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Abstract. This “journal-first” paper summarises a publication by the
same authors in the journal Logical Methods in Computer Science which
describes a formal semantics for the Event-B specification language using
the theory of institutions. It defines an institution for Event-B and shows
how the constructs of the Event-B specification language can be mapped
into our institution. This algebraic semantics distinguishes three con-
stituent sub-languages of Event-B: the superstructure, infrastructure and
mathematical languages. An important impact of this work is that our
semantics provides access to the generic modularisation constructs avail-
able in institutions, including specification-building operators for param-
eterisation and refinement. We demonstrate how these features sub-
sume and enhance the corresponding features already present in Event-B
through a detailed study of their use in a worked example. Further ben-
efits of the institutional approach are its provision for mathematically
definable interoperability to facilitate heterogeneous specification.
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1 Introduction

Event-B is an industrial-strength formal specification language for the develop-
ment of safety-critical systems [1], including applications in aerospace [3], rail [6],
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healthcare [4] and autonomous robotics [5]. To be capable of being adopted in
the development of increasingly complex systems, formal methods must support
standard software engineering practices such as modularity. Such formal meth-
ods should also be equipped with a detailed semantics so that the results are
interpreted correctly by both software engineers as well as interoperable tools.

Although a mature formal specification language, Event-B has some limi-
tations, particularly its lack of standardised modularisation constructs. While
Event-B has been provided with a semantics in terms of proof obligations [12],
the abstractness of this approach makes it difficult to formally deal with modu-
larisation, or to define a concrete basis for interoperability with other formalisms.

Our paper, [10], provides an algebraic semantics for the Event-B language,
generic modularisation constructs and pathways to interoperability with other
logics. It does this by harnessing the benefits offered in the theory of institutions.
Institutions are mathematical structures that are based in category theory and
they provide a generic framework for formalising logics and formal languages
[11,18]. We define the institution for Event-B, called EVT , which we use to
describe as a target for the semantics of the full Event-B specification language.
In insitutions, specification-building operators are used to construct formal speci-
fications of systems in a modular fashion. Further, institutions support the com-
bination of different formal languages and logics in a way that preserves the
properties of the individual languages while allowing for the expression of the
system’s behavior in a more powerful and expressive way. This is achieved by
defining appropriate mappings between institutions for distinct formalisms.

In summary, the principal contributions of our paper [10] are:

1. We define a formal semantics for the Event-B formal specification language, as
a series of functions from Event-B constructs to specifications over the EVT
institution. This provides clarity on the meaning of the language elements
and their interaction. To achieve this, we consider the constituent elements of
the Event-B language as presented in our three-layer model shown in Fig. 1
(which we briefly describe later).

2. A well-defined set of generic modularisation constructs using the specification-
building operators available through the theory of institutions. These are
built-in to our semantics, they subsume and extend the existing Event-B mod-
ularisation constructs, and they provide a standardised approach to exploring
new modularisation possibilities.

3. An explication of Event-B refinement in the EVT institution. Refinement in
EVT incorporates and extends the Event-B refinement constructs.

Additionally, our eb2evt translator transforms Event-B specifications that
have been developed using Rodin into specifications over the EVT institution.
We use eb2evt to validate our semantic definitions, and to interact with the
existing large corpus of Event-B specifications [9]. This paper summarises the
main results and constructions from [10]. For the finer details including detailed
descriptions, definitions, theorems, proofs and examples, we direct the interested
reader to [10]. This work is beneficial to the Event-B community since it provides
a template for defining extensions and modifications to the Event-B formalism.
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Fig. 1. For each of the Event-B sub-languages, we show their corresponding Event-B
constructs, and their representation in our semantics.

2 The Institution for Event-B

Institutions have been devised for many logics and formalisms, we do not dwell
on the mathematical definitions here since the detail can be found in [10]. An
institution has four basic components: (1) Signatures determine the vocabulary
of the language, (2) Sentences use the vocabularly to form statements, (3) Mod-
els are needed to give meaning to such sentences and, (4) a satisfaction relation
determines satisfaction of sentences by models. These four aspects together form
an institution if they are well-defined and preserve certain mathematical prop-
erties.

The institution for Event-B, called EVT is defined as follows:

Signatures: The vocabulary, 〈S,Ω,Π,E, V 〉, contains sets of sort names (S),
arity-indexed operation names (Ω), arity-indexed predicate names (Π), event-
status pairs (E) and sort-indexed variable names (V ).

Sentences: are of the form 〈e, φ(x, x′)〉. Here, e is an event name and φ(x, x′) is
an open first-order formula over the variables x from the signature and the
primed versions, x′, of the variables. Figure 2 shows the specific translations
corresponding to the Event-B syntax.

Models: map event names to their corresponding set of variable-to-value map-
pings over the carriers corresponding to the sorts of each of the variables (and
their primed versions).

Satisfaction Relation: the satisfaction relation in EVT devolves to mapping the
EVT sentences to first-order logic and checking satisfaction of first-order sen-
tences in the usual way. Full details are in [10].

Note that, since first-order logic is the foundational logic used in Event-B, it
should be unsurprising that the EVT institution is also built on the institution
for first-order predicate logic with equality (we refer to this as FOPEQ). We
relate FOPEQ and EVT using an institution comorphism which is a mapping
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Fig. 2. The elements of an Event-B machine specification as presented in Rodin (left)
and the corresponding sentences in the EVT institution (right).

that allows us to write first-order logic sentences in EVT . This captures the way
that first-order formulae can be written in Event-B, as shown in Fig. 2.

The Three-Layer Model: Taking inspiration from an early version of the spec-
ification of UML [16,17], we split the Event-B language into three constituent
layers. Each layer corresponds to a sub-language of Event-B as shown in Fig. 1.
This three-layer model plays a key role in structuring the definitions of the
semantic functions given in [10]. Specifically, the institutional constructs that
we use to define the semantics of each of the sub-languages are listed on the
right of Fig. 1. We use this model to structure our translation from Event-B to
EVT as follows:

– The Event-B mathematical language (base of Fig. 1) is captured using the
institution of first-order predicate logic with equality, FOPEQ, which is
embedded via an institution comorphism into EVT [8]. Our semantics trans-
lates the constructs of this sub-language into corresponding FOPEQ con-
structs.

– Event-B infrastructure comprises the elements used to define variables, invari-
ants, variants and events. These are translated into EVT sentences.

– Event-B superstructure deals with the definition of Event-B machines, con-
texts and their relationships (refines, sees, extends). These are translated
into EVT structured specifications using the specification-building operators.

Building Specifications: The specification-building operators in the EVT
institution are, used at multiple levels and are, essentially generic modulari-
sation constructs. These are breifly summarised in Table 1 (full descriptions are
shown in Table 1 of [10]). For example, the and specification-building operator
provides a straightforward way of combining specifications. If we consider two
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Table 1. A brief summary of the institution-theoretic specification-building operators
that can be used to modularise specifications. Here SP1 and SP2 denote specifications
written over some institution, and σ is a signature morphism in the same institution.

Operation Format Description

Translation SP1 with σ Renames the signature components of SP1 (e.g. sort, operation and

predicate names in FOPEQ) using the signature morphism σ :

ΣSP1 → Σ′.
Sig[SP1 with σ] = Σ′
Mod[SP1 with σ]

= {M′ ∈ |Mod(Σ′)| | M′|σ∈ Mod[SP1]}.

Sum SP1 and SP2 Combines the specifications SP1 and SP2. It is the most straightfor-

ward way of combining specifications with different signatures.

SP1 and SP2 = (SP1 with ι) ∪ (SP2 with ι′)
where Sig[SP1] = Σ, Sig[SP2] = Σ′, ι : Σ ↪−→ Σ ∪ Σ′, ι′ : Σ′ ↪−→
Σ ∪ Σ′ and ∪ is applied to specifications (SP3 and SP4) over the same

signature (Σ′′) as follows

Sig[SP3 ∪ SP4] = Σ′′
Mod[SP3 ∪ SP4] = Mod[SP3] ∩ Mod[SP4].

Enrichment SP1 then . . . Extends the specification SP1 by adding new sentences after the then

specification-building operator. This operator can be used to represent

superposition refinement of Event-B specifications by adding new vari-

ables and events.

Hiding SP1 hide via σHiding via the signature morphism σ allows viewing a specification,

SP1, as a specification restricted to the signature components of

another specified by the signature morphism σ : Σ → ΣSP1 .

Sig[SP1 hide via σ] = Σ

Mod[SP1 hide via σ] = { M|σ | M ∈ Mod[SP1]}.

specifications, SP1 and SP2, the specification SP1 and SP2 represents their
combination. It has a signature that is the union of the signatures of SP1 and
SP2, valid models of this specification are captured as the intersection of the
valid models of the individual specifications. This can be understood as a gener-
alisation of the SEES construct in Event-B (line 1 of Fig. 2). In this way, and can
be used to incorporate both machines and contexts into a given specification.

We use these specification-building operators throughout our semantics for
Event-B. Figure 3 shows an example of the semantic functions used for the super-
structure language which uses the with (translation via signature morphism)
and then (specification enrichment/extension) operators. We provide the full
semantic functions and a worked example using eb2evt in [10].

3 Refinement, Modularisation and Interoperability

We briefly summarise the enhancements that our semantics offers in terms of
refinement, modularisation and interoperability for Event-B.

Representing Refinement: No semantics of Event-B would be complete with-
out reference to refinement. The institution framework allows us to capture
refinement as model-class inclusion where the class of models of a specifica-
tion comprises the models satisfying that specification. In [10], we consider two
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Fig. 3. The semantics for the Event-B superstructure sub-language is defined by trans-
lating Event-B specifications into structured specifications over EVT using the function
B and the specification-building operators defined in the theory of institutions.

cases of refinement for an abstract specification SPA and concrete specification
SPC :

1. When the signatures are the same, we capture refinement as

SPA � SPC ⇐⇒ Mod(SPC) ⊆ Mod(SPA)

This corresponds to superposition refinement in Event-B.
2. When the signatures are different, we capture refinement as

SPA � SPC ⇐⇒ Mod(σ)(SPC) ⊆ Mod(SPA)

This captures data refinement in Event-B, where the signature morphism σ
corresponds to the relevant gluing invariant. We can also use the hide via
specification-building operator to capture this refinement. Related work on a
CSP semantics for Event-B refinement used a similar notion of hiding [19].

More details are described in [10] including a worked example.

Modularisation via Specification-Building: It has been shown that Event-
B lacks a unified set of modularisation constructs [9]. Current approaches to
modularisation in Event-B consist of a suite of Rodin plugins that each support
a specific approach to modular specification. Decomposition-style modularisa-
tion was first proposed by Abrial where larger systems could be decomposed
into smaller ones and independently refined [2]. Ultimately, these smaller speci-
fications could be recombined to construct a specification that could have been
devised without the use of decomposition techniques from the outset.

In [10], we describe the evolution of modularisation constructs for Event-B
and Rodin, and show how the specification-building operators in EVT can be
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Fig. 4. We represent the shared variable decomposition of machine M into sub-machines
M1 and M2 (on the left) using specification-building operators (on the right).

used to capture current modularisation approaches. We provide a snapshot of
the classical shared variable approach on the left of Fig. 4, the right of Fig. 4
illustrates this kind of modularisation using specification-building operators in
EVT . Specifically, we use hide via to split the signatures and with to rename
the events in the individual machines. In [10], we demonstrate how our semantics
defines a theoretical foundation for the current Rodin modularisation plugins.

Interoperability: The theory of institutions provides a framework for combin-
ing different logical systems in a consistent and meaningful way [11]. Institution
(co)morphisms specify how the elements of one institution relate to the elements
of another. By correctly defining these mappings, we can formally reason across
different formal languages. In fact, EVT already uses an institution comorphism
to capture the mathematical layer (FOPEQ) of Event-B. We are actively explor-
ing how we can write heterogeneous specifications using these mappings.

4 Conclusions and Future Work

Our paper [10] contributes a formal semantics for the Event-B specification lan-
guage. To this end, we distilled a three-layer model for the Event-B language.
The semantics for each of these distinct layers is grounded in our institution for
Event-B, EVT , and the institution for first-order predicate logic with equality,
FOPEQ. We show how this semantics supports the restructuring and modular-
isation of Event-B specifications using the specification-building operators. We
focused on Event-B but our work demonstrates, more generally, how such mod-
ularisation capabilities can be added to a formal specification language using the
theory of institutions. Future work examines how this approach can be applied
to other similar formal languages that are also represented as institutions, for
example UML [13], CASL [15] and CSP [14]. Through the theory of institutions,
we have provided scope for interoperability between Event-B and other formal
languages. Support for heterogeneous specification is desired in the development
of complex safety-critical systems (e.g. robotics [7]) and we will explore this in
future work.
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