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Mesenchymal stromal cells (MSCs) 
possess several characteristics that make 
them attractive as a potential adjunct 
therapy for acute and chronic infectious 
diseases. MSCs are well known for their 
impressive immunomodulatory,1 2 pro- 
repair effects1 3 and clinical safety 
profile,4 5 however, the efficacy of MSCs 
in controlling bacterial infections, at least 
directly, remains unclear.6

Mycobacterium avium complex pulmo-
nary disease (MAC- PD) is a chronic condi-
tion driven by multi- drug resistant bacteria 
for which there are no robust efficacious 
treatment strategies.

MAC- PD is associated with high levels 
of morbidity, and long regimens of antimi-
crobial drugs, meaning there is an unmet 
need for novel therapeutics that can effec-
tively target, modulate and re- educate the 
weakened immune system to effectively 
clear this bacterial infection. MAC infec-
tion predominantly affects macrophage 
and dendritic cell populations in the lung. 
Macrophages can be directly activated 
through MAC infection or by Th1 cells 
induced by antigen presenting cells. MAC 
can resist host defence mechanisms and 
persist in macrophages, where they act 
as a replication niche to support MAC 
dispersal.7 Thus, macrophages play a key 
role in MAC- disease pathogenesis.

Recently, interaction and communica-
tion between live or apoptotic MSCs and 
macrophages has been identified as one 
of the major mechanisms of action asso-
ciated with MSC therapeutic efficacy.8–13 
Thus, MSC- macrophage education may 
play a role in shaping functional macro-
phage bacterial clearance and disease 
progression.

A single study has shown the capacity 
for human MSCs to reduce pulmonary 
MAC burden in a 7- day preclinical cystic 
fibrosis model.14 In this issue of Thorax, 
Shaw et al build on these findings iden-
tifying the ability of hMSCs to indirectly 
inhibit M. avium replication in a clinically 

relevant model of lung infection.15 While 
there are differential findings across these 
two studies, likely associated with the 
models used, Shaw et al are the first to 
provide a novel mechanistic insight into 
how MSCs can modulate macrophages 
to induce enhanced antimicrobial activity 
against MAC infection, demonstrating 
the pivotal role of COX- 2- mediated- 
prostaglandin E2 (PGE2) in the induction 
of the PI3K pathway. Moreover, the PGE2 
receptor, prostanoid receptor EP2 and 
its associated polymorphisms have been 
shown to play an important role in host 

resistance to Mycobacterium tuberculosis 
infection.16 17

Importantly, the authors report inter-
donor variation in macrophage response 
to MSC treatment, highlighting the need 
to better understand the MSC mechanism 
of action and identify parameters that 
might help to stratify patients based on 
responsiveness to MSC therapy. This falls 
in line with other studies investigating 
MSC responsiveness.8 An alternative 
approach is to activate or license MSCs 
before administration. Indeed, MSCs 
require threshold levels of inflammatory 
milieu to become activated or ‘licensed’.1 
Shaw et al show that MSCs in direct cocul-
ture or transwells, but not naive MSC 
conditioned media, reduced MAC prolif-
eration in monocyte- derived macrophages 
(MDMs) in vitro, suggesting that MSCs 
need to receive licensing signals from 
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Figure 1 Schematic depicting mechanism of action for MSC- derived PGE2 to inhibit intracellular 
Mycobacterium avium in MDMs. Signals provided by human monocyte- derived macrophages 
(MDMs) infected with M. avium complex (MAC) license human MSCs (hMSCs) to upregulate COX- 
2 and release PGE2. Addition of the specific COX- 2 inhibitor celecoxib prevents MSC upregulation 
of PGE2 in response to MAC- infected MDM licensing. MSC- derived PGE2 leads to the activation 
of PI3K and pAKT in MAC- infected MDMs potentially leading to phagolysosomal maturation and 
lysosomal degradation, clearing MAC and decreasing MAC replication. Blockade of PI3K signalling 
using wortmannin blocks PGE2- induced MAC clearance in MDMs. Figure created using biorender.
com. COX- 2, cyclooxygenase- 2; EP1- 4, E- prostanoid receptors 1–4; hMSCs, human mesenchymal 
stromal cells; pAKT, phosphorylated AKT; PGE2, prostaglandin E2; PI3K, phosphoinositide 3- kinase.
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MAC infected/activated MDMs in order 
to secrete factors that impact MDM ability 
to control MAC. Interestingly, MSCs in a 
transwell were more effective than MSCs 
directly cocultured with MDMs and 
M. avium bacteria, as cocultured MSCs 
no longer produced increased levels of 
PGE2, perhaps due to a negative impact 
of MAC being in direct contact with the 
MSCs. Thus, the elevated PGE2 response 
by MSCs was associated with a licensing 
effect mediated by MAC- infected MDMs 
and is required to initiate MSCs indirect 
antimicrobial efficacy in the context of 
MAC- PD.

Shaw et al identify a signalling pathway 
involved in MSC- derived PGE2 mediated 
inhibition of intracellular bacterial growth 
in infected MDMs. Addition of the COX- 
2- specific inhibitor celecoxib abrogated the 
associated antimicrobial effects of MSCs 
on MAC- infected MDMs, along with 
MDM production of TNFα. Importantly, 
Shaw et al saw no effect of celecoxib when 
it was applied directly to MDMs in the 
absence of MSCs, illustrating that produc-
tion of PGE2 specifically from MSCs 
is critical for the activation of MDMs. 
Moreover, pretreatment of MAC- infected 
MDMs with wortmannin (an irreversible 
inhibitor of PI3K) inhibited the antimicro-
bial effect of MSCs, demonstrating that 
MSC- derived PGE2 signals through PI3K 
to initiate the clearance of intracellular M. 
avium in MDMs (figure 1).

To translate these findings in vivo, Shaw 
et al used a murine model of chronic 
pulmonary MAC infection by nebu-
lising MAC (109 CFU/mL) to establish a 
proliferative pulmonary infection with 
extrapulmonary dissemination over 42 
days. Systemic administration of 1×106 
hBM- MSC on days 21 and 28 modestly 
but significantly reduced pulmonary 
bacteria, but failed to reduce the bacterial 
burden in distal organs (spleen and liver). 
Interestingly, however, MSC adminis-
tration did not have any effect on the 
inflammatory cytokine milieu measured 
from lung homogenates. Timing of MSC 
administration on days 21 and 28 in the 
chronic phase of infection correlates with 
the applicable dosing regimen in a clinical 
scenario, however, perhaps the inflamma-
tory milieu present in this model at this 
time is not suitable to adequately license 
MSCs following in vivo administration. 
Perhaps a licensing strategy would enhance 
MSC therapeutic efficacy as previously 
described.1 18 19

To date, this novel research has provided 
convincing data illustrating the role of 
COX- 2- dependent PGE2 production in 
MSCs’ ability to inhibit intracellular MAC 
replication, possibly through phagolyso-
somal maturation and lysosomal degrada-
tion in infected macrophages.20 Although 
more work emphasising the longevity of 
the MSCs’ therapeutic effects perhaps 
involving a licensing strategy and better 
understanding of patient heterogeneity 
and donor responsiveness to MSC therapy 
would be beneficial moving forward, these 
data provide us with a stepping stone to 
further understand MSC efficacy in the 
context of bacterial pulmonary infection. 
Notably, the authors point out that MSCs 
may be valuable as an adjunct therapy in 
conjunction to classic antimicrobials; thus, 
it would be beneficial to investigate the 
impact of MSCs in combination to anti-
biotics to demonstrate a possible additive 
or synergistic response, using clinically 
relevant preclinical models of MAC- PD in 
vitro and in vivo.
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