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Extreme many-body scarring in a quantum spin chain via weak dynamical constraints
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It has recently been established that quantum many-body scarring can prevent the thermalization of some
isolated quantum systems starting from certain initial states. One of the first models to show this was the so-
called PXP Hamiltonian, which was used to theoretically model an experiment on a chain of strongly interacting
Rydberg atoms. A defining feature of the PXP Hamiltonian is a set of dynamical constraints that make certain
states inaccessible to the dynamics. In this paper we construct a class of spin chain models that are parameterized
by a discrete variable � that controls the “strength” of a dynamical constraint. We show that by increasing � the
constraint becomes weaker in the sense that fewer states are excluded from the dynamics. The PXP Hamiltonian
is a special case for � = 2. By weakening the constraint to � � 4, however, we find a more extreme version
of quantum scarring than in the PXP Hamiltonian with the number of scar states growing exponentially in the
system size.
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I. INTRODUCTION

A hot cup of tea, left on the counter, will eventually cool to
room temperature, losing all information encoded in its initial
conditions. A similar process of thermalization is also ex-
pected in generic isolated quantum systems. At present, this is
best understood through the eigenstate thermalization hypoth-
esis (ETH) [1], which conjectures that an isolated quantum
system themalizes because its individual energy eigenstates
|E〉 appear thermal with respect to expectation values of real-
istic observables Ô (that is, 〈E |Ô|E〉 ≈ Oth(E ) where Oth(E )
is the thermal expectation value at the energy E ).

It is well established that some systems can fail to ther-
malize. Integrable models, for example, have a large number
of local integrals-of-motion that constrain the dynamics so
that the state space cannot be explored ergodically. From the
perspective of the ETH, this failure to thermalize in quan-
tum integrable models is attributed to rare nonthermal, i.e.,
〈E |Ô|E〉 �≈ Oth(E ), energy eigenstates |E〉 of its Hamiltonian
[2]. Similar behavior is also expected in many-body localized
(MBL) models, where disorder-induced local integrals-of-
motion lead to an effective integrability [3–5].

For nonintegrable systems, anomalous thermalization can
arise, for example, via pre-thermalization [6–8], strong zero
modes [9–11], or metastability [12,13]. Recently, however,
it was also discovered that some nonintegrable systems can
fail to thermalize due to rare nonthermal eigenstates called
quantum many-body scars (QMBS) [14–30]. One of the first
and most prominent examples of QMBS is in the so-called
PXP Hamiltonian [23–27], which was used to model an ex-
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periment on a chain of interacting Rydberg atoms [31,32].
A defining feature of the PXP Hamiltonian is a constraint
that makes certain states inaccessible to the dynamics. Similar
dynamical constraints also play a central role in a systematic
route to constructing QMBS via the “embedding method”
of Ref. [14] and in the anomalously slow thermalization ob-
served in Refs. [12,13].

In this paper, our aim is to further explore the role of such
local dynamical constraints in ETH-violation. To this end, in
Section II we construct a family of spin chain models that
generalizes the PXP model. The key feature here is a discrete
variable � that controls the strength of a dynamical constraint.
For the strongest nontrivial constraint (� = 2) we recover the
PXP Hamiltonian. Increasing � weakens the constraint in the
sense that fewer states are excluded from the dynamics.

In Section III, we show that the scarring (i.e., the number of
nonthermal states) becomes more extreme when the constraint
is weakened. This is directly observable in the behavior of
the eigenstate expectation values (EEVs) 〈E |Ô|E〉 and in their
fluctuations around their microcanonical average. We argue
that this behavior occurs because, as � increases, the number
of energy eigenstates |E〉 that can evade the constraint grows
dramatically. On the other hand, for finite �, it remains the case
that most eigenstates |E〉 do not evade the constraint. Thus
the generic behavior of the bulk spectrum remains distinctly
thermal.

II. MODEL

We consider a one-dimensional chain of L spin-1/2 parti-
cles with the Hamiltonian

Ĥ� = P̂�Ĥ0P̂�, Ĥ0 = �

2

L∑
i=1

σ̂ x
i , (1)
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where the projector,

P̂� =
∏

i

(Î − |↑i↑i+1 . . . ↑i+�−1〉〈↑i↑i+1 . . . ↑i+�−1|), (2)

enforces a dynamical constraint of radius � ∈ {1, 2, ..., L}.
Here {|↑i〉, |↓i〉} is a basis for the spin-1/2 subsystem at site i
of the chain and σ̂ x

i = |↑i〉〈↓i | + |↓i〉〈↑i |.
The constraint can be seen as excluding any states with �

consecutive ↑ states from the dynamics, giving a constrained
state space that is smaller than the full 2L-dimensional un-
constrained state space. For example, if � = 3, states such as
| . . . ↑↑↑ . . .〉 are annihilated by the projector P̂�=3 and are,
therefore, trivial zero-energy eigenstates of the Hamiltonian
Ĥ�=3 and may be neglected. The PXP Hamiltonian is a special
case for � = 2.

In Appendix A we show that our Hamiltonian Eq. (1) may
be derived as an effective model, starting from an under-
lying Hamiltonian with strong �-body interactions between
the spin-1/2 particles on the chain. Since �-body interactions
may be considered unphysical for large � we also show in
Appendix A that our Hamiltonian can be mapped to a more
physically plausible underlying model with two-body inter-
actions between higher-spin particles. We also note that the
constraints in our Hamiltonian Eq. (1) can, in principle, be
generated by repeated fast projective measurements, as was
done experimentally in Ref. [33] for � = L.

Our constrained Hamiltonian Ĥ� has several symmetries. A
reflection i → L − i + 1 of site indices about the midpoint of
the chain leaves the Hamiltonian invariant, implying that it has
a spatial parity symmetry. Also, if there are periodic boundary
conditions (PBC), the Hamiltonian has a translation symmetry
under the transformation i → i + 1 of the site index. In the
following, we can restrict to a symmetry sector of Ĥ� to reduce
the numerical cost of calculating its eigensystem.

III. RESULTS

A. Increasing � weakens the dynamical constraint

Let DL,� denote the dimension of the constrained state
space of the Hamiltonian Ĥ� in a chain of length L. The
strongest possible constraint is for � = 1 since the constrained
Hilbert space dimension is DL,1 = 1 and only the state |↓〉⊗L

is allowed. The constraint becomes weaker as � increases in
the sense that fewer and fewer states are excluded from the
constrained state space. The weakest possible constraint is
for � = L, since only a single state |↑〉⊗L is excluded and the
constrained state space dimension is DL,L = 2L − 1.

More generally, for a spin chain with open boundary condi-
tions (OBC) the dimension DOBC

L,� of the constrained subspace
is given by the recurrence relation (see Appendix B for the
proof)

DOBC
L,� = DOBC

L−1,� + DOBC
L−2,� + . . . + DOBC

L−�,� (3)

with the initial conditions DOBC
L,L = 2L − 1 and DOBC

L,� = 2L

if L < �. This recurrence relation defines a generalized Fi-
bonacci sequence in which the next number in the sequence
is obtained as the sum of the previous � numbers. For in-
stance, DOBC

L,2 is the (L + 2)-th number in the usual Fibonacci

FIG. 1. (a) For L � 1 the constrained state space dimension
increases exponentially in the system size DL,� ∼ (d�)L (solid lines
for OBC and dotted lines for PBC are almost indistinguishable
in the figure). For OBC one can show that d� is the solution to
the equation � = log(2 − d�)−1/ log d�, which is plotted in (b) (see
Ref. [35, p. 101]). For � = 2 this gives d = (1 + √

5)/2, the golden
ratio, while for � → ∞ we have d → 2.

sequence [23,34], while DOBC
L,3 is the (L + 3)-th number in the

so-called tribonacci sequence.
For PBC, the constrained Hilbert space dimension has the

slightly more complicated form (again, see Appendix B for
the proof)

DPBC
L,� = DOBC

L−1,� + DOBC
L−3,� + 2DOBC

L−4,�

+ 3DOBC
L−5,� + . . . + (� − 1)DOBC

L−�−1,�. (4)

In Fig. 1(a) we plot DL,� as a function of the system size L
for both OBC and PBC. We see that for L � 1 the constrained
state space dimension grows exponentially in the system size
DL,� ∼ dL

� for some number d�. Figure 1(b) shows d� as a
function of the constraint radius �. As � increases, d� also in-
creases with d� → 2 in the � → ∞ limit. We interpret this as
meaning that increasing � weakens the dynamical constraint,
and that the constraint becomes negligible as � → ∞.

B. The finite-� constraint breaks integrability

The unconstrained Hamiltonian Ĥ0 = �
2

∑
i σ̂

x
i is noninter-

acting and is clearly integrable. However, the constraint P̂�

breaks the integrability for finite �. This is shown numerically
in the left column of Fig. 2 where we plot the normalized
level spacing distribution p(sα/s̄), where sα = Eα+1 − Eα is
the spacing between two consecutive energy eigenvalues in
a narrow energy window, and s̄ is the mean level spacing in
the energy window. We note that in calculating p(sα/s̄) we
restrict to the even-reflection and zero-momentum (we have
assumed PBC) symmetry sector of Ĥ�. For � ∈ {2, 3, . . . , 6}
the distribution shows clear level-repulsion and is close to the
distribution of the Gaussian orthogonal ensemble (GOE) of
random matrices, as expected for a nonintegrable Hamilto-
nian.

Another standard numerical test of integrability
is to compute the r value [36], defined as 〈rα〉 =
〈min(sα, sα+1)/max(sα, sα+1)〉, where the average 〈•〉 is
taken over all eigenvalues in the symmetry sector. In Fig. 3
we see that a slightly perturbed (see caption to Fig. 3) Ĥ0
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FIG. 2. Left column: The distribution of energy level spacings
p(sα/s̄) in the zero-momentum and even reflection-parity symmetry
sector of Ĥ�. Level statistics are calculated in an energy window
�E = [E − �E , E + �E ], shown in the gray shaded region in the
corresponding figure in the right column. The energy window �E is
chosen so that it excludes the degenerate peaks (when � � 4), but
captures the states between two peaks. This is achieved for an energy
window with �E = 0.45�, centered at E = 0.5� if L is even or
E = � if L is odd. Right column: The density of states of Ĥ� in
its zero-momentum and even reflection-parity symmetry sector. The
sharp peaks correspond to degeneracies in the spectrum.

is integrable, but that the constraint Ĥ� = P̂�Ĥ0P̂� breaks
the integrability for � ∈ {2, 3, . . . , 7}. In fact, Fig. 3 shows
that the integrability is broken more strongly for � � 3 than
for the PXP model (� = 2) in the sense that the r value
approaches the GOE value more quickly as the symmetry
sector dimension increases.

C. Degeneracies in the � � 4 constrained Hamiltonian

The eigenstates of the unconstrained Hamiltonian Ĥ0 =
�
2

∑
i σ̂

x
i are the product states {|x1, x2, ..., xL〉}, where each

|xi〉 ∈ {|±〉} is a σ̂ x eigenstate. The eigenvalues Eα =
�
2

∑L
i=1 xi are highly degenerate and are integer multiples of

� (for even L) or half integer multiples of � (for odd L). This
is illustrated in Fig. 2(a), where a histogram shows the density
of states in the zero-momentum, even-reflection symmetry
sector. The degeneracies are indicated in the histogram by
sharp peaks at integer/half integer multiples of �. Of course,
any linear combination of degenerate eigenstates is also a
valid eigenstate. For example, the Dicke states | j, mx〉, defined
as simultaneous eigenstates of Ĵx ≡ 1

2

∑L
j=1 σ̂ x

j (with eigen-
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FIG. 3. The r value is a standard numerical test of integrability.
Here we plot the plot the r value as a function of the dimension
D̃L,� of the zero-momentum, even-reflection symmetry sector of
Ĥ� = P̂�Ĥ0P̂�. For the unconstrained model we have 〈rα〉 → 0.386
as the system size increases, as expected for an integrable model.
For � � 2, however, it tends toward the value 〈rα〉 ≈ 0.53 that is
expected for nonintegrable systems (GOE). [Note that we have used
a slightly perturbed unconstrained Hamiltonian, Ĥ0 = �

2

∑L
i=1 σ̂ x

i +
λ

∑
i(σ̂

x
i σ̂ z

i+1 + σ̂ z
i σ̂ x

i+1), with λ = 0.01 × �. The perturbation is cho-
sen to break the degeneracies in the spectrum of Ĥ�, since the r value
is not well defined when there are a large number of degeneracies.
This particular form of the perturbation also preserves the integrabil-
ity of the unconstrained model, as well as the symmetries of Ĥ�.]

value mx ∈ {− j,− j + 1, . . . , j}) and Ĵ2 ≡ (Ĵx )2 + (Ĵy)2 +
(Ĵ z )2 [with eigenvalue j( j + 1)], are also valid eigenstates of
the unconstrained Hamiltonian.

The right column of Fig. 2 also shows the density of states
for the constrained Hamiltonian Ĥ� with � ∈ {2, 3, ..., 6} in the
zero-momentum (assuming PBC), even-reflection symmetry
sector. For � ∈ {2, 3} [Figs. 2(i) and 2(k)] the density of states
is approximately a smooth Gaussian [23]. As the constraint is
weakened to � � 4, however, we begin to see deviation from
the smooth density of states. This is due to the appearance
of sharp peaks in the middle of the spectrum at integer or
half integer multiples of � [see Figs. 2(e), (c), and (g)].
We find numerically that each of these peaks is degenerate
with the number of degenerate states increasing exponentially
in the chain length L (see Fig. 4). This is reminiscent of
the degeneracies in the unconstrained model, which are also
exponentially growing in system size (see the purple mark-
ers in Fig. 4). For the unconstrained model the degeneracies
are associated with the conserved magnetization Ĵx and the

FIG. 4. For � � 4 and L even (odd) the degeneracy at integer
(half integer) multiples of � increases exponentially in L. This
resembles the degeneracy of the unconstrained model (the purple
trianglular markers). [Plotted data are restricted to the even-reflection
and zero-momentum symmetry sector (PBC are assumed).]
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associated quantum number mx. However, for any nonzero �

this symmetry is broken and the degeneracies at integer/half
integer multiples of � are not associated with any obvious
local conserved quantities. In the next section we will show
that the highly degenerate states in the spectrum of Ĥ��4 are
in fact many-body scar states.

D. Extreme quantum scarring

Let |Eα〉 and Eα be the eigenstates and eigenvalues of Ĥ�.
For an observable Ô and a microcanonical energy window
�E ≡ [E − �E , E + �E ], we define the microcanonical av-
erage as O�E ≡ N−1

�E

∑
Eα∈�E

Oαα , where Oαα = 〈Eα|Ô|Eα〉
are the EEVs of the observable and N�E is the number of
states in �E . With this definition one can formulate a strong
and a weak version of the ETH.

For strong-ETH the condition Oαα ≈ O�E must be satis-
fied by all EEVs in the energy window [37]. More precisely,
the strong-ETH is satisfied if the quantity

Is = max
Eα∈�E

∣∣Oαα − O�E

∣∣ (5)

vanishes in the thermodynamic limit.
For weak-ETH it is enough that most eigenstates in the

energy window satisfy Oαα ≈ O�E [38]. In other words, the
mean fluctuation around the microcanonical average

Iw =
[
N−1

�E

∑
Eα∈�E

(
Oαα − O�E

)2

]1/2

(6)

should vanish in the thermodynamic limit.
There is now considerable numerical evidence suggesting

that the weak-ETH holds for generic integrable and noninte-
grable quantum systems [38]: For generic integrable systems,
Iw has a power-law decay with system size L [2,39,40], while
for nonintegrable systems there are several finite-L numerical
studies indicating that Iw decays exponentially with system
size L [41–43] (although it has also been argued that the decay
eventually becomes a power law as the system size increases
[44]).

In the left column of Fig. 5 we plot the EEVs for the
observable Ĵ z = 1

2

∑
i σ̂

z
i in the zero-momentum symmetry

sector of Ĥ� (again we have assumed PBC). To calculate
the ETH indicators Iw and Is for this observable we choose
a microcanonical energy window �E = [E − �E , E + �E ]
that is near the middle of the spectrum (shown in the gray
shaded regions in the left column of Fig. 5). The center of
the energy window is chosen at E = 1.0� (E = 1.5�) if L
is even (odd), anticipating that there are “special” eigenstates
in the degenerate peaks located at those energies for � � 4.
The width �E = 0.5� is chosen to ensure that many states
between degenerate peaks are also captured in the micro-
canonical energy window.

We see that the EEVs are, for the most part, concentrated
around the microcanonical average (marked by a black x in the
left column of Fig. 5). However, there are some eigenstates
in �E for which the EEV deviates significantly from the
microcanonical average, giving a relatively large value of the
strong-ETH indicator Is. In the right column of Fig. 5 the blue
lines show that Is does not decay as the system size increases,
verifying that the strong-ETH is indeed violated for these

FIG. 5. The left column shows EEVs of the observable Ô =
Ĵ z/L for the unconstrained model and also for constraint radius
� = 6, 5, 4, 3, 2 (from top to bottom). The color scale indicates the
density of data points. The right column shows the ETH indicators
Iw (red) and I+

s (blue) plotted against the dimension Dk=0
L,� of the

zero-momentum (k = 0) symmetry sector. [Note that we have plotted
I+
s = max�E (Oαα − O�E ) instead of Is = max�E |Oαα − O�E | since

this gives cleaner results and is still a valid indicator of strong-ETH
violation.] We see that the weak-ETH is satisfied for the constrained
models (Iw decays as a power law in D, i.e., exponentially in system
size L), but the strong-ETH is violated (I+

s does not decay with
system size).

eigenstates. The special eigenstates that prevent the decay of
Is are regarded as QMBS.

From Fig. 5(h), we notice that for � = 3 there are two
scar eigenstates with a particularly pronounced violation of
the strong-ETH. We find that, for any odd L � 7, these two
scar states appear in the zero-momentum sector with exactly
Eα = ±√

7/2 and Jz
αα = −3/7 (up to numerical precision)

[45]. We have also found numerically that these two special
states are eigenstates of the total angular momentum operator
Ĵ2 = (Ĵx )2 + (Ĵy)2 + (Ĵ z )2 with the total angular momentum
j = 3/2.

For � � 4 the scar states that are clearly visible in
Figs. 5(b), 5(d), and 5(f) at Jz

αα = 0 are exactly the de-
generate eigenstates that were discussed in the previous
section with energies that are integer/half integer multiples
of � for L even/odd. A closer examination of these degen-
erate integer/half integer energy eigenstates shows that they
are Dicke states | j, mx〉, with mx = Eα/� and j � N/2. In
other words, they are eigenstates of the unconstrained Hamil-
tonian Ĥ�=0 as well as the constrained Hamiltonian Ĥ��4.
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FIG. 6. The distribution of EEVs in the energy window �E

[the gray shaded region in Fig. 5(d)] for � = 5. The distribution is
strongly skewed and has two main peaks, one at Jz

αα/L ≈ −0.05
corresponding to the thermal eigenstates and one at Jz

αα = 0 for the
many-body scars. The microcanonical average (the vertical dashed
line) is located between the two peaks rather than at one of the peaks.
However, as the system size increases, the fluctuations Iw (the error
bars) decrease, indicating that the distribution is becoming more and
more concentrated around the microcanonical average despite the
large number of many-body scars.

This suggests that at � = 4 the constraint has been weakened
sufficiently that some of the eigenstates of Ĥ0 can avoid the
constraint completely. We note that 〈 j, mx|Ĵ z| j, mx〉 = 0 for
Dicke states | j, mx〉, which explains why Jz

αα = 0 for these
scar states in Figs. 5(b), 5(d), and 5(f).

A clearly visible trend in the left column of Fig. 5 is that the
scarring becomes more severe as � � 3 increases. It is natural
to ask whether the scarring can become so extreme that not
only is the strong-ETH violated but also the weak-ETH is
violated. This might occur if, for example, there are always
a similar number of Dicke scar states and thermal states in the
energy window �E , preventing the decay of the weak-ETH
indicator Iw as the system size increases. This is illustrated
in Fig. 6, where we show the distribution of EEVs in the
energy window for � = 5. We see that the distribution is
strongly skewed and has two main peaks, one corresponding
to the thermal eigenstates and one for the many-body scars.
The microcanonical average is located between the two peaks
rather than at one of the peaks.

However, in the right column of Fig. 5, the red lines
show that the weak indicator decays as Iw ∼ D−γ for � ∈
{2, 3, 4, 5, 6}, where D is the zero-momentum symmetry sec-
tor dimension. In Fig. 7 we plot the decay exponent γ as a
function of �. We see that for � � 4 the γ becomes smaller
as � increases and appears to be well approximated by the line
γ = 1/(a� + b) for real constants a and b. This trend suggests
that the Iw ∼ D−γ scaling persists for finite �, although the
decay exponent can be very small for large �. In other words,
despite the skewed distribution of EEVs for large values of �,
most EEVs become concentrated around the microcanonical
average as the system size increases.

FIG. 7. As shown in the right column of Fig. 5, the weak ETH-
indicator decays as Iw ∼ D−γ . Here we plot the inverse of the decay
exponent. We see here that for 4 � � � 8 it closely fits the form γ =
1/(a� + b), for constants a and b. Error bars are calculated from the
error in fitting to the red markers in the right column of Fig. 5.

Finally, in Appendix C we repeat Figs. 5–7 but with a very
different choice of the energy window �E . We obtain similar
results, showing that our results are not a relic of an unusual
choice of the energy window �E .

IV. CONCLUSION

In this paper we investigate the phenomenon of many-body
scarring in quantum systems with dynamical constraints. We
construct a class of spin-chain models for which the radius of a
local dynamical constraint is given by a discrete variable �. In-
creasing � weakens the constraint by decreasing the dimension
of the subspace that is excluded from the dynamics. We have
shown that increasing � also corresponds to more extreme
quantum many-body scarring with the number of scar states
increasing exponentially in system size for � � 4. Another
example of a model exhibiting an exponentially increasing
number of scars was given in Ref. [14]. However, our model
differs in our ability to adjust the severity of scarring with our
parameter �.

To the best of our knowledge, our model Ĥ� is the first that
allows the degree of quantum scarring to be tuned. Since the
scarring becomes more extreme with increasing � it would
be interesting to test our results for larger values and to ex-
plore the ultimate limit of extreme scarring. With our current
numerical approach (exact diagonalization of dense matrices)
this is challenging due to finite-size effects becoming more
significant for larger values of �. In the future larger system
sizes may be accessed, however, by using the “shift-invert”
algorithm with sparse matrices and focusing on a narrow
energy window at finite density [42,46].

Note added. Recently we became aware that the same
model is also studied in Ref. [47]. In that work, the focus
is on the adjacency graph corresponding to Ĥ� (and other
constrained models), which is then used to provide interesting
insights into the origin of many-body wave-function revivals
in the dynamics.
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APPENDIX A: THE HAMILTONIAN FROM A STRONG
�-BODY INTERACTION

In this section we derive the effective Hamiltonian
Ĥ� [given in Eq. (1) of the main text] starting from a
Hamiltonian of the form Ĥ = Ĥ0 + ε

∑
i P̂i where P̂i =

|↑i ↑i+1 . . . ↑i+�−1〉〈↑i↑i+1 . . . ↑i+�−1 | is an �-body interac-
tion term. To begin, we transform to a rotating frame with
respect to the unitary R̂ = exp{itε ∑

i P̂i}. The Hamiltonian
in the rotating frame is

ĤI = eitε
∑

i P̂i Ĥ0e−itε
∑

i P̂i . (A1)

Now, using the identity e±itεP̂i = Q̂i + P̂ie±itε where Q̂i =
Î − P̂i, we can rewrite the rotating frame Hamiltonian as

ĤI =
[∏

i

(Q̂i + P̂ie
itε )

]
Ĥ0

[∏
i

(Q̂i + P̂ie
−itε )

]
. (A2)

Expand the operator products as∏
i

(Q̂i + P̂ie
±itε ) =

∏
i

Q̂i + e±itε
∑

j

P̂ j

∏
i,i �= j

Q̂i

+ e±i2tε
∑
j1< j2

P̂ j1P̂ j2

∏
i,i �= j1/2

Q̂i + . . .

+eirtε
∑

j1< j2<...< jr

P̂ j1P̂ j2 . . . P̂ jr

×
∏

i,i �= ji

Q̂i + . . . +
∏

i

(eitεP̂i )

=
∑
r=0

eirtεP̂r, (A3)

where P̂r = ∑
m1<m2<...<mr

P̂m1P̂m2 . . . P̂mr

∏
n,n �=mi

Q̂i is the

projector onto the
∑

i P̂i = r eigenspace of the operator∑
i P̂i. This gives

ĤI =
∑
r,r′

ei(r−r′ )tεP̂rĤ0P̂r′ . (A4)

Assuming that ε is very large, the terms with r �= r′ can be
neglected by a rotating wave approximation

ĤI ≈
∑

r

P̂rĤ0P̂r =
∑

r

Ĥ (r)
I , (A5)

where Ĥ (r)
I = P̂rĤ0P̂r . We see that the dynamics in the Hilbert

space are fragmented into sectors that are labeled the (integer)
eigenvalues of

∑
i P̂i. That is, the effective Hamiltonian Ĥ (r)

I

describes the dynamics in the sector
∑

i P̂i = r and the state
cannot evolve between sectors.

If we focus on the r = 0 sector, we see that the projector,

Pr=0 =
∏

i

Q̂i

=
∏

i

(Î − |↑i ↑i+1 . . . ↑i+�−1〉〈↑i↑i+1 . . . ↑i+�−1|),

(A6)

is exactly the projector P̂� defined in Eq. (2) of the main text,
and the r = 0 Hamiltonian Ĥ (r=0)

I = Pr=0Ĥ0Pr=0 is exactly
our effective Hamiltonian Ĥ�.

The �-body interactions in the underlying Hamiltonian Ĥ
may be considered unphysical for � > 2. However, our �-body
interaction between spin-1/2 particles can be mapped onto
two-body nearest-neighbor interactions between higher spin
particles. To see this, we can group the spin-1/2 particles in
our chain into blocks of � − 1 contiguous spins (assuming
that the chain length L is divisible by � − 1). Each block of
the � − 1 spin-1/2 can then be mapped to a single spin-s
particle, where s = (2�−1 − 1)/2. The interaction term P̂i =
|↑i ↑i+1 . . . ↑i+�−1〉〈↑i↑i+1 . . . ↑i+�−1 | in the Hamiltonian,
after the same mapping, is then a two-body interaction be-
tween nearest-neighbor spin-s particles. This shows that our
model Hamiltonian is not unphysical and can, in principle, be
implemented in higher-spin systems, even for � > 2.

APPENDIX B: CONSTRAINED STATE SPACE DIMENSION

In this Appendix we derive the constrained Hilbert space
dimension DOBC

L,� for OBCs in Eq. (3) and DPBC
L,� for PBCs

in Eq. (4). We do this by considering basis states that are
products of the |↑〉 and |↓〉 single-spin basis states, e.g.,
|↑ ↓↓↑ . . .〉. Only those basis states that do not have se-
quences of � neighboring ↑ spins will contribute to the
constrained Hilbert space dimension.

The case L � �. First, we observe that if L < � the Hilbert
space is not constrained since the constraint only takes effect if
there are � consecutive ↑ states. This gives DOBC

L,� = DPBC
L,� =

2L if L < �. If L = � there is only one state |↑〉⊗L excluded
from the constrained Hilbert space so that DOBC

L,L = DPBC
L,L =

2L − 1.
OBCs. To derive the recurrence relation for DOBC

L,� we begin
with an open chain of length L − 1 � � with the dimension
DOBC

L−1,�. Adding a particle at the end of the chain (new site
index j = L) gives a new open chain of length L. Any of
the DOBC

L−1,� basis states of the shorter chain are allowed if the
new particle is added in the state |↓L〉. If the new particle is
in the state |↑L〉, however, not all DOBC

L−1,� basis states of the
shorter chain are permitted because some will be excluded
due to the constraint. In that case, if the j = L − 1 particle
is in the state |↓L−1〉 then the DOBC

L−2,� states of the remaining
length L − 2 chain are allowed basis states. Alternatively, the
j = L − 1 particle is in the state |↑L−1〉. In that case, if its
neighbor ( j = L − 2) is in the state |↓L−2〉 then the DOBC

L−3,�

states of the remaining length L − 3 chain are allowed basis
states. We repeat this argument, proceeding along the chain,
until we arrive at the scenario where the � − 1 particles at the
end of the chain are all in their |↑〉 state. Then, if the next
particle ( j = L − � + 1) in the |↓〉 state the DOBC

L−�,� states of
the remaining chain are allowed. All other states basis states
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are excluded by the constraint. We may visualize this counting
more clearly as follows:

|. . . . . . . . . . . . ↓L〉 : #basis states = DOBC
L−1,�

|. . . . . . ↓L−1↑L〉 : #basis states = DOBC
L−2,�

|. . . ↓L−2↑L−1↑L〉 : #basis states = DOBC
L−3,�

...

...∣∣. . . ↓L−�+1↑⊗(�−1)
〉

: #basis states = DOBC
L−�,�∣∣. . . . . . . . . ↓L−�↑⊗�

〉
: #basis states = 0.

Adding all of these possibilities together gives the recur-
rence relation

DOBC
L,� = DOBC

L−1,� + DOBC
L−2,� + DOBC

L−3,� + . . . + DOBC
L−�,�, (B1)

with the initial conditions,

DOBC
L,� = 2L, if L < �, (B2)

DOBC
L,� = 2L − 1, if L = �, (B3)

as given in Eq. (3).
PBC. For periodic boundary conditions the counting is a

little trickier. Suppose that we start with an open chain of
length L − 1 and the constrained space dimension DOBC

L−1,�. We
would like to add a particle to the end of the chain (new
site index j = L), giving a length L chain, and then bring
the ends of the chain together to give PBC. Suppose that the
new particle in added in the state |↓〉. Then all DOBC

L−1,� states
of the shorter L − 1 open chain contribute to the allowed
basis states in the new chain with PBC. However, if we add
the new particle in the |↑〉 state there are a few possibilities,
which we consider one-by-one. First, in the new PBC chain,
we have the possibility that both neighbors of the added
particle (i.e., the particles at j = 1 and at j = L − 1) are in
the |↓〉 state giving the sequence |↓1 . . . ↓L−1↑L〉. Then any
state of the remaining length L − 3 open chain is permitted,
contributing DOBC

L−3,� states to the count. Next, we could have
either |↓1 . . . ↓L−2↑L−1↑L〉 or |↑1 ↓2 . . . ↓L−1↑L〉 with, in
each case, the remaining length L − 4 open chain contributing
DOBC

L−4,� states. Next, we could have |↓1 . . . ↓L−3↑L−2↑L−1↑L〉,
|↑1 ↓2 . . . ↓L−2↑L−1↑L〉 or |↑1 ↑2↓3 . . . ↓L−1↑L〉 with, in
each case, the remaining length L − 5 open chain contributing
DOBC

L−5,� states. We proceed step-by-step in this manner until,
finally, we arrive at a sequence of � + 1 spins of the form
. . . ↓ ↑ . . . ↑︸ ︷︷ ︸

�−1

↓ . . ., where one of the � − 1 ↑’s must be in the

j = L position. This leads to � − 1 possibilities for the loca-
tion of such a sequence, with each contributing DOBC

L−�−1,� states
to the basis count. The count terminates at this point since the
next step would lead to a configuration with � contiguous ↑
spins, which is forbidden by the constraint. We may visualize
the counting more clearly as follows:

|. . . ↓L . . .〉 : #basis states = DOBC
L−1,�

|. . . ↓L−1↑L↓1 . . .〉 : #basis states = DOBC
L−3,�

|. . . ↓↑↑↓ . . .〉 : #basis states = DOBC
L−4,� × 2

FIG. 8. We repeat Fig. 5 in the main text, but with a very different
choice of energy window: �E = [E − �E , E + �E ] with E = 0
and �E = 1.5�, the gray shaded region. The results in the right
column are essentially unchanged compared with Fig. 5 in the main
text.

|. . . ↓↑↑↑↓ . . .〉 : #basis states = DOBC
L−5,� × 3

...

...∣∣. . . ↓↑⊗(�−1)↓ . . .
〉

: #basis states = DOBC
L−�−1,� × (� − 1)∣∣. . . ↓↑⊗�↓ . . .

〉
: #basis states = 0.

FIG. 9. We repeat Fig. 6 but with the energy window shown in
the gray shaded region of Fig. 8(d).
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FIG. 10. In the new energy window the the decay exponents for
Iw follow similar behavior as in Fig. 7.

Adding all of these possibilities together finally gives the
periodic chain recurrence relation

DPBC
L,� = DOBC

L−1,� + DOBC
L−3,� + 2DOBC

L−4,� + 3DOBC
L−5,� . . .

+(� − 1)DOBC
L−�−1,�. (B4)

APPENDIX C: FIGS. 5–7 ARE REPEATED FOR A
DIFFERENT CHOICE OF ENERGY WINDOW �E

In Figs. 8–10 we show that our results in Figs. 5–7 are
not significantly changed if we choose a very different energy
window �E .
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