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Abstract

A sufficient condition for the existence of a Lyapunov function of the form V(z) =
2Pz, P=PT >0, P e IR, for the stable linear time invariant systems & =
Az, A; € R A € A= {Ay, ..., Ay}, is that the matrices A; are Hurwitz, and
that a non-singular matrix T exists, such that TA; 77,7 € {1,...,m}, is upper trian-
gular (Mori, Mori & Kuroe 1996, Mori, Mori & Kuroe 1997, Liberzon, Hespanha &
Morse 1998, Shorten & Narendra 1998). The existence of such a function, referred
to as a common quadratic Lyapunov function (CQLF), is sufficient to guarantee the
exponential stability of the switching system @ = A(t)z, A(t) € A. In this paper we
investigate the stability properties of related classes of switching systems. We consider
sets of matrices A, where no single matrix T exists that simultaneously transforms each
A; € A to upper triangular form, but where a set of non-singular matrices 7;; exist
such that the matrices {TiinTi;I,TijAjTlgl}, i, € {1,...,m}, are upper triangular.
We show that in general, this condition does not imply the existence of a common
quadratic Lyapunov function (CQLF). Further, we also show by means of a simple
example, that the condition of pairwise triangularisability is not sufficient to guarantee
stability of an associated switching system. However, we show that, for special classes
of related systems, the origin of the switching system. & = A(t)z, A(t) € A, is globally
attractive. A novel technique, referred to in this paper as state-space-embedding, is
developed to derive this result. State-space-embedding is based upon the observation

that the stability properties of an n-dimensional switching system may, on occasion,



be analysed by embedding the n-dimensional system in a higher dimensional system.
The efficacy of this technique is demonstrated by showing the stability of two distinct
classes of switching systems, and by utilising these results to design a control system
for a real industrial application; namely the design of a stable automobile speed control

system.



1 Introductory remarks
We consider switching systems of the following form,
T = A(t)x, A(t)e A={A1, Ay ..., ALt (1)

where the A;, i € {1,2,...m}, are constant matrices in IR**". The matrices A;, 1 €
{1,2,...m}, are assumed to be Hurwitz (the eigenvalues of each A; matrix lies in the open
left half of the complex plane). A sufficient condition for the exponential stability of
Equation (1), and for the existence of a common quadratic Lyapunov function (CQLF),

V(z) =2 Pz, P=PT >0, P € IR"", for the stable linear time invariant (LTI) systems
Ya,ra=Ax, e R", A € A, A; € IRnxn, (2)

is that the matrices A; are Hurwitz, and that a non-singular transformation 7" exists such
that TA;T~! is upper triangular for all i € {1,...,m}. This result was first derived by Mori
et al. (1997), and further discussed by Liberzon et al. (1998) and Shorten & Narendra (1998).
Unfortunately, from a practical viewpoint, the requirement of simultaneous triangularisabil-
ity imposes unrealistic conditions on the matrices in the set A. It is therefore of interest to
extend the results derived by Mori et al. (1997) with a view to relaxing this requirement.
In this context several authors have recently published new conditions which also guarantee
exponential stability of the switching system. Typically, the approach adopted is to bound
the maximum allowable perturbations of the matrix parameters from a nominal (triangu-
larisable) set of matrices, thereby guaranteeing the existence of a CQLF; see Mori et al.
(1997). 1In this paper we consider classes of switching systems that are closely related to
those studied by Mori et al. (1997). However, rather than assuming maximum allowable
perturbations from nominal matrix parameters, we explicitly assume that no single non-
singular transformation T" exists that simultaneously triangularises all of the matrices in A.
Rather, we assume that a number of non-singular matrices 7;; exist, such that for each pair
of matrices in A, {A;, A;}, the matrices {TiinTi;I,TijAjTi;I} are upper triangular. We

refer to switching systems that are constructed in this manner as pairwise triangularisable



switching systems.

In this paper we establish a number of results concerning pairwise triangularisable switching
systems. We show that while the condition of pairwise triangularisability is not sufficient
to guarantee asymptotic stability, global attractivity of the origin can be established us-
ing state-space-embedding by making other assumptions. These results are important for a
number of reasons. Primarily, they conclusively invalidate the conjecture made in (Shorten
& O Cairbre n.d.) that the condition of pairwise triangularisability alone is sufficient to
guarantee asymptotic stability of (1) for arbitrary switching sequences. Secondly, we show
that state-space-embedding can be utilised to prove global attractivity of the origin for sev-
eral classes of switching system. This technique does not utilise concepts from quadratic
Lyapunov theory and may therefore be used in situations where such functions do not exist.
Asymptotic stability of the system follows from known results in the literature. Finally,

these results are used to design a stable switching controller for a car speed control system.

This paper is organised as follows. Preliminary definitions and mathematical results are
presented in Section 2. General pairwise triangularisable systems are discussed in Section 3.
The method of state-space-embedding is formally introduced in Section 4, and the technique
is applied to prove the global attractivity of a class of switching systems related to those
discussed in Section 3. These results are applied to the design of a stable speed control

system for an automobile in Section 5.



2

Preliminary results

In this section we introduce some simple concepts and definitions (from Narendra & An-

naswamy (1989)) which are useful in the remainder of the paper.

(i)

(i)

(iii)

The switching system : Consider the linear time-varying system

&= A(t)z, (3)

where 2 € IR”, and where the matrix switches between the matrices A; € IR™" be-
longing to the set 4 = {Ay,..., A,,}. We shall refer to this as the switching system. The
time-invariant linear system & = A;x, denoted ¥4, is referred to as the 1! constituent

system.

Suppose that (1) is described by the v system & = A,z over a time interval [t,,t,41].
By definition, the next system that we switch to, say the (v + 1)'* system, starts at
time ¢,,; with initial conditions equal to the terminal conditions of the v/ system at

time 4y4q.

Stability of the origin : The equilibrium state © = 0 of Equation (3) is said to be

stable if for every € > 0 and ¢y > 0, there exists a §(¢, o) > 0 such that || zo ||< (e, to)

implies that || x(¢; 20, t0) |[|[< €, YV > 1.

Attractivity of the origin : The equilibrium state @ = 0 of Equation (3) is said to

be attractive if for some p > 0, and for every § > 0 and ty, there exists a number

T(0,x0,10) such that || xo ||< p implies that || x(t;z0,%0) [|[< 0, VE> 1o+ T.

Global attractivity of the origin : The equilibrium state = 0 of Equation (3) is said

to be globally attractive if lim;_,., x(¢; x0,t0) = 0, for all initial conditions x¢ and for

all to Z 0.



(v) Asymptotic stability : The equilibrium state of Equation (3) is said to be asymptoti-

cally stable if it is both stable and attractive.

(vi) Common quadratic Lyapunov function: In the following discussion we refer to com-

mon quadratic Lyapunov functions (CQLE’s). A common quadratic Lyapunov function

is defined as follows.

Consider the switching system defined in (3) where all the elements of A are Hurwitz.

The quadratic function
V(z) =a"Pz, P=P' >0, PcR™", (4)

is said to be a common quadratic Lyapunov function for each of the constituent sub-
systems X 4., ¢ € {1,...,m}, if symmetric positive definite matrices ¢);, 1 € {1,...,m},

exist such that the matrix P is a solution of the matrix equations
ATP 4+ PA; = —Q.. (5)

The existence of a common quadratic Lyapunov function implies the exponential sta-

bility of the switching system (3) as discussed by Narendra & Balakrishnan (1994).

We note the following important result.

Theorem 2.1 : (Shorten & Narendra (1997),Shorten, O Cairbre & Curran (2000)) A suffi-
cient condition for the existence of a switching sequence, such that the system (1) is unsta-
ble, is that there exist non-negative constants {ay, s, ..., ap}, such that the matrix pencil
EM a;As, a; >0, Ef\il a; > 0 has an eigenvalue with a positive real part.

=1

Proof : Appendix.



3 Pairwise triangularizable systems

As discussed in the introduction, switching systems that are constructed from constituent
dynamic systems whose system matrices are simultaneously triangularisable have been the
subject of much interest in the switching system community. The exponential stability of
systems in this form can be readily established using standard arguments (an analytical
expression for their solution is readily obtained). Nevertheless, the widespread interest in
these systems is motivated by the fact that the condition of simultaneous triangularisability
is one of the few known (simple) conditions that guarantees the existence of a CQLF for
each of the constituent systems. While the theoretical interest in these systems is justified,
practical applications motivate a number of open questions pertaining to related classes of
switching systems. In this Section we consider switching systems where any two matrices
in the switching set A are Hurwitz, and can be simultaneously triangularised. We refer to
systems in this form as pairwise triangularisable switching systems. In this context we note

the following important questions.

(i) Is the condition of pairwise triangularisability sufficient to
guarantee the existence of a CQLF for each of the con-

stituent sub-systems?

(ii) Is the condition of pairwise triangularisability sufficient to

guarantee asymptotic stability of the origin of (1)?

(iii) In the event of negative answers to (i) and (ii) (which are
not equivalent), is it possible to specify extra conditions in
addition to pairwise tringularisability such that the origin
of (1) is asymptotically stable?
In the sequel we show via a simple example that the condition of pairwise triangularis-
ability is not sufficient to guarantee the existence of a CQLF for each of the constituent
sub-systems. In fact, it is readily shown by means of another simple example, and Theorem
2.1, that this condition does not even guarantee asymptotic stability of the origin of Equa-

tion (1). However, despite these negative results, we show using state-space-embedding that

7



a stable sub-class of pairwise traingularisable systems, of extreme practical importance, can

be identified. The usefulness of this sub-class is illustrated in Section 5.

(i) Common quadratic Lyapunnov functions

Example 3.1 : Consider the following stable LTI systems,

Vg, ca= A, A € IRQXQ,

with,

—1.0000 0.0998 —1.00000 —0.0995 —1.0000 —0.0818%
1~ ) 2~ ) 3~

—0.9982 0.0980 —0.9945 —0.1049 —38.1818  —1.0000

The set of matrices for which ATP 4+ PA; <0, P = PT >0, P € IR**?, is given by

Py, det{ATP + PA;} >0, (6)
where
p_ I pi2
P12 P22

Equation (6) defines a convex set in (pi2,p22) space. These sets are depicted in Figure 1
for each of the systems ¥ 4,,%4,, and X 4,, as the interior of each of the respective elliptical
regions. Clearly, no CQLF exists as the sets P4,, ¢ € [1,2, 3], have no common point of inter-
section. However, the matrix pairs { Ay, Ay}, {Aa, A3}, {A1, A3} are pairwise triangularisable

with

(i) Asymptotic stability of the origin of (1)




It follows from the above example that the condition of pairwise triangulisability of the
system matrices does not necessarily imply the existence of a CQLF In fact, the following
example demonstrates that the general condition of pairwise triangularisability is not suffi-

cient to guarantee asymptotic stability for the system (1) for arbitrary switching.

22

12

Figure 1: Py, for ¥ 4,, Y4, and X 4,.

Example 3.2 : Consider the following switching system,

with,

&= A(t)x, At) e A 2 {A1, Ay, Az},

—105.2607 33.7326 65.1648
A~ 8.3953 —6.3633 —8.3953
—104.7741  33.7326 64.6782

—19.4935  11.8692  18.7430
Ay & 19.1542 —12.6197 —19.1542

—19.0628  11.8692  18.3124

0.1333 —0.0510 —0.0921
Az~ | —1.3313  0.4788  0.8819
1.0659 —0.3866 —0.7101

I
0.2



The matrix pairs {Ay, A2}, {Aa, Az}, {A1, A3} are pairwise triangularisable with,

2 1 2_
Tiz=10 —1 —11 |,
2 1 9
3 2 ]
Tis= 1| —-10 —11 =10 |,
10 9 8
2 1 3
Tz = | —11 —10 —10 |,
9 8 10

However, the matrix

A = 0364, +0.24A; + 0.24,,
—15.9127 4.7986 9.5435

%

—258.6401  90.4471 168.7670 | »
170.8861 —62.3351 —114.3442

has an eigenvalue with posive real part (A, ~ —34.9906,0.0169, —4.8360). It follows from
Theorem 2.1, that an unstable switching sequence exists for the system (7). Hence, the
general condition of pairwise triangularsability is not a sufficient condition to guarantee

asymptotic stability for the system (7). This observation is stated formally as follows.

Proposition 3.1 : Consider the system given by Equation (1). The condition that a

set of non-singular matrices T}; exist such that the matrices {T;;A;T:" TijAjTi;I}, 1,7, €

1]

{1,...,m}, are upper triangular, is not sufficient to guarantee the asymptotic stability of the

system (1).

Proof : The proof is by contradiction and follows directly from Example 3.2.

10



(iii) Sufficient conditions for stability

A frequent practical requirement in the design of switching systems is that the nominal closed
loop switching-system has real eigenvalues. This requirement ensures that the response of
the system does not overshoot. In this context it is of interest to examine pairwise trian-
gularisable systems with the characteristic that all of the matrices in the set A have real
eigenvalues and real eigenvectors. A simple, but non-trivial, pairwise triangularisable sys-
tem with this property is constructed by choosing A such that the matrices A; are Hurwitz,
and that each pair of matrices share n — 1 common linearly independent eigenvectors. The
matrices specified in Example 3.1 have this property. While these conditions are clearly not
sufficient to guarantee the existence of a CQLF, as demonstrated by Example 3.1, it follows
via state-space-embedding arguments (Shorten & O Cairbre 2000), and by specifying addi-
tional minor technical specifications, that these properties are indeed sufficient to guarantee
global attractivity, and hence asymptotic stability (Angeli 1999), of the origin for switching
systems of the form of (1). This observation leads to a powerful design technique based upon

the following theorem.

11



Theorem 3.1.(Shorten & O Cairbre n.d.) Consider the switching system (1) with the set
A defined as follows.

Let V = {vy,...,v,41} be a set of real vectors, where each v; € IR™. Suppose any
n vectors in YV are linearly independent. For each i € {1,2,...,n+ 1}, construct
an n X n matric M; as follows: M; = [vi,v2,...,0i_1,0iy...,0,_1,0,] and for
2<i<n+1 we define M; = [v1,02,...Vu11,0; ... Vp_1,0,], t.e. M; is obtained by
replacing the (i — 1) column in M, with the vector v,.1. Suppose we also have
p different diagonal matrices Dy, D, ..., D, with all diagonal enlries negative.
Define A;jp = M;DyM', for1 <i<n+1and1 <h <p. Let A be a subset of
{Aip 1 <0 <n+1, 1 <h<p}t. Then the origin of the system (1) is globally
attractive. It further follows from the results in (Angeli 1999), that systems of the

form specified above are asymptotically stable.

Comment : The set A defined in Theorem 3.1 satisfies the following properties:

(a) Every matrix in A is Hurwitz and diagonalisable;
(b) The eigenvectors of any matrix in A are real;

(c) Every pair of matrices in A share at least n — 1 linearly independent common eigen-

vectors and can be simultaneously triangularised (Shorten 1996).

Proof of Theorem 3.1: To aid clarity, and to present the arguments in as concise a manner
as possible, the reader is now referred to Section 4, where the complete proof of global
attractivity of the origin of (1) for a related class of switching system, is presented. The

proof of Theorem 3.1 uses state-space-embedding and is presented in full-detail in (Shorten

& O Cairbre n.d.) and the Appendix.

12



4 State-space-embedding and a related class of switch-
ing system

An interesting question arises in the context of extending Theorem 3.1 to matrices with
complex eigenvectors. These systems are a natural extension of the system class studied in
Theorem 3.1. We find that the origin of such systems is globally attractive subject to certain
extra minor conditions on the eigenvectors of the matrices. This result is stated formally
in Theorem 4.1. The proof of this theorem involves novel extensions to the methods first
introduced in (Shorten & O Cairbre 2000), and clearly illustrates the technique of state-

space-embedding.

Before proceeding with the main result of this section, we first give an overview of state-space-
embedding. This technique does not involve a quadratic Lyapunov function approach and
consequently may be employed in problems where such functions do not exist. State-space

embedding essentially comprises the following three steps:

(i) Denote our original switching system by & = A;x, where 1 <1 < k. We replace each
matrix A; by a matrix A; of larger size. The A are selected so that they all share some
common eigenvectors. These A generate a new switching system which has higher
dimension than the original switching system. The new system is denoted by z = A;z,

where 1 < <k,

(ii) We then construct a collection of coordinate systems from various combinations of
the eigenvectors of the A*. One particular common eigenvector 7 (of all the A}*) will
appear as an axis in each one of these coordinate systems. We then consider, in each
coordinate system, the projection of the state z(t) onto 7 as the dynamics of the new

switching system evolves.

(iii) We then consider the convergence of these projections in the long term. For many
systems, global attractivity of the origin can be proven by considering convergence

properties of these projections.

13



We now present the main result of this section; namely Theorem 4.1. The proof of this result

is derived using state-space embedding, and clearly illustrates the steps outlined above.

14



Preamble for Theorem 4.1:

Let ¥V = {vy,07,02,05, ..., 0pq1,05 1} be a set of complex (non-real) vectors in
C*.  Here % denotes the complex conjugale. Suppose any 2n wvectors of the
form v, v, oL, Vs, VI Vi, Vg, e e Ungt, Uy, where both v and vf are omit-
ted, are linearly independent in C*" (over C), for any i € {1,2,...,n + 1}.
For each v € {1,2,...,n 4+ 1}, construct a 2n x 2n matriz as follows: M; =
[v1, 07, 02,05, ..., 0., 0] and for 2 < i < n+ 1 we define M; = [v1,0], ..., Vny1,
V1V U, U, vr ], de. M s obtained by replacing the vi_y and vi_, columns

by vny1 and v}, respectively. Thus, the columns of each M; are linearly indepen-

dent and so M; s invertible. Suppose we also have p different 2n x 2n diagonal

matrices Dy, Dy, ..., D, with all diagonal entries negative. In each of these diago-

nal matrices we assume that the (k, k) entry equals the (k—1,k—1) entry whenever

k is even.
Suppose A;, = M; D, M has real entries for 1 <7 <n+1and 1 < h < p. In other words,
A; p is areal matrix with complex (non—real) eigenvectors (occurring in conjugate pairs) lying
in V and negative eigenvalues. This gives us m different diagonalisable matrices A; 5, where
m = p(n + 1), because the eigenvectors of A, ), are the columns of M; and the eigenvalues of
A, are the diagonal entries of Dj,. Let A be a subset of {A4;,:1 <i<n+1, 1 <h <p}
Thus, A is a set of at most m different diagonalisable matrices such that any two matrices in

A have at least n — 1 linearly independent common conjugate pairs of complex eigenvectors.

15



Statement of Theorem 4.1 : If we consider the switching system (1) with the set A de-

fined as in the above preamble, then the origin is globally attractive. It further follows
from the results in (Angeli 1999), that systems of the form specified in Theorem 4.1 are

asymptotically stable.

For ease of exposition we first present an outline of the main ideas. This follows closely
the three steps of the method of state-space embedding described above. The proof is then
developed by means of several key lemmas. Note that in the sequel we use row and column

notation interchangeably to denote vectors. This is for convenience of notation.

Qutline of Proof:

M We replace each 2n x 2n matrix M; by a (2n + 2) X (2n + 2) matrix M;. We then
replace each 2n x 2n matrix A, in A by a (2n +2) x (2n + 2) matrix A;;. The matrices
Ai,h e A= {Ai,h : A;n € A} are chosen such that there is at least one conjugate pair of
common eigenvectors, (ai,as,0,...,0),(al,a3,0,...,0), for all the matrices in A, and also

such that the properties of the solutions of the dynamic system,

= At)z, Alt) € A, (8)
will ultimately imply the global attractivity of the origin of the system,
&= A(t)x, A(t) € A,

where @ = (21, 29,...,22,) and & = (Tap42, Tont1, T1, T2y« ooy L2)-

Step 2 : For a given j € {1,2,...,n+1} we consider the 2n+2 linearly independent columns
of M;. These form a 2n + 2 dimensional coordinate system which includes (ay,as,0,...,0)
as one of the axes. We consider the projection of the state #(¢) onto (a1,a2,0,...,0) as the
dynamics of the system (8) evolve. This projection is given by the first component of the

vector,



and is denoted by [g;]1(¢).

Step 3 : We then show that,
lim [ Relgi(1) = Relg;]o(1)] = 0 = lim [Tm[ga(t) — Imlg (1),

forallz,j € {1,2,...,n+1}. Note that Re denotes the real part of a complex number and I'm
denotes the imaginary part. From the above fact we can deduce that limy_oo (21, 22,. .., 22,) =

0. This is sufficient to demonstrate the global attractivity of the origin of the system,

&= A(t)e, At) € A.

Technical details of Proof:

Lemma 4.1 : Suppose 931,022,0351,032,...,0n41.1,0,41,2 are any non—zero complex num-

bers. Then there exist non—zero complex numbers by, by such that the set W = {(by, bs.v1),
(bfv b;, UT)? (52717527277)2)7 (5;,17 5;,27 U;)v((s&lv 53727 U3)7 (5§,17 532? U§)7 . (57*14—1 10 5n—l—1 29 n—I—l)} is
linearly independent in C***2. Here, (by, by, vy) denotes the vector whose first two coordinates

are by, by and the remaining 2n coordinates are the 2n coordinates of v;.

Proof: We know that {v,v3,...,vnq1, 05} is linearly independent in C*” and so there exist
unique «;, 3; € C such that v; = EnH Bjv; + a;jvi. Pick by € C such that by # 0 and by #

EnH 8;,20;+0% yo; We will first prove that the set Z = {(bz,v1), (2,2,2), (05.2,05), -+, (65412, V541)}
is linearly independent in C?"*!. Suppose Z is linearly dependent. Thus,

n+1
71(6277)1) + 271(517277)1) + 71(5]*27 ]*) =0,

i=2

for some complex numbers vy,7v;,7;, 2 < 7 < n + 1 that are not all zero. Hence, y; # 0

since otherwise v; = 0 = 7, for 2 <y < n 4+ 1. Thus, v; = —7(2?+21 Yv; 4 Tjv}), and so
B = —3—1 and o = . Also, v1by + E;H'Ql Y02 + T]‘(S;iz = 0. Thus,
n+l n+1

:__Z’YJ izt 7i075) Zﬁ] izt o],y

17



which is false. Hence, Z is linearly independent in C***1. Now we will show that W is linearly

independent in C***2, First note that there exist unique €, ¢, ..., €hp1,Wa, W3, ..., Whp1 € C
such that,
n+1
(b;, U*) = 61(627 Ul) + Z 61(51727 Uj) + w]((sy*% ]*)
7=2
Pick b, € C such that by # 0 and b7 — €,b; # E;H'?l €i0;1 + w](S]l Suppose W is linearly
dependent. Thus,
n+1
éﬁo(bylﬂv b;, Uf) + §1(617 627 Ul) + Z gj(5]717 5]}27 Uj) + /“L]((S;h 5;27 ;) = 07
7=2

for some complex numbers (o, (1, (j, 15, 2 < 7 < n+ 1, that are not all zero. Hence, (o # 0

since otherwise (3 = (; =p; =0, 2< 75 <n+ 1. Hence,

n+1
(b;vr) C (Cl(b%vl + ZCJ ]2,1}]) —I'/“LJ((S]*% ]*))
7=2
and so €; = —g—;, € = —g—é, w; = ,2< 7 <n+1. Also, §ob*—|—§1bl—|—2n+1 GO +pio%, =
0, which implies that b7 — €;b; = ;H_Ql ;01 + w;07 . This is false and so W is linearly

independent. Q.E.D.

Define M; to be the following (2n + 2) X (2n + 2) matrix:

A H;
T = )
0 M,
: : : : ar ajy
where 0 is the 2n x 2 zero matrix, M; is the 2n x 2n matrix defined above, A =
ay

is an invertible 2 x 2 matrix (and we choose ay, as to be non-real complex numbers) and
finally H; is a 2 x 2n matrix constructed as follows: If v forms the 7% column of M;, then
the 7 column of H; will comprise the first two coordinates of the vector, in W (from Lemma,
4.1), containing vg. The first coordinate will lie in the first row and the second coordinate
will lie in the second row of H;. Also, in a similar fashion, the (5 4+ 1)* column of H; will

comprise the first two coordinates of the vector, in W, containing v;. Thus, for example,

H - by b7 da1 O34 oo Gna Ony |
by b5 da2 O35 ... On2 O,

18



Spiin Oipny Oan O34 .o Gun O

) n,1
HQZ 9
Ony12 Onyia OG22 039 -ov Ona Ory
* * * *
by 07 duy1n Opiyy O31 O3y .. Ona Ony
ng
* * * *
by 03 Ouy12 Opi1g 032 035 oo Gna 05,

Note that,

e AT —A_lHiMi_l

K3

0 Mt
Note that every even row in M;! is the complex conjugate of the previous row. Define D, to
be the (2n +2) X (2n + 2) matrix with zeros everywhere except in the bottom right 2n x 2n

corner which is occupied by Dy, i.e.

Dy, =
0 Dy

Define A;;, = M;D, M. We then have that A, is a (2n +2) X (2n + 2) matrix of the form

aa=| "
0 A
where (), 1s a 2 X 2n real matrix, the top left 0 is the 2 X 2 zero matrix and the bot-
tom left 0 is the 2n x 2 zero matrix. Note that (ai,a2,0,...,0), (a7, a3,0,...,0) form
a pair of common eigenvectors for all m matrices A;;. In the following we assume that

T, %9, ..y Top, Topt1, Tonto are all real valued functions of .

We then have that,

Lon42 Lon42
Ton+41 Ton+41
$'1 _ 1
= A : (9)
T2 T2
Ton Ton
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if and only if,

T L1
j;2 T9 ‘ 2n ‘ 2n
= A and 9,19 = g c;jr; and Zg,qpq = g d;x;,
. 7=1 j=1
Laon Laon
for some scalars ¢, d;. We will now show that lim;—e (21, 2, ..., 22,) = 0, for any solution

(T2042, T2n41, T1, - - -, Ta,) to the switching system (8). By the above, this will imply that
limiseo(1, 2, .., 22,) = 0, for any solution (w1, s,...,22,) to the switching system (1)
and that will give us global attractivity of the origin in the switching system (1), and we

will be done.

Let & = (22042, Tant1, 1, .-, T2,). We consider the evolution of the system dynamics (8) in

each of the coordinate systems,

K3

There are n+1 coordinate systems corresponding to 7 € {1,2,...,n+1}. Each g, is a vector
valued function of t. Let [g;]x denote the k' component of g;. Note that if k is even, then
[g:]k(t) = [ai]i_((t). Let G = {Re[g1]1, Relg2]1, .., Re[gnt1]1}. Let the system dynamics be

initially described by,

= A; 7, (11)

over some time interval [t1,?,]. Note that g; = Djg;. Denote the (7,i) element in Dy, by ..
Hence, ¥ x = ¥pr_1, when k is even. Also, ¢,; is the (i + 2,7 + 2) element in Dj,. Thus,
[Gilm = Yhm—2[gj]m, for 3 < m < 2n 4 2 and [¢;]1 = 0 = [g;]2. Therefore, when we are in

system (11), we have,
[9)m (1) = [gi]m(t2) =207 for 3 <im < 2n 4 2, (12)

and [g;]1, [gj]2 are constant functions of t. Consider the evolution of Re[g;]; relative to

Re[g;]1. This ‘distance’, denoted by d; ;(1), is given by,

di (1) = |Relgi1(t) — Relg;l (1)], (13)
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and can be conveniently calculated from,
9= M M;g;, (14)

We now analyse the structure of the matrix Fi; = M;' M;, for i # j.

Lemma 4.2 : For 1 # 7, the first two rows of F;; are of the form,

100 ... a 30 ...0

where o, 3 depend on 17, 5. At least one of a, 3 is non-zero. « appears in the k™ column,
where k =275 —1,if 1 =1, and £ = 2¢ — 1, if ¢ > 1. Note also that k is always odd and is

never 1.

Proof : Denote the first row of M by 7 and so the second row is 71*. Suppose first
that ¢ = 1. We see that a basis for the orthogonal complement of rj in C?"*? is given
by {(alva270)7(617627vl)7(b;bg?”f)v(éllv(s?,?vv?)v (5;,175;,277);)7 . (571 1757*127 n)} Hence by

Lemma 4.1, the only places (apart from the first column) in the first row of F;;, which are

2]7

5t columns where k is the number of the column

potentially non-zero, are the £ and (k +1)
in Mj which has (8,411, 0nt1,2, Vny1). Thus, k = 25 — 1. Here, « is the row—column product
of 71 and (0p41,1,0n41,2,Vny1). B is the row—column product of #i and (65, 1,971 0,v5,).

Note that at least one of o, 3 is non-zero. Using the fact that the second row of M is 7™,

and proceeding as above, we obtain the appropriate second row for F; ;.

Suppose next that i = 2. We see that a basis for the orthogonal complement of 77 in C*"+2

is given by {(ar,a2,0),(0nt1,1:0011,2,0041)5(05 41,15 001105 Vi )s (021, 022,v2), (831,055, v3),

(051,05 5,v5 ). Hence, by Lemma 4.1, the only places (apart from the first column)
in the first row of F};, which are potentially non-zero, are the k”* and (k + 1)** columns
where k is the number of the column in M; which has (b, by, v;). Thus, k = 3 = 21 — 1.
Here, o is the row—column product of 71 and (by, by, v1). 3 is the row—column product of rj

and (b7, b3, v7). Note that at least one of a, 8 is non—zero. Using the fact that the second

row of M is 71", and proceeding as above, we obtain the appropriate second row for F; ;.
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Suppose finally that 7 > 3. We see that a basis for the orthogonal complement of ] in C*"+2
is given by deleting (&;_1,1,0i1,2,vi-1), (671 1,071 5, v7_) from WU {(a],a3,0)} where W is
the set defined in Lemma 4.1. Hence, by Lemma 4.1 the only places (apart from the first
column) in the first row of F};, which are potentially non-zero, are the k™ and (k + 1)*
columns where k is the number of the column in Mj which has (6;-1,1,0i-1,2,v;—1). Thus,
k = 2i — 1. Here, o is the row—column product of r7 and (d;—11,d;-12,v;—1). [ is the row—
column product of 77 and (9}, ;,07 ;5,07 ;). Note that at least one of a, 3 is non-zero.
Using the fact that the second tow of M ' is 71*, and proceeding as above, we obtain the

appropriate second row for [ ;. Q.E.D.
Since «, 3, in the above Lemma, depend on ¢, 7, we will denote them by «; ;, 5; ;.

We combine Lemma 4.2 with (14) to obtain,

lgili = gl + ai;lgilk + Bilg;]k+1,

= g} + aijlgle + Bijloli, for 1 <i<n+41 with ¢ # . (15)

Note that (15) is true independent of what system we are in. We combine (12) and (15) to

obtain,

Re[gi]s — Relgly = """ (Re(a ;[g;]e(t1)) + Re(Bijlgi]i(t1))), for i#j,  (16)

whenever we are in system (11). Hence,

d; j(t) = e+ Re(ay ;[g;]k(t1)) + Re(Bijlg;1i(t)]-

Consequently, dd’é—;(t) < 0, or else Re[g;]; and Re[g;]1 both agree over the time interval [t1,?2].

Thus, the distance between Re[g;|1(t) and the constant Re[g;]1(¢) is either getting smaller or

always zero over the time interval [t;,;], when we are in the system described by z = A; ;7.

Proof of Theorem 4.1 : We will now prove that lim;_,. (21, zg,...,22,) = 0, for any solu-

tion (@1, x2,...,Ta,) to the system (1) with the set A defined as in the preamble for Theorem

4.1, and then we will be done. Note that,

| Relgili (1) — Relgih)(1)] = %Iam [931k(t) + o7 ;[gile(t) + Biilgilk(t) + 57931k (1),
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= Jlass + 5)laslelt) + (0, + Bl li 0,

1 . "
= S(rige™ (g0 (tr)e =200 oy om0 [g T (8 ) e t=)),

= |rigcos(bs; + i )|[g]k(D)],
where a;; + 37, = ri i and [g;]x(t1) = Sjps, € 7% are polar representations of the ap-

propriate complex numbers. Denote |r; ; cos(0;; + Tk, )| by Qi jkr,-

Denote the maximum value (minimum value) of G(t), for any time ¢ in the time interval

[t1,15], by max'G(¢) (min'G(t)). Recall that we are in system (11) when ¢ € [t;,#;]. Then,

max' G(t) —min' G(¢) = Relg]i(t) — Re[gy]i(t), for some i,b € {1,2,... ,n+ 1},
= Relgil1(t) — Re[g;]1 (1) + Relg;]1 (1) — Re[gp) (1),

= Qi llgslell)|e™ 2 bt |197]q(E1) €7 a2
Qa0 4 Qo gy (1P

where, as in Lemma 4.2, k =25 —1,if1 =1, and k =2:—1,if 2 > 1. Similarly, ¢ =25 —1, if
b=1,and ¢ =2b—1, if b > 1. Note that if Re[g;]; is a maximum value (or minimum value)
of GI(t), then the last line above collapses to just one term instead of two, and in this case the
following arguments will also work. Now let B; ;. = Q; x4 |lg;]x(t1)| = distance between
Re[gi]1(t1) and Relg;]1(t1). Let By, = Qb g |[gi]4(t1) = distance between Relg;]:(t1) and

Re[gp]1(t1). Also, let A = max{¢ps:1 <h <p, 1 <s<2n}. Note that A < 0. Then,

max® G(t) — min' G(t) (B, + Bb,j,tl)e/\(t_tl),

IA

< (max' G(t;) — min' G(tl))eA(t_tl). (17)

The last inequality follows from the fact that, over the time interval [t1, 2], Re[g;]1(t) remains
on the same side of the constant Re[g;]1(t), and Re[gy]:(t) remains on the other side of
Re[g;]1(t). This is because the right hand side of (16) does not change sign as time changes
over the time interval [t;,?5]. Note that 7 and b may change with time and so max'G(¢;)
may not correspond to Re[g;]i(¢1), and min*G(#;) may not correspond to Re[gy]i(t1)-

Now suppose we switch to the next (second) system described by,

= AT, (18)
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over the time interval [ts,?3]. Denote the maximum value (minimum value) of G/(¢), for any

time ¢ in [ty, 3], by max?G(t) (min’G(t)). Then, as above we get,

maX2 G(t) — min2 G(t) S (max2 G(tz) o min2 G(tz)) 6/\(t_t2)7
< (max! G(t;) — min® G(1y)) eMemh) Mimte))

= (max' G(#;) — min' G(tl))eA(t_“).

The second inequality above follows from the fact that we start the second system (18) at the
time ¢ when we stop the first system (11), and the initial conditions for the second system

are the terminal conditions for the first system at time #5. Thus, max?G(¢y) — min*G(t;) <

(max'G(t;) — min'G(#1)) M=) from (17).

Now suppose we switch to the next (third) system described by,

T = A7, (19)

over the time interval [t3,%4]. Denote the maximum value (minimum value) of G/(¢), for any
time ¢ in [t3,14], by max®G(t) (min®G(t)). Then, as above we get,

max® G(t) — min® G(t) < (max' G(t;) — min' G(¢)) M=),
For the general situation, when we have switched for the m!* time, we are in the system
described by z = Az,f:fi over the time interval [¢,,,1,,11]. Again, we denote the maximum

value (minimum value) of G(1), for any time ¢ in [t tpyy1], by max™G(¢) (min™ G(t). Then,

as above we get,
max" G(t) — min™ G(t) < (maxl G(tl) — mint G(tl))e/\(t_tl),

Therefore, since A < 0, we have lim;_, .,(maxG(t) — minG/(t)) = 0, where maxG(t) (minG(t))

denotes the maximum value (minimum value) of G/(t) for any time ¢ > ¢;. Thus,
75lim |Re[g:]1(t) — Relg;]1(t)| =0, for all i,5 € {1,2,...,n+1}.
—+00

Similarly, we can show that,

lim [Im[g]i(t) — Im[g;]1(1)] =0, for all 7,5 € {1,2,...,n+ 1}.

t—00
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Note that,

Re[gil1 (1) — Relg;11(1)
Imlgili (1) = Imlgj]: (?)

a;; + ﬁ:] Oéz]‘ + ﬁi,j [gj]k(t)
—i(i; — B%;) —i(Bi; — i) [9;15(1)

1
2

where the —i is the complex square root of —1. Denote the above vector on the left hand

side by A; ;(t) and denote the above 2 x 2 matrix on the right hand side by X, ;. Thus,

[9i]k (1)
915 (0)

We will now show that Xj;; is invertible for 2 <1 < n + 1. First note that

A j(t) = Xij

X, ; isinvertible & |3;| # |l
aij B

. 4* . 4*
Bij"

& det

£0.

Notice how, with a little serving of serendipity, the last matrix above, namely

aij P

Bii" aiy”
(which we denote by W, ;) appears as part of the first two rows of the matrix F;;, i # j. We
will now exploit this fact. One can show that F}; agrees with the identity matrix in every
column except the two columns which contain matrix W, ;. Recall that F}; = Mi_lMl. We
will now alter the two matrices Mi_l and M; so that det Wi, will appear as a factor in the
determinant of an invertible matrix and hence will be non-zero and so X;; will be invertible
and we will be done. We first swap the last two rows with the first two rows in M ! so that
the new first row is the old penultimate row, the new second row is the old last row, the new
penultimate row is the old first row and the new last row is the old second row. Denote this
new matrix by S;. We then replace M; by an invertible matrix 7} such that certain pairs of

columns of T} interact with certain pairs rows of 5;, to give that S;7; agrees with the identity

matrix except in the last two columns and furthermore W;; takes up the bottom right hand
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corner of S;T;. Consequently,

det I/VZ'J == det(SZTZ) 7£ 0
Thus X, is invertible.

Hence, limy—oo[g1]k(t) = 0, for 3 < k < 2n 4+ 2, because limy—oo A;1(2) =0 for 2 <i <n+1.

Therefore, since lim;_yo 2(t) = limy_0o Myg1(t), we get,

Lon42
Ton+1 [g1]1(%)

. X1 . A H, [gl]Q(t)
lim = lim ,
t—00 5 t—00 0 M1 .

[G1]2n42(1)
Ton
T [91]1(1)
. T2 . [91]2(1)
lim = lim|{ 0 M, )
t— 00 : t—o00 .

LTon

[91]2n12(%)

Thus,

lim (21, 22,...,22,) = 0,
t—co

and we have global attractivity of the origin in the switching system (1). Q.E.D.
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5 Example

As an example of the application of the results presented in the previous sections we consider
the design of an automobile speed control system. A simple model for the longtitudinal

dynamics of an automobile is given by the following second order linear parameter varying

(LPV) structure,

d*v dv
el +al,— +al,v = Lu, (20)

Lovu dt

where v € IR is the vehicle velocity, u € IR the throttle angle, g € {1,2,---,m} is the engaged
gear, and where the parameters al,,a0,, L, vary depending on the engaged gear (Shorten
1996). The task of speed regulation requires the design of a control system that not only
maintains a constant velocity in the presence of gear changes and road disturbances (rolling
hills, inclines, wind resistance, etc.), but that also guarantees stability of the nominal closed
loop system. In this section we demonstrate that the results presented in this paper may be

used as the basis for a controller design that accommodates all of these design considerations.

The control strategy advocated here consists of a bank of linear controllers (one for each
gear) and a switching mechanism that are connected in feedback as depicted in Figure 2.

The individual controllers are of the form,

CZ' : duZ

e e de
i = —bﬂu—l—[& 1Z'€—|-[X22E, (21)

where b; € R, K1; € IR,K2; € R, r € IR is a constant reference velocity, and where
e = r —v. A controller of this form is a standard lead-lag controller that is described in
elementary text-books (Power & Simpson 1978). We make the additional assumption that
the switching logic selects the appropriate individual controller as the instant of gear change.
To keep the discussion as simple as possible we assume that m = 3, yielding an expression

for the closed loop dynamics given by,

j/' = Agl' —|— BT, Ag € {Al,AQ,Ag}, (22)
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Figure 2: The closed loop switching system. S denotes a switching element

where

T dv

T = [Uv %7 U1, u27u3]7

0 1 0 0 0
—al, —al, Lidy Lady Lsds
Ay=| =K2, =K1 —=b, 0 0 .
—-K2, —K1; 0 —by 0
—-K2; —Kl1ls 0 0 —bs

BT =0, 0, K1y, K1,, K1), (23)

where d;, = 1 if the ¢g’th controller is engaged and zero otherwise. We emphasise that the
choice of m = 3 is motivated by a desire to aid exposition; the arguments and results devel-

oped in the sequel generalise to m arbitrary and finite.

Lemma6.1: Let A ={A;, Ay, As} with A, defined by Equation (22). Let the characteristic
polynomials of Ay, Az, A3 be denoted Aj(A), Ay(A), and Az(A) respectively, with,

Ay(A) = (A+b3)( A+ ba)Hi(N),

Ay(A) = (A+b3)(A+b1)Hz(N),

As(A) = (A +b1) (A + by) Hs(N),
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where
Hy(N) = N+ (aly +b)N + (a0, + alyb, + L, K1)\ + L, K2, + a0,b,.

We choose the Kig, K2,,b, such that Hi(A) = Hz(X) = Hs(A) = H(A) for all A. We con-
sider the case where the roots of the polynomial P(A) = (A + bs)(A + b2)(A + by)H(A) are
distinct. Then the matrices Ay, Ay and A3 have exactly n — 1 linearly independent common

eigenvectors.

Proof : We show the result for A; and Ay (identical arguments can be developed for the
matrix pairs (A, As) and (Asg, As)):

—a0y  —al, I, 0 0
Av=| -K2, -K1;, =by 0 0 |,
—-K2, —K1, 0 —=by 0
—-K2; —Kl1;3 0 0 —bs

—GOQ —Cl12 0 L2 0

&
I

—-K2, —=K1; =b; 0 0
—K2, —K1, 0 —b, 0

—-K2; —Kl1;3 0 0 —bs

We need to show that for each common eigenvalue, the matrices A; and A, have a common
eigenvector, and that for the eigenvalue that is not common, the matrices have no common

eigenvector. We also note that, by definition, A; and A, have n — 1 distinct common eigen-

values. These eigenvalues correspond to the roots of H(A) and A = —bs. The eigenvalues
A = —b; (corresponding to A;) and A = —by (corresponding to A;) are not common to both
matrices.
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Common eigenvalues :

It follows from the form of A; and A, that the common eigenvector that corresponds to

A = —b3 is given by vI = [0, 0, 0, 0, 1].

Let A be an eigenvalue that is common to both matrices that is not equal to —b;. The
eigenvector of A; that corresponds to the eigenvalue A can be obtained by determining the

null space of A\l — Ajy:

A -1 0 0 0
aly A+ aly I 0 0
AM-A1=| K2, Kli M+b 0 0
K2, Kl, 0 A+by 0
K25 Kl 0 0  A+0by

Let [rAly,rAly, rAls, rAly,rAls] denote the row vectors of the matrix M — Ay, where
rAl; is the ¢’th row vector. From the above discussion A # b € {—by, —by, —b3}. Hence, it
immediately follows that the row vectors [rAly, rAls, rAly, rAls] are linearly independent.
However, the matrix Al — A; is singular. Hence, it must be possible to write r Al as a linear
combination of [rAly, rAls, rAly, rAls]. This implies that the eigenvector corresponding

to A, is completely specified by the vectors [rAly, rAls, rAly, rAls).
Now consider the matrix A;. The eigenvector of A; that corresponds to the eigenvalue A

can be obtained by determining the null space of A\l — Aj:

[ -1 0 0 0 |
a0y A+ alsy 0 Ly 0
AM—-Ay=1| K2, Kl; A+b 0 0
K2, Kl, 0 A+by 0
K25 Kl 0 0  A+0by

As before, let [rA2q,rA2y,1rA25,7A24,7A25] denote the row vectors of the matrix A\ —
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Ay, where rA2; is the i'th row vector. Again, A # b € {—by,—by, —b3}. Hence, the
row vectors [rA2;, rA2s;, rA24, rA2s] are linearly independent. However, as the matrix
A — A, is singular, it must again be possible to write rA25 as a linear combination of
[rA2y, rA2;, rA24, rA2s5]. This implies that the eigenvector corresponding to A, is com-

pletely specified by the vectors [rA2;, rA2;, rA2,, rA2s].
But, the matrices A; and A, are identical except for the second row. Hence, it follows that
rAl; =rA2;, Vi=1{1,3,4,5}, and that the matrices A; and A, have a common eigenvector

for all common eigenvalues A\, A #£ b € {—by, —by, —b3}. Q.E.D.

Eigenvalues that are not common to both matrices :

Consider the matrix A;. The eigenvalue of A; that is not common to Ay is —by. The eigen-
vector of A; that corresponds to this eigenvalue is v = [0, 0, 0, 1, 0]. Now consider the
matrix Ay. The eigenvalue of A, that is not common to Ay is —by. The eigenvector of Aj

that corresponds to this eigenvalue is v = [0, 0, 1, 0, 0]. Clearly, v; # v,. Q.E.D.

We now note the following facts concerning the matrix A,.

(i) rank{A; — Aj} = 1,04 5, 1,5 € {1,2,3}.

(ii) The characteristic polynomials Aj(A), Aa(A), and As(A) share
n — 1 common eigenvalues if H;(A\) = H()A), 1 € {1,2,3}.

(iii) Let H;(A) = H(X), ¢ € {1,2,3}. Then the matrices A; and
A1 # g, 1,5 € {1,2,3} satisfy Lemma 6.1 and share n — 1

common real linearly independent eigenvectors.
Therefore, sufficient conditions for the matrices A, € {A;, Az, As} to satisfy the conditions
of Theorem 3.1, and hence for the stability of the unforced system,
T = A9x7 g€ {A17A27A3} (24)
are given by:

31



(i) the target polynomials H;()) have real negative eigenvalues for

all i € {1,2,3};
(i) Hi(A) = H;(A), 1,5 € {1,2,3};
(i) b > 0,4 € {1,2,3}:

(iv) the roots of the polynomial P(A) = (A+b3)(A+b2)(A+b1)H(X)

are distinct.

When these conditions are satisfied, one can easily verify that any 5 of the 6 linearly in-
dependent eigenvectors given by the eigenvectors of Ay, Ay, A3, are linearly independent.
Therefore, the hypothesis of Theorem 3.1 is satisfied, and the origin of (29) is globally at-
tractive and asymptotically stable. BIBO (bounded-input bounded-output) stability of the

forced system (22) follows directly from elementary arguments (see (Rugh 1996)).

6 Concluding remarks

In this paper we have shown global attractivity for several classes of switching systems.
These results were derived using a technique know as state-space embedding. This tech-
nique does not rely on the existence of a CQLF, and can therefore be used in situations
where such a function does not exist. It is likely that derived methodology is applicable to a
wide class of related switching systems. We have also shown that the condition of pairwise
triangularisability is not a sufficient condition for the existence of a CQLF, or for the stability
of the switching system. However, the derived results also suggest that by imposing addi-
tional minor assumptions, the condition of simultaneous triangularisability may be relaxed

significantly without the loss of asymptotic stability.

Acknowledgements

This work was partially supported by the Furopean Union funded research training network

Multi-Agent Control, HPRN-CT-1999-00107 and by the Enterprise Ireland grant SC/2000/084/Y.

32



This work is the sole responsibility of the authors and does not reflect the European Union’s
opinion. The EU is not responsible for any use of data appearing in this publication. The
second author gratefully acknowledges many discussions with Dr. Douglas Leith and Dr.

Paul Curran.

33



Appendix

Proof of Theorem 2.1
In order to demonstrate the existence of an unstable switching sequence for Equation (1), it
is sufficient to show the existence of a periodic switching sequence for which the state of the

system becomes unbounded.

Consider the system (1) with A(t) = A(t 4+ T) for all ¢ > 0, where T is the fixed period.
Further, let the matrices {A;, Ay ..., Ay} be indexed according to the order in which they
describe the system dynamics, and let the M-tuple {¢1, 15 , ..., tp} describe the time for which
each of the matrices describes the system dynamics, i.e., = Ajz, describes the evolution
of the system dynamics for (Ef;ll t) <t< (Ele t;). The solution to Equation (1) at time

T = Ef\il t;, is given by,
(T) = (ethreMitz | eAmtar)y, (25)
= (I)(T)l’o,
where 2o € IRY is some initial condition. A sufficient condition for instability of (1) is that

the matrix ®(7') has an eigenvalue whose magnitude is greater than unity (Mohler 1991).

Equation (25) can be expanded as a power series,
M
(1) = I+ (D> id)T + K17 + ..
=1
= [+ o[A;, M]T + ... (26)

where a; = %, K, € RV and where we define o[A;, M]. = Ef\il a;A;. The expansion
(26) is the product of M absolutely convergent series, and is analytic in 7. Hence, from
Theorem 2.1 in (Shorten et al. 2000) and (Kato 1980) (page 81), it follows that, given any

eigenvalue a; of o[A;, M], an eigenvalue of ®(T') can be written,
A(T) =1+ ;T + f(T), (27)
where f(T)= O(T?), 3> 1,as T — 0. Thus, there exist constants C, ¢ such that

| F(T) |SCTP for 0 < T < e. (28)
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Hence, | Re(f(T)) |< CTF for 0 < T < ¢, where Re(z) denotes the real part of a complex
number z. Now consider the case when the j eigenvalue, a;, of the matrix o[A;, M], has
a positive real part for some {ay,...,an}, a; > 0, Ef\il a; > 0. Hence, there exists § < ¢,

such that for 0 < 7" < 4, we have the following:

CT? < Re(a;)T,

| Re(f(T)) | < Re(a)T,
Re(a;)T + Re(f(T)) > 0,
Re(1+a;T+ f(T)) > 1,

Re(A(T))

v
O
=
=
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Proof of Theorem 3.1.

For ease of exposition we first present an outline of the main ideas. This follows closely the
three steps of the method of state-space embedding described in the main text. The proof
is then developed by means of several key lemmas. Note that in the sequel we use row and

column notation interchangeably to denote vectors.

Outline of Proof

Step 1: We replace each n x n matrix M; by an (n+1) x (n+1) matrix M;. We then
replace each n x n matrix A;; in A by an (n+ 1) x (n + 1) matrix A, ;. The
matrices Ai,h e A= {Ai,h : A;p, € A} are chosen such that there is at least
one common eigenvector 7 = (1,0,0,...,0) for all the matrices in A, and also

such that the properties of the solutions of the dynamic system

= A(t)z, Alt) € A, (29)
will ultimately imply the global attractivity of the origin of the system
&= A(t)x, A(t) € A, (30)

where @ = (21, ...,2,) and & = (Lpi1, 1, oory Tp)-
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Step 2: For a given 7 € {1,2,...,n+ 1} we consider the n + 1 linearly independent
columns of Mj. These form an n 4+ 1 dimensional coordinate system which
includes 7 as one of the axes. We consider the projection of the state ()
onto 7 as the dynamics of the system (29) evolve. This projection is given by

the first component of the vector
gi(t) = M2 (1), (31)
and is denoted by [g;]1(?).

Step 3: We then show that limy_, |[g;]1(¢) — [¢:]1(¢)| =0, Vi,5 € {1,....,n+1}. From
this fact we can deduce that limieo(21,...,2,) = 0. This is sufficient to

demonstrate the global attractivity of the origin of the system,
&= A(t)x, A(t) € A. (32)

Technical details of Proof

Lemma 3.1.
There exists a positive number @ such that the set W = {(a, v1), (1,v2), (1,v3),..., (1, v541)}
is linearly independent in IR"*". Here (a,v;) is the vector with n + 1 coordinates, whose first

coordinate is ¢ and remaining n coordinates are the n coordinates of v;.

Proof :
Let V = {v1,v2,..., 0,41} in IR". We know that any subset of ¥V which contains n elements
is linearly independent and thus forms a basis for IR". Consequently, {vq, v3, ..., v,41} forms

a basis for IR" and so there exist unique real numbers 3; such that v, = E?;l Bjv;. Pick a

to be a positive number which is different from E?;l B;.

We now show that the set W is linearly independent in IR"*'. Let v; = (a,v;) and v; =

(1,v;), for 2 < 57 <n+ 1. Suppose E?;l ~;0; = 0 with at least one of the +.,° non-zero. We
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want to derive a contradiction. Note that v,a + E?;l ~v; =0 and E?:-I'll ~iv; = 0. Also note

that v # 0, because if v; = 0 then we have E?;l v;v; =0and so vy, =0for 1 <¢<n+1

and this is false. Consequently, we can write vy = _wl_l E?;l v;v; and a = _w% E?;l ;-
Thus by uniqueness of [3;, we have 3; = —1—1, for2<j3<n+1andsoa= E?;l B3;, which

is false. Therefore W is linearly independent in IR"™'. Q.E.D.

Define M; to be the following (n 4+ 1) X (n + 1) matrix:

1 b1 1 1
0

§ 0 M,

M; =
0
0

where b = a (from Lemma 3.1), if ¢ # 2 and b = 1, if ¢ = 2. The change in the value of b
is because v; only appears in M; when 7 # 2. Note that the columns of M;, apart from the

first column, are vectors from the set W in Lemma 3.1.

Note that
1 s s9 ... s,
0
Mt=1 0 M
0
for some real numbers sy, sg,...,s, which depend on 1.

38



Define D, to be the following (n+1) x (n+ 1) diagonal matrix:

0 ... ... ... 0

Define Ai,h = MZ'D;LMZ»_I. We then get

0

for some real numbers ¢y, ¢y, .., ¢, which depend on 7 and h. Note that (1,0,0,...,0) is a

common eigenvector for all the m matrices A; .

We then have that

Tyt Tyt
I o
Tg = Ai Tq (33)
I T,
if and only if
1 o
o o "
= Ai,h and i}n_|_1 = Z C; Xy
: i=1
I T,
We will show that lim;—eo (21, 22,...,2,) = 0, for any solution (2,11, 21, 2,...,2,) to the

switching system (29). By the above, this will then imply that lim;_ (21, 29,...,2,) = 0,

39



for any solution (xy,s,...,2,) to the switching system (1) and that will give us global
attractivity of the origin in the switching system (1), and we will be done.

Let & = (2p41,%1,22,...,2,). We consider the evolution of the system dynamics (29) in
each of the coordinate systems

K3

There are n 4+ 1 coordinate systems corresponding to ¢ € {1,2,...,n + 1}. Let G =
{l1]1, [92]1s- - -5 [gna1]1}, where [g;]; denotes the first component of the vector g;.

Let the system dynamics be initially described by

T = A7, (35)

over some time interval [¢;,t;]. Note that g; = D,g;. Let [g;]., be the m" component of the
vector g; and let )\, denote the (4,7)" diagonal entry in D, and hence the (z + 1,7 + 1)
diagonal entry in D,. Then we have that [G;]m = Anm_1lg;]m, for m # 1 and [g;]; = 0.

Therefore, when we are in system (35), we have

[971m(t) = [gilm(te) €mm=1 7 for m # 1, (36)

and [g;]1 is a constant function of ¢.

The members of (¢, when we are in system (35), are illustrated in Figure 1. Note that [g;];
is a constant function of time over [t1, 5] while the other [g;],»’s vary with time according to

(36).

| +

[:Jz]l [.gm]l [gj]l‘ Tgkh

Figure 3: Members of the set G.

Consider the evolution of [g;]; relative to [g;]1. This ‘distance’ denoted by d; ;(), is given by

di j(1) = [lgil(t) = [gsh (V)] (37)
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and can be conveniently calculated from

g = Mi_legj (38)

We now analyse the structure of the matrix F;; = M ' M,, for i # j. We see that 1 always
appears in the first row first column entry of F;;. We claim that there is only one other

non-zero entry in the first row.

Lemma 3.2.
If we exclude the first column of the matrix F;;, for ¢ # j, then there is only one non-zero
entry (denoted by C; ;1) in the first row. C; ;; appears in the k' column where k& = 5, when

i =1, and k =1, when 7 # 1. Note that k is never 1.

Proof :

Denote the first row of M;' by 7. Suppose first that 7 = 1. We see that a basis for the
orthogonal complement of 7 in IR"*! is given by {(a,v1),(1,v2), (1,v3),...,(1,v,)}. Hence,
using the result of Lemma 3.1, the only place (apart from the first column) in the first row of

F} ; which is non-zero, is the &' column where k is the number of the column in M; which

has (1,v,41). Thus k = j. Here C; ; is the dot product of 7 and (1,v,41).

Suppose next that i = 2. We see that a basis for the orthogonal complement of 7 in IR"** is
given by {(1,v3), (1,v3),...,(1,v,41)}. Hence, as above, the only place (apart from the first
column) in the first row of F}; which is non-zero, is the k' column where k is the number
of the column in Mj which has (a,vy). Thus & = 2. Here C; ; is the dot product of 7 and
(a,vy).

Suppose finally that ¢ > 2. We see that a basis for the orthogonal complement of 7in IR"** is
obtained by deleting (1,v;_1) from the set W in Lemma 3.1. Hence, as above, the only place
(apart from the first column) in the first row of F}; which is non-zero, is the k™ column
where k is the number of the column in Mj which has (1,v;_1). Thus k = i. Here C, is

the dot product of 7 and (1,v,_;). Q.E.D.
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We combine Lemma 3.2 with (38) to obtain
[gi]l = [gj]l —|— Ci,j,k[gj]k fOI’ 1 S Z S n —|— 1 Wlth Z 7£ ] (39)

Note that (39) is true irrespective of what system we are in.

We combine (36) and (39) to obtain

[gi)1(t) = [gi]1(t) = Cij [g]k(tr) €507 for 4 £ 5, (40)

whenever we are in system (35). Hence
dij(t) = |Cigalllgile(to)] =100 for ty <t <t; and i # j.

Consequently 22 < 0 or else [¢;]; and [g;]; both agree over the time interval [t, ,]. Thus

ddi; (?)
dt

the distance between [¢;]1(f) and the constant [g;]1(?) is either getting smaller or always zero

over the time interval [t;,1;], when we are in the system described by # = A; ;2.

Proof of Theorem 3.1 :

We will now prove that limi_eo (21, 22,...,2,) = 0, for any solution (xy,x,...,2,) to the
system (1) with the set A defined as in statement of Theorem 3.1, and then we will be done.
Denote the maximum value (minimum value) of G/(¢), for a time ¢ in the time interval [t1, t5],

by max! G(¢) (min' G(¢)). Recall that we are in system (35) when ¢ € [t;,#;]. Then

max' G(t) —min' G(t) = [¢:1(t) — [9-]:(¢), for some i, € {1,2,...,n+ 1}
= lgih(t) =gl (t) + [g; (1) = [9-2(2)

Conl lglu(t)] ms =200 O] g]y(8)] ememr ()

where, as in Lemma 3.2, k = j, if ¢ = 1, and k = ¢, if ¢ # 1. Similarly ¢ = 5, if r = 1, and
g = r, if r # 1. Note that if [g;]; is a maximum value (or minimum value) of G(¢), then
the last line above collapses to just one term instead of two, and in this case the following
arguments will also work. Now let B, j;, = |Ci x| |lg;]x(t1)| = distance between [g;]1(¢1) and

[gi]1(t1). Let B+ = |Crigl |l9i]4(t1)] = distance between [g;]1(t1) and [g,]1(¢1). Also let
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A=max{d,p:1 <a<p, 1 <3 <n} Notethat A < 0. Then

max' G(t) —min' G(t) < (Bijs, + Brjs) AME—t1)

< (max' G(f) — min' G(ty)) M=) (41)

The last inequality follows from the fact that, over the time interval [t1,t5], [¢;]1(¢) remains
on the same side of the constant [¢;]1(¢) and [g,]:(¢) remains on the other side of [g;]1(?).
This is because the right hand side of (40) does not change sign as time changes over the
time interval [¢,;]. Note that ¢ and r may change with time and so max* G(¢;) may not
correspond to [g;]1(¢1), and min' G(#;) may not correspond to [g,]:(#1).

Now suppose we switch to the next (second) system described by

T= A7 (42)

over the time interval [t2,13]. Denote the maximum value (minimum value) of (), for some

time ¢ € [ty, 3], by max? G(¢) (min® G(¢)). Then as above we get

max? G(t) — min? G(t)

IA

(max* G(t;) — min® G(ty)) eMi=t2)
< (max' G(t;) — min' G(ty)) eMf2mt) -t
< (max! G(t;) — min® G(t,)) =)
The second inequality above follows from the fact that we start the second system (42) at

time ¢, when we stop the first system (35), and the initial conditions for the second system

are the terminal conditions for the first system at time ¢5. Thus max? G(t;) — min® G(#;) <

(max! G(t;) — min' G(1,)) M=) from (41).

Now suppose we switch to the next (third) system described by

7= AT (43)

over the time interval [t3,t4]. Denote the maximum value (minimum value) of (), for some

time ¢ € [t3,t4], by max® G(¢) (min® G(¢)). Then as above we get
max’ G(t) — min® G(¢) < (max' G(t;) — min' G(¢)) AMt—t1)
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For the general suituation, when we have switched for the m!* time, we are in the system
described by z = AZJ:Z' over the time interval [t,,,%,,1+1]. Again we denote the maximum
value (minimum value) of G(t), for some time ¢ € [tn, tmy1], by max™ G(¢) (min™ G(1)).

Then as above we get
max™ G(1) —min™ G(t) < (max' G(t1) — min' G(t;)) =)

Therefore, since A < 0, we have lim;_, ., (max G/(¢)—min G(t)) = 0, where max G(¢) (min G(t))

denotes the maximum value (minimum value) of G/(t) for any time ¢ > ¢;. Thus

tliglougl]l(t)_[g]]l(t” = 07 for all Z?]E {17277n+1}
75lim |Ciiklllgi]e(®)] = 0, where k=j7ifi =1, and k=1, ifi # 1, and 1 # J.
—+00
7ltlim|[gj]k(t)| = 0, forje{l,2,....n+1}, and k € {2,3,...,n+ 1}.
—+00

The second line above follows from (39), which is independent of what system we are in.
The last line above follows from the fact that the CZISM form a finite collection of non—zero
numbers when ¢ # j. Also note that the last line above might not hold for & = 1 because

then i = j = 1. Therefore, since lim;_, ., @(t) = lim_, M;g;(t), we get

1 61 1 1
xn+1
0 ARG
€1
. . 0 M, [g;]2(t)
lim T = lim
t—y 00 t—00
0
[9ilns1(2)
Ty
0
1 0 [gi]1(%)
. T . 0 M [g]2(%)
lim = lim
t—00 : t—00
T, 0 [9j]n+1(t)
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Thus

tli}rglo(xl,xz, ceyXy) =0,

and we have global attractivity of the origin in the switching system (1). Q.E.D.

45



References

Angeli, D. (1999), A note on the stability of arbitrarily switched homogeneous systems,

Submitted to systems and control letters.
Kato, T. (1980), Perturbation theory for linear operators, Springer.

Liberzon, D., Hespanha, J. P. & Morse, S. (1998), Stability of Switched Linear Systems: A Lie
Algebraic Condition, Technical report, Laboratory for Control Science and Engineering,

Yale University.
Mohler, R. (1991), Nonlinear Systems: Dynamics and Control, Prentice Hall.

Mori, Y., Mori, T. & Kuroe, Y. (1996), Classes of Systems having Common Quadratic Lya-
punov Functions: Triangular System Matrices, in ‘proceedings of Electronic Information

and Systems Conference (in Japanese)’.

Mori, Y., Mori, T. & Kuroe, Y. (1997), A Solution to the Common Lyapunov Function
Problem for Continuous Time Systems, in ‘proceedings of 36th Conference on Decision

and Control’.
Narendra, K. & Annaswamy, A. (1989), Stable Adaptive Systems, Prentice-Hall.

Narendra, K. S. & Balakrishnan, J. (1994), ‘A Common Lyapunov Function for Stable
LTI Systems with Commuting A-Matrices’, IEEE Transactions on Automatic Control

39(12), 2469-2471.
Power, H. & Simpson, R. (1978), An Introduction to Dynamics and Control, McGraw-Hill.
Rugh, W. (1996), Linear system theory, Prentice Hall.

Shorten, R. (1996), A Study of Hybrid Dynamical Systems with Application to Automotive
Control, PhD thesis, Department of Electrical and FElectronic Engineering, University
College Dublin, Republic of Ireland.

46



Shorten, R. & Narendra, K. (1997), A Sufficient Condition for the Existence of a Common
Lyapunov Function for Two Second Order Systems: Part 1., Technical report, Center

for Systems Science, Yale University.

Shorten, R. & Narendra, K. (1998), On the Stability and Existence of Common Lyapunov
Functions for Linear Stable Switching Systems, In proceedings of Conference on Decision

and Control, Florida Dec 15th-18th.

Shorten, R. & o) Cairbre, F. (n.d.), A Proof Of Global Attractivity for a Class of Switch-
ing Systems using a non-Lyapunov Approach, Accepted for publication by Institute of

Mathematics and its Applications : Journal of Mathematical Control and Information.

Shorten, R. N. & o) Cairbre, F. (2000), On the global attractivity of a class of switching

systems, in ‘Proceedings of the American Control Conference’.

Shorten, R. N., o) Cairbre, F. & Curran, P. F. (2000), On the dynamic instability of a class
of switching systems, in ‘Proceedings of IFAC conference on Artificial Intelligence in

Real Time Control’.

47



