
Received September 21, 2021, accepted October 8, 2021, date of publication October 14, 2021, date of current version October 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119975

Complex Event Processing in Smart City
Monitoring Applications
BEHNAM KHAZAEL 1, HADI TABATABAEE MALAZI 1,2, AND SIOBHÁN CLARKE 2
1Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran 19839 69411, Iran
2School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, D02 PN40 Ireland

Corresponding author: Hadi Tabatabaee Malazi (tabatabh@tcd.ie)

This work was supported by the Science Foundation Ireland (SFI) through the Enable Project under Grant 16/SP/3804.

ABSTRACT Managing multi-tenant edge devices with heterogeneous capabilities scattered across an urban
area requires significant communication and computing power, which is challenging when devices are also
resource-constrained. These devices play a crucial role in smart city monitoring systems by notifying various
municipal organizations about a wide range of ongoing complex events. Some recent approaches in complex
event processing use a publish-subscribe architectural pattern to decouple simple event producers from
complex event consumers. However, they did not fully address communication efficiency or diverse quality
of service (QoS) requirements in aggregating events. This paper proposes a new architecture that integrates
the publish-subscribe architectural pattern with software-defined network technology for urban monitoring
applications. The architecture enhances monitoring applications with capabilities of distributed processing
and detection of complex events. It also enables application developers to define QoS requirements and
supports the TESLA complex event specification language. The main focus of our work is on energy and
network efficiency. The simulation results demonstrate significant improvements in energy consumption and
data packet traffic compared to three close baselines.

INDEX TERMS Fog computing, Internet of Things, edge computing, smart city, software-defined
networking, publish-subscribe architecture, complex event detection, event-based system.

I. INTRODUCTION
Smart cities are one of the main ecosystems of the Internet
of Things (IoT) applications [1]–[6], where edge devices
with a wide range of sensors and diverse capabilities are
employed for monitoring the city environment and reporting
ongoing events. Different organizations (e.g., fire department
or emergency medical services) define their events of
interest in this environment according to their missions. For
instance, the fire, police, and medical emergency services
look for specific traffic incidents from different perspectives.
Simple events are the primary building blocks of event-
based monitoring systems. They are usually aggregated to
form a complex event that provides an in-depth overview
of ongoing phenomena of interest (e.g., traffic congestion)
detected based on a collaboration of several traffic sensors.
The complex events are defined according to applications’
objectives and have different QoS requirements.
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The tight coupling of edge devices and urban applications
makes the management of smart city applications a challeng-
ing problem. In this multi-tenant environment, edge devices
report their detected events to different applications, and
each application needs event notifications from various edge
devices distributed across a city. In this paper, we address the
problem of decoupling simple event producers (edge devices)
from complex event subscribers (smart city applications) in
a multi-tenant environment with diverse QoS requirements
while considering the resource limitations of devices. The
problem faces several complications. First is the diversity
of applications and their various QoS requirements [7],
while applications may dynamically subscribe to an event
or unsubscribe. The next challenge is resource limitations
of edge devices in energy, communication, and processing
[8]–[10]. Finally, network dynamics (e.g., edge nodes’
leaving and joining) introduce additional challenges.

Complex Event Processing (CEP) systems can be cate-
gorized into centralized and distributed approaches. In cen-
tralized ones, all events are processed in a central node.
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The main drawback is high messaging overheads due
to the submission of all events to a central processing
node. However, this category of approaches benefits from
central coordination mechanisms among edge devices that
lead to the efficient management of nodes. On the other
hand, distributed approaches take advantage of in-network
processing for aggregating simple events that elevate their
efficiency. However, they require a coordination mechanism,
which can be centralized or distributed among edge and
processing (fog) nodes to handle network dynamics and
process tasks.

Researchers address the problem from different view-
points. The challenge of decoupling event producers from
consumers is addressed from the middleware perspec-
tive [11]–[14]. They show that information exchange among
edge devices can benefit from a publish-subscribe architec-
tural pattern. However, these works did not fully address
event routing and QoS requirements challenges. From the
networking viewpoint, several works integrated Software-
Defined Networking (SDN) [15], [16] with a publisher-
subscriber pattern [17]–[19]. Their main goal was to separate
the control plane that handles network dynamics from
the data plane in charge of disseminating the detected
event notifications. The utilization of SDN technology
helps reduce unnecessary message passing and provides
efficient message routing. Although they addressed network
dynamics and efficient data exchange challenges, they did
not consider several aspects, including processing complex
events, application diversity, and different QoS requirements.
Finally, from the complex event detection perspective,
some research [20]–[24] concentrated on detecting complex
events using CEP features, such as event definition rules,
aggregating event notifications, pattern matching, and stream
processing. Additionally, researchers introduced complex
event detection languages, such as TESLA [25], to facilitate
the development of CEP systems [26].

This paper proposes a new SDN-based complex event
detection architecture for urban monitoring applications that
tackles the following challenges:
1) The tight coupling of edge devices and urban applica-

tions in a multi-tenant environment
2) The resource limitations of edge devices (i.e., energy and

communication resources)
3) Heterogeneity of edge nodes in the sensing capability as

well as sensing quality
4) Network dynamics (i.e., edge nodes may join or leave

the network.)
The devised architecture comprises edge, fog, and application
server layers. We adapt a broker-based publish-subscribe
architecture to decouple simple event publishers (edge
nodes) from complex event subscribers (urban monitoring
applications) in a multi-tenant smart city environment.
We also exploit SDN technology to handle network dynamics
by managing the network topology and optimum routing
of event notifications. The integration of publish-subscribe
architectural pattern and SDN technology leverages the

delegation of detecting complex events to specific processing
fog nodes. We also enhance the TESLA complex event
process language to support QoS attributes in the definition of
complex event rules. Furthermore, we implement a prototype
of the architecture for an urban application as a proof
of concept. Finally, we evaluate the performance results
with [21], [22], [27] regarding energy efficiency, network
traffic, delays, and the percentage of detected events. The
main contributions of this paper are summarized as follows:

1) A CEP rule definition grammar is extended to enhance
urban monitoring applications in defining their required
sensing quality.

2) A new architecture is proposed that applies the extended
CEP grammar to the publish-subscribe architecture and
integrates them with SDN technology.

3) A number of modules (i.e., CEP rule pre-processing,
publisher head selection, and optimum route calculator)
are devised in the proposed architecture to prevent
unwanted traffic and reduce energy consumption.

4) A prototype of the proposed architecture is imple-
mented, and its performance is extensively evaluated
against the state of the art methods.

The remainder of this paper is organized as follows:
In Section II, we review some of the well-known and
recent related works. Then, we describe the system model
in Section III. Our proposed architecture is described in
Section IV. Section V introduces our prototype implemen-
tation, followed by the performance evaluation results in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORKS
Researchers have devised various edge/fog-based architec-
tures in recent years. Adeniran et al. [28] introduce an edge-
enabled architecture. The edge layer is designed with the
minimum number of edge devices and optimum connectiv-
ity structure through several optimization formulations to
identify edge servers’ placement and connectivity structure.
Hasnat et al. [29] discuss the data analytics aspect of the edge
computing platform and focus on situational awareness and
its role in enhancing edge computing. Lan et al. [30] propose
a framework to enable computation-intensive and delay-
sensitive applications in smart cities, creating on-demand
process engine data flow spanningmultiple device layers with
different resource constraints by leveraging the data-flow
programming model. The researchers in [31] study differ-
ent programming frameworks of fog systems, addressing
challenges such as heterogeneity, scalability, and mobility
with respect to the fog architecture and application types.
Naranjo et al. [32] introduce Fog Computing Architecture
Network (FOCAN), in which applications are running on
things that jointly compute, route, and communicate with one
another through the smart city environment.

The contributions of our work lie at the intersection of three
research topics of publish-subscribe middleware, software-
defined networking, and complex event processing. In the
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TABLE 1. An overview of the related works.

following, we review some of the most related works on each
topic. Table 1 summarizes the related works.

A. MIDDLEWARE APPROACHES
Data Distribution Service (DDS) is an interoperable publish-
subscribe solution to support real-time distributed systems.
Gaamel et al. [11] analyze different DDS approaches for
wireless sensor and actuator networks. The comparative study
includes default tinyDDS (DefTDDS), broker-less tinyDDS
(BLTDDS), and hybrid tinyDDS (HyTDDS). Their experi-
ments reveal that BLTDDS demonstrate the best throughput.
BLTDDS and HyTDDS protocols present a higher packet
delivery ratio than others. BLTDDS outperforms in terms
of end-to-end delay, and finally, HyTDDS was the most
energy-efficient protocol. They further propose a broker-
less protocol, called Enhanced Energy-Aware TinyDDS
(E-EATDDS), to improve energy efficiency. However, their
work does not provide any QoS support, and it delegated the
responsibility of QoS support to application developers.
Davis et al. [12] introduce publish/subscribe-based mech-

anism for wireless sensor networks to enable four different
QoS levels regarding packet delivery and timeliness. The first
level is the best effort way of packet delivery. The next level,
called reliable packet delivery, uses re-transmission timeout
according to additional information from subscribers, such
as packet delivery ratio. The third level aims for energy
efficiency for data aggregation. Finally, the last level brings
timeliness in packet delivery by using a deadline mechanism.
The limitation of their mechanism is that it uses static routing
and does not address network dynamics.

This group of works concentrates on middleware aspects
by providing mechanisms for decoupling event publishers

from subscribers. However, they do not address network-
related issues such as routing, topology management, and
network dynamics.

B. NETWORKING-BASED APPROACHES
The second group of works focuses on networking aspects.

Wang et al. [17] introduce an SDN-based Publish/
Subscribe system (SDNPS). It is a communication platform
combining SDNwith topic-based publish-subscribe architec-
ture in which any authorized IoT service can be a publisher
of an event, or it can subscribe to/unsubscribe events. SDNPS
also orchestrates event routing by forwarding events to
subscribers. According to the platform, sensors and actuators
are connected to local processing brokers equipped with an
event broker network module. The module is responsible
for mediating events among IoT services using topic-based
matching under the SDN model. Nonetheless, SDNPS does
not address the processing of complex events.

Shi et al. [18] present SDN-Like, a topic-based pub-
lish/subscribe middleware architecture, to facilitate users
to define their differentiated QoS requirements. SDN-Like
encodes events and their priorities in packet headers that
facilitate prioritizing event packets. Additionally, it defines
priority queues on OpenFlow switches to provide dif-
ferentiated services. The authors also introduce eXtreme
Gradient Boosting (XGBoost), a machine learning model,
to predict the queuing delays. Then, they implement
a two-layer queue management mechanism to guarantee
the reliability of differentiated services. Although their
work empowers users to define differentiated QoS, their
middleware does not support the processing of complex
events.
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Message Queuing Telemetry Transport (MQTT) is a
publish-subscribe network protocol that transports messages
between devices. The standard MQTT may cause net-
work congestion in the presence of a centralized broker.
Park et al. [19] introduce Direct Multicast-MQTT (DM-
MQTT) that uses a hierarchical structure, where edge brokers
are slaves, and the central broker is a master. All edge nodes
are connected to an MQTT slave broker. A slave broker is
responsible for collecting edge information and delivering
it to the master edge broker. The edge information includes
IP address, topic, QoS level, and emergency data flag of an
edge device. Themaster broker sends all the edge information
to an SDN controller to analyze and create a group table
to set paths between different edge networks. Additionally,
the controller categorizes groups based on three levels of
QoS, considering that a sender and a receiver must agree
upon the same QoS. Moreover, multicast trees are established
between the publisher and the subscribers to bypass the
centralized broker whenever multiple nodes subscribe to a
topic. A multicast tree is a core-based tree whose root is the
node with the most negligible average delays and is selected
by the SDN controller as a rendezvous point. Then, the SDN
controller generates a bidirectional multicast path between
edge devices and the rendezvous point and forwards it to
the SDN switch. Finally, the information is disseminated
according to the core-based tree.

Inspired by SDN technology, the researchers adopt the idea
of separating a control plane from data planes to address
challenges of network dynamics such as network congestion
in routing packets and new policy enforcement using SDN
technology. While they mainly consider simple events,
the processing of complex events is not fully addressed.

C. CEP APPROACHES
The third group of work concentrates on complex event
processing capabilities.

Kohler et al. [20] introduce a CEP solution that uses
in-network computing capabilities of network nodes along
the communication path, reducing communication latency
in detecting events. They use Programming Protocol-
independent Packet Processors (P4) language and introduce
the P4CEP compiler. The compiler receives a CEP design
configuration and creates the corresponding P4 source code.
The CEP design configuration contains various information
that defines header fields, parser instructions for primary
events packets, declarations of window operators, and event
definition rules. Although the solution supports complex
event rules, QoS requirements for each complex event cannot
be declared explicitly.

Esposito et al. [21] present a broker–less communication
method for their publish/subscribe model. Their method uses
beaconing to perform low-level multicasting for data dissem-
ination and signaling data exchange. Initially, a node beacons
msg_join message to announce its interest in a specific
topic. Then, the node creates a data structure called routing
topic table. The data structure contains various information

about neighboring nodes, the topics of interest, and received
notifications for the topics. When a node receives a join
message, it updates its internal routing topic table based on
the topic of the message. Then, the node propagates the
change by issuing an msg_update. The neighboring nodes,
receiving the update message, amend their routing topic table
and send an update message to the neighbors. The introduced
protocol uses a flooding mechanism to deliver the message
to all interested subscribers from the publisher’s reachable
area. It also uses in-network data fusion, but the beaconing
method of delivering a message to all subscribers reduces
the network lifetime due to inefficiency in message passing.
Moreover, the approach does not scale due to the flooding
mechanism.

Khazael et al. [27] introduce a coordination protocol
to overcome the unnecessary re-beaconing problem in
broker–less communication methods. They introduce a
structure for communication packets and use packet headers
to store a list of destination nodes. Furthermore, each
node maintains a routing topic table. A node announces its
presence by beaconing a join_message to join the network,
and by receiving a join_message, other nodes add the
neighbor’s address to their tables and exchange their table
information. A node can create a subscribe message and
use beaconing to deliver the message to their neighbors to
subscribe to an event. By receiving a subscribe message,
the neighbor’s address will be added to the routing topic table.
To propagate an event, a publish message can deliver to most
adjacent nodes by one-time beaconing since the nodes can be
within the coverage area of multiple neighboring subscribers.
However, nodes receiving this packet do not become aware
that their neighbors may already receive the same. Thus, they
process the list of recipients (destination nodes) in the packet
header to decide re-beaconing, which leads to reducing
unnecessary communication. Although this approach reduces
unnecessary communication, the scalability of the method
cannot be guaranteed due to the flooding nature of the
solution.

Mobile Urban Sensoring and Actuation Network
(MusaNet) [22] is a scalable three-layer middleware that
supports CEP for smart city applications. In the first layer,
mobile objects provide an interface to sensors and actuators.
The mobile objects also perform local data processing
primitives such as filtering, capturing, and detection.
This layer is developed based on Mobile-Hub to support
connectivity. The second layer comprises processing nodes
and gateways, which are implemented using ContexNet
middleware. The processed information in the second layer
is passed to the third layer, called the storage layer, using
network infrastructure. The third layer is responsible for
structured storage and support for information queries. It also
provides an interface to applications that are out of the
platform. However, it does not consider optimizing energy
consumption and traffic reduction, which are essential in
resource-constrained IoT environments. Our work addresses
these aspects by devising modules, including network
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topology management and optimum route calculator using
SDN technology.

Guzel et al. [24] introduce an air quality prediction
framework. They divided the functionalities into three layers
of IoT, fog, and cloud. The IoT layer is responsible for
sensor activities, and it reports sensor readings (including a
timestamp, node ID, pollutant ID, and momentary reading
of the pollutant) to the fog layer. According to the time
windows using CEP tools, the fog layer calculates pollutant
concentrations and extracts continuous pollutant concentra-
tion patterns of individual IoT nodes. It is also responsible for
pollution prediction and storing the perdition model for each
sensor. Finally, the cloud layer performs pattern matching by
analyzing the pollutant concentration patterns of IoT nodes
and identifies the nodes with similar patterns. However, this
work did not address any QoS features.

The surveyed works in Section II-C focus on the CEP
features of an IoT environment. However, these methods
leave the handling of QoS concerns to application developers.
Additionally, they do not fully address the challenges of
network dynamics.

III. SYSTEM MODEL
This section introduces the system model of our smart
city monitoring environment. It describes the event model,
including simple and complex events, introduces the network
model and its comprising elements, and defines the energy
model. Finally, it formulates the problem.

A. EVENT MODEL
Edge (sensor) nodes are the primary sources of events in
smart city monitoring applications. These nodes are equipped
with embedded sensing devices to measure environmental
phenomena, such as air quality sensors and traffic sensors.
The nodes also have heterogeneous QoS specifications [33],
such as sensing accuracy and sampling rate. A simple event
happens when a measured value of a sensing device lies
within a predefined range. The detected simple event is
reported in the form of a notification. In our event model, each
type of event is associated with an event topic. We denote
αi as a simple event notification comprising of an event
topic (αei ), measured value (αvi ), detection timestamp (αti ),
node_location (αli ), and the set of meta-information of the
publisher such as QoS metrics.

Edge nodes advertise their sensing capabilities in event
topics, which helps the interested entities subscribe. Then,
the edge nodes publish their detected events by sending
notifications to the subscribers of the event. We denote pi as a
sample publisher of a simple event andMi as the set of meta-
information associated with the publisher pi.
Simple events provide a confined perception over a mon-

itoring area, while complex events provide a more inclusive
view. Complex events can be detected by aggregating simple
events in a specific geographical area within a specific time
window. They are defined in the form of application-specific
rules using an Event Processing Language (EPL) such as
TESLA. Figure 1 shows the fire complex event.

FIGURE 1. Definition of Fire as a complex event. From TESLA language on
T-Rex project [25].

Several preconditions have to be checked to detect a
complex event. The following notations introduce these
preconditions. We denote ri as a sample complex event rule,
Ai as its set of required simple events, Ti as an acceptable
time window, Li as geographical area, and Qi as its set of
predefined QoS requirements.

In our event model, we consider four preconditions to
detect a complex event. The first precondition for detecting
a complex event rule (ri) is to check if the set of predefined
simple events (Ai) has occurred. In Eq. 1, Nx represents the
set of received simple event notifications.

Precondition1 : ∀αi ∈ Ai, ∃αj ∈ Nx : αei = α
e
j (1)

QoS requirements (∀qi ∈ Qi) is the second precondition.
Let 0 be the set of simple event notifications that match one
of the simple events in Ai. Each QoS requirement must be
satisfied by at least one meta-information (such as mj) of a
simple event notification (such as αj ∈ 0). Eq. 2 presents a
formal definition of the precondition.

Precondition2 : ∀qi ∈ Qi, ∃αj ∈ 0 : qi , mj (2)

The next precondition considers the time correlation of the
received simple event notifications. This precondition checks
if the time difference between the simple event notifications
is bound to the acceptable time window (Ti) predefined in the
complex event rule (ri). In Eq. 3, |αtj − α

t
k | shows the time

difference between two simple event notifications αj and αk .

Precondition3 : ∀αj, αk ∈ 0 : |αtj − α
t
k | < Ti (3)

The last precondition is the spatial correlation of simple
event notifications. Eq. 4 presents the precondition where
||αlj − αlk || shows the Euclidean distance between the
publishers of αj and αk .

Precondition4 : ∀αj, αk ∈ 0 : ||αlj − α
l
k || < Li (4)

Upon detecting a complex event ri, a notification is
generated and transmitted to its subscribers. We denote Si
as the set of subscribers for a complex event rule ri. These
subscribers can be a monitoring application or other CEP
module(s).

B. NETWORK MODEL
We consider a network structure comprised of three layers of
edge nodes, fog nodes, and application servers.
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FIGURE 2. Clustered network model.

The edge layer includes edge nodes (sensors nodes)
responsible for monitoring their surrounding environment
and sending simple event notifications according to their
sensing capabilities. The edge nodes have similar commu-
nication coverage and communicate with fog node(s) using
IEEE 802.15.4. These nodes are resource-constrained and
cannot take the burden of detecting a complex event. They
are also clustered according to their deployed geographical
region [34]. Figure 2 illustrates the clustered network model
where each cluster is associated with at least one fog
node. The edge nodes connect to a fog node to send event
notifications. The associated fog node is selected according to
theminimum hop count and energy efficiency considerations.

Fog nodes constitute the middle layer (fog layer) of the
network structure. These nodes are resource-rich and have
two primary responsibilities. The first is to monitor the
status of edge nodes and collect simple event notifications.
The second is to process the notifications, detect complex
events, and send complex event notifications to the upper
layer subscribers.

Application servers (upper layer) represent subscribers’
roles from a publish-subscribe viewpoint. They interact with
end-users and provide monitoring services to municipal
organizations. They also communicate with fog nodes to
subscribe to complex events or receive complex event noti-
fications using application programming interfaces (APIs).

C. ENERGY MODEL
Edge devices are energy-constrained nodes and consume
their energy for sensing, processing, and communication
activities. The energy consumption of sensing activities is
highly dependent on embedded sensor devices. Additionally,
the sampling rate and a resolution accuracy of the sensor

device is an influential factor. The processing activities
spend energy in a processor (e.g., micro-controller) and
memory units. Finally, communication activities consume a
significant amount of energy for transmitting and receiving
data between nodes. Among these activities, communication
is the primary source of energy consumption. Therefore,
we consider transceivers to consume the most significant
portion of edge/fog nodes’ energy.

The detection of a complex event (ej) requires send-
ing/receiving several simple event notifications. We denote
E jsimple as the sum of consumed energy to detect and transmit
the simple event notifications by the edge nodes. More-
over, several message passings are required for multi-hop
transmission of simple event notifications to fog nodes
since all the edge nodes are not directly connected to a
fog node. We denote the consumed energy for multi-hop
communication as E jmulti. Finally, exchanging the processed
intermediate data between fog nodes needs energy E jinter .
We present the consumed energy for send/receive of the
intermediate packets in E jmulti. The energy efficiency in
detecting a complex event j is formulated in Eq.5.

min
∑

(E jsimple + E
j
multi + E

j
inter ) (5)

IV. PROPOSED ARCHITECTURE
This section introduces the structural and behavioral view of
our new SDN-based complex event processing architecture
for smart city monitoring applications. We integrate the
publish-subscribe architectural pattern with SDN technology
in a three-layered architecture. The network nodes in each
layer have different responsibilities fulfilled by interac-
tions between the architectural components. We introduce
these interactions by describing the workflows of various
processes, including publisher registration, subscription,
matching, publisher head node selection, and notification
dissemination.

A. STRUCTURAL VIEW
The network nodes are organized into three layers: edge
layer, fog layer, and application server layer aligned with
the network model introduced in Section III-B. The edge
layer nodes have similar responsibilities, while the nodes
in the fog layer can be a processing node, a broker, or a
controller node. The application server layer comprises mon-
itoring applications that connect our proposed architecture
to municipal organizations. Each network node includes
multiple components that are to be described in the following.
Figure 3 shows an overview of the proposed architecture.

1) EDGE LAYER
Edge nodes are the primary source of monitoring information
by sensing the environment and reporting the detected
simple events. These nodes have heterogeneous sensing
capabilities and support different QoS requirements such as
sensing resolution and accuracy. They use pub/sub service
to communicate at the service level with the nodes in other
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FIGURE 3. An overview of the proposed architecture.

layers. Additionally, edge nodesmaintain a subscription table
that keeps track of the subscribers interested in the event
topics that can be published.

2) FOG LAYER
Themiddle layer (fog layer) handles decoupling complexities
of publishers and subscribers by using event brokers and
integrating them with SDN technology. This layer is respon-
sible for handling network dynamics, decoupling publishers
from subscribers, and providing computing resources to
process complex events. Fog layer nodes interact with the
upper and lower layers in various cases. These nodes receive
the detected simple events from the edge layer and send
the complex event notifications to the application server
layer. They also accept new subscriptions for complex event
rules from the application server layer. Finally, they send
network management control packets to edge layer nodes.
The Fog layer comprises three types of nodes: a broker node,
a controller node, and processing nodes.
(i) A broker node addresses the decoupling issues of

publishers and subscribers by utilizing five components.
The first one is the publisher table component that
registers the capabilities of edge nodes. The table
contains the publisher’s ID, the event topics that it
can produce, the location of its monitoring area, and
its supported QoS requirements. The subscriptions
table is the second component that keeps track of all
subscriptions. Each entry in the table contains the ID of
the subscriber, the requested complex event rule, QoS
requirements, and a list of eligible publishers that can

satisfy the rule. The next component is called rule pre-
processing, which is used to break down a complex
event rule into a set of simple event subscriptions.
Matching service is the fourth component that has two
functionalities of subscriber matching and publisher
matching. The first one receives the information of a new
publisher and extracts all subscribers that can benefit
from the new publisher. The second one receives a set
of simple event subscriptions and returns all publishers
that can potentially satisfy the set.

(ii) A controller node is the second type of fog layer node
that has two main responsibilities.
• The first responsibility is the network management
that addresses network dynamics by implement-
ing the SDN controller duties defined in SDN
technology [35], [36]. The controller node uses
three components to accomplish this responsibility.
First, the network topology management component
enables the controller node to be aware of the network
configuration and communication costs between
network nodes. The optimum route calculator is
the second component that finds the best path from
an edge node to its closest processing node. It is
an essential component for the edge nodes that are
not directly connected to a processing node. The
last component is the flow table controller aiming
to manage the network nodes’ flow table [35]. Each
network node has a flow table that consists of
matching-rule, action, and statistics sections. When a
node receives a packet, it looks up the matching rules

143156 VOLUME 9, 2021



B. Khazael et al.: Complex Event Processing in Smart City Monitoring Applications

to find an entry/entries that suit the incoming packet.
Then, it performs the defined action in the entry.
The flow table controller component manages all the
flow tables. For instance, it sets the paths from edge
nodes to processing nodes based on the calculated
optimum route. It also manages the paths from
simple event publishers to simple event subscribers
as well as complex event publishers to complex event
subscribers.

• The second responsibility is to enhance the SDN
controller capabilities to support publish-subscribe
aspects. The publisher head selection component
selects the appropriate processing node(s) to process a
particular complex event rule. The selection is based
on the communication costs between the processing
node and the edge nodes that satisfy the rule. The
head selection process is described in Section IV-
B5. The subscription enabler component receives
the subscribed complex event rule and the selected
processing node(s). It invokes the rule provision
service of the processing node to configure the
complex event rule. Finally, the flow table controller
component is in charge of updating nodes’ flow
tables.

(iii) Processing nodes provide the computation resources
to process the received simple event notifications.
These nodes communicate with edge nodes using
pub/pub service that facilitates marshaling of pub/sub
messages. The received notifications are processed in
the CEP engine, and the detected complex events
are reported to the interested nodes stored in the
subscription table. The CEP engine component runs
a separate thread and creates an automata model for
each registered complex event rule. Rule provisioning
service is a service enabler that provision a thread in
the CEP engine for listening to the related incoming
notifications.

3) APPLICATION SERVER LAYER
The application server layer is the uppermost layer of
the architecture. It comprises monitoring applications that
provide the required services to the municipal organizations
while having diverse QoS requirements. They act as gateways
between the devised architecture and other smart city
applications. They use APIs to interact with other smart city
applications and use notification services to communicate
with the fog layer.

B. BEHAVIORAL VIEW
The behavioral view of the proposed architecture elaborates
the way various components collaborate to perform main
processes such as publisher registration, publisher-subscriber
matching, subscription, head node selection, and dissemina-
tion of event notifications.

1) THE CONTROL PLANE AND DATA PLANE
Each node must have a flow table containing a rule to send
controlling packets to the controller. The path to the controller
is constructed by initializing a beacon packet, exchanging,
and collaborating with the neighboring nodes. When a node
identifies its neighbors using beacon packets, it updates its
shortest path to the controller. When the path from a node to
the controller is constructed, the data plane sends a network
event to the SDN controller requesting a command of packet
flow.

2) PUBLISHER REGISTRATION PROCESS
Edge nodes advertise their capabilities to participate in
detecting complex events. The registration process starts
by creating a registration message that includes the node’s
ID, the event topics that it can produce, the location of its
monitoring area, and the supported QoS. Then, the node
sends the message to its closest broker node. The broker node
extracts the message and adds the publisher to the publisher
table. It also invokes the subscriber matching service. The
service returns a list of subscribers that can benefit from the
newly added publisher. Finally, the broker asks the controller
node to update the flow table of the new publisher by
sending a message to update its flow table rules. In a multi-
broker case, brokers synchronize publisher tables to maintain
consistency. Figure 4 shows the flow of actions.

3) PUBLISHER-SUBSCRIBER MATCHING PROCESS
Considering a complex event rule (ri), the objective of the
publisher-subscriber matching process is to find a list of
candidate publishers that can satisfy the set of required
simple events (Ai) for detecting ri. We refer to this set as
a subscription set. Then, it checks if the publishers can
satisfy the QoS requirements (Qi) of the rule. That is,
the defined attributes of the publishers have to match the
QoS requirements of the subscription set. The output of the
process is the list of publishers that can contribute to detect
the complex event. Algorithm 1 shows the pseudocode of the
process.

4) SUBSCRIPTION PROCESS
The process is initiated by an application server that requests a
subscription for a complex event rule from the closest broker.
The request contains the ID of the subscriber, the complex
event rule, and the associated QoS requirements. Then,
the broker adds the request information to its subscribe
table. The next step is to decompose the subscribed complex
event rule into its comprising simple events (subscription set)
performed in the CEP pre-processing component (Figure 5).

Next, the subscription set is sent to the matching service.
The output of the matching service is a list of candidate
publishers that can satisfy simple events in the subscription
set. Then, the list of candidate publishers, the subscriber
ID, and the subscribed complex event rule are sent to
the publisher head selection component of the controller
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FIGURE 4. Publisher registration process.

Algorithm 1 Publisher Matching
Trigger: Receiving the subscription set from rule pre-
processing component.
Input: Set of subscriptions S, Set of publishers P
(Currently stored).
Result: Set of P which can satisfy at least one rule in S
for each subscription s ∈ S do
for each p ∈ P do
if s.topic = p.topic then
if s.topic.attributes ∼= p.attributes then
Append p to the P;

end if
end if

end for
end for
return(P);

node. The publisher head is a processing node that is in
charge of detecting the subscribed complex event. The details
of the publisher head selection process are described in
Section IV-B5. The output of the publisher head selection
process is the ID of the selected processing nodes responsible
for detecting the subscribed complex event rule. The output
is used in the subscription enabler component that sends the
complex event rule to the rule provisioning service of the
publisher head to prepare the CEP engine component for
detection and updating the subscriber table of the processing
node. The subscription enabler also invokes the flow table
controller to amend the flow table of the corresponding
publisher nodes. Figure 6 shows the subscription process.

5) SELECTION OF PUBLISHER HEAD NODE
Processing nodes are in charge of collecting the event
notifications from edge nodes. These notifications are
aggregated to check whether a complex event has happened.
It is crucial to select a processing node as close as possible
to the group of edge nodes capable of detecting a complex
event cooperatively to provide energy efficiency and fast

FIGURE 5. CEP rules pre-processing.

event detection. We refer to this processing node as the
publisher head and the group of edge nodes as publisher
nodes since it acts as a head node for the local group of edge
nodes (publisher nodes) responsible for detecting a complex
event.

The system analyzes the shortest paths between the
publisher nodes and potential publisher heads to select the
publisher head. We demonstrate the process of selecting a
publisher head by an example. Figure 7 illustrates a sample
scenario with two fog layer nodes (labeled 1 and 2) along
with 7 edge nodes (labeled 3 to 9). Let ri be the subscribed
complex event rule; the matching service of the broker node
identifies nodes 3, 5, and 9 as the group of candidate simple
event publishers for ri. Then, the candidate list and ri are
sent to the publisher head component of the controller. The
publisher head uses the network topology management and
optimum route calculator components to find the proper
processing nodes selected as a publisher head. The optimum
route calculator component builds a shortest path table and
introduces the nearest processing node as the publisher head.
Figure 8 depicts the shortest path table where the number of
hops between two nodes is presented. The table shows that
node 1 is the closest processing node to the publishers of ri.
Thus node 1 is chosen because it has a smaller path length.
If several processing nodes have the same path length, then
the processing node with the highest energy level will be
selected. In a more advanced case, the communication cost
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FIGURE 6. Subscription process.

FIGURE 7. Sample publisher head selection scenario.

(e.g., link quality, energy consumption) can be used to select
a suitable publisher head.

6) EVENT NOTIFICATION DISSEMINATION
By the time an edge node pi detects an event, it looks up
the subscribers of the event in the subscribe table component
and prepares a notification message using pub/sub service.
Then, it looks up its flow table to send the notifications
to the subscribers. When node x receives the notification,
it checks its flow table to act. The action can be forwarding
the notification to the nodes that have been previously
configured in the flow table or extracting the message
payload and process the notification to detect a complex

FIGURE 8. Shortest path calculation.

event. Notifications of complex events follow a similar
approach.

V. PROTOTYPE IMPLEMENTATION
This section describes the prototype implementation of our
SDN-based CEP architecture and introduces the evaluation
scenario. The prototype implementation is built on the SDN-
WISE [37] networking solution integrated with the Cooja
simulator1 and T-Rex [38] engine for processing complex
events.2 SDN-WISE is designed for wireless sensor networks

1https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
2The source code of the prototype implementation is accessible from:

https://github.com/BehnamKhazael/ComplexEventProcessingInSmartCity
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FIGURE 9. The simulation environment.

and IoT applications, and it considers various edge node
resource limitations. It is an open-source project [39] written
in Java programming language with adequate documentation
for developers to implement additional features. We extend
SDN-WISE and add new functionalities according to the
devised architecture. We also use the T-Rex CEP engine [38]
and customize it to support QoS requirements of complex
event rules. T-Rex engine is also an open-source solution
written in C++. We re-write the engine in Java and deploy
it in fog layer processing nodes. T-Rex engine supports
the syntax of TESLA event processing language. We also
implement a parser and use it in the broker node of
the fog layer to pre-process the submitted complex event
rules.

The evaluation scenario for the proof of concept is a smart
city scenario. We consider a network area comprised of four
overlapping geographical regions such as a road intersection,
a park, or a shopping center, as depicted in Figure 9.
The network nodes include several edge nodes, a broker,
an SDN controller, and processing nodes. The edge nodes
are randomly distributed over the regions. These edge nodes
are heterogeneous in their sensing capabilities and organize

a mesh network where each edge node is approximately
connected to 8 other nodes.

We use the complex event rules used in [25] as a
typical example and add QoS requirements. The monitoring
applications that subscribe to the rule are interested in a Fire
complex event defined as the case in which smoke is detected
in the region of interest (Street A) followed by the sensing
temperature of above 50◦C. It must only take 30 seconds
to capture temperature values of above 50 degrees, and the
sensing accuracy of the temperature sensor is above level 2
(as a sample accuracy level). The notification of the detected
complex event is published in the form of:

(Area: area,

Measured-temperature: value,

Quality-of-temperature-sensor: quality) (6)

VI. PERFORMANCE EVALUATION
This section provides the performance analysis of the
devised approach in comparison with the baseline meth-
ods. We introduce the experimental setup and evaluation
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results from five viewpoints, followed by discussing the
limitations.

A. EXPERIMENTAL SETUP
We use the smart city scenario described in Section V
with a different number of edge nodes to assess the
scalability of the proposed architecture ranging from 250 to
1000, equipped with two different sensors. We consider
two levels of accuracy for the sensors to define different
QoS.

Each experiment starts with an initialization phase to
register the publisher nodes, capabilities, and supported QoS
levels. We consider four different complex event rules, and
the application servers subscribe to their complex events
of interest. Once the setup phase has been completed,
we generate four simultaneous complex events in random
locations across the network area introduced in section V
and iterate them 15 times. We repeated the experiments
thirty times and averaged the results to reduce the effect
of randomness. The average value and the 95% confidence
interval are presented for each plot. In addition, reported
results are based on the snapshots of the simulations captured
at the end of the simulations with a predefined 15 minutes
duration.

We select three approaches as the baseline methods for
comparison. The first approach is Event data exchange [21]
that uses the publish/subscribe paradigm and distributed
coordination mechanisms for managing tasks. It is designed
for IoT domain applications and uses complex event pro-
cessing features compatible with our evaluation scenario.
The approach is described clearly, which paves the way for
accurate implementation. The second approach isDistributed
coordination protocol for event data exchange [27] that
introduces an efficient publish/subscribe communication
protocol for IoT applications to eliminate unnecessary
packet re-distributions. The third approach is MusaNet [22],
one of the states of the art solution that uses a similar
layering architecture to ours. It is well described and utilizes
open-source solutions.

B. ENERGY CONSUMPTION
For the first evaluation metric, we measure the energy
consumption of edge nodes during the experiments.
Figure 10 shows the consumed energy of edge nodes for
transmitting and receiving packets for MusaNet, Distributed
coordination protocol, Event data exchange, and SDN-based
CEP, where the horizontal axis is the network size. The
results show that our devised SDN-based method consumes
less energy compared to the baselines. The results also
reveal that Distributed coordination protocol and Event data
exchange have the highest energy consumption since they
use a beaconing mechanism to disseminate data messages,
resulting in high communication overhead and energy
consumption compared toMusaNet and our proposedmethod
(SDN-based CEP). Our proposed method performs 88%
on average better than Distributed coordination protocol

FIGURE 10. The energy consumption of edge nodes.

and Event data exchange. While the figure demonstrates
MusaNet and SDN-based CEP have higher performances
against distributed approaches (i.e., Distributed coordination
protocol and Event data exchange), our proposed approach
shows 24.9% and 53.5% improvement in the network sizes
of 250 and 1000 compared toMusaNet. The first reason is the
filtering of the publishers before they start to send the event
notifications. Besides, using SDN controllers to manage
the flow of events helps to reduce the number of packets
transmitted for each flow of events, from the publishers
to the subscribers. Thus edge nodes consume less energy
compared to other solutions. Finally, selecting the closest
processing node helps to reduce the number of intermediate
nodes that a notification passes to reach a processing
node.

C. NETWORK TRAFFIC
The second performance metric is the network traffic that
reveals the system’s efficiency in data packet transfers.
Figure 11 presents the total number of disseminated data
packets in the experiment for different network sizes. The
figure shows our devised approach has 89.6% improvement
on average compared to Distributed coordination protocol
and Event data exchange. In addition, SDN-based CEP
shows 39.7% better performance than MusaNet. Several
factors help improve, such as using the optimum route
calculator component and selecting an appropriate publisher
head node. The central management of the publishers and
subscribers reduces the communication overheads compared
toDistributed coordination protocol andEvent data exchange
methods. Moreover, utilizing SDN to manage the edge layer
and applying pre-processing to the rules helped reduce
unwanted packets compared toMusaNet.

D. DELAY ANALYSIS
We measure three delay-related metrics, including pub-
lisher’s registration delay, subscription delay, and propaga-
tion delay of simple event notification.
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FIGURE 11. Total number of data packet transfers.

FIGURE 12. Publisher registration delay.

1) PUBLISHER REGISTRATION DELAY
A new edge node has to send a registration message
that advertises its sensing capabilities and all the required
information to be recognized by the system once it joins the
smart city monitoring system. This registration process takes
some time which we refer to it as a publisher registration
delay. Figure 12 demonstrates publisher registration delays
for SDN-based CEP and the baseline methods where
the horizontal axis presents the network size, and the
vertical one shows the delay time in milliseconds. The
figure exhibits that the proposed approach and MusaNet
significantly outperform Distributed coordination protocol
and Event data exchange. The main reason is that in
contrast with distributed approaches, all the nodes have to
recognize the new edge node. The other two approaches
use a centralized coordination mechanism that helps faster
publisher registration process. In addition, It shows that SDN-
based CEP performs a faster registration process rather than
MusaNet. This is due to the nodes’ flow table rules that lead
the registration message to the shortest path towards a broker
node.

FIGURE 13. Subscription delay.

2) SUBSCRIPTION DELAY
Subscription delay is the time from subscribing to a complex
event by a monitoring application until the system sets up the
complex event rule in the CEP engine and subscribes to all
the required simple events on edge nodes. Figure 13 shows the
results where the horizontal axis is the network size, and
the vertical one is the subscription delay in milliseconds.
The figure shows that Distributed coordination protocol and
Event data exchange have the highest subscription overhead
due to the costly process of subscribing simple events on
edge nodes. Our proposed approach ranks second, indicating
a higher subscription overhead compared toMusaNet. This is
the main trade-off of our devised architecture for achieving
better energy efficiency and network performances. The
selection process (Section IV-B5), responsible for choos-
ing the best processing node, causes delays and is the
main reason for the under-performance of our proposed
method.

3) PROPAGATION DELAY OF SIMPLE EVENT NOTIFICATION
Edge nodes report their detected simple events in the form
of simple event notifications. These notifications propagate
in the network to reach a processing/aggregation node to
be checked for detecting possible complex events. The
propagation delay is the performance metric showing how
efficiently and fast a simple event notification can reach
the processing/aggregation node. The propagation delay of
a simple event notification is the time from creating an
event notification from an edge node until the process-
ing/aggregation node receives the notification. Figure 14
shows the simple event propagation delay of SDN-based CEP
and baseline methods where the X-axis presents the network
size, and the Y-axis is the measured delay in milliseconds.
The figure shows a significant overhead in Event data
exchange and Distributed coordination protocol approaches
that generate many replica messages, leading to a long
queuing delay for incoming packets that have to be processed
by each node, and consequently, extend the propagation
delay compared to the central approaches. In addition,
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FIGURE 14. Simple event notification propagation delay.

FIGURE 15. Percentage of detected complex events.

the results indicate marginal improvements for SDN-based
CEP compared toMusaNet from 14.9% in 250 nodes to 7.2%
in the largest network. The main reasons are the selection
of the closest processing node to edge nodes and avoiding
unnecessary packets dissemination which causes network
traffic and, as a result, makes packets transmission delay.

E. PERCENTAGE OF DETECTED EVENTS
We study the percentage of generated complex events that
have been successfully detected. Figure 15 shows the results
in which SDN-based CEP and MusaNet perform better
than distributed approaches to detect the generated complex
events. In contrast, Distributed coordination protocol and
Event data exchangemiss more than 58% in the network size
250 and 74% in the network size 1000 due to the excessive
number of networking overheads that produce long queues
of incoming packets and network congestion. SDN-based
CEP shows up to 7.6% better performance than MusaNet.
Our approach performs better than the MusaNet in detecting
complex event, since SDN-based CEP pre-processes the
detection rules to avoid unnecessary events to reach CEP
engines.

FIGURE 16. Percentage of engines utilization.

F. PERCENTAGE OF ENGINES UTILIZATION
The last evaluationmetric investigates the average percentage
of complex event engine utilization when engines are
busy processing received published notifications. Figure 16
demonstrates the results of the four methods and shows that
SDN-based CEP and MusaNet utilized engines more than
Distributed coordination protocol and Event data exchange.
By considering both the percentage of detected events
and the engine utilization, the figures indicate that SDN-
based CEP and MusaNet deliver event notifications to the
subscribers more efficiently than the distributed methods
(i.e., Event data exchange and Distributed coordination
protocol). The reason is the inefficiency in delivering event
packets that causes excessive network traffic and network
congestion. The figure also shows SDN-based CEP utilizes
engines up to 14.4% compared to MusaNet in the largest
network.

G. LIMITATIONS
Despite all the improvements that our devised architecture
has shown, it faces limitations as well. The main limitation
is the centralized SDN controller that introduces a form of
a single point of failure. The failure of an SDN controller
prohibits processes such as introducing new publishers,
subscribers, and new complex events, while the nodes can
work with their previous topology and flow table settings as
long as the publishers, subscribers, and the rules have not
changed until the SDN controller recovers. Besides, SDN-
base CEP architecture is evaluated based on static edge
nodes. However, future work is to analyze the approach
for the combination of mobile and static nodes and address
challenges such as dynamic shortest path routing towards the
closest fog node and handling the handovers with reasonable
overheads to address the mobility of edge nodes.

VII. CONCLUSION
A growing number of urban monitoring applications are
widely used in a smart city environment assisting municipal
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organizations to respond promptly to ongoing events of
interest. The coupling of these applications with multi-
tenant edge (sensor) nodes introduces new challenges where
the edge nodes have limited resources and the applications
require diverse QoS. This paper introduced a new architecture
that addressed the challenges by integrating SDN technology,
publish-subscribe architectural pattern, and complex event
processing features. The devised approach benefits from
distributed processing of event notifications while using
centralized (semi-centralized) coordination mechanisms to
perform its duty. For instance, the optimum route calculator
and publisher head selection modules took advantage of
SDN-based network topology management and boosted the
overall performance. The proof of concept implementation
was compared with three close baselines, and the results
demonstrate improvements in terms of energy consumption,
network traffic, and propagation delay of event notifications.
However, subscribing to a complex event by a monitoring
application that happens only once appears costly. Future
research will extend the architecture to support mobile edge
nodes and uncertainty in detecting an urban complex event.
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