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Abstract

A su�cient condition for the existence of a Lyapunov function of the form V �x� �

xTPx� P � PT � �� P � IRn�n � for the stable linear time invariant systems �x �

Aix� Ai � IRn�n� Ai � A � fA�� ���� Amg� is that the matrices Ai are Hurwitz� and

that a non	singular matrix T exists� such that TAiT
��� i � f
� ���� mg� is upper trian	

gular �Mori� Mori � Kuroe 
��
� Mori� Mori � Kuroe 
���� Liberzon� Hespanha �

Morse 
���� Shorten � Narendra 
����� The existence of such a function� referred

to as a common quadratic Lyapunov function �CQLF�� is su�cient to guarantee the

exponential stability of the switching system �x � A�t�x� A�t� � A� In this paper we

investigate the stability properties of related classes of switching systems� We consider

sets of matrices A� where no single matrix T exists that simultaneously transforms each

Ai � A to upper triangular form� but where a set of non	singular matrices Tij exist

such that the matrices fTijAiT
��
ij � TijAjT

��
ij g� i� j � f
� ����mg� are upper triangular�

We show that in general� this condition does not imply the existence of a common

quadratic Lyapunov function �CQLF�� Further� we also show by means of a simple

example� that the condition of pairwise triangularisability is not su�cient to guarantee

stability of an associated switching system� However� we show that� for special classes

of related systems� the origin of the switching system� �x � A�t�x� A�t� � A� is globally

attractive� A novel technique� referred to in this paper as state�space�embedding� is

developed to derive this result� State	space	embedding is based upon the observation

that the stability properties of an n	dimensional switching system may� on occasion�

�



be analysed by embedding the n	dimensional system in a higher dimensional system�

The e�cacy of this technique is demonstrated by showing the stability of two distinct

classes of switching systems� and by utilising these results to design a control system

for a real industrial application� namely the design of a stable automobile speed control

system�

�



� Introductory remarks

We consider switching systems of the following form


�x � A
t�x� A
t� � A � fA�� A�� ����� Amg� 
��

where the Ai� i � f�� �� ���mg
 are constant matrices in IRn�n� The matrices Ai� i �

f�� �� ���mg
 are assumed to be Hurwitz 
the eigenvalues of each Ai matrix lies in the open

left half of the complex plane�� A su�cient condition for the exponential stability of

Equation 
��
 and for the existence of a common quadratic Lyapunov function 
CQLF�


V 
x� � xTPx� P � P T � �� P � IRn�n
 for the stable linear time invariant 
LTI� systems

�Ai
� �x � Aix� x � IRn� Ai � A� Ai � IRn�n� 
��

is that the matrices Ai are Hurwitz
 and that a non�singular transformation T exists such

that TAiT
�� is upper triangular for all i � f�� ����mg� This result was �rst derived by Mori

et al� 
�����
 and further discussed by Liberzon et al� 
����� and Shorten � Narendra 
������

Unfortunately
 from a practical viewpoint
 the requirement of simultaneous triangularisabil�

ity imposes unrealistic conditions on the matrices in the set A� It is therefore of interest to

extend the results derived by Mori et al� 
����� with a view to relaxing this requirement�

In this context several authors have recently published new conditions which also guarantee

exponential stability of the switching system� Typically
 the approach adopted is to bound

the maximum allowable perturbations of the matrix parameters from a nominal 
triangu�

larisable� set of matrices
 thereby guaranteeing the existence of a CQLF� see Mori et al�


������ In this paper we consider classes of switching systems that are closely related to

those studied by Mori et al� 
������ However
 rather than assuming maximum allowable

perturbations from nominal matrix parameters
 we explicitly assume that no single non�

singular transformation T exists that simultaneously triangularises all of the matrices in A�

Rather
 we assume that a number of non�singular matrices Tij exist
 such that for each pair

of matrices in A
 fAi� Ajg
 the matrices fTijAiT
��
ij � TijAjT

��
ij g are upper triangular� We

refer to switching systems that are constructed in this manner as pairwise triangularisable

�



switching systems�

In this paper we establish a number of results concerning pairwise triangularisable switching

systems� We show that while the condition of pairwise triangularisability is not su�cient

to guarantee asymptotic stability
 global attractivity of the origin can be established us�

ing state�space�embedding by making other assumptions� These results are important for a

number of reasons� Primarily
 they conclusively invalidate the conjecture made in 
Shorten

� 	O Cairbre n�d�� that the condition of pairwise triangularisability alone is su�cient to

guarantee asymptotic stability of 
�� for arbitrary switching sequences� Secondly
 we show

that state�space�embedding can be utilised to prove global attractivity of the origin for sev�

eral classes of switching system� This technique does not utilise concepts from quadratic

Lyapunov theory and may therefore be used in situations where such functions do not exist�

Asymptotic stability of the system follows from known results in the literature� Finally


these results are used to design a stable switching controller for a car speed control system�

This paper is organised as follows� Preliminary de�nitions and mathematical results are

presented in Section �� General pairwise triangularisable systems are discussed in Section ��

The method of state�space�embedding is formally introduced in Section �
 and the technique

is applied to prove the global attractivity of a class of switching systems related to those

discussed in Section �� These results are applied to the design of a stable speed control

system for an automobile in Section ��
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� Preliminary results

In this section we introduce some simple concepts and de�nitions 
from Narendra � An�

naswamy 
������ which are useful in the remainder of the paper�


i� The switching system � Consider the linear time�varying system

�x � A
t�x� 
��

where x � IRn
 and where the matrix switches between the matrices Ai � IRn�n be�

longing to the setA � fA�� ���� Amg� We shall refer to this as the switching system� The

time�invariant linear system �x � Aix
 denoted �Ai
is referred to as the ith constituent

system�

Suppose that 
�� is described by the �th system �x � A�x over a time interval �t�� t�����

By de�nition
 the next system that we switch to
 say the 
� � ��th system
 starts at

time t��� with initial conditions equal to the terminal conditions of the �th system at

time t����


ii� Stability of the origin � The equilibrium state x � � of Equation 
�� is said to be

stable if for every � � � and t� � �
 there exists a �
�� t�� � � such that k x� k� �
�� t��

implies that k x
t�x�� t�� k� �� � t � t��


iii� Attractivity of the origin � The equilibrium state x � � of Equation 
�� is said to

be attractive if for some 	 � �
 and for every 
 � � and t�
 there exists a number

T 

� x�� t�� such that k x� k� 	 implies that k x
t�x�� t�� k� 
� � t � t� � T �


iv� Global attractivity of the origin � The equilibrium state x � � of Equation 
�� is said

to be globally attractive if limt�� x
t�x�� t�� � �
 for all initial conditions x� and for

all t� � ��

�




v� Asymptotic stability � The equilibrium state of Equation 
�� is said to be asymptoti�

cally stable if it is both stable and attractive�


vi� Common quadratic Lyapunov function� In the following discussion we refer to com�

mon quadratic Lyapunov functions 
CQLF�s�� A common quadratic Lyapunov function

is de�ned as follows�

Consider the switching system de�ned in 
�� where all the elements of A are Hurwitz�

The quadratic function

V 
x� � xTPx� P � P T � �� P � IRn�n� 
��

is said to be a common quadratic Lyapunov function for each of the constituent sub�

systems �Ai
� i � f�� ����mg
 if symmetric positive de�nite matrices Qi� i � f�� ����mg


exist such that the matrix P is a solution of the matrix equations

AT
i P � PAi � �Qi� 
��

The existence of a common quadratic Lyapunov function implies the exponential sta�

bility of the switching system 
�� as discussed by Narendra � Balakrishnan 
������

We note the following important result�

Theorem ��� � 
Shorten � Narendra 
�����
Shorten
 	O Cairbre � Curran 
������ A su��

cient condition for the existence of a switching sequence
 such that the system 
�� is unsta�

ble
 is that there exist non�negative constants f��� ��� ���� �Mg
 such that the matrix pencil

PM

i�� �iAi� �i � ��
PM

i�� �i � � has an eigenvalue with a positive real part�

Proof � Appendix�
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� Pairwise triangularizable systems

As discussed in the introduction
 switching systems that are constructed from constituent

dynamic systems whose system matrices are simultaneously triangularisable have been the

subject of much interest in the switching system community� The exponential stability of

systems in this form can be readily established using standard arguments 
an analytical

expression for their solution is readily obtained�� Nevertheless
 the widespread interest in

these systems is motivated by the fact that the condition of simultaneous triangularisability

is one of the few known 
simple� conditions that guarantees the existence of a CQLF for

each of the constituent systems� While the theoretical interest in these systems is justi�ed


practical applications motivate a number of open questions pertaining to related classes of

switching systems� In this Section we consider switching systems where any two matrices

in the switching set A are Hurwitz
 and can be simultaneously triangularised� We refer to

systems in this form as pairwise triangularisable switching systems� In this context we note

the following important questions�


i� Is the condition of pairwise triangularisability su�cient to

guarantee the existence of a CQLF for each of the con�

stituent sub�systems�


ii� Is the condition of pairwise triangularisability su�cient to

guarantee asymptotic stability of the origin of 
���


iii� In the event of negative answers to 
i� and 
ii� 
which are

not equivalent�
 is it possible to specify extra conditions in

addition to pairwise tringularisability such that the origin

of 
�� is asymptotically stable�

In the sequel we show via a simple example that the condition of pairwise triangularis�

ability is not su�cient to guarantee the existence of a CQLF for each of the constituent

sub�systems� In fact
 it is readily shown by means of another simple example
 and Theorem

���
 that this condition does not even guarantee asymptotic stability of the origin of Equa�

tion 
��� However
 despite these negative results
 we show using state�space�embedding that

�



a stable sub�class of pairwise traingularisable systems
 of extreme practical importance
 can

be identi�ed� The usefulness of this sub�class is illustrated in Section ��

�i� Common quadratic Lyapunnov functions

Example ��� � Consider the following stable LTI systems


�Ai
� �x � Aix� Ai � IR����

with


A� �

�
�� ������� ������

������� ������

�
�� � A� �

�
�� �������� �������

������� �������

�
�� � A� �

�
�� ������� �������

������� �������

�
�� �

The set of matrices for which AT
i P � PAi � �� P � P T � �� P � IR���
 is given by

PAi
� detfAT

i P � PAig � �� 
��

where

P �

�
�� � p��

p�� p��

�
�� �

Equation 
�� de�nes a convex set in 
p��� p��� space� These sets are depicted in Figure �

for each of the systems �A�
��A�


 and �A�

 as the interior of each of the respective elliptical

regions� Clearly
 no CQLF exists as the sets PAi
� i � ��� �� ��
 have no common point of inter�

section� However
 the matrix pairs fA�� A�g
 fA�� A�g
 fA�� A�g are pairwise triangularisable

with

T�� �

�
�� � ���

� �

�
�� � T�� �

�
�� � �

��� �

�
�� � T�� �

�
�� ��� �

� �

�
�� �

�ii� Asymptotic stability of the origin of ���

�
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and �A�

�

It follows from the above example that the condition of pairwise triangulisability of the

system matrices does not necessarily imply the existence of a CQLF In fact
 the following

example demonstrates that the general condition of pairwise triangularisability is not su��

cient to guarantee asymptotic stability for the system 
�� for arbitrary switching�

Example ��� � Consider the following switching system


�x � A
t�x� A
t� � A
�

� fA�� A�� A�g� 
��

with


A� �

�
�����
��������� ������� �������

������ ������� �������

��������� ������� �������

�
����� �

A� �

�
�����
�������� ������� �������

������� �������� ��������

�������� ������� �������

�
����� �

A� �

�
�����

������ ������� �������

������� ������ ������

������ ������� �������

�
����� �

�



The matrix pairs fA�� A�g
 fA�� A�g
 fA�� A�g are pairwise triangularisable with


T�� �

�
�����

� � �

� �� ���

� � �

�
����� �

T�� �

�
�����

� � �

��� ��� ���

�� � �

�
����� �

T�� �

�
�����

� � �

��� ��� ���

� � ��

�
����� �

However
 the matrix

A � ����A� � ����A� � ���A��

�

�
�����

�������� ������ ������

��������� ������� ��������

�������� �������� ���������

�
����� �

has an eigenvalue with posive real part 
�i � ��������� ���������������� It follows from

Theorem ���
 that an unstable switching sequence exists for the system 
��� Hence
 the

general condition of pairwise triangularsability is not a su�cient condition to guarantee

asymptotic stability for the system 
��� This observation is stated formally as follows�

Proposition ��� � Consider the system given by Equation 
��� The condition that a

set of non�singular matrices Tij exist such that the matrices fTijAiT
��
ij � TijAjT

��
ij g� i� j��

f�� ����mg
 are upper triangular
 is not su�cient to guarantee the asymptotic stability of the

system 
���

Proof � The proof is by contradiction and follows directly from Example ����

��



�iii� Su	cient conditions for stability

A frequent practical requirement in the design of switching systems is that the nominal closed

loop switching�system has real eigenvalues� This requirement ensures that the response of

the system does not overshoot� In this context it is of interest to examine pairwise trian�

gularisable systems with the characteristic that all of the matrices in the set A have real

eigenvalues and real eigenvectors� A simple
 but non�trivial
 pairwise triangularisable sys�

tem with this property is constructed by choosing A such that the matrices Ai are Hurwitz


and that each pair of matrices share n� � common linearly independent eigenvectors� The

matrices speci�ed in Example ��� have this property� While these conditions are clearly not

su�cient to guarantee the existence of a CQLF
 as demonstrated by Example ���
 it follows

via state�space�embedding arguments 
Shorten � 	O Cairbre �����
 and by specifying addi�

tional minor technical speci�cations
 that these properties are indeed su�cient to guarantee

global attractivity
 and hence asymptotic stability 
Angeli �����
 of the origin for switching

systems of the form of 
��� This observation leads to a powerful design technique based upon

the following theorem�

��



Theorem ����
Shorten � 	O Cairbre n�d�� Consider the switching system 
�� with the set

A de�ned as follows�

Let V � fv�� � � � � vn��g be a set of real vectors� where each vi � IRn� Suppose any

n vectors in V are linearly independent� For each i � f�� �� � � � � n � �g� construct

an n � n matrix Mi as follows� M� � �v�� v�� � � � � vi��� vi� � � � � vn��� vn� and for

� � i � n� � we de�ne Mi � �v�� v�� � � � vn��� vi� � � � vn��� vn�� i�e� Mi is obtained by

replacing the 
i � ��th column in M� with the vector vn��� Suppose we also have

p di�erent diagonal matrices D��D�� � � � �Dp with all diagonal entries negative�

De�ne Ai�h � MiDhM
��
i � for � � i � n � � and � � h � p� Let A be a subset of

fAi�h � � � i � n � �� � � h � pg� Then the origin of the system �	
 is globally

attractive� It further follows from the results in �Angeli 	���
� that systems of the

form speci�ed above are asymptotically stable�

Comment � The set A de�ned in Theorem ��� satis�es the following properties�


a� Every matrix in A is Hurwitz and diagonalisable�


b� The eigenvectors of any matrix in A are real�


c� Every pair of matrices in A share at least n � � linearly independent common eigen�

vectors and can be simultaneously triangularised 
Shorten ������

Proof of Theorem ���� To aid clarity
 and to present the arguments in as concise a manner

as possible
 the reader is now referred to Section �
 where the complete proof of global

attractivity of the origin of 
�� for a related class of switching system
 is presented� The

proof of Theorem ��� uses state�space�embedding and is presented in full�detail in 
Shorten

� 	O Cairbre n�d�� and the Appendix�

��



� State�space�embedding and a related class of switch�

ing system

An interesting question arises in the context of extending Theorem ��� to matrices with

complex eigenvectors� These systems are a natural extension of the system class studied in

Theorem ���� We �nd that the origin of such systems is globally attractive subject to certain

extra minor conditions on the eigenvectors of the matrices� This result is stated formally

in Theorem ���� The proof of this theorem involves novel extensions to the methods �rst

introduced in 
Shorten � 	O Cairbre �����
 and clearly illustrates the technique of state�

space�embedding�

Before proceeding with the main result of this section
 we �rst give an overview of state�space�

embedding� This technique does not involve a quadratic Lyapunov function approach and

consequently may be employed in problems where such functions do not exist� State�space

embedding essentially comprises the following three steps�


i� Denote our original switching system by �x � Aix
 where � � i � k� We replace each

matrixAi by a matrix  Ai of larger size� The  A�s
i are selected so that they all share some

common eigenvectors� These  A�s
i generate a new switching system which has higher

dimension than the original switching system� The new system is denoted by � x �  Ai x


where � � i � k�


ii� We then construct a collection of coordinate systems from various combinations of

the eigenvectors of the  A�s
i � One particular common eigenvector 
 
of all the  A�s

i � will

appear as an axis in each one of these coordinate systems� We then consider
 in each

coordinate system
 the projection of the state  x
t� onto 
 as the dynamics of the new

switching system evolves�


iii� We then consider the convergence of these projections in the long term� For many

systems
 global attractivity of the origin can be proven by considering convergence

properties of these projections�

��



We now present the main result of this section� namely Theorem ���� The proof of this result

is derived using state�space embedding
 and clearly illustrates the steps outlined above�

��



Preamble for Theorem 
���

Let V � fv�� v��� v�� v
�
�� � � � � vn��� v

�
n��g be a set of complex �non�real
 vectors in

C
�n� Here � denotes the complex conjugate� Suppose any �n vectors of the

form v�� v
�
�� � � � � vi��� v

�
i��� vi��� v

�
i��� � � � � vn��� v

�
n��� where both vi and v�i are omit�

ted� are linearly independent in C
�n �over C 
� for any i � f�� �� � � � � n � �g�

For each i � f�� �� � � � � n � �g� construct a �n � �n matrix as follows� M� �

�v�� v��� v�� v
�

�� � � � � vn� v
�

n� and for � � i � n � � we de�ne Mi � �v�� v��� � � � � vn���

v�n��� vi� v
�

i � � � � � vn� v
�

n�� i�e� Mi is obtained by replacing the vi�� and v�i�� columns

by vn�� and v�n�� respectively� Thus� the columns of each Mj are linearly indepen�

dent and so Mj is invertible� Suppose we also have p di�erent �n � �n diagonal

matrices D��D�� � � � �Dp with all diagonal entries negative� In each of these diago�

nal matrices we assume that the 
k� k� entry equals the 
k��� k��� entry whenever

k is even�

Suppose Ai�h � MiDhM
��
i has real entries for � � i � n� � and � � h � p� In other words


Ai�h is a real matrix with complex 
non!real� eigenvectors 
occurring in conjugate pairs� lying

in V and negative eigenvalues� This gives us m di"erent diagonalisable matrices Ai�h
 where

m � p
n� ��
 because the eigenvectors of Ai�h are the columns of Mi and the eigenvalues of

Ai�h are the diagonal entries of Dh� Let A be a subset of fAi�h � � � i � n � �� � � h � pg�

Thus
 A is a set of at most m di"erent diagonalisable matrices such that any two matrices in

A have at least n� � linearly independent common conjugate pairs of complex eigenvectors�

��



Statement of Theorem 
�� � If we consider the switching system 
�� with the set A de�

�ned as in the above preamble
 then the origin is globally attractive� It further follows

from the results in 
Angeli �����
 that systems of the form speci�ed in Theorem ��� are

asymptotically stable�

For ease of exposition we �rst present an outline of the main ideas� This follows closely

the three steps of the method of state�space embedding described above� The proof is then

developed by means of several key lemmas� Note that in the sequel we use row and column

notation interchangeably to denote vectors� This is for convenience of notation�

Outline of Proof�

Step � � We replace each �n � �n matrix Mi by a 
�n � �� � 
�n � �� matrix  Mi� We then

replace each �n � �n matrix Ai�h in A by a 
�n � �� � 
�n � �� matrix  Ai�h� The matrices

 Ai�h �  A � f  Ai�h � Ai�h � Ag are chosen such that there is at least one conjugate pair of

common eigenvectors
 
a�� a�� �� � � � � ��� 
a��� a
�

�� �� � � � � ��
 for all the matrices in  A
 and also

such that the properties of the solutions of the dynamic system


� x �  A
t� x�  A
t� �  A� 
��

will ultimately imply the global attractivity of the origin of the system


�x � A
t�x� A
t� � A�

where x � 
x�� x�� � � � � x�n� and  x � 
x�n��� x�n��� x�� x�� � � � � x�n��

Step � � For a given j � f�� �� � � � � n��g we consider the �n�� linearly independent columns

of  Mj� These form a �n � � dimensional coordinate system which includes 
a�� a�� �� � � � � ��

as one of the axes� We consider the projection of the state  x
t� onto 
a�� a�� �� � � � � �� as the

dynamics of the system 
�� evolve� This projection is given by the �rst component of the

vector


gj
t� �  M��
j  x
t��

��



and is denoted by �gj��
t��

Step � � We then show that


lim
t��

jRe�gi��
t��Re�gj��
t�j � � � lim
t��

jIm�gi��
t�� Im�gj��
t�j�

for all i� j � f�� �� � � � � n��g� Note that Re denotes the real part of a complex number and Im

denotes the imaginary part� From the above fact we can deduce that limt��
x�� x�� � � � � x�n� �

�� This is su�cient to demonstrate the global attractivity of the origin of the system


�x � A
t�x� A
t� � A�

Technical details of Proof�

Lemma 
�� � Suppose ����� ����� ����� ����� � � � � �n����� �n���� are any non!zero complex num�

bers� Then there exist non!zero complex numbers b�� b� such that the set W � f
b�� b��v��



b��� b
�

�� v
�

��
 
����
����
v��
 
�
�

���� �
�

���� v
�

��

����� ����� v��� 
�
�

���� �
�

���� v
�

��
 � � � � 
�
�

n����� �
�

n����� v
�

n���g is

linearly independent in C
�n��� Here
 
b�� b�� v�� denotes the vector whose �rst two coordinates

are b�� b� and the remaining �n coordinates are the �n coordinates of v��

Proof�We know that fv�� v��� � � � � vn��� v
�

n��g is linearly independent in C
�n and so there exist

unique �j� �j � C such that v� �
Pn��

j�� �jvj � �jv
�

j � Pick b� � C such that b� 	� � and b� 	�Pn��
j�� �j���j��

�

j���j We will �rst prove that the set Z � f
b�� v��� 
����� v��� 
������ v
�

��� � � � � 
�
�

n����� v
�

n���g

is linearly independent in C
�n��� Suppose Z is linearly dependent� Thus


��
b�� v�� �

n��X
j��

�j
�j��� vj� � 
j
�
�

j��� v
�

j � � ��

for some complex numbers ��� �j � 
j� � � j � n � � that are not all zero� Hence
 �� 	� �

since otherwise �j � � � 
j
 for � � j � n � �� Thus
 v� � � �
��


Pn��

j�� �jvj � 
jv
�

j �
 and so

�j � ��j

��
and �j � � �j

��
� Also
 ��b� �

Pn��
j�� �j�j�� � 
j�

�

j�� � �� Thus


b� � �
�

��


n��X
j��

�j�j�� � 
j�
�

j��� �
n��X
j��

�j�j�� � �j�
�

j���

��



which is false� Hence
 Z is linearly independent in C
�n��� Now we will show thatW is linearly

independent in C
�n��� First note that there exist unique ��� ��� � � � � �n��� ��� ��� � � � � �n�� � C

such that



b��� v
�

�� � ��
b�� v�� �
n��X
j��

�j
�j��� vj� � �j
�
�

j��� v
�

j ��

Pick b� � C such that b� 	� � and b�� � ��b� 	�
Pn��

j�� �j�j�� � �j�
�

j��� Suppose W is linearly

dependent� Thus


��
b
�

�� b
�

�� v
�

�� � ��
b�� b�� v�� �
n��X
j��

�j
�j��� �j��� vj� � �j
�
�

j��� �
�

j��� v
�

j � � ��

for some complex numbers ��� ��� �j� �j � � � j � n� �
 that are not all zero� Hence
 �� 	� �

since otherwise �� � �j � �j � �� � � j � n� �� Hence



b��� v
�

�� � �
�

��

��
b�� v�� �

n��X
j��

�j
�j��� vj� � �j
�
�

j��� v
�

j ���

and so �� � � ��
��
� �j � � �j

��
� �j � ��j

��
� � � j � n��� Also
 ��b�����b��

Pn��
j�� �j�j����j�

�
j�� �

�
 which implies that b�� � ��b� �
Pn��

j�� �j�j�� � �j�
�
j��� This is false and so W is linearly

independent� Q�E�D�

De�ne  Mi to be the following 
�n� �� � 
�n � �� matrix�

 Mi �

�
B	 A Hi

� Mi



CA �

where � is the �n� � zero matrix
Mi is the �n� �n matrix de�ned above
 A �

�
B	 a� a��

a� a��



CA

is an invertible � � � matrix 
and we choose a�� a� to be non�real complex numbers� and

�nally Hi is a � � �n matrix constructed as follows� If vk forms the jth column of Mi
 then

the jth column of Hi will comprise the �rst two coordinates of the vector
 inW 
from Lemma

����
 containing vk� The �rst coordinate will lie in the �rst row and the second coordinate

will lie in the second row of Hi� Also
 in a similar fashion
 the 
j � ��st column of Hi will

comprise the �rst two coordinates of the vector
 in W 
 containing v�k� Thus
 for example


H� �

�
B	 b� b�� ���� ����� � � � �n�� ��n��

b� b�� ���� ����� � � � �n�� ��n��



CA �

��



H� �

�
B	 �n���� ��n���� ���� ����� � � � �n�� ��n��

�n���� ��n���� ���� ����� � � � �n�� ��n��



CA �

H� �

�
B	 b� b�� �n���� ��n���� ���� ����� � � � �n�� ��n��

b� b�� �n���� ��n���� ���� ����� � � � �n�� ��n��



CA �

Note that


 M��
i �

�
B	 A�� �A��HiMi

��

� Mi
��



CA �

Note that every even row in  M��
i is the complex conjugate of the previous row� De�ne  Dh to

be the 
�n���� 
�n��� matrix with zeros everywhere except in the bottom right �n� �n

corner which is occupied by Dh
 i�e�

 Dh �

�
B	 � �

� Dh



CA �

De�ne  Ai�h �  Mi
 Dh

 M��
i � We then have that  Ai�h is a 
�n���� 
�n��� matrix of the form

 Ai�h �

�
B	 � Ci�h

� Ai�h



CA �

where Ci�h is a � � �n real matrix
 the top left � is the � � � zero matrix and the bot�

tom left � is the �n � � zero matrix� Note that 
a�� a�� �� � � � � ��� 
a��� a
�

�� �� � � � � �� form

a pair of common eigenvectors for all m matrices Ai�h� In the following we assume that

x�� x�� � � � � x�n� x�n��� x�n�� are all real valued functions of t�

We then have that
 �
BBBBBBBBBBBBBB	

�x�n��

�x�n��

�x�

�x�
���

�x�n



CCCCCCCCCCCCCCA

�  Ai�h

�
BBBBBBBBBBBBBB	

x�n��

x�n��

x�

x�

���

x�n



CCCCCCCCCCCCCCA

� 
��

��



if and only if
�
BBBBBBB	

�x�

�x�
���

�x�n



CCCCCCCA

� Ai�h

�
BBBBBBB	

x�

x�

���

x�n



CCCCCCCA

and �x�n�� �
�nX
j��

cjxj and �x�n�� �
�nX
j��

djxj�

for some scalars cj� dj � We will now show that limt��
x�� x�� � � � � x�n� � �
 for any solution


x�n��� x�n��� x�� � � � � x�n� to the switching system 
��� By the above
 this will imply that

limt��
x�� x�� � � � � x�n� � �
 for any solution 
x�� x�� � � � � x�n� to the switching system 
��

and that will give us global attractivity of the origin in the switching system 
��
 and we

will be done�

Let  x � 
x�n��� x�n��� x�� � � � � x�n�� We consider the evolution of the system dynamics 
�� in

each of the coordinate systems


gi �  M��
i  x� 
���

There are n�� coordinate systems corresponding to i � f�� �� � � � � n��g� Each gi is a vector

valued function of t� Let �gi�k denote the kth component of gi� Note that if k is even
 then

�gi�k
t� � �gi��k��
t�� Let G � fRe�g���� Re�g���� � � � � Re�gn����g� Let the system dynamics be

initially described by


� x �  Aj�h x� 
���

over some time interval �t�� t��� Note that �gj �  Dhgj� Denote the 
i� i� element in Dh by �h�i�

Hence
 �h�k � �h�k��
 when k is even� Also
 �h�i is the 
i � �� i � �� element in  Dh� Thus


� �gj�m � �h�m���gj�m
 for � � m � �n � � and � �gj�� � � � � �gj ��� Therefore
 when we are in

system 
���
 we have


�gj�m
t� � �gj�m
t��e
�h�m���t�t�	� for � � m � �n � �� 
���

and �gj��� �gj�� are constant functions of t� Consider the evolution of Re�gi�� relative to

Re�gj��� This #distance�
 denoted by di�j
t�
 is given by


di�j
t� � jRe�gi��
t��Re�gj ��
t�j� 
���

��



and can be conveniently calculated from


gi �  M��
i

 Mjgj � 
���

We now analyse the structure of the matrix Fi�j �  M��
i

 Mj
 for i 	� j�

Lemma 
�� � For i 	� j
 the �rst two rows of Fi�j are of the form

�
B	 � � � � � � � � � � � � �

� � � � � � �� �� � � � � �



CA �

where �� � depend on i� j� At least one of �� � is non�zero� � appears in the kth column


where k � �j � �
 if i � �
 and k � �i � �
 if i � �� Note also that k is always odd and is

never ��

Proof � Denote the �rst row of  M��
i by �r� and so the second row is �r�

�� Suppose �rst

that i � �� We see that a basis for the orthogonal complement of �r� in C
�n�� is given

by f
a�� a�� ��

b�� b�� v��

b��� b
�

�� v
�

��

����� ����� v��
 
�
�

���
�
�

���� v
�

��
 � � �

�
�

n��
�
�

n��� v
�

n�g� Hence
 by

Lemma ���
 the only places 
apart from the �rst column� in the �rst row of Fi�j
 which are

potentially non!zero
 are the kth and 
k���st columns where k is the number of the column

in  Mj which has 
�n����� �n����� vn���� Thus
 k � �j � �� Here
 � is the row!column product

of �r� and 
�n����� �n����� vn���� � is the row!column product of �r� and 
��n����� �
�

n����� v
�

n����

Note that at least one of �� � is non!zero� Using the fact that the second row of  M��
i is �r�

�


and proceeding as above
 we obtain the appropriate second row for Fi�j�

Suppose next that i � �� We see that a basis for the orthogonal complement of �r� in C
�n��

is given by f
a�� a�� ��

�n����
�n����
vn���

��n����� �
�
n����� v

�
n���
 
����� ����� v��� 
�����
�

�
���� v

�
���

� � �

��n��
�
�
n��� v

�
n�g� Hence
 by Lemma ���
 the only places 
apart from the �rst column�

in the �rst row of Fi�j
 which are potentially non!zero
 are the kth and 
k � ��st columns

where k is the number of the column in  Mj which has 
b�� b�� v��� Thus
 k � � � �i � ��

Here
 � is the row!column product of �r� and 
b�� b�� v��� � is the row!column product of �r�

and 
b��� b
�

�� v
�

��� Note that at least one of �� � is non!zero� Using the fact that the second

row of  M��
i is �r�

�
 and proceeding as above
 we obtain the appropriate second row for Fi�j�

��



Suppose �nally that i � �� We see that a basis for the orthogonal complement of �r� in C
�n��

is given by deleting 
�i����� �i����� vi���� 
��i����� �
�

i����� v
�

i��� from W 
 f
a��� a
�

�� ��g where W is

the set de�ned in Lemma ���� Hence
 by Lemma ��� the only places 
apart from the �rst

column� in the �rst row of Fi�j
 which are potentially non!zero
 are the kth and 
k � ��st

columns where k is the number of the column in  Mj which has 
�i����� �i����� vi���� Thus


k � �i � �� Here
 � is the row!column product of �r� and 
�i����� �i����� vi���� � is the row!

column product of �r� and 
��i����� �
�

i����� v
�

i���� Note that at least one of �� � is non!zero�

Using the fact that the second tow of  M��
i is �r�

�
 and proceeding as above
 we obtain the

appropriate second row for Fi�j� Q�E�D�

Since �� �
 in the above Lemma
 depend on i� j
 we will denote them by �i�j� �i�j�

We combine Lemma ��� with 
��� to obtain


�gi�� � �gj�� � �i�j�gj�k � �i�j�gj�k���

� �gj�� � �i�j�gj�k � �i�j�gj�
�

k� for � � i � n� � with i 	� j� 
���

Note that 
��� is true independent of what system we are in� We combine 
��� and 
��� to

obtain


Re�gi�� �Re�gj�� � e�h�k���t�t�	
Re
�i�j �gj�k
t��� �Re
�i�j�gj�
�

k
t����� for i 	� j� 
���

whenever we are in system 
���� Hence


di�j
t� � e�h�k���t�t�	jRe
�i�j �gj�k
t��� �Re
�i�j�gj�
�

k
t���j�

Consequently

ddi�j�t	

dt
� �
 or else Re�gi�� and Re�gj�� both agree over the time interval �t�� t���

Thus
 the distance between Re�gi��
t� and the constant Re�gj ��
t� is either getting smaller or

always zero over the time interval �t�� t��
 when we are in the system described by � x �  Aj�h x�

Proof of Theorem 
�� � We will now prove that limt��
x�� x�� � � � � x�n� � �
 for any solu�

tion 
x�� x�� � � � � x�n� to the system 
�� with the set A de�ned as in the preamble for Theorem

���
 and then we will be done� Note that


jRe�gi��
t��Re�gj���
t�j �
�

�
j�i�j�gj�k
t� � ��i�j�gj�

�

k
t� � �i�j�gj�
�

k
t� � ��i�j�gj�k
t�j�

��



�
�

�
j
�i�j � ��i�j��gj�k
t� � 
��i�j � �i�j��gj�

�

k
t�j�

�
�

�

ri�je

i	i�j �gj�k
t��e
�h�k���t�t�	 � ri�je

�i	i�j �gj�
�

k
t��e
�h�k���t�t�	��

� jri�j cos

i�j � 
j�k�t��jj�gj�k
t�j�

where �i�j � ��i�j � ri�je
i	i�j and �gj�k
t�� � sj�k�t�e

i�j�k�t� are polar representations of the ap�

propriate complex numbers� Denote jri�j cos

i�j � 
j�k�t��j by Qi�j�k�t��

Denote the maximum value 
minimum value� of G
t�
 for any time t in the time interval

�t�� t��
 by max�G
t� 
min�G
t��� Recall that we are in system 
��� when t � �t�� t��� Then


max� G
t��min� G
t� � Re�gi��
t��Re�gb��
t�� for some i� b � f�� �� � � � � n� �g�

� Re�gi��
t��Re�gj��
t� �Re�gj��
t��Re�gb��
t��

� Qi�j�k�t�j�gj�k
t��je
�h�k���t�t�	 �Qb�j�q�t�j�gj�q
t��je

�h�q���t�t�	�

where
 as in Lemma ���
 k � �j��
 if i � �
 and k � �i��
 if i � �� Similarly
 q � �j��
 if

b � �
 and q � �b� �
 if b � �� Note that if Re�gj�� is a maximum value 
or minimum value�

of G
t�
 then the last line above collapses to just one term instead of two
 and in this case the

following arguments will also work� Now let Bi�j�t� � Qi�j�k�t�j�gj�k
t��j � distance between

Re�gi��
t�� and Re�gj��
t��� Let Bb�j�t� � Qb�j�q�t�j�gj�q
t�� � distance between Re�gj ��
t�� and

Re�gb��
t��� Also
 let � � maxf�h�s � � � h � p� � � s � �ng� Note that � � �� Then


max� G
t��min� G
t� � 
Bi�j�t� �Bb�j�t��e

�t�t�	�

� 
max� G
t���min� G
t���e

�t�t�	� 
���

The last inequality follows from the fact that
 over the time interval �t�� t��
 Re�gi��
t� remains

on the same side of the constant Re�gj��
t�
 and Re�gb��
t� remains on the other side of

Re�gj��
t�� This is because the right hand side of 
��� does not change sign as time changes

over the time interval �t�� t��� Note that i and b may change with time and so max�G
t��

may not correspond to Re�gi��
t��
 and min�G
t�� may not correspond to Re�gb��
t���

Now suppose we switch to the next 
second� system described by


� x �  Ac�w x� 
���

��



over the time interval �t�� t��� Denote the maximum value 
minimum value� of G
t�
 for any

time t in �t�� t��
 by max�G
t� 
min�G
t��� Then
 as above we get


max� G
t� �min� G
t� � 
max� G
t���min� G
t��� e

�t�t�	�

� 
max� G
t���min� G
t��� e

�t��t�	 e
�t�t�	�

� 
max� G
t���min� G
t���e

�t�t�	�

The second inequality above follows from the fact that we start the second system 
��� at the

time t� when we stop the �rst system 
���
 and the initial conditions for the second system

are the terminal conditions for the �rst system at time t�� Thus
 max�G
t���min�G
t�� �


max�G
t���min�G
t��� e

�t��t�	 from 
����

Now suppose we switch to the next 
third� system described by


� x �  Ad�u x� 
���

over the time interval �t�� t
�� Denote the maximum value 
minimum value� of G
t�
 for any

time t in �t�� t
�
 by max�G
t� 
min�G
t��� Then
 as above we get


max� G
t��min� G
t� � 
max� G
t���min� G
t��� e

�t�t�	�

For the general situation
 when we have switched for the mth time
 we are in the system

described by � x �  Az�f  x over the time interval �tm� tm���� Again
 we denote the maximum

value 
minimum value� of G
t�
 for any time t in �tm� tm���
 by maxmG
t� 
minm G
t�� Then


as above we get


maxm G
t��minm G
t� � 
max� G
t���min� G
t���e

�t�t�	�

Therefore
 since � � �
 we have limt��
maxG
t��minG
t�� � �
 where maxG
t� 
minG
t��

denotes the maximum value 
minimum value� of G
t� for any time t � t�� Thus


lim
t��

jRe�gi��
t��Re�gj ��
t�j � �� for all i� j � f�� �� � � � � n� �g�

Similarly
 we can show that


lim
t��

jIm�gi��
t�� Im�gj��
t�j � �� for all i� j � f�� �� � � � � n� �g�

��



Note that


�
B	 Re�gi��
t��Re�gj��
t�

Im�gi��
t�� Im�gj��
t�



CA �

�

�

�
B	 �i�j � ��i�j ��i�j � �i�j

�i
�i�j � ��i�j� �i
�i�j � ��i�j�



CA
�
B	 �gj�k
t�

�gj��k
t�
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where the �i is the complex square root of ��� Denote the above vector on the left hand

side by $i�j
t� and denote the above � � � matrix on the right hand side by Xi�j� Thus


$i�j
t� � Xi�j

�
B	 �gj�k
t�

�gj��k
t�



CA �

We will now show that Xi�� is invertible for � � i � n � �� First note that

Xi�j is invertible � j�i�jj 	� j�i�jj

� det

�
B	 �i�j �i�j

�i�j
� �i�j

�



CA 	� ��

Notice how
 with a little serving of serendipity
 the last matrix above
 namely

�
B	 �i�j �i�j

�i�j
� �i�j

�



CA


which we denote by Wi�j� appears as part of the �rst two rows of the matrix Fi�j
 i 	� j� We

will now exploit this fact� One can show that Fi�� agrees with the identity matrix in every

column except the two columns which contain matrix Wi��� Recall that Fi�� �  M��
i

 M�� We

will now alter the two matrices  M��
i and  M� so that detWi�� will appear as a factor in the

determinant of an invertible matrix and hence will be non!zero and so Xi�� will be invertible

and we will be done� We �rst swap the last two rows with the �rst two rows in  M��
i so that

the new �rst row is the old penultimate row
 the new second row is the old last row
 the new

penultimate row is the old �rst row and the new last row is the old second row� Denote this

new matrix by Si� We then replace  M� by an invertible matrix Ti such that certain pairs of

columns of Ti interact with certain pairs rows of Si
 to give that SiTi agrees with the identity

matrix except in the last two columns and furthermoreWi�� takes up the bottom right hand

��



corner of SiTi� Consequently


detWi�� � det
SiTi� 	� �

Thus Xi�� is invertible�

Hence
 limt���g��k
t� � �
 for � � k � �n��
 because limt��$i��
t� � � for � � i � n���

Therefore
 since limt��  x
t� � limt��
 M�g�
t�
 we get


lim
t��

�
BBBBBBBBBBBBBB	

x�n��

x�n��

x�

x�

���

x�n



CCCCCCCCCCCCCCA

� lim
t��

�
B	 A H�

� M�
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�
BBBBBBB	

�g���
t�

�g���
t�

���

�g���n��
t�



CCCCCCCA
�

lim
t��

�
BBBBBBB	

x�

x�

���

x�n



CCCCCCCA

� lim
t��

�
� M�

�
�
BBBBBBB	

�g���
t�

�g���
t�

���

�g���n��
t�



CCCCCCCA
�

�

�
BBBBBBB	

�

�

���

�



CCCCCCCA
�

Thus


lim
t��


x�� x�� � � � � x�n� � ��

and we have global attractivity of the origin in the switching system 
��� Q�E�D�

��



� Example

As an example of the application of the results presented in the previous sections we consider

the design of an automobile speed control system� A simple model for the longtitudinal

dynamics of an automobile is given by the following second order linear parameter varying


LPV� structure


Tg�v�u �
d�v

dt�
� a�g

dv

dt
� a�gv � Lgu� 
���

where v � IR is the vehicle velocity
 u � IR the throttle angle
 g � f�� �� � � � �mg is the engaged

gear
 and where the parameters a�g� a�g� Lg vary depending on the engaged gear 
Shorten

������ The task of speed regulation requires the design of a control system that not only

maintains a constant velocity in the presence of gear changes and road disturbances 
rolling

hills
 inclines
 wind resistance
 etc��
 but that also guarantees stability of the nominal closed

loop system� In this section we demonstrate that the results presented in this paper may be

used as the basis for a controller design that accommodates all of these design considerations�

The control strategy advocated here consists of a bank of linear controllers 
one for each

gear� and a switching mechanism that are connected in feedback as depicted in Figure ��

The individual controllers are of the form


Ci �
dui

dt
� �biui �K�ie�K�i

de

dt
� 
���

where bi � IR�K�i � IR�K�i � IR
 r � IR is a constant reference velocity
 and where

e � r � v� A controller of this form is a standard lead�lag controller that is described in

elementary text�books 
Power � Simpson ������ We make the additional assumption that

the switching logic selects the appropriate individual controller as the instant of gear change�

To keep the discussion as simple as possible we assume that m � �
 yielding an expression

for the closed loop dynamics given by


�x � Agx�Br� Ag � fA�� A�� A�g� 
���

��
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Figure �� The closed loop switching system� S denotes a switching element

where

xT � �v�
dv

dt
� u�� u�� u���

Ag �

�
������������

� � � � �

�a�g �a�g L�d� L�d� L�d�

�K�� �K�� �b� � �

�K�� �K�� � �b� �

�K�� �K�� � � �b�

�
������������

�

BT � ��� �� K��� K��� K���� 
���

where dg � � if the g�th controller is engaged and zero otherwise� We emphasise that the

choice of m � � is motivated by a desire to aid exposition� the arguments and results devel�

oped in the sequel generalise to m arbitrary and �nite�

Lemma ��� � LetA � fA�� A�� A�g withAg de�ned by Equation 
���� Let the characteristic

polynomials of A�� A�� A� be denoted $�
���$�
��
 and $�
�� respectively
 with


$�
�� � 
�� b��
�� b��H�
���

$�
�� � 
�� b��
�� b��H�
���

$�
�� � 
�� b��
�� b��H�
���

��



where

Hg
�� � �� � 
a�g � bg��
� � 
a�g � a�gbg � LgK�g��� LgK�g � a�gbg�

We choose the K�g�K�g� bg such that H�
�� � H�
�� � H�
�� � H
�� for all �� We con�

sider the case where the roots of the polynomial P 
�� � 
� � b��
� � b��
� � b��H
�� are

distinct� Then the matrices A�
 A� and A� have exactly n� � linearly independent common

eigenvectors�

Proof � We show the result for A� and A� 
identical arguments can be developed for the

matrix pairs 
A�� A�� and 
A�� A����

A� �

�
������������

� � � � �

�a�� �a�� L� � �

�K�� �K�� �b� � �

�K�� �K�� � �b� �

�K�� �K�� � � �b�

�
������������

�

A� �

�
������������

� � � � �

�a�� �a�� � L� �

�K�� �K�� �b� � �

�K�� �K�� � �b� �

�K�� �K�� � � �b�

�
������������

�

We need to show that for each common eigenvalue
 the matrices A� and A� have a common

eigenvector
 and that for the eigenvalue that is not common
 the matrices have no common

eigenvector� We also note that
 by de�nition
 A� and A� have n� � distinct common eigen�

values� These eigenvalues correspond to the roots of H
�� and � � �b�� The eigenvalues

� � �b� 
corresponding to A�� and � � �b� 
corresponding to A�� are not common to both

matrices�

��



Common eigenvalues �

It follows from the form of A� and A� that the common eigenvector that corresponds to

� � �b� is given by vT� � ��� �� �� �� ���

Let � be an eigenvalue that is common to both matrices that is not equal to �b�� The

eigenvector of A� that corresponds to the eigenvalue � can be obtained by determining the

null space of �I �A��

�I � A� �

�
������������

� �
 � � �

a�� �� a
� L� � �

K�� K
� �� b� � �

K�� K
� � �� b� �

K�� K
� � � �� b�

�
������������

�

Let �rA��� rA��� rA��� rA�
� rA��� denote the row vectors of the matrix �I � A�
 where

rA�i is the i�th row vector� From the above discussion � 	� b � f�b���b���b�g� Hence
 it

immediately follows that the row vectors �rA��� rA��� rA�
� rA��� are linearly independent�

However
 the matrix �I�A� is singular� Hence
 it must be possible to write rA�� as a linear

combination of �rA��� rA��� rA�
� rA���� This implies that the eigenvector corresponding

to �
 is completely speci�ed by the vectors �rA��� rA��� rA�
� rA����

Now consider the matrix A�� The eigenvector of A� that corresponds to the eigenvalue �

can be obtained by determining the null space of �I �A��

�I � A� �

�
������������

� �
 � � �

a�� �� a
� � L� �

K�� K
� �� b� � �

K�� K
� � �� b� �

K�� K
� � � �� b�

�
������������

�

As before
 let �rA��� rA��� rA��� rA�
� rA��� denote the row vectors of the matrix �I �

��



A�
 where rA�i is the i�th row vector� Again
 � 	� b � f�b���b���b�g� Hence
 the

row vectors �rA��� rA��� rA�
� rA��� are linearly independent� However
 as the matrix

�I � A� is singular
 it must again be possible to write rA�� as a linear combination of

�rA��� rA��� rA�
� rA���� This implies that the eigenvector corresponding to �
 is com�

pletely speci�ed by the vectors �rA��� rA��� rA�
� rA����

But
 the matrices A� and A� are identical except for the second row� Hence
 it follows that

rA�i � rA�i� � i � f�� �� �� �g
 and that the matrices A� and A� have a common eigenvector

for all common eigenvalues �
 � 	� b � f�b���b���b�g� Q�E�D�

Eigenvalues that are not common to both matrices �

Consider the matrix A�� The eigenvalue of A� that is not common to A� is �b�� The eigen�

vector of A� that corresponds to this eigenvalue is vT� � ��� �� �� �� ��� Now consider the

matrix A�� The eigenvalue of A� that is not common to A� is �b�� The eigenvector of A�

that corresponds to this eigenvalue is vT� � ��� �� �� �� ��� Clearly
 v� 	� v�� Q�E�D�

We now note the following facts concerning the matrix Ag�


i� rankfAi �Ajg � �
 i 	� j
 i� j � f�� �� �g�


ii� The characteristic polynomials $�
���$�
��
 and $�
�� share

n� � common eigenvalues if Hi
�� � H
��� i � f�� �� �g�


iii� Let Hi
�� � H
��� i � f�� �� �g� Then the matrices Ai and

Aj
 i 	� j
 i� j � f�� �� �g satisfy Lemma ��� and share n � �

common real linearly independent eigenvectors�

Therefore
 su�cient conditions for the matrices Ag � fA�� A�� A�g to satisfy the conditions

of Theorem ���
 and hence for the stability of the unforced system


�x � Agx� g � fA�� A�� A�g 
���

are given by�

��




i� the target polynomials Hi
�� have real negative eigenvalues for

all i � f�� �� �g�


ii� Hi
�� � Hj
��
 i� j � f�� �� �g�


iii� bi � �
 i � f�� �� �g�


iv� the roots of the polynomial P 
�� � 
��b��
��b��
��b��H
��

are distinct�

When these conditions are satis�ed
 one can easily verify that any � of the � linearly in�

dependent eigenvectors given by the eigenvectors of A�� A�� A�
 are linearly independent�

Therefore
 the hypothesis of Theorem ��� is satis�ed
 and the origin of 
��� is globally at�

tractive and asymptotically stable� BIBO 
bounded�input bounded�output� stability of the

forced system 
��� follows directly from elementary arguments 
see 
Rugh �������

� Concluding remarks

In this paper we have shown global attractivity for several classes of switching systems�

These results were derived using a technique know as state�space embedding� This tech�

nique does not rely on the existence of a CQLF
 and can therefore be used in situations

where such a function does not exist� It is likely that derived methodology is applicable to a

wide class of related switching systems� We have also shown that the condition of pairwise

triangularisability is not a su�cient condition for the existence of a CQLF
 or for the stability

of the switching system� However
 the derived results also suggest that by imposing addi�

tional minor assumptions
 the condition of simultaneous triangularisability may be relaxed

signi�cantly without the loss of asymptotic stability�
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Appendix

Proof of Theorem ���

In order to demonstrate the existence of an unstable switching sequence for Equation 
��
 it

is su�cient to show the existence of a periodic switching sequence for which the state of the

system becomes unbounded�

Consider the system 
�� with A
t� � A
t � T � for all t � �
 where T is the �xed period�

Further
 let the matrices fA�� A� � ���� AMg be indexed according to the order in which they

describe the system dynamics
 and let the M�tuple ft�� t� � ���� tMg describe the time for which

each of the matrices describes the system dynamics
 i�e�
 �x � Ajx
 describes the evolution

of the system dynamics for 

Pj��

i�� ti� � t � 

Pj

i�� ti�� The solution to Equation 
�� at time

T �
PM

i�� ti
 is given by


x
T � � 
eAit�eAj t� � � � eAM tM �x�� 
���

� &
T �x��

where x� � IRN is some initial condition� A su�cient condition for instability of 
�� is that

the matrix &
T � has an eigenvalue whose magnitude is greater than unity 
Mohler ������

Equation 
��� can be expanded as a power series


&
T � � I � 

MX
i��

�iAi�T �K�T
� � ���

� I � ��Ai�M �T � ��� 
���

where �i �
ti
T

 K� � IRN�N 
 and where we de�ne ��Ai�M �� �

PM

i�� �iAi� The expansion


��� is the product of M absolutely convergent series
 and is analytic in T � Hence
 from

Theorem ��� in 
Shorten et al� ����� and 
Kato ����� 
page ���
 it follows that
 given any

eigenvalue aj of ��Ai�M �
 an eigenvalue of &
T � can be written


�j
T � � � � ajT � f
T �� 
���

where f
T � � O
T ��
 � � �
 as T 
 �� Thus
 there exist constants C� � such that

j f
T � j� CT �� for � � T � �� 
���

��



Hence
 j Re
f
T �� j� CT � for � � T � �
 where Re
z� denotes the real part of a complex

number z� Now consider the case when the jth eigenvalue
 aj
 of the matrix ��Ai�M �
 has

a positive real part for some f��� ���� �Mg
 �i � �

PM

i�� �i � �� Hence
 there exists � � �


such that for � � T � �
 we have the following�

CT � � Re
aj�T�

j Re
f
T �� j � Re
aj�T�

Re
aj�T �Re
f
T �� � ��

Re
� � ajT � f
T �� � ��

Re
�j
T �� � �� Q�E�D�

��



Proof of Theorem ����

For ease of exposition we �rst present an outline of the main ideas� This follows closely the

three steps of the method of state�space embedding described in the main text� The proof

is then developed by means of several key lemmas� Note that in the sequel we use row and

column notation interchangeably to denote vectors�

Outline of Proof

Step �� We replace each n�n matrixMj by an 
n���� 
n��� matrix  Mj� We then

replace each n� n matrix Ai�h in A by an 
n� ��� 
n��� matrix  Ai�h� The

matrices  Ai�h �  A � f  Ai�h � Ai�h � Ag are chosen such that there is at least

one common eigenvector 
 � 
�� �� �� � � � � �� for all the matrices in  A
 and also

such that the properties of the solutions of the dynamic system

� x �  A
t� x�  A
t� �  A� 
���

will ultimately imply the global attractivity of the origin of the system

�x � A
t�x� A
t� � A� 
���

where x � 
x�� ���� xn� and  x � 
xn��� x�� ���� xn��

��



Step �� For a given j � f�� �� � � � � n � �g we consider the n � � linearly independent

columns of  Mj� These form an n � � dimensional coordinate system which

includes 
 as one of the axes� We consider the projection of the state  x
t�

onto 
 as the dynamics of the system 
��� evolve� This projection is given by

the �rst component of the vector

gj
t� �  M��
j  x
t�� 
���

and is denoted by �gj��
t��

Step �� We then show that limt�� j�gj��
t�� �gi��
t�j � �� � i� j � f�� ���� n��g� From

this fact we can deduce that limt��
x�� � � � � xn� � �� This is su�cient to

demonstrate the global attractivity of the origin of the system


�x � A
t�x� A
t� � A� 
���

Technical details of Proof

Lemma ����

There exists a positive number a such that the set W � f
a� v��� 
�� v��� 
�� v��� � � � � 
�� vn���g

is linearly independent in IRn��� Here 
a� v�� is the vector with n�� coordinates
 whose �rst

coordinate is a and remaining n coordinates are the n coordinates of v��

Proof �

Let V � fv�� v�� � � � � vn��g in IRn� We know that any subset of V which contains n elements

is linearly independent and thus forms a basis for IRn� Consequently
 fv�� v�� � � � � vn��g forms

a basis for IRn and so there exist unique real numbers �j such that v� �
Pn��

j�� �jvj� Pick a

to be a positive number which is di"erent from
Pn��

j�� �j�

We now show that the set W is linearly independent in IRn��� Let  v� � 
a� v�� and  vj �


�� vj�
 for � � j � n� �� Suppose
Pn��

i�� �i vi � � with at least one of the �
�s
i non!zero� We

��



want to derive a contradiction� Note that ��a�
Pn��

j�� �j � � and
Pn��

i�� �ivi � �� Also note

that �� 	� �
 because if �� � � then we have
Pn��

j�� �jvj � � and so �i � � for � � i � n � �

and this is false� Consequently
 we can write v� � � �
��

Pn��
j�� �jvj and a � � �

��

Pn��
j�� �j�

Thus by uniqueness of �j
 we have �j � ��j

��

 for � � j � n� � and so a �

Pn��
j�� �j
 which

is false� Therefore W is linearly independent in IRn��� Q�E�D�

De�ne  Mi to be the following 
n� ��� 
n� �� matrix�

 Mi �

�
BBBBBBBBBBBBBB	

� b � � � � � � � ��

�

� Mi

�

���

�



CCCCCCCCCCCCCCA

where b � a 
from Lemma ����
 if i 	� � and b � �
 if i � �� The change in the value of b

is because v� only appears in Mi when i 	� �� Note that the columns of  Mi
 apart from the

�rst column
 are vectors from the set W in Lemma ����

Note that

 M��
i �

�
BBBBBBBBBBB	

� s� s� � � � sn

�

� M��
i

���

�



CCCCCCCCCCCA

for some real numbers s�� s�� � � � � sn which depend on i�

��



De�ne  Dh to be the following 
n� �� � 
n� �� diagonal matrix�

 Dh �

�
BBBBBBBBBBBBBB	

� � � � � � � � � � �

�

� Dh

�

���

�



CCCCCCCCCCCCCCA

De�ne  Ai�h �  Mi
 Dh

 M��
i � We then get

 Ai�h �

�
BBBBBBBBBBB	

� c� c� � � � cn

�

� Ai�h

���

�



CCCCCCCCCCCA

for some real numbers c�� c�� � � � � cn which depend on i and h� Note that 
�� �� �� � � � � �� is a

common eigenvector for all the m matrices  Ai�h�

We then have that �
BBBBBBBBBBB	

�xn��

�x�

�x�
���

�xn



CCCCCCCCCCCA

�  Ai�h

�
BBBBBBBBBBB	

xn��

x�

x�

���

xn



CCCCCCCCCCCA


���

if and only if �
BBBBBBB	

�x�

�x�
���

�xn



CCCCCCCA

� Ai�h

�
BBBBBBB	

x�

x�

���

xn



CCCCCCCA

and �xn�� �
nX
i��

cixi

We will show that limt��
x�� x�� � � � � xn� � �
 for any solution 
xn��� x�� x�� � � � � xn� to the

switching system 
���� By the above
 this will then imply that limt��
x�� x�� � � � � xn� � �


��



for any solution 
x�� x�� � � � � xn� to the switching system 
�� and that will give us global

attractivity of the origin in the switching system 
��
 and we will be done�

Let  x � 
xn��� x�� x�� � � � � xn�� We consider the evolution of the system dynamics 
��� in

each of the coordinate systems

gi �  M��
i  x 
���

There are n � � coordinate systems corresponding to i � f�� �� � � � � n � �g� Let G �

f�g���� �g���� � � � � �gn����g
 where �gi�� denotes the �rst component of the vector gi�

Let the system dynamics be initially described by

� x �  Aj�h x� 
���

over some time interval �t�� t��� Note that �gj �  Dhgj � Let �gj�m be the mth component of the

vector gj and let �h�i denote the 
i� i�th diagonal entry in Dh and hence the 
i � �� i � ��th

diagonal entry in  Dh� Then we have that � �gj�m � �h�m���gj�m
 for m 	� � and � �gj�� � ��

Therefore
 when we are in system 
���
 we have

�gj �m
t� � �gj�m
t�� e

h�m���t�t�	� for m 	� �� 
���

and �gj�� is a constant function of t�

The members of G
 when we are in system 
���
 are illustrated in Figure �� Note that �gj��

is a constant function of time over �t�� t�� while the other �gj�m�s vary with time according to


����

+-

�gm���gi�� �gk��
�gj��

Figure �� Members of the set G�

Consider the evolution of �gi�� relative to �gj��� This #distance� denoted by di�j
t�
 is given by

di�j
t� � j�gi��
t�� �gj��
t�j 
���

��



and can be conveniently calculated from

gi �  M��
i

 Mjgj 
���

We now analyse the structure of the matrix Fi�j �  M��
i

 Mj 
 for i 	� j� We see that � always

appears in the �rst row �rst column entry of Fi�j� We claim that there is only one other

non!zero entry in the �rst row�

Lemma ����

If we exclude the �rst column of the matrix Fi�j
 for i 	� j
 then there is only one non!zero

entry 
denoted by Ci�j�k� in the �rst row� Ci�j�k appears in the kth column where k � j
 when

i � �
 and k � i
 when i 	� �� Note that k is never ��

Proof �

Denote the �rst row of  M��
i by �r� Suppose �rst that i � �� We see that a basis for the

orthogonal complement of �r in IRn�� is given by f
a� v��� 
�� v��� 
�� v��� � � � � 
�� vn�g� Hence


using the result of Lemma ���
 the only place 
apart from the �rst column� in the �rst row of

Fi�j which is non!zero
 is the kth column where k is the number of the column in  Mj which

has 
�� vn���� Thus k � j� Here Ci�j�k is the dot product of �r and 
�� vn����

Suppose next that i � �� We see that a basis for the orthogonal complement of �r in IRn�� is

given by f
�� v��� 
�� v��� � � � � 
�� vn���g� Hence
 as above
 the only place 
apart from the �rst

column� in the �rst row of Fi�j which is non!zero
 is the kth column where k is the number

of the column in  Mj which has 
a� v��� Thus k � �� Here Ci�j�k is the dot product of �r and


a� v���

Suppose �nally that i � �� We see that a basis for the orthogonal complement of �r in IRn�� is

obtained by deleting 
�� vi��� from the set W in Lemma ���� Hence
 as above
 the only place


apart from the �rst column� in the �rst row of Fi�j which is non!zero
 is the kth column

where k is the number of the column in  Mj which has 
�� vi���� Thus k � i� Here Ci�j�k is

the dot product of �r and 
�� vi���� Q�E�D�

��



We combine Lemma ��� with 
��� to obtain

�gi�� � �gj�� � Ci�j�k�gj�k for � � i � n� � with i 	� j� 
���

Note that 
��� is true irrespective of what system we are in�

We combine 
��� and 
��� to obtain

�gi��
t�� �gj��
t� � Ci�j�k �gj �k
t�� e

h�k���t�t�	 for i 	� j� 
���

whenever we are in system 
���� Hence

di�j
t� � jCi�j�kjj�gj�k
t��j e

h�k���t�t�	� for t� � t � t� and i 	� j�

Consequently
ddi�j�t	

dt
� �
 or else �gi�� and �gj�� both agree over the time interval �t�� t��� Thus

the distance between �gi��
t� and the constant �gj��
t� is either getting smaller or always zero

over the time interval �t�� t��
 when we are in the system described by � x �  Aj�h x�

Proof of Theorem ��� �

We will now prove that limt��
x�� x�� � � � � xn� � �
 for any solution 
x�� x�� � � � � xn� to the

system 
�� with the set A de�ned as in statement of Theorem ���
 and then we will be done�

Denote the maximumvalue 
minimum value� of G
t�
 for a time t in the time interval �t�� t��


by max�G
t� 
min� G
t��� Recall that we are in system 
��� when t � �t�� t��� Then

max� G
t��min� G
t� � �gi��
t�� �gr��
t�� for some i� r � f�� �� � � � � n� �g

� �gi��
t�� �gj ��
t� � �gj ��
t�� �gr��
t�

� jCi�j�kj j�gj�k
t��j e

h�k���t�t�	 � jCr�j�qj j�gj�q
t��j e


h�q���t�t�	

where
 as in Lemma ���
 k � j
 if i � �
 and k � i
 if i 	� �� Similarly q � j
 if r � �
 and

q � r
 if r 	� �� Note that if �gj�� is a maximum value 
or minimum value� of G
t�
 then

the last line above collapses to just one term instead of two
 and in this case the following

arguments will also work� Now let Bi�j�t� � jCi�j�kj j�gj�k
t��j � distance between �gi��
t�� and

�gj��
t��� Let Br�j�t� � jCr�j�qj j�gj�q
t��j � distance between �gj��
t�� and �gr��
t��� Also let

��



� � maxf���� � � � � � p� � � � � ng� Note that � � �� Then

max� G
t��min� G
t� � 
Bi�j�t� �Br�j�t�� e

�t�t�	

� 
max� G
t���min� G
t��� e

�t�t�	 
���

The last inequality follows from the fact that
 over the time interval �t�� t��
 �gi��
t� remains

on the same side of the constant �gj��
t� and �gr��
t� remains on the other side of �gj ��
t��

This is because the right hand side of 
��� does not change sign as time changes over the

time interval �t�� t��� Note that i and r may change with time and so max�G
t�� may not

correspond to �gi��
t��
 and min� G
t�� may not correspond to �gr��
t���

Now suppose we switch to the next 
second� system described by

� x �  Ac�w x 
���

over the time interval �t�� t��� Denote the maximum value 
minimumvalue� of G
t�
 for some

time t � �t�� t��
 by max�G
t� 
min� G
t��� Then as above we get

max� G
t��min� G
t� � 
max� G
t���min� G
t��� e

�t�t�	

� 
max� G
t���min� G
t��� e

�t��t�	 e
�t�t�	

� 
max� G
t���min� G
t��� e

�t�t�	

The second inequality above follows from the fact that we start the second system 
��� at

time t� when we stop the �rst system 
���
 and the initial conditions for the second system

are the terminal conditions for the �rst system at time t�� Thus max�G
t���min� G
t�� �


max�G
t���min� G
t��� e
�t��t�	 from 
����

Now suppose we switch to the next 
third� system described by

� x �  Ad�u x 
���

over the time interval �t�� t
�� Denote the maximum value 
minimumvalue� of G
t�
 for some

time t � �t�� t
�
 by max�G
t� 
min� G
t��� Then as above we get

max� G
t��min� G
t� � 
max� G
t���min� G
t��� e

�t�t�	

��



For the general suituation
 when we have switched for the mth time
 we are in the system

described by � x �  Az�l x over the time interval �tm� tm���� Again we denote the maximum

value 
minimum value� of G
t�
 for some time t � �tm� tm���
 by maxmG
t� 
minm G
t���

Then as above we get

maxm G
t��minm G
t� � 
max� G
t���min� G
t��� e

�t�t�	

Therefore
 since � � �
 we have limt��
maxG
t��minG
t�� � �
 where maxG
t� 
minG
t��

denotes the maximum value 
minimum value� of G
t� for any time t � t�� Thus

lim
t��

j�gi��
t�� �gj ��
t�j � �� for all i� j � f�� �� � � � � n� �g�

lim
t��

jCi�j�kjj�gj�k
t�j � �� where k � j if i � �� and k � i� if i 	� �� and i 	� j�

lim
t��

j�gj�k
t�j � �� for j � f�� �� � � � � n� �g� and k � f�� �� � � � � n� �g�

The second line above follows from 
���
 which is independent of what system we are in�

The last line above follows from the fact that the C
�s
i�j�k form a �nite collection of non!zero

numbers when i 	� j� Also note that the last line above might not hold for k � � because

then i � j � �� Therefore
 since limt��  x
t� � limt��
 Mjgj
t�
 we get

lim
t��

�
BBBBBBBBBBB	

xn��

x�

x�

���

xn



CCCCCCCCCCCA

� lim
t��

�
BBBBBBBBBBBBBB	

� b � � � � � � � ��

�

� Mj

�

���

�



CCCCCCCCCCCCCCA

�
BBBBBBB	

�gj��
t�

�gj��
t�

���

�gj�n��
t�



CCCCCCCA

lim
t��

�
BBBBBBB	

x�

x�

���

xn



CCCCCCCA

� lim
t��

�
BBBBBBB	

�

� Mj

���

�



CCCCCCCA

�
BBBBBBB	

�gj��
t�

�gj��
t�

���

�gj�n��
t�



CCCCCCCA

��



�

�
BBBBBBB	

�

�

���

�



CCCCCCCA

Thus

lim
t��


x�� x�� � � � � xn� � ��

and we have global attractivity of the origin in the switching system 
��� Q�E�D�

��
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