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Abstract—This article studies how to design the encoder
and decoder in the context of dynamic remote state es-
timation with a strategic sensor. The cost of the remote
estimator is the estimation error covariance, whereas the
cost of the self-interested strategic sensor includes an ad-
ditional term related to its private information. A Stackel-
berg game is employed to model the interaction between
the strategic sensor and the remote estimator, where the
leader (strategic sensor) first designs the encoder, and the
follower (remote estimator) then determines the decoder.
We derive the optimal encoder and decoder based on the
mismatched cost functions, and characterize the equilib-
rium for some special cases. One interesting result is that
the equilibrium can be achieved by transmitting nothing
under certain conditions. The main results are illustrated
by numerical examples.

Index Terms—Estimation, privacy, Stackelberg game,
strategic sensor.

I. INTRODUCTION

W IRELESS sensor networks are prevalent and indispensable
in a wide range of applications, including environmental

monitoring, traffic control, health care, and manufacturing indus-
tries [1]. Wireless networking builds connections between various
equipment nodes, but private and secure exchange of information
is not easily guaranteed. For instance, private information, such as
vehicle trajectories and personal health data, needs to be protected.
However, different purposes of the involved users may cause po-
tential conflicts of interest. Even without a malicious attacker or
eavesdropper, users’ private information can be fully accessed by
others whom they do not completely trust.

Take privacy issues in crowdsensing as an example. Crowd-
sensing is a broad range of community sensing paradigms, where
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individuals with mobile devices capable of sensing and computing
collectively share data and extract useful information to measure
and map processes of common interests [2]. Specifically, personal
drivers are sometimes financially incentivized and actively recruited
to report their locations, accidents, police traps, or any other hazards
along the way to a fusion center to improve the quality of every-
one’s daily driving. One famous application is Waze, where users
contribute together to the “common good.” However, some drivers
do not trust the fusion center enough to tell the whole truth and,
therefore, they may strategically alter the transmitted data to protect
their privacy within a certain range. Motivated by this context, the
encoding strategy and the corresponding decoding strategy need to
be carefully designed when self-interested sensors are involved.

The strategic information transmission has been a hot research
topic in the privacy field for many years. Different formulations
and approaches have been proposed. Akyol et al. [3] considered a
Stackelberg game where objectives are different for the transmitter
(leader) and the receiver (follower). First, the transmitter, whose
cost is additionally related to some private information, announces
an encoding strategy. Second, the receiver determines the decoding
strategy to minimize its cost based on the announced encoding map.
The equilibrium and the associated costs are characterized in this
static scalar state estimation problem. Similar results on Stackelberg
game equilibriums for static state estimation with strategic sensors
and further extensions can be found in [4]–[7]. For dynamic state
estimation with self-interested sensors, Farokhi et al. [8] assumed
that the private information of the strategic sensor evolves inde-
pendently according to a linear update rule. A Stackelberg game is
also employed to model the interaction between the sensors and the
remote estimator. The equilibrium is characterized and the sensor’s
transmission policy is proved to be memoryless. However, the true
state and the private information are assumed to be known by the
strategic sensor. This may not be true due to the measurement
noise in real applications. Sarıtaş et al. [9] investigated the dynamic
quadratic Gaussian signaling games under Nash and Stackelberg
equilibria. They showed that affine policies constitute an invariant
subspace for Nash equilibria, and the Stackelberg equilibria admit
linear policies for scalar cases. However, they considered a constant
bias in the objective, and provided analysis on the properties of
encoding and decoding policies, instead of constructing the optimal
strategies.

In this work, we consider a dynamic state estimation problem
with a strategic sensor in a Stackelberg game-theoretic framework.
The leader (strategic sensor) first designs the encoder aiming to
make the remote estimator compute the state estimate as the leader
would expect, taking its private information into consideration. The
follower (remote estimator) then determines the decoder to obtain
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Fig. 1. System block diagram.

the estimate as close to the original true state as possible. Since
the private information is correlated with the true source state,
it becomes quite complicated to design encoder and decoder in
dynamic remote estimation.

The main contribution of this work and comparison with existing
work from the literature are summarized as follows.

1) In this work, we develop encoder and decoder, which can
minimize their respective costs with a dynamic process
in a Stackelberg game-theoretic setup, where the private
information has correlation with the state. To the best of
our knowledge, it is the first time that private information
correlated with the source state has been studied for an
encoder and decoder design problem in the context of
dynamic state estimation.

2) One of the main results in our work indicates that the
equilibrium can be achieved by transmitting nothing,
which is in accordance with the results derived in [3].
To the best of our knowledge, we are the first to extend
this interesting result in static scalar state estimation with
strategic sensors to a dynamic vector case.

The remainder of this article is organized as follows. Section II
introduces the setup of the strategic information transmission in a
Stackelberg game-theoretic framework and the problem of interest.
Section III derives the optimal encoder and decoder, and analyzes
the equilibrium. Section IV provides simulations and interpreta-
tions. Section V draws conclusions.

Notations: R denotes the set of real numbers. Rn is the n-
dimensional Euclidean space. Sn

+ (Sn
++) is the set of n× n positive

semidefinite (definite) matrices. When X ∈ Sn
+ (Sn

++), we simply
writeX � 0 (X � 0). The identity matrix with sizen is represented
by In. The superscript �, †, Tr{·}, r{·}, and ρ(·) stand for the
transpose, Moore–Penrose pseudoinverse, trace, rank, and spectral
radius of a matrix, respectively. R(X) and N (X) denote the
range space and null space of X . E[·] denotes the expectation of a
random variable. N (μ,Σ) denotes Gaussian distribution with mean
μ and covariance Σ. For functions f1 and f2, f1 ◦ f2 is defined as
f1 ◦ f2(X) � f1(f2(X)).

II. PRELIMINARIES

Consider the system in Fig. 1. The discrete-time linear time-
invariant process is as follows:

xk+1 = Axk + wk (1)

yk = Cxk + vk (2)

where xk ∈ Rn is the process state, and yk ∈ Rm is the mea-
surement collected by the sensor. The process noise wk ∈ Rn, the
measurement noise vk ∈ Rm, and the initial state x0 are mutually
independent zero-mean Gaussian random variables with covariance
Q � 0,R � 0, andΠ0 � 0, respectively. The pair (A,C) is assumed
to be observable and (A,

√
Q) is controllable.

A. Strategic Information Transmission

The strategic information transmission was originally introduced
in [10], which aroused wide attention in the economic field. In
the strategic information transmission model, there are two play-
ers: a transmitter (e.g., strategic sensor) and a receiver (e.g., re-
mote estimator). The mismatch between the transmitter and the
receiver is modeled using different costs where the transmitter’s
cost is additionally affected by a single parameter, e.g., the private
information ηk. Specifically, in this work, at each time k, the
transmitter collects the measurement yk and transmits a message
θk = fSk (y1, . . . , yk, ηk), where ηk is the private information kept
between the process and the strategic sensor, and the encoder fSk is a
stochastic mapping. The receiver observes θk and produces an esti-
mate of the state xk through a mapping fEk as x̂k = fEk (θ1, . . . , θk).
The objective of the receiver is to pick a decoder fEk so as to
minimize the trace of the state estimation error covariance

DE
k � E

[
dE (xk, x̂k)

]
(3)

where dE : Rn × Rn �→ R is defined as

dE (xk, x̂k) � Tr
{
(xk − x̂k) (xk − x̂k)

�
}
. (4)

The objective of the transmitter is to minimize

DS
k � E

[
dS (xk, ηk, x̂k)

]
(5)

using the freedom in choosing the mapping fSk , given the receiver’s
objective function. Similarly, for the transmitter, the function dS :

Rn × Rn × Rn �→ R is given by

dS (xk, ηk, x̂k) � Tr
{
(xk + ηk − x̂k) (xk + ηk − x̂k)

�
}
. (6)

In the strategic information transmission, the parameter ηk is intro-
duced by the strategic sensor to blur the state estimation, and hence
to protect the exact value of the system state xk. To be consistent
with the definition in [3], we call it private information.

B. Stackelberg Game

In this section, we introduce the Stackelberg game, which is a
key supporting concept for our strategic information transmission.

Let ΦS and ΦE be the sets of admissible strategies for the
player strategic sensor and the player remote estimator, respec-
tively. Let the cost functions JS(φS , φE) and JE(φS , φE) be two
functions mapping ΦS × ΦE �→ R such that the player strategic
sensor wishes to minimize JS and the player remote estimator
wishes to minimize JE . In a Stackelberg game, the player (strategic
sensor) who selects his strategy first is called the leader. The player
(remote estimator) who selects his strategy second is called the
follower. The definitions of a Stackelberg optimal strategy pair
and the Stackelberg game equilibrium are stated as follows, mainly
based on the work in [11]–[13].

Definition 1: If there exists a mapping M : ΦS �→ ΦE such
that, for any fixedφS ∈ ΦS ,JE(φS ,M(φS)) ≤ JE(φS , φE) for all
φE ∈ ΦE , and if there existsφ�

S ∈ ΦS such thatJS(φ
�
S ,M(φ�

S)) ≤
JS(φS ,M(φS)) for all φS ∈ ΦS , then the pair (φ�

S , φ
�
E) ∈ ΦS ×

ΦE , where φ�
E = M(φ�

S), is called a Stackelberg optimal strategy
pair. An equilibrium in the Stackelberg game is reached under this
optimal strategy pair.

The remote state estimation with the strategic sensor is then
formulated as a Stackelberg game.
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Problem 1:

fS�
k = argmin

fS
k

E
[
dS

(
xk, ηk, f

E�
k

(
θ1, . . . , θk−1, fSk (y1, . . . , yk, ηk)

))]
fE�
k = argmin

fE
k

E
[
dE

(
xk, f

E
k (θ1, . . . , θk)

)]
.

The strategic sensor aims to obtain the optimal encoder fS�
k

first, given that the remote estimator will design the corresponding
optimal decoder fE�

k , as stated in Problem 1. The strategic sensor
aims to drive the estimate x̂k to a perturbed state xk + ηk, whereas
the remote estimator intends to obtain an accurate estimate x̂k of
the true state xk. If the private information ηk = 0, the objectives of
the strategic sensor and the remote estimator are exactly the same,
and the situation degenerates to a standard remote state estimation
problem. The private information ηk reflects the mismatch between
both players’ objectives.

C. Strategic Sensor

For the strategic sensor, the data packet θk transmitted contains
the private information ηk of concern. The privacy mechanism is
proposed to protect the process’s states, for example, the real-time
trajectory of the vehicle. For the quadratic Gaussian setting in the
static strategic remote estimation problem [3]–[6], the source xk
and the private information ηk are jointly Gaussian. In the dynamic
strategic remote estimation problem [8], [14], and [15], the private
information ηk is assumed to evolve according to a linear update
rule independently. Based on the existing literature work mentioned
earlier, we focus on scenarios where the private information ηk ∈
Rn is an affine transformation of the source state xk, i.e.,

ηk � (Γ− In) xk + βk (7)

where βk ∼ N (0,Σβ) is an independent identically distribute
(i.i.d.) Gaussian variable independent of the process noise and
measurement noise. The transformation matrix Γ ∈ Rn×n and the
covariance matrix Σβ ∈ Sn

+ are known by the strategic sensor and
the remote estimator.

Remark 1: Notice that the affine-formed private information is
composed of two parts, which is similar to a combination of the
two forms in the existing work [3]–[6], [8], [14], and [15], where
one is correlated with the dynamic process state, and the other is
independent of all the random variables. For the correlated part (Γ−
In)xk, let us consider the special case when the dynamic matrix
A is stable. According to (1), it becomes a stationary Gaussian
process and the statexk is therefore zero-mean Gaussian distributed.
Then, it is obvious that xk and ηk are jointly Gaussian, which is
aligned with the setting in the static strategic remote estimation
problem [3]–[6]. For the independent part βk, a larger Σβ results in
a smaller correlation coefficient between xk and ηk.

The reason why a random-type ηk is adopted, instead of a
deterministic constant, is to capture situations where the strategic
sensor wants to lie based on the present state. Actually, ηk can
be designed using an arbitrary function of xk and βk. The affine
transformation is chosen in this work to illustrate the effectiveness
of the strategic information transmission. We shall consider general
nonlinear functions in future work.

Since sensors nowadays are often equipped with memory buffer
and on-board processors [16], the preprocessing capability can

improve the system performance. The strategic sensor in Fig. 1 is
capable of running a local Kalman filter. Its minimum mean-squared
error (MMSE) state estimate x̂�k and the corresponding error covari-
ance P �

k for k ≥ 1 are denoted as

x̂�k � E [xk | y1, . . . , yk]

P �
k � E

[(
xk − x̂�k

)(
xk − x̂�k

)�
| y1, . . . , yk

]
which are computed via a Kalman filter as follows:

x̂�k|k−1 = Ax̂�k−1 (8)

P �
k|k−1 = AP �

k−1A
� +Q (9)

K�
k = P �

k|k−1C
�
(
CP �

k|k−1C
� + R

)−1
(10)

x̂�k = x̂�k|k−1 +K�
kzk (11)

P �
k =

(
In −K�

kC
)
P �
k|k−1 (12)

where zk is the local innovation

zk � yk − CAx̂�k−1. (13)

The initial states are x̂�0 and P �
0 . From Anderson and Moore [17],

the estimation error covariance of the Kalman filter converges to a

unique value P
�

no matter what the initial values are. For notational
brevity, we define the operators h, g̃ : Sn

+ �→ Sn
+ as

h(X) � AXA� +Q

g̃(X) � X −XC� (
CXC� + R

)−1
CX.

We assume that both the a priori and a posteriori error covariances
at the strategic sensor have already reached the steady states and let

P �
k = P

�
, P �

k|k−1 = P �, k ≥ 0

whereP
�

is the unique positive semidefinite solution to g̃ ◦ h(X) =

X andP � is the unique positive semidefinite solution to h ◦ g̃(X) =

X . This results in a steady-state local Kalman filter with fixed gain

K� = P �C�
(
CP �C� + R

)−1

and the innovation zk is i.i.d. zero-mean Gaussian distributed with
covariance CP �C� + R.

In existing literature [18]–[21], the sensor sends innovation zk
to the remote estimator. One reason is that transmitting zero-mean
Gaussian variable zk, instead of the raw measurement yk or the local
estimate x̂�k, can reduce the communication bandwidth and save the
sensor’s energy consumption due to a lower average signal magni-
tude, which is communication efficient [22]. Besides, the innovation
sequence {zk} contains all the information of the measurement
sequence {yk}, and thus zk is informative enough. In this work, we
suppose that the strategic sensor transmits a message θk based on
the innovation zk and the private information ηk. Motivated by the
linear encoder proposed in [9, Th. 15] for a vector case dynamic
Stackelberg game, we focus on the affine transformation, i.e.,

θk = fSk (zk, ηk) � Tkzk + bk (14)

where bk ∼ N (0,Σb,k) is an i.i.d. Gaussian variable. Both the trans-
formation matrix Tk ∈ Rm×m and the covariance matrix Σb,k ∈
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Sm
+ need to be determined by the strategic sensor to minimize DS

k
in the Stackelberg game framework.

Remark 2: The affine transformation of the encoding policy is
one of the possible choices of the strategic sensor. By choosing
an affine transformation, the strategic sensor is able to derive the
optimal encoding strategy with specific parameters, which ensures
both players to achieve the game equilibrium. The goal here is to
provide constructive directions on how to design encoding and de-
coding strategies. Thanks to the nice structural properties provided
by the affine transformations, important insights into this strategic
dynamic state estimation can be obtained. More general nonlinear
transformations are left for future work.

D. Remote Estimator

An affine estimator is adopted at the remote estimator. Based
on the receiver’s measure (4), its MMSE state estimate x̂k and the
corresponding error covariance Pk are given by

x̂k � E [xk | θ1, . . . , θk]

Pk � E
[
(xk − x̂k) (xk − x̂k)

� | θ1, . . . , θk
]
.

The affine remote estimator is in the form

x̂k = fEk (θ1, . . . , θk) � Ax̂k−1 + Lkθk (15)

where the estimation gain Lk needs to be optimized by the receiver.
Since all the noises involved are Gaussian, this recursive affine
estimator is also the best MMSE decoder possible under certain
conditions. No nonlinear estimator can do better. More detailed
discussions are presented in Lemma 2. Besides, we denote the error
covariance Sk at the strategic sensor as

Sk � E
[
(xk + ηk − x̂k) (xk + ηk − x̂k)

� | θ1, . . . , θk
]
.

E. Problem of Interest

In this work, we aim to tackle Problem 1 in a Stackelberg game
framework. The two players collaboratively accomplish the state
estimation task to serve their respective purposes. Specifically, at
each timek, the strategic sensor derivesTk andΣb,k to minimizeDS

k
given the remote estimator’s objective and its affine form but not
necessarily the value of Lk. The leader, i.e., the strategic sensor,
forward θk together with decision variables Tk and Σb,k to the
remote estimator. Then, the follower decides its estimation gain Lk

to minimize DE
k . Note that although the remote estimator does not

disclose the value of Lk in advance, the strategic sensor can infer
it. This is because the strategic sensor knows that the goal of the
remote estimator is to obtain an accurate state estimate. With this
capability, the strategic sensor can make its optimal decision among
all the feasible choices. The motivation of forwarding the encoding
strategy is to accomplish the state estimation in a collaborative
manner since the performance of the strategic sensor relies on the
remote estimator. Specifically, the goal of the strategic sensor is not
to produce a freely chosen state estimate, but to drive the estimate
to a designed perturbed value. Intuitively, far from degrading the
strategic sensor’s performance, broadcasting the encoding strategy
helps the strategic sensor to minimize its objective function. By im-
plementing this mechanism, the two players achieve a Stackelberg
game equilibrium.

III. EQUILIBRIUM ANALYSIS ON STRATEGIC

INFORMATION TRANSMISSION

In this section, we characterize the equilibrium in this Stackelberg
game with the strategic sensor. First, the optimal decoder fE�

k is
derived for the remote estimator and the recursive affine decoder
is proved to be MMSE optimal among all the possible types of
decoders under certain conditions. Second, for the strategic sensor,
getting the optimal encoder fS�

k is simplified to solving a concrete
optimization problem, and it can be solved perfectly when the
system parameters satisfy some conditions. For general cases, an
algorithm is proposed to obtain the optimal encoder numerically.
Finally, based on the optimal strategy pair (fS�

k , fE�
k ), limiting costs

at this equilibrium are presented for some special cases.

A. Optimal Decoder fE�
k

As a preliminary, the following Lemma 1 gives solutions to a
normal equation, which is used to derive the optimal decoder. The
proof is presented in Appendix A.

Lemma 1: The normal equation

Lk

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
= P �C�T�

k

has feasible solutions, and they are all given by

Lk = P �C�T�
k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]†
+ B

{
Im −

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
×
[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]† }
(16)

for arbitrary B ∈ Rn×m.
Then, one obtains the optimal decoder as follows.
Theorem 1: The optimal decoder is x̂k = f�k (θ1, . . . , θk) =

Ax̂k−1 + L�
kθk, where

L�
k � P �C�T�

k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]†
+ B

{
Im −

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
×

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]† }
(17)

and B ∈ Rn×m can be arbitrarily designed.
Proof: Based on (1) and (15), xk − x̂k can be computed as

xk − x̂k = A (xk−1 − x̂k−1)− LkTkCA
(
xk−1 − x̂�k−1

)
+ (In − LkTkC)wk−1 − LkTkvk − Lkbk.

Then, the corresponding error covariance is

Pk = E
[
(xk − x̂k) (xk − x̂k)

�
]

= APk−1A� + (LkTk)R (LkTk)
� + LkΣb,kL

�
k

+ (In − LkTkC)Q (In − LkTkC)�

+ (LkTkC)AP
�
A� (LkTkC)�

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 06,2024 at 09:02:36 UTC from IEEE Xplore.  Restrictions apply. 



NI et al.: REMOTE STATE ESTIMATION WITH A STRATEGIC SENSOR 1617

− AE

[
(xk−1 − x̂k−1)

(
xk−1 − x̂�k−1

)�]
A� (LkTkC)�

− (LkTkC)AE
[(

xk−1 − x̂�k−1
)
(xk−1 − x̂k−1)

�
]
A�.

The correlation term can be computed as

E

[
(xk−1 − x̂k−1)

(
xk−1 − x̂�k−1

)�]
= E

[(
xk−1 − x̂�k−1 + x̂�k−1 − x̂k−1

)(
xk−1 − x̂�k−1

)�]
= P

�
+ E

[(
x̂�k−1 − x̂k−1

)(
xk−1 − x̂�k−1

)�]
= P

�
. (18)

The fact that E[(x̂�k−1 − x̂k−1)(xk−1 − x̂�k−1)
�] = 0 is due to the

orthogonality principle, i.e., all the random variables generated
by the knowledge of the strategic sensor is independent of the
estimation error xk−1 − x̂�k−1 of the MMSE estimate x̂�k−1. After
some algebraic manipulation, the error covariance at the remote
estimator is given by

Pk = APk−1A� +Q+ LkΣb,kL
�
k + (LkTkC)P � (LkTkC)�

− P � (LkTkC)� − (LkTkC)P � + (LkTk)R (LkTk)
�

= APk−1A� +Q− P � (LkTkC)� − (LkTkC)P �

+ Lk

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
L�
k . (19)

According to (optimal linear L.M.S. estimators) [23, Th. 3.2.1], any
solution Lk to the following normal equation:

Lk

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
= P �C�T�

k

minimizes Tr{Pk}. Thus, L�
k is an optimal gain based on Lemma 1,

which implies the optimal decoder fE�
k . �

Lemma 2: The recursive affine decoder fE�
k is MMSE optimal

among all the possible types of decoders if

Tk

(
CP �C� + R

)
T�
k + Σb,k � 0. (20)

Proof: Since all random processes (xk, θk, wk, vk, bk) are
jointly Gaussian, it follows that the conditional random vari-
able at the remote estimator (xk | θ1, . . . , θk) ∼ N (x̂k|k, Pk|k) and
(xk | θ1, . . . , θk−1) ∼ N (x̂k|k−1, Pk|k−1). Suppose at time k that
(x̂k−1|k−1, Pk−1|k−1) is given. We shall compute (x̂k|k−1, Pk|k−1)
and (x̂k|k, Pk|k) using the following two steps. First, x̂k|k−1 =

E[xk | θ1, . . . , θk−1] = Ax̂k−1|k−1 andPk|k−1 = APk−1|k−1A� +

Q by recalling (1). Second, since θk = TkC(xk − Ax̂�k−1) +
Tkvk + bk, the conditional vector (

[xk
θk

] | θ1, . . . , θk−1) is Gaussian

with mean
[Ax̂k−1|k−1

0

]
and covariance[

Pk|k−1
(
Pk|k−1 − E

[(
xk − x̂k|k−1

)
x̂��k−1

]
A�)C�T�

k

∗ Tk
(
CP �C� + R

)
T�
k + Σb,k

]
where ∗ means the transpose of the second element in the first line
of the augmented covariance matrix. We apply the formula for con-
ditional expectation of Gaussian random variables preconditioned
on θ1, . . . , θk−1. It follows that (xk | θ1, . . . , θk) is Gaussian with

mean

Ax̂k−1|k−1 +
(
Pk|k−1 − E

[(
xk − x̂k|k−1

)
x̂��k−1

]
A�

)
C�T�

k

×
[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]−1
θk.

By algebraic manipulation, we have

Pk|k−1 − E
[(
xk − x̂k|k−1

)
x̂��k−1

]
A�

= APk−1|k−1A� +Q− AE
[(
xk−1 − x̂k−1|k−1

)
x̂��k−1

]
A�

= AE

[(
xk−1 − x̂k−1|k−1

) (
xk−1 − x̂k−1|k−1 − x̂�k−1

)�]
A�

+Q

and further

E

[(
xk−1 − x̂k−1|k−1

) (
xk−1 − x̂k−1|k−1 − x̂�k−1

)�]
= E

[
xk−1

(
xk−1 − x̂�k−1

)�
− (

xk−1 − x̂k−1|k−1
)
x̂�k−1|k−1

]
= E

[(
xk−1 − x̂�k−1 + x̂�k−1

)(
xk−1 − x̂�k−1

)�]
= P

�
.

Finally, it turns out that (xk | θ1, . . . , θk) is Gaussian with mean

Ax̂k−1|k−1 + P �C�T�
k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]−1
θk

which implies that x̂k|k = x̂k, and the resulting optimal decoder
is the same as the affine one as derived in Theorem 1 when
condition (20) is satisfied.

Remark 3: Condition (20) holds when Σb,k � 0, or Tk has full
rank.

B. Optimal Encoder fS�
k

For the strategic sensor, the best response can be obtained by
solving a simpler optimization Problem 2, as provided in the fol-
lowing theorem.

Problem 2:

min
Tk∈Rm×m,Σb,k∈Sm

+

Tr

{
ΔP �C�T�

k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]†
TkCP �

}
where Δ � In − Γ� − Γ.

�
Theorem 2: The optimal encoder fS�

k is the solution to the
optimization Problem 2 if Γ can commute with A.

Proof: Based on (7) and (15), the difference of xk + ηk − x̂k is
given by

xk + ηk − x̂k

= Γxk + βk − x̂k

= A (Γxk−1 + βk−1 − x̂k−1) + (ΓA− AΓ)xk−1 + βk

− L�
kTkvk + (Γ− L�

kTkC)wk−1 − L�
kbk − Aβk−1
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− L�
kTkCA

(
xk−1 − x̂�k−1

)
.

Due to the commutativity between Γ and A, the corresponding
covariance can be computed as follows:

Sk = E
[
(xk + ηk − x̂k) (xk + ηk − x̂k)

�
]

= ASk−1A� + Σβ + (L�
kTk)R (L�

kTk)
�
+ L�

kΣb,k (L�
k)

�

+ (Γ− L�
kTkC)Q (Γ− L�

kTkC)� − AΣβA
�

+ (L�
kTkC)AP

�
A� (L�

kTkC)�

− AE

[
(Γxk−1 − x̂k−1)

(
xk−1 − x̂�k−1

)�]
A� (L�

kTkC)�

− (L�
kTkC)AE

[(
xk−1 − x̂�k−1

)
(Γxk−1 − x̂k−1)

�
]
A�.

The correlation term is equal to

E

[
(Γxk−1 − x̂k−1)

(
xk−1 − x̂�k−1

)�]
= E

[(
Γxk−1 − Γx̂�k−1 + Γx̂�k−1 − x̂k−1

)(
xk−1 − x̂�k−1

)�]
= ΓP

�

where the last equation holds due to the same expression as given
for (18). Hence, the covariance term Sk is simplified as

Sk = ASk−1A� + Σβ − AΣβA
� + ΓQΓ�

− L�
kTkCP �Γ� − ΓP � (L�

kTkC)�

+ L�
k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
L��
k . (21)

Since L�
k[Tk(CP �C� + R)T�

k + Σb,k] = P �C�T�
k , we have

L�
kTkCP �Γ� = L�

k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
L��
k Γ�

ΓP � (L�
kTkC)� = ΓL�

k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
L��
k .

Hence, minimizing the trace of the covariance Sk in (21) is equiv-
alent to minimizing

Tr
{
ΔL�

k

[
Tk

(
CP �C� + R

)
T�
k + Σb,k

]
L��
k

}
. (22)

By substituting the closed form in (17) for L�
k, one can verify that

no matter what the value B takes, the term in (22) is equal to the
objective function in Problem 2. �

According to Theorem 1, the optimal decoder may be endowed
with many forms due to the free choice of B in L�

k. Theorem 2
implies that whateverB the decoder chooses, the decision of optimal
encoder is unrelated to it. Besides, since the optimization Problem 2
does not rely on timek any more, the optimalTk andΣb,k degenerate
to constant matrices. The time-invariant property of the optimal Tk
and Σb,k is caused by the one-step optimization objective in Prob-
lem 1 and the assumption that the local Kalman filter at the strategic
sensor has already reached the steady state. Additionally, due to the
freedom in choosing Γ, it is possible for the strategic sensor to
design the transformation matrix Γ such that it commutes with the
system dynamic matrix A. In this Stackelberg game framework, the

purpose of the strategic sensor is to solve Problem 2 to derive Tk
and Σb,k. Though Problem 2 is more concrete and concise than the
original Problem 1, the solution is not immediately obvious. The
following Corollary 1 gives the optimal solutions in some special
cases. The proof is presented in Appendix B.

Corollary 1: Consider two special cases for Problem 2 where Γ

commutes with A.
1) If Δ � 0, then the optimal encoder is fS�

k = bk.
2) If Δ � 0 and the strategic sensor’s decision pair

(Tk,Σb,k) needs to satisfy r{Tk(CP �C� +R)T�
k } =

r{Tk(CP �C� +R)T�
k +Σb,k}, then the optimal en-

coder is fS�
k = Tkzk, where Tk has full rank and can

be arbitrarily designed.
Furthermore, the optimal encoders derived in both cases are also

optimal in the sense of minimizing the long-run average cost, i.e.,

min
{fS

1 ,fS
2 ,...,fS

k }
1

k

k∑
t=1

E
[
dS (xt, ηt, x̂t)

]
. (23)

Case (1) in Corollary 1 is worthy of attention. When Δ � 0,
its optimal strategy is to transmit only the noise bk (i.e., Tk = 0),
and the remote estimator updates only on independent noises, i.e.,
x̂k = Ax̂k−1 + B(Im − Σb,kΣ

†
b,k)bk. Because the remote estima-

tor can set B = 0 and, thus, does not utilize the received packet,
this transmission strategy is equivalent to sending nothing, which
also can save transmission energy. For example, let Γ = 0 and,
hence, Δ = In � 0. The strategic sensor wants to drive the remote
estimator’s state estimate x̂k to xk + ηk = βk, which is an i.i.d.
Gaussian noise. Therefore, it is reasonable that the strategic sensor
chooses to send only the noise bk, without giving any additional
information about the system state.

Algorithm 1: CCP Algorithm for the Optimal Encoder.
1: Input: Functions F ,G, and ∇G;
2: Initialization: Λ0 � 0 and i = 0;
3: repeat
4: Form G(Λ; Λi) � G(Λi) + Tr{∇G(Λi)�(Λ− Λi)};
5: Set the value of Λi+1 as a solution to the convex

optimization problem

min
Λ∈Sm

+

F(Λ)− G(Λ; Λi); (24)

6: Update iteration i = i+ 1;
7: until stopping criterion (26) is satisfied.

Due to the intricacy of Problem 2 when Δ is neither positive
semidefinite nor negative semidefinite, we propose an algorithm
and solve it numerically, instead of giving a closed-form solution.
In this case,Δ is an arbitrary matrix whereΓ is required to commute
with A, and Σb,k is assumed to be positive definite. Since Δ is a
real-valued symmetric matrix, it is always possible to write Δ as
the difference Δ1 −Δ2 of two positive semidefinite matrices Δ1

andΔ2. For notational convenience, we defineΛ � T�
k Σ−1

b,kTk � 0,
and define the functions F , G : Sm

+ �→ R as

F(X) � − Tr

{
√
Δ2P

�C�
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×
{
X −X

[(
CP �C� + R

)−1
+X

]−1
X

}
CP �

√
Δ2

}

G(X) � − Tr

{
√
Δ1P

�C�

×
{
X −X

[(
CP �C�+ R

)−1
+X

]−1
X

}
CP �

√
Δ1

}
.

According to [24, Lemma 1], both functions F and G are con-
vex. When Σb,k � 0, we apply the matrix inversion lemma on
[Tk(CP �C� + R)T�

k + Σb,k]
−1 and we have[

Tk

(
CP �C� + R

)
T�
k + Σb,k

]−1
= Σ−1

b,k − Σ−1
b,kTk

[(
CP �C� + R

)−1
+ T�

k Σ−1
b,kTk

]−1
T�
k Σ−1

b,k.

The objective function in Problem 2 is then transformed into
Tr{ΔP �C�{Λ− Λ[(CP �C� + R)−1 + Λ]−1Λ}CP �} by change
of variable. Consequently, Problem 2 is equivalent to the following
Problem 3, which is a difference of convex (DC) programming
problem.

Problem 3:

min
Λ∈Sm

+

F(Λ)− G(Λ).

The convex–concave procedure (CCP) [25] is a heuristic algo-
rithm to find a local optimum for DC problems. To solve Problem 3
numerically, we propose Algorithm 1 based on the CCP. The gra-
dient of G is provided as follows:

∇G(X) = −
{
Im −

[(
CP �C� + R

)−1
+X

]−1
X

}

× CP �Δ1P
�C�

{
Im −X

[(
CP �C�+ R

)−1
+X

]−1}
.

(25)

One reasonable stopping criterion is that the improvement in the
objective value is less than a nonnegative threshold δ [26](F(Λi)− G(Λi)

)− (F(Λi+1)− G(Λi+1)
) ≤ δ (26)

where the superscript i represents the ith iteration. After obtain-
ing the solution Λ� to Problem 3 by implementing Algorithm 1,
we can recover the original variables by letting Σ�

b,k = Im and

T ��
k T �

k = Λ�, where T �
k is an upper triangular matrix by Cholesky

decomposition.
Remark 4: Algorithm 1, which replaces the concave term

−G(Λ) with a convex upper bound, numerically searches an ac-
ceptable pair (Tk,Σb,k) for the strategic sensor. Other algorithms,
i.e., disciplined convex–concave programming [27], also can be
applied to solve the DC problem.

C. Equilibrium Analysis

Based on the aforementioned two sections, we provide results on
the game equilibrium for some special cases.

Theorem 3: The strategic information transmission in a Stack-
elberg game framework achieves equilibrium in the following two
special cases when Γ is designed to commute with A.

a) If Δ � 0, the equilibrium is achieved at

θk = bk

x̂k = Ax̂k−1 +B
(
Im − Σb,kΣ

†
b,k

)
θk

where Σb,k ∈ Sm
+ is determined by the strategic sensor

and B ∈ Rn×m is arbitrarily designed by the remote
estimator.

b) If Δ � 0 and the strategic sensor’s decision pair
(Tk,Σb,k) needs to satisfy r{Tk(CP �C� +R)T�

k } =
r{Tk(CP �C� +R)T�

k +Σb,k}, the equilibrium is
achieved at

θk = Tkzk

x̂k = Ax̂k−1 + P �C� (
CP �C� +R

)−1
T−1
k θk

where Tk ∈ Rm×m with full rank is determined by the
strategic sensor.

Proof: Both cases directly come from the optimal encoder in
Corollary 1 and the optimal decoder in Theorem 1. �

Under the optimal strategy pair (fS�
k , fE�

k ), the limiting costs for
both players converge if ρ(A) < 1 by observing the evolvements of
error covariancesSk andPk. For special cases when all the variables
and matrices are scalar, the limiting costs when |A| < 1 are given
as follows.

1) If Γ ≤ 1
2 , the limiting costs under the optimal strategy

pair derived in Case (a) are

DS
∞ =

Γ2Q

1−A2
+Σβ (27)

DE
∞ =

Q

1−A2
. (28)

2) If Γ ≥ 1
2 , the limiting costs under the optimal strategy

pair derived in Case (b) are

DS
∞ =

Γ2Q

1−A2
+

1− 2Γ

1−A2

C2P �2

C2P � +R
+Σβ (29)

DE
∞ =

Q

1−A2
− 1

1−A2

C2P �2

C2P � +R
. (30)

One can calculate these limiting costs according to (19) and (21).
When the system is stable, it turns out that both players’ costs are
bounded at the equilibrium.

IV. SIMULATION RESULTS

In this section, we first take the linearized discrete-time model of
a simplified longitudinal flight system (for more details, see [28])
as an example to illustrate the effectiveness of the proposed encoder
and decoder with strategic sensor. The state variable xk ∈ R3,
representing the pitch angle, the pitch rate, and the normal velocity,
respectively. The system parameter matrices are

A =

⎡⎢⎣0.99 −0.12 −0.43

0 0.99 −0.07

0 0.82 0

⎤⎥⎦ , C = I3
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Fig. 2. Illustration of the optimality for the remote estimator, i.e., fE�
k ,

with the longitudinal flight system.

Fig. 3. Illustration of the optimality for the remote estimator, i.e., fE�
k ,

with the longitudinal flight system.

Fig. 4. Illustration of the optimality for the strategic sensor, i.e., fS�
k ,

with the longitudinal flight system.

Q =

⎡⎢⎣0.01 0 0

0 0.01 0

0 0 0.0001

⎤⎥⎦ , R = 0.01I3.

Let Γ =

[
−0.89 0.28 0.34

0 −0.87 0.06

0 −0.65 −0.08

]
, which commutes with A and also

implies Δ � 0, and Σβ = 0.01I3. Fig. 2 illustrates the optimality of
the proposed decoder fE�

k in Theorem 1. When the strategic sensor
sets Tk = 0 and Σb,k = 0.1I3, the optimal decoder is L�

k = 0 for
B = 0. To compare the performance between different decoders, we

randomly generate Lk’s where Ľ �
[
0.40 0.43 0.72

0.77 0.62 0.18

0.56 0.27 0.72

]
and L̄ �[

0.18 0.97 0.23

0.37 0.60 0.33

0.17 0.15 0.04

]
. After running 70 000 simulations, from Fig. 2,

we can conclude that the optimal decoder derived in Theorem 1
leads to a lower costDE

k for the remote estimator since the blue solid
line is below the red dash-dotted line and the yellow dashed line. Ad-
ditionally, Fig. 3 illustrates the optimality of the proposed encoder
fS�
k in Corollary 1. SinceΔ � 0, an optimal strategy pair isT �

k = 0,

Fig. 5. Real-time states and remote estimates for the longitudinal flight
system.

Σ�
b,k = 0.1I3, and L�

k = 0 when B = 0. Again, to compare the per-
formance between different encoders, we randomly generate Tk’s

where T̂ �
[
0.81 0.91 0.28

0.91 0.63 0.55

0.13 0.10 0.96

]
and T̃ �

[
6.95 0.34 7.66

3.17 4.39 7.95

9.50 3.82 1.87

]
. The

decoder is set as the optimal one with respect to the respective en-
coder, i.e., L̂ � P �C�T̂�[T̂ (CP �C� + R)T̂� + Σb,k]

−1 and L̃ �
P �C�T̃�[T̃ (CP �C� + R)T̃� + Σb,k]

−1. After running 70 000
simulations, from Fig. 3, it can be observed that T �

k = 0 achieves
a lower cost DS

k for the strategic sensor in that the blue solid line
is below the purple dashed line and the green solid line with plus
signs. Moreover, due to the stability of the system dynamic matrix
A, the limiting costs for both players are bounded. The blue solid
line and the red dash-dotted line describe the costs for both the
strategic sensor and the remote estimator at the Stackelberg game
equilibrium under the optimal strategy pair.

In Fig. 4, the real-time pitch angle state (the first element of xk),
the target pitch angle state of the strategic sensor (the first element of
xk + ηk), and the remote pitch angle state estimates under two strat-

egy pairs are shown. In this simulation,Γ =

[
−0.16 −0.71 0.23

0 −0.25 0.04

0 −0.41 0.25

]
,

which commutes with A and implies Δ � 0. The parameters A, C,
Q, R, and Σβ remain the same. According to Corollary 1, we let
the optimal encoder and decoder pair be T �

k = 0 and L�
k = 0, and

the resulting trajectory of x̂�k is plotted by a yellow dashed line.
As a comparison, x̂♦k is computed using Tk = T̃ , Σb,k = 0.1I3,
and Lk = L̃, and the resulting trajectory of x̂♦k is plotted by a red
dotted line. The purple solid line shows the pitch angle state in one
realization. The blue dash-dotted line is the target estimate for pitch
angle as the strategic sensor expects. It can be seen that the pitch
angle estimate x̂�k under the optimal strategy pair is much closer to
the blue dash-dotted line, whereas the red dotted line x̂♦k deviates a
lot from the blue dash-dotted line. Fig. 4 illustrates the effectiveness
of the proposed encoder and decoder in real time.

When Γ =

[
0.30 0.74 0.58

0 0.37 0.10

0 −1.13 1.74

]
, the induced Δ is neither

positive semidefinite nor negative semidefinite. Let Δ1 = Δ+

4I3 � 0 and Δ2 = 4I3 � 0. We choose the initialized Λ0

(T 0
k = 3In,Σ

0
b,k = 0.1I3), the computed Λ at the 5th (T 5

k =
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Fig. 6. Costs of strategic sensor and remote estimator based on Algo-
rithm 1.

[
2.85 1.62 0.84

0 2.18 −1.17

0 0 2.97

]
,Σ5

b,k = 0.1I3) and the 30th iteration (T 30
k =[

3.67 3.07 1.27

0 1.51 −3.76

0 0 0.07

]
,Σ30

b,k = 0.1I3) during the implement of Al-

gorithm 1. As shown in Fig. 5, after 70 000 simulations, the strategic
sensor’s cost DS

k induced by Λ30 is smaller than DS
k induced by Λ0

or Λ5, which implies the effectiveness of the proposed Algorithm 1.
Second, we provide an example for a scalar system, where A =

0.85, C = 1, Q = 0.28, and R = 0.31. Let Γ = 0.5 and Σβ = 0.15.
From Theorem 3, one can find that both strategy pairs provided in
Cases (a) and (b) can achieve the equilibrium since Δ = 0. Due to
the existence of random variables, we run 100 000 simulations for
both cases. In Case (a), T �

k = 0, Σ�
b,k = 0.10, and L�

k = 0, and in
Case (b), T �

k = 1, Σ�
b,k = 0, and

L�
k =

CP �

C2P � + R

which are derived by Theorem 3. The costs DS
k and DE

k as defined
in (5) and (3) are plotted in Fig. 6. The strategic sensor’s cost DS

k in
both cases converge to 0.40, which is exactly the value calculated
in (27) and (29) for equilibriums. Additionally, the limiting values
of DE

k in both cases are equal to the values as calculated in (28)
and (30). Recall that the strategic sensor plays the leading role in
this Stackelberg game and it takes actions first to minimize DS

k
with an affine-form strategy. It only cares about its own objective
function DS

k and pays no attention to DE
k . Those are probably the

reasons for DE
k < DS

k in Case (b). The decisions it makes in both
cases lead to the minimum DS

k , and the equilibria are achieved in
both cases.

V. CONCLUSIONS AND FUTURE WORK

In this article, we investigated a dynamic remote state estimation
problem with a strategic sensor in a Stackelberg game-theoretic
framework. The mismatch of the cost functions between the strate-
gic sensor and the remote estimator helps to protect the strategic
sensor’s private information. The optimal encoder and decoder were
derived, and the equilibrium was characterized under certain con-
ditions. Examples and simulations verified the theoretical results.

With the purpose of saving transmission energy, one possible
future direction is to develop the encoder and decoder with an event
trigger, since the result in this article indicates that sometimes, trans-
mitting nothing is the optimal strategy. Besides, one may consider
the scenario with multiple strategic sensors, which is essential in
applications.

APPENDIX A
PROOF OF LEMMA 1

First, we prove the existence of feasible solutions by proving
that

R
(
TkCP �

) ⊆ R
(
Tk

(
CP �C� +R

)
T�
k +Σb,k

)
.

Equivalently, we only need to focus on their null spaces and
prove that

N
(
Tk

(
CP �C� +R

)
T�
k +Σb,k

) ⊆ N
(
P �C�T�

k

)
.

For some ν ∈ N (Tk(CP �C� +R)T�
k +Σb,k), there exists[

Tk

(
CP �C� +R

)
T�
k +Σb,k

]
ν = 0

which implies ν�[Tk(CP �C� +R)T�
k +Σb,k]ν = 0. Fur-

thermore, it implies ν�Tk(CP �C� +R)T�
k ν = 0. Since

CP �C� +R � 0, T�
k ν = 0 trivially. Therefore, P �C�T�

k ν =
0. Directly, this relation ensures the existence of the correspond-
ing normal equation solutions.

Second, since there always exists a solution Lk such that
Lk[Tk(CP �C� +R)T�

k +Σb,k] = P �C�T�
k as proved ear-

lier, all the solutions are given by (16) [29]. One can verify
the normal equation’s solution Lk as follows:

Lk

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]
= P �C�T�

k

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]†
× [

Tk

(
CP �C� +R

)
T�
k +Σb,k

]
+B

{
Im − [

Tk

(
CP �C� +R

)
T�
k +Σb,k

]
× [

Tk

(
CP �C� +R

)
T�
k +Σb,k

]† }
× [

Tk

(
CP �C� +R

)
T�
k +Σb,k

]
= Lk

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]
× [

Tk

(
CP �C� +R

)
T�
k +Σb,k

]†
× [

Tk

(
CP �C� +R

)
T�
k +Σb,k

]
= Lk

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]
= P �C�T�

k

where both the second and third equations hold due to the
definition of the Moore–Penrose pseudoinverse.

APPENDIX B
PROOF OF COROLLARY 1

Before presenting the optimality proof, we focus on the itera-
tion of the error covariance Sk at the strategic sensor, as derived
in (21)

Sk = ASk−1A
� +Σβ −AΣβA

� + ΓQΓ� + g(Tk,Σb,k)

where

g(Tk,Σb,k)
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� P �C�T�
k

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]†
TkCP �

− P �C�T�
k

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]†
TkCP �Γ�

− ΓP �C�T�
k

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]†
TkCP �.

Furthermore, we have

Sk = AkS0

(
A�)k

+
k∑

t=1

Ak−t
(
Σβ −AΣβA

�+ΓQΓ�+g (Tt,Σb,t)
)(
A�)k−t

.

(31)

Due the commutativity of Γ and A, we obtain

k∑
t=1

Tr
{
Ak−tg (Tt,Σb,t)

(
A�)k−t

}

=

k∑
t=1

Tr

{
CP �

(
A�)k−t

ΔAk−tP �C�

× T�
t

[
Tt

(
CP �C� +R

)
T�
t +Σb,t

]†
Tt

}
. (32)

The proof is divided into two parts. Case (1) is Δ � 0. Since
the Moore–Penrose pseudoinverse of a positive semidefinite ma-
trix is still positive semidefinite [30] and the trace of the product
of two positive semidefinite matrices is nonnegative, Tk = 0
and an arbitrary Σb,k � 0 minimizes the objective function
in Problem 2, where CP �ΔP �C� � 0 and T�

k [Tk(CP �C� +
R)T�

k +Σb,k]
†Tk � 0. Additionally, the encoding policy se-

quence {fS
1 , f

S
2 , . . . , f

S
k } where Tt = 0 and Σb,t � 0 for all

t ≤ k also minimizes Tr{Sk} according to (31) and (32), and
hence fS�

k = bk is also optimal in the sense of minimizing the
long-run average cost (23).

For Case (2), we denote Ψ � (−CP �ΔP �C�)
1
2 � 0 and

Ψ̂ � Ψ(CP �C� +R)−
1
2 for notational brevity. The objective

in Problem 2 is transformed into

max
Tk,Σb,k

Tr
{
ΨT�

k

[
Tk

(
CP �C� +R

)
T�
k +Σb,k

]†
TkΨ

}
.

First, we prove that Σb,k = 0 is an optimal solution for all
values of Tk under the constraint r{Tk(CP �C� +R)T�

k } =
r{Tk(CP �C� +R)T�

k +Σb,k}. According to Milliken and
Akdeniz [31], we have the inequality [Tk(CP �C� +R)T�

k +
Σb,k]

† � [Tk(CP �C� +R)T�
k ]† due to the rank constraint and

Σb,k � 0. The optimality of Σb,k = 0 is proved. After letting
Σb,k = 0, the objective function becomes

max
Tk

Tr
{
ΨT�

k

[
Tk

(
CP �C� +R

)
T�
k

]†
TkΨ

}
. (33)

Second, we proof that ΨT�
k [Tk(CP �C� +R)T�

k ]†TkΨ �
Ψ(CP �C� +R)−1Ψ for all Tk. Due to the positive definiteness
of R, we denote X = Tk(CP �C� +R)

1
2 and reformulate the

optimization problem by change of variable

max
X∈Rm×m

Tr
{
Ψ̂X� (

XX�)† XΨ̂�
}
. (34)

According to Ben-Israel and Greville [32], there exists
X�(XX�)† = X†, and hence X�(XX�)†X = X†X . By sin-
gular value decomposition of X , one can obtain 0 � X†X �
Im. Therefore, Ψ̂X�(XX�)†XΨ̂� � Ψ̂Ψ̂� = Ψ(CP �C� +
R)−1Ψ and the equality is reached when Tk has full rank.
Additionally, the encoding policy sequence {fS

1 , f
S
2 , . . . , f

S
k }

where Σb,t = 0 and Tt has full rank for all t ≤ k also minimizes
Tr{Sk} according to (31) and (32), and hence fS�

k = bk is also
optimal in the sense of minimizing the long-run average cost.
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[9] S. Sarıtaş, S. Yúksel, and S. Gezici, “Dynamic signaling games
with quadratic criteria under equilibria,” Automatica, vol. 115,
2020, Art. no. 108883.

[10] V. P. Crawford and J. Sobel, “Strategic information transmission,” Econo-
metrica, vol. 50, pp. 1431–1451, 1982.

[11] M. Simaan and J. B. Cruz, “On the Stackelberg strategy in nonzerosum
games,” J. Optim. Theory Appl., vol. 11, no. 5, pp. 533–555, 1973.

[12] D. Fudenberg and T. Jean, Game Theory, vol. 726. Cambridge, MA, USA:
MIT Press, 1991.

[13] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cambridge,
MA, USA: MIT Press, 1994.

[14] M. O. Sayin, E. Akyol, and T. Başar, “Strategic control of a tracking
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