenberg Hamiltonian
of Eq. (5).

the figures we plot the NN error, the mean trace distance
(MTD), as a function of the memory (in units of the time step,
� = 0.08π ) for NNs that propagate at different times into the
future (color code).

In general, in both situations one can always find a suf-
ficiently long memory to converge the NNs to small errors
(in the figures an error of 0.01 is indicted as a dashed
black line). For the “all” case such memory seems to be
rather independent of the final time of propagation, namely it
takes approximately the same memory to propagate the entire
Bloch-vector manifold to either short or long times. This is
more evident when the total number of qubits is small, while
some scattering in the data appears for N � 5. In this case
propagating at longer times in the future seems to require a

FIG. 5. Error of the NN (the mean trace distance—MTD) as a
function of the memory h (in units of � = 0.08π ≈ 0.25/J), for NNs
that propagate at different points in the future (color code). Here the
results are for NNs that use as feature the reduced density matrix of
all qubits (“all” case).

FIG. 6. Error of the NN (the mean trace distance—MTD) as a
function of the memory, h, (in units of � = 0.08π ≈ 0.25/J), for
NNs that propagate at different points in the future (color code). Here
the results are for NNs that use as feature the reduced density matrix
of a single qubit (“single” case).

deeper memory. Similar results are found when constructing
NNs using a single Bloch vector as feature (see Fig. 6), in
particular when the qubit count remains low (N � 4). Most
importantly, in both situations the memory needed to converge
the NNs increases drastically with the number of qubits.

The scaling of the memory with the number of qubits
is presented in the left-hand side panel of Fig. 7 for NNs
propagating 0.48π ≈ 1.5 in the future (� = 0.08π ). This is a
time significant longer than the de-correlation time observed
in Fig. 4. We take the operational definition of “necessary”
memory hnec as the memory needed to reduce the error below
0.01, and this is plotted on a base-2 logarithmic scale against
N . We find that hnec scales exponentially with N , namely
hnec ∝ 2αN , with α ∼ 1 (this cannot be determined with pre-
cision from our limited number of data points). Interestingly,
we find little difference in the hnec scaling between the “all”
and “single” case, although for large N’s hnec is systematically
lower when all Bloch vectors are used in the NNs.

In Fig. 7 we also plot log2(hnec), respectively as a func-
tion of − log2( fmin) (middle panel), where fmin is the lowest
frequency of a given system, and as a function of the log2

FIG. 7. Scaling of the memory needed to achieve accurate prop-
agation (see definition in the text) hnec as a function of: (left) the
number of qubits, (middle) the minimum frequency fmin and (right)
the number of unique frequencies of the spectrum of the correspond-
ing Heisenberg chain N f

uni. Note that all quantities are plot on a log2

scale. Light (dark) blue symbols are for the “all” (“single”) case.
Here data are presented for NNs predicting � = 0.48π ∼ 1.5/J in
the future.
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FIG. 8. Demonstration of autoregression, where the output of a
NN at time t is used as the input for the propagation at time t + �t .
Results are presented for NNs with a time time step of � = 0.16π ∼
0.5/J and a memory of h = 45. The system comprises N = 6 qubits,
the initial state is a random state and the NNs use the entire manifold
of Bloch vectors as feature. The graphs show the mean trace distance
error as a function of time for different trajectories (blue lines). The
bold line corresponds to the time-averaged mean error. In the top
panel we use a single NN, in the middle panel an ensemble of three
NNs and in the bottom panel an ensemble of ten. Note that both the
time-averaged error and the fluctuations around the average improve
as one uses a large number of NNs.

of the number of unique frequencies associated to the spec-
trum of the corresponding system (right-hand side panel).
The frequencies are computed as �εnm = εn − εm, with εn

being an eigenvalue of the Heisenberg Hamiltonian, obtained
by exact diagonalization. We find an extremely good corre-
lation between hnec and the number of unique frequencies,
suggesting that the memory needed for an accurate propa-
gation of the time propagation may scale more favourably
for systems presenting a limited number of frequencies (e.g.,
in the case of high degeneracy). This correlation, however,
may still be accidental, so that it would be interesting to
investigate a many-body Hamiltonian where the multiplicity
of the frequency spectrum presents a scaling, as a function
of the number of particles, different from that of the Hilbert
space.

B. Propagation

In order to show that our NNs can act as true time propa-
gators we need to demonstrate that their time evolution can be
concatenated, namely that one can use the predictions made
for time t as an input for the subsequent prediction at time
t + �t . Repeating such a process, an operation called autore-
gression, allows one to follow the dynamics at, in principle,
arbitrary times. Such exercise is performed here for the case
of six qubits, N = 6, a propagator with a time time step of
� = 0.16π ∼ 0.5/J and a memory of h = 45. We consider
NNs using the entire set of Bloch vectors as feature (the “all”
case) and we initiate the dynamics from a random state.

The results of this test are presented in Fig. 8, where we
plot the error (the mean trace distance) as a function of time
for propagation up to 100/J , namely for about 200 time steps.
In order to minimize the error we train multiple NNs along
the same time trajectories and propagate the Bloch vectors by
using the average of the networks’ predictions. Thus, in Fig. 8
we show results for a single NN (top panel), an average of
three NNs (middle panel) and one of ten (bottom panel). Two
main conclusions can be drawn from the figure. On the one
hand, it is clear that our NNs are well capable of performing
autoregression, with the error growing relatively slowly in
time. On the other hand, the figure clearly shows that averag-
ing over several NNs significantly improves the predictions;
the average is more accurate and the fluctuations around the
average are reduced. This effectively demonstrates that our
NNs can be used as universal time-evolution operators.

When considering an ensemble of NNs one can then use
the disagreement among the NNs as a measure of the con-
fidence over the prediction. This is essentially the variance
of the predicted quantity over the different NNs. Such vari-
ance is plotted in the top panel of Fig. 9 for the expectation
value of σz along the time trajectory of a single qubit in a
system of N = 6 qubits. Also in this case we simulate the
time-evolution of N = 6 qubits with a memory h = 45. In this
particular case the variance does not significantly change over
time, indicating that the accuracy is largely preserved over
the trajectory. However, one can also note that the variance
is larger along particular branches of the trajectory, where
the predictions of the NNs agree less well with the exact
results. As such, the variance can be used as a measure of the
accuracy of the autoregression. Specifically, one can monitor
the increase in variance and use it as an indicator of the fidelity
of the prediction as a function of time. Finally, we show that
NNs trained to propagate the dynamics at different time steps
can be concatenated, namely that the output of a network
of time step �t1 can be used as input for a NN with time
step �t2. This is shown in the two lower panels of Fig. 9.
Firstly, we present the trajectory of the expectation value of
σz of one qubit, computed with a NN using a time step of
� = 0.16π . Then, we use the output of such NN as input
in NNs of steps 0.04π , 0.08π , and 0.12π . This effectively
allows us to increase the density of the predicted points along
the trajectory. The figure shows clearly that such an operation
is possible, without any significant loss of accuracy. This is an
important results, as it allows one to construct a range of NNs,
predicting at different times in the future, and use appropriate
combinations of them to reach any point in time along the
trajectory. Crucially, this means that the NNs autoregression
can be used to generate long-time and arbitrary dense time
trajectories.

C. Dynamics initiated from a product state

So far we have analyzed the dynamics initialized from
a random state, namely from a state with a high entan-
glement entropy. Here we repeat the analysis for an initial
state corresponding to a product state. Recalling Fig. 2, the
single-particle entropy of a product state grows with the time,
meaning that a NN trained from the early-time trajectory
will not contain enough information to reproduce the correct
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FIG. 9. Time trajectories generated via NN autoregression. Here
we consider N = 6 qubits and monitor the time dependence of the
expectation value of σz of one qubit. The memory in this case is
h = 45. In the top panel we show the predicted trajectory (dots)
against the exact one (solid-black line), together with the variance
of the prediction over ten NNs (blue shadow). The middle panel
show the predictions obtained with a time-propagator NN of step
� = 0.16π , while the bottom one uses the same predictions as start-
ing point for time propagators with time steps 0.04π , 0.08π , and
0.12π . Note NNs trained to predict the dynamics at different time
scales can be effectively concatenated.

dynamics and cannot be used in an autoregression. This is
because the states encountered during the early dynamics of
a product state are qualitatively different from those encoun-
tered over long times. As such, we have now trained NNs by
using as an initial state the one evolved from a product state at
time 0.32π ≈ 1/J (this time is sufficient to reach equilibrium,
see Fig. 2), and our results are summarised in Fig. 10 for
system with N � 5.

In the figure we show the NN error (the mean trace
distance) as a function of the memory for different time
propagators computed for both the “all” and “single” case.
The results are qualitatively similar to those encountered for
networks trained over dynamics initiated with random states
(see Figs. 5 and 6), except that the memory required to con-
verge the propagator is now, in general, significantly shorter.
This follows from the fact that the dynamics initiated from a
product state spans only a subset of the entire Hilbert space,
an observation corroborated by the result that product states

FIG. 10. Error of the NN (the mean trace distance) as a function
of the memory h (in units of � = 0.08π ≈ 0.25/J), for NNs that
propagate at different points in the future (color code). Here the
results are for NNs that use as feature either the reduced density
matrix of all qubits (“all” case—top panels) or of a single qubit
(“single” case—lower panels).

never evolve to configurations with single-particle entropy
close to that of random states (see Fig. 2). Such behavior is not
surprising, given the high-symmetry form of the Hamiltonian.

We investigate further this aspect by constructing an au-
toencoder [29] performing a nonlinear compression of the
wavefunctions corresponding to both random and product
states. To perform this task the wavefunction is expanded
over the full Fock space {|i〉} and the real and imaginary
coefficients of expansion ψi = 〈i|ψ〉 are taken to form a 2�-
dimensional vector x with

x j =
{

Re(ψ j ) j � �

Im(ψ j−�) j > �
(13)

where
∑�

i=1 |ψi|2 = |x|2 = 1 and � is the dimension of the
Hilbert space. The encoder and decoder forming the autoen-
coder are two fully connected NNs, with two 64-nodes hidden
layers and the ELU activation function. By minimizing the
reconstruction error, as measured by the Euclidean distance
between the vector representations, we can quantify the level
of compression that a wavefunction can undergo at different
times. Figure 11 shows our results obtained with a dataset of
2000 samples, with 1000 in the training set and 500 in the
validation and test ones. For this numerical experiment we
consider N = 5. Clearly, a product state can be compressed
much more efficiently than a random one (a 15-dimensional
latent space appears to be sufficient at all times), regardless
of the time at which the wavefunction is measured. Note
here that for N = 5 the dimension of the Hilbert space is 32.
Therefore, when the latent space is 64-dimensional there is
no compression and the autoencoder just learns the identify
function. As such, one expects the fidelity to approach unity
regardless of the state. The deviation observed for the random
state is then attributed to relatively small training set.

D. Frequency of the memory sampling

We now investigate further the nature of the memory re-
quired for non-Markovian dynamics. The first question we
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FIG. 11. Wavefunction fidelity as a function of the dimension of
the latent space (reduced dimension) for wavefunction evolved to
times 0, 0.25, 0.5, and 1 (in units of 1/J). Here we compare evo-
lutions initiated from either a random or a product state for N = 5.

want to address is whether the convergence of the memory is
smooth or sharp, namely whether the error in the propagation
drops sharply when one reaches the required memory. This
is explored in Fig. 12, where we present the error of the NN
(the mean trace distance of a single NN for all the samples
in the training set) as a function of the memory duration for
propagation to a time of 0.48π ≈ 1.5/J , where the memory is
sampled with the fine time resolution of 0.04π ≈ 0.13/J . The
exercise is performed for both N = 5 (left-hand side panels)
and N = 6 (right-hand side panels), in the “all” (top panels)
and “single” (bottom panels) cases. The graphs clearly show
a very sharp transition, with the error abruptly reducing below
the 0.01 threshold as soon as the memory reaches a critical du-
ration. This means that, if the memory is accurately sampled,
one will just need to construct a NN time propagator with

FIG. 12. Error of the NN (the mean trace distance) as a function
of the memory h (in units of � = 0.04π ∼ 0.13/J), for N = 5 and
N = 6 and both the “all” (upper panels) and “single” (lower panels)
case. In this case the NN propagates 0.48π ≈ 1.5/J in the future. The
shaded region corresponds to the 25th and 75th error percentiles.

FIG. 13. NN error (the mean trace distance) as a function of
the memory for the propagation to the time 0.48π ≈ 1.5/J of a
N = 5 system. Different curves correspond to memories sampled
with different time steps. The numbers on each curve correspond to
the number of time steps included in the memory (the dimension of
the time component of the feature vector), while the x axis scale is
absolute (� = 0.04π ). The black-diagonal line separates the results
for which the memory duration is independent from the sampling.

a memory longer than the critical one. In fact, considering
longer memories does not improve the convergence. In other
words, it appears that the range of the time-propagator kernel
is finite and well defined for any given system.

Having established that there is a critical memory for each
system, one now needs to find out how finely such memory
should be sampled. This question is answered in Fig. 13. Here
we have constructed a single NN to propagate a N = 5 system
0.48π ≈ 1.5/J in the future (“all” case). The memory is then
sampled with different time steps, going from 0.04π to 0.64π .
Surprisingly, we find that when the memory is finely sampled
(� = 0.04π , 0.08π , and 0.16π ) its duration does not change,
namely feature vectors of different length can equally well
predict the dynamics as long as enough time-evolution history
is learned. In contrast, more coarse samplings (� > 0.16π )
require longer memories. Intriguingly, in this case of coarse
sampling, one approximately needs the same number of time
steps (about 14), although of different duration, to converge
the NN.

Notably, the highest frequency found in the spectrum of the
N = 5 spin chain is fmax = 0.99J . According to the Shannon-
Nyquist sampling theorem [30] the largest possible period
required to sample a time-dependent dynamics is �max =
1/2 fmax, which in our case is �max ≈ 0.16π . Intriguingly,
this corresponds to the critical sampling time above which
the memory is no longer time-step independent. We can then
conclude that the two regimes found in Fig. 13 are simply
separated by the Shannon-Nyquist limit. In general, for a
linear model the dynamics cannot be reproduced at all if
sampled at a time step larger than �max. Here, however,
our time-propagator (the NN) is highly nonlinear and the
Shannon-Nyquist limit can be avoided by sampling longer
memories at a coarser resolution. Further tests using nonlinear
memory samplings have not given conclusive results.
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FIG. 14. NN error (the mean trace distance) as a function of the
memory for the propagation to the time 0.48π ≈ 1.5/J of a N = 5
system. Here the NN is trained by including only the Bloch vector
of m qubits, while the remaining N − m are not considered. In the
graphs the error over the qubits included in the training is in blue,
while that of the qubits outside the NN feature vector are in black.

E. Information locality

Finally we investigate how the information included in
the feature vector affects our ability to make predictions. For
this experiment we take the N = 5 spin chain with dynamics
initiated at a random initial state. In this case we compute the
error (the mean trace distance) of a single NN as a function
of the memory for a generic case where the feature vector
contains the Bloch vectors of m qubits. The error is then
computed over both the m qubits used in the feature vector
and the remaining N − m ones. With this notation m = 1 and
m = 5 corresponds to the “single” and “all” case, respectively.
Our results are summarized in Fig. 14.

In general we find that the models cannot satisfactory
predict the evolution of qubits, whose Bloch vector was not
included in the training, although the error reduces as m gets
larger. Interestingly, this is true even for the m = 4 case, where
only the Bloch vector of one qubit is left outside the NN
feature vector. A perhaps more intriguing feature is found for
the m = 3 case. In this situation the three qubits used for the
training are inequivalent, since only one neighbor other qubits
included in training the model. In this case we found that the
memory required to bring the error below threshold is differ-
ent depending on the location of the qubit. This suggests that
there may be a trade off between time and space locality in the
time propagator kernel. Similar results are also found for the
N = 6 case (not presented here), where several inequivalent
configurations can be designed.

V. CONCLUSION

In this paper we have explored the use of machine learning
to propagate quantum systems in time, using the Heisenberg
Hamiltonian as many-body model. For Markovian dynamics
the time propagator can be learnt easily with a linear regres-
sion, as long as the training dataset is sufficiently large. In
contrast, the propagation of non-Markovian systems requires
a history, meaning that the system state at a given time is

determined by a number of states in the past. The duration of
such memory appears to scale exponentially with the system
size, regardless of whether one uses the density matrix of a
single qubit or of the entire ensemble as feature. However,
shorter memories are required when the system explores only
a subset of the available spectrum during the time evolu-
tion, as in the case of dynamics initiated from a product
state.

Crucially, we have shown that the machine-learning propa-
gators can be concatenated in an autoregression, meaning that
the state evolved with one neural network can be used as input
for another propagation. This allows us to propagate at arbi-
trary long times with any desired resolution. Our method can
then be applied to quantum dynamical data generated from
any computational scheme, whether it be propagation, tensor
networks [31], restricted Boltzmann machines [14], or data
obtained experimentally. Furthermore, by using an ensemble
of machine-learning propagators we can maintain accuracy
for a large number of iterations and constantly estimate the
error of our predictions.

Finally, we have investigate in detail the time resolu-
tion needed to represent the system memory, and found two
regimes separated by the Shannon-Nyquist limit. Namely,
when the memory is sampled at a time step shorter than the
period corresponding to the fastest frequency of the system,
the memory remains constant. This means that one has to sam-
ple a fixed time interval but different time steps can be used.
In contrast, if the time step is longer than such period, the
required memory is no longer constant, but the total number
of time steps is. This demonstrates that the nonlinearity built
in the neural networks can overcome the limitation set by the
Shannon-Nyquist sampling theorem.

For future studies it will be useful to compare the method
presented here with the other approaches proposed for solving
the reduced dynamics of the system, such as the discussed
Markovian embeddings, the Nakajima-Zwanzig technique,
and also the transfer tensor methods. In particular, it will be
interesting to see if a direct connection between the memory
kernel appearing in the Nakajima-Zwanzig equation and the
history depth h that we observed for the trained NNs can be
made.
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APPENDIX: NAKAJIMA-ZWANZIG EQUATION

Starting from the Liouville-Von Neumann equation,

∂t ρ̂ = i

h̄
[ρ̂, Ĥ ] = L̂ρ̂ , (A1)
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one splits the density operator up, ρ̂ = (P̂ + Q̂)ρ̂, by means
of the projection operators P̂ and Q̂, with Q̂ = Î − P̂ (Î is
the identity). The definition of P̂ and Q̂ is somewhat unusual.
Consider a reference state ρ̂B of the environment and then
define P̂ as the projector such that

ρ̂red = P̂ ρ̂ = TrB(ρ̂) ⊗ ρ̂B , (A2)

where ρred is the reduced density matrix of the degrees of
freedom of interest. Thus P̂ is defined as the partial trac-
ing out of the environment and then the product of the
resulting state with the predetermined environmental state,
which is typically time independent. The definition of Q̂ then
follows as

Q̂ρ̂ = ρ̂ − TrB(ρ̂) ⊗ ρ̂B . (A3)

Although unusual the projectors are perfectly well defined and
it is easy to show that

P̂2 = P̂ , (A4)

Q̂P̂ = P̂Q̂ = 0 . (A5)

Starting from Eq. (A1) one inserts Î = P̂ + Q̂ to obtain

∂t P̂ ρ̂ = P̂L̂P̂ ρ̂ + P̂L̂Q̂ρ̂ , (A6)

∂tQ̂ρ̂ = Q̂L̂Q̂ρ̂ + Q̂L̂P̂ ρ̂ , (A7)

and the second identity can be formally solved as

Q̂ρ̂ = eQ̂L̂tQ̂ρ̂(0) +
∫ t

0
dt ′eQ̂L̂t ′Q̂L̂P̂ ρ̂(t − t ′) . (A8)

This can then be inserted back into the first equation to give

∂t P̂ ρ̂ = P̂L̂P̂ ρ̂ + P̂L̂eQ̂L̂t Q̂ρ̂(0)+ (A9)

P̂L̂
∫ t

0
dt ′eQ̂L̂t ′Q̂L̂P̂ ρ̂(t − t ′) . (A10)

Finally, if we assume that at the time t = 0 the system
is a product state ρ̂(0) = ρ̂A × ρ̂B, then P̂ ρ̂(0) = ρ̂(0) and
Q̂ρ̂(0) = 0, so that we can drop the middle term to obtain

∂t [P̂ ρ̂] = P̂L̂[P̂ ρ̂] +
∫ t

0
dt ′K̂(t ′)[P̂ ρ̂(t − t ′)] , (A11)

where the time kernel writes

K̂(t ) = P̂L̂eQ̂L̂tQ̂L̂P̂ . (A12)
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