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On the Interpretation and Identification of Dynamic
Takagi—Sugeno Fuzzy Models

Tor A. JohansenMember, IEEERobert ShortenfMember, IEEEand Roderick Murray-Smith

Abstract—Dynamic Takagi-Sugeno fuzzy models are not global model in a fuzzy subset of x U. This fuzzy set is

always easy to interpret, in particular when they are identified characterized by a membership functign: X x U — [0, 1],

from experimental data. Ideally, it is desirable that a dynamic and leads to the Takagi—Sugeno fuzzy model
Takagi-Sugeno fuzzy model should give accurate global non- N

linear prediction and at the same time that its local models are

close approximations to the local linearizations of the nonlinear T = Z(Aza: + Biu+ d)wi(x, u) (2)
dynamic system. The latter is important in many applications i=1

where the constituent local models are used individually and ivhti i . i
aids validation and interpretation of the model conside?/ably. where the We_lghtlng functions; : X x I/ — [0, 1] are given
This defines a multi-objective identification problem, namely, the by the fuzzy inference
construction of a dynamic model that is a good approximation pix, w)

of both local and global dynamics of the underlying system. =N ., )
While these objectives are often conflicting, it is shown that there PINRYICRD)

exists a close relationship between dynamic Takagi-Sugeno fuzzyThijs equation assumes thet . g1 (2, 1) > 0 for all (z,u) €
models and dynamic linearization when using affine local model X x U J

structures, which suggests that a solution to the multi-objective )
identification problem exists. However, it is also shown that the
affine local model structure is a highly sensitive parameterization
when applied in transient operating regimes, i.e., far away from
equilibrium. The reason is essentially that the constant term in
the affine local model tends to dominate over the linear term
during transients. In addition, it is inherently more difficult to

w;i(z,u) =

The Takagi—Sugeno fuzzy model has recently found wide ap-
plicability in fuzzy model based control, e.g., [4], [9], [27], [35],
[36]. The reason for this is that its consequence part is an affine
dynamic model rather than a fuzzy set or constant value, which
has several advantages.

design informative experiments in transient regions compared to
near-equilibrium regions. Due to the multi-objective nature of the
identification problem studied here, special considerations must
be made during model structure selection, experiment design, and
identification in order to meet both objectives. Some guidelines
for experiment design are suggested and some robust nonlinear
identification algorithms are studied. These include constrained
and regularized identification and locally weighted identification.
Their usefulness in the present context is illustrated by examples.

Index Terms—Dynamic analysis, fuzzy models, linearization,
system identification, transient dynamics.

I. INTRODUCTION
ONSIDER the nonlinear dynamic system
&= f(z,u) (€
wherez € X C R™ andu € U C R". A Takagi—-Sugeno fuzzy

« From a control engineering perspective the use of local
affine (or local linear) models bridges the gap between
fuzzy control and conventional control. Many existing
tools and theories in linear systems theory can be partially
applied to Takagi—Sugeno fuzzy models and controllers.
The relationships to gain scheduling, e.g., [5], [8], and
piecewise linear systems are evident.

e The relatively complex consequence part allows the
number of fuzzy rules (local models) to be quite small
in many applications. Consequently, the Takagi—Sugeno
fuzzy model is less prone to the curse of dimensionality
than other fuzzy models.

« The model structure (partitioning of the state—space and
local model structure) and local model properties can, in
some applications, be easily related to the physics of the
system. This simplifies model development and valida-
tion.

quel will approximate this system by smoothly @nterpolating One typically attempts to select the local state—space param-
affine local models [34]. Each local model contributes to theiers( 4;, B;), the constant terrd;, and the membership func-
tions such that the fuzzy model (2) is a good approximation to
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basis for a fuzzy gain-scheduled controller since the local lindfaizzy model structure. In particular, when the constituent
models are used to design local linear controllers [5], [8]. Thiscal models are identified from experimental data there is
property is also very useful when validating and analyzing ttee risk of missing interpretability for the sake of accuracy.
dynamic model (2), [30]. Identification algorithms that combine high accuracy with high

It has widely been observed that it is often nontrivial to iderinterpretability are discussed in Section IV. A simplified simu-
tify dynamic local models which are close approximations t@tion example considering dynamic modeling of the nonlinear
linearizations of the nonlinear system [14], [24], [25], [30], [38]longitudinal dynamics of a vehicle is used to illustrate the ideas
It has been argued that this problem is a consequence of exéBgpughout the paper. Some additional aspects are illustrated
sive degrees of freedom in the affine local model structure whéi @ pendulum dynamics modeling problem. Conclusions are
it is applied to transient operating regimes [30]. Another impogiven in Section V.
tant reason is that the algorithm of choice for many practitioners
(the least squares algorithm) is often employed with the explicitl. EXISTENCE OFINTERPRETABLE TAKAGI—SUGENO Fuzzy
objective of selecting the local model parameters in order to MODELS

optimize global prediction performance. This is often achieved The ability of the Takagi-Sugeno fuzzy model to approxi-

V_Vith 'F’Ca'_ models that are significantly different fr.om the locaf,4te arbitrary smooth static functions on compact domains to
linearizations [24], [25], [38]. The problems are, in most pracypirary accuracy are well known. Local constant models were
tical applications, amplified by constraints on the experimep}cidered in [37], while the theory was developed for local
design which res'trict the amount of information'in the tranSie%lynomial models (including affine) in [13]. Finally, in [28] it
daFa, as _exemphﬂegi in [14]. A consequence is that one M@As shown that the parameters of local affine model can be se-
quite easily determine a Takagi-Sugeno fuzzy model, whigheieq (o guarantee that the derivative of the right-hand side of

provides a good global nonlinear model of the nonlinear systefjj Takagi—Sugeno fuzzy model (2) could be an arbitrarily good

but with local models that have little in common with local lin o5 vimation to the derivative of the nonlinear system function
earizations. Furthermore, it is generally more difficult to unde

! i o 'r'in (1). This property is closely related to the ability of local
stand the meaning and properties of the off-equilibrium locgkine models to represent the linearized dynamics. However,

models than equilibrium local models in the Takagi-SugenQuiice that the approximation result of [28] concerns the accu-
fuzzy model [30]. Most of the above mentioned problems afg ., o the linearization of the nonlinear Takagi—Sugeno fuzzy

unique to dynamic modeling and identification problems (3fodel rather than the accuracy of its constituent local affine

opposed to modeling and identification of static mappings) al5oqels.

though the tradeoff between local and global approximation aC-; \ya5 shown in [15] that the finite set of linearizations about

curacy also appears in static modeling problems considered,ignite number of points (equilibria and transient points) can
[25] and [38]. The present paper explicitly focuses on dynamjgs, \;seq 1o accurately approximate dynamic linearization about
systems, which are considerably more challenging than stafigyiyary trajectories using an interpolated multiple model struc-
function approximation. The aim is to present@rerviewof .o with local affine dynamic models. The result of [15] con-

some problems and solutions related to identification and i9yers autonomous systems, and an extension to systems with
terpretation of dynamic Takagi—Sugeno fuzzy models, and t@?ogenous inputs is given below.

paper continues the work of [30]. The main message in [30] is

that local affine dynamic models in Takagi-Sugeno fuzzy dyg Dynamic Linearization

namic models contain excessive degrees of freedom and must _ i _

be interpreted carefully. The interpretability problem is also dis- | "€ dynamic Takagi—Sugeno fuzzy model (2) is composed

cussed in [20], where a velocity-based linearization approachoifsmUItiple local affine dynamic models. It would be desirable

suggested as an alternative. Here we provide a theoretical fo[f}i-1"€ Purpose of interpretation, analysis, and application that
dation for understanding how identified Takagi-Sugeno fuzipese local affine models can be related to linearizations of the
models might be interpreted by relating them to dynamic lifionlinear system. In order to gain some understanding of the
earization about trajectories. Furthermore, the interpretation diftionship between the local affine models and linearizations

identification problems are illustrated by simple yet practically® continue with a.bnef review of dynam|cll|near|zat|on about
relevant and illustrative examples. Finally, guidelines for eff@jectories of nonlinear systems of the quite general form (1),

periment design and robust system identification are given Yfl€"€/ IS a_sl_sgjmed to be smooth. b o
order to improve the interpretability and accuracy of the identj- At an €quilibrium point(zy, ) (an equilibrium point satis-
fied fuzzy model. The suggested system identification methot€S ¢ = 0. 1-e- f(2g,up) = 0) the local linearization of (1) is

are based on well-known ideas originally developed for the pVen by

pose of robust nonlinear system identification without having . _ of , ., df , ,
the particular problems related to transient operating regimes of’ B (P00 U0) (& = 20) + = (%0, uo)(u — up) +hot.
interpretability in mind [10], [12], [25]. (4)

The outline of this paper is as follows. In Section Il, it i , . .
shown that a dynamic Takagi-Sugeno fuzzy model can foi?:i neglecting the higher order terms (denoted by h.o.t.) in the

N - o . ylor series expansion (4). In deviation coordinates= z —
an approximation to dynamic linearization about arbitrary, u = u — ), (4) becomes
trajectories. In Section lll, it is illustrated that there are various” ~— o’
interpretability problems associated with the Takagi—Sugeno At = A(xy, uy)Az + B(xh, ug)Au + h.o.t. (5)
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where we have defined the functiodsand B as follows: one would expect that the system (13) approximates (11) when
Az, uh) :ﬁ(x/ uh) ©) “ZY covers Z densely,” for example, in the sense that the
0707 g 00 maximum distance between neighboring element&f
aof
/ ! = — ! ! 6 = e < — Ry 15
Blro, wo) = 5, (50, u0)- (") el vy e 7 il 4o

The local linearization (5) of the nonlinear system (1) describes g fficiently small andsupp(w;) denotes the support of the
thelinearized dynamicef the nonlinear system subject to Sma'*unctionw ie. supp(w;) = {z € Z|wi(z) > 0}. Thus

perturbations near the equilibrium poifaty, uq). __ notice thatw;(z) = 0 if ||z — z}» > 6. This is formalized
Next, consider the more general case when the linearizatign, o following theorem.
of (1) is made about a poirfzo, uo) On some arbitrary rajec-  thagrem 1: AssumeX x U/ is a compact sef, is smooth with

tory. Hence, it nefed not be an eq_ui.Ii_brium point. The trajegonded Lipschitz constaiit and(zo, uo) is a given trajectory
tory (wo(t), uo(t)) is defined by an initial stateq(0) and sat- (1)in X x U. Then

isfiesig = f(zo,uo). The dynamic linearization of (1) about .
the (time-varying) pointzo, uo) on some arbitrary trajectory is A& (1) = Alzo(t), uo(t)) A& (t) + B(wo(t), uo(t)) Au(t)

given by (16)
& = f(wo,u0) + A(zo, u0)(@ — o) + B(wo, uo)(u — o) Ay (t) = Alo(t), uo(t) Aba(t) + Bwo(t), uo(t)) Auft)
+ h.o.t.. (8) + &(&2(2), u(t), zo(t), uo(?)) (7)
Introducing deviation coordinateSz = x — zo, Auw = u —uy Wheree satisfies
we get thdinearized dynamics sup lle(&a, 1, 2o, up)||2 < 2LE 4+ O(6%). (18)

A.’L’ = A(.’L’(), U,())A-’IZ' + B(.’L'(), U,O)AU, =+ h.o.t. (9) (€2,u),(z0,u0)CX XU

that describes the response to small perturbations about a poi
(z0,u0) on the nominal trajectoryxo(t), wo(t)). In addition,
the nominal trajectory itselftiend) is locally approximated by
the equation

O
%(C) means that the limit of(¢)/e exists (is finite) when
e — 0. The proof is given in the Appendix. The above theorem
shows that the dynamic Takagi—Sugeno fuzzy model where the
local affine dynamic models are local linearizations (including
@ = f(zo,u0) + h.o.t. (10) linearizations about transient points) leads to an arbitrary close
approximation to the LTV dynamic system resulting from
which approximates the flow of the state by a constant vectdynamic linearization about the trajectory because when the
near the poinfzo, uo) on the nominal trajectorfwo(t), uo(¢)). number of rulesV — oo (and the local models are sensibly
Obviously, the higher order terms in (10) and (8) are of differefdcated inX x {7 and with sensible membership functions with
order. compact support), thett— 0. The discussion in [20] provides
o additional insight into the relationship between the constituent
B. Approximation Theorem local linear models and the dynamic linearization.
Assume a continuous trajectoryzo,up) that satisfies
(zo(t),uo(t)) € X x U is given, andio(t) = f(zo(t),uo(t)), . INTERPRETABILITY PROBLEMS IN TAKAGI-SUGENO FUZZY
xz0(0) = Z. By neglecting the higher order dynamics, the MODELS
dynamic linearization about the trajectofyy, uo) is now the

: . ) In this section, it is illustrated that it is not straightforward
linear time-varying (LTV) system

. to identify constituent local models of Takagi—Sugeno fuzzy

E(t) = fl@o(t), uo(t)) + Alwo(t), uo(t))(€1(t) — z0(2)) models that can be interpreted as local linearizations of the non-
+ B(zo(1), uo(1)) (u(t) — ug(t)) (11) linear system even though we proved in Theorem 1 that such

£(0) = & (12) local models exist. Furthermore, we show that even if local

i i ) models that closely approximate local linearizations exist, they
where the functionsi and B are defined in (6) and (7). An gre siill not easy to interpret in transient operating regimes.
approximation to the dynamic linearization is given by the

Takagi—Sugeno fuzzy system scheduled on the state/input, g.f.Off-Equilibrium Local Models and Stability

@ N Off-equilibriumlocal models have by definition no equilib-
: L o o ‘ rium point within their region of validity. Such local models
&)= ;(f(x“ ui) + Afzi, ui) (§2(t) — i) still have equilibrium points, but the local models are not valid at

their equilibrium points. Such equilibrium points are called “vir-
+ Blai, ui)(u(t) — wi))wi(&(t), u(®) - (13) tual equilibrium points” in [30] because they need not have any-
£2(0) = z. (14) thing to do with the equilibrium points of the nonlinear system.
We will continue with developing an approximation re-Consequently, the most common linear system analysis tools
sult that shows the closeness between (11) and (13). laeé not directly suitable for off-equilibrium local affine models
Z% = {(x1,u1), (x2,u2), -, (xn,un)} C Z = X x U since they focus on characterizing the dynamic behavior in the
be the set of linearization points and define deviations fromeighborhood of equilibria. For example, the eigenvalues of the
the nominal trajectoryfzg, ug) by A& (t) = &1(¢) — zo(t), A(xg,ue) matrix will provide information about the stability of
AL () = &(t) —zo(t), andAu(t) = u(t) —ue(t). Intuitively, the virtual equilibrium point. But this is of little interest since
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the virtual equilibrium point has no meaning for the underlyinghich can be simplified and written in the matrix form
nonlinear system. We therefore conclude that the eigenvalues 6 P
of off-equilibrium local models need not provide any informa- < . ) =d(6°) + A(9°) <
. . s e . . W W
tion about local stability of equilibrium points of the nonlinear
system. where

Stability of equilibrium points is a special case of stability of 0
trajectories (the special case when the trajectory stays at equilib- d(6”) = <9_81(_ sin(6%) + cos(6)°6°) ) (24)
rium at all time)! Stability of a trajectory essentially means that 0 1
atrajectory that can be considered as a small perturbation from A(9°) = <_ 0 _o ,) . (25)
the nominal trajectory will stay close to the nominal trajectory 9.81 cos(6?) "
(or approach the nominal trajectory as time goes to infinity in The flow of the nonlinear pendulum system is illustrated in
the case of asymptotic stability). In the local model context, thi&g. 1 [the flow is the velocity of the state-vector at each state,
notion of stability means that if a perturbed trajectory will staie., the vector fieldf defined by the right-hand side (r.h.s.) of
in the region of validity of the local model for a long time, thenthe differential equation for the system (1)]. Three different tra-
the perturbed trajectories will approach the nominal trajectoijgctories for the system are shown in the figure, starting from
However, no trajectory will stay in a transient region for a longomewhat different initial conditions. We observe that two of
time so such a local analysis of stability of trajectories need nibiese trajectories are attracted toward each other and a common
provide any relevant information about the system. Even if theguilibrium point as time increases, while the third trajectory
trajectory moves through a sequence of operating regions witiverges and ends up in a different equilibrium point (the pen-
different (but stable) local models, it is still not possible to argugulum starts rotating the opposite way due to lower initial ki-
anything about stability of trajectories, cf. the theory on stabilityetic energy). In the part of the illustrated state—space where
of time-varying linear systems, e.g., [17]. Stronger conditions/2 < # < 3w /2, the local linearizations has a#(6°) ma-
are necessary (see, for example, [22] for some contraction ctrix with at least one positive eigenvalue. In the context of dy-
ditions that ensure that neighboring trajectories of nonlinear sysmic linearization, this means that trajectories with slightly dif-
tems are attracted toward each other). Also, if alocal off-equiliferent initial conditions may diverge. Considering the trajectory
rium model has unstable modes, a perturbed trajectory passiteyting af4, —3) as the nominal trajectory, we see that the other
through its region of validity may still approach the nominal tratwo trajectories both diverge from this one initially. However,
jectory during some part of the transient. Notice that in transiewhile the trajectory starting &8, —2) continues to diverge from
regions with local model$ = A;(x — x;) + B; (v — ;) + d;, the nominal trajectory, the trajectory starting4t—4) eventu-
the constant ternd; may dominate the system behavior and bothlly converges toward the nominal trajectory and later moves
the A;(xz — z;) and B;(u — ;) terms may be of secondary im-into the region where-w/2 < 6 < = /2. Thus, knowledge of
portance. Considering; and.B; alone should therefore not bethe eigenvalues ofi(x, «) does not allow us to make any pre-
expected to give much information. To conclude, it is difficultliction on the qualitative behavior of the system in transient op-
to make any generally valid statements about the qualitative legating regimes. O
havior of the system from off-equilibrium affine local model
analysis. B. Loss of Identifiability

Example: Unforced Pendulum, Dynamic Lineariziatioho 1, section 11-B, we argued that under general conditions there

illustrate the effects in a simple system we consider an unforcgg Takagi-Sugeno model parameters such that
pendulum of unit mass, on a rigid string of lendthwith an

angled and angular velocity = w, leading to state-equations

) +hodt. (23)

« the global fuzzy model (2) accurately approximates the
global behavior of the nonlinear system (1);

b =w (19) » at the same time, the local affine models of the
) g . Takagi—-Sugeno fuzzy model admit valid interpreta-
w=—7sin(f) - S (20) tion as local linearizations of the nonlinear system about

hich . ) ¢ i ¢ ) points on trajectories as described in Section II-A.
which are simpie yet provide some eatqrgs ofinterest for tr’\lr‘? other words, the Takagi—Sugeno model might be both accu-
investigation. Heré = 1, the friction coefficientd = 0.5, and

the gravitational constant = 9.81 rate and with a useful interpretation of the local models as local
) o Lo . linearizations. However, in this section, we argue that the local
Linearization of the nonlinear equations (19) and (20) abo 9

Uf.. s . . .
. : ; : 4 aﬁlne model structure applied in transient operating regimes
0 0
st;rrtr)]l.trary point(6”,w”) leads to the following linearized (where no equilibrium exist) contains excessive degrees of
y ' freedom and may be poorly identifiable in the sense that large
6= o° + (w—w”) (21) perturbations of some combinations of affine I_ocal_r_nod_el
d d parameters may only have a small effect on the identification
Y o o 9 0°V(6 — 0° o L . . . .

w=-7 sin(6?) — YT cos(67)(6 — 67) — 7(w —w’?)  criterion2 This has serious consequences in particular for the

+h.ot. (22) 2Lack of identifiability is characterized by nonuniqueness of the model
structure, i.e., two different parameter vectors yields the same input/output

behavior. Poor identifiability is (informally) defined as a somewhat relaxed

1The concept of stability of trajectories and paths, denoted Lyapunov stabilfiyoperty, namely, that two significantly different parameter vectors give very
and Poincare stability, respectively, is treated in [16]. similar input/output behavior.
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flow of nonlinear system
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Fig. 1. The flow of the nonlinear pendulum system together with three trajectories starting a somewhat different initial copditiehs:(4, —3), (4, —4).

interpretation, applicability and accuracy of the individual local it may lead to a smaller region of validity of the local
affine models when identified from experimental data, but also  model. Furthermore, the problem of estimating the poorly
for the accuracy of the global nonlinear fuzzy model in some identifiable parametersi(x;, ;) and B(x;,w;) remains
cases. Furthermore, the poor identifiability of the local models difficult.

gives rise to an ill-conditioned system identification problem < A; andB; can be selected to increase the region of validity

which we shall discuss in depth in Section IV. of the local affine approximation (26) and/or to improve
Suppose we seek local affine models of the form the accuracy of the global model (2). In this case these
i = Az — ;) + Bi(u — w;) + d (26) parameters may be completely different from the true lin-

earization parameter4(z;, u;) and B(x;, ;) and serves
only the purpose of providing a richer class of function ap-
proximators. Consequently, the local affine model cannot
always be interpreted in terms of a local linearization in
this case. Itis well known that(z;, »;) andB(x;, u,) are
often suboptimal choices fot; and B; when only consid-
ering global approximation accuracy [1], [24], [25].

Poor identifiability is a problem that is particularly pronounced
d; = f(@i, u;) with off-equilibriumaffine local models. The reason for this is

which is an exact model of (1) at the poifat;, «;) and a rea- Simply that at equilibrium the constant trend tednvanishes

sonable approximation in a small neighborhood of this poirand the dynamics must be fully captured by tb&, B;)-pa-

especially if it is far from equilibrium. The additional degreesameters. Thus, near equilibrium the dynamics are captured by

of freedom available in the parametets and B; can be used the (4;, B;) parameters and there is no problem.

in different ways. Example:  Unforced Pendulum, Poor Identifiability:

. A; and B; can be selected to accurately represeftonsider the pointf,w) = (7/3,2), which is a transient
the linearized dynamics, ied;, ~ A(z;,u;) and State of the autonomous system. Fig. 2 shows the flow of

~

B; ~ B(z;,u;). This is advantageous in terms of inthe nonlinear system (upper left), the flow of the local
terpretation, analysis and applicability of the model inearization aboufx/3,2) (upper right), and the flow of two

control systems design, but has the disadvantage tRiernative local affine models (lower) that were selected
manually by trial and error to match the local dynamics near

3The reason why we may insist on using locally affine models even thougsl;r/g7 2)_ We observe that the local linearization and both the

they are poorly identifiable is that the interpretation in terms of Iinearizatior{W | | aff del . del f th
is useful in terms of system analysis and local control design for example O 0Cal afine models are quite accurate models of the

gain-scheduled control. nonlinear system in their assumed region of validity (shaded

to be approximately valid in a small neighborhood of a point
(zi,u;). The structure (26) sometimes contain excessive de-
grees of freedom when the poift;, «; ) is far away from equi-
librium. The reason for this is that in many cases the constant
termd; (trend) will dominate (26), while varying some elements
of A; and B; may only have a minor effect on the local model
accuracy. In order to motivate this claim, suppose
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Fig. 2. The flow of the nonlinear pendulum system, local linearization, and two accurate local affine models.

region in the figure) with very similar flow field, while outside lustrates that local affine models with very different parameters
this region they are all more or less invalid models and theand structural properties can lead to dynamic Takagi—Sugeno
flow fields differ considerably. Hence, when applied as locdilizzy models with very similar global properties at this transient
models in a dynamic Takagi—Sugeno fuzzy model, they woufbint. This is made possible by excessive degrees of freedom in
all lead to more or less equally accurate global approximatiotie affine local model.
to the nonlinear dynamic system. Alternatively, consider the equilibrium poiat = 0. At this
The numerical values of the local linearization and the twgoint, the drift termd; must be close to zero in order for the
local affine models are local model to have an equilibrium point close to zero. There
A(n/3,2) = < 0.00 1.00 ) A )3,2) = < 0.0 ) are, therefore, no additional degrees of freedom available since
’ —0.40 —-0.50 ’ —3.36 in order for the local affine model to be accurate, the parameters
(27) in A; must necessarily be similar to the parameters of the local
—0.20 0.20 1.75 linearization. O
A= <_1,00 100) dy = <_10.00> (28) More examples of nonunique off-equilibrium local models
4 < 0.00 000) b < 2.00 ) 29) can be found in [30].

—1.00 0.00 —3.00
respectively. The eigenvalues df=/3,2) are—0.25 £ 0.58j,
which corresponds to a stable underdamped linear system. Th&he most common choices of dynamic Takagi—Sugeno fuzzy
eigenvalues ofd; are 0 and 0.8, which correspond to an umodels, are local linear models, affine linear models, and local
stable linear system. Both the eigenvaluesdgfare 0, which constants. In this section, we examine the consequences of
also corresponds to an unstable linear system. The examplearibdel choice for model interpretability and identifiability.

C. Local Models: Constant, Linear, or Affine?
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rium points for the nonlinear model. We can thus conclude that
the point(v,«) = (10,0.1) is a transient point, which can be
confirmed simply by observing that the acceleration is nonzero
at this point. The location of the equilibrium points of the local
linear and affine models therefore has no relevance when the
local model is a transient model. Moreover, it is clear that only
the local affine model results in an accurate local model with a
valid interpretation as a local linearization (in the sense that the
local model parameterd; and B; corresponds approximately
to the pole and gain of the linearization of the nonlinear system).

Notice that with the local linear model (where the plane is
restricted to go through the origin and cannot therefore always
be a tangent plane), it is possible to select theand B;
parameters in different ways. In Fig. 5 the pole is chosen
equal to the pole of the local linearization, which leads to
speed ) throtte (v B; = —4.0516 which is different from the gain of the local
linearizationdf/01(10,0.1) = 0.8960 because we require
that the local model is exact at the poipt ») = (10,0.1).

Hence, although it cannot be interpreted as a local lineariza-

M dealmS[ile: tLong.l';udlnaI Speetlj Dynan;lcs,tthf:eren;c I&_OC on, it is still an accurate model of the trend near the point
odet SIUCIUres.As an example, consider the longitudina v,u) = (10,0.1). Another alternative is to select th&g and

spﬁ'eclj Qynamlcs dofba veh|cI¢ Wlthhrnr?zﬁsand ?peec:;. Thted,B parameters of the local linear model exactly equal to the pole
;/e icle s powerer: yan etr;wgmtiwttllc ger}eraT(ra]s a Orr:_gll uc "éi?lwld gain of the local linearization. In this case the local model
orce g (v, u), wherew is the throttle angle. The vehicle is ) - oters can be interpreted as a local linearization about a
subject_to a_dlsj[urbance forgg. A simple first-order model of trajectory passing througv, ) = (10,0.1), but because the

the vehicle is given by the force balance constant term is zero, the model cannot be used to give accurate

5000+, L

10007

engine force g(v,u}

Fig. 3. Engine force.

mi = ge(v,u) — gq (30) global nonlinear predictions. Hence, with local linear models,

which can be written one can achieve accurate approximation of either the linearized
) ge(v, 1) — g4 dynamics or the trend, but not both simultaneously. With the
V= flo,u) == (31) local affine model structure there are no such limitations, while

In the example, we sef; = 1000 N, m = 1000 kg, and the Fhe IocaI. constant model strgcture, by i'Fs nat.ure', contains 'Frend
engine characteristic is given by information, but no information on the linearization dynamics.

. 5 Note that we only discuss the information contained in the

ge(v, 1) = 500(1 + 3u)(1 4 arctan(6u” — 0.4v + 1.2)) constituent local models when interpretedividually. Some
(see Fig. 3). With this characteristic engine curve (which coresults on the ability of thglobal Takagi—Sugeno fuzzy model
responds to a fixed gear ratio), the engine operates in a speétth constituent local linear models to approximate local
interval between 2 and 20 ms. linearizations can be found in [7].

Linearization of the engine model (31) leads to the fol- It is particularly difficult to interpret local models that cor-
lowing characteristic parameters: Pol@f/0v)(v,u), gain respond to transient operating regimes (where no equilibrium
(0f/0u)(v,uw) and trendf(v, ). These parameters are illuspoints exist), as opposed to local models corresponding to equi-
trated in Fig. 4. librium operating regimes. This is true even if the transient locall

Assume that the state—space partitioning of thmodel has a valid interpretation as a local linearization. Con-
Takagi—Sugeno fuzzy model is such that a valid local modsider for example the point = 20, « = 0 of the vehicle mod-
in a neighborhood of the poiat = 10, «; = 0.1 is required. eling example. The local linearization is given by
Consider the following alternative local model structures:

© = —0.0085(v — 20) — 0.2978u — 1.4248. (35)
v = Alv + Blu + dl (32)

_ The model gain is given by-0.2978. Naive control design
=A B 33

1_} L B (33) based upon this model might interpret the model gain as

o= dr. (34) meaning that in order to decrease the speed, the throttle angle

Local models with these structures that are exact models at thast be increased. This is an incorrect interpretation. The cause
point (v,») = (10,0.1), are shown in Fig. 5. The local linearof the misinterpretation is that the trend (constarit.4248)

and affine models have equilibria@t, ) = (0.2434w,«) and has not been taken into account. At this point the vehicle will
(v, 1) = (13.0943u — 6.6959, 1), respectively. All these equi- have an acceleration 6f1.4248 with zero throttle angle and
librium points are located far outside the region of validity ofhis is, in fact, the dominating dynamics in this region since
their corresponding local models and are, therefore, not equildothrottle angle varying in the interval < « < 1, leading

_ _ , _ _ to a force corresponding to an acceleration in the interval
4This example is motivated by the experimental vehicle speed control

problem considered in [15]. The model is simplified, but contains the relevaﬁto'2978 <0 <0 Th_e gain _is SO_ small that any perturbation
aspects of the experimental vehicle in order to illustrate the main ideas. ~ Of the throttle angle is of minor importance compared to the
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ized system pole: A(v,u)

g-
g-o.e\..~

linearized system gain: B(v,u)

Bo

04

spoed (v) 0 throttle (u) speed (V) throttle ()

ES
/

[
L

fv,u)

2\

acceleration: dv/dt

04

0
speed (1) 0 throttle (u)

Fig. 4. Linearized engine model (pole, gain, trend).

trend. Hence, it is clear that little information about the localue to excessive degrees of freedom may be avoided, but such
dynamics can be inferred from the linearization parametdcal models will not be valid local linearizations of the system.
(f/0v)(v,u) and (8f /Ou)(v,w) alone without taking into
consideration the trend. This concerns only off—equilibriurB
local models since equilibrium local models by definition have
zero trend and are in general much easier to interpret. The abovA common modeling objective is to obtain a parsimonious
example illustrates that interpretation problems exist even whearameterization of the system dynamics. In the context of
the transient local model has a completely valid interpretatidmcal model structures, parsimonious representations of the
as a local linearization. The interpretation problems are eveystem are sometimes difficult to obtain due to the curse of
more severe when this interpretation is invalid. [0 dimensionality. Consequently, to reduce the complexity of the

So far we have argued by means of theoretical constructakagi—Sugeno fuzzy model, it is common (where possible) to
and practical examples, that Takagi—-Sugeno fuzzy modaisstrict the membership functions to depend on a subset of the
with all three local model structures, are capable of accuratelgriables(z,«). If f depends affinely on some of these vari-
representing global nonlinear dynamics. However, as we halges, it is known that it is not necessary to partition along these
seen, even with a locally affine model structure, not all aixes [13]. In cases where the nonlinearities are not too strong,
these local affine models have a valid interpretation as a lo@aie tends to minimize the number of premise variables in order
linearization. If the local model parameters are identified fromo keep the model complexity to a minimum. Similar methods
data (rather than resulting from an explicit linearization of are employed in gain scheduled control where it is common to
nonlinear model), one has no guarantee that the obtained affiastrict the number of scheduling variables to the number that
local models have a valid interpretation as local linearizatioris.necessary in order to characterize the equilibrium manifold,
If this is important, special care must be taken during expeg-g., [29], [19] (even though it has been argued that this may
ment design and identification to achieve this. restrict the transient performance of the control system [15]). In

It is also evident that the identifiability problems are due tany case, practical considerations usually necessitate keeping
the use of affine local models in transient operating regions.tife number of scheduling/premise variables as low as possible
local linear or constant local models are applied, the problertsreduce the effects of the curse of dimensionality.

Minimizing the Number of Premise Variables
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Acceloration: dv/dt=F(v,u) Local affine model
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Fig. 5. The flow of the nonlinear system and local models (affine, linear, and constant) at the poin®, v = 0.1.

Example: Exploiting the Affine Functional Form ofwe have left out the input variablefrom the premise due to the
f: Consider the very simple nonlinear system bilinearity. Hence, the number of premise (scheduling) variables
P (36) Is reduced without reducing the accuracy, but by sacrificing the
interpretability of the local model as local linearizations. Notice

Atthe point(z;, u;) the local linearization is that at equilibriumz = 0 or w = 0, both approaches to con-

T = —ui = Tt + Ti. (37)  struction of local models lead to similar results, emphasizing
Observing that the system (36) is bilinear, itis clear that it is sulhat they have excessive degrees of freedom only in transient
ficient to use eithex or « in the premise of the Takagi—Sugenaperating regions. O
fuzzy model [13]. Selecting as the premise variable, we getan Another consequence of reduction of the number of sched-
alternative local model uling/premise variables is that a single local model may be used
i=—zu (38) both in transient and equilibrium operating regimes. If the dy-

namics are significantly different in the transient and equilib-
rium operating regimes corresponding to a single local model,
N this obviously leads to difficulties.
= <Z xiwi($)> ” (39) E>§am_ple: Longitudinal Speed Dynamics—__Co_ntinumthe
P longitudinal vehicle speed model, the equilibrium points are
is an arbitrary close approximation to the system (36) cgiven by the curve in Fig. 6. This curve can be parameterized
any compact set by appropriate selection of the po|rhy a Single variable, for example either Speed or throttle angle.
T, T2, TN If one wants to restrict the number of premise variables to only
Clearly, the local models (38) leads to an accurate glob@ite, it is natural to select either speed or throttle angle. Sup-
model, but with4; = 0 andB; = —=z; they do not have a valid pose we select speed. For a nominal spee¢ 12 m/s the
interpretation as local linearization. The reason for this is theerrespondingssumedegion of validity is the shaded region

valid in some neighborhood of;, i.e., (z,u) € (z; — 6, z; +
8) x R for some smalb > 0. The Takagi—Sugeno fuzzy model

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on February 22,2010 at 11:22:47 EST from IEEE Xplore. Restrictions apply.



306 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 3, JUNE 2000

system constructed from these local models defined above is of
18 the form

" & = (wi(x) Ay + wa(z) A2)w + wi(x) dy + wa(w) d2 (42)
= A(z)z + d(x) (43)

whered; = — Az, and wherel, = —Asx2, and wherev, ()
andw,(z) are interpolation functions. If these linearizations are
sufficiently close together it can be assumed that this model ap-
o proximates the nonlinear system in some fashion between these
equilibrium points. The model predicts a manifold of equilibria
given by

A(zo)zo + d(zo) = 0. (44)

L L L L L ) L : I 3
[ [} 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
throttle angle

Furthermore, if we assume that the model also describes
Fig. 6. Equilibrium curve for vehicle model. the transitions between the equilibrium points, then model

linearizations along (44) are given by
in Fig. 6. When the system is operating far away from equi- .
librium, but with a speed in the intervaD < v < 14, this z = Axo)(x — x0) + h.o.b. (45)
local model contributes to the Takagi—Sugeno fuzzy model, c.f.
Fig. 6. Within the shaded region corresponding to both equilipthere
rium and transient operating conditior®).6630 < A(v,u) < T
_0.0998 .and —0_.;54?3 < B(v,-u) < 17_.9217. When on!y A(a:) _ Z <Aiwi(a:) + (A + di) <8wz ($)> ) . (46)
considering equilibrium operating conditions corresponding to Oz
10 < v < 14, we get—0.6630 < A(v,u) < —0.6081 and
13.9088 < B(v,u) < 17.9271. Itis clear that the local affine Let us consider the meaning of the above equations. Equation
model is reasonably accurate at the equilibrium operating cd#4) suggests that the manifold of equilibria is described as a
ditions corresponding to the intervil) < v < 14, but when the function of the interpolation functions, the matricés and As
transient operating conditions corresponding to this interval z&8d the endpoints; andz. This may or may not be a rea-
included, the dynamics are too varied over the operating rargable assumption. Furthermore, (46) suggests that the system
for a single local affine model to be valid. 0 linearization along this manifold cannot be obtained by simple

Although this example may seem trivial, it is included belnterpolation of the matriced; andA,; the membership func-

cause this prob|em has been experienced to be relevant in pﬂﬂfls themselves contribute to the linearization. In fact, (46) con-
tical applications, especially when no special attention has bd@is two terms; a term which is the interpolation of the ma-
given to the distinction between equilibrium and off-equilibriuntrices A, and A, and a term that is a function of the deriva-
operating conditions during experiment design and model Smj'ty.es of the interpOIation functions. The interpOIation functions

=1

ture selection. appear in both of these terms. It is clear that the membership
functions should be chosen to provide as accurate a representa-
E. The Role of the Membership Functions tion of the system dynamics as possible. However, membership

We have argued that the global Takagi-Sugeno fuzzy modictions chosen to approximate the global dynamics may be
inadequate when the model is linearized. In many applications

can provide a satisfactory approximation of the underlying noh- b X ¢ | licati
linear system, even when the constituent affine local moddfiS May not be an issue. However, for control applications re-

are not conventional linearizations. In practice Takagi—SugeHH!”ng linearization of the plant model, model fidelity in the

models are constructed by interpolating the parameters of {ifaghborhood of plant eq“'l'b”‘i‘l is of paramgunt importance.
constituent local models using fuzzy inference (see also, [1]j. OUr context we must ensure that (46) provides as accurate an

The choice of membership functions is of crucial importan proximation to the system linearization as possible. However,
in this procedure [20]. To illustrate some of the issues whidRere are several difficulties associated with the approximation

arise when choosing membership functions, we consider the fglethod in (46). First, there is no guarantee that the qualitative
lowing example. Let nature of the locii of eigenvalues constructed by interpolating

between the matriced; and A is consistent with the quali-

&= Ai(x — 1) (40) tative nature of these matrices. In addition, we must also select
be the linearization of some autonomous nonlinear system ab®ut membership functions whose first derivatives not only exist,
the equilibrium pointz. Similarly, let but also satisfy certain properties. From these observations it can

. be seen that the choice of membership functions is by no means

& = Az(x — x2) (41) " 4 trivial matter, affecting not only the global model dynamics,
be the linearization of the same nonlinear system about the edquit also the manifold of equilibria and the system linearizations
librium point z5. The Takagi—Sugeno model of the nonlineaalong the equilibria.
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In general, for a globally accurate fuzzy model consisting « [T T T ]
constant, linear, or affine local models, a locally valid linearize ool ... ... m”ﬂnﬂ ]
tion may be generated by |inearizing (2) ol . m ...... L ﬂﬂm

s - 5 12t I ISR O TS S B BRI .

& = Ao, uo)(z — xo) + B(xo, uo)(u — uo) + d(wo,uo)  E2[ T B SRS 1 1 O S

+ h.o.t. 47 P N FUTTTTUID SUUIUTIUN SO o b EAURURIURY (10| AU SR _
@Ol B LS
Where LU LT SR U o]
i ]\T . 100 200 aoco A o ey = 700 800 200 ocoo
A(x,u)zz<Aiwi(a:,u)+(Aia:+Biu+di) [ U S ST DU S R h ]

T .

X <8wz (, u)) ) (48) go

~ ]\ :

B(a:,u):Z(BwZa:u (Ajx + Biu+ d;) X

500
time ()

N
d(z,u) = Z(Aﬂ? + Biu+ d;)w;(x,u). (50)

i=1

spaed (m/s)
:

As discussed above, the linearization will depend on tt
membership functions, and it usually assumed that they pi
vide an accurate smooth interpolation of the local model
In practice, verification of this assumption is carried oL
experimentally.

IV. | DENTIFICATION OF TAKAGI—SUGENO FUZzY MODELS o o1 ez 03 o4 mf}we o6 o7 a8 es

The purpose of this section is to illustrate the poor results OE
might get when identifying off-equilibrium affine local models

using standard identification methods such as least squares and
IS discrete-time model is converted into a continuous-time
suggest alternative methods with better robustness and perfg
model by the following parameter transformation (derived from

Identification data sequence 1.

mance.
Example: Longitudinal Vehicle Dynamics, Least Square(gl) and (52)).

Identification: For the identification of a Takagi—Sugeno fuzzy A =In(—a;1)/T (53)

model of the vehicle we have generated by simulation a data In(—a;1)bi1

sequence with 1000 noise-free samples with a sampling interval B, = Tai—1 (54)

1" = 1 s. The experiment design takes the vehicle to several ln(—c; )6;

equilibrium states through some transient states and perturbs d; = GLEAS (55)

the system by a pseudorandom binary signal (PRBS) signal at —aip—1

each equilibrium, c.f. Fig. 7. Let us define the pole, zero, and trend that results when we in-

The operating regiofw, «) € [2,20] x [0,1] is then parti- terpolate the local model parameters
tioned into five equilibrium regions and four transient regions,
each of which is characterized by a membership function. The Av,u) = Z Agw; (v, 1) (56)
corresponding affine local models are identified from data se- <
guence 1. A discrete-time dynamic Takagi—Sugeno fuzzy model

with constituent local models of the form B(v,u) = Z Bw;(v, ) (57)
U(k + 1) = —ai7lv(/€) + bi71u(/€) + 6; (51) N
= Z dyw; (v, ). (58)

is first identified using the least squares algorithm. Using exact
discretization of the continuous time first-order local motlet

A;xz + Biu + d; and zero-order hold of the input signal If the local model parameters are valid linearizations, then the
2 T (2

interpolated local model parameters should be similar to the
2(t+T) = exp(A;T)x(t) parameters resulting from dynamic linearization. The plots of
1 A(v,w), B(v,w), andd(wv, ) in Fig. 8 shows that this is not the
+ Xi(eXp(AiT) = D(Biu(t) +di)  (52)  case. First, there is some bias because the model structure is not
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Linearized system

———cs

Pra——

Locally weighted least squares identification, data sequence 2

Fig. 8. Comparison of the pole (left column), gain (middle column) and trend (right column) as a function of throttle and speed of the linearizeddsistem
interpolated local model pole/gain/trend of the Takagi—Sugeno fuzzy models identified using various identification methods and data sequences.

sufficiently rich to exactly model the system. But the most inwill only treat local models as approximators and thus not nec-
teresting feature of the identified model is the large differen@ssarily lead to local model paramete¥sand B; with a valid
between the identified parameters and the parameters of the iivterpretation as local linearizations. This was illustrated above
earized system in the off-equilibrium regions. In this case, thisxd also in some application studies ([30], [14]). The core of
is due to both poor identifiability of the off-equilibrium localthe problem is poor identifiability. These problems are ampli-
models and because off-equilibrium identification data are rdied when there is very sparse information about the response
atively sparse. O to perturbations in transient operating regimes available in the
Identification of the parameters of (26), using for example&lata, which is a very typical situation in real-world applications.
a standard least squares criterion and some experimental dakes reasons for this are diverse: The system typically spends
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little time in transient conditions compared to stationary oper .|
ating conditions. Further, in transient regions, the trend compt o=}
nent in the data will have larger amplitude and, therefore, mor B
influence in the identification criterion than perturbation com-2.. | M
ponents. Furthermore, in such regions, operational constrairgw v T R
often limit the amount of perturbations and the time the syster

should spend in transient states. Hence, our practical experier .,
is that carefully planned experiments are required inordertog -
even a modest amount of perturbation information in transier
operating regimes. Furthermore, prior knowledge shouldbea .| |
plied as far as possible in the identification in order to mak
it more robust. Next, we consider experiment design and colg ™[ |
tinue with a discussion of various identification methods tha® .| | . -
can help improve the interpretability and accuracy of the ider
tified model.

“
IS

o N & o6 ©®
T

o)

1000
time (2)

A. Experiment Design

In nonlinear system identification, both the amplitude and fre
quency contents of the input signals are of major importanci
For identifying Takagi—Sugeno fuzzy models containing bott
equilibrium and off-equilibrium local affine models, it is our ex-
perience that input signals designed according to the followin
guidelines are useful if the model is intended for control desigr

» The system should be brought through a sequence of eqt
libria that includes the equilibria of the local models. At
each equilibrium the system should be excited by supe
positioned small-amplitude PRBS signals. The PRBS sic — | i
nals should have a frequency content that covers an il G e
terval from the inverse rise time to above the bandwidth o
of the closed-loop system. Fig. 9. Identification data sequence 2.

» Several transient trajectories should be generated for each ] ) o
off-equilibrium local model. The corresponding input Sigg:loseness of the local affine models to the linearization of the
nals should contain both large-amplitude steps and pert§¥Stem- -
bations in order to determine both the trend and pertyr- . . .
bation dynamics of the off-equilibrium local models. The™ Constrained and Regularized Identification
frequency contents should typically be higher compared Poor identifiability leads to an ill-conditioned identification
to the frequency content of the equilibrium data to preveptroblem where certain parameters (or combinations of parame-
the system from settling at some equilibrium. ters) can be chosen more or less arbitrarily. Constrained and reg-

Of course, there are practical constraints that will often limit tilarized system identification is a general method for improving
number of transitions, length of the experiment, frequency col€ robustness and accuracy of the system identification algo-
tent, and amplitudes. The requirements in terms of accuracy BfM when the model structure is poorly identifiable ([11], [12],
the off-equilibrium local models will depend strongly on the agl: [32]). The general idea is to explicitly constrain the model
plication. Sometimes, equilibrium local models can be extrapB2rameters using hard or soft constraints such that the model

lated into transient operating regions without significant loss & consistent with some prior knowledge or desired properties.
accuracy. Regularization (which can be seen as soft constraints) may be

Example: Longitudinal Vehicle Dynamics, Improved Exper|MPlemented by adding a penalty function to the least squares
ment Design: The data sequence 2, shown in Fig. 9, is gene<1:[iterion. This penalty will attract the model parameters toward

ated according to the above guidelines. The first 1000 sampR&N€ Set o& priori desirable parameters.. _ _
of this data sequence is identical to data sequence 1, which ex! 1S assumed that the identification is carried out using
citates the equilibrium behavior of the system. The second 10@f§Crete-time input/output data and a discrete-time dynamic
samples contains a high-frequency large-amplitude input sig@kagdi-Sugeno fuzzy model that admits the one-step ahead
that will take the system through its transient states. predictor to be written in the form

Identification of the Takagi—Sugeno fuzzy model, with ex- Gk |k — 1) = glo(k — 1),6) (59)
actly the same structure as the models considered above, is how
carried out using the least squares algorithm and this data aered is a vector that contains the local model parameters
guence. The results are shown in Fig. 8. Clearly, these depi¢sa- - -, 6 ande(k) is an information vector that may depend
more accurate model, both in terms of global accuracy and the the current and past inputs and outputs. Note that similar to
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the example above, one may transform (at least approximataty@mbership functions defining the fuzzy sets alongkitiedi-

a discrete-time model into a continuous-time state-space modeé&nsion.

which is being assumed in previous sections of this paper. AlsoCombining the approximate Tikhonov stabilizer with the
note that only in special cases (e.g., when all states are mieast squares criterion and the constraints leads to a problem of
sured or the state space realization is chosen in a convenimimizing
way) it is natural to formulate the one-step ahead predictor (59 JR—
as g)linear function of the parameter veastpl;dmittingpa simple( ) V() = Vis(0) + S (9) (64)

least squares normal solution. In the general case, the predigigisject to the constraints (61) and (62). The scalar regularization
might contain a state observer that whose parameters will tygarametery > 0 defines the weight on the penalty function
ically depend in a nonlinear manner on the model parametetsiative to the least squares penalty on the prediction error. This

e.g., [21]. parameter can be selected on the basis of both subjective and
The common least squares identification method will minebjective criteria. Further details on some objective statistical
mize the least squares criterion criteria can be found in [11].

Example: Longitudinal Vehicle Dynamics, Constrained Iden-
tification: Suppose we restrict the gains of the local models
to be nonnegative, i.eB; > 0, and the poles of the local
models to be nonpositive, i.e4; < 0 and use the constrained
wherel is the length of the data sequence. Constraints are ntgast squared identification algorithm with data sequence 1.

mally added in terms of a set of linear equalities and inequaliti&gjuations (53)—(55) are used to convert between continuous

l
Vis(6) = Y [lu(k) — gle(k —1),0)|? (60)
k=1

that incorporates some form of prior knowledge and discrete time model parameterizations and a quadratic
programming algorithm is applied to compute the estimate. The
HY=h (61) results are shown in Fig. 8. The equilibrium local models are

Ko<k (62) almost unchanged since their poles and gains were consistent

with the constraints also in the unconstrained identification
whereH, K, h, andk are constant matrices and vectors. Whegxperiment. The off-equilibrium local models are now more
the predictor (59) is a linear function of the parametnsiini- accurate, which one should expect due to the introduction
mizing the least squares criterion (60) subject to the constrainfsprior knowledge that was violated in the unconstrained

(61) and (62) is a convex optimization problem that can heentification experiment. O
solved using quadratic programming [23]. In the general case Example: Longitudinal Vehicle Dynamics, Regulariza-
it is a nonlinear programming problem. tion: Next, we apply the approximate Tikhonov stabilizer (63)

We have found that an approximate Tikhonov regularizatiagithout any constraints. The identification results using data
stabilizer may be useful for improving both the accuracy argkéquence 1 are shown in Fig. 8. The equilibrium local models
interpretability of the identified local models. This stabilizeare almost unchanged since they were easily identifiable also
(penalty function) is given by [10] with the pure least squares algorithm. The off-equilibrium local

N i1 mEgels are B?w somev;hat (;nore haccuraltg, even though the
approx; o\ _ T Tikhonov stabilizer was based on the invalid prior assumption
QIO =D D (0= 0) Wi (6= 6)pi; (63) that the local off-equilibrium models were similar to neigh-
boring local equilibrium models. In this particular example,
wherep; ; is a measure of how close the fuzzy sets with indicdbis assumption is clearly violated (notice that the gain and pole
i andj are. Hencep; ; is close to one for a neighboring pairare significantly larger near the equilibrium manifold than in
of fuzzy sets and close to zero for a distant pair of fuzzy setgansient regions). The reason why better results are achieved
The matrixW;; is a positive definite diagonal weighting ma-s that the increased bias introduced by the incorrect prior
trix that ensures that the different local model parameters haagsumption is less than the reduction in variance that always
sensible relative weights in the stabilizer. The interpretation @Ecompanies the regularization. A study of bias and variance as
(63) is that the local model parametégsandé; corresponding a result of regularization can be found in [12] (see also [3T]).
to neighboring regions are expected to be similar, while thereThe structure identification problem becomes somewhat
should not be any such constraint on local model parameteisre complicated when constraints and regularization are
of regions that are far apart. The definition of the weightingitroduced. However, well-known criteria such as the final
factor p; ; should depend on the parameterization of the merprediction error criterion (FPE) have been generalized to these
bership functions for the fuzzy sets. Let us give an example edses [11], [18].
how it may be defined, using tensor product Gaussian member-

i=1 j=1

ship functions C. Locally Weighted Identification
N The least squares objective (60) explicitly aims at deter-
—ex _}Z (cip — cjn)’ mining the parameters of the local models that gives the
Pig = 5P\ Ty ~ ik best global model prediction. As we have already discussed,

this objective will often be in conflict with the objective of
wherec; = (c; 1, -+, cin) IS the center point of the fuzzy setdetermining local models that are accurate linearizations of the
with indexi ando; j is the average “standard deviation” of thenonlinear system. This motivates the use of parametric locally
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weighted identification where this is the explicit objective ofo dynamic linearization. Differences between local constants,
the identification [24], [25]. Individual criteria are defined forlinear and affine models are pointed out, the effect of mini-
each local model mizing the number of variables is the premise of the fuzzy rules
. are investigated and the role of the membership functions are
; studied. Finally, suggestions are presented, that potentially al-
Viwes(6i) = Z ly(k) = giloilk = 1), 6)]Pwi(2(k — 1) leviate or redu>(l:e sggme of these r?roblems througE suitableyex-
k=1 (65) periment design and use of robust identification methods. In
particular, it is shown how constrained and regularized identi-

. - . . fication methods may improve the interpretability of the con-
where z(k) is a vector containing the premise variables. The . L
uent local models as local linearizations. Furthermore, lo-

data are weighted according to their relevance to the local moagi . : e .
cally weighted least squares identification is shown to explic-

V.V'th |nde>_<z and this relevance is measureq by the mterpolﬁé/ address the tradeoff between local and global accuracy of
tion functionw;. The one-step ahead predictor based on ﬂt1h

local model with index; is assumed to be given in the form € Takag|—$uge_no fuzzy model. .
9k |k — 1;4) = gi(ei(k — 1),6:). The resulting identifica- The practical importance of the problems is illustrated by

tion problem is linear in the parameters and can be solved & simple examples. Still, one may expect that the problems

plicitly if the predictorg; is linear with respect td;. The im- related to interpretability and identifiability will be much more

plicit regularization effect of locally weighted least squares hggonounced when more complex higher order and muiltivariable

been studied in detail in [25]. Notice that locally weighted |ea§lx_?hmples are (;on5|de|tred. t onl | tto d .
squares can be combined with explicit regularization and ¢ K € presen fresu S a(rjel nob only re elvand 0 q 3I/nam|c
straints, still leading to a convex quadratic program for the Ioggf‘ ag!—Sug_eno uzzy mMogels, ut aiso related model repre-
parametric identification problem with a linearly parameterize%fantatlon with constituent local mode!s, S.UCh as local mode
predictor. In [38] it was suggested to combine the local criter etworks (e.g., [13], [25]) and piecewise linear models (e.g.,
(65) with the global criterion (60) in order to address the trade D-
between local accuracy and global performance.

Example: Longitudinal Vehicle Dynamics, Locally Weighted
Identification: Parameter identification results using locally
weighted least squares are shown in Fig. 8 for the cases when
data sequences 1 and 2 are applied. It can be seen that the inteéfrom (13) and the property th3t, w;(x,u) = 1 for all
polated pole/gain/trend of the identified local models are clogg, «) € X x U it follows that:
approximations to the linearization of the nonlinear system,
even with data sequence 1 in the off-equilibrium regions. TheAéQ(t)
reduction in global prediction performance compared to the _ 52@) ~ do(t) (66)
global least squares is not significant. O N

Recently, there has been some interest in the use of locally _ N _
weighted least squares identification [6] to determine local ;f(x“uz)wz(&(t)’u(t)) Fo(t), uo(t))
linear dynamic models ([3], [33]). In these approaches the local N
models are determined online at each sample and there is no Z(A(afi,uz‘)(&(t) — ) + B, ) (u(t) — w;))
underlying nonlinear model structure. On the other hand, it has P
also been proposed to use nonparametric offline identification X w; (E2(t), u(t)) (67)
methods based on a probabilistic multivariate Gaussian process _ F(Ea(8), u(®)) = F(zo(t), uo(t))

N

APPENDIX A
PROOF OFTHEOREM 1

.

prior model of the underlying nonlinear function [26]. This
approach has a high computational load, but appears to be V(6o () — . ult
very robust with respect to poor identifiability. Local affine + ) (Fl@i w)wi(Ca(t), u(t)) — F(&(t), u(t)))
models, which are close to linearizations can easily be derived

N
analytically from the nonparametric model, with analytic +Z(A(a:7¢,u7;)(£2(t)—xi)+B($7¢,u7¢)(U(t)—u7¢))
estimates of their variance. =

=1

x w; (E2(8), u(t)) (68)
V. CONCLUSIONS = Alxo(t), uo(t))Aa(t) + B(wo(t), uo(t)) Au(t)
We have illustrated fundamental interpretability and identi- N
fiability limitations of dynamic Takagi—Sugeno fuzzy models + Z(f(xiv“i) — f(&(t), u(t)))wi(&2(t), u(t))
with constituent affine local models. The major problem is that =1
in transient operating regimes (where the nonlinear system has
no equilibrium points) the local affine model is poorly iden- + E(A(xi’“i)(&(t) = i) + Blwi, i) (u(t) — )
tifiable. Further, practical limitations exist that restrict the de- =
sign of informative experiments for many systems. A theoret- X wi(a(t), u(t)) + h.o.t. (69)
ical understanding of the problems is developed by relating the = A(zo(t), uo()) A& (t) + B(wo(t), uo(t)) Au(t)
dynamic Takagi—Sugeno fuzzy model with local affine models + e(&a(t), ult), xo(t), uo(t)) (70)

N
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where

e(&a(t), u(t), zo(t), uo(t))

= Z(f(%uz‘) — J(&(t), u(®))wi(&2(t), w(t))

N
Y (Al wi) (€o(t) = wi) + Blai, wi) (u(t) — w;))
=1

x w;(E2(t), u(t)) + h.ot.. (71)

Application of the triangle inequality on (71) leads to

5(52(t)aru(t)7$0(t)vUo(t))
< Z | f (@i, ui) — F(&(2), u(®))||2wi(&2(2), u(t))

+ Z | A, ui )(2(t) — @) + Bl wi)(u(t) — w)|

x w;(€a(t), u(t)) + ho. (72)

For the point(x;,«;) € Z° that is closest tg,, «) it holds that
w;(&2,%) > 0 and for points(z;,u;) € Z° that are more than
a distanced away from(&z, u) it holds thatw; (&2, u) = 0, i.e.,
w; (€2, 1) = Oif ||(€2,u) — (x;,u;)||2 > 6. Since there is always

a(a:i
only
Due

,u;) € Z° within a distanceé from any (&2, u) € X x U,
terms with||(£2, 1) — (2, 4)|]2 < & contributes to (72).
to the Lipschitz property

||€(£2,U,,$7j,u7j)||2 < L6+ Lé+ 0(62) =2L6+ 0(62) (73)

and

(1]

(2]
(3]
4]
(5]

(6]
(7]

(8]
El

(10]

the result follows.
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