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REGULAR ARTICLE

Understanding the role of linguistic distributional knowledge in cognition*
Cai Wingfield a and Louise Connell a,b

aDepartment of Psychology, Lancaster University, Lancaster, UK; bDepartment of Psychology, Maynooth University, Maynooth, Ireland

ABSTRACT
The distributional pattern of words in language forms the basis of linguistic distributional
knowledge and contributes to conceptual processing, yet many questions remain regarding its
role in cognition. We propose that corpus-based linguistic distributional models can represent a
cognitively plausible approach to understanding linguistic distributional knowledge when
assumed to represent an essential component of semantics, when trained on corpora
representative of human language experience, and when they capture the diverse distributional
relations that are useful to cognition. Using an extensive set of cognitive tasks that vary in the
complexity of conceptual processing required, we systematically evaluate a wide range of
model families, corpora, and parameters, and demonstrate that there is no one-size-fits-all
approach for how linguistic distributional knowledge is used across cognition. Rather, linguistic
distributional knowledge is a rich source of information about the world that can be accessed
flexibly according to the conceptual complexity of the task at hand.
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Introduction

Linguistic distributional knowledge emerges from our
experience with language. Humans are continually
exposed to a rich environment of natural language
and, through this exposure, learn patterns of linguistic
distributional information; that is, statistical regularities
in the occurrences of different words in different
contexts (e.g. Hall et al., 2018; Lazaridou et al., 2017;
Wonnacott et al., 2008). Famously summarised by
Firth (1957, p. 179) as “You shall know a word by the
company it keeps”, these regularities form the basis
of the distributional hypothesis: words with similar
meanings tend to appear in similar contexts. For
instance, the word cat tends to appear in contexts con-
cerning pet, fur, collar, purring, claws, and so on. The
word kitten tends to appear in many of the same con-
texts, and the similarity of cat and kitten can thus be
estimated by the similarity of their contexts. Linguistic
distributional knowledge therefore represents concep-
tual knowledge as statistical patterns of how words are
distributed in relation to one another (Barsalou et al.,
2008; Connell, 2019; Connell & Lynott, 2014; Louwerse,
2011; Louwerse & Jeuniaux, 2010; Vigliocco et al., 2009),
and empirical research shows that it is powerful
enough to support a variety of conceptual processes

(e.g. Connell & Lynott, 2013; Lenci et al., 2018; Louwerse
& Jeuniaux, 2008).

Research on linguistic distributional models (LDMs)1

has developed computational means of capturing and
approximating word meaning from statistical analyses
of associations between words and their contexts in
large corpora of text. Where the corpora are reasonably
representative of a natural linguistic environment, the
associations learned by an LDM can be considered to
approximate those which could be learned by a
person exposed to that environment. While specific
LDMs differ in their learning mechanisms, their
common goal of constructing distributional represen-
tations of meaning has become increasingly important
to the cognitive sciences since the mid 1990s. At a
theoretical level, the potential ability to extract
complex meaning from a limited set of words has led
some researchers to suggest that LDMs could go
some way to solving Plato’s problem (i.e. poverty of
the stimulus: Landauer & Dumais, 1997). Indeed, early
LDMs such as Latent Semantic Analysis (LSA: Landauer
& Dumais, 1997) and the Hyperspace Analog to
Language (HAL: Lund & Burgess, 1996) were able to
approximate human performance in an impressive set
of tasks, such as TOEFL synonym matching (Landauer
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& Dumais, 1997), semantic priming (Lund et al., 1995),
and category typicality rating (Connell & Ramscar,
2001). However, the limitations of LDMs soon
emerged (e.g. Glenberg & Robertson, 2000; Perfetti,
1998). For instance, LDMs have difficulty inducing
novel actions for objects (Glenberg & Robertson,
2000), at least in part because the distributional pat-
terns in language are limited to the kinds of human
experience about which people have talked or written
(Connell, 2019). Nonetheless, the ability of LDMs to
capture many aspects of meaning should not be under-
estimated, and researchers from across the cognitive
sciences have continued to debate the extent to
which distributional information plays a role in
human cognitive processing (e.g. Andrews et al.,
2014; Connell & Lynott, 2014; Dove, 2014; Günther
et al., 2019; Kumar, 2021; Lenci, 2018; Louwerse, 2011;
Lupyan & Lewis, 2019; McNamara, 2011).

In the present paper, we review the role of linguistic
distributional knowledge in cognition and examine
how LDMs can contribute to our understanding of this
important area. We first discuss the cognitive plausibility
of LDMs as a general approach to modelling human cog-
nition, from the perspective of the symbol grounding
problem, the representativeness of training corpora in
terms of human language experience, and the nature
of conceptual relations captured by LDMs. We then
turn to specific approaches of how LDMs model linguis-
tic distributional knowledge using different model
families and corpora that vary in size and quality, and
discuss how the largely parallel literatures in distribu-
tional semantics and linguistic–simulation research
have led to different assumptions regarding how linguis-
tic distributional knowledge is used in cognition. In the
remainder of the paper, we report the most comprehen-
sive investigation to date of linguistic distributional
knowledge in cognition. We construct a large set of
LDMs (540 in total) that vary systematically across
model families, training corpora, and parameters, and
evaluate their ability to capture human performance
across a broad set of cognitive tasks, from conceptually
simple tasks that rely on a single paradigmatic relation
to conceptually complex tasks that require sophisticated
processing of a wide variety of semantic relations, par-
ticularly of the abstracted bag-of-words type. Overall,
we find that LDMs successfully model human behaviour
in all tasks but that the optimal LDM varies as the con-
ceptual complexity increases, indicating that there is
no one-size-fits-all approach for how linguistic distribu-
tional knowledge is used across cognition. Rather, the
data support a task-dependent, flexible approach to
the use of linguistic distributional knowledge in cogni-
tion. We discuss the cross-disciplinary theoretical and

methodological implications of viewing linguistic distri-
butional knowledge as a rich source of information
about the world that can be accessed flexibly according
to cognitive need.

Cognitive plausibility of linguistic distributional
models

The cognitive plausibility of LDMs has been a concern
since their inception and continues to be a matter of
debate (Barsalou, 2017; Boleda & Herbelot, 2016;
Glenberg & Robertson, 2000; Günther et al., 2019;
Perfetti, 1998). Some critics have targeted low-level
implementational details of specific models, such as
the use of supervised learning in Mikolov, Chen, et al.’s
(2013) Word2vec models (e.g. Huebner & Willits, 2018;
cf. Hollis, 2017). For our present purposes, however, we
focus in this section on issues that are general to LDMs
as an approach to modelling human cognition, namely
symbol grounding, choice of training corpus, and
nature of captured distributional relations.

Symbol grounding
First is the symbol grounding problem. The ungrounded
nature of representations within LDMs makes them
theoretically problematic as a sole account of meaning.
When words are connected only to other words, their
grasp on semantics quickly runs into the artificial circu-
larity of Searle’s (1980) Chinese room (see also Harnad,
1990), and this problem remains a perennial point of dis-
cussion in theoretical reviews of the linguistic distribu-
tional approach (e.g. Emerson, 2020; Glenberg &
Robertson, 2000; Kumar, 2021). However, according to
linguistic–simulation theories of concepts and cognition,
linguistic distributional knowledge is explicitly grounded
in simulations of perceptual and action experience.
These theories propose that human conceptual knowl-
edge is represented partly as associative patterns of
how words are distributed in relation to one another
and partly as an embodied simulation (i.e. partial
replay) of sensorimotor experience, and include
accounts such as language as situated simulation
(LASS: Barsalou et al., 2008), the symbol interdepen-
dency hypothesis (Louwerse, 2011; Louwerse & Jeu-
niaux, 2008), and the linguistic shortcut hypothesis
(Connell, 2019; Connell & Lynott, 2014), amongst
others (e.g. Lynott & Connell, 2010; Vigliocco et al.,
2009). Critically, when words are connected to sensori-
motor (sometimes called embodied) representations as
well as to other words, they are not subject to the
symbol grounding problem. For example, linguistic dis-
tributional knowledge of dog may include words such
as collar, tail, cat, walkies, etc., and each of these words
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is grounded in sensorimotor information (e.g. visual,
auditory, hand action) in its own right. Indeed, some lin-
guistic–simulation accounts argue that sensorimotor
experience of a referent concept is not necessary for
grounding, and that distributional connections
between words can help to infer grounded represen-
tations where they are lacking (Louwerse, 2011; see
also Johns & Jones, 2012). Other work in computational
cognitive modelling has aimed to create grounded
models of conceptual representation by incorporating
both forms of information (e.g. Banks et al., 2021; Bruni
et al., 2014; Lazaridou et al., 2017; Riordan & Jones, 2011).

The implication of this theoretical perspective is that
linguistic distributional knowledge cannot be expected
to account for all conceptual knowledge, and therefore
LDMs – as computational instantiations of linguistic dis-
tributional knowledge – cannot be expected to model all
of semantics. Nonetheless, linguistic distributional
knowledge can assume some of the burden of concep-
tual processing because, while every word is ultimately
grounded in sensorimotor information, it does not
have to be grounded every time it is processed
(Connell, 2019; Louwerse, 2011). In that sense, LDMs
are cognitively plausible if they are assumed to model
an essential component of semantics that is grounded
in a complementary sensorimotor component.

Training corpus
The second issue is that of the size and content of train-
ing corpora in relation to human language experience.
Corpus size is important to the cognitive plausibility of
LDMs, because if a model can only approximate
human behaviour using a corpus that is orders of mag-
nitude larger than that accumulated in a human lifetime
of language experience, then it is not a plausible model
of how linguistic distributional knowledge works in
humans (cf. Hollis, 2017). The corpora underlying suc-
cessful LDMs vary enormously in size, from 11 million
words in the TASA corpus used by Latent Semantic
Analysis (LSA: Landauer & Dumais, 1997) to one trillion
words in the Google corpus used in Web 1T n-grams
(Brants & Franz, 2006). But how many words has a
typical adult accumulated in a lifetime of language
experience? People in modern, literate societies tend
to experience language through spoken interactions
with other people, broadcast media such as television,
and reading written texts. Brysbaert et al. (2016) esti-
mate spoken language experience from social inter-
actions at a total of 11.69 million tokens per year
(based on recoded data from Mehl et al., 2007). Watch-
ing television is another important form of spoken
language experience, which Brysbaert and colleagues
estimate at an upper bound of 27.26 million words per

year, but this upper bound is based on a rather implau-
sible 20 h a day of non-stop viewing (subtitle corpus
data from van Heuven et al., 2014). Reading text clocks
up written language experience even more quickly
than spoken language experience, with an estimate of
105 million words per year at the upper bound,
though this again is based on a rather implausible 16 h
a day of rapid reading (Brysbaert et al.’s estimates of
reading rates from e.g. Carver, 1989).

Using Brysbaert et al.’s collated figures, let us imagine
a person whose average day contains a typical amount
of social interactions (11.69 million words/year), plus
2 h of watching television (2.73 million words/year),
and 1 h of reading any form of text (6.57 million
words/year). This person’s language experience, based
on a reasonable approximation of human activity,
comes to approximately 21 million words per year. A
20-year old (assuming this pattern from age 5) would
have language experience of 315 million words. By age
60, it would have increased to 1.15 billion words.
These estimates are of course highly variable.
Someone who never reads and watches television for
one extra hour each day will accumulate language
experience (15.8 million words/year) at approximately
half the rate of someone who never watches television
and instead reads for an extra two hours each day
(31.4 million words/year). This relatively minor variation
in behaviour would lead to language experience of
237 million words for a 20-year-old television fan, but
1.73 billion words for a keen 60-year-old reader.

In short, these estimates suggest that the cumulative
total language experience of an English-speaking adult
appears to range legitimately from a couple of
hundred million words up to a couple of billion words.
Any LDMs that use corpora in this size range are cogni-
tively plausible in their assumed extent of language
experience, but small corpora of tens of millions of
words, and large corpora of tens of billions to trillions
of words, are implausible.

However, the content of language experience is
another matter. Very large corpora comprising billions
of words tend to be based on uncorrected text scraped
from the web (e.g. UKWAC has 2 billion words: Baroni
et al., 2009; Google News corpus has up to 100 billion
words: Mikolov, Chen, et al., 2013; Common Crawl
corpus expands monthly but has been used up to 840
billion words: Pennington et al., 2014). As well as contain-
ing relatively high levels of noise (i.e. typos and other
non-word tokens: Baroni et al., 2009), the very nature of
web-scraped corpora will bear little resemblance to the
language experience of a human who accumulates up
to 2 billion words over decades of social interactions,
consuming media, and reading text.
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By contrast, high-quality, professionally curated
corpora, that aim to bring together a representative col-
lection of spoken and written English in a given dialect,
tend to be a lot smaller. For instance, the British National
Corpus (BNC: BNC Consortium, 2007) contains approxi-
mately 10% spoken content (i.e. mostly spontaneous
conversation from a demographically balanced sample
of speakers, with some formal spoken contexts such as
lectures, news commentaries, radio show transcripts,
and business/committee meetings) and 90% written
content (i.e. texts from a wide range of ages and con-
texts, such as children’s essays, leaflets, brochures,
magazines, newspapers, fiction and nonfiction books,
and television scripts). Its content is high-quality cor-
rected text that is representative of British English, and
is cognitively plausible in its resemblance to the
content of human language experience, but, at 100
million words, its size is under the lower bound of
adult language experience.

A third group of corpora has become popular in
recent years, based on the subtitling of television and
film, that tends to lie in between the web-scraped and
professional corpora in terms of both size and content.
Typically, these corpora contain transcripts of both
unscripted and scripted speech, from television shows
and movies across a range of genres directed at both
children and adults. Subtitle corpora generated from
automated or amateur transcriptions are large but
prone to error (e.g. the English portion of OpenSubti-
tles-2016 has 2.5 billion words: Lison & Tiedemann,
2016, but includes machine translations with grammati-
cal and translation errors, Lison & Dogruöz, 2018), while
those based on professional transcriptions for DVDs or
public broadcasters are smaller but higher quality (e.g.
the SUBTLEX-UK corpus is based on 200 million words
of corrected subtitles for the British Broadcasting Cor-
poration: van Heuven et al., 2014).

In summary, there exists a certain tension between
cognitively plausible content and cognitively plausible
size of available corpora for LDMs. Professional, repre-
sentative corpora that balance spoken (both social and
media) and written sources are relatively small but com-
prise the most plausible content, followed by medium-
sized subtitle corpora that contain a representative
range of spoken media sources, while very large web-
scraped corpora that comprise unrepresentative
written sources are the least plausible. Nonetheless,
there is some evidence that differences in corpus
content become less important once corpus size is
large enough, although it may depend on the particular
task used to evaluate performance (e.g. Bullinaria & Levy,
2012). It therefore remains an open question which form
of training corpus (from relatively small but high quality

to large but noisy) can best approximate human
language experience in an LDM, and whether the
efficacy of this approximation generalises across tasks
and models.

Nature of distributional relations
Third, and final, is the nature of distributional relations
captured by LDMs. From a theoretical perspective,
LDMs are generally assumed to approximate human
experience of linguistic distributional knowledge rather
than to model its learning mechanisms literally; that is,
they address Marr’s (1982; see also Bechtel & Shagrir,
2015) computational and to some extent algorithmic
level of cognitive modelling, but not the implementa-
tional level. As an approximation, the forms of linguistic
distributional knowledge captured by LDMs include syn-
tagmatic and paradigmatic relations (de Saussure, 1916;
Hjelmslev, 1961), both of which are plausibly useful to
human cognition (e.g. Murphy, 2003; Nelson, 1977;
Sloutsky et al., 2017), as well as more generalised non-
syntagmatic, non-paradigmatic relations that we
discuss below.2

Syntagmatic relations are built from words appearing
in complementary syntactic positions within the same
sentential structure. For example, in the sentence she
has blue eyes, the words blue and eyes are syntagmati-
cally related due to the syntactic positions they occupy
in relation to one another (i.e. adjective modifies
noun). Such relations can be learned from a single occur-
rence, but more generally, if blue usually co-occurs in
this syntactic role with eyes across language experience,
then one could expect the word blue to evoke the word
eyes on a syntagmatic basis. Syntagmatic relationships of
this sort reflect a range of semantic information, includ-
ing concept properties via adjectives (e.g. blue–eyes,
happy–childhood), constituent parts via possessives
(e.g. dog–tail, tractor–wheels), and thematic relationships
such as agent actions (e.g. cat–miaow, customer–pay),
object functions (throw–ball, sit–chair), and thematic
agent-patient roles (e.g. dog–ball, boat–river) via verb
structure.

Paradigmatic relations, on the other hand, are built
from words appearing in the same syntactic positions
across similar sentential contexts, even if they never
appear together. For instance, in the additional sentence
he has brown eyes, the words blue and brown are para-
digmatically related because each word independently
occurs in the same syntactic position within the shared
context of eyes. Such relations require multiple
exposures to learn, but in general, if blue and brown
both co-occur in this syntactic role in relation to eyes
across language experience, then one could expect the
word blue to evoke the word brown on a paradigmatic
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basis. Paradigmatic relations therefore capture similarity
of meaning and syntactic substitutability in a way that
syntagmatic relations do not, and reflect semantic infor-
mation that includes synonyms (e.g. blue–azure, run–
sprint), antonyms (e.g. hot–cold, rise–fall), shared cat-
egories (e.g. dog–cat, happy–angry), and taxonomic
classes (e.g. dog–animal, chair–furniture).

With a few exceptions (e.g. Jones & Mewhort, 2007;
Padó & Lapata, 2007), LDMs tend to ignore syntactic
structure entirely and concentrate instead on the unor-
dered presence of words within a particular section of
text (i.e. the “bag of words” approach: see Lapesa &
Evert, 2017, for discussion). In this way, LDMs can
capture other forms of linguistic distributional relations
that do not rely on syntactic role and hence cannot be
neatly fit into syntagmatic or paradigmatic relations.
We term these relations, which are learned regardless
of syntax, bag-of-words relations. For example, words
that co-occur across sentence boundaries do not
occupy syntactic positions in relation to one other, but
the presence of these words in sequential sentences
nonetheless makes it likely that they are broadly
related. The sentences He stubbed his toe. “Ow!”, he
yelped. will not connect stubbed–ow or toe–ow in
either a syntagmatic or paradigmatic sense, but an
LDM that ignores sentence boundaries will pick up the
relationship on the basis of their co-occurrence.
Another case comes from words that frequently
appear in the same context but across a wide variety
of syntactic positions: strictly, each syntactic role
should create a separate syntagmatic and/or paradig-
matic relation, which in turn makes it very difficult to
generalise a strong relationship across instances. For
instance, the words Paris and France are clearly related
but appear in a wide variety of syntactic roles in relation
to one other: The capital of France is Paris; She lives in
Paris, France; Paris is the largest city in France; Rural
France and Paris are very different; They played at Stade
de France in Paris. An LDM that ignores syntax will
count all these co-occurrences in the same way and gen-
eralise to form a strong Paris–France relationship. It
remains unclear to what extent these bag-of-words
relations provide systematically important semantic
information, but since they appear to capture situational
and thematic context, and are often spontaneously pro-
duced by participants in production tasks (where they
tend to be coded as temporal or general associative
relations: Wu & Barsalou, 2009; or remain as unclassified
thematic relations: Jouravlev & McRae, 2016), it is plaus-
ible that they are useful in conceptual processing (e.g.
Paris evokes France; stubbed evokes ow).

Notably, the three distributional relations vary in their
complexity and how easy they are to process. Semantic

relations that can be learned paradigmatically (e.g. categ-
orical relations, synonyms) tend to be regarded as rela-
tively simple and low-level compared to relations that
are learned syntagmatically (e.g. object properties, the-
matic roles: Chaffin & Hermann, 1987; Mudrik et al.,
2014). For instance, paradigmatic relations drive the
majority of responses in free association tasks (Burke &
Peters, 1986; Cramer, 1968), particularly the first associ-
ates that come to mind (De Deyne & Storms, 2008). Syn-
tagmatic relations are still important in free association,
but are dispreferred, particularly for nouns (Burke &
Peters, 1986; De Deyne & Storms, 2008), which represent
the most frequent word class in English (e.g. van Heuven
et al., 2014). Such findings suggest that paradigmatically
learned relations (e.g. synonyms error–mistake; shared
categories cat–dog; taxonomic classes cat–animal) are
typically simpler and easier to process than syntagmati-
cally learned relations (e.g. object properties honey–
sweet; function bed–sleeping; agent action cat–miaow).
Bag-of-words relations appear to be more complex
again, in that they represent a form of semantic relation
that cannot be learned either paradigmatically or syntag-
matically but rather serve to link together concepts in an
abstracted manner outside syntactic roles. For example,
the concept pairs apple–gravity, ship–ahoy, and
stubbed–ow are each related in someway, but the relation
does not emerge from the syntactic structures that
produce syntagmatic and paradigmatic relations; rather,
it emerges from high-level thematic, situational, or
other nebulous relations. As well as such differences in
complexity at the level of the individual relation, the
way in which different semantic relations are combined
together also affects complexity at the collective level of
the discourse or stimulus set. Processing a particular
semantic relation facilitates processing other stimuli that
use the same relation (i.e. relation priming: Estes &
Jones, 2006; Hristova, 2009), which means that a
sequence of diverse relations (e.g. superordinate category
cat–mammal, synonym error–mistake, function bed–sleep-
ing) will be overall more conceptually complex than a
sequence of repeated relations (e.g. synonyms blue–
azure, error–mistake, run–sprint). Thus, differential reliance
on paradigmatic, syntagmatic, and/or bag-of-words
relations allows one to estimate how conceptually
complex a cognitive task might be; we return to this
point later with reference to the current study.

LDMs are therefore cognitively plausible in how they
approximate human linguistic distributional knowledge,
at least in terms of capturing syntagmatic, paradigmatic,
and bag-of-words relations that vary in conceptual com-
plexity. Nonetheless, different types of LDM capture
these relations to differing extents, as we discuss in
the next section, which means that not all LDMs are
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necessarily equal in their approximation of linguistic dis-
tributional knowledge.

Approaches to modelling linguistic distributional
knowledge

In recent years, research on LDMs has tended to fall into
two broad camps that have pursued parallel but largely
distinct areas of investigation: distributional semantics
of text processing and linguistic–simulation accounts
of concepts and cognition.

Distributional semantics research has developed
directly from the distributional hypothesis in linguistics
(Firth, 1957; Harris, 1954) and is currently concentrated
in the fields of computational/corpus linguistics and
machine learning, with applications in areas such as
information retrieval, natural language processing, and
data mining. A key feature of this work has been the con-
tinuous development of ever more sophisticated
methods of modelling distributional information with a
view to enhancing the state-of-the-art LDM performance
in a given domain (i.e. which model does best across sys-
tematic comparisons: Baroni et al., 2014; Bullinaria &
Levy, 2007, 2012; Kiela & Clark, 2014). Systematic com-
parisons of LDMs in this area have tended to evaluate
models based on their performance in benchmarking
tasks that focus on paradigmatic relations, such as
synonym and analogy detection, similarity and related-
ness judgements, and semantic and syntactic categoris-
ation (e.g. Bullinaria & Levy, 2007; Lapesa & Evert, 2014).
Performance is typically evaluated by comparing model
data with objectively correct answers (e.g. multiple
choice scoring in a vocabulary test) or with explicit
human responses (e.g. ratings on a Likert scale). For
instance, when tasked with selecting which out of
bottle and cask is a better synonym for barrel, an LDM
might select the candidate whose linguistic contexts
most closely resemble those of barrel, indicating contex-
tual substitutability (i.e. one word can substitute for
another in many contexts when their meanings are
similar). The best LDM would be the one which could
most reliably select the correct response for any such
task. Similarly, an LDM tasked with scoring the related-
ness of word pairs such as boat:river and boat:cat can
quantify the extent to which the words in each pair
share similar linguistic contexts. The best LDM for this
task would be one that can most successfully distinguish
related from unrelated word pairs in a way that mirrors
human ratings of semantic relatedness.

Recent work in distributional semantics strongly
favours predict models and very large corpora. Predict
models, also known as word embedding models,3 are
neural networks that are trained to predict a given

word from its context (or the context from a given
word, as the case may be), and have gained acceptance
as the state of the art in distributional semantics by sig-
nificantly outperforming alternatives in systematic com-
parisons (e.g. Baroni et al., 2014; Mikolov, Chen, et al.,
2013; Pereira et al., 2016; Zhang & LeCun, 2015; but
see also Levy & Goldberg, 2014a; Pennington et al.,
2014; Sahlgren & Lenci, 2016). The freely available
Word2vec tool (Mikolov, 2017; Mikolov, Chen, et al.,
2013) is perhaps the most popular implementation of
predict models, and has become the standard against
which other LDMs are compared (e.g. FastText: Boja-
nowski et al., 2016; GloVe: Pennington et al., 2014). By
using vector geometry to calculate the similarity
between two words, predict models are capable of
detecting similarity between words without direct co-
occurrence (i.e. reflecting higher-order relations): for
instance, even if cask and barrel never appear together
in the same context, predict models will score them as
highly similar because their respective contexts contain
many overlapping words at similar frequencies (e.g.
wine, beer, storage, cellar). Such models are typically
trained on very large but noisy corpora that comprise
billions of words scraped from the Web, such as
UKWAC (2 billion words: Baroni et al., 2009) or Google
News corpus (up to 100 billion words; e.g. 6 billion
words: Mikolov, Chen, et al., 2013). Very large corpora
have become the norm in distributional semantics
research because, although corpus size is inversely
related to corpus quality, LDM performance has been
shown to increase with corpus size (e.g. Bullinaria &
Levy, 2012; De Deyne et al., 2015; Recchia & Jones,
2009). Training predict models on very large corpora
has therefore become the de-facto standard approach
in distributional semantics research for representing
word meaning (Chersoni et al., 2020; Moreo et al.,
2019; Naik et al., 2019).

Linguistic–simulation accounts of the conceptual
system, on the other hand, have arisen from theoretical
and experimental cognitive psychology and thus follow
a different tradition to distributional semantics research.
These accounts propose that the human conceptual
system comprises two essential interlinked components:
linguistic distributional knowledge of how words and
phrases appear in statistical patterns one each other,
and grounded simulations of sensorimotor–affective
experience (Barsalou et al., 2008; Connell, 2019;
Connell & Lynott, 2014; Louwerse, 2011; Louwerse & Jeu-
niaux, 2008; Vigliocco et al., 2009). A critical feature of
these accounts is that linguistic distributional infor-
mation is assumed to have a flexible rather than a con-
stant role in conceptual processing, and that reliance
on such information depends on a number of factors
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including the nature of the task, surrounding context,
and general processing goals (see Connell, 2019;
Connell & Lynott, 2014). Empirical work in linguistic–
simulation research built on the successes of early
LDMs such as LSA and HAL in modelling human per-
formance, and has tended to focus on testing whether
humans use linguistic distributional information in par-
ticular conceptual tasks (i.e. whether or not LDM data
can predict human performance independent of other
related predictors). For example, when investigating
conceptual combination – that is, the ability to generate
a new composite concept from two existing concepts
(e.g. octopus apartment) – Connell and Lynott (2013)
found that the frequency with which two nouns co-
occur in the same context can predict how easily they
can be understood as a novel conceptual combination.
In a very different paradigm on spatial cuing of atten-
tion, Goodhew et al. (2014) presented a central cue
word followed by an unrelated target letter at the top
or bottom of the screen, and found that the spatial
cuing effect was predicted by how often the cue word
co-occurred with the spatial word for the target location
(e.g. dream co-occurs with upmore often than down and
cues attention upward). When viewed collectively, most
studies in linguistic–simulation research that use LDMs
tend to model human data across a diverse range of
tasks that rely on a broad variety of conceptual relation-
ships rather than simply paradigmatic relations. More-
over, performance is typically evaluated by comparing
model data with implicit measures of human processing
effort in a given task (e.g. response times: RT) rather than
with explicit human responses (e.g. ratings or proportion
of correct responses). In the above example from
Goodhew et al. (2014), the words dream and up are
not paradigmatically related (i.e. they do not occur in
the same syntactic role across similar contexts), but
their meanings are syntagmatically related in that they
sometimes appear in the same syntactic frame (e.g. to
dream up an idea). Others of their stimuli do not lend
themselves to obvious syntagmatic relations and may
instead rely on more abstracted bag-of-words relations
to connect the words (e.g. god–up, castle–up). The best
LDM for capturing human performance in such tasks
would be the one that can most reliably identify such
relationships and predict response times for an upward
target.

There is also great diversity in the LDMs currently
employed in linguistic–simulation research, with recent
work successfully utilising a variety of model families
(i.e. predict, count vector, n-gram), with a variety of
corpus sizes, to model conceptual processing. To date,
predict models have only seen limited use in linguis-
tic–simulation research, but have proven useful in

predicting human concreteness and imageability
ratings when trained on a relatively small but high
quality corpus (Rotaru et al., 2016), and also have been
employed in more general psycholinguistic research
(e.g. Mandera et al., 2017; Troyer & Kutas, 2020). In lin-
guistic–simulation research, count vector and n-gram
models are more common.

Count vector models learn by counting the co-occur-
rences of words and context within a corpus, applying
transformations to the word–context count matrix, and
using vector geometry to calculate the similarity
between two words (see Bullinaria & Levy, 2007;
Riordan & Jones, 2011; Turney & Pantel, 2010, for an
overview of differences within this model family). Like
predict models, count vector models can detect
higher-order relationships between words without
direct co-occurrence (e.g. even if barrel and cask never
appear in the same context, they will score as highly
related if their contexts overlap). Their architectures
are fundamentally different in their approach to distribu-
tional learning, however: while predict models represent
error-driven predictive learning, count vector models
represent error-free Hebbian learning (Kumar, 2021).
Several off-the-shelf LDMs, such as Latent Semantic
Analysis (LSA: Landauer & Dumais, 1997) and the hyper-
space analogue to language (HAL: Lund & Burgess,
1996), are count vector models. There is no consistent
approach to corpus size and quality in this model
family, with training corpora varying from a few million
words of high-quality text to billions of words of low-
quality text. Nonetheless, data from count vector
models have been found to be a good predictor of
human performance in a number of conceptual tasks,
from ratings of concept abstractness (Lenci et al., 2018)
and typicality (Connell & Ramscar, 2001), to concrete/
abstract semantic decision (Hargreaves & Pexman,
2014), geographic mapping (Louwerse & Zwaan, 2009),
and word–colour associations in synaesthetes
(Goodhew & Kidd, 2017).

N-gram models operate more simply: they count the
co-occurrences of words up to a window of size n
around the target word and compare two words by
examining their (transformed) co-occurrence frequency.
As such, n-gram models represent an error-free Hebbian
approach to distributional learning (like count vector
models) and reflect direct co-occurrences, also known
as first-order relations (e.g. dream and up must appear
together often to score as highly related). Despite its
apparent simplicity, first-order co-occurrence is theoreti-
cally important both as the basis for statistical learning
of semantic knowledge (e.g. Unger et al., 2020), and as
a means to determine whether human meaning induc-
tion in statistical learning can rely on the surface
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structure of language (as opposed to requiring a more
complex algorithm to extrapolate higher-order relations:
Louwerse, 2011). The n-gram model most often used in
linguistic–simulation research is the Google Web 1T 5-
gram frequencies (Brants & Franz, 2006), an off-the-
shelf model that is based on an extremely large but
low-quality corpus of one trillion tokens of web-
scraped text. Data from n-gram models have proven a
good predictor of human data in conceptual tasks that
include integrative semantic priming (Jones et al.,
2017), rating affective valence and arousal (Recchia &
Louwerse, 2014), conceptual combination (Connell &
Lynott, 2013), geographic mapping (Louwerse &
Zwaan, 2009), and spatial cuing of attention (Goodhew
et al., 2014). Indeed, despite the apparently limited
scope of n-gram models in capturing only direct co-
occurrences, they can replicate many of the key effects
captured by the more complex count vector model
LSA (Louwerse, 2011).

One likely reason why linguistic–simulation research
has successfully used such a diverse range of models to
predict human performance is that all three model
families can capture both syntagmatic and paradigmatic
relations to differing extents. N-gram models, by indexing
first-order co-occurrences, capture syntagmatic relations
such as blue-eyes. However, there is some evidence that
first-order co-occurrences simultaneously capture paradig-
matic relationships (Melamud et al., 2014; Rapp, 2002;
Sahlgren, 2006) because at least some paradigmatically
related words frequently co-occur in their own right (e.g.
a sentence like blue and brown eyes are common in
Europe will allow an n-gram model to capture the blue–
brown relation that would normally be characterised as
paradigmatic). Similarly, antonyms often co-occur (e.g.
hot and cold water), as do items from the same or super-
ordinate category (e.g. adopt a cat or dog from an
animal sanctuary). N-gram models also capture bag-of-
words relations by indexing across sentence boundaries
(e.g. stubbed and ow can be linked regardless of syntax).
Count vector models – and predict models – index
second-order co-occurrences in their use of vector geome-
try to compare contexts, and hence capture paradigmatic
relations such as blue–brown on the basis of their shared
context with eyes and other terms. There is some evidence
that count vector models can also simultaneously capture
syntagmatic relations, if not quite as effectively as paradig-
matic relations (Lapesa et al., 2014) because at least some
syntagmatically related words often share similar contexts
(e.g. blue and eyeswill each appear in contexts concerning
man, woman, child, face, etc.). That is, the fact that co-
occurring words often separately appear in similar con-
texts across language means that count vector models
can pick up at least some relations that are usually

characterised as syntagmatic. However, the evidence is
more limited for the ability of predict models to detect
syntagmatic relations. The neural network architectures
and training schemes of predict models in their conven-
tional form are optimised for paradigmatic relations and
generally perform poorly at capturing syntagmatic
relations (Asr & Jones, 2017; O. Levy et al., 2015), but
some studies have shown a limited ability to detect
relations usually characterised as syntagmatic, such as
concept properties like eyes–blue (Rubinstein et al., 2015)
and thematic relationships like boat–river (Kacmajor &
Kelleher, 2019). Both count vector and predict model
families can capture bag-of-words relations by generalis-
ing across similar contexts (e.g. stubbed and ow can be
linked regardless of syntax by a shared context involving
pain). In short, although performance of the three model
families varies by their exact instantiations and parameter
settings, it is possible to characterise their form of linguis-
tic distributional knowledge in broad terms. N-gram
models specialise in capturing syntagmatic relations but
also capture paradigmatic relations; count vector models
capture both paradigmatic and syntagmatic relations,
though the latter ability is weaker; and predict models
specialise in paradigmatic relations but have a limited
ability to capture syntagmatic relations. In addition, all
models can capture bag-of-words relations, although it
remains unclear whether each model family does so
with equivalent effectiveness. All three model families
can therefore approximate linguistic distributional knowl-
edge that is useful to conceptual processing.

To summarise, the specialisation of distributional
semantics and linguistic–simulation research into two
parallel fields has resulted in a number of complemen-
tary strengths and weaknesses. Distributional semantics
research has systematically tested a wide range of LDMs
in order to optimise performance, but has tended to
focus on a restricted range of relatively simple concep-
tual tasks that rely on a limited variety of semantic
relations and/or predominantly paradigmatic relations,
and evaluate performance based on explicit dependent
measures such as ratings or synonym choice. By con-
trast, linguistic–simulation cognitive research has
tended to use off-the-shelf LDMs without systematic
comparisons, but has examined a wide range of concep-
tual tasks that vary in conceptual complexity by their
reliance on diverse semantic relations (including syntag-
matic and bag-of-words), and evaluate performance
based on both explicit and implicit dependent measures
(e.g. both ratings and response times). There has been
some, if limited, crossover between distributional
semantics and linguistic–simulation research, particu-
larly in computational cognitive modelling that attempts
to integrate LDMs with some form of grounding in
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perceptual and/or action information (e.g. Andrews
et al., 2009; Banks et al., 2021; Johns & Jones, 2012; Lazar-
idou et al., 2017). For example, Riordan and Jones (2011)
examined a number of distributional semantics models,
including the early models of LSA and HAL alongside
more advanced models like Bound Encoding of the
Aggregate Language Environment (BEAGLE: Jones &
Mewhort, 2007), in combination with sensorimotor
feature models in their ability to predict categorical clus-
tering. In this sense, Riordan and Jones used a common
distributional semantics methodology (i.e. the systema-
tic comparison of multiple LDMs) from the theoretical
perspective of linguistic–simulation research (i.e. con-
ceptual knowledge comprises both linguistic distribu-
tional and sensorimotor information). In general,
however, such multidisciplinary crossovers remain
uncommon in the context of the wider literature.

As a result, distributional semantics and linguistic–
simulation research have developed some different
theoretical assumptions on how linguistic distributional
knowledge should be modelled. The predominant view
in distributional semantics research is based on a tacit
“one-size-fits-all” assumption for how distributional
information should best fit human data: predict
models trained on very large (and noisy) corpora are
the de facto standard for forming distributional word
representations, regardless of the semantic task being
modelled (e.g. Baroni et al., 2014; Mikolov, Chen, et al.,
2013; Naik et al., 2019). The implication of this assump-
tion is that there exists an optimal LDM that is appropri-
ate for modelling all forms of linguistic distributional
knowledge in cognition. Such a one-size-fits-all assump-
tion contrasts with the fact that there is no dominant
view in linguistic–simulation research for how distribu-
tional information should be modelled. Empirical work
in this area has successfully fit human data using a
range of model families (count vector, n-gram, and
predict models) and corpus sizes from small to very
large. Moreover, because linguistic–simulation theories
contain the explicit assumption that the use of linguistic
distributional knowledge in conceptual processing is
flexible and responsive to a range of factors including
task demands, available processing resources, and pro-
cessing goals (Connell, 2019; Connell & Lynott, 2014;
see also Barsalou et al., 2008; Louwerse, 2011), it is not
clear how a one-size-fits-all approach to linguistic distri-
butional knowledge is consistent with the linguistic–
simulation theoretical perspective.

The current study

In this paper, we address the following unanswered
questions regarding the role of linguistic distributional

knowledge in cognition. First, is the assumption of distri-
butional semantics research regarding a one-size-fits-all
approach for linguistic distributional knowledge correct?
That is, does the common consensus – that predict
models trained on very large corpora are the best
approach – generalise to all conceptual processing in
human cognition? Or alternatively, could the success
of this approach be inherently restricted to the sorts of
conceptual tasks that rely on similarity of meaning and
other paradigmatic relations? If predict models trained
on very large corpora are indeed the best approach for
modelling human data in all tasks, then it implies that
paradigmatic relations learned from vast quantities of
language experience underpin the linguistic distribu-
tional knowledge that people use in conceptual proces-
sing, and that syntagmatic relations, and quality of
language experience, are of limited (if any) independent
utility.

Second, and in contrast to the first question, is the
tenet of flexibility in linguistic–simulation theories
correct in how the use of linguistic distributional knowl-
edge varies enormously by task and other factors? That
is, do the empirical findings of linguistic–simulation
research – that n-gram, count, and predict models,
trained on corpora of varying size, all successfully
predict some forms of human conceptual processing –
mean that different conceptual tasks require different
models and/or training corpora? Specifically, is there a
systematic relationship between the appropriateness
of a given model family and corpus, and the particular
characteristics of the task in question? Such character-
istics could include a task’s reliance on conceptually
complex relations across the stimulus set, or its uses of
implicit measures of processing effort (e.g. response
times) over explicit judgements (e.g. ratings). If the
best approach for modelling human data varies accord-
ing to the characteristics of the task, then it implies that
all forms of relation – syntagmatic, paradigmatic, and
other – underpin the linguistic distributional knowledge
that people use in conceptual processing, and that each
is flexibly employed to suit task demands. Moreover, if
smaller, high-quality corpora are best for modelling
human data in certain tasks, it also implies that the
quality of language experience is more important than
quantity when it comes to developing the relevant lin-
guistic distributional knowledge.

To address these questions, we undertook what we
believe to be the largest and most comprehensive exam-
ination of linguistic distributional knowledge in cognition
to date. We systematically investigated three families of
LDM that are commonly used in cognitive psychology
and psycholinguistic research (n-gram, count vector
and predict vector models), using three corpora that
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vary in size (from 100 million to 2 billion words) and
quality (from professionally collated to web-scraped),
across a range of context window sizes (radii of 1–10
around a target word), for a variety of model-specific par-
ameter values (distance metric and embedding size). Cri-
tically, we evaluated each model by testing its ability to
predict performance in a wide range of cognitive tasks
that varied in conceptual complexity.

The conceptual complexity of a task is determined by
how many different forms of conceptual/semantic
relation are featured in a set of stimuli, and whether
each individual semantic relation can be learned syntag-
matically, paradigmatically, or via bag-of-words distri-
butions. In this sense, it is important to distinguish it
from cognitive complexity: whereas conceptual complex-
ity is concerned with the complexity of the semantic
relations in the specific set of stimuli used across a
task, cognitive complexity is concerned with the intrinsic
processing demands of executing a task from start to
finish.4 We therefore operationalised a task’s conceptual
complexity according to how the following three criteria
applied to its specific stimulus set: (a) diversity of seman-
tic relations; (b) use of syntagmatic relations rather than
paradigmatic; and (c) use of bag-of words distributional
relations rather than paradigmatic or syntagmatic. Thus,
an increase in conceptual complexity can be conferred
by greater diversity of semantic relations featured
across the task’s stimulus set, increased use of syntag-
matic relations, and particularly increased use of high-
level bag-of-words relations.

These criteria allowed us to select a range of tasks
that varied systematically in conceptual complexity.
The conceptually simplest task was synonym selection
(Study 1), which features the same paradigmatic relation
(i.e. synonyms) across all stimuli. Slightly more complex
was Study 2’s similarity judgement, which still relied
on paradigmatic distributional relations, but this time
featured some diversity of semantic relations across its
stimulus set (e.g. synonyms, antonyms, shared cat-
egories). Study 2’s relatedness judgement was more
complex again because, although its stimuli were predo-
minantly paradigmatic, it included a moderately diverse
range of semantic relations that included some syntag-
matic and bag-of-words relations (e.g. shared categories,
compositional, thematic). Thematic relatedness pro-
duction (Study 3) specifically sought to move away
from relatively simple paradigmatic relations, and rep-
resented moderately high conceptual complexity by its
reliance on a diverse range of syntagmatic relations
(e.g. temporal, functional) with some bag-of-words
relations included. In Study 4, we examined semantic
priming in both lexical decision and word naming with
a highly conceptually complex stimulus set that featured

a very diverse range of semantic relations across all three
distributional relations: paradigmatic (e.g. synonyms,
antonyms, shared categories), syntagmatic (compo-
sitional, functional, object property), and a smaller
number of bag-of-words relations (e.g. broad thematic
or situational). Finally, the most conceptually complex
task was abstract–concrete semantic decision (Study
5), where the semantic relation in question could not
be learned paradigmatically or syntagmatically, and
instead – if linguistic distributional knowledge were to
be at all useful to the task – relied entirely on high-
level bag-of-words relations. Within these tasks, we
also systematically varied the format of the dependent
measure, where datasets reflected explicit semantic
responses (Studies 1–3), implicit measures of processing
effort (Study 4), or a combination of both (Study 5). In
total, we examined 540 different models on each of 13
test datasets, using Bayesian model comparisons to
make recommendations as to the optimal model,
corpus type and parameter settings.

This series of modelling studies allowed us to investi-
gate whether there exists a one-size-fits-all recommen-
dation for which LDM is the most appropriate at
modelling human cognitive processing, or whether
model and corpus appropriateness varied systematically
according to the conceptual complexity of the task and/
or the implicit versus explicit nature of the dependent
measure.

General method

All datasets, analysis code, and results are available
online at https://osf.io/uj92m/.

Linguistic distributional models

We examine three families of LDM: count vector
models, n-gram models, and predict models. While
there exists an enormous number of LDMs in distribu-
tional semantic research, our goal for this paper is
specifically not to perform a state-of-the-art compari-
son of all such models, both for reasons of relevance
and cognitive plausibility. Rather, our explicit goal in
this paper is to examine the off-the-shelf distribu-
tional models that are widely and currently used in
cognitive and psycholinguistic research, which can
be classified by their abilities to capture our distribu-
tional relations of interest (i.e. paradigmatic, syntag-
matic, bag-of-words). We outline below a number of
different instantiations of each model family, and a
number of associated parameters per model; a
summary of all LDMs examined in the present paper
can be found in Table 1.
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Count vector models
Context-counting vector LDMs gained popularity in cog-
nitive psychology with the introduction of LSA (Land-
auer & Dumais, 1997), which defined the context of a
word as the document or paragraph in which it was
found. While document-level contexts continue to be
used for topic modelling in document retrieval (e.g.
Griffiths et al., 2007; Řehůřek and Sojka, 2010), the
models we consider instead follow the HAL approach
(Lund & Burgess, 1996), which defines a word’s context
as the collection of other words found within a fixed dis-
tance of where that word is found (e.g. a window of five
words on either side of the word of interest). We chose
this approach both because of its superior performance
in systematic comparisons with human data (Riordan &
Jones, 2011), and because it allowed us to examine the
impact of context window size systematically across all
model families.

When it comes to defining co-occurrence windows,
there are a number of variations in the literature. Some
models (e.g. Lund & Burgess, 1996; Rohde et al., 2006)
use a centre-weighted counting method, where the con-
tribution of context words closer to the target within the
window is weighted with a flat, triangular or Gaussian
kernel. Other variations include looking at only context
words found to the left, only to the right, both left and
right separately, or both left and right together (see Bul-
linaria & Levy, 2007; Patel et al., 1998, for systematic
overviews of the effects of these parameters). While
there may be psychological reasons to distinguish
between left and right context (Dye et al., 2017; Jones
& Mewhort, 2007), Bullinaria and Levy (2007) showed
that the difference in performance between uniformly
and linearly weighted windows, and between left,
right, and combined contexts, is relatively small. Thus,
in our analyses, we define co-occurrence using a

uniformly weighted, symmetric window around the
target word (left and right sides together) in accordance
with the bag-of-words approach (i.e. we make no
assumptions of structure in the text), in order to con-
strain our already-large number of models and tests
and to avoid potentially arbitrary choices in the weight-
ing kernel.

Several sources use forms of dimensionality reduction
on the target-context co-occurrence matrix, such as
singular-value decomposition (Landauer & Dumais,
1997; O. Levy et al., 2015), principal components analysis
(Louwerse & Connell, 2011), or simply removing (Burgess
et al., 1998; Bullinaria & Levy, 2007; Levy & Bullinaria,
2001) or reweighting (Bullinaria & Levy, 2012) columns
corresponding to low-frequency or low-variance con-
texts. When surveying options of dimensionality
reduction, Bullinaria and Levy (2007, 2012) did not find
substantial improvement given the theoretical overhead
involved (see also Louwerse, 2011). As such, because our
motivation is to compare a broad range of models on a
broad range of tasks rather than optimising performance
on any single task, we avoid using such dimensionality-
reduction strategies in the present paper.

For the present research, given a large corpus of text,
the context of a particular target word t is the collection
of words within some fixed distance r of t. The co-occur-
rence frequency vector for t is a list, for each word c in
the corpus vocabulary, of the number of times c is
found in the context of t. Thus, for a context window
of radius r, the co-occurrence frequency vector for t
has entries nr(c, t) indexed by the unique words in the
corpus. Note that in this definition, the words order in
the context does not affect the resultant values.
Vectors are compiled over target words into a co-occur-
rence frequency matrix whose rows are indexed by the
unique words in the corpus as targets and whose

Table 1. Summary of all models, corpora, and parameters tested, where total number of tested LDMs is 540.
Model
family Model

Window
radius Corpus Distance Embedding size

Number of
LDMs

Count Log co-occurrence
frequency

1, 3, 5, 10 BNC, Subtitles,
UKWAC

Euclidean, Cosine,
Correlation

– 36

Count Conditional probability 1, 3, 5, 10 BNC, Subtitles,
UKWAC

Euclidean, Cosine,
Correlation

– 36

Count Probability ratio 1, 3, 5, 10 BNC, Subtitles,
UKWAC

Euclidean, Cosine,
Correlation

– 36

Count PPMI 1, 3, 5, 10 BNC, Subtitles,
UKWAC

Euclidean, Cosine,
Correlation

– 36

N-gram Log n-gram frequency 1, 3, 5, 10 BNC, Subtitles,
UKWAC

– – 12

N-gram Probability ratio n-gram 1, 3, 5, 10 BNC, Subtitles,
UKWAC

– – 12

N-gram PPMI n-gram 1, 3, 5, 10 BNC, Subtitles,
UKWAC

– – 12

Predict Skip-gram 1, 3, 5, 10 BNC, Subtitles,
UKWAC

Euclidean, Cosine,
Correlation

50, 100, 200, 300,
500

180

Predict CBOW 1, 3, 5, 10 BNC, Subtitles,
UKWAC

Euclidean, Cosine,
Correlation

50, 100, 200, 300,
500

180
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columns are indexed by unique words as context. For
context windows which are symmetric around the
target word, this matrix is symmetric when target and
context words are arranged in the same order. See
Figure 1 for an illustrative example of how a co-occur-
rence frequency matrix is computed.

We considered four count vector models that differ in
their transformation of the co-occurrence frequency
matrix. For each of these models, we let r take values
1, 3, 5 and 10. This choice spans the range of popular
and high-performing window sizes (J. Levy et al., 1999;
O. Levy et al., 2015; Mandera et al., 2017).

Figure 1. Schematic architectures of vector-based count and predict model families, trained on a small corpus with a context window
of radius 2. In count vector models A–C, each word in the corpus is selected in turn as a target and words falling within a fixed radius of
the target are selected as context words (A). The frequency of co-occurrences within the corpus of the target word and each context
words are recorded in a vector (B), and vectors for each target word are compiled into a co-occurrence frequency matrix (C). In predict
models D–E, either an aggregate of all context words is used to predict the target word (D: CBOW), or the target word is used to
predict each context word (E: Skip-gram). Networks are feed-forward and fully connected; these schematic representations are a sim-
plification of the implementation details of CBOW and skip-gram in Word2vec (see Mikolov, Chen, et al., 2013).
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. Log co-occurrence frequency: Log frequency is
often used in place of raw co-occurrence-counts as
a better-performing alternative that compensates
for the skewed distribution of word frequencies in
language (e.g. Louwerse & Connell, 2011). The log
co-occurrence frequency model has word vectors
defined as the log-transformed frequency count of
finding a context word c and target word t together
within a context window of radius r:

lr(c, t) = log10 (nr(c, t)+ 1)

The +1 is a smoothing term which lets the model be
defined even where nr(c, t) = 0 (i.e. where the co-
occurrence frequency is zero).

. Conditional probability: The vector components of
the conditional probability model are the probability
of finding a particular context word c, given the target
word t, within a context window of radius r:

pr(c|t) = pr(c, t)
pr(t)

Here, pr(c, t) = nr(c, t)/kr is the probability of finding
a particular context–target pair, where k is the size of
the corpus, and pr(t) =

∑
c nr(c, t)/kr is the probability

of finding a given target word.
. Probability ratio: The ratio of probabilities model

compares the probability of finding a context c and
target t together to the probabilities of finding c
and t separately (Bullinaria & Levy, 2007):

ratior(c, t) = pr(c, t)
pr(c)pr(t)

Here, the probability of the context pr(c) is defined in
the same way as the target word probability:
pr(c) =

∑
t nr(c, t)/kr.

. Positive pointwise mutual information
(PPMI): Pointwise mutual information (PMI; Church
& Hanks, 1990) is an information-theoretic measure
defined as the log ratio of probabilities:

PMIr(c, t) = log2 ratior(c, t)

PMI is sometimes used directly (e.g. Recchia &
Jones, 2009). However, many sources (e.g. Baroni
et al., 2014; Bullinaria & Levy, 2007, 2012; Mandera
et al., 2017) have found that superior results can
be achieved by restricting PMI to positive values
(positive PMI; PPMI), thereby only considering
word co-occurrences which are more frequent
than expected:

PPMIr(c, t) = max (0, PMIr(c, t))

PPMI is often selected as the de facto best count
model for general tasks in distributional semantics
research (e.g. Baroni et al., 2014; Bullinaria & Levy,
2012; Kiela & Clark, 2014; Mandera et al., 2017).

N-gram models
N-gram models have long been employed in corpus
analysis, computational linguistics, and cognitive psy-
chology, with Google’s Web 1T 5-gram corpus (Brants
& Franz, 2006) being a popular recent example.5 N-
gram models are conceptually simpler versions of
count vector models in that they are based on the
same underlying method of counting word-to-word
co-occurrences. However, there are critical differences
in word representation and comparison. Whereas a
count vector model represents each word in the
corpus as a fixed-length vector of ordered, unlabelled
co-occurrences (one dimension for each unique word
token in the corpus), an n-gram model represents a
word as a labelled list of frequencies for each other
word with which it co-occurs in the corpus (see Figure
2 for an illustration). It is important to note, therefore,
that two words can only be meaningfully compared
using an n-gram model if they have actually occurred
at least once within the same context window; other-
wise, the co-occurrence frequency is automatically zero
(i.e. target word and context word never co-occurred).

We consider three n-gram models that differ in
their transformation of co-occurrence frequencies. In
general, n-gram models use the same method for

Figure 2. Word representation in each model family. A: In a
count vector model, a word’s representation is an unlabelled,
sparse vector of length equal to the number of unique words
in the corpus. B: In an n-gram model, a word’s representation
is a labelled, dense list of nonzero co-occurrences whose
length varies with the diversity of co-occurring words. C: In a
predict vector model, a word’s representation is an unlabelled,
dense vector of length equal to the size of the neural network’s
hidden layer (i.e. its embedding size).
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constructing the co-occurrence frequency matrix as
count vector models; as with the count vector
models, we let window radius r take values 1, 3, 5
and 10. Since the n in n-gram comprises a sequence
of the target word plus its surrounding context
words, these window radii correspond to 2-, 4-, 6-,
and 11-grams.

. Log n-gram frequency: Based on the same calcu-
lations as the log co-occurrence frequency count
vector model, this model defines the relationship
between two words t and c as their log-transformed
co-occurrence frequency within a context window
of radius r.

. Probability ratio n-gram: Based on the same calcu-
lations as the probability ratio count vector model,
this model defines the relationship between two
words t and c as the probability of finding them
together within a context window of radius r com-
pared to the probabilities of finding them separately
within the corpus.

. PPMI n-gram: Based on the same calculations as the
PPMI count vector model, this model defines the
relationship between two words t and c as their log-
transformed probability ratio, with negative values
treated as zero.

Predict models
Many modern predict models are based on artificial
neural network architectures, including those
implemented in the popular software tool Word2vec
(Mikolov, Chen, et al., 2013). These models are realised
as neural networks that map between context and
target words with a single hidden layer, illustrated sche-
matically in Figure 1, where words are represented in
input and output layers by Huffman codes. Predict
models are also vector models, where the vector rep-
resentation of a target word comprises the row of
weights between the input layer and the hidden layer.

We consider two predict models that differ in their
direction of prediction.6 As with the count vector
models, we let r take values 1, 3, 5 and 10 during train-
ing; though as is usual for implementations of such
models, the actual width of the window before and
after the target word at each training step is randomly
selected from {1, . . . , r}.

. Continuous bag of words (CBOW): This model is
trained to predict the target word from the unordered
collection of the context words. The mean of the
context words’ codes is used as input (Mikolov,
Chen, et al., 2013).

. Skip-gram: This model is trained to predict each of
the context words separately from the target word,
and effectively reverses the learning direction of
CBOW.

There are a great many potential parameters available
for predict models. The most obvious is the specific
architecture of the neural network, namely the number
of units in its hidden layer. This is the embedding size,
denoted e. Unlike count vector models, neural
network-based predict models must implicitly perform
dimensionality reduction whenever the hidden layer is
smaller than the input layer, which will always be the
case for the models we employ in this paper. For each
of the models below, we trained with
e = 50, 100, 200, 300, 500, matching values used
by Mandera et al. (2017). The Word2vec implemen-
tations of CBOW and skip-gram models have further
optimisation and regularisation steps which have been
found to improve performance (Mikolov, Sutskever,
et al., 2013). Negative sampling involves updating only
a randomly selected subset of network weights at each
training step in the negative cases (i.e. words not
found in the window), and sub-sampling involves ran-
domly ignoring high-frequency words with a fixed prob-
ability. Following the advice of Baroni et al. (2014) and
Mandera et al. (2017), we used a fixed value of 10 for
negative sampling, and sub-sampled with probability
of 10−5. We constructed and trained our predict
models in Python 3.7 using version 2.2 of the Gensim
package (Řehůřek and Sojka, 2010), which implements
CBOW and skip-gram in a manner compatible with the
original Word2vec.

Distributional measures between words

Whereas n-gram models represent words as variable-
length, labelled “look-up tables”, count and predict
vector models both represent words as unlabelled7,
fixed-dimensionality vectors (see Figure 2). As such, cal-
culating a distributional score or distance between two
words requires a different process for vector and n-
gram LDMs.

In an n-gram LDM, two words are compared simply
by looking up one word’s distributional score in the
context of the other. For instance, the PPMI n-gram
model represents a word such as cat by the collection
of words that co-occur with catwithin radius r, alongside
their respective PPMI scores. The words cat and claws
can then be compared directly using the value
PPMIr(cat, claws).

By contrast, in a vector LDM, two words are compared
by selecting their respective fixed-dimensionality vector
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representations in the model and calculating the dis-
tance between them using vector geometry. For
example, the PPMI count vector model represents a
word such as cat by the vector of PPMI values
between cat and every other word in the corpus; and
the word claws is similarly represented by the vector
of all PPMI values between claws and every other word
in the corpus. Comparing the words cat and claws
involves comparing their respective vectors using
some measure of distance in high-dimensional vector
space. For count and predict vector models, we there-
fore use three popular distance measures to compare
words’ vector representations8:

. Euclidean distance can be regarded as the “natural”
straight-line distance measure in a vector space. It is
defined as:

dEuclidean(u, v) =
��������������∑

i (ui − vi)
2

√
= |u− v|

While Euclidean distance is widely used (e.g. Lund &
Burgess, 1996; Patel et al., 1998), it is affected by the
overall magnitude of each word vector and is typically
inferior to alternatives which are not affected by
vector magnitude (Bullinaria & Levy, 2007, 2012).

. Cosine distance is a widely used distance metric (e.g.
Landauer & Dumais, 1997; Mandera et al., 2017;
Recchia & Louwerse, 2014) that is normalised by
overall vector magnitude (and thus not affected by
it). It is defined as:

dcos(u, v) = 1− cos uu,v = 1− u · v
|u||v|

where uu,v is the angle between the vectors u and v.
For count vector models, cosine distance has often
been found to be the best-performing distance
metric across a range of tasks (e.g. Baroni et al.,
2014; Bullinaria & Levy, 2007, 2012; Lapesa & Evert,
2014). It should be noted that cosine distance, thus
defined, is not a true distance metric in the math-
ematical sense, since it violates the identity-of-indis-
cernibles and triangle-inequality axioms (see
Griffiths et al., 2007; Nematzadeh et al., 2017, for dis-
cussion), and is perhaps better thought of as a
measure of vector dissimilarity. Despite the technical
inaccuracy, dcos(u, v) is conventionally referred to as
a distance, and we follow that convention in the
present paper. We note, in addition, that human simi-
larity judgements also may not conform to the axioms
for a distance metric (Tversky, 1977; Yearsley et al.,
2017).

. Correlation distance is a version of cosine distance
with mean centering:

dcorr(u, v) = dcos(u− mu, v − mv)

= 1− (u− mu) · (v − mv)
|u||v|

where mu and mu are the means of u and v respect-
ively. In practice, we found that correlation distance
gives almost identical results to the more widely
used cosine distance in many scenarios. However,
some authors including Kiela and Clark (2014) rec-
ommend correlation over cosine as a distance
measure for LDMs. Like cosine distance, correlation
distance is not a distance metric in the mathematical
sense, but nonetheless is commonly used and pro-
vides a convenient way to express the dissimilarity
of vectors.

Corpora

The distributional properties of words and their contexts
are estimated from large corpora of text which are repre-
sentative of the language to varying extents. The size,
quality and source (i.e. spoken or written language) of
training corpora have been found to affect the perform-
ance of LDMs on various tasks (Bullinaria & Levy, 2012;
De Deyne et al., 2015; Mandera et al., 2017; Recchia &
Jones, 2009).

We trained LDMs on three corpora that varied in size,
quality, and source.9 Coming from different sources,
each corpus required both individual and shared clean-
ing and pre-processing steps (detailed below). All corpus
processing was done using Python 3.7 and version 3.2 of
the Natural Language Toolkit software library (NLTK; Bird
et al., 2009).

. BNC: The British National Corpus (BNC; BNC Consor-
tium, 2007) is a very high-quality corpus of 100
million words of spoken and written language. It rep-
resents a collection of 4,049 documents of British
English language from the early 1990s, collected
from a variety of sources, and includes approximately
90 million words of written language and 10 million
words of spoken language (both prepared and spon-
taneous speech). It is a professional corpus of a high
quality that was designed to be representative of
modern British English. It has been widely used to
train LDMs (e.g. Landauer & Dumais, 1997; Bullinaria
& Levy, 2007; Levy & Bullinaria, 2001; McDonald,
2000; Patel et al., 1998). The BNC is provided as a col-
lection of XML files, including document metadata
and part-of-speech tagging. A schema for automatic
removal of all non-textual tagging is also available
from the Oxford Text Archive (2009), yielding a
corpus of plain-text documents.
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. Subtitles: The Subtitles corpus is a reasonably high-
quality corpus of 200 million words of spoken
language, representing a collection of subtitles from
45,099 television programmes and films broadcast
by the British Broadcasting Corporation (BBC) chan-
nels in the period 2010–2012. A corpus of BBC subti-
tles was first used to compile the SUBTLEX-UK
database of word frequencies, which outperformed
BNC word frequencies in predicting word recognition
performance (van Heuven et al., 2014). The pro-
grammes contain a mixture of scripted and
unscripted (i.e. spontaneous) speech for audiences
ranging from newborn to adult, across a wide range
of topics and genres. It is a high-quality corpus,
having been professionally transcribed, although it
was not explicitly designed to be representative of
British English. Raw subtitle files contain many
elements apart from the words spoken during the
broadcast, such as non-linguistic descriptions of
events and sounds taking place, and numeric mark-
up describing the order and timing of utterances. As
well as removing all timestamps and associated for-
matting elements, we removed segments which
were likely descriptions of sounds, events or meta-
data (e.g. LAUGHTER AND APPLAUSE or Subtitles by
Red Bee Media Ltd). Two documents were excluded
for containing invalid formatting.

. UKWAC: The United Kingdom Web as Corpus
(UKWAC; Baroni et al., 2009) is low-quality corpus of
approximately 2 billion words of written language. It
comprises text scraped from webpages with .uk
domains between 2005 and 2007, where medium-fre-
quency words from the BNC were used as seed words
to select pages. It is provided as a collection of plain
text files (without HTML markup) and associated
source metadata. UKWAC is much larger than the
other two corpora, but has been subjected to
minimal quality control and therefore contains a
much higher level of noise, including typos (e.g.
htink instead of think), misspellings (e.g. dissapear
instead of disappear), and run-together words (e.g.
wantto instead of want to). It has previously been
used to train LDMs, particularly predict models (e.g.
Baroni et al., 2009; Bullinaria & Levy, 2012; Mandera
et al., 2017; J.P. Levy et al., 2017; O. Levy et al., 2015;
Pereira et al., 2016). We removed all source metadata
prior to further processing.

We processed all three corpora as consistently as
possible. After the individual pre-processing steps
described above, all corpora were tokenised using the
Penn Treebank word tokenizer in NLTK, modified to
account for additional non-alphanumeric symbols

found with high frequency in the corpora (e.g. £). Result-
ing tokens were converted to lower case, and most
grammatical punctuation was removed. Further details
of the tokenization procedure are available in sup-
plementary materials.

Other commonly used corpus pre-processing steps
include the removal of low-frequency tokens (Bullinaria &
Levy, 2007; Levy & Bullinaria, 2001; Lund & Burgess, 1996;
Mikolov, Chen, et al., 2013; O. Levy et al., 2015), and the
removal of high-frequency tokens or those appearing in
a “stop list” (Bullinaria & Levy, 2012; Lowe & McDonald,
2000; Rapp, 2003; Riordan & Jones, 2011). This is often
done to reduce computational cost, but after a thorough
investigation, Bullinaria and Levy (2012) found that
doing so led to little performance gain over several
evaluation criteria. Since we were able to complete all
computations without pruning linguistic tokens from
the corpus, we did not use such approaches in order
to retain maximum vocabulary coverage for the evalu-
ation procedures, and to avoid making psychologically
unmotivated alterations to the LDM algorithms.

Evaluation tasks

Since our goal was to examine the efficacy of LDMs in
fitting human data across a range of cognitive tasks, we
required a suite of tasks which (a) used words as stimuli,
(b) involved access to semantics (i.e. conceptual proces-
sing), and (c) varied in the complexity of their conceptual
processing and use of implicit vs. explicit dependent
measures. In order of increasing conceptual complexity
(i.e. operationalised as greater diversity of semantic
relations in the stimulus set, greater reliance on syntag-
matic over paradigmatic relations, and greater reliance
on bag-of-words relations over syntagmatic and paradig-
matic), we selected the following five tasks: synonym
selection (Study 1), similarity and relatedness judgement
(Study 2), thematic relatedness production (Study 3),
semantic priming (Study 4), and semantic decision
(Study 5). Studies 1–3 involve explicit task responses as
dependent measures (e.g. ratings, word choice), Study 4
involves an implicit measure of processing effort (i.e.
response times), and Study 5 involves both. Table 2

Table 2. Overview of evaluation tasks.

Task
Conceptual
complexity

Processing
measure

Study 1: Synonym choice Very low Explicit
Study 2: Similarity rating Low Explicit
Study 2: Relatedness rating Medium Explicit
Study 3: Thematic relatedness
production

Medium–high Explicit

Study 4: Semantic priming High (but variable) Implicit
Study 5: Semantic decision Very high Explicit and

implicit
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summarises the task characteristics, and each one is
described in more detail in its relevant study below.

Study 1: Synonym selection

Synonym-finding tests consist of multiple-choice ques-
tions where a seed word is presented (e.g. rusty), and
the test-taker must select from a list of candidate syno-
nyms the option which is closest in meaning to the
seed (e.g. corroded, black, dirty, painted; in this case, cor-
roded is the correct choice). LDM performance in these
tasks is based on comparing the seed word to each can-
didate synonym, where the candidate with the best
score is selected and evaluated according to its fit to
objective accuracy (i.e. the correct synonym choice per
seed: an explicit measure of semantic/conceptual pro-
cessing) rather than to human data per se. As a task,
synonym selection relies strongly on a single semantic
relation (i.e. synonyms) that can be learned paradigma-
tically (e.g. the structures rusty metal and corroded
metal allows the rusty–corroded synonymic relation to
form), which makes it a conceptually simple task.

In this and the following studies, since each of our 540
candidate LDMs is tested on multiple datasets, there is a
very large volume of results. As such, we concentrate in
the results section on describing the best-performing
models and summaries of overall trends. Full results
are available in the online materials.

Method

Materials and datasets
We modelled three separate synonym selection tests
that differ in their construction and difficulty.

TOEFL. The Test of English as a Foreign Language (TOEFL;
Institute of Cognitive Sciences, University of Colorado
Boulder, Boulder CO, 1989) is a test undertaken by Amer-
ican college entrants to evaluate their English vocabu-
lary. It includes 80 four-way multiple-choice questions
comprising a mixture of low- and high-frequency
words. It is widely used as a benchmark for LDMs
(Baroni et al., 2014; Bullinaria & Levy, 2007, 2012; Kiela
& Clark, 2014; Landauer & Dumais, 1997; Mandera
et al., 2017; Rapp, 2003; Recchia & Jones, 2009). For
instance, when used by Landauer and Dumais (1997),
LSA achieved a score of 64%, which was approximately
the average score of non-native English-speaking uni-
versity applicants taking the test. With a careful choice
of parameters, Bullinaria and Levy (2012) later
managed to achieve a perfect score.

We used TOEFL as it was used by Landauer and
Dumais (1997) and Bullinaria and Levy (2007, 2012),

with a few American-English spellings replaced by
their British-English counterparts (e.g. recognized
replaced with recognised), since all three of our corpora
are from predominantly British sources.

ESL. The English as a Second Language test (ESL; Tatsuki,
1998) is a multiple-choice test for non-native speakers of
English. It consists of 50 four-way multiple-choice ques-
tions comprising mainly higher-frequency and some
lower-frequency words. It is used as an LDM benchmark
(e.g. Jarmasz & Szpakowicz, 2004; Recchia & Jones, 2009;
Terra & Clarke, 2003; Turney, 2001), though less widely
than TOEFL.

We altered one term of the ESL test to remove a func-
tion word (a hurry was replaced by hurry). We also
omitted one question as containing a two-word term
(unwanted plant as a synonym for weed).

LBM: Levy et al.’s (2017) test. J. Levy et al. (2017) have
proposed a new multiple-choice synonym test for the
evaluation of LDMs and other linguistic models, which
improves on replication difficulties found with other
synonym tests, and over-reliance on a small collection
of evaluation datasets in the literature. It consists of
200 four-way multiple-choice questions with a mixture
of high- and low-frequency words (Bullinaria, n.d.).

Evaluation procedure
For both count vector and predict models, we computed
the distance between the vector representations of the
seed word and each of the choice words, and selected
the choice with the smallest distance. In any cases
where a seed word was not found in the corpus, the
question was marked as incorrect, and in any cases
where a choice word was not found, it was assigned
an infinite distance that guaranteed it would not be
selected. Where there were ties between choice words
for smallest distributional distance, we selected the
last-found item as the model answer.

For n-gram models, the choice word with the largest
distributional score relative to the seed word was
selected. In any cases where a seed word was not
found in the corpus, the question was marked as incor-
rect. In any cases where a choice word was not found
within the seed word’s collection of co-occurring
words (i.e. either because it never co-occurred with the
seed or because it was not in the corpus), it was assigned
the minimum distributional score of zero for the model.
Ties between choice words for largest distributional
score were resolved as above.

Performance for each LDM was calculated as the per-
centage score of correctly identified synonyms per
dataset. For the score achieved by each LDM, we
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computed a Bayes factor BF10 for the alternative hypoth-
esis that the model was performing above chance
against the null hypothesis that it was performing at
chance level, by modelling the score as binomially dis-
tributed Binom(n, p). As each test set consisted of
four-way multiple-choice questions, the null hypothesis
H0 was that p = 1/4 in each case, with the alternative
hypothesis H1 being p . 1/4, with an uninformative
one-tailed beta distribution prior on p (Wagenmakers,
2007). In this and future studies, when determining
optimal models, corpora, and parameters, we con-
sidered one LDM1 superior to another LDM2 if the data
were at least 10 times more likely to occur under LDM1

(i.e. model comparison BF12≥ 10; see Jeffreys, 1998).
Our key optimality criterion was robustness of perform-
ance: for example, a particular window radius r would
only be considered optimal if it produced superior per-
formance for a range of LDMs and corpora, and thus
could reasonably be expected to generalise well.

Results and discussion

LDM performance for synonym selection was overall at
its best for a context window size of 1 (although of r =
3 was comparable or better for some of the best-per-
forming LDMs). Cosine and correlation distance pro-
duced almost identical results in most instances,
greatly out-performing Euclidean distance, but cosine
distance had the edge amongst the best-performing
LDMs. Results for all models can be found in the online
materials and are summarised in Figure 3; performance
for each model using the optimal parameters (context
window size 1, cosine distance) is shown in Figure 4
and forms the basis for the wider trends and recommen-
dations reported below.

LDM behaviour was relatively consistent across
synonym datasets. At optimal parameter settings,
scores were very high on TOEFL and LBM, while scores
for ESL were generally much lower. Across all datasets,
there was extremely strong evidence in favour of using
the best LDMs to select synonyms (all BF10 > 1.0×1090).
Not every parameter setting performed equally well,
with some (e.g. log n-gram model trained on the BNC
with radius 1 using cosine distance) performing no
better than chance on all datasets.

In terms of model family, predict models generally
outperformed count and n-gram models, with the best
predict models at optimal parameters achieving up to
95% scores on TOEFL, 93% on LBM, and 60% on ESL.
Of the predict models, both skip-gram (at r = 1) and
CBOW (at r = 1 or 3) performed equally well overall,
and while larger embedding sizes tended to achieve
better results, in both cases the best performance was

found at e = 300. Of the count models, PPMI generally
performed the best, corroborating the findings of Bulli-
naria and Levy (2007, 2012). Notably, with optimal par-
ameters, the PPMI count vector model was close to
competitive with the best predict models for two data-
sets (achieving 85% on TOEFL, 89% on LBM) and com-
petitive on one (achieving 60% on ESL). N-gram
models were highly sensitive to parameters but overall
tended to perform worst at synonym selection.
However, n-gram models performed well when trained
on UKWAC and at certain parameters occasionally beat
the optimal predict model (e.g. probability ratio n-
gram model using UKWAC at r = 3 achieved the top
score of 68% on ESL). Nonetheless, this n-gram success
was not representative of overall trends in synonym
selection performance and it is therefore unlikely to gen-
eralise well.

The UKWAC corpus overall produced the best per-
formance for synonym selection. Although models
trained on the different corpora yielded broadly similar
patterns of results, UKWAC tended to do substantially
better than BNC, a trend also observed by Bullinaria
and Levy (2012). The Subtitles corpus performed a
little better than the BNC, but still substantially worse
than UKWAC. The advantage of UKWAC was particularly
evident for the optimal family of predict models and for
n-gram models.

In summary, the optimal LDM for the relatively
simple, explicit task of synonym selection appears to
be either skip-gram or CBOW predict model at a large
embedding size of 300, trained on a very large but
noisy UKWAC corpus of written language, with a small
window radius (either skip-gram at r = 1 or CBOW at r
= 1 or 3), and using cosine distance between vectors.
The next-best choice is the PPMI count vector model
at the same parameters. In Bayesian terms, the optimal
predict models were between BF = 1.00 and 1.48×1013

times better (depending on dataset) than this next-
best choice.10 In many ways, these findings are unsur-
prising: LDMs that are optimised to capture paradig-
matic relations (i.e. predict models) excel at predicting
data in a task that relies on paradigmatic relations (i.e.
synonym selection). For the conceptually simple task
of synonym selection, our findings support the most
common recommendation in distributional semantic
research: using predict models trained on a very large
corpus of noisy written text.

These recommendations are consistent with previous
findings for synonym selection (e.g. Bullinaria & Levy,
2007, 2012; Mandera et al., 2017). Nonetheless, there
are some instances where our findings differ from pre-
vious research for apparently the same LDM, parameter
settings, and dataset. For instance, Bullinaria and Levy

LANGUAGE, COGNITION AND NEUROSCIENCE 1237



Figure 3. Violin plots showing the performance of each LDM at modelling each dataset in Studies 1–5. One distribution is shown for
each model type, summarising results of all corpora, window radii, and where relevant embedding sizes and distance types. Circular
dots show LDMs whose performance was substantially preferred to the null model (BF10≥ 10: Jeffreys, 1998), and × marks show LDMs
whose performance was equal to or worse than the null (BF10 < 10). Dots are filled black where the LDM had optimal parameter values
(see Table 3), grey where one parameter has a non-optimal value, and unfilled where the LDM has 2 or more non-optimal parameter
values. Note that optimal LDMs are chosen for robustness across parameters so top-performing outliers may not represent the optimal
choice for a given task. Horizontal red lines (where visible) show performance at the level of chance.
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Figure 4. LDM performance per corpus and dataset in Study 1’s synonym selection task, for optimal parameters of window radius
r = 1 and cosine distance between vectors. Panel A shows scores as percentage accuracy, where horizontal red lines indicate
chance performance. Panel B shows log Bayes factors (Log10 BF10) for LDM performance; positive values indicate evidence favours
the LDM over the null model, negative indicate evidence favours the null model over the LDM, and the dotted horizontal lines indicate
the Log10 BF10 = 1 (i.e. BF10 = 10) threshold for strong evidence (Jeffreys, 1998).
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(2007) achieved accuracy of 83% on the TOEFL dataset
using a radius-1 symmetric-window PPMI model
trained on the BNC, for which we achieved 79% using
the same parameters. The reason for this discrepancy
in performance is due to differences in corpus pre-pro-
cessing and tokenization steps: we use single-word toke-
nization (i.e. bag-of-words approach), whereas they used
a more sophisticated tokenization strategy based on
BNC part-of-speech tags.11 As we wished to retain a con-
sistent bag-of-words approach in order to examine how
LDM appropriateness varied systematically across
models, corpora, and tasks, we did not further explore
tokenization strategies that could not be applied uni-
formly across all corpora. However, researchers inter-
ested in optimising LDM performance for one
particular task may be able to enhance performance
by tweaking their corpus pre-processing strategies.

Study 2: Similarity and relatedness
judgements

Datasets of direct human similarity judgements are
another common way to evaluate LDMs. They typically
consist of responses from human participants to the
task of rating the similarity or relatedness of pairs of
words, and as such represent an explicit measure of
semantic or conceptual processing. In the context of
such judgements, semantic similarity is a relatively
specific measure of the degree to which two words or
concepts resemble each other in meaning (e.g. student–
pupil, old–new, king–queen), whereas semantic relatedness
is a more general construct that reflects the degree to
which two words or concepts are connected via a func-
tional, thematic, or other relation (e.g. grapes–wine,
river–water, physics–proton). LDM performance in these
tasks is based on comparing each word pair (e.g. king–
queen) to produce a distributional measure, and then
evaluated by correlating these LDM measures with the
corresponding human similarity or relatedness rating
(see Wingfield & Connell, 2022, for an overview of alterna-
tive theories and measures of semantic similarity).

Both tasks are more conceptually complex than the
synonym selection task of Study 1. Although similarity
judgements clearly rely on similarity of meaning, which
is paradigmatically learned (e.g. the structures hard
exam and difficult exam allow the hard–difficult synony-
mic relation to form), words are often rated as highly
similar despite having distinctly different referents (e.g.
king and queen; old and new). For example, the struc-
tures king’s palace and queen’s palace allow the king–
queen categorical relation to form, or old hat and new
hat allow the old–new antonym relation to form. Simi-
larity judgement tasks are therefore a little more

conceptually complex than the synonym selection task
of Study 1 when they use a more diverse variety of para-
digmatic relations. Relatedness judgements are more
complex again due to their broader use of a variety of
relations that go beyond paradigmatic alone. The
stimuli of relatedness judgements sometimes overlap
with similarity judgements in their use of paradigmatic
relations (e.g. king–queen are categorically related;
money–wealth are synonymically related), but they also
feature syntagmatic relations (e.g. river–water are com-
positionally related and comprise a noun-noun
phrase), and other bag-of-words relations (e.g. physics–
proton are thematically related but do not neatly fit para-
digmatic or syntagmatic forms).

Method

Materials and datasets
We modelled four separate similarity and relatedness
datasets tests that differ in their instruction to
participants.

Simlex-999. The Simlex-999 dataset (Hill, n.d.; Hill et al.,
2015) consists of similarity ratings on 999 word pairs.
Participants were instructed to rate word pairs on simi-
larity only, and disregard relatedness (N = 50 per pair).
Simlex-999 has previously been used to evaluate LDMs
(O. Levy et al., 2015; Mandera et al., 2017; Nematzadeh
et al., 2017; Pereira et al., 2016).

WordSim-353. The WordSim-353 dataset (Finkelstein
et al., 2002; Gabrilovich, 2002) consists of composite
similarity/relatedness ratings from human participants
on 353 word pairs (N = 13 or N = 16 per pair). This set
of word pairs was split post-hoc by Finkelstein et al.
into subsets that were linked by either semantic simi-
larity (WordSim-353-similarity: 203 pairs) or relatedness
(WordSim-353-relatedness: 252 items; 102 pairs were
included in both lists). WordSim-353 has previously
been used to evaluate LDMs (Agirre et al., 2009; Baroni
et al., 2014; Kiela & Clark, 2014; Mandera et al., 2017;
Pereira et al., 2016).

RareWord. The RareWord dataset (Luong, n.d.; Luong
et al., 2013) consists of participants’ similarity ratings
on a Likert-style scale for 2034 word pairs (N = 10 per
pair). The word pairs in the RareWord dataset were
specifically chosen to focus on low-frequency words
such as apocalyptical→prophetic, and were constructed
based on WordNet synonym sets. It has previously
been used to evaluate LDMs (Pennington et al., 2014;
O. Levy et al., 2015).
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MEN. The MEN dataset (Bruni, 2012; Bruni et al., 2014)
consists of human similarity judgements on 3000 word
pairs (N per pair not reported). It has been used to evalu-
ate LDMs (Baroni et al., 2014; Kiela & Clark, 2014; Pereira
et al., 2016). Unlike Simlex-999, WordSim-353 and Rare-
Word, which use Likert-style rating scales, MEN scores
are computed from a forced-choice paradigm where
participants picked the most closely related word pair
from two possible options (e.g. wheels:car and dog:
race). Nevertheless, the MEN dataset can be modelled
in the same way as the others.

Evaluation procedure
For both count vector and predict models, we correlated
distributional distances between each word pair with
mean participant similarity/relatedness ratings. For n-
gram models, distributional scores between word pairs
were correlated with participant similarity/relatedness
ratings. In cases where a test word was not found in
the corpus, we treated it as missing data for the pur-
poses of the correlation. Since a better fit results in nega-
tive correlation for count vector and predict models
(high similarity/relatedness corresponding to low dis-
tance) and positive correlation in the case of n-gram
models (high similarity/relatedness corresponding to
high distributional score), we report absolute Pearson’s
correlation values for ease of cross-comparison.

In addition to the correlation values, we computed
Bayes information criterion (BIC, also known as the
Schwarz criterion: Schwarz, 1978) values for a single-pre-
dictor linear regression of human ratings on each LDM
predictor (alternative hypothesis) and an intercept-only
baseline regression (null hypothesis). From BIC values,
we estimated Bayes factors for the inclusion of the
LDM predictors (Wagenmakers, 2007, p. 796).

Results and discussion

The optimal parameters for similarity judgements
(Simlex-999, WordSim-353-similarity and RareWord)
and relatedness judgements (WordSim-353-relatedness
and MEN) differed markedly so we report and discuss
them separately. For similarity judgement datasets,
LDM performance was best for smaller sizes of window
radius r and overall optimal at r = 1, using either corre-
lation or cosine distance (both of which greatly outper-
formed Euclidean distance). For relatedness judgement
datasets, the best LDM performance was for larger
sizes of window radius r and optimal at r = 10, using
either correlation or cosine distance (both of which sub-
stantially outperformed Euclidean distance). Perform-
ance for each model using these optimal parameters is

shown in Figures 5 and 6, and forms the basis for the
trends and recommendations reported below; results
for all models can be found in the online materials and
are summarised in Figure 3.

LDM performance varied across datasets. With
optimal parameter settings, all model families were
able to predict human similarity and relatedness judge-
ments with high accuracy, particularly for the WordSim-
353-similarity and MEN datasets (largest magnitude
Pearson’s r = .72 and .80 respectively), and more moder-
ately for the RareWord dataset (largest r = .42). Across all
datasets, there was extremely strong evidence in favour
of using the best LDMs to predict human similarity (BF10
> 1.5 × 1047) and relatedness judgements (BF10 > 1.0 ×
10303). Not every parameter setting was viable,
however, with some (e.g. Conditional probability count
vector model, trained on Subtitles corpus with radius
1, using Euclidean distance, on the Simlex-999 dataset)
providing strong evidence for the null hypothesis
(BF10 = 0.035).

Predict models produced the best performance for
both similarity and relatedness judgements. In particu-
lar, CBOW (at embedding size 300 for similarity judge-
ments and 200 for relatedness judgements)
consistently did better than other models, with skip-
gram a close second. The next-best model family was
n-gram models, where PPMI n-gram was often competi-
tive with skip-gram (particularly for relatedness judge-
ments, and particularly when trained on UKWAC
corpus). Log n-gram models also did well for relatedness
judgements, if not as well as PPMI n-gram. However, n-
gram models did not perform consistently across data-
sets, with notably poor performance on Simlex-999
and RareWord at optimal parameters. For these datasets,
the strongest count vector model (PPMI) greatly outper-
formed n-gram models, although that pattern did not
occur in other datasets.

In terms of corpus choice, similarity judgements
overall favoured UKWAC (although both Subtitles and
UKWAC corpora were jointly favoured in all but the Rare-
Word dataset), whereas relatedness judgements
favoured the Subtitles corpus (with UKWAC lagging
some way behind). LDMs trained on the BNC consist-
ently did worse than those trained on either UKWAC or
Subtitles corpora. The pattern of LDM performance
was generally consistent across corpora, even where it
varied by dataset.

In summary, the optimal LDM for relatively simple,
explicit similarity judgements closely resembles that
for synonym selection: CBOW predict model, at a large
embedding size 300, trained on either a very large but
noisy corpus of written language (UKWAC), using a
small window radius of 1 and correlation or cosine
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Figure 5. LDM performance per corpus and dataset in Study 2’s similarity judgement task, for optimal parameters of window radius
r = 1 and correlation distance between vectors. Panel A shows Pearson’s correlation between mean human ratings and LDM score
(n-gram) or distance (predict or count vector) per item; absolute values are shown for ease of comparison between model families.
Panel B shows log Bayes factors (Log10 BF10) for LDM performance; positive values indicate evidence favours the LDM over the null
model, negative indicate evidence favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 BF10 = 1
(i.e. BF10 = 10) threshold for strong evidence (Jeffreys, 1998).
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Figure 6. LDM performance per corpus and dataset in Study 2’s relatedness judgement task, for optimal parameters of window radius
r = 10 and correlation distance between vectors. Panel A shows Pearson’s correlation between mean human ratings and LDM score
(n-gram) or distance (predict or count vector) per item; absolute values are shown for ease of comparison between model families.
Panel B shows log Bayes factors (Log10 BF10) for LDM; positive values indicate evidence favours the LDM over the null model, negative
indicate evidence favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 BF10 = 1 (i.e. BF10 = 10)
threshold for strong evidence (Jeffreys, 1998). Note that for the MEN dependent variable (bottom row), the magnitude of the
scale means the dotted lines are so close to 0 as to be indistinguishable.

LANGUAGE, COGNITION AND NEUROSCIENCE 1243



distance between vectors. Alternatively, where the
dataset is not primarily composed of low-frequency
words, a smaller higher-quality corpus of spoken
language (Subtitles) is equally effective at these par-
ameters. Low-frequency words appear to require a
larger corpus to achieve adequate lexical coverage
(e.g. UKWAC contained 99.2% of words in the RareWord
dataset, whereas the otherwise-effective Subtitles
corpus contained only 79.7%) and contextual variety
(e.g. the smallest corpus BNC contained 90.1% of Rare-
Word items, but nonetheless produced the worst per-
formance). These recommendations are consistent with
previous findings for similarity judgements: for
example, Mandera et al. (2017) achieved their best
results using small context windows (r = 1 or 2), large
corpora and CBOW predict models. The consistency of
LDM optimality between synonym selection and simi-
larity judgement is unsurprising given that both tasks
require a relatively simple form of conceptual processing
(i.e. evaluating similarity of meaning). The optimal LDM
for slightly more complex relatedness judgements, on
the other hand, appears to be CBOW predict model, at
a medium embedding size of 200, trained on a
medium-sized high-quality corpus of spoken language
(Subtitles), using a large window radius of 10 and
either cosine or correlation distance between vectors.
Bayesian comparisons at optimal parameters showed
that these optimal predict LDMs were at least BF =
1.17×106 and 6.61×1011 times better than the top n-
gram model (i.e. the second-best model family) for simi-
larity and relatedness judgements, respectively. While
similarity and relatedness judgements share many
optimal parameter settings, there are some major differ-
ences, most notably the jump from a minimal (r = 1) to a
maximal (r = 10) window size, and the move away from
the large-but-noisy UKWAC corpus towards the higher-
quality but smaller Subtitles corpus. These differences
may reflect the slightly more complex nature of related-
ness judgements compared to similarity judgements,
where the paradigmatic link between two words goes
beyond similarity of meaning (e.g. strange–odd) and may
instead involve locative (e.g. egg–nest), integrative
(family–planning), part–whole (flower–petal), or other
relations. Many of the highly rated word pairs in related-
ness datasets co-occur frequently in text, which is
reflected by the competitive performance of PPMI n-
gram models in capturing relatedness ratings. Indeed,
the datasets where n-gram models perform worst are
Simlex-999, the similarity judgement dataset where care
was taken to exclude semantic relatedness, and RareWord,
where the vast majority of word pairs (78%) are connected
in WordNet via hypernymic or similar-to relations rather
than broader semantic relations (Pilehvar et al., 2018).

In short, as found for synonym selection in Study 1,
semantic tasks that make extensive use of paradigmatic
relations (i.e. similarity and relatedness judgements) are
best predicted by LDMs that are optimised to capture
paradigmatic relations (i.e. predict models). However,
when it comes to corpus choice, the present findings
diverge from those of Study 1 and are not fully consist-
ent with the typical distributional semantics recommen-
dation of predict models trained on large corpora.
Similarity judgements have low conceptual complexity
and both a large-and-noisy written corpus (UKWAC)
and a medium-sized high-quality spoken corpus (Subti-
tles) performed equally well. Relatedness judgements
have medium conceptual complexity and best served
by a medium-sized high-quality spoken corpus (Subti-
tles). From Study 1–2, increasing conceptual complexity
is accompanied by a diversification in corpus
recommendations.

However, it should be noted that the distinction
between semantic similarity and relatedness is not as
clear-cut as the datasets may suggest. In the case of
WordSim-353, while the dataset was separated into simi-
larity and relatedness judgements by Finkelstein et al.
(2002), the distinction was post-hoc and was not part
of instructions given to participants. Similarly, while
MEN is described by Bruni et al. (2014) as a relatedness
dataset, many of its top-scoring items are near-syno-
nyms (e.g. cathedral–church, cat–feline), leaving the
precise distinction between similarity and relatedness
unclear. For these and related reasons, some researchers
have been highly critical of using human similarity and
relatedness judgement data to evaluate LDMs at all
(Batchkarov et al., 2016; Faruqui et al., 2016). Nonethe-
less, given the different patterns of optimal parameters,
we preserve the distinction as part of our broader over-
view of conceptual tasks in the present study.

Study 3: Thematic relatedness production

Thematic relatedness is a form of conceptual relation
that is concerned with the complementary roles per-
formed by concepts in a given situation (Estes et al.,
2011; Lin & Murphy, 2001). For instance, a fork and a
knife perform complementary roles in the scenario of a
meal or place setting; an apple and gravity perform
complementary roles in the event of Newton’s discover-
ing the principle of universal gravitation. By focusing on
how two concepts occupy distinct but complementary
roles in a particular time and place, thematic relations
include many common semantic relations (e.g. temporal
beach–summer, spatial apple–orchard, functional
hammer–nail) but exclude others (e.g. synonyms
shoes–sneakers, taxonomic flower–rose, and mere
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association of concepts that never appear in the same
situation). Thematic relations therefore represent a
form of conceptual information that is critical to many
fundamental cognitive tasks, including language com-
prehension, inference and analogy making, and
memory encoding and retrieval (see Estes et al., 2011,
for review).

Such conceptual thematic relations largely reflect
syntagmatic relations, and in that sense can often
overlap with the grammatical sense of thematic
relation (i.e. the roles played by the arguments of a
verb). For example, cat–mouse may be thematically
and syntagmatically related in agent–patient roles
(e.g. the cat chased the mouse), and boat–lake may be
likewise related in agent–location roles (e.g. the boat
floated on the lake). However, some conceptual the-
matic relations reflect more high-level, abstracted
relations that are different to the grammatical roles
outlined above. Both apple–gravity and castle–money,
for instance, are thematically related in the conceptual
sense and are unlikely to be linked paradigmatically or
syntagmatically; instead, they constitute bag-of-words
relations.

While not typically used for evaluating LDMs (cf. Asr,
Zinkov & McRae, 2018), we chose to examine thematic
relatedness production as an example of a task that is
more conceptually complex than was used in Studies 1
and 2 (by its reliance on a moderately diverse set of syn-
tagmatic and to some extent bag-of-words relations,
rather than paradigmatic relations) but is not quite as
complex as some of our later tasks, while still representing
an explicit measure of conceptual processing. In this task,
participants are given a cue word and freely produce a list
of target words that are thematically related, which allows
each cue-target pair to be scored by rank or frequency of
production. Because two words will tend to co-occur in
language if their referent concepts co-occur in the real
world (Connell, 2019; Louwerse, 2011), we hoped that
LDMs would be capable of detecting the thematic
relations underlying the responses. LDM performance
can then be evaluated by comparing each cue–target
pair (e.g. beach–summer) to produce a distributional
measure, and then correlating measures with the corre-
sponding human production frequency.

Method

Materials and datasets
We modelled a single dataset of thematic relatedness
production norms by Jouravlev and McRae (2016). This
dataset consists of 1174 related concept pairs, generated
by asking participants (N = 200) to list thematically
related target concepts for 100 cue object concepts.

For instance, participants saw the cue concept cat and
were asked to write down at least three names of
other thematically related objects (i.e. things that
might interact with it or be related to it), while avoiding
taxonomic responses (e.g. dog: animal). The dataset con-
tains a list of thematically related concepts for each cue
word (e.g. cat: dog, mouse, claws, pet), along with pro-
duction frequency (i.e. the number of participants who
produced each response), the rank order in which the
responses were produced (e.g. first, second, or third),
and a weighted production frequency that combined
the two as an overall measure of strength of thematic
relatedness (i.e. concepts produced first were weighted
more heavily than those produced second, and so on).
We used the weighted production frequency as our
dependent variable.

Evaluation procedure
For predict and count vector models, we calculated the
distance between the vector representations of the cue
concept and each of its thematically related concepts,
and correlated these distances with the corresponding
weighted production frequencies. For n-gram models,
we calculated the distributional score between the cue
concept and each of its thematically related concepts,
and correlated the scores with the corresponding
weighted production frequencies. We used the dataset
as published, having substituted words to account for
typos, American-English and multi-word terms (e.g.
cotton candy was not found in our British-English
corpora, and was replaced by candyfloss). In cases
where terms were not found in our corpora and appro-
priate substitutions could not be found, we omitted the
data points. Since a better fit results in negative corre-
lation for count vector and predict models (high related-
ness corresponding to low distance) and positive
correlation in the case of n-gram models (high related-
ness corresponding to high distributional score), we
report absolute Pearson’s correlation values for ease of
cross-comparison.

As with the similarity judgement datasets in Study 2,
we estimated Bayes factors from BIC in a single-predictor
linear regression.

Results and discussion

Overall, LDMs performed best with larger values of
window radius r, where the optimal value varied
between r = 5 and r = 10 depending on model choice
(see below). Correlation and cosine distance produced
very similar results, and again both substantially outper-
formed Euclidean distance. Performance for each model
using these optimal parameters forms the basis for the
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trends and recommendations reported below; results for
all models can be found in the online materials and are
summarised in Figure 7. Model performance for r = 5
using cosine distance is shown in Figure 3. In general,
LDMs did well at modelling thematic relatedness, with
the best LDM scores correlating with weighted pro-
duction frequency at approximately Pearson’s r = .26,
which constitutes extremely strong evidence in favour
of using LDM scores to predict thematic relatedness pro-
duction (BF10 > 2 × 1015).

The best model family for thematic relatedness pro-
duction was tied between predict and n-gram models.
With optimal parameters, skip-gram (at embedding
size 300 or 500) and CBOW (at e = 500) performed

equally well at a window radius of 10, as did log n-
gram at r = 5. PPMI n-gram also achieved good results,
but was overall not quite competitive with the optimal
models. Count vector models (particularly probability
ratio and PPMI) performed moderately well in capturing
thematic relatedness but nonetheless lagged behind
predict and n-gram models.

The Subtitles corpus overall produced the best per-
formance for thematic relatedness across all model
families, with UKWAC in clear second place and BNC a
distant third. While performance was similar across all
corpora at optimal parameters, there were some differ-
ential trends in how each model family performed on
each corpus. The Subtitles corpus followed general

Figure 7. LDM performance per corpus and dataset in Study 3’s thematic relatedness production task, for optimal parameters of
window radius r = 5 and cosine distance between vectors. Panel A shows Pearson’s correlation between weighted production fre-
quency and LDM score (n-gram) or distance (predict or count vector) per item; absolute values are shown for ease of comparison
between model families. Panel B shows log Bayes factors (Log10 BF10) for LDM performance; positive values indicate evidence
favours the LDM over the null model, negative indicate evidence favours the null model over the LDM, and the dotted horizontal
lines indicate the Log10 BF10 = 1 (i.e. BF10 = 10) threshold for strong evidence (Jeffreys, 1998).
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trends with predict models (CBOW and skip-gram) tied
with n-gram models (log n-gram) for best performance.
When all models were trained on UKWAC, however,
predict models did best, and when trained on the BNC,
n-gram models did best (though in each case, not as
well as when trained on the Subtitle corpus).

In summary, the optimal LDM for a somewhat
complex task of thematic relatedness production
would appear to be a choice of three: log n-gram
trained on a medium-large high-quality corpus of
spoken language (Subtitles) with window radius 5, or
CBOW or skip-gram at large embedding size 500 (or
300 for skip-gram only), again trained on a medium-
large high-quality corpus of spoken language (Subtitles),
with window radius 10 and cosine or correlation dis-
tance. Performance of these joint-optimal LDMs was
indistinguishable in Bayesian terms, where evidence
favoured the optimal predict models equally as strongly
(BF = 0.44–1.29) as the optimal n-gram model. In some
respects, specifically in the use of predict models
trained on the Subtitle corpus with a large window
radius, the optimal LDM for thematic relatedness pro-
duction resembles that of semantic relatedness judge-
ments in Study 2. However, this study is the first
indication that something other than predict models
emerges as the optimal LDM for a given task: n-grams
are also capable of detecting thematic relationships
between concepts. Given the much simpler compu-
tational load of n-gram models (i.e. count co-occurrence
frequencies and transform to distributional score,
compare words by looking up score) compared to
predict models (i.e. train neural network with supervised
learning, compare words by calculating distance
between hidden layer vectors), it is remarkable that
log n-gram performs as well as CBOW and skip-gram
models.

In terms of linguistic distributional knowledge, the
present findings show that a semantic task that makes
extensive use of syntagmatic relations is best predicted
by LDMs that specialise in syntagmatic relations (i.e. n-
gram models). However, the task is also equally well pre-
dicted by LDMs that are optimised for paradigmatic
relations (i.e. predict models). The success of predict
models at predicting thematic relatedness, despite
their limited capture of syntagmatic relations, has at
least two possible explanations. We noted above that
thematic relatedness also relies on bag-of-words
relations (e.g. computer–internet) in addition to syntag-
matic and paradigmatic relations; since both n-gram
and predict models can detect these kinds of relations,
they may have contributed to their performance in this
task. However, count vector models can also detect
bag-of-words relations but performed poorly in the

task, which suggests that such relations were not a criti-
cal component of thematic relatedness production. A
more likely alternative is that the success of predict
models may be due to the fact that some thematically
related words can be connected via similar contexts.
For example, knife and fork are thematically related
because they often appear together in complementary
roles in a dining situation, where such co-occurrence
allows n-gram models to score them as highly related,
but each word also appears independently in contexts
concerning food and dining, where the similarity of
these contexts allows predict models to score knife–
fork as highly related.

Overall, the findings of this study diverge from the
distributional semantics recommendation of predict
models trained on large corpora. For the first time,
predict models were not the only optimal choice of
model family, and – like we found for relatedness
ratings in Study 2 – a large but noisy corpus of written
text (UKWAC) was not the optimal choice for training
LDMs. Thematic relatedness production, as a task of
moderate conceptual complexity, is best fit by either
n-gram or predict models trained on a medium-sized
high-quality spoken corpus (Subtitles). Increasing con-
ceptual complexity appears to be accompanied by
some degree of diversification in model family and
corpus recommendations.

Finally, it should be noted that this dataset is far less
constrained than those of earlier studies. Unlike
synonym selection in Study 1 and similarity and related-
ness judgements in Study 2, where the word pairs in the
datasets were designed by researchers to fulfil certain
characteristics, the word pairs in this thematic related-
ness task were generated freely by participants. The
ability of LDMs to predict such an unconstrained
dataset from this moderately complex conceptual task,
albeit less accurately than datasets from traditional
benchmarking tasks, is testament to the power of lin-
guistic distributional information in predicting a wide
range conceptual behaviour.

Study 4: Semantic priming

Semantic priming refers to the phenomenon whereby
people are better able to recognise a target word
when it is preceded by a word that is related in
meaning (see McNamara, 2005; Neely, 1991, for
reviews). For instance, people are faster to confirm that
tiger is a valid word (lexical decision) or to read tiger
aloud (word naming) when it is preceded by related
word lion compared to when it is preceded by unrelated
word room. In principle, both lexical decision and
naming tasks can be performed without any access to

LANGUAGE, COGNITION AND NEUROSCIENCE 1247



semantics (e.g. knowing that “tiger” is a word but “tigen”
is not does not necessarily require accessing the
meaning of tiger) but in practice the meaning of a
word affects how quickly it is processed.

The conceptual complexity of semantic priming
depends entirely on the stimulus set used. Synonyms
can prime one another (e.g. Perea & Rosa, 2002), such as
error→mistake, which indicates that some semantic
priming emerges from the same paradigmatic relations
that underlie the synonym selection task of Study 1 and
the majority of similarity judgements in Study
2. However, semantic priming also includes priming via
thematic relations (i.e. prime and target occupy comp-
lementary roles in a specific time and place: e.g. L. Jones
& Golonka, 2012), such as pillow→blanket, which are syn-
tagmatically or bag-of-words learned, and indicates that it
can be as least as conceptually complex as the thematic
production task in Study 3. Moreover, semantic priming
effects also encompass other complex prime-target
relations, including integrative priming (i.e. prime and
target can be combined into a coherent whole, such as
wool→coat), and taxonomic priming (i.e. prime and
target belong to the same taxonomic category, such as
lion→tiger), which suggests a level of conceptual com-
plexity beyond that of thematic production. We therefore
assume semantic priming in lexical decision and naming
tasks has, in principle, a variable level of conceptual com-
plexity that is determined by the stimuli involved. In the
present study we chose to use a semantic priming
dataset (the Semantic Priming Project: Hutchison et al.,
2013) that was quite high in conceptual complexity
because its stimulus set featured a diverse set of semantic
relations that relied on paradigmatic relations (e.g.
synonym error→mistake), syntagmatic relations (e.g. com-
positionalporcelain→doll), aswell asmoregeneral bag-of-
words relations that do not neatly fit either paradigmatic
or syntagmatic definitions (e.g. philosophy→thought,
ahoy→ship).

Many studies have shown that semantic priming
effects can be predicted by the linguistic distributional
relationship between prime and target words, both
from the perspective of distributional semantics
research (M. Jones et al., 2006; Lund et al., 1995;
Mandera et al., 2017) and with reference to linguistic–
simulation theories of conceptual processing (L. Jones
et al., 2017). In the present study, we focus on semantic
priming in lexical decision and naming tasks both
because of their past history with LDM data and
because it offers an opportunity to examine an implicit
dependent variable (RT) in a task of reasonable concep-
tual complexity. Typically, LDM performance is based on
comparing each prime→target pair to produce a distri-
butional measure, and then evaluating how well these

measures predict human response times to the target
word (i.e. whether or not the distributional score can
predict the priming effect on the target).

Method

Materials and datasets
We modelled two variables from a single dataset, the
semantic priming project (Hutchison et al., 2013), which
includes a database of response times to 1611 target
words, each preceded by a four different primes, in
lexical decision (N = 512) and word naming (N = 256)
tasks. RT was measured from the onset of the target
word to the task-specific response: keypress in lexical
decision, or speech onset in word naming. We selected
data for 200 ms stimulus onset asynchrony (SOA), the
point at which priming effects are elicited automatically,
rather than the data for 1200 ms SOA data which incor-
porates intentional responses strategies (Hutchison
et al., 2013). Specifically, we used the mean standardised
RT (LDT_200ms_Z and NT_200ms_Z variables from the
item-level data files) for each target word following one
of four different prime types: first-associate related
prime (e.g. lion→tiger) other-associate related prime
(e.g. leopard→tiger), first-unrelated prime (e.g. pile→ti-
ger), and other-unrelated prime (plush→tiger).

Evaluation procedure
For predict and count vector models, we calculated the
distances from the vector of each prime word to the
vector of each target word. For n-gram models, we cal-
culated the distributional score between each prime
word and each target word. Each LDM therefore pro-
duced a single measure for each prime→target pair,
which formed the predictor of interest in linear
regression analyses (see below). We made five substi-
tutions to words in the dataset: two from American-
English to British-English spelling equivalents (e.g.
tumor changed to tumour), two to correct typos (e.g.
condfidence changed to confidence), and one to include
hyphenation (bookbag changed to book-bag).

To evaluate each LDM, we fit ordinary least-squares
linear regressions to each dependent variable (lexical
decision RT and naming RT) in two hierarchical steps.
Step 1 comprised a set of baseline lexical predictors
that affect visual recognition of the target word,
extracted from the Elexicon database (Balota et al.,
2007): length in letters, number of syllables, log word fre-
quency LgSUBTLWF, orthographic Levenshtein distance
OLD20, and phonological Levenshtein distance PLD20.12

The latter two variables comprise mean Levenshtein dis-
tance (Levenshtein, 1966) from the target word to its 20
closest neighbours (Yarkoni et al., 2008).
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Any words missing from either our corpora or Elex-
icon were excluded from the analysis in question (157
items, 2.4% of the total list of prime–target pairs). In
addition, we included in Step 1 the orthographic
Levenshtein distance (OLD) between prime and
target word (e.g. OLD between lion→tiger = 4). Step
2 comprised the critical prime→target predictor for a
given LDM (i.e. distributional distance or score from
prime word to target word). We then examined the
additional variance (R2 change) explained by the
LDM predictor in Step 2 compared to Step 1, and esti-
mated Bayes factors for the Step 2 model over Step 1
using BIC, as in previous studies. Zero-order corre-
lations among baseline predictors are available in
online materials.

Results and discussion

Overall, LDMs performed best in predicting semantic
priming with a medium window of radius 5. In several
of the best-performing models, window radius of 3 or
10 did at least as well as radius 5, but it was heavily
dependent on corpus choice and task whereas optimal
r = 5 performed consistently strongly. Correlation and
cosine distance substantially outperformed Euclidean
distance, and – although both did equally well in word
naming – correlation distance outperformed cosine dis-
tance across the best-performing models of lexical
decision and was therefore the optimal choice. Perform-
ance for each model using these optimal parameters is
shown in Figure 8 and forms the basis for the trends
and recommendations reported below; results for all
models can be found in the online materials and are
summarised in Figure 3.

In general, LDMs did very well at modelling semantic
priming effects. At optimal parameter settings, the best
LDM scores explained up to 5.2% of variance in lexical
decision RT (total R2 = .377 including baseline model)
and 2.4% of variance in word naming RT (total R2

= .242), which constitutes extremely strong evidence in
favour of using LDM scores to predict semantic
priming effects (BF10 > 2.11 × 10112 and BF10 > 2.10 ×
1042, respectively). The finding of larger semantic
priming effects for lexical decision compared to
naming is consistent with overall patterns in the
dataset (Hutchison et al., 2013) and the wider literature
(e.g. Balota et al., 2004). By contrast, some parameter set-
tings performed extremely poorly, with their LDMs pre-
dicting so little variance (i.e. 0.01% or less) that
evidence instead favoured the null model.

The best model family for semantic priming was
count vector models, followed by n-gram models, and
lastly predict models, though performance varied

somewhat by task and corpus. At optimal parameters,
semantic priming in lexical decision RT was best mod-
elled by the PPMI count vector model, whereas semantic
priming in naming RT was best modelled by log co-
occurrence count vector model. While the best LDM
for one task still performed reasonably well in the
other task – indeed, all count vector models bar prob-
ability ratio were good predictors of semantic priming
– it was not competitive with the leading LDMs. The
second-best LDM for each task tended to be the n-
gram equivalent of the best performers (PPMI n-gram
for lexical decision; log n-gram for naming), but all n-
gram models except for probability ratio n-gram were
effective predictors of semantic priming. Predict
models (particularly CBOW at embedding sizes from
100 to 500) did well at predicting semantic priming in
lexical decision, providing a viable second choice at
some parameter settings, but were mediocre at predict-
ing semantic priming in word naming, and hence do not
represent a reliable choice.

The Subtitles corpus was the best choice for semantic
priming, producing consistently strong performance
across LDMs, with UKWAC edging ahead of the BNC
for second place according to task and model. While
model performance was similar across all corpora at
optimal parameters, there were some differential
trends in how each model family performed on each
corpus. The Subtitles corpus and BNC followed general
trends, with count vector models (PPMI for lexical
decision, log co-occurrence for word naming) producing
best performance. The same pattern appeared for
UKWAC in the word naming task. However, when
UKWAC was used for the lexical decision task, count
vector models did unexpectedly poorly and n-gram
models (PPMI n-gram) did best (though overall perform-
ance was still not as good as when trained on the Sub-
titles corpus). Overall, while both the BNC and UKWAC
were occasionally competitive with optimal Subtitles
corpus for certain LDMs, their performance was too vari-
able to generalise well.

In summary, the optimal LDM for semantic priming
seems to be a count vector model trained on a
medium-large high-quality corpus of spoken language
(Subtitles) with a medium window radius of 5, using cor-
relation distance between vectors. However, the optimal
count vector model depends on the exact task used to
elicit semantic priming effects. If participants are asked
to perform lexical decision, then PPMI is the optimal
choice, but if asked to perform word naming, then log
co-occurrence is the optimal choice. In Bayesian terms,
these optimal count-vector LDMs were clear leaders,
performing BF = 2.51 × 1018 and 1.23 × 1018 times
better than the next-best model family (n-gram
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Figure 8. LDM performance per corpus and dataset in Study 4’s semantic priming task, for optimal parameters of window radius r = 5
and correlation distance between vectors. Panel A shows the increase in R2 achieved by adding a predictor of LDM score (n-gram) or
distance (predict or count vector) to a null model containing lexical predictors, in a linear regression of response times per item. Panel
B shows log Bayes factors (Log10 BF10) for LDM performance; positive values indicate evidence favours the LDM over the null model,
negative indicate evidence favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 BF10 = 1 (i.e. BF10
= 10) threshold for strong evidence (Jeffreys, 1998). Note that for the lexical decision RT dependent variable (first row of Panel B), the
magnitude of the scale means the dotted lines are so close to 0 as to be indistinguishable.
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models at optimal parameters), for lexical decision and
naming times, respectively. These optimal models can
explain up to 5.2% of lexical decision time variance
and 2.4% of naming time variance, which is comparable
to previous investigations of LDMs in semantic priming
(e.g. M. Jones et al., 2006; Mandera et al., 2017).13 In
the event that theoretical or practical reasons required
using the same LDM for semantic priming effects in
both lexical decision and word naming, then it is poss-
ible to use either optimal model but it comes at a cost
of performance: the optimal mode for word naming
(log co-occurrence) can still explain 2.1% of variance in
lexical decision, and the optimal model for lexical
decision (PPMI) can still explain 1.4% of variance in
naming. Nonetheless, it remains the case that semantic
priming, which reflects all three paradigmatic, syntag-
matic, and bag-of-words relations, is best predicted by
LDMs that capture all three paradigmatic, syntagmatic,
and bag-of-words relations (i.e. count vector models).

The optimal LDM for semantic priming is notably
different from the relatively simpler tasks that preceded
it in Studies 1–3. In particular, the count vector model
family was the strongest performer for semantic
priming, despite performing poorly for synonym selection,
similarity and relatedness judgements, and thematic relat-
edness judgements. For the first time, predict models
were not the optimal or joint-optimal choice, and in fact
came last overall. The recommendations of this study
therefore represent a significant departure from the distri-
butional semantics recommendation of predict models
trained on large corpora. Semantic priming in lexical
decision or word naming – both of which involve variable
but generally complex conceptual processing – is best
served by count vector models trained on a medium-
sized high-quality spoken corpus (Subtitles). Based on
the trends from Studies 1–4, increasing conceptual com-
plexity is accompanied by a diversification in both
model family and corpus recommendations. At this
point in our investigation of linguistic distributional
knowledge, our findings have cautiously started to
support the tenet of flexibility in linguistic–simulation the-
ories rather than the one-size-fits-all approach of distribu-
tional semantics. That is, because both the model family
and corpus recommendation have moved away from
the original recommendations of Study 1 as conceptual
complexity has increased, and because even in the
present study the optimal count vector model varied by
the task used to elicit semantic priming effects, our
findings are consistent with the idea that different con-
ceptual tasks use linguistic distributional knowledge
differently and therefore require different LDMs.

Nevertheless, since the present study was our first to
use an implicit (RT) rather than explicit (ratings, etc.)

measure of conceptual processing, it is possible that
some of our recommendations rest on that distinction
rather than on increasing conceptual complexity. We
address this issue in the next study.

Study 5: Abstract–concrete semantic decision

Semantic or categorical decision tasks have long been
used across cognitive psychology, psycholinguistics,
and neuropsychology in order to examine conceptual
representation and processing (McRae et al., 1997;
Rosch & Mervis, 1975; Warrington, 1975). For instance,
when presented with the word cat, participants might
be asked to decide whether it refers to a concrete
versus abstract concept, or a living versus non-living
thing, and so on. In particular, the abstract-concrete dis-
tinction is arguably the most fundamental in the human
conceptual system (e.g. Barsalou & Wiemer-Hastings,
2005; Borghi & Binkofski, 2014; Paivio, 1986; Vigliocco
et al., 2009), supported by evidence such as double dis-
sociations in neuropsychological impairments (Breedin
et al., 1994; Warrington, 1975).

We chose to examine abstract/concrete semantic
decisions for two main reasons. Firstly, it allows us to
examine both explicit and implicit dependent variables
as a function of the same task: the explicit semantic
decision for a given word (i.e. abstract or concrete) and
the implicit measure of processing effort in arriving at
this decision (i.e. RT). Secondly, abstract/concrete
semantic decisions represent the type of conceptually
complex task that is often the focus of linguistic–simu-
lation research but rarely features in distributional
semantics research. One particular theory from linguis-
tic–simulation research, the linguistic shortcut hypoth-
esis, states that if linguistic distributional information
can usefully inform a response in a conceptual task
before relatively slower sensorimotor simulation can
do so, then people will frequently use it as a shortcut
in order to avoid potentially more costly cognitive pro-
cessing (Connell, 2019; Connell & Lynott, 2013). Hence,
while participants could perform an abstract/concrete
semantic decision via deep consideration of the onto-
logical categories of “concrete things” and “abstract
things” (e.g. degree of sensory information in the refer-
ent concept: Connell & Lynott, 2012; Vigliocco et al.,
2009), the nature of the task means that participants
could instead get away with the computationally
cheaper heuristic of responding on the basis of the lin-
guistic distributional relationship between the target
word and the words used to label the forced-choice
alternatives (i.e. “concrete” and “abstract”). That is,
people could perform a semantic decision trial by choos-
ing whichever of the category labels had a stronger
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linguistic distributional relationship with the target word
(e.g. for the target word cat, examine the relationships
cat–abstract and cat–concrete and select whichever is a
closer fit). LDM performance in semantic decision can
therefore be modelled by comparing each target word
to concrete and abstract (i.e. target–concrete; target–
abstract) to produce two distributional measures per
target, and then evaluating how well these measures
predict human decisions and response times.

The nature of the linguistic distributional relationship
underlying semantic decision depends on the categories
specified as choices, but abstract/concrete semantic
decision relies on high-level bag-of-words relations and
therefore represents a very high level of conceptual com-
plexity beyond that of previous studies. Deciding whether
cat is an abstract or concrete concept relies little on para-
digmatic or syntagmatic relations. While paradigmatic
relations can help to cluster concepts into taxonomic
classes (e.g. the structures he fed the cat and he fed the
animal will help the cat–animal paradigmatic relation to
form), such neat syntactic substitutability is still quite a
step from supporting concrete or abstract category mem-
bership (i.e. cat and concrete, or cat and abstract, seldom
occupy the same syntactic position across similar senten-
tial contexts). Likewise, syntagmatic relations are of
limited use unless a category name and target appear
together regularly in the same syntactic structure, which
is unlikely for cat and concrete (or indeed cat and abstract).
Rather, bag-of-words relations in linguistic distributional
knowledge (i.e. those that are neither syntagmatic nor
paradigmatic and are instead learned regardless of
syntax) will be more useful to abstract/concrete semantic
decision: the generalised co-occurrence of cat–concrete
(and cat–abstract) in the same or similar contexts, regard-
less of syntactic structure, informs their linguistic distribu-
tional relationship.

Method

Materials and datasets
We modelled two variables from a single dataset, the
Calgary semantic decision project (Pexman et al.,
2017), that comprises reaction times and accuracies for
abstract/concrete semantic decision on 10,024 English
words (N = 312). In the study, participants were
instructed to decide whether each presented word rep-
resented a concrete or abstract concept in a two-alterna-
tive forced-choice (2AFC) task.

For each word, Pexman and colleagues included a
number of variables. We used the mean standardised
RT (zRT_clean_mean variable from the item-level data
file) as an implicit measure of conceptual processing.
For an explicit measure, Pexman and colleagues had

additionally coded each participant decision as correct
or incorrect according to how the word was rated in
Brysbaert et al.’s (2014) concreteness norms, and
reported the mean proportion correct (ACC variable)
per word. However, this coding led to the circumstance
where some words were coded as ostensibly low accu-
racy (e.g. phantom accuracy = .129 as an abstract word,
meaning 87.1% of Pexman et al.’s participants thought
phantom was concrete rather than abstract), which
suggested the distinction between correct and incorrect
may be somewhat arbitrary in ontological terms. We
therefore opted to represent a more neutral explicit
measure of response choice that did not reference a pre-
determined notion of correctness, and recoded the ACC
variable to reflect the proportion of participants who
decided each word was concrete. For words coded in
the semantic decision dataset as concrete (according
to Brysbaert et al.’s norms), we used the accuracy
figure unaltered because it already reflected the pro-
portion of participants that judged the item as concrete;
for words coded as abstract, such as phantom, we used
1–accuracy to ensure it reflected the proportion that
judged the word as concrete.

Evaluation procedure
For predict and count vector models, we calculated the
distances from the vector of each target word to the
vector of each category name “concrete” and
“abstract”, and used these two distances as separate
predictors in linear regressions (see below). For n-
gram models, we calculated the distributional score
between each target word and each category name
“concrete” and “abstract”, and used these two scores
as separate predictors in linear regressions. We used
the dataset as published, with 153 words substituted:
118 from American English to British English spellings
(e.g. flavor changed to flavour), 31 to include hyphena-
tion (e.g. smalltime changed to small-time), and 3 syno-
nyms for words which were not found in our corpora
(barrette to hairclip, flaxseed to linseed, and teakwood
to teak).

To evaluate each LDM, we fit ordinary least-squares
linear regressions to each dependent variable (RT and
“concrete” response proportion) in two hierarchical
steps. Step 1 comprised a baseline model of lexical
predictors that affect visual recognition of the target
word extracted from the Elexicon database (Balota
et al., 2007); any words missing from either our
corpora or Elexicon were excluded from analyses.
Specifically, we entered the following predictors simul-
taneously: length in letters, number of syllables, log
word frequency LgSUBTLWF, orthographic Levenshtein
distance OLD20, and phonological Levenshtein
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distance PLD20. Zero-order correlations amongst base-
line predictors are available in online materials: there
were no issues of multicollinearity (all VIFs < 7). Step
2 entered simultaneously the two critical predictors
for a given LDM (i.e. distributional distance or score
from target word to concrete and target word to
abstract).14 We then examined the additional variance
explained by the LDM predictors in Step 2 compared
to the baseline model of lexical predictors in Step 1
(reported as R2 change). We also estimated Bayes
factors for the Step 2 model over Step 1 using BIC,
as in previous studies.

Results and discussion

Optimal parameters differed for implicit measures of
semantic decision (RT) and explicit measures (pro-
portion of “concrete” responses), and so we report
them separately. For implicit semantic decision RT,
the picture was quite straightforward: LDM perform-
ance was best at medium window radius r = 5
(although r = 3 also did well), and correlation and
cosine both equally outperformed Euclidean distance.
For explicit proportion of “concrete” responses, LDM
performance was highly sensitive to fine tuning of
model-corpus-parameter combinations. The absolute
best performance came from skip-gram with maximal
embedding size e = 500 (though all embedding sizes
performed similarly), trained on the UKWAC corpus
with a large window radius of r = 10 and using Eucli-
dean distance between vectors, but few of these par-
ameters (particularly the intersection of Euclidean
distance and UKWAC) held true as optimal for other
LDMs. The vast majority of other LDMs (including the
other predict model, CBOW) tended to perform
better with a medium window radius of r = 3 or r = 5,
and using correlation or cosine distance, regardless of
corpus. As such, we concluded the particular parameter
settings of the top-scoring model were not representa-
tive of overall LDM behaviour and so were unlikely to
generalise well. For proportion of “concrete” responses
in semantic decisions, the optimal parameters were
therefore r = 3 (though r = 5 also did well), and corre-
lation or cosine distance. Performance for each model
using these optimal parameters (r = 5 for RT and
r = 3 for response proportion, correlation or cosine dis-
tance) is shown in Figure 9 and forms the basis for the
trends and recommendations reported below; results
for all models can be found in the online materials
and are summarised in Figure 3.

In general, LDMs did well at modelling semantic
decision. At optimal parameter settings, the best LDM
scores explained up to 4.6% of variance in RTs (total

R2 = .198 including baseline model) and 20.1% of var-
iance in the proportion of “concrete” responses (total
R2 = .374), which constitutes extremely strong evidence
in favour of using LDM scores to predict semantic
decision RT (BF10 > 2.15 × 10111) and responses (BF10 >
1.11 × 10570). Some parameter settings performed
extremely poorly, with their LDMs predicting so little
variance (i.e. 0.01% or less) that evidence instead
favoured the null (baseline) model.

The count vector model family was overall best for
semantic decision at optimal parameters, with predict
models in second place and n-gram models a distant
third. All count vector models bar probability ratio
explained meaningful variance in semantic decision,
but the optimal model differed by measure. For
implicit semantic decision RT, the conditional prob-
ability count vector model was best, with the next-
best performer (log-co-occurrence count vector
model) quite a distance behind. Predict models, par-
ticularly skip-gram (optimal embedding size e varied
with corpus), performed reasonably well but not com-
petitively, and n-gram models performed poorly. For
explicit proportion of “concrete” responses, the log
co-occurrence and conditional probability count
vector models both performed strongly, with the
leader varying by corpus choice (see below). At
optimal parameters, however, the top-performing
LDM was log co-occurrence. Other strong performers
included both skip-gram and CBOW predict
models (optimal embedding size varied with corpus),
which sometimes beat count vector models depending
on corpus, but were overall not competitive with
the leading LDMs. As with RT, the n-gram model
family tended to perform poorly for response
proportion.

In terms of corpus choice for semantic decision, the
BNC outperformed other corpora by a clear margin. For
both semantic decision RT and responses at optimal
parameters, the BNC advantage was consistent across
count vector models and across many of the best-per-
forming predict models (note that n-gram models per-
formed too poorly to enable meaningful cross-corpus
comparisons). UKWAC was generally in second place
and tended to outperform models trained on the Sub-
titles corpus. However, performance for proportion of
“concrete” responses was highly sensitive to model-
corpus combinations. For instance, the leading count
vector model was log co-occurrence when trained on
the BNC or UKWAC, but conditional probability when
trained on the Subtitles corpus. In addition, skip-gram
predict models tended to perform worst for the BNC,
instead favouring the Subtitle corpus at smaller
embedding sizes (e = 50–100) and UKWAC at larger
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Figure 9. LDM performance per corpus and dataset in Study 5’s abstract/concrete semantic decision task, for optimal parameters of
window radius r = 5 for response times (RT), and radius r = 3 for response proportion, and correlation distance between vectors.
Panel A shows the increase in R2 achieved by adding predictors of LDM scores (n-gram) or distances (predict or count vector) to a
null model containing lexical predictors, in a linear regression of RT or response proportion. Panel B shows log Bayes factors
(Log10 BF10) for LDM performance; positive values indicate evidence favours the LDM over the null model, negative indicate evidence
favours the null model over the LDM, and the dotted horizontal lines indicate the Log10 BF10 = 1 (i.e. BF10 = 10) threshold for strong
evidence (Jeffreys, 1998). Note that for the Response decision dependent variable (bottom row), the magnitude of the scale means the
dotted lines are so close to 0 as to be indistinguishable.
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embedding sizes (particularly e = 500); however, none
were competitive with the best count vector models
trained on the BNC.

In summary, the optimal LDM for the conceptually
complex task of semantic decision is from the count
vector model family, trained on a very high-quality
corpus of spoken and written language (BNC) with a
small-to-medium window radius, and using cosine or
correlation distance between vectors. However, the
precise LDM appears to depend on whether the
focus of investigation is the explicit task response (i.e.
the proportion of participants who selected “concrete”
as opposed to “abstract” for a target word) or the
implicit measure of processing effort (i.e. the average
RT to make the decision). If one wishes to model expli-
cit responses, then the optimal LDM is log co-occur-
rence count vector model, trained on the BNC with a
fairly small window radius of r = 3, and using either
cosine or correlation distance. On the other hand, if
one wishes to model RT as an implicit measure of pro-
cessing effort, then the optimal LDM is the conditional
probability count vector model, again trained on the
BNC, with a medium window radius of r = 5, using
either cosine or correlation distance. Other model
families do not come close to the performance of
these optimal count vector LDMs; at optimal par-
ameters, they are at least BF = 5.50×1063 and
2.82×10151 times better than the most competitive
predict models (i.e. the next-best option) for response
proportion and RT dependent variables, respectively.
In the event that it became important, for reasons of
theory or practicality, to use the same LDM for both
explicit and implicit measures of semantic decision,
then the best compromise would be to use the
optimal model for RT (conditional probability); this
LDM still did an excellent job predicting response pro-
portions, whereas the reverse was not true to the same
extent.

These findings also show that a task that makes
extensive use of bag-of-words relations (semantic
decision) is best predicted by LDMs that captures
bag-of-words relations (count vector models).
However, since predict and n-gram models also
capture bag-of-words relations, why were they not
equally successful at predicting semantic decision?
One possible reason may lie in the fact that predict
and n-gram models are specialists, with contrasting
strengths in capturing paradigmatic and syntagmatic
relations, respectively. Count vector models, on the
other hand, do not specialise and can capture both
paradigmatic and syntagmatic relations (the latter to
a slightly lesser extent). We speculate that it may be
this compromise of balance in count vector models

that allows them to capture bag-of-words relations
more effectively than do predict and n-gram models,
and hence perform more strongly in predicting con-
ceptual processing that exploits such relations.

Overall, the findings of this study represent a further
departure from the distributional semantics recommen-
dation of predict models trained on large corpora. As a
task of high conceptual complexity, semantic decision
was the first task where the BNC – a relatively small
corpus by the standards of distributional semantics
but one that is high quality, designed to be represen-
tative of language use with low levels of error and
noise – was the optimal corpus on which to train
LDMs. As in Study 4 on semantic priming, the count
vector model family was the strongest performer for
semantic decision, despite performing poorly for tasks
of lower conceptual complexity. Moreover, these
optimal recommendations of count vector model
family trained on a small but very high-quality corpus
are consistent for both explicit (response decision)
and implicit (RT) measures of semantic decision. The
trends from Studies 1–5 now show consistently that
increasing conceptual complexity is accompanied by
a diversification in both model family and corpus rec-
ommendations. Rather than a one-size-fits-all approach
to modelling linguistic distributional knowledge in cog-
nition, our findings support the idea that different con-
ceptual tasks use linguistic distributional knowledge
differently and therefore require different LDMs to
capture behaviour.

Finally, we note that the approach taken in this study
represents a novel perspective on how linguistic distri-
butional information affects semantic decision tasks.
Some previous work had also observed an effect of lin-
guistic distributional information on semantic decision
RT, but using a very different method to the one we
employed here. Hargreaves and Pexman (2014) used a
single variable for each target word that represented
the mean distance to all neighbours within a specified
distance threshold of the target word (i.e. Shaoul & West-
bury’s, 2010, ARC variable), which effectively reflects
whether a word appears in a sparse (high score) or
dense (low score) area of vector space. They found
that semantic decision RT was slightly faster for words
in denser vector space compared to sparser vector
space. However, this linguistic distributional information
pertained to the target word only; they did not examine
the relationship between the target word and the words
used to label the 2AFC choices (i.e. concrete and abstract)
as we did in the present study. The findings we report
here – that the distance in vector space between a
target word and the words used to label the semantic
categories is an excellent predictor of both RT and
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response decision – suggest that the words used to label
category choices in semantic decision tasks (and indeed,
any 2AFC tasks with linguistic labels) are at least as
important as the target words.

General discussion

Our goal in the present paper was to investigate the role
of linguistic distributional knowledge in cognition across
a broad set of cognitive tasks, from conceptually simple
tasks that rely on similarity of meaning to conceptually
complex tasks that require sophisticated processing of
diverse and/or abstracted semantic relations. To do so,
we conducted the largest to date systematic comparison
of linguistic distributional models (LDMs), training
corpora, and parameters, and evaluated their ability to
predict human data in a range of cognitive tasks that
varied in their conceptual complexity. Overall, LDMs
were excellent at modelling cognitive behaviour, from
highly constrained forced-choice tasks (synonym selec-
tion; semantic decision) to highly unconstrained pro-
duction tasks (thematic relatedness production), in
terms of modelling both explicit behaviours such as
ratings/decisions (similarity and relatedness ratings;
synonym selection; semantic decision) and implicit
measures of processing effort such as RT (semantic
priming; semantic decision).

However, the optimal LDM differed as conceptual
complexity increased; see Table 3 for details of optimal
LDM per task, and Figure 10 for a summary of trends.
Tasks of low conceptual complexity (Study 1 synonym
selection; Study 2 similarity ratings) were best fit by
predict models trained on a large but low-quality
corpus UKWAC. Tasks of medium conceptual complexity
(Study 2 relatedness ratings; Study 3 thematic

relatedness production) still found success with predict
models but this time trained on a medium-sized, high-
quality Subtitles corpus; notably, n-gram models were
also competitive here. Tasks of high but variable concep-
tual complexity (Study 4 semantic priming in lexical
decision and naming) were best fit by count vector
models rather than predict models, but again with the
Subtitles corpus. Finally, a task of very high conceptual
complexity (Study 5 abstract/concrete semantic
decision) continued the choice of count vector models
but this time the small but very high-quality BNC was
the optimal training corpus, and these optimal choices
held for both explicit (i.e. response proportion) and
implicit (i.e. RT) dependent measures of the same task.

By contrast, the optimal model family and corpus did
not vary systematically according to the implicit versus
explicit nature of the dependent measure. Tasks featur-
ing explicit dependent measures that encoded the end
result of conceptual processing in the response had no
consistent optimal corpus or model family. All three
corpora featured as optimal across explicit task
measures, from the large but noisy UKWAC (Study 1
synonym selection; Study 2 similarity ratings), to the
medium-sized but higher quality Subtitles corpus
(Study 2 relatedness ratings; Study 3 thematic related-
ness production), to the small but very high quality
BNC (Study 5 abstract/concrete semantic decision). All
three model families were likewise optimal across expli-
cit tasks: while some were best fit by predict models
(Studies 1–2), others were fit equally by both predict
and n-gram models (Study 3) or best fit by count
vector models (Study 5). Tasks featuring implicit depen-
dent measures of processing effort had no consistent
optimal corpus, either continuing the trend started in
Study 2 for the Subtitles corpus (Study 4 semantic

Table 3. Optimal model, corpus and parameters for each task, selected by intersection of parameter settings with best performance
quantified by Bayes-factor model comparisons. Where recommendations differ by task or processing measure within a study, we list
them separately.

Task
Conceptual
complexity

Processing
measure

Optimal parameters

Model
family Model Corpus Window radius Distance

Study 1: Synonym choice Very low Explicit Predict Skip-gram 300 or CBOW 300 UKWAC 1 or 3 Cosine
Study 2: Similarity rating Low Explicit Predict CBOW 300 UKWAC 1 Correlation or

Cosine
Study 2: Relatedness
rating

Medium Explicit Predict CBOW 200 Subtitles 10 Correlation or
Cosine

Study 3: Thematic
relatedness production

Medium-High Explicit N-gram or
Predict

Log n-gram or Skip-gram
300–500 or CBOW 500

Subtitles 5 (N-gram) or 10
(predict)

Correlation or
Cosine

Study 4: Semantic
priming in LDT

High (variable) Implicit Count PPMI Subtitles 5 Correlation

Study 4: Semantic
priming in NT

High (variable) Implicit Count Log co-occurrence Subtitles 5 Correlation

Study 5: Semantic
decision

Very high Explicit Count Log co-occurrence BNC 3 Correlation or
Cosine

Implicit Count Conditional probability BNC 5 Correlation or
Cosine
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priming RT) or opting for the BNC (Study 5 semantic
decision RT). While implicit task measures shared the
same optimal model family, count vector models, they
were not alone in that choice. Critically, Study 5 favoured
the same optimal model family and corpus (count vector
models, BNC) for both its implicit and explicit measures
of semantic decision, thus showing that it was a funda-
mental characteristic of the task (i.e. its conceptual com-
plexity) rather than the explicit vs. implicit dependent
measure, that determined optimality.

It is important to note that the selection of optimal
model family and corpus were not co-dependent: the
optimal model family per task performed robustly
across multiple corpora, and the optimal corpus per
task performed robustly across multiple model families.
Moreover, the changes in optimal choices were not
abrupt. For instance, count vector models perform
reasonably well throughout Studies 1–3 before dominat-
ing in Studies 4–5, and n-gram models perform strongly
in Study 2’s relatedness ratings before becoming a joint-
optimal choice in Study 3 and then declining to second
choice in Study 4. Similarly, the Subtitles corpus first
appeared as a joint-optimal choice alongside UKWAC
for three out of four similarity datasets in Study 2
before dominating in Studies 3–4, and the BNC
appeared as an occasional competitor in Study 4
before dominating in Study 5. Such gradual trends indi-
cate sensitivity to incremental change across Studies 1–5
rather than disjoint model fitting of individual tasks, and

suggest that the efficacy of model families and corpora
wax and wane systematically according to the concep-
tual complexity of the task at hand.

Theoretical implications

Our findings suggest that use of linguistic distributional
knowledge appears to be ubiquitous in cognition and a
vital part of conceptual processing, but it is not an amor-
phous or rigid resource. Rather, linguistic distributional
knowledge is a rich source of information about the
world that can be accessed flexibly according to cogni-
tive need. In other words, our findings strongly
support a task-dependent flexible approach to the use
of linguistic distributional knowledge in cognition
rather than a one-size-fits-all approach. Specifically, we
found that different conceptual tasks make differential
use of linguistic distributional knowledge and therefore
require different LDMs to capture behaviour appropri-
ately. No single model family was excellent at all tasks,
nor was any single corpus. Rather, tasks of increasing
conceptual complexity across Studies 1–5 required
increasingly non-specialist models that could capture a
wide variety of more abstracted conceptual relations
and increasingly high-quality corpora that were repre-
sentative of human language experience. These patterns
are consistent with the tenet of flexibility in linguistic–
simulation research, which assumes that linguistic distri-
butional knowledge has a flexible rather than a uniform

Figure 10. Summary of optimal model family and corpus choice for each task in Studies 1–5, according to the conceptual complexity
and relevant linguistic distributional relations of each task, and the nature of the dependent measures modelled.
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role in conceptual processing, and that use of such
knowledge depends on a number of factors including
the nature of the task, surrounding context, and
general processing goals (Barsalou et al., 2008; Connell,
2019; Connell & Lynott, 2014; Louwerse, 2011). The
present findings contribute to linguistic–simulation the-
ories by showing that the conceptual complexity of a
task – that is, whether it relies on a limited range of para-
digmatic relations or more diverse and/or abstracted
conceptual relations – is a major factor in how linguistic
distributional knowledge is used in cognition.

Moreover, our findings shed crucial light on the
nature of linguistic distributional knowledge. The large
differences in architecture between the model families
(i.e. from Hebbian learning to error-driven learning;
and from first-order to second-order co-occurrences)
translate to large differences in model behaviour: the
predictors produced by each LDM per task were poorly
correlated between model families.15 Such differences
in distributional estimates indicate that the various
model families are not capturing the same latent con-
struct, and that their differences in performance are
not simply due to noise. Rather, the relative specialisms
of each model family in capturing paradigmatic versus
syntagmatic versus bag-of-words relations means that
their performance can inform our understanding of
how the role of linguistic distributional knowledge
varies across cognitive tasks.

Firstly, our findings suggest that syntagmatic, paradig-
matic, and bag-of-words relations all underpin the lin-
guistic distributional knowledge that people use in
conceptual processing. Many types of conceptual
relations can be gleaned from regularities in language
experience, including syntagmatic relations (e.g. object
properties like blue–eyes; agent actions like customer–
pay), paradigmatic relations (e.g. synonyms like error–
mistake, shared categories like dog–cat), and bag-of-
words relations (e.g. broad thematic relations like philos-
ophy–thought, high-level categories like infinity–
abstract). We found that models that specialise in captur-
ing paradigmatic relations (predict models) do best in
tasks that rely heavily on paradigmatic relations, such
as synonym selection (Study 1) and similarity ratings
(Study 2). Conversely, models that specialise at capturing
syntagmatic relations (n-grammodels) are most useful in
tasks that rely heavily on syntagmatic relations, such as
thematic relatedness production (Study 3). However,
such specialist models are less useful as conceptual com-
plexity increases, and balanced models that capture
paradigmatic, syntagmatic, and bag-of-words relations
(count vector models) are best for tasks of high concep-
tual complexity, such as semantic priming (Study 4) and
semantic decision (Study 5). In short, conceptual

processing makes use of the kind of conceptual relations
underpinning linguistic distributional knowledge, but
different tasks use each type of relation to different
extents. While previous work has argued that people
make differential use of linguistic distributional infor-
mation according to the task at hand (i.e. the tenet of
flexibility: see Connell, 2019, for review), such differences
are typically presented as quantitative: people make
greater or lesser use of linguistic distributional knowl-
edge according to task demands. What we show here
is that such differences are also qualitative: as the concep-
tual complexity of a task increases, the diversity of rel-
evant linguistic distributional knowledge also increases.

Secondly, the present findings suggest that the
quality of language experience is highly important to
the linguistic distributional knowledge used in concep-
tual processing, particularly as the diversity of relevant
conceptual relations increases. All the corpora we exam-
ined were plausible in terms of the quantity of adult
language experience (i.e. between 200 million and 2
billion words: see introduction), with the exception of
the BNC that was smaller than ideal at 100 million
words. Corpus quality, however, varied enormously.
We found that large but low-quality corpora like
UKWAC, which comprise written text scraped from the
web, are most effective when the task to be modelled
relies heavily on paradigmatic relations (Study 1
synonym selection, Study 2 similarity ratings).
However, UKWAC was less effective than higher-quality
corpora when tasks relied on syntagmatic and bag-of-
words relations. Instead, the Subtitles corpus, which
comprises high-quality transcriptions of scripted and
spontaneous spoken language from television and
film, was more effective when the tasks to be modelled
relied on a mix of paradigmatic, syntagmatic, and bag-
of-words relations (Study 3 relatedness ratings, Study 4
thematic relatedness production, Study 5 semantic
priming). The BNC, which comprises a very high
quality, representative sample of British English across
a range of spoken and written sources, was the most
effective corpus when the task primarily relied on bag-
of-words relations (Study 5 semantic decision), which
suggests that the representative nature of the BNC
may have compensated for its small size. In other
words, it appears that paradigmatic relations can be
learned from low-quality language experience that is
not representative of the content humans encounter
when using language. Syntagmatic relations, however,
are better learned from high-quality language experi-
ence that is representative to at least some extent of
the content humans encounter. And bag-of-words
relations, that do not rely on syntactic structures in the
same way as syntagmatic or paradigmatic categories
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but nonetheless reflect broad conceptual themes, seem
to have the strongest requirement for high-quality
language experience that is most representative of the
content humans encounter from a range of language
sources. As conceptual complexity increases, the
quality of language experience becomes more impor-
tant than the quantity.

Lastly, our findings suggest that linguistic distribu-
tional knowledge is a rich but imperfect source of
information about the world (see also Barsalou et al.,
2008; Connell & Lynott, 2014; Louwerse, 2011). LDMs
were successful at modelling all tasks we examined,
but – even allowing for the fact that any LDM is only
an approximation of linguistic distributional knowledge
– no LDM was without error in modelling a given task.
Such model behaviour is entirely consistent with
human behaviour: people regularly make mistakes
and disagree with one another. For instance, when
Battig and Montague (1969) asked people to name as
many birds as possible within 30 s in their classic cat-
egory production norms, they found that people
listed concepts such as bat, hate, jail, feathers, pterodac-
tyl, scarecrow, and worm. While such responses may be
incorrect – none are birds – they are meaningfully
related to birds in a way that tends to be encoded
by linguistic distributional knowledge (e.g. jail and
bird are syntagmatically related as a compound word;
bat and bird are paradigmatically related in terms of
flying actions and possessing wings). Any LDM that
considers a bat to be a kind of bird would be no
more incorrect than some humans.

Even semantic similarity, amainstay of LDM evaluation, is
subject to a high degree of variability in human judgements.
For example, Simmons and Estes (2008) found large and
robust individual differences in whether people base their
similarity judgements on taxonomic or thematic infor-
mation. When asked to rate the similarity of concept pairs,
some participants consistently rated taxonomically related
concepts as highly similar (e.g. river and lake) and themati-
cally related concepts as much less similar (e.g. river and
boat), whereas other participants consistently showed the
reverse pattern, and a third group appeared to vary their
preference from one item to the next. The same effects
emerged even more strongly when participants were expli-
citly asked to choose which of two options (e.g. lake or boat)
was most similar to a cue concept (e.g. river). Because simi-
larity is a rather nebulous concept (e.g. Goodman, 1972;
Medin et al., 1993), neither answer is incorrect per se:
river–boat can legitimately be considered more similar in
some respects than river–lake, and vice versa. Moreover,
both taxonomic and thematic answers reflect relationships
that tend to be encoded in distributional knowledge (e.g.
river and lake are paradigmatically related; river and boat

are syntagmatically related). Any pattern of response a par-
ticipant may produce – favouring lake, boat, or both equally
– reflects a reasonable use of linguistic distributional knowl-
edge. That is, any LDM that considers river–boat to be more
similar than river–lake is not incorrect, but agrees perfectly
with a subset of human participants.

We should therefore expect linguistic distributional
knowledge to contain errors, but many of these errors
should systematically map onto the kind of errors that
human make rather than reflecting mere noise. More-
over, we should expect a large degree of individual
differences in how people make use of the conceptual
relations encoded in linguistic distributional knowledge.
Future research should examine more closely not only
the ostensibly correct responses that people make in
cognitive tasks, but also errors and individual differ-
ences, and their relationship to linguistic distributional
knowledge (see e.g. Connell & Lynott, 2013).

To summarise, the work we report here transforms
our understanding of the role linguistic distributional
knowledge plays in cognition. The key notion is flexi-
bility: people use linguistic distributional knowledge in
different ways in different conceptual tasks, and the con-
ceptual complexity of the task – that is, whether seman-
tic processing relies on diverse and/or abstracted
conceptual relations rather than uniform or straightfor-
ward relations – is a powerful determiner of how linguis-
tic distributional knowledge is used. Currently, our
findings are agnostic as to whether this flexibility
entails switching between separate distributional
spaces or selecting from a range of operations on the
same space. It seems plausible to conceive of linguistic
distributional knowledge as multiple, interlinked seman-
tic spaces, such as one per distributional relation (para-
digmatic, syntagmatic, bag-of-words), where the
nature of the stimulus and task allows flexible switching
to the most relevant space. Alternatively, it is also plaus-
ible to conceive of linguistic distributional knowledge as
a single semantic space that encompasses all types of
distributional relation useful to conceptual processing,
where the nature of the stimulus and task allows
flexible selection of the most appropriate operation on
that space. Future research is needed to distinguish
between these two possibilities, particularly since the
training corpus – that is, the cognitively plausible
approximation of human language experience –
should ideally remain constant throughout.

Methodological implications and
recommendations

The comprehensive cross-task and cross-model nature
of the present paper allows us to make broad-ranging
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recommendations for how linguistic distributional
knowledge should be computationally modelled,
which in their turn have implications for work in both
distributional semantics and linguistic–simulation
research.

Overall, we recommend basing model choice on the
conceptual complexity of the task. Assuming there are
no other constraints, conceptually simplistic tasks,
where a limited range of paradigmatic relations
underlies the stimulus set, are best served by predict
models (CBOW with medium embedding size 300 is
most consistent) with small window radius of 1 around
the target word and cosine distance between vectors.
For tasks of medium conceptual complexity, where para-
digmatic relations are still relevant but no longer suffice
because a broader variety of conceptual relationships
(i.e. syntagmatic and potentially bag-of-words relations)
come into play, predict models are still good (CBOW
most consistent but with variable embedding size 200-
500), and large window radius of 10 with correlation or
cosine distance. However, n-gram models should also
be considered (particularly log n-gram and PPMI n-
gram, with radius 5) because they are frequently com-
petitive with predict models for these tasks. Finally, for
high conceptual complexity, where the stimulus set fea-
tures a highly diverse range of semantic relations and/or
relies heavily on abstracted bag-of-words relations,
count vector models are the best option (but test for
best individual model), with a medium window radius
of 3–5 and correlation distance. The precise count
vector model that performs best varies by task and
measure, but we found that log co-occurrence, PPMI,
and conditional probability models were all optimal at
some point. Pending further research that develops
theoretically motivated reasons for matching individual
count vector models to particular task constraints, we
recommend taking an empirical approach for tasks of
high conceptual complexity and testing multiple
models.

We also recommend basing corpus choice on the
conceptual complexity of the task, though with slightly
different tipping points. For tasks of low conceptual
complexity, we suggest using the largest possible
corpus within the bounds of plausible human language
experience (i.e. 2 billion words), even if it is highly noisy
and/or based on unrepresentative written texts. Smaller
corpora do not appear to suffice. For medium to high
conceptual complexity, the best option is a high-
quality corpus containing spoken rather than purely
written language (e.g. Subtitles corpus), sized at least
at the lower bound of plausible human language experi-
ence (i.e. 200 million words). The performance of large,
noisy written corpora is far too variable across tasks to

recommend with any reliability. Lastly, for very high con-
ceptual complexity, we recommend considering the
highest-quality corpus available (e.g. BNC), even if it is
smaller than the alternatives. Indeed, it may well be a
fruitful area for future research to collate a high-quality
corpus that is deliberately designed both in size and
content to be representative of cumulative human
language experience over a lifetime, potentially loca-
lised to the ages and/or dialects of participants whose
behaviour is being modelled (see Johns & Jamieson,
2019). Such a corpus might usefully include contempor-
ary sources of text such as social media, which currently
occupies relatively little of people’s language experience
but is increasing annually in importance (e.g. approxi-
mately 70% of adults in the UK use social media for an
average of 39 min each day: Ofcom, 2019).

These findings and recommendations suggest that
both distributional semantics and linguistic–simulation
research would benefit from some adjustment in their
respective approaches to modelling linguistic distribu-
tional knowledge. Since Baroni et al.’s (2014) exhorta-
tion “Don’t count, predict!”, distributional semantics
research has overwhelmingly concentrated on predict
models trained on very large corpora as the default
approach to distributional modelling. We suggest that
distributional semantics, as a field, should be more
conservative in the assumption that predict models
and very large corpora provide a one-size-fits-all sol-
ution, and less dismissive of the value of count and
n-gram models, and smaller high-quality corpora, in
capturing human performance. Some alternative
models like GloVe (Pennington et al., 2014) combine
elements of both count and predict architectures, but
tend to rely on enormous corpora of 42–840 billion
words, and do not necessarily perform better than
predict models when trained on the same large
corpus (e.g. G. Berardi et al., 2015; Levy et al., 2015;
see also O. Levy & Goldberg, 2014a; Li et al., 2015).
Nonetheless, it may be useful for future research to
examine how hybrid architectures perform when
trained on smaller, high-quality corpora that are plausi-
bly representative of human language experience. In
addition, the field should be more aware that the
common reliance on similarity-based and other tasks
that focus on a limited variety of predominantly para-
digmatic relations is not representative of how linguis-
tic distributional knowledge is used in cognition. If
distributional semantics researchers aim to create a
model of semantics that can be successfully applied
across all of human cognition (e.g. Emerson, 2020),
then it is important to use a benchmark set of cogni-
tive tasks whose stimulus sets systematically span the
range of conceptual complexity, from paradigmatic
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relations to syntagmatic to bag-of-words relations, and
from a single type of semantic relation to a diverse
variety.

In addition, it may be useful to incorporate implicit
measures of semantic processing effort (e.g. RT, electro-
physiological response) in these benchmark tasks rather
than continue to focus on explicit measures of human
performance (e.g. ratings, choices). There is no one-
size-fits-all LDM that is appropriate to modelling all cog-
nitive tasks, and even a given task may vary in its use of
linguistic distributional knowledge according to the
stimuli used (e.g. semantic priming relies on a range of
conceptual relations). Moreover, when it comes to
corpus choice, quantity is not more important than
quality: modelling conceptually complex tasks, like con-
crete-abstract semantic decision, requires high-quality
corpora that approximate human language experience.
Both optimal model and optimal corpus vary with the
conceptual complexity of the task, which is why it is criti-
cal to develop models that can flexibly use different dis-
tributional relations under different circumstances, and
to test models against tasks that span the full range of
conceptual complexity.

Linguistic–simulation research, on the other hand,
should be more discerning about using off-the-shelf
LDMs, more willing to consider predict models when
studying similarity-based or other paradigmatic tasks,
and more conservative in their conclusions regarding
null effects of LDM predictors. Failure of one LDM to
predict human performance in a particular task does
not mean linguistic distributional knowledge plays no
role in cognitive processing: it might simply be than
an unsuitable LDM was used. Similarly, comparing rela-
tive effect sizes of linguistic versus simulation infor-
mation in a given task (see Louwerse et al., 2015)
should be treated with caution unless care has been
taken to ensure the particular LDM (and indeed the par-
ticular model of simulation effects) is appropriate for the
task. For instance, such is the popularity of Word2vec as
a cutting-edge LDM that its failures are sometimes inter-
preted as general failure of linguistic distributional
knowledge to capture critical conceptual information.
Lupyan and Lewis (2019) observe that Word2vec,
trained on Google News or Wikipedia corpora, performs
poorly when relating perceptual properties such as tire–
round or pillow–soft, and conclude that distributional
models “fail to capture some seemingly basic perceptual
information” (p. 9). However, given that such concept
properties can be learned via syntagmatic relations,
and that other LDMs have previously been shown to
capture quite detailed perceptual information such as
distinguishing perceptual modalities from one another
(Louwerse & Connell, 2011), it is arguably more likely

that the problem is specific to this particular LDM
rather than linguistic distributional knowledge in
general. In other words, applying an unsuitable model
of distributional information and/or training on an
unsuitable corpus may lead to false generalisations
about the utility of LDMs in modelling human cognition,
and, more broadly, about the role of linguistic distribu-
tional knowledge in cognition.

Nonetheless, some caveats are in order. The results
and recommendations we present here are not based
on trying to achieve absolute maximum performance
on any particular task by state-of-the-art parameter
optimisation of LDMs. Rather, our intention was to
derive general recommendations of how to model lin-
guistic distributional knowledge, based on underlying
features of the task in question, that we hope will be
relatively robust to noise, changes in task design, and
changes in corpus or model parameters.

There are enormous researcher degrees of freedom
(Simmons et al., 2011) in preparing LDMs: it is always
possible to tweak model performance through careful
selection of parameters or corpus pre-processing
choices. For example, Bullinaria and Levy (2012) found
that by transforming the matrix of a PPMI-based count
vector model (i.e. by restricting the word-word matrix
to the 50,509 most-frequent words, using singular
value decomposition restricted to 5000 principal com-
ponents, and down-weighting the larger component
values), they were able to achieve a perfect 100%
score on the TOEFL test of synonym selection.
However, these parameters were not stable: with only
slight modifications (e.g. using more than 5000 principle
components, or using a lesser degree of down-weight-
ing on large component values), performance quickly
dropped to around 95%, which is comparable to that
of our best predict model in Study 1. Bullinaria and
Levy also note that the model with TOEFL-optimised
parameter settings was far from the best model for
other tasks, and warn against such potential overfitting
when using LDMs; a caution with which we wholeheart-
edly agree.

Indeed, model families differ systematically in the
degrees of freedom involved in their architectures, and
therefore differ in their risk of overfitting. The neural
network architectures of predict models involves a far
larger number of parameters than do count models (O.
Levy et al., 2015), which in turn involve more parameters
than n-gram models. While the strong performance of
predict models on certain tasks may make the risk of
overfitting worthwhile, Johns et al. (2019) argue equival-
ent performance can be achieved via simpler architec-
tures. They found that adapting a count model to
learn from negative information (i.e. words that do not
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appear together in context) allowed it to match or
exceed performance of the skip-gram predict model,
even on tasks where predict models tends to excel
(e.g. WordSim-353 similarity and relatedness ratings).
Future research should consider the issue of model com-
plexity when developing LDMs, with the goal of mini-
mising the degrees of freedom required to achieve
optimal performance.

There are also enormous researcher degrees of
freedom in selecting stimuli to represent a cognitive
task: it is always possible to optimise model performance
by focusing on “good” cases (i.e. a dataset or group of
items that are easy to predict) and avoiding the
difficult cases that do not work so well. A selective
focus on good cases can happen accidentally – note
how well the TOEFL dataset is predicted in Study 1 (up
to 95% correct) compared to the ESL dataset (up to
68% correct), even though both are examples of a
synonym selection task – but it is not possible to draw
reliable conclusions about LDM capabilities from good
cases alone. For example, some early work with the
Word2vec tool – which provides the influential predict
models CBOW and skip-gram – concentrated on its
ability to predict verbal analogies (Mikolov et al., 2013;
see also Pennington et al., 2014). Given the analogy
problem man is to king as woman is to X, Mikolov et al.
showed that simple vector offsets (X = king − man +
woman) results in a vector close to queen. Such analo-
gies appear to be an example of quite sophisticated
semantic/conceptual processing and have been lauded
in the cognitive literature as an example of how distribu-
tional semantics models can successfully learn high-
level, abstract relations (e.g. Günther et al., 2019;
Lupyan & Lewis, 2019). However, other researchers
have criticised the original dataset for its unrepresenta-
tive and unbalanced nature (e.g. while it contains nine
morphosyntactic relations such as regular plurals, it con-
tains only five semantic relations, and over half the
semantic stimuli relate to a single country–capital
relation) and showed that, when a more representative
set of semantic relations was examined, model perform-
ance was much worse (Chen et al., 2017; Gladkova et al.,
2016). In particular, while distributional semantics
models did best for country–capital analogies with accu-
racy between 78–98% (e.g. Athens is to Greece as Paris is
to X), Gladkova et al. found that accuracy was extremely
poor (<5%) for analogies using more conventional
semantic relations such as group membership (e.g.
player is to team as wolf is to X) or animal–young (e.g.
cat is to kitten as bear is to X). These findings show that
most of the early, headline successes regarding verbal
analogies came from using a dataset with a preponder-
ance of good cases that were easy for models to predict,

which in turn led to overestimations of their abilities to
perform analogical reasoning. Conclusions about the
capabilities of particular LDMs should be made with
caution unless – as we have attempted to do though
our use of multiple datasets and/or measures per task
– there is a systematic effort from the outset to select
a representative range of stimuli.

Finally, we earlier noted that linguistic distributional
knowledge should contain errors about the world that at
least in part map systematically onto human errors and
individual differences. The methodological impact of this
point is that, rather than expecting LDMs to perfectly
capture average human performance, it seems more
reasonable to expect them to perform within the human
range of performance about as well as a random human
would. That is, perhaps a particular LDM should be
regarded as analogous to a snapshot of the linguistic dis-
tributional knowledge an individual human participant on
a given day, rather than analogous to an average of all
human linguistic distributional knowledge. Such an
approach may involve moving away from evaluating
LDMs according to their fit to item-level averages (e.g.
how well do model scores correlate with mean human
similarity ratings across the set of all items?) and towards
evaluating their fit to bounds of acceptable variability in
human performance (e.g. how often across the item set
is the model score for each item within M ± 1 SD of
humansimilarity ratings? seeBanks et al., 2021).Mostdata-
sets commonly used to evaluate LDMs are either based on
notions of objectively correct performance (e.g. TOEFL
synonym test) or do not contain sufficient data about par-
ticipant variability to adopt this approach (e.g. MEN relat-
edness ratings). However, sufficient information is
available in some cognitive datasets (e.g. Semantic
Priming Project: Hutchison et al., 2013; Calgary Semantic
Decision Project: Pexman et al., 2017), and would of
course be available to anyone collecting their own original
participant data. Future research should investigate not
only the ability of LDMs to predict what humans get
right in conceptual processing, but also the ability to
predict what they get wrong and how.

Conclusions

Linguistic distributional knowledge plays an important
role in cognition. There is a long history of endeavours
to understand how lexical semantic relations contribute
to cognitive processing, but such work has tended to
focus on specific subtypes of relations, such as syntag-
matic versus paradigmatic, taxonomic versus thematic,
concrete versus abstract, and so on (e.g. de Saussure,
1916; Estes et al., 2011; Medin et al., 1993; Murphy,
2003). In its most general form, linguistic distributional
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knowledge encompasses all such relations but also the
more nebulous bag-of-words relations (e.g. that linking
physics and proton, or stubbed and ow) that do not
neatly fit the traditional subtypes yet are plausibly
useful in conceptual processing.

LDMs are a powerful tool to help us understand the
nature and scope of linguistic distributional knowledge,
but they should not be used uncritically. Given the enor-
mous flexibility of the human conceptual system, it
should perhaps be unsurprising that there is no one-
size-fits-all solution to how linguistic distributional
knowledge is used across cognition. Different concep-
tual tasks use linguistic distributional knowledge differ-
ently and therefore require different LDMs to capture
performance. Thus, researchers should carefully consider
task characteristics – in particular, the complexity of the
conceptual processing involved – when using LDMs to
understand how linguistic distributional information
contributes to a particular cognitive phenomenon.
Future work should develop more detailed theoretical
and computational models of how linguistic distribu-
tional knowledge is used across a range of specific cog-
nitive tasks, including the time-course of activation of
this knowledge. In this endeavour, distributional seman-
tics and linguistic–simulation theories of cognition have
a lot to learn from one another, and both would profit
from more crosstalk between their largely parallel
fields of research. The work reported here provides a fra-
mework for developing such models in terms of how the
complexity of conceptual processing in the task influ-
ences the form of linguistic distributional knowledge
that is most relevant. Language is full of latent structure
and people consume hundreds of millions of words over
a lifetime; while it is far from the whole picture, its con-
tribution to cognition cannot be disregarded.

Notes

1. The term distributional semantic model (DSM) is com-
monly used in parts of the literature to describe
predict and count vector models, which represent
word meanings as vectors in a high-dimensional
space, but is not used to describe n-gram models due
to their different construction. Since we examine all
three families of model in the present paper, we have
adopted linguistic distributional model (LDM) as an
umbrella term.

2. Some researchers in distributional semantics (e.g. Rapp,
2002; Sahlgren, 2006) have used the term syntagmatic to
refer to words that appear in the same context regard-
less of syntax (i.e., first-order co-occurrence in text),
and the term paradigmatic to refer to words that
appear in similar contexts regardless of syntax (i.e.,
second-order co-occurrence in text). However, we stick
here to the original terminology because it reflects

wider usage in psychology and linguistics (e.g.,
Murphy, 2003; Sloutsky et al., 2017) and allows us to
characterise different forms of linguistic distributional
knowledge independently of LDM workings.

3. In principle, “word embedding” can refer to any model
that represents a word as a point in a vector space.
However, in computational linguistics, the label is used
almost exclusively to refer to dense vector represen-
tations of neural-network-based prediction models
(e.g. Levy & Goldberg, 2014b). We use the term following
this convention.

4. For example, lexical decision is a (relatively) cognitively
simple task: people must judge whether or not a string
of letters is a valid word. However, when lexical decision
is embedded in a semantic priming paradigm, the
semantic relation(s) between prime and target in the
stimulus set determines the conceptual complexity of
the task, which may range from low to high depending
on the stimuli selected.

5. The term “n-gram model” can also be used in compu-
tational linguistics to refer to Markov models that use
n-gram frequencies to predict upcoming words; these
Markov models are separate to the LDMs we describe
here, and our use of “n-gram model” does not concern
them.

6. We chose to implement Word2vec LDMs as instantia-
tions of predict models because they are the most
widely used predict model in cognitive and psycholin-
guistic research, and because less widely used alterna-
tives were either hybrid architectures that did not fit
the classification (e.g., Pennington et al.’s, 2017, GloVe
model combines elements of predict and count LDMs)
or were cognitively implausible in some way (e.g., Boja-
nowski et al.’s (2016) FastText model is trained on
subword character strings rather than treating words
as atomic entities).

7. The dimensions of count vectors can be labelled by
specific words, but such labels are redundant when
comparing words because they play no role in distance
calculations; hence, word representations in count
vector models are functionally unlabelled.

8. While other work has used alternative distance
measures, such as city-block distance (e.g. Lund &
Burgess, 1996; J. Levy et al., 1999) or Hellinger and Kull-
back–Leibler distances (used in Bullinaria & Levy, 2007,
2012; J. Levy et al., 1999; J. Levy & Bullinaria, 2001;
Patel et al., 1998), the measures we present here are
amongst the most commonly used and include the
most effective options.

9. We opted not to combine corpora because we wanted
to examine the impact of their particular characteristics
on LDM performance, and because the scale differential
(i.e., the largest corpus is 20 times the size of the smal-
lest) meant that any advantages of combined corpora
were likely to be very small and not worth increasing
our already-large set of models comparisons even
further.

10. Bayes factors for next-best comparisons on all datasets
are available in the supplementary materials.

11. A further difference between our processes was their use
of only the textual portion of the BNC (comprising about
90% of the total corpus), though this did not contribute
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to the discrepancy in results. We thank John Bullinaria
and Joe Levy for their assistance in getting to the
bottom of this issue.

12. All baseline predictors were correlated to some extent;
however, all variance inflation factors (VIFs) were less
than 7.7 so multicollinearity was not a concern (Hair
et al., 1998, p. 193).

13. Mandera et al. (2017) modelled lexical decision RT data
from the same semantic priming dataset using predict
and count vector LDMs but found their models
explained a higher proportions of variance: up to 6.8%
for the best count vector model, and 6.6% for the best
predict model. However, they also examined a smaller
subset of items and used a different baseline set of
lexical predictors. We therefore calculated prime-target
distances for our items using Mandera et al.’s optimal
LDM (available in Mandera, n.d.) and reanalysed the
data using our baseline model and this Mandera-
derived predictor. We found that Mandera et al.’s pre-
ferred predict LDM (CBOW, e = 300, corpus = UKWAC
+ Subtitles combined, r = 6, cosine distance) explained
3.0% of variance in semantic priming RT. Our closest
equivalent LDM (as above but corpus = UKWAC, r = 5)
explained 3.6%. However, our optimal count vector
LDM (PPMI, corpus = Subtitles, r = 5, correlation dis-
tance) explained 5.2%. We conclude that the difference
in variance explained between Mandera et al. and the
present study is likely due to different item samples
and/or baseline lexical models, rather than to substan-
tive differences in LDM performance.

14. The two critical predictors for a given LDM correlated to
varying extents, depending on model family and par-
ameters (range from r =−.01 to r = 1), which led to colli-
nearity issues in some regression analyses. Since we
were concerned with maximising and comparing the
variance explained per LDM, and multicollinearity does
not affect R2 and goodness of fit measures such as BIC,
we opted to include both predictors without selectively
correcting for collinearity. Nonetheless, since multicolli-
nearity does affect coefficients and their associated stat-
istics, we also exercised caution when interpreting the
regression coefficients. We did consider the possibility
of including only one critical predictor (e.g., only con-
crete distance or only abstract distance), but model
comparisons using Bayes factors showed that models
with both predictors performed substantially better
than models containing a single predictor, and so we
concluded that both predictors were needed to
capture semantic decision performance.

15. Pairwise correlations between all models on all task
datasets are included in the supplementary materials.
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