
Analysing the Impacts of Dynamically

Evolving Selection Policies

in Monte Carlo Tree Search

Through Evolutionary Algorithms

Fred Valdez Ameneyro

Author

Dr. Edgar Galván-López

Supervisor

A thesis submitted in fulfillment of the requirements

for the Ph.D. degree in Data Science

at the

Hamilton Institute

Maynooth University

Maynooth, Co. Kildare, Ireland

Department head: Andrew Parnell

April 2024

This thesis has been prepared in accordance with the PhD regulations of Maynooth

University and is subject to copyright. For more information see PhD regulations

(December 2022).

2

Abstract

This thesis presents an innovative exploration into the synergy between Monte Carlo Tree

Search (MCTS) and Evolutionary Algorithms (EAs), focusing on the evolution of selection

policies within MCTS. MCTS, a powerful and versatile algorithm, has seen widespread

adoption in various domains, from strategic gaming to robotics, due to its ability to

effectively navigate large and complex decision spaces. However, the adaptability of its

selection policy, a critical factor in its performance, remains a challenging aspect that

demands further research.

The primary aim of this work is to investigate how evolutionary processes can be

harnessed to adaptively evolve MCTS’s selection policies online, thus enhancing the al-

gorithm’s efficiency and robustness in different problem landscapes, as well as in different

stages of the search. By integrating EAs into MCTS, this thesis explores the dynamic and

context-aware exploration of the search space, potentially surpassing the performance of

traditional approaches.

The thesis lays the groundwork for understanding the fundamentals of MCTS and

EA embeddings for online decision-making. It offers a detailed survey on the integration

of MCTS and EAs, particularly focusing on enhancing MCTS’s selection policy without

prior exposure to the domain.

A series of test problems, including the Function Optimisation Problem and proposed

simplifications of the board game Carcassonne, provide a platform to evaluate the in-

teraction between MCTS’s tree policy and game tree characteristics. Empirical analyses

of evolved selection policies are presented, comparing them with traditional MCTS and

Minimax approaches and assessing their performance.

The thesis aims to contribute significantly to AI and decision-making algorithms by

advancing the integration of evolutionary strategies within MCTS. It focuses on devel-

oping adaptable and effective selection policies, examining the role of every aspect of

the evolutionary processes, and refining EA integration for enhanced decision-making

efficiency in MCTS.

i

Declaration

I, Fred Valdez Ameneyro, declare that this thesis titled, “Analysing the Impacts of

Dynamically Evolving Selection Policies in Monte Carlo Tree Search Through

Evolutionary Algorithms” and the work presented in it are my own. I confirm that

■ This work was done wholly or mainly while in candidature for a Ph.D. degree in Data

Science at the Maynooth University.

■ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

■ Where I have consulted the published work of others, this has been clearly attributed.

■ Where I have quoted from the work of others, the source is always given. Except for

such quotations, all the text in this thesis is original and of my authorship.

■ I used external tools (Grammarly, ChatGPT 4) for assistance strictly limited to gram-

mar, syntax, and spelling checks, as well as for identifying potential ambiguities or

difficult-to-read sentences. At no point did these tools contribute to the original re-

search, ideas, analytical conclusions, or text body presented within this thesis.

■ All the figures in this thesis were generated by me using Python’s Plotly library or

Google Drawings. Where any figure has not been generated by me, it is clearly stated.

■ I have acknowledged all main sources of help.

Signed:

Date:

ii

Acknowledgements

This thesis is the product of many years of hard work, and I would like to express my

gratitude to the people who have supported me throughout this journey. First, I would

like to thank my supervisor, Edgar Galvan, for his patience, his time spent, and his

willingness to provide all the experience and guidance I could possibly need. I also want

to take the time to appreciate Ken, David, Janet, Rosemary and Kate for their disposition

to provide me and my colleagues with all the support we needed.

I want to especially thank my family, Susana, Fred, Danae and Yerik, for their invalu-

able support and love, which surpassed the distance barriers and gave me the strength

and motivation to accomplish everything I have set out to do, even if it means being apart

from each other for long periods of time.

I am very grateful to my friends too, a list that grew very large over the years, and I

cannot possibly name all of them here. First, Maira, for her company and infinite support

and affection, which I could never be grateful enough to have. Dáire, Kevin and Anna

for the countless experiences together, sharing the same office and the same struggles.

Osvaldo, Candela, Margarita, Laura, Nuria, Pablo and Esther, for becoming my new

family in this strange country. Kanishka, Neli and Anna for being those friends that you

know are always there for you. Amin, Niloufar, Aoife, Cormac and Conor for making the

office environment happier and friendlier. Prabhleen for always sharing the best moments

of her life with me and always being a great colleague and friend. Fergal for listening to

my ideas and supporting me. And of course, Estevito for motivating me to never give up

the gym. I also want to thank my friends from Mexico, Manuel, Blanca, Coral, Manuel

(the other one), Claudio, Jafet, Ariel and many others, for keeping in touch with me and

being there for me even when I did not reply as often as I should have.

Finally, I am very grateful to have had the opportunity to live in this beautiful country

(except for the weather), and I am very proud to have been able to contribute to the

scientific community in Ireland.

This thesis has emanated from research conducted with the financial support of Sci-

ence Foundation Ireland under Grant number 18/CRT/6049. For the purpose of Open

Access, the author has applied a CC BY public copyright licence to any Author Accepted

Manuscript version arising from this submission

iii

List of publications

Peer-reviewed Journal articles

• Edgar Galván, Gavin Simpson, and Fred Valdez Ameneyro. “Evolving the MCTS

Upper Confidence Bounds for Trees Using a Semantic-inspired Evolutionary Algorithm

in the Game of Carcassonne”. In: IEEE Transactions on Games (2022) , vol. 15, no.

3, pp. 420-429, Sept. 2023, doi: 10.1109/TG.2022.3203232.

https://ieeexplore.ieee.org/document/9872022

• Edgar Galván, Fred Valdez Ameneyro. “An Analysis on the Effects of Evolving the

Monte Carlo Tree Search Upper Confidence for Trees Selection Policy on Unimodal,

Multimodal and Deceptive Landscapes”. In: Information Sciences Journal, 2024. Un-

der review

Peer-reviewed Conference papers

• Fred Valdez Ameneyro, Edgar Galván, and Ángel Fernando Kuri Morales. “Playing

carcassonne with monte carlo tree search”. In: 2020 IEEE Symposium Series on Com-

putational Intelligence (SSCI). IEEE. 2020, pp. 2343–2350

• Fred Valdez Ameneyro and Edgar Galván. “Towards Understanding the Effects of

Evolving the MCTS UCT Selection Policy”. In: 2022 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE. 2022, pp. 1683–1690

iv

Contents

1 Introduction 2

1.1 Introduction and Motives . 2

1.2 Research Goals . 3

1.3 Scope and limitations . 3

1.4 Thesis Structure . 4

2 Background 6

2.1 Introduction . 6

2.2 Decision theory . 6

2.3 Game theory . 8

2.3.1 Game trees . 9

2.3.2 Game trees in multi-agent adversarial domains with uncertainty . 9

2.4 Monte Carlo Tree Search . 10

2.4.1 Monte Carlo simulations . 12

2.4.2 The tree policy . 13

2.5 Classic tree search algorithms: Minimax 15

2.5.1 Expectimax . 16

2.6 Evolutionary Algorithms . 16

2.6.1 Genetic Programming . 17

2.6.2 Evolution Strategies . 22

3 Surveying synergies: Monte Carlo Tree Search and Evolutionary Algo-

rithms 24

3.1 Evolutionary Algorithms in Monte Carlo Tree Search 24

3.1.1 Evolutionary Algorithms in Monte Carlo Tree Search’s simulation

phase . 25

3.1.2 Evolutionary Algorithms in Monte Carlo Tree Search’s selection phase 27

3.2 Monte Carlo Tree Search in Evolutionary Algorithms 29

3.2.1 Monte Carlo Tree Search in Rolling Horizon Evolutionary Algorithms 29

3.2.2 Generating EA offspring using Monte Carlo Tree Search 30

v

CONTENTS

3.3 Multi-Armed Bandits in Evolutionary Algorithms 32

3.3.1 Evaluation of EA individuals using Multi-Armed Bandits 32

3.3.2 Generating EA offspring using Multi-Armed Bandits 33

3.4 Online evolutionary-based planning in games 35

3.5 Artificial Intelligence-based decision-making in games 37

3.5.1 Games used for research in Artificial Intelligence 38

4 Test problems and their analysis 41

4.1 Introduction . 41

4.2 The tree policy and its interaction with the game tree properties 42

4.3 Test problem: Function Optimisation Problem 46

4.3.1 Test Functions . 47

4.4 Definition of the Functions and their analysis 50

4.5 Test problem: The Game of Carcassonne 55

4.5.1 Carcassonne base game description 56

4.5.2 Carcassonne fitness landscape analysis 59

4.5.3 Carcassonne proposed variants . 69

5 Empirical Analysis of Evolving Selection Policies in MCTS 76

5.1 Introduction . 76

5.2 Evolving selection policies in MCTS using EAs 77

5.3 Evolving selection policies in MCTS using EAs and semantics 79

5.3.1 Extending semantics to work with selection policies in MCTS . . . 79

5.4 FOP experimental setup . 82

5.5 FOP results . 84

5.5.1 FOP f1 results . 86

5.5.2 FOP f2 results . 89

5.5.3 FOP f3 results . 91

5.5.4 FOP f4 results . 95

5.5.5 FOP f5 results . 97

5.5.6 Integrated analysis of FOP results 100

5.6 Single-player Carcassonne experimental setup 102

5.6.1 Expectimax in Carcassonne . 103

5.7 Single-player Carcassonne Results . 104

5.8 Analysis of the evolved selection policies 110

5.8.1 Summary of findings . 111

vi

CONTENTS

6 Evolutionary MCTS in the base game of Carcassonne 114

6.1 Introduction . 114

6.2 Performance of vanilla Monte Carlo Tree Search in the base game of Car-

cassonne . 114

6.3 Round-robin tournament between vanilla MCTS variants in the base game

of Carcassonne . 117

6.4 EA-MCTS and SIEA-MCTS in the base game of Carcassonne 119

6.4.1 Summary of findings . 124

7 Conclusions 125

7.1 Evolutionary Algorithms-inspired Monte Carlo Tree Search: Strengths . . 125

7.2 Evolutionary Algorithms-inspired Monte Carlo Tree Search: Challenges . 126

7.3 Evolutionary Algorithms-inspired Monte Carlo Tree Search: Conclusions . 126

7.4 Taxonomy and transferability . 128

7.5 Future Work . 129

References 132

Acronyms 146

vii

List of Figures

2.1 Decision tree . 7

2.2 Regular *-minimax tree . 10

2.3 MCTS algorithm . 11

2.4 Generic Evolutionary Algorithm . 17

2.5 Syntax tree . 19

2.6 Syntax tree subtree crossover . 20

4.1 Branching factor influence . 43

4.2 Function Optimisation Problem . 48

4.3 Plots of the functions used in the Function Optimisation Problem 49

4.4 Initial belief value. 50

4.5 Initial belief values of the game tree of f1 51

4.6 Initial belief values of the game tree of f2 52

4.7 Initial belief values of the game tree of f3 53

4.8 Initial belief values of the game tree of f4 54

4.9 Initial belief values of the game tree of f5 55

4.10 Carcassonne base game tiles . 56

4.11 Carcassonne state sample . 57

4.12 State-space complexity and game-tree complexities of games 59

4.13 Carcassonne city completion tiles . 62

4.14 Chess position with erroneous Monte Carlo evaluation 64

4.15 Carcassonne final scores by Turn 1 meeple usage 65

4.16 Carcassonne Turn 1 sample game states 66

4.17 Carcassonne final scores by Turn 2 meeple usage 67

4.18 Difference of final scores by meeple usage and turn in the base game of

Carcassonne . 68

4.19 Single-player Carcassonne variant with 3 initial meeples, final scores by

Turn 1 meeple usage . 71

viii

LIST OF FIGURES

4.20 Final scores by meeple usage and turn for the single-player Carcassonne

variant with 3 initial meeples. 72

4.21 Single-player Carcassonne variant with 1 initial meeple, final scores by Turn

1 meeple usage . 74

4.22 Final scores by meeple usage and turn of play for the single-player Carcas-

sonne variant with 1 initial meeple . 75

5.1 EA-MCTS and algorithm diagram . 77

5.2 Histogram of node locations’ generation 84

5.3 Statistical tree analysis description . 85

5.4 Histogram of node locations for f1 . 87

5.5 Histogram of node locations for f2 . 90

5.6 Histogram of node locations for f3 . 93

5.7 Histogram of node locations for f4 . 96

5.8 Histogram of node locations for f5 . 98

5.9 Distribution of the most visited node-based result by MCTS variant and

FOP function . 100

5.10 Average leaf node depth by MCTS variant and FOP function 101

5.11 Carcassonne for one player: Score breakdown 104

5.12 Carcassonne for one player: Meeples on farms 106

5.13 Carcassonne for one player: Total Meeples Played 107

5.14 Carcassonne for one player: Most visited node’s visit count 109

6.1 EA-MCTS’s average number of nodes in Carcassonne 122

6.2 SIEA-MCTS’s average number of nodes in Carcassonne 123

ix

List of Tables

2.1 Game characteristics . 8

3.1 Approaches with Evolutionary Algorithms in Monte Carlo Tree Search . . 28

3.2 Approaches with Monte Carlo Tree Search in Evolutionary Algorithms . . 31

3.3 Multi-Armed Bandit approaches in Evolutionary Algorithms 35

3.4 Machines defeating humans . 37

4.1 Game tree characteristics that interact with the tree policy of MCTS . . . 42

4.2 Function Optimisation Problem definition 47

4.3 Carcassonne features completion and scoring rules. 58

4.4 Carcassonne variant . 69

5.1 Vanilla MCTS parameters used in the Function Optimisation Problem . . 82

5.2 SIEA-MCTS and EA-MCTS parameters used in FOP 82

5.3 Function Optimisation Problem parameters 83

5.4 f1 results . 88

5.5 f2 results . 91

5.6 f3 results . 94

5.7 f4 results . 97

5.8 f5 results . 99

5.9 Expectimax parameters . 103

5.10 Carcassonne for one player: scores and meeple usage statistics 108

5.11 Evolved formulae . 111

6.1 MCTS parameters for reward comparison 115

6.2 Results of 100 games of MCTS with different reward types 115

6.3 Vanilla MCTS versus random uniform. 116

6.4 Carcassonne’s vanilla MCTS round-robin matches 118

6.5 League points (LP) awarded to each agent after a Carcassonne match. . . 118

6.6 Carcassonne’s vanilla MCTS round-robin tournament results 119

x

LIST OF TABLES

6.7 Parameters of the agents for the base game of Carcassonne 120

6.8 Carcassonne’s round-robin matches . 121

6.9 Carcassonne’s round-robin tournament results 122

7.1 Problem characteristics . 129

7.2 Reward characteristics . 130

xi

Part I

Motives, Background and Literature Review

1

1
Introduction

1.1 Introduction and Motives

A key area of interest within Artificial Intelligence (AI) is the development of efficient

decision-making strategies, particularly in complex, uncertain environments. Monte Carlo

Tree Search (MCTS) [99], a versatile and powerful algorithm, stands out as a prominent

approach in this domain. Its ability to make informed decisions based on statistical sam-

pling has led to its widespread adoption in various applications [27], including but not

limited to game playing [45], energy [65], and optimisation tasks [162].

Despite its success, a critical aspect of MCTS, the selection policy, has been a subject

of continuous research. The selection policy, which guides the exploration-exploitation

balance in the search process, is crucial for the correct performance of MCTS. Traditional

approaches, such as the Upper Confidence Bounds (UCB1) [10], have demonstrated effec-

tiveness in several domains. However, the one-size-fits-all nature of these policies limits

their adaptability to diverse problems.

This thesis takes a deep dive into the performance of MCTS in various problem do-

mains, focusing on the interaction between the tree policy and the game tree’s charac-

teristics. It analyses the impact of dynamically evolving selection policies in MCTS via

Evolutionary Algorithms (EAs) [48]. Then, it elaborates on the concept of evolving se-

lection policies in MCTS using Genetic Programming (GP) [103]. By incorporating EAs

into MCTS, we aim to adaptively tailor the selection policy to specific problem character-

istics. This approach is an initial stepping stone towards the online evolution of dynamic

and context-aware tree policies, potentially leading to superior versatility and increased

performance in various applications. This thesis is structured as follows.

2

1.2. RESEARCH GOALS

1.2 Research Goals

The primary objectives of this thesis are to:

(1) Investigate the interaction between MCTS’s tree policy and game tree characteristics

in model problems.

(2) Develop and analyse EAs that evolve selection policies within MCTS, focusing on

their adaptability and effectiveness.

(3) Compare the performance of evolved selection policies with traditional approaches in

MCTS.

(4) Explore the role of semantics in the evolutionary process and its impact on the evo-

lution of selection policies in MCTS.

(5) To study in depth the consequences of evolving selection policies in MCTS through

EAs in real-world complex problems, such as the game of Carcassonne.

By addressing these objectives, this thesis aims to contribute to the field of artificial

intelligence and decision-making algorithms, particularly in the context of MCTS and

EAs.

1.3 Scope and limitations

The focus of this thesis is on analysing the integration of EAs into the MCTS algo-

rithm, specifically in evolving selection policies for online decision-making. To this end,

we surveyed and identified key problem characteristics that allow effective comparison of

different tree policies, spanning from problem definition to decision tree structure and

the reward landscape. We first selected the Function Optimisation Problem (FOP), a

toy problem that lets us visualise the location and intensity of the search performed by

MCTS. FOP has a fixed branching factor and a fixed depth in all the branches of its

tree, thus simplifying the behavioural comparison of tree policies while remaining chal-

lenging to the algorithm. On the other hand, the game of Carcassonne was chosen as a

real-world problem that allows us to evaluate the performance of the evolved tree poli-

cies in a more complex and strategic environment that offers distinctive playstyles and

scalability. Similar to FOP, the game of Carcassonne also has a fixed depth in all the

branches of its tree, but has a variable branching factor and can feature stochastic events

that further complicate the decision-making process and make it serve as an excellent

benchmark. Furthermore, we provide a methodology for determining the game’s maxi-

mum score, essential for normalizing tree search method rewards and standardising their

usage in decision-making research related to Carcassonne.

The thesis analyses empirical experimentation of the vanilla MCTS algorithm with var-

ious exploration-exploitation balances, alongside our two proposed EA-inspired MCTS ex-

3

1.4. THESIS STRUCTURE

tensions: Evolutionary Algorithm Monte Carlo Tree Search (EA-MCTS) and Semantically-

Inspired Evolutionary Algorithm Monte Carlo Tree Search (SIEA-MCTS). EA-MCTS

embeds a GP within MCTS to evolve its selection policy dynamically, without previous

exposure to the problem or domain knowledge. SIEA-MCTS extends EA-MCTS with

semantics, a concept that describes the behaviour of solutions within their operational

contexts, to help guide the evolutionary process and ensure behavioural diversity in its

small population size. The presented results are limited to the parameters defined for our

algorithms and the selected problems, with an aim to provide a deep and comprehensive

analysis of MCTS and the performance of the evolved selection policies in the chosen

problems.

1.4 Thesis Structure

• Chapter 2 Background - This chapter introduces foundational concepts for under-

standing MCTS, including decision theory and game theory. It provides a detailed de-

scription of MCTS and its components, as well as its usage in adversarial and stochastic

domains. To further the description of MCTS, the chapter introduces the Multi-Armed

Bandit (MAB) problem, a fundamental concept in decision-making under uncertainty.

With it, we discuss the UCB1 policy, and its adaptation for trees, the Upper Confi-

dence Bounds for Trees (UCT), which is the most commonly adopted selection policy

in MCTS. The chapter then delves into classical tree search strategies, such as Minimax

and its extensions. Lastly, it explores evolutionary algorithms, particularly focusing on

GP and Evolution Strategy (ES), to then wrap up with the introduction of seman-

tics, a useful concept that describes the behaviour of solutions within their operational

contexts.

• Chapter 3 Surveying synergies between Monte Carlo Tree Search and Evolu-

tionary Algorithms - This chapter presents a survey of integrations between MCTS

and EAs in the context of game playing and online decision-making, describing the

multiple approaches found in the literature and taking a deep dive into how each im-

plementation works. The chapter first delves into various ways EAs were embedded

into MCTSs, with a special focus on how the selection and simulation phases of MCTS

have been altered. Conversely, the chapter offers an analogous survey of instances where

MCTS is used to modify multiple aspects of EAs, like the allocation of fitness resources

or offspring generation. The survey is extended to include works where the EAs are

modified with notions of the MAB problems, arguing that MABs are a crucial aspect

in MCTS and hence, by extension, relevant to our research. The chapter concludes with

a list of approaches where EAs are used for online decision-making in games, describing

the difficulty of the problem and the potential of EAs to solve it.

4

1.4. THESIS STRUCTURE

• Chapter 4 Test Problems - This chapter delves into the attributes of game trees that

are pivotal for the efficiency of MCTS, focusing particularly on the structural charac-

teristics and reward distributions of these trees. It conducts an in-depth examination of

specific test problems, namely, the FOP [87] and the game of Carcassonne, which serve

as benchmarks for evaluating and improving the selection policies of MCTS. We intro-

duce five unique functions within the FOP domain, each exemplifying a distinct reward

distribution, and analyse the challenges they might present to MCTS. The chapter then

discusses the game of Carcassonne, a game with deep strategic elements and unique

playing styles, making it a prime subject for tree search.

• Chapter 5 Empirical Analysis of Evolving Selection Policies in MCTS -

This chapter, introduces EA-MCTS and SIEA-MCTS, two EA-inspired variants of

the MCTS algorithm that use GP to evolve their selection policies on the go. It then

presents the results of experimental comparisons between EA-MCTS, SIEA-MCTS,

and the traditional MCTS algorithm, for the test problems FOP and Carcassonne. The

chapter takes a deep dive into the construction process and structure of the statisti-

cal trees produced by each MCTS algorithm, analysing their performance across the

different FOP functions, and focusing on the influence of the inclusion of semantics

in the evolutionary process. Then, it offers a quantitative comparison of the agents in

the single-player variants of Carcassonne, assessing the performance and playing-styles

of the MCTS-based agents in contrast to four minimax-based variants. The chapter

concludes with an analysis of the selection policies evolved by EA-MCTS and SIEA-

MCTS, highlighting the key characteristics of the evolved policies and their impact on

the algorithm’s performance.

• Chapter 6 Evolutionary MCTS in the base game of Carcassonne - This chap-

ter, analyses applying MCTS, as well as our proposed EA-based MCTS agents, EA-

MCTS and SIEA-MCTS, in the base game of Carcassonne for two players. The chapter

describes the results of a series of matches between MCTS and other state-of-the-art

Carcassonne agents. First, it analyses the performance of five vanilla MCTS variants

with distinct exploration versus exploitation balances against a random uniform agent,

to then determine the best vanilla MCTS variant with a round-robin tournament among

them. Next, the chapter confronts the EA-based MCTS variants against the best vanilla

MCTS variant, the best Expectimax agents, and a random uniform agent in another

round-robin tournament. The chapter concludes with a discussion of the results and

the implications of the findings.

• Chapter 7 Conclusions and Future Work - The final chapter concludes this thesis,

summarising the results, and elaborating on our key findings regarding using EAs in

MCTS. It also discusses the problems and potential avenues for improving EA-MCTS

and SIEA-MCTS building upon the insights gained from our experiments.

5

2
Background

2.1 Introduction

Monte Carlo Tree Search (MCTS) [99] is a versatile decision-making algorithm that

has had a great impact in the field of Artificial Intelligence (AI), with applications ranging

from energy-based problems [65, 67], the design of Deep Neural Network (DNN) architec-

tures [173] to tasks on the track of General Artificial Intelligence (GAI) like the General

Video Game AI (GVGAI) competition [130, 131], where MCTS serves as the foundational

algorithm for most of the most successful contestant agents. As a testament to its ver-

satility, MCTS has been extended with a very diversified collection of modifications [27,

162].

In this chapter, we begin by introducing concepts that are relevant to the understand-

ing of MCTS, discussing decision theory in Section 2.2 and game theory in Section 2.3. We

then provide an overview of MCTS and its components in Section 2.4. Minimax and its

extension for stochastic games are discussed in Section 2.5. Finally, an overview of Evo-

lutionary Algorithms (EAs) is offered in Section 2.6, focusing on Genetic Programming

(GP) in Section 2.6.1 and Evolution Strategy (ES) in Section 2.6.2.

2.2 Decision theory

Decision theory, under the context of AI and Machine Learning (ML), is a field that

studies the optimal or near-optimal decision-making of agents in complex and uncertain

environments. The goal of decision theory is to provide a mathematical foundation to

understand and develop algorithms that can help agents make decisions that maximise

their expected utility. A decision-making process often involves a state space, an action

space, a transition model, and a reward function [171]. The state space is the set of all

possible states that the agent can be in, with the action space being the set of all possible

actions that can be taken from those states. The transition model is a function that maps

6

2.2. DECISION THEORY

Figure 2.1: Decision tree example.

a state and an action to a new state. Finally, the reward function quantifies the desirability

of states and/or outcomes, allowing the system to evaluate the quality of its decisions.

Decision theory-related problems are complex and often involve uncertainty, which

can be modelled in different ways. For example, in a stochastic (random) environment,

the outcome of an action is not always deterministic, and the agent must consider the

probability of each possible outcome. In a partially observable environment, the agent does

not have access to the full state of the environment and must make decisions based on

limited information. In a multi-agent environment, the agent must consider the actions of

other agents, which can be adversarial or cooperative [152]. Existing games are commonly

used as benchmarks to test and develop decision-making algorithms on more complex

problems.

Decision trees in decision theory

Under the context of decision theory, decision trees are tools for modelling decision-making

scenarios. They are directed graphs that display decisions and their possible outcomes,

structured in nodes and edges (see Figure 2.1). Each node in a decision tree represents a

point of decision or chance, leading to edges that show the actions that can be taken or

the events that might occur. This setup allows for a clear representation of the decision

process, where the root node indicates the initial state or decision to be made, and

leaf nodes represent the final outcomes or states that can be reached following certain

decisions.

Decision trees help in breaking down the decision-making process into hierarchical

series of choices, making it easier to analyse the consequences of each action [47]. The goal

of using decision trees in decision theory within AI and ML is to aid in the development

of algorithms that can navigate through these decision spaces effectively, seeking to make

choices that lead to the maximisation of expected utility.

7

2.3. GAME THEORY

Table 2.1: Game characteristics

Characteristic Description

Real-time / Turn-based Events and decision-making occur in real-time or in
turns.

Atomic turns / Complex
turns

An atomic turn requires a single decision, whereas a
complex turn asks for multiple decisions before the
turn ends.

Simultaneous / Sequential The players make their decisions simultaneously or
sequentially, one after the other.

Perfect information /
Imperfect information

The players have access to the full state of the game at
all times or not.

Complete information /
Incomplete information

The players know the possible moves and outcomes
available to all players at all times or not.

Stochastic / Deterministic A game is stochastic if there is randomness involved
that can potentially alter its course. Otherwise, it is
deterministic.

Zero-sum / Non-zero-sum In a zero-sum game, each player’s wins equal the losses
of the other player. In other words, the total amount of
any currency in the game from a player’s perspective is
constantly zero.

Symmetric / Asymmetric A symmetric has the same rules or conditions for every
player, while asymmetric games do not.

2.3 Game theory

A game is an environment where one or more decision-making agents, also called play-

ers, compete or collaborate to achieve a goal. Games are attractive in AI research for

several reasons. Firstly, their complexity can be scaled, making them excellent bench-

marks. Secondly, they are controlled environments that can be shaped by rules to meet

specific requirements. Thirdly, games can be played indefinitely under any desired cir-

cumstances, providing an endless source of data. Lastly, games can be played by human

beings, allowing for measurement and interpretation of the machine’s abilities through

direct confrontation with the algorithm.

AI players require different skill sets that vary according to the characteristics of the

game. Games show different characteristics presented in Table 2.1 according to game

theory [76, 171].

In this work, we focus on turn-based games with atomic turns, sequential decision-

making, and with perfect and complete information. These games are particularly inter-

esting for AI research, as they are more tractable and can be used to develop and test

decision-making algorithms. Carcassonne is a game that fits this description and possesses

8

2.3. GAME THEORY

characteristics that make it particularly appealing for research. A detailed analysis of the

game of Carcassonne will be provided in Chapter 4.

2.3.1 Game trees

Game trees model sequential decisions and interactions between players in games of perfect

information, where every move made is known to all participants. Game trees are used

to analyse possible outcomes and strategies. Although primarily associated with game

theory, game trees are conceptually linked to Markov Decision Processes (MDPs) [135],

which model decision-making in environments where outcomes can be influenced by both

agent actions and stochastic factors.

To navigate the tree, AI agents often have access to a forward model that can simulate

actions and generate accurate hypothetical future states. Importantly, the forward model

is independent and does not alter the original current state. The game-tree complexity and

the state-space complexity are two measurements useful for evaluating the navigational

and computational challenges that AI agents face when making decisions within these

environments.

• The game-tree complexity measures the number of unique full sequences of events that

can be followed. In terms of game theory, it reflects the number of full games that can

be played. It quantifies all possible paths from the root to the leaves of the game tree.

• The state-space complexity measures the number of legal states that can be represented

with the model and that can be reached from the initial state. It quantifies the number

of total nodes in the game tree, ignoring duplicates.

Calculating the exact state-space complexity and game-tree complexity of a domain

is a challenging task in itself [78]. Therefore, lower bounds are often approximated for

complex domains. For example, the game-tree complexity of Chess is estimated to be

around 10123 [150], while the state-space complexity of the game of Go is approximately

10170 [168]. It is worth noting that both the state-space complexity and the game-tree

complexity are correlated to the average branching factor of the tree, which tends to be

larger in domains with stochastic events.

2.3.2 Game trees in multi-agent adversarial domains with uncertainty

A stochastic event in a domain is represented in its decision tree with a chance node,

also called *node (pronounced as “star node”). With *nodes, the decision tree becomes

an Expectimax tree or *-Minimax tree that distinguishes between *nodes and decision

nodes. Stochastic events add complexity to the decision tree by requiring the consideration

of their potential outcomes. Non-determinism in games can manifest in various ways,

but a common scenario involves alternating between a random event and a decision,

9

2.4. MONTE CARLO TREE SEARCH

Figure 2.2: Regular *-minimax tree example. *Nodes are diamond-shaped, while
decision nodes are circle-shaped.

as seen in games like Backgammon and Carcassonne. For example, in Backgammon,

two six-sided dice are rolled at the beginning of each player’s turn, and then the player

chooses which checkers to move. These types of games exhibit regular *-minimax trees [15],

where a layer of chance nodes alternates with a layer of decision nodes throughout the

tree. This structure is illustrated in Figure 2.2, where directed edges emanating from

*nodes represent unique outcomes of the stochastic events, and edges from decision nodes

represent available actions. Note that each layer of *nodes is alternated with a layer of

decision nodes, and the sum of event probabilities within each *node is equal to 1.

Figure 2.2 also illustrates the tree of a domain where two agents with opposite ob-

jectives alternate actions. In adversarial domains, decision nodes are classified as max or

min nodes if the decision-maker seeks to maximise or minimise the reward, respectively.

However, there are games where a player can have multiple actions, or multiple stochas-

tic events can occur in the same turn. For example, in the game of Risk, a player’s turn

consists of several phases. The attack phase allows the player to perform multiple attacks,

each consisting of choosing the source and target territories of the attack and then rolling

the dice to determine the outcome. The player can repeat this cycle to convenience, only

limited by the availability of the troops. In this case, the alternation of random events

and player decisions still occurs, however, the game tree is not a regular *-minimax tree

as the decision nodes are not necessarily at the same depth.

2.4 Monte Carlo Tree Search

MCTS is a decision-making technique that offers the flexibility to be stopped at any time

to obtain the best current estimated action. This attribute extends the applicability of

MCTS to both strategic, slow-paced domains, as well as real-time scenarios. MCTS also

employs a policy-driven approach for tree expansion, with Monte Carlo simulations used

10

2.4. MONTE CARLO TREE SEARCH

Figure 2.3: Illustration of an iteration of the MCTS algorithm.

to evaluate the nodes and inform decision-making.

The MCTS algorithm takes a current state as input and returns the action it believes

is the best available. Given enough time, vanilla MCTS converges to minimax search

in adversarial domains. The vanilla version of MCTS consists of four steps or phases,

explained next:

• Selection phase: Starting from the root node, the tree policy is used to select child

nodes iteratively until an expandable node is reached. That node becomes the selected

node.

• Expansion phase: Chosen by the expansion policy, a new state is simulated from the

selected node. The new node is added to the statistical tree as a child of the selected

node. That node becomes the expanded node.

• Simulation phase: A series of rollouts, also called playouts, are executed from the ex-

panded node to obtain its approximate evaluation. Each rollout simulates actions ac-

cording to the default policy until a terminal state is reached to collect its outcome.

The results are averaged and returned as the evaluation of the expanded node.

• Backpropagation phase: The collected information from the current iteration is back-

propagated to the tree. Typically, only the nodes that connect the expanded node and

the root node are updated. The nodes updated, information, and aggregation methods

are determined by the backup operator

A complete run of these steps is called an iteration. With each iteration, MCTS builds

a statistical tree that stores information in every node. Starting with only the current

state as the root node, MCTS uses the forward model to simulate future game states and

expand its statistical tree, meaning that the statistical tree is a subset of the game tree

that grows as states are discovered. Each node in the statistical tree keeps track of its

visit count and reward. The vanilla version of MCTS is illustrated in Fugure 2.3.

The tree policy, expansion policy, and default policy define the behaviour of the selec-

tion, expansion and simulation steps in MCTS, respectively. A different policy, called the

recommendation policy, determines which action to return when the algorithm terminates.

11

2.4. MONTE CARLO TREE SEARCH

Vanilla MCTS usually returns the action that has been visited the most, referred to as

the robust action, as its recommendation policy. Other recommendation policies include

the max action (the action with the highest rewards), the robust-max action (the action

with both the largest visits and rewards, requiring additional iterations while none of the

actions suffices) [42], and the secure child (the action that maximises a lower confidence

bound) [35].

We identify three primary approaches to apply MCTS in games, each offering distinct

advantages depending on the context of use: (a) Online isolated decision-making is the

most direct form to deploy MCTS to determine the best possible action in response to

a specific situation within an unknown environment. This application is typically seen

in scenarios where a singular decision is required. (b) Online sequential decision-making,

on the other hand, facilitates decision-making throughout the entire duration of a game.

This approach benefits from the algorithm’s capability to build upon knowledge acquired

from previous decisions if the information gathered is relevant for subsequent decisions.

For instance, MCTS can reuse parts of its previously generated statistical tree, setting

the current state as the new root and discarding the rest of the tree [126]. The search

then begins with a statistical tree that has been already partially explored [27]. (c) Offline

deployment, or preparatory learning, allows the algorithm to optimise its strategies in a

specific domain through self-play and iterative improvement [33]. This approach enables

MCTS to learn and refine its decision-making capabilities based on early exposure to the

domain, thereby improving its performance in actual game situations by having developed

a repertoire of strategies before engaging in live play [154]. In this work, we are inter-

ested in the adaptability and potential of MCTS variants, which can be more effectively

measured in scenarios where the algorithm is used for online isolated decision-making.

2.4.1 Monte Carlo simulations

Every search algorithm needs a heuristic evaluation of the nodes within the game tree

of any complex game. While hand-made evaluations tailored for specific games are com-

monly used, there is also a widely adopted heuristic that requires no human knowledge

and has demonstrated reasonable robustness [85]: Monte Carlo simulations. Monte Carlo

simulations, within the context of games, obtain numerical results by repeatedly sam-

pling the outcomes of games using random play. The accuracy of these results improves

as more simulations are executed. The Monte Carlo simulations, often referred to as roll-

outs, playouts, or simulations, are used in the MCTS algorithm to evaluate any state.

This approach allows the algorithm to assess the potential value of a move based on the

aggregated outcomes of these simulations, rather than relying on detailed, game-specific

knowledge or complex strategic evaluation. By averaging numerous results from a given

12

2.4. MONTE CARLO TREE SEARCH

state to the end of the game, MCTS can estimate the expected utility of making a certain

move, guiding the selection of the most promising paths through the game tree. This

method’s strength lies in its simplicity and versatility, making it applicable to a broad

range of games and scenarios where traditional heuristic evaluations might not be feasible

or effective.

2.4.2 The tree policy

One of the most impactful, hence most researched aspects of MCTS is its selection step.

The selection step in MCTS is centred around the tree policy, which determines which

nodes are deserving of resource allocation. The tree policy aims to strike a balance between

acquiring new knowledge (exploration) and making decisions based on existing knowledge

(exploitation). It is employed to iteratively select the action that leads to the most in-

teresting node based on the information accumulated in the statistical tree. Whenever

the tree policy selects an action, it effectively addresses a Multi-Armed Bandit (MAB)

problem in which each available action can be viewed as an arm of the bandit.

Multi Armed Bandits

A stochastic MAB is a model that characterises decision-making problems in the face

of uncertainty. It serves as an analogy to a gambler who is presented with multiple slot

machines and aims to maximise their overall reward. In a MAB problem, an agent is

confronted with a set of k arms, each associated with an unknown reward distribution

D. The agent is tasked with collecting the reward rt from one arm at each discrete time

step t ∈ {0, 1, ..., n}. The primary objective of the agent is to acquire knowledge about

the reward distributions of the arms in order to make more informed decisions over time

and maximise his cumulative reward. The MAB problem exemplifies the fundamental

trade-off between exploration and exploitation.

In the context of MAB, exploration refers to the act of gathering information about

the potential rewards of each arm. This typically entails choosing arms that may seem

to have lower rewards in order to increase certainty about their reward distribution. On

the other hand, exploitation involves selecting the arm that the decision-maker believes,

based on the accumulated information, will yield the highest immediate reward.

Several conditions and assumptions are associated with a MAB problem. Within the

context of tree search, the reward distributions are assumed to be stochastic and indepen-

dent of one another [159]. Additionally, in certain domains, the rewards are considered to

be non-stationary. The distributions of each arm can change over time in a non-stationary

MAB, such as when a search algorithm discovers an optimal strategy in a branch of the

tree that significantly alters the rewards of a node.

13

2.4. MONTE CARLO TREE SEARCH

There are several approaches to addressing MAB problems, and the literature has

proposed multiple policies [8, 9, 28]. Each policy presents unique characteristics that

influence the behaviour of the agent. These policies are categorised in [122] as follows.

• The bayesian exploration approach assumes that the agent holds a prior belief about

the reward distributions of the arms. The agent then utilises the information gathered

from the arms to update its beliefs. An important example in this category is Thompson

Sampling (TS) [163], where the agent samples from the assumed prior distribution of

rewards and selects the arm with the best outcome from those samples. The assumed

distributions are then updated based on the observed reward obtained from trying the

arm. TS has been extensively studied [95], its effectiveness has been empirically demon-

strated [34, 74, 149], and its asymptotic optimality has been theoretically proven [2].

• The ϵ-greedy exploration chooses the best arm with a 1-ϵ probability, and a random arm

otherwise. This approach is simple and effective, but it does not guarantee asymptotic

optimality [10].

• The soft-max exploration chooses the best arm with a probability proportional to its

estimated value, like the EXP3 algorithm [11].

• Last, the optimistic exploration refers to policies optimistic in the face of uncertainty,

with the main exponent being the Upper Confidence Bounds (UCB1) [10].

In a MAB problem, the regret refers to the total loss incurred by trying suboptimal

arms. In other words, regret represents the difference between the reward that could have

been obtained by always selecting the best arm and the reward actually achieved by the

agent. The UCB1 policy, discussed next, constrains the regret to grow logarithmically,

making it asymptotically optimal. UCB1 is the most widely used policy in MCTS, and it

is the one employed in the original version of MCTS [99].

Upper Confidence Bounds

Upper Confidence Bounds(UCB1) is a strategy used to address MAB problems, guaran-

teeing convergence to the best arm by limiting regret. UCB1 adopts an optimistic in the

face of uncertainty approach, ensuring that every arm always has a probability of being

chosen greater than zero. UCB1 is formally described in Equation 2.1.

UCB1j = Qj + C

√
2 · ln(N)

nj
(2.1)

where Qj is the average reward of arm j and nj is its number of tries. N is the total

number of tries among all the alternative arms and C is a constant that balances explo-

ration and exploitation. UCB1 has been modified and adapted to various scenarios. For

instance, there are adaptations of the UCB1 policy for non-stationary MAB problems,

14

2.5. CLASSIC TREE SEARCH ALGORITHMS: MINIMAX

such as Discounted Upper Confidence Bounds (D-UCB) [100] where the significance of

the oldest attempts for each arm diminishes over time, and Sliding Window Upper Con-

fidence Bounds (SW-UCB) [70] which considers only the most recent set of rewards to

compute the current distributions of the arms. The UCB1 used as part of the tree policy

in MCTS is the Upper Confidence Bounds for Trees (UCT), described in the next section.

Upper Confidence Bounds for Trees

UCT employs the UCB1 strategy to select a node at each level of the tree until a node

that can be expanded is encountered. The hypothesis is that the most promising node

to allocate resources to is the one with the highest UCB1 value, as this value effectively

balances the trade-off between exploration and exploitation potential for each node. UCT

represents the edges of the game tree as arms of a bandit to identify the most promising

nodes within the tree, beginning from the root node.

In scenarios where there are two adversarial decision-makers, the tree is explored

using a minimax approach: Player 1 aims to maximise the outcome, while Player 2 tries

to minimise it. In this context, when selecting an action corresponding to the opponent’s

turn, Qj in the UCB1 formula is swapped to −Qj . Consequently, UCT works as a minimax

algorithm, expressing interest in the optimal action available to the opponent during their

turn.

To implement UCT in a statistical tree built by MCTS, it is necessary to store the

reward Qi and the number of visits ni for each node. The reward Qi represents the average

of the rewards obtained by the agent in all the simulations that traversed the node, while

ni denotes the number of times the node has been selected by the tree policy. Naturally,

most adaptations of the UCB1 formula can be extended to UCT at the expense of storing

additional information in the statistical tree if needed.

2.5 Classic tree search algorithms: Minimax

Tree search agents expand subsets of the decision tree as part of their decision-making

process in order to acquire and store information. One commonly used tree search al-

gorithm in multi-agent domains, especially in adversarial scenarios, is Minimax. This

algorithm categorises nodes as either max nodes or min nodes depending on whether the

decision-maker at that node seeks to maximise or minimise the reward from the perspec-

tive of the current decision-maker. Minimax exhaustively expands nodes, assuming that

the opponent will always make the best available move. Techniques such as alpha-beta

pruning [98] and forward pruning [23] can help reduce the number of states that need to

be evaluated in the Minimax algorithm. Despite the use of pruning techniques, exhaustive

search becomes intractable in complex domains given the exponential growth of the states

15

2.6. EVOLUTIONARY ALGORITHMS

that need to be searched. To stop the algorithm, the search depth is generally restricted.

When a time limit is given instead of a maximum depth, an effective way to manage

the uncertainty of the number of states at different depths is to progressively deepen the

search using iterative deepening until a time limit is reached, a strategy known as Iterative

Deepening Depth-First Search (IDDFS) [101].

2.5.1 Expectimax

Expectimax, also known as Expectiminimax, is an adaptation of the Minimax algorithm

designed for non-deterministic games. Similar to Minimax, Expectimax explores the game

tree in a width-first manner. However, instead of making deterministic choices at chance

nodes, it calculates the values of these nodes as the weighted average evaluation of their

successors.

To improve the Expectimax algorithm in regular expectimax trees, the *-minimax

family of algorithms, including Star1, Star2, and Star2.5, have been proposed in [15].

These algorithms use bounds to prune the tree, similar to how alpha-beta pruning works

for Minimax, but taking into account the probabilities associated with each chance node.

Consequently, the *minimax algorithms can efficiently prune the tree, particularly when

the actions can be sorted by quality based on prior knowledge of the domain.

2.6 Evolutionary Algorithms

EAs [48] are versatile optimisation techniques that excel in solving problems with large

search spaces. They explore the space of possible solutions using evolution-inspired oper-

ations, including selection, crossover, and mutation. A selection mechanism gives priority

to the fittest individuals in the population, increasing their chances of passing on their

genetic material to future generations. This iterative process improves the quality of the

population until certain stopping criteria are satisfied. Figure 2.4 illustrates a general EA.

Ideally, an EA should be able to simultaneously explore the search space extensively

and exploit the most promising regions. However, controlling the exploration-exploitation

dilemma poses a non-trivial challenge in EAs due to the complexity of the interactions

of its components. Prioritising exploration can significantly slow down the convergence

speed of the algorithm or even prevent it altogether. Conversely, a focus on exploitation

may lead to a loss of population diversity or premature convergence, hindering further

improvement, a phenomenon known as stagnation [43].

To ensure the exploration of the search space, EAs must maintain a diverse population.

This diversity allows the evolutionary process to have options to escape local optima and

explore the entire search space, and is typically achieved through mutation, which can

potentially produce novel genetic material. On the other hand, crossover operators aim

16

2.6. EVOLUTIONARY ALGORITHMS

Figure 2.4: Generic steps in an Evolutionary Algorithm.

to preserve and recombine genetic material. The selection mechanism determines how

often the best individuals can produce offspring, determining the influence on the genetic

material of the next generation.

EAs typically offer a high degree of flexibility in their design and contain multiple ad-

justable parameters. Besides the definition of the genetic operators, the balance between

exploration and exploitation within the search space is also influenced by the representa-

tion of individuals, fitness evaluation, population size, population structure (steady state

or generational) and the allocated computational resources. The field of EAs encompasses

four notable methods [12]: Genetic Algorithm (GA) [72, 80], ES [22, 139], Evolutionary

Programming (EP) [56, 117], and GP [103]. In this thesis we focus on GP and ES, de-

scribed next.

2.6.1 Genetic Programming

GP [103] is a type of automated programming in which individuals are commonly rep-

resented as syntax trees. The tree structure is typically used to represent mathematical

expressions, but it can also be used to represent other types of solutions, such as com-

puter programs, behavioural trees or decision trees. The GP procedure commences by

generating a population of programs using an initialisation method. This population is

subsequently assessed, and the most promising individuals are chosen as parents for the

next generation. The selection process determines which individuals will contribute to

producing offspring. In the tournament selection, one of the most common selection ap-

proaches in GP, a random subset of the population is chosen and the best individual from

the subset is designated as a parent.

The selected parents undergo modifications through genetic operators, such as crossover

and mutation, to generate offspring. The fittest individuals are combined with the off-

spring to complete the population of the next generation. This process continues until

17

2.6. EVOLUTIONARY ALGORITHMS

specific stopping criteria are met, and the GP eventually returns the best individual from

the final population. These steps align with the general stages of the EA illustrated in

Figure 2.4.

The design of a GP includes the definition of a terminal set, a function set, a fitness

measure, an initialisation method, a selection method, genetic operators, and termination

criteria, each with its respective parameters. Additionally, constraints are necessary to

regulate the representation, such as a maximum depth restriction, to prevent phenomena

like bloat. Bloat is a phenomenon in GP where syntax trees tend to gradually increase

in depth throughout generations without necessarily increasing their performance. This

growth often produces introns, which are internal nodes that do not influence the output

of the individual. Introns are believed to emerge in GP as an evolutionary mechanism to

safeguard valuable structures by preserving multiple instances of them, as most genetic

operators are thought to possess some degree of destructive nature [114].

To simplify our discourse, we make the distinction between the three types of trees

we have defined thus far. First, the game tree represents all potential actions (edges)

and states (nodes) within a game. Next, the statistical tree is a subset of the game tree

created and used by the search algorithm to store the information it finds. Lastly, the

syntax tree, is the tree-like structure representing a mathematical formula, which is also

an individual in the GP population, explained next.

Genetic Programming individual representation

A syntax tree is a data structure that represents the flow of information from the leaves

to the root of a tree. Various forms of GP have been proposed in the literature, with

the tree-like structure being the most common representation [103]. In this structure,

functions are represented by internal nodes, while terminals are represented by leaves.

Each internal node takes its children as inputs and applies its function to them. The

syntax tree is evaluated recursively, starting from the root node and proceeding until the

terminal nodes are reached. Figure 2.5 provides an example of a syntax tree.

A syntax tree does not guarantee mathematical correctness when representing math-

ematical expressions. Therefore, it is common practice to incorporate safety rules in the

functions. These rules ensure that the execution does not crash when evaluating a tree.

For instance, one such rule is to take the absolute value of the input in any square root

operation. Another rule is to return the numerator in a division if the denominator is

zero, which can cause several discontinuities. These rules are typically implemented as

a set of if-else statements that are evaluated before the function is executed. Under this

context, the genotype of an individual in GP is the syntax tree, while the phenotype is

the output of the syntax tree when evaluated.

18

2.6. EVOLUTIONARY ALGORITHMS

Figure 2.5: Illustration of a syntax tree. Squared nodes are functions and
triangular nodes are terminals. In this example, the syntax tree represents
1− sin(v) + (2+5)√

5
.

The fitness measure, function set, and terminal set are chosen to align with the specific

problem being addressed. The fitness measure is typically a function that evaluates the

performance of the syntax tree on the problem at hand. For example, in a problem

involving the approximation of a given dataset, variables from the dataset could serve as

terminals, while mathematical operators can be employed as functions, with the fitness

measure being the Mean Squared Error (MSE) between the output of the syntax tree and

the target values.

Population initialisation

Regarding the initial population in GP, there are several standard initialisation methods

available, including grow, full, and half-and-half as described by Koza [103]. The full

method grows a symmetrical tree with the same maximum depth for all branches, with the

maximum depth being a user-defined parameter. In this method, functions are randomly

selected for each node until the maximum depth is reached and terminals are added

instead. The grow method is similar to the full method but terminals can be randomly

added at any depth, meaning that the depth is not enforced for every branch of the

tree. The half-and-half method mixes both full and grow in a proportion defined by an

additional parameter.

Genetic operators

There is a vast variety of genetic operators in GP, with the most common ones being

crossover and mutation. Crossover involves combining two or more individuals to produce

offspring. In GP, the subtree crossover, illustrated in Figure 2.6, swaps subtrees between

parents. Other crossover variants have been proposed in the literature, such as the Context

19

2.6. EVOLUTIONARY ALGORITHMS

Figure 2.6: Syntax tree subtree crossover. The dashed nodes are the cut-off points
for the crossover. The subtrees are swapped between the parents (P1 and P2, at the
top) to produce offspring (O1 and O2, at the bottom).

Aware Crossover (CAC) [114], Semantics Aware Crossover (SAC) [170] and Semantic

Similarity-based Crossover (SSC) [170]. These variants aim to generate offspring that are

more informed and potentially better solutions.

Mutation, on the other hand, entails randomly altering an individual to produce off-

spring. It serves as a source of novel genetic material for the population. In the case of

syntax trees, the mutation operator is typically implemented by replacing a subtree with

a newly generated subtree (subtree mutation). Alternatively, it may involve swapping the

content of a randomly chosen node with another valid function or terminal (point muta-

tion). The mutation operator plays a crucial role in exploration by introducing potential

changes to the genetic makeup of individuals. However, modifications in the genotype can

have unpredictable effects on the overall performance of a solution. There are metrics that

can help us understand how the evolutionary process navigates the search space and how

challenging it may be to find optimal solutions. For instance, locality [68] describes the

correlation between small changes in an individual’s genotype and small differences in its

phenotype. The Fitness Distance Correlation (FDC) [89], on the other hand, measures

the correlation of the fitness of the solutions and their distance to the optimum solution.

Finally, it is common practice to perform a Fitness Landscape Analysis (FLA) [175] be-

tween the problem domain and the proposed solution representation. This analysis helps

assess the efficiency of the genetic operators by examining whether they produce solu-

20

2.6. EVOLUTIONARY ALGORITHMS

tions that exhibit similar behaviours to their parent solutions. If the genetic operators fail

to maintain behavioural similarities, the evolutionary search may perform on par with

random search [141].

Semantics

Diversity, which refers to the differences between individuals, can be assessed by exam-

ining their genotypes. Several metrics can be used for this purpose, such as the Edit

Distance (ED) [49], the Alignment Distance [167] and the Normalised Compression Dis-

tance (NCD) [40]. The NCD, for instance, employs the Kolmogorov complexity [107] to

compare how differently a program would generate the structure of one individual com-

pared to another. This makes NCD applicable to any type of individual representation.

It was initially tested on the syntax trees of GP in [68]. However, these approaches have

a key limitation: they solely consider the genotype of individuals and do not take into

account their actual behaviour, also referred to as semantics in GP.

According to Galvan et al. [60] and inspired by [124], rather than focusing on its

genotype, the behaviour of each individual, based on the outputs when provided with the

relevant fitness cases as inputs, can be used as a diversity measure. The actual behaviour of

a solution exists within the semantic space S. This semantic space represents all possible

behaviours of the solution for all considered inputs. Let p and q be programs from a

language P . When p is applied to an input i ∈ I, p produces an output p(i).

Def. 1 The semantic mapping function s : P 7→ S maps any program from P and the

semantic space S.

which has the behaviour s(p) = s(q) ⇐⇒ ∀i ∈ I, p(i) = q(i) and posseses three key

properties. Firstly, every program and input set has unique semantics. Secondly, multiple

programs can have the same semantics for a given input set. Thirdly, programs that gen-

erate different outputs for the same input set exhibit distinct semantics. Def. 1 is general

and does not specify the representation of semantics. In GP, a popular representation of

semantics is Sampling Semantics (SS), defined as the vector of output values computed

by an individual program for a given input set. This differs from the notion of fitness

cases, which are input-output pairs where the output is the desired one.

Based on Def. 1, we can establish the definition of the Sampling Semantic Dis-

tance (SSD) between two programs (p, q). Let SS(p, I) = {p1, p2, ..., pk} and SS(q, I) =

{q1, q2, · · · , qk} be the SS of p and q, when evaluated on the same set of inputs I. The

SSD between p and q is defined as shown in Equation 2.2.

SSD(p, q) =
∑
i∈I

|pi − qi|
|I|

(2.2)

21

2.6. EVOLUTIONARY ALGORITHMS

The Semantic Similarity (SSi) [170] compares the SSD of any two programs to deter-

mine their similarity. In an EA, the SSi can be employed to manipulate the behavioural

difference between a parent solution and its offspring. This means that it serves as a tool

to control the level of exploration exhibited by the operators responsible for generating

offspring. The objective is to produce offspring that are neither too dissimilar nor identi-

cal to their parents, similar to the concept of a learning rate in Reinforcement Learning

(RL) models. The SSi determines if programs p and q are semantically similar, formally

defined in Equation 2.3.

SSi(p, q) = (L < |SSD(p)− SSD(q)| < U) (2.3)

where L and U are the lower and upper bounds of the SSi indicator respectively, also

called the semantic sensitivity. L and U are parameters tuned empirically to keep the

solution’s behaviour similar to the parent’s while still allowing for exploration, which has

proven beneficial for GP [69, 170] and Multi-Objective Genetic Programming [63].

2.6.2 Evolution Strategies

Evolution Strategies (ES) are generally applied to real-valued representations of optimi-

sation problems. In ES, the mutation is the main operator and crossover is the secondary,

optional, operator. There are two basic forms of ES, known as (µ, λ)-ES and (µ + λ)-ES.

The variable µ refers to the size of the parent population and λ refers to the number of

offspring that are produced in the following generation before selection is applied. In the

former, the parent is discarded whereas in the latter, the parent is kept as part of the

next generation’s population.

Because of how ES explores the search space, it is a common practice to seed the

initial population with a known solution to the problem at hand with the expectation to

improve it. The evolutionary process begins by creating offspring from the known solution

and then progresses from there.

The distinguishing characteristics of different EA methods, such as the syntax tree

representation from GP and the population structure of ES, can be combined to create new

hybrid approaches. For example, it is possible to incorporate a GP tree-like representation

into an ES framework, as demonstrated in our IEEE Transaction on Games article [61].

This hybrid method was developed for evolving programs in resource-constrained domains.

In this hybrid approach, the ES employs a relatively small population and uses the genetic

operators typically used in GP to modify the syntax trees. The search space for potential

syntax trees is vast, and a significant portion of the trees generated during evolution

may not be useful or viable solutions. This poses a challenge when working with a small

population, as making progress becomes difficult. In such scenarios maintaining diversity

22

2.6. EVOLUTIONARY ALGORITHMS

becomes crucial to avoid stagnation.

23

3
Surveying synergies: Monte Carlo Tree Search and

Evolutionary Algorithms

Monte Carlo Tree Search (MCTS) and Evolutionary Algorithms (EAs) are algorithms

that can benefit from each other, and multiple combined approaches have been attempted

in literature. Most of the approaches that use EAs in MCTS aim to optimise some as-

pect of it or to try to make it more generalisable through adaptation. Conversely, when

MCTS is embedded within EAs, the former is used to make EAs more methodological

and controlled. The usage of EAs under the context of MCTS is primarily focused on

offline optimisation through iterative exposure to the domain. However, there have been

ingenious proposals to integrate them with MCTS online, that is, as MCTS’s decision

is being made. In this chapter, we summarise the usage of EAs combined with MCTS.

Section 3.1 discusses the usage of EAs in MCTS, while Section 3.2 discusses the usage

of MCTS in EAs. The selection phase of MCTS models every choice made to traverse

the tree as a Multi-Armed Bandit (MAB) problem. This implies that, by extension, EAs

interact with the MAB model when used in combination with MCTS. Thus, Section 3.3

expands our scope to include works that combine MABs with EAs. Finally, Section 3.5

discusses the usage of EAs and MCTS in the context of games, with special focus on how

EAs are adapted to be used online despite the constrained computational resources.

3.1 Evolutionary Algorithms in Monte Carlo Tree Search

EAs have been successfully employed to optimise components of the standard MCTS

algorithm. For instance, the Self-Adaptive Monte Carlo Tree Search (SA-MCTS) [158]

algorithm, models the vanilla MCTS parameters as a Combinatorial Multi-Armed Bandit

(CMAB) problem to tune them on-the-go as originally proposed in [157]. In their work,

the authors proposed three versions of SA-MCTS, each with a different parameter allo-

cation strategy and two of which use EAs. The three SA-MCTS variants are SA-MCTS

with Näıve Monte Carlo (SA-MCTSNMC), SA-MCTS with N-Tuple Bandit Evolution-

24

3.1. EVOLUTIONARY ALGORITHMS IN MONTE CARLO TREE SEARCH

ary Algorithm (SA-MCTSNEA) and SA-MCTS with a simple Evolutionary Algorithm

(SA-MCTSEA). In SA-MCTSNEA, the parameters are evolved with the N-Tuple Bandit

Evolutionary Algorithm (NTBEA) [104] by representing each parameter as a 1-tuple and

the combination of parameters as n-tuples. SA-MCTSEA represents combinations of pa-

rameters as individuals in a Genetic Algorithm (GA), where each parameter is a gene.

The population follows a (µ + λ)-Evolution Strategy (ES) where µ ≥ 2. Each individual

is evaluated by letting it control a MCTS iteration and using the reward as its fitness. It

uses a uniform random crossover and a uniform random mutation to generate offspring.

They tested the SA-MCTS algorithms in 20 games of the General Video Game AI (GV-

GAI) competition [131]. The MCTS parameters that were tuned included the C of the

Upper Confidence Bounds (UCB1) formula (refer to Chapter 2) in the tree policy and

the maximum depth of the playouts of the simulation phase. The experimental results

on the GVGAI games demonstrated that SA-MCTS agents generally achieved higher win

rates than the baseline MCTS agents, with the EA-based versions performing slightly

better [156].

3.1.1 Evolutionary Algorithms in Monte Carlo Tree Search’s simulation phase

One way to improve the performance of MCTS is to optimise the evaluation of the states

found by the tree search. This can be achieved by learning an evaluation function for

any game state, or by enhancing MCTS’s default policy. The default policy in MCTS is

Monte Carlo simulations, which choose actions uniformly at random selecting actions until

reaching the end of the game, although additional rules can be incorporated. Playouts

that involve more than just a random selection of actions are known as heavy playouts.

Note that heavy playouts have been proven to not always be beneficial to the overall

performance of MCTS and they may even be harmful [71].

The decisions of the default policy can be optimised with ES as in Hivemind [133],

which evolves rules based on patterns in the vicinity of the last move played in the game

of Hex. The evolved rules are used to bias the choices of MCTS’s default policy, leading

to improvements in performance.

The Knowledge Based Fast Evolutionary Monte Carlo Tree Search (KB Fast-Evo

MCTS) [127] is an extension of Fast Evolutionary Monte Carlo Tree Search (Fast-Evo

MCTS) [111] where the rollouts of MCTS are guided by policies derived from an EA. The

EA follows a (1+1)-ES (explained in Chapter 2) in which each individual acts as a default

policy that selects actions during the simulation step of MCTS. The individuals process

features of the game state with a set of weights, represented as genes. These features

include Euclidean distances from the playing agent to all interactable objects, and new

weights are added to the genome if new objects are encountered.

25

3.1. EVOLUTIONARY ALGORITHMS IN MONTE CARLO TREE SEARCH

KB Fast-Evo MCTS improves upon Fast-Evo MCTS by introducing a knowledge base

that combines two factors: curiosity and experience. The knowledge base keeps track of

statistics for all interactable sprites in the game, with curiosity aiming to discover the

consequences of collisions between sprites, while experience rewards collisions that have

proven beneficial to the agent. The fitness of each individual is calculated using a score

function that considers changes in experience, curiosity, and the game score at the end

of the playout. The authors employ games from the GVGAI framework to compare their

proposed KB Fast-Evo MCTS with vanilla MCTS, Fast-Evo MCTS, and Knowledge Based

Monte Carlo Tree Search (KB MCTS). They find that KB Fast-Evo MCTS performs the

best among these approaches. KB MCTS is an MCTS variant proposed as an ablation

study to KB Fast-Evo MCTS, where the knowledge base is used to evaluate the results

of the playouts during the simulation phase, but no evolution is performed.

In another approach described in [3], a Genetic Programming (GP) paradigm is used

to evolve agents that guide the default policy in the game of Ms. Pac-Man. The agents

generated through the GP consist of if-then-else decision trees that determine simple

actions, such as directing Pac-Man towards the closest pill. These decision trees combine

a series of hand-crafted heuristics that provide information about the game, such as the

distance to the closest ghost. The authors discovered that MCTS with the evolved decision

trees as the default policy performed competitively compared to hand-crafted agents.

The EvoMCTS algorithm [17, 18] proposes the evolution of a board evaluation func-

tions using GP. In this approach, the evolved board evaluation function serves to guide

the default policy. During the simulation step, the default policy selects the best available

action by considering a one-step look-ahead evaluation of the next available states. To han-

dle large branching factors, the default policy in EvoMCTS randomly samples a certain

number of actions, defined as the playoutBranchingFactor, from each state. EvoMCTS

defines two types of terminal nodes to be considered in the evolved trees:

• Basic terminal nodes: return values based on the current game state. For instance, one

possible implementation could tally the number of game pieces owned by the player.

• Game-oriented terminal nodes: return values relevant to the application in particular.

For example, a heuristic function that evaluates corner control in Othello, which is

considered an important aspect of the game.

Although the basic terminal nodes aim to be game-independent, they are certainly

limited in their applicability, as are the evolved trees. After all, heuristics benefit some

algorithms more than others, and it is difficult to determine how much of the success of an

algorithm can be attributed to its heuristics or the algorithm itself [127]. The authors of

EvoMCTS argue that the game-specific terminals proposed use little domain knowledge

and are properties that any player quickly realises after playing a few games.

Interestingly, the representation of EvoMCTS allows individuals to have Explicitly

26

3.1. EVOLUTIONARY ALGORITHMS IN MONTE CARLO TREE SEARCH

Defined Introns (EDIs), which are theorised to benefit evolution by protecting sections

of code with no repercussions in the evaluation of the carriers. EvoMCTS also features

coevolution and innovative genetic operators. It was tested in the games of Othello, Hex,

and Dodgem, and the results showed that the evolved trees were considerably stronger

than vanilla MCTS agents.

Bandit-based Genetic Programming (BGP) [82] is an EA that systematically tests

modifications from a predefined set of available modifications that can be applied to an

individual in a domain with stochastic rewards. The assumption is that even if two differ-

ent modifications are individually proven to be beneficial, the combination of both modi-

fications may not necessarily yield a superior individual. To address this issue, confidence

bounds are employed, providing strong theoretical justifications. In BGP, each unique

modification is initially tested a fixed number of times when applied to the individual,

and the resulting outcomes are used to calculate the UCB1 value for each modification. As

multiple hypotheses are being tested simultaneously (one for each available modification),

the problem is modelled as a racing algorithm. Hoeffding’s bounds are used to calculate

an upper bound and a lower bound on the efficiency of each modification. BGP is then

a modified racing algorithm that uses these upper and lower bounds to accept or reject

proposed modifications to the individual. Each modification is then tested again, the same

number of times, and ordered based on their UCB1 values. In BGP accepting a modifi-

cation is equivalent to performing mutation in an EA. The MAB framework is employed

when selecting which modification to test next. BGP has shown promising results when

applied to enhancing agents for playing the game of Go. In this context, each modification

corresponds to a change in the biases of the default policy within a MCTS-based agent.

More recently, a combination of GP and MCTS to play Hearthstone was proposed

in [38], where the GP evolves an evaluation function to influence the decisions made by

the default policy. They tested their agent, the MCTS-GP, with a variety of deck styles

and found it more robust than the vanilla MCTS.

3.1.2 Evolutionary Algorithms in Monte Carlo Tree Search’s selection phase

MCTS’s selection phase uses a tree policy to select the nodes to explore next, making it a

phase of particular research interest as it greatly influences the MCTS’s performance [27].

Regarding offline evolution of the tree policy, the work by Cazenave [33] evolves a tree

policy formula with GP for the game of Go. This approach successfully finds formulae that

consider a wide variety of alternative statistics and heuristics, such as the All-Moves-As-

First (AMAF) value of the move, some features of the board, or the best reward among

the children of the parent node.

In [25], Bravi et al. propose three versions of a GP that evolves the tree policy for

27

3.1. EVOLUTIONARY ALGORITHMS IN MONTE CARLO TREE SEARCH

Table 3.1: Approaches with Evolutionary Algorithms in Monte Carlo Tree Search.

Online/
Offline

Modified in
MCTS

Name Game Ref.

Online

Tree policy,
default policy

SA-MCTSNEA GVGAI [158]

SA-MCTSEA GVGAI [158]

Default policy
KB Fast-Evo MCTS GVGAI [127]

Fast-Evo MCTS GVGAI [111]

Tree policy EA-MCTS, SIEA-MCTS Carcassonne [61]

Offline

Default policy

Hivemind Hex [133]

(No given name) Ms Pac-Man [3]

EvoMCTS Othello,
Dodgem, Hex

[17, 18]

BGP Go [82]

MCTS-GP Hearthstone [38]

Tree policy
(No given name) Go [33]

UCB+, UCB++, UCB# GVGAI [25]

MCTS in rogue-like real-time games from the GVGAI competition, categorising GP ter-

minals considered for composing tree policy alternatives into three groups:

• Tree variables: are directly related to the constructed statistical tree, such as the number

of visits or rewards of certain nodes.

• Agent variables: are related to a memory of the agent, such as its number of visits to

the current location or an action repetition count.

• Game variables: that describe aspects of the game state, such as the number of “portals”

or distances from the agent to a Non-Player Character (NPC).

With them, they propose three evolutionary-based tree policies: UCB+ (using only

tree variables), UCB++ (using both tree and agent variables), and UCB# (using tree,

agent and game variables), with the latter surpassing the other two in the majority of

the games. They experimented with the tree policies they found through evolution on 62

GVGAI games available at the time, finding that most of the evolved equations behaved

rather similarly to UCB1 on average. They encourage evolving heuristics for clusters of

games with similar design aspects.

Bravi’s approach was later employed to evolve different playstyles in the game Mini

Dungeons 2, where 4 unique procedural personas are evolved offline [81]. A big issue of

all the approaches that evolve a tree policy is that they demand exposure to the game

beforehand to have enough time to perform their evolutionary process, as can be seen in

Table 3.1, which summarises the algorithms discussed in this section.

28

3.2. MONTE CARLO TREE SEARCH IN EVOLUTIONARY ALGORITHMS

3.2 Monte Carlo Tree Search in Evolutionary Algorithms

The versatility of EAs is achieved thanks to their numerous parameters, which are flexible

enough to meet different requirements. The evolutionary process uses meta-heuristics and

randomness to conduct the search. However, certain EA aspects can be controlled with

ideas present in MCTS.

3.2.1 Monte Carlo Tree Search in Rolling Horizon Evolutionary Algorithms

There are multiple hybrids of Rolling Horizon Evolutionary Algorithm (RHEA) and

MCTS [58, 83], where MCTS is used to improve certain aspects of Rolling Horizon

Evolutionary Algorithm (RHEA). For instance, in [57], the algorithm called C-MCTS-

S allocates half of the computational budget to run MCTS and then uses the best action

path in its statistical tree to initialise the RHEA population, which uses the rest of the

computational budget. Similarly, the Statistical Tree-based Population Seeding RHEA

(STPS-RHEA) technique [64] initialises the population by following the path in the sta-

tistical tree that leads to the best reward, and the rest of the individuals are generated

by running the Upper Confidence Bounds for Trees (UCT) tree policy. The tree policy

has the potential to create a different individual every time as the statistical tree is up-

dated with the evaluation of every previously seeded individual. To prevent stagnation

due to the small population size, the technique also injects seeded individuals in every

subsequent generation of the evolutionary process.

In [83], the authors propose five approaches to combine RHEA and MCTS in real-

time games of the GVGAI framework, and they find these approaches to be more robust

than the standard RHEA. In the chosen games, the agent controls a character in a 2D

map with multiple interactable items or Non-Playable Characters (NPCs). The games

may also include stochastic elements, such as unpredictable NPC movements. Their first

proposed algorithm is a variant of RHEA called RHEA with rollouts (EAroll). It runs a

small MCTS with a parameterised maximum search depth with its root set at the end of

the sequence of actions of each RHEA individual. The rewards obtained from the MCTS

are then averaged with those of the individual. The idea is to obtain a more accurate

fitness evaluation for each individual by finding a potential plan after the evolved actions.

The second variant is called RHEA then MCTS for alternative actions (EAaltActions).

It first runs a RHEA to find a solution and then allocates a portion of the computational

budget to a MCTS that searches for an alternative independent solution. Finally, the two

solutions are compared, and the one with the better fitness is selected as the final decision.

The third variant, called EAroll plus sequence planning (EAroll-seqPlan), incorporates

a buffer to retain the plan from the previously executed action in EAroll, which is then

used to initialise the search when the algorithm is called again. The fourth variant, EAroll

29

3.2. MONTE CARLO TREE SEARCH IN EVOLUTIONARY ALGORITHMS

plus occlusion detection (EAroll-occ), includes a check to identify inconsequential actions

in the EAroll action sequences. If any such actions are identified, they are removed to

potentially enhance the overall performance of the controller. The final variant, named

EAroll plus NPC attitude check (EAroll-att), introduces awareness of NPCs present in

the game, based on the assumption that their behaviours remain consistent throughout

the game. The agent learns whether collisions with a specific NPC type have resulted

in negative or positive consequences and uses this information to penalise or reward its

proximity to each type of NPC.

3.2.2 Generating EA offspring using Monte Carlo Tree Search

In the context of adversarial games with complex turns, Evolutionary Monte Carlo Tree

Search (EMCTS) [14] is a hybrid algorithm where the nodes of the statistical tree represent

complete action sequences for a single turn. The edges of the tree represent mutations

of the action sequences that lead to their offspring. As a result, EMCTS systematically

explores the search space of an EA. The search process in EMCTS begins with a single

individual, which serves as the root of the tree. The statistical tree is constructed using the

MCTS algorithm, employing UCB1 as the tree policy. The action sequence represented by

each node in the statistical tree is evaluated by simulating its actions and using a heuristic

on the resulting state. The statistical tree of EMCTS exhibits a high branching factor

due to the numerous possibilities for mutation for each individual. To tackle this issue,

EMCTS incorporates Bridge Burning (BB) [93, 144], a pruning technique that divides the

search into an arbitrary number of phases. Once the budget for each phase is exhausted,

the best child of the root becomes the new root of the statistical tree. All nodes that are

not part of the new statistical tree are discarded, allowing the search to proceed.

The main drawback of EMCTS is its limitation in planning for the current turn, which

is addressed in its extension, Flexible Horizon Evolutionary Monte Carlo Tree Search

(FH-EMCTS) [13]. In FH-EMCTS, the parameter search horizon is introduced, which

increases the depth of the evolved solutions obtained by EMCTS. This extended depth

includes the consideration of the opponent’s atomic actions as well. While the actions

from the current turn are evolved, the actions of the opponent’s turn are generated using

an arbitrary opponent model. The computational cost is optimised by limiting the actions

to the top ten most promising ones and using a “lazy” approach for generating mutation

actions during the tree search. In the game Hero Academy, FH-EMCTS outperformed

Online Evolutionary Planning (OEP) and EMCTS (both explained before).

MCTSPO [113] is a neuroevolution technique that applies the UCB1 policy to select

parents in the evolutionary process. It is a modification of the Deep Genetic Algorithm

(DeepGA) [161], which can be classified as both an evolutionary algorithm (EA) and a tree

30

3.2. MONTE CARLO TREE SEARCH IN EVOLUTIONARY ALGORITHMS

Table 3.2: Approaches with Monte Carlo Tree Search in Evolutionary Algorithms.

Modified in EA Base EA Name Ref.

Offspring generation Genetic Algorithm EMCTS [14]

Genetic Algorithm FH-EMCTS [13]

Deep Genetic Algorithm MCTSPO [113]

Genetic Programming Expansion [86]

Initialisation and
offspring generation

Rolling Horizon
Evolutionary Algorithm

STPS-RHEA [64]

Initialisation Rolling Horizon
Evolutionary Algorithm

C-MCTS-S [57]

Fitness evaluation Rolling Horizon
Evolutionary Algorithm

EAroll [83]

Final output Rolling Horizon
Evolutionary Algorithm

EAaltActions [83]

search method. In MCTSPO, the evolutionary process is modelled as a tree, where each

node represents an individual Neural Network (NN), and the edges connect parents with

their offspring, similar to EMCTS. The only operator used in this process is mutation,

meaning that each node will have exactly one parent, and each parent can have multiple

offspring. Gaussian noise is added to the parent’s weight vector during mutation, using

a safe mutation technique [105] to ensure that the resulting individual remains close to

the parent in the search space. It uses progressive widening [35] to control the number

of mutations to explore for each NN in the tree. Candidate mutations are precalculated

and stored as a vector, consisting of a random seed for the Gaussian distribution and a

magnitude. By using this approach, the algorithm does not need to store the weights of

the NN in the tree nodes but is still capable of reproducing any path in the tree to reach

a desired state. In MCTSPO, MCTS is used to generate and explore the evolutionary tree

with MaxUCT [96] serving as the tree policy. Instead of rollouts, a single evaluation of the

NN is conducted. Experimental results showed that MCTSPO outperforms DeepGA and

Trust Region Policy Optimization (TRPO) [148] in classic control environments and high-

dimensional tasks in OpenAI Roboschool. However, as the task difficulty decreases, the

performance gap between MCTSPO and the baseline algorithms narrows. They explain

that this phenomenon occurs because less exploration is required in easier tasks, and

gradient-based approaches can quickly identify optimal solutions.

More recently, a new type of mutation in GP, called expansion, was proposed in [86].

Expansion uses MCTS to grow the syntax tree of the individual being mutated. To control

bloat, the reduction operator, which decreases the size of the syntax tree was introduced.

The expansion and reduction operators achieved good results in symbolic regression prob-

31

3.3. MULTI-ARMED BANDITS IN EVOLUTIONARY ALGORITHMS

lems benchmark problems. The approaches that use MCTS to influence any aspect of an

EA are summarised in Table 3.2.

3.3 Multi-Armed Bandits in Evolutionary Algorithms

The selection phase of MCTS models every choice made to traverse the tree as a MAB

problem. This implies that, by extension, EAs interact with the MAB model when MCTS

is integrated with them. The interaction between EAs and MABs can have many forms

and consequences relevant to our exploration of the interactions between MCTS and EAs.

To this end, in this section, we extend our scope to include works that combine MABs

with EAs, where the MAB is not necessarily employed under the context of the MCTS

algorithm.

Interestingly, literature on the combination of EAs and MABs is scarce [108]. In their

survey [43], the authors summarise the efforts made by researchers to address the ex-

ploration versus exploitation dilemma in EAs. However, they do not mention MABs,

despite the intuition that the aforementioned dilemma could benefit from MAB models.

Similarly, in a recent survey on practical applications of MABs by Bouneffouf et al. [24],

EAs are not mentioned. In a work that discusses trends and challenges in EAs parameter

optimisation [94], MABs are only mentioned in the contributions by Fialho et al. [51].

3.3.1 Evaluation of EA individuals using Multi-Armed Bandits

In problems where fitness evaluations are noisy, the evolutionary process may inadver-

tently discard useful individuals. To overcome this, resources can be distributed among

individuals to evaluate them multiple times, allowing for more reliable decision-making.

In this scenario, individuals are modelled as arms of a MAB, where a policy determines

which individuals deserve to be evaluated again [97, 104, 136].

In [136], the authors apply the mentioned approach to Conversion Rate Optimisation

(CRO) problems. The conversion rate represents the rate at which visitors to a website

perform a target action, with a binary outcome of either success or failure. In this scenario,

each web page configuration can be represented as an individual in an EA. The fitness

of each individual is updated each time a user visits the web page. Due to the limited

number of visitors, it is crucial to distribute them efficiently among the individuals in

the population. It is worth noting that this setting results in individuals having different

levels of certainty in their fitness, as their visit counts are often unequal.

The Collaborative Evolutionary Reinforcement Learning (CERL) algorithm proposed

by Khadka et al. [97] uses the UCB1 policy to allocate a limited number of training

epochs among a population of NNs. The fitness of each NN is based on its improvement

after some epochs. The algorithm distributes its resources for further training among the

32

3.3. MULTI-ARMED BANDITS IN EVOLUTIONARY ALGORITHMS

less-trained networks and the most promising ones. By employing the UCB1 policy, the

CERL algorithm has demonstrated better sample efficiency and achieved superior results

compared to other methods. CERL is evaluated on 5 continuous robotic-control tasks

hosted on OpenAI gym.

In [50], the resources used for individual evaluations are allocated based on fitness

expectations, which are calculated by analysing the fitness distribution and the smooth-

ness of the fitness landscape. In this case, the UCB1 policy is used to create filters that

determine which individuals in an EA should be evaluated.

The UCB Random-restarts with Decreasing Step-size (URDS) [46] is an ES-based

Multi-Modal Optimisation (MMO) algorithm that enhances the quality of the Quasi-

random Restart with Decreasing Step-size (QRDS) algorithm [147]. URDS performs a

local search with a unitary population until an unknown local-optima point is found. The

population is then initialised one step away from that point, initiating a new local search.

The step size decreases over time to transition from exploration to exploitation as more

information about the search space is gathered. URDS improves the restart location of

QRDS by partitioning the search space. It separates the search space into md areas using

a regular grid with m subdivisions along each dimension d. Each area is treated as an

arm of a MAB, which tracks the number of individuals initialised in it and the quality

of the resulting optima points. When a restart is needed, the UCB1 policy is used to

select the most interesting area in the search space. Then, a new individual is initialised

in that area to initiate the local search. QRDS has shown competitive results in locally

complex functions and functions with unevenly distributed optima points throughout the

search space. However, it is limited because the number of subdivisions in the search space

increases exponentially as the number of dimensions increases.

3.3.2 Generating EA offspring using Multi-Armed Bandits

The number of genetic operators in the field of EA continues to increase over time. How-

ever, selecting the appropriate operator is a challenge that is often arbitrarily determined

by the user or tuned through trial and error. Furthermore, the impact of operators may

vary at different stages of the evolutionary process. To address this issue, MAB have been

proposed as a means to dynamically select genetic operators.

An interesting idea is the Adaptive Operator Selection (AOS) [51] method, which

allows for the dynamic selection of genetic operators and their target individuals in each

generation based on online information. AOS employs the UCB1 policy to determine

the genetic operator to be used at any given moment during the evolutionary process.

This decision is based on the historical impact of the operator on the performance of the

population. Consequently, promising operators are selected more frequently, while even

33

3.3. MULTI-ARMED BANDITS IN EVOLUTIONARY ALGORITHMS

the least effective operators are not completely disregarded. AOS analyses updates to

the UCB1 policy to adapt to the current location of the population in the search space.

The rationale behind this is that operators that initially performed poorly might become

useful at later stages of the search. Thus, the problem of selecting a genetic operator is

modelled as a Dynamic Multi-Armed Bandit (DMAB).

The effectiveness of AOS was evaluated in the context of multi-objective optimisation

in a study by Li et al. [106]. Multi-objective paradigms pose challenges in defining fitness

improvement because an improvement in one objective may result in a decline in per-

formance for other objectives. To address this issue, the Fitness-Rank-Rate-based Multi-

Armed Bandit (FRRMAB) model was proposed, which enables the integration of AOS

with the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D).

The FRRMAB scheme employs the UCB1 policy with fitness-rate-rank values as rewards.

A variety of extensions to AOS have since been proposed [44, 51, 52, 53, 106, 115].

In a study by Liu et al. [108], a bandit-based mutation operator is introduced and

used within a Random-Mutation Hill-Climber (RMHC) algorithm, referred to as Biased-

mutation RMHC (B-RMHC). In this approach, the genome of an individual is represented

as an array of bandits, with each bandit having as many arms as there are available values

for that particular gene. For each gene, an urgency metric is computed based on the UCB1

policy. This urgency metric takes into account the potential improvement in fitness if a

mutation is applied to the current state for each gene. The gene with the highest urgency

value is then selected for mutation.

The Bandit-based Random-Mutation Hill-Climber (Bandit-based RMHC) is expanded

to work with populations of more than one individual and non-binary genes in [58]. The

authors compared different RHEA variants using the GVGAI framework [131]. The collec-

tion of enhancements to RHEA, mostly discussed in Section 3.2, include using the bandit-

based mutation operator from [108], adding information from the statistical tree [132],

using Monte Carlo simulations [83], and using a shift buffer to partially reuse the popu-

lation generated on the next decision within the same game.

The NTBEA [104] is a RMHC variant designed to deal with noisy and expensive

discrete optimisation problems. NTBEA generates a set of neighbouring individuals from

a current solution using a mutation operator, seen as arms of a MAB. It then calculates the

UCB1 value for each offspring using an N-Tuple Fitness Landscape Model, which stores

the rewards and visits of each n-tuple of gene values. The iterative selection process picks

the neighbouring individual with the highest UCB1 value. By using the N-Tuple model, it

becomes possible to estimate the fitness of unsampled solutions, thus saving computational

resources. NTBEA provides informative statistics for each parameter choice and their

combinations, and also allows explicit control over the balance between exploration and

exploitation in the algorithm [112]. We mentioned NTBEA in Section 3.1, demonstrating

34

3.4. ONLINE EVOLUTIONARY-BASED PLANNING IN GAMES

Table 3.3: Multi-Armed Bandit approaches in Evolutionary Algorithms.

Modified in EA Bandit’s arms Name Ref.

Fitness Evaluation Individuals CERL [97]

NTBEA [104]

(No given name) [136]

Offspring generation Genetic operators AOS [51, 106]

Bandit-based RMHC [108]

BGP [82]

Genes Bandit-based RMHC [108]

States of a gene Bandit-based RMHC [108]

Search space regions URDS [46]

the intersection between MABs and EAs when the latter are used to evolve MCTS.

NTBEA has been tested for automatic game improvement [104] and for the optimisa-

tion of game agents [110, 112]. In the context of automatic game improvement, the fitness

function used is the difference in scores between agents with different skill levels. The hy-

pothesis is that a game will be more enjoyable if the player feels a sense of improvement

over time, as reflected in the difference in scores achieved by these agents. NTBEA has

proven to be robust when compared to both vanilla RMHC and B-RMHC in [104].

In the aspect of optimising game-playing agents, the fitness function measures the

performance of the agent across a set of games. In a recent study [112], NTBEA was

compared to Sequential Model-based Algorithm Configuration (SMAC) [84], Grid Search,

and a multi-valued version of Sliding Window compact Genetic Algorithm (SWcGA) [110].

The results showed positive outcomes for NTBEA. A mix of a Compact Genetic Algorithm

(cGA) with MABs is proposed as future work in [110]. Table 3.3 summarises the different

ways in which MABs have been used to influence EAs.

3.4 Online evolutionary-based planning in games

Although EAs have been used to play games and to improve the performance of game-

playing agents with offline optimisation as explained in Section 3.1, we want to emphasize

that the use of EAs for online decision-making in games is far less common. It is common

to find EAs being used to learn specific aspects of a game offline, such as heuristic evalua-

tions of game states or evolution of behaviour trees [128, 123]. The optimised models can

then be used with other algorithms that are better suited for decision-making. EAs have

been sucessfully used to evolve NNs offline for playing games like 9x9 Go [140], check-

ers [36, 37], othello [121], and chess [55]. Another approach involves optimising plans by

35

3.4. ONLINE EVOLUTIONARY-BASED PLANNING IN GAMES

learning from a database of human-explained strategies, which can be used to play real-

time games, as in the Stochastic Plan Optimisation (SPO) [169]. On the other hand, it is

challenging to incorporate EAs for online decision-making in games, because of the con-

strained computational resources. The efficiency of decision-making agents is a primary

concern, especially in real-time games, but even in turn-based games, resource limita-

tions can pose challenges. However, certain EA variants, such as the RHEA [129] or the

RMHC, have shown robustness and can compete with MCTS under similar constraints

in some domains. In this section, we summarise some EA approaches used for online

decision-making in games.

RMHC [108] is one of the simplest forms of an EA used in games where the genes of

a single individual, modelled as a sequence of actions, are mutated on each generation to

generate offspring. The best individual is kept as a parent for the next generation, and the

process is repeated. The output of the algorithm is the first action of the best individual.

Improvements for this algorithm were presented in Section 3.3.

RHEA evolves a population of action sequences and outputs the first action in the

best individual when stopped. RHEA has unique characteristics that make it well-suited

for certain games. The length of the solutions can be adjusted to address sparse rewards

by increasing the likelihood of sampling states that provide useful information for the

search. However, like any EA used in real-time games, RHEA has limitations due to small

population sizes and a limited number of generations, emphasising the need for an effective

search within the solution space. To enhance RHEA’s performance, several extensions

combine it with MCTS’s statistical tree [58]. This combination allows for tracking rewards

and producing better-informed solutions.

Other EAs used for online decision-making include OEP [91] and Real-time NeuroEvo-

lution of Augmenting Topologies (rtNEAT) [160]. OEP is an EA designed to construct

sequences of atomic actions in games with complex turns, similar to RHEA. It evolves a

plan for a full turn, which consists of multiple atomic actions. The full action sequence

of the best individual is returned and executed at the end. OEP has been tested with

good results in real-time games like StarCraft [172] and strategy card games like Hero

Academy [93]. Its extension, Continuous Online Evolutionary Planning (COEP) [92], en-

hances both OEP and RHEA by continuously improving solutions with newly acquired

information during gameplay.

On the other hand, rtNEAT evolves NNs that guide the behaviour of the agent in

real-time games. It replaces the current network with a more complex one after a few

game ticks, maintaining a small population that is evolved in parallel. On the same track

as rtNEAT, it is common to use EAs for neuroevolution [59] and subsequently employ

the evolved NN in a game. For instance, in [165], a neural agent is evolved to control a

simulated racing car. Another example can be found in [1], where Multi-Objective Genetic

36

3.5. ARTIFICIAL INTELLIGENCE-BASED DECISION-MAKING IN GAMES

Table 3.4: Historical instances of machines defeating expert humans in games

Year Game Aproach Reference

1979 Backgammon BKG 9.8 [20]

1994 Checkers Chinook [145]

1997 Chess DeepBlue [31]

1997 Othello Logistello [30]

1998 Scrabble Maven [151]

2016 Go AlphaGo [154]

2019 DotA 2 OpenAI Five [21]

Programming (MOGP) is used to evolve racing car controllers that are not based on NNs.

Monte Carlo Tree Search Networks (MCTSnets) [75], makes MCTS adaptive with Deep

Neural Networks (DNNs) that learn the evaluation of the states, which statistics to track

at each node, the backpropagation operator and the expansion policy. Finally, another

interesting EA-based planning approach is Fast Random Genetic Search (FRGS), which

evolves plans for individual units in Real-Time Strategy (RTS) games.

3.5 Artificial Intelligence-based decision-making in games

Some of the most significant achievements of Artificial Intelligence (AI) agents defeating

human experts in their games are listed in Table 3.4. These human-machine confrontations

have historically captivated the masses as they serve as milestones reflecting progress in

the field of AI [32].

Games with increased complexities take longer to be conquered by AI agents. However,

in recent years, AI capabilities have been increasing, as have human expectations of them.

When DeepBlue [31] defeated the chess world champion in 1997, doubts arose on whether

or not the machine had humans helping it. With time, the strength of chess computers

could no longer be questioned, and machines became virtually unbeatable by any human

player. Nowadays, the most important chess tournaments broadcasted online feature a

“machine evaluation bar”, which shows who has the upper hand in a game with an

approximate evaluation of the game state. Thus, the machine’s evaluation is the closest

we have to the ground truth, but it is likely still inaccurate due to the complexity of chess.

Machines have surpassed humans in chess to the point where these evaluations are, on

occasion, incomprehensible to humans. To achieve the machine’s assessment of a position,

a player would sometimes need to find a series of incredibly complex moves. This makes

machines unrealistic training partners for humans seeking to improve their game, as they

will make moves that other humans are unlikely to make. Maia [116], an AI model trained

37

3.5. ARTIFICIAL INTELLIGENCE-BASED DECISION-MAKING IN GAMES

to imitate human playing styles, illustrates the types of positions that are challenging for

humans and the types of mistakes they can make.

AlphaGo [154] defeating Lee Sedol in the game of Go in 2016 was a significant break-

through for AI agents, given the large branching factor of the game of Go and the lack

of human understanding of it. AlphaGo trained two DNNs on games of human experts

to learn state evaluations (value network) and the likelihood of a move being a good

candidate for exploration (policy network). AlphaGo Zero [155] was later developed and

managed to beat AlphaGo without any human knowledge, relying solely on self-play. Al-

phaZero [153], the next generation of Alpha agents, was able to learn chess and shogi,

and defeated the best AI agents in these games by training exclusively with self-play.

Most recently, in 2019, OpenAI Five [21] defeated the world champion team of Defense

of the Ancients (DOTA) 2 players. The human team consisted of 5 players who competed

against the AI agent in a best-of-three series. The AI agent, trained through self-play,

managed to win two consecutive games. Dota 2 is a real-time 5 versus 5 game, where

the AI agent had to control 5 different characters in real-time, each with their own set of

skills and items, and each able to move freely in any direction throughout the map.

3.5.1 Games used for research in Artificial Intelligence

Multiple games have been used for AI research and some platforms offer multiple games

as training grounds for AI agents. For example, the GVGAI competition [131] offers a new

set of real-time videogames in each edition, all built using the Video Game Descriptive

Language (VGDL) [146]. The competition aims to have agents compete and determine

which one excels at General Video Game Playing (GVGP). Ludii [134] offers a diverse

range of abstract turn-based games, and also provides a scheme for defining games with

a set of “ludemes” (units of game information) that can be learned and considered by

AI agents. OpenAI Gym [26] offers problems in classic control, algorithmic, 2D and 3D

robots. It also features board games and Atari games with the integrated Arcade Learning

Environment (ALE) [16]. Other notable pages include Zillions of Games [41], General

Game Playing Base (GGP-Base) [143], the Mario AI competition [166] and Unity ML

agents [90].

Some games have been developed for research, such as Legends Of Code and Magic

(LOCM) [102], which is a simplified version of Hearthstone. Hearthstone is a popular

Collectible Card Game (CCG) with complex turns, stochastic events, and imperfect infor-

mation. In comparison, LOCM features a draft-based deck-building phase and simplified

gameplay. For research in RTS games, platforms like Extensive, Lightweight and Flexible

(ELF) offer games like Mini-RTS, Capture the Flag, and Tower Defence [164]. Mini-RTS,

for example, is a miniature version of StarCraft, which involves resource gathering, fog

38

3.5. ARTIFICIAL INTELLIGENCE-BASED DECISION-MAKING IN GAMES

of war, building troops, and commanding them to attack or defend on a 2D map. In

a work by Andersen et al. [6], a summary of RTS games and platforms used for Rein-

forcement Learning (RL) is presented, including their performance-focused game, Deep

RTS. Various RTS games, among others, are included in the IEEE Conference on Games

(CoG) competition, which is held annually and features a variety of games such as Bot

Bowl (a simulation of Blood Bowl, a board game with sparse rewards), Tales of Tribute

(a deck-building card game where players acquire cards from a shared pool), the Video

Game Championship (VGC) AI competition (a Pokèmon team-builder and battler), Dota

2, StarCraft, microRTS, and the multi-agent Google Research Football competition.

In recent years, there has been an increase in research using newly available euro-style

tabletop games such as Settlers of Catan, Ticket to Ride, and Carcassonne. Although

most of these games are multiplayer, there is a preference for limiting the player pool to

two. Carcassonne, in particluar, remains a challenge where few AI-based approaches have

been attempted [5, 19, 78]. It is a game with scalability potential that offers a variety of

strategies, making it interesting for AI research and is one of the games used in this work.

A detailed introduction of the game of Carcassonnne will be presented in Chapter 4.

39

Part II

Contributions of this thesis

40

4
Test problems and their analysis

Related publication: Fred Valdez Ameneyro, Edgar Galván, and Ángel Fernando Kuri

Morales. “Playing carcassonne with monte carlo tree search”. In: 2020 IEEE Symposium

Series on Computational Intelligence (SSCI). IEEE. 2020, pp. 2343–2350

4.1 Introduction

In this chapter we undertake a comprehensive analysis of game tree characteristics that

significantly influence the tree policy of Monte Carlo Tree Search (MCTS), focusing on

both the reward distribution and structural properties of the game tree. This analysis

is critical for selecting and developing appropriate test problems for evaluating MCTS

selection policies and for guiding the development of new MCTS variants.

To effectively measure and analyse the rewards likely to be encountered in these prob-

lems by MCTS algorithms, we introduce the initial belief value. This metric evaluates

the potential outcomes of the default policy within a domain, providing insights into how

these outcomes can steer the decision-making process of the MCTS. We propose the use

of the Function Optimisation Problem (FOP), a synthetic domain that models continuous

search spaces as decision trees, and Carcassonne, a game with intricate strategic elements

and a unique feature set.

FOP is a toy problem where the rewards can be arbitrarily set. Furthermore, its game

tree has a fixed branching factor and fixed tree depth, which allows for a focused analysis

of the impact of the tree policy on the search. FOP has been previously used to analyse

the behaviour of decision-making algorithms like the Hierarchical Optimistic Optimisation

(HOO) in [29] and MCTS in [87]. In this chapter, we use FOP to analyse the impact of

the tree policy on the search and to compare the performance of MCTS variants.

Despite being relatively underexplored in academic research, Carcassonne offers rich

opportunities for a detailed evaluation of MCTS algorithms due to its complex nature and

strategic depth. Indeed, we have used Carcassonne in our recent paper [5], including an

41

4.2. THE TREE POLICY AND ITS INTERACTION WITH THE GAME TREE
PROPERTIES

Table 4.1: Game tree characteristics that influence MCTS’s tree policy behaviour

Classification Characteristics

Tree structure

Abrupt termination states

Tree depth

Branching factor

Game state equivalences
Progression
Transpositions

Reward distribution

Bias in suboptimal moves
Optimistic moves

Shallow search traps

Smoothness
Sparse rewards

IEEE Transactions on Games article [61], demonstrating its relevance. Besides the base

game, we propose simplified Carcassonne single-player variants designed to retain the

core strategic elements of Carcassonne while reducing complexity, allowing for a focused

analysis of their reward landscapes in the context of MCTS research.

4.2 The tree policy and its interaction with the game tree prop-

erties

The success of MCTS in different areas mainly depends on how well its tree policy works.

This interaction has been a major focus in research to make MCTS better, as discussed

in many studies [27, 162]. Table 4.1 shows a list of game tree features that affect how

well MCTS performs. These features are grouped based on whether they describe the

structure of the tree or its reward distribution.

It should be noted that all the characteristics listed in Table 4.1 are specific to games

with atomic turns. As explained in Chapter 2, a turn is considered atomic if a single

decision is required from the decision-maker before the turn (or frame) ends. A detailed

discussion of each of these properties is presented next.

• Abrupt Termination States. According to [120], abrupt termination states refer to

pronounced asymmetries in the depth of the game tree, and their existence can impact

the growth of the statistical tree as well as lead to variations in reward certainty. When

abrupt termination states are added to the statistical tree, they influence the compar-

isons made between nodes. While the evaluation of any terminal state is certain, the

vanilla version of MCTS treats them similarly to any other node, iteratively sampling

them again. In this way, they waste resources when selected multiple times and hinder

information gain. As abrupt termination states get closer to the root, the amount of

42

4.2. THE TREE POLICY AND ITS INTERACTION WITH THE GAME TREE
PROPERTIES

Q=.5
 n=2

Q=.2
 n=2

 Q=.8

 Q=.2

Q=.8
 n=1

Q=.2
 n=1

Q=.2
 n=1

Q=.2
 n=1

 Q=.2

a b

Figure 4.1: Sample statistical tree generated by an MCTS algorithm, where each
node has a reward Q and a visit count n. The dotted nodes represent states from
the game tree that have not been added to the statistical tree yet.

wasted resources is also likely to increases. One solution to this issue is to propagate

the reward certainty to the parent node, as the MCTS-Solver [174] does.

• Tree Depth. The number of turns a game has impacts the rollout resources and the

volatility of its rewards. The reward certainty of a node is lower as the rollout simulates

more moves because the sampled outcomes become less likely. Thus, uneven depth

among branches of the tree causes certainty disparities among nodes, a phenomenon

rarely addressed by MCTS research. Moreover, in cases where a game terminal state

cannot be reached a heuristic evaluation may be necessary to predict the result instead

of full playouts. Sometimes, this heuristic is used to evaluate states that are found

after a certain number of turns from the state being evaluated. This is known as early

termination, which needs a cut-off depth parameter that can be adjusted to enhance

the performance of MCTS [109].

• Branching Factor. In MCTS, the classical tree policy stops the selection process when

it encounters a node that can be expanded. As the branching factor increases, every

node has more edges to explore and the exploitation decreases; because most of the

iterations are unable to reach deeper levels of the game tree [125]. Additionally, the

presence of an uneven number of edges throughout the game tree can result in unfair

comparisons between nodes. The following example will illustrate the impact of the

branching factor on tree search algorithms.

Let us consider the statistical tree from Figure 4.1, where the states represented by

nodes a and b have different branching factors. Moreover, both nodes a and b have a

child node with a similar maximum reward, Qmax = 0.8. In this scenario, node b is

more likely to yield the rewards from its best child upon expansion, making Qb larger

43

4.2. THE TREE POLICY AND ITS INTERACTION WITH THE GAME TREE
PROPERTIES

than Qa on each subsequent iteration. In other words, P (Qa < Qb) >
1
2 will most likely

remain true at all times. This implies that, despite their shared maximum reward, node

b will be preferred over node a by tree policies like Upper Confidence Bounds (UCB1)

that do not account for the branching factor.

• Progression. Some game domains might have loops in their game trees. This means

that actions do not always move the game closer to an end. A game is called pro-

gressive [54] if it always naturally reaches an end. On the other hand, a game is non-

progressive if it can get stuck in a loop. Such a loop happens when a game state s is

reached more than once during a single playthrough. In simpler terms, the same state

s appears again in the subtree that also starts from s.

Sometimes, progressive games have rules to limit repeating the same state or move.

For example, in Chess, repeating the same game position three times results in a draw.

If a game can end early due to a limit on repeating states, its game tree might have

“abrupt termination states”, which are explained later in this section.

According to [39], while the following game characteristics do not directly affect MCTS

performance negatively, accounting for them can be beneficial:

• Game State Equivalences. Consider two game states, si and sj . They are consid-

ered equivalent if their corresponding subtrees share the same cardinality and rewards.

This often happens due to symmetries in the game, like in Go-Moku, Othello, or Go.

Removing such equivalent states from the statistical tree can simplify the task of tree

search algorithms for these games by reducing its complexity.

• Transpositions. Are repeated game states reached through different sequences of ac-

tions. Essentially, a state s shows up in several parts of the game tree, excluding each

of its corresponding subtrees.

Game state equivalences and transpositions are normally only considered when the

domain is known to have them. Addressing them requires sharing information across

different parts of the tree during the search for identification and the addition of rules to

the tree search algorithms. It is not necessary to avoid them in test problems for MCTS

variants, as they do not hinder the performance of the algorithm. We consider them in

some instances of the test problems proposed in this chapter to demonstrate their impact

on the search.

Other features impacting MCTS performance are based on how rewards are given to

game states. These include:

• Bias in suboptimal moves. Describes the comparison of the rewards of the less

effective moves between players. It is easier to identify an optimal move when there

is a big difference between its rewards and that of the suboptimal moves. Moreover,

when suboptimal moves have relatively larger rewards, they become harder to ignore

for the search algorithm. The disparity of rewards between the suboptimal moves of the

44

4.2. THE TREE POLICY AND ITS INTERACTION WITH THE GAME TREE
PROPERTIES

players produces a bias. Such bias can make finding good moves harder for one player,

creating an unfair situation in which one player is at a greater risk than the other [85].

• Smoothness of the underlying reward distribution. In MCTS, the reward of any

node is approximated by averaging the results of all the rollouts executed from the

subtree with that node as the root. Therefore, a good action from a parent node can be

undersampled if its alternatives perform poorly because the reward of that parent node

averages them out, making the parent node less appealing to the search. Thus, a node

with volatile rewards might have a lesser average reward as a consequence than a node

with more consistent rewards. Rewards are expected to be consistent if the underlying

value function is smooth [87]. Otherwise, the rewards will have a high variance.

• Shallow search traps. A state strap is considered a k-level shallow search trap for

player p if its opponent has a winning strategy that ends the game in at most k plies.

In other words, player p cannot prevent a loss from strap if their opponent follows the

winning strategy. If a state srisk has an available move (or multiple moves) that leads

to a shallow search trap strap, then player p is said to be at risk at state srisk.

The word “shallow” refers to the number of actions needed to complete the game

starting from the search trap. If the opponent can secure a favourable result after

k plies, it is called a k-level shallow search trap. Shallow search traps are states in

adversarial domains that are particularly challenging for MCTS algorithms to handle,

as stated by [137, 138].

In games like Chess, shallow search traps are present in almost every stage of the game

in the form of checkmate in k moves, which also lead to abrupt termination states.

Although there is no defined shallow search trap density threshold, games are deemed

tactical if their game trees consistently contain identifiable k-level shallow search traps,

(i.e. with k ∈ 3, 5).

• Optimistic moves are moves that seem favourable initially but can be refuted by

the opponent, leading to undesirable game states. Optimistic moves mislead the search

until their refutation is discovered, thus having detrimental effects on MCTS by mak-

ing the algorithm take longer to converge to the minimax value [54]. In MCTS, the

evaluation of a node si tends to converge towards the value of its most promising child,

as that child is more frequently sampled during the search process than its siblings. As

a result, optimistic moves can adversely affect the tree search by propagating inaccu-

rate evaluations and hindering the efficient use of computational resources. The search

will be increasingly impacted by the optimistic move as the difficulty in identifying

the refutation increases. This demonstrates that the average reward may not always

be a suitable evaluation for a state, which has led to the exploration of alternatives in

literature [33, 25].

• Sparse rewards. Standard MCTS rollouts operate under the assumption that every

45

4.3. TEST PROBLEM: FUNCTION OPTIMISATION PROBLEM

path in the search tree can ultimately yield a reward. In domains with sparse rewards,

like non-progressive games, standard MCTS rollouts might struggle to consistently

retrieve a reward, leading to an ineffective tree search. Common approaches to address

sparse rewards are heuristic evaluations or sub-goals [66].

These reward-based game tree characteristics are largely influenced by how nodes are

evaluated, and the information distributed via the backup operator.

We now proceed to define which tree structure characteristics are desired in domains

used for testing the behaviour of the MCTS’s tree policy and their variants, based on our

previous discussion. We want to be able to compare the exploration versus exploitation

balance, a key component of MCTS, which requires tracking the construction of the

statistical tree. To this end, we chose domains with a constant tree depth, implying that

the domains should not have abrupt termination states which could drastically influence

how the statistical tree is built. Equally, the game must be progressive and without sparse

rewards, to ensure good quality rewards, as we are interested to see how MCTS makes

use of the information acquired. For interpretability purposes, our MCTS variants do

not address transpositions and game state equivalences. Finally, we want to be able to

compare the performance of the MCTS variants with a combination of different reward

distribution characteristics (bias in suboptimal moves, optimistic moves, shallow search

traps, and smoothness). Therefore, we chose domains that exhibit these characteristics to

different degrees and allow us to manipulate them.

The following section presents the FOP, the first problem used in this work, which is

a synthetic domain that can be used to model continuous search spaces as decision trees.

The FOP is used to analyse the performance of MCTS across various reward structures

while providing insights into the underlying fitness landscape.

4.3 Test problem: Function Optimisation Problem

The Function Optimisation Problem (FOP) has a game tree representation with standard

characteristics. These include a small and consistent branching factor, a constant tree

depth, a progressive nature, a fully symmetrical tree, and no abrupt termination states.

It was inspired by an analysis on tree search in [29], first tested with MCTS in [87] and

further explored in our recent work in [4].

The FOP provides a means of modelling domains with continuous search spaces as

decision trees, which can be solved using planning algorithms. It also enables the visualisa-

tion and interpretation of the underlying reward landscape, which facilitates the analysis

of the distribution of locally-expanded nodes by any tree search algorithm. Furthermore,

the FOP is a simple problem with known rewards that enables comprehension of the

interplay between the game tree and the tree search agents. A definition of the FOP is

46

4.3. TEST PROBLEM: FUNCTION OPTIMISATION PROBLEM

Table 4.2: Function Optimisation Problem definition

Aspect Description

Objective Find the global optima (maximum) of the function f(x), where
x ∈ R, a0 ≤ x ≤ b0.

States Each state si is a subdomain of the initial domain, with si = [ai, bi]. A
state is considered terminal when its domain width is smaller than a
given threshold, i.e., when bi − ai < t. The reward r of any terminal state
is determined by a sample from a Bernoulli distribution, with
ri ∼ Bern(f(ci)), where ci is the state’s central point, i.e. ci = (bi−ai)

2 . In
order to ensure that f(x) can be used as a probability,
0 <= f(x) <= 1|x ∈ [a0, b0] must hold.

Actions From any state si, each available action leads to one of k possible
partitions of the current domain, where k is the branching factor. For
instance, if si = [ai, bi] and the branching factor is k = 2, each available

action will lead to one of two possible next states: sj1 = [ai,
(ai+bi)

2] or

sj2 = [(ai+bi)
2 , bi]. Any state sj that is available from si will have a size of

ai−bi
k .

presented in Table 4.2.

In the FOP, each state represents a subdomain for variable x. The initial state in our

case starts at [a0, b0], where a0 = 0 and b0 = 1. The available actions are always a set of

k evenly spaced partitions of the domain of the current state, where k is the branching

factor. Each partition’s size is (bi − ai)/k. The objective is to find the state in which the

global maximum of a given function f(x) occurs, with x ∈ R and a0 ≤ x ≤ b0. A state is

considered terminal if its domain is smaller than the threshold t, which is set to t = 10−6.

The MCTS rollouts use a random uniform default policy to choose actions. Once a

terminal state st is reached, f is evaluated at the central point of the state ct. The reward

rs can either be 1 or 0 and is sampled from a Bernoulli distribution, with rs ∼ Bern(f(cs)).

Therefore, since f(x) is used as a probability, it is ensured that for the 5 functions used

in this chapter, the function f(x) satisfies 0 ≤ f(x) ≤ 1 for all x in the domain [0, 1].

Figure 4.2 illustrates a portion of the game tree for the FOP. When the branching

factor is k = 2, the game tree becomes a binary tree.

4.3.1 Test Functions

One peculiarity of the FOP is that slopes in the function do not influence the search.

Instead, the search is directed by the average of the function in each node’s subdomain.

To refine our discourse, we introduce a new term, which we will refer to as the initial

belief value. The initial belief value of node ni, denoted as µi, represents the average

of the initial reward assigned by an MCTS agent when node ni is first expanded and

47

4.3. TEST PROBLEM: FUNCTION OPTIMISATION PROBLEM

Game
tree

Function

Terminal
nodes

States

1

0

Terminal
nodes

Figure 4.2: Game tree of the Function Optimisation Problem with a maximum
depth of two and a branching factor of two. Each node represents a domain of the
function, illustrated in “States”. Actions lead to evenly distributed subdomains of
the current state’s domain. When a domain is smaller than a threshold, the state is
said to be terminal. The evaluation of any terminal state is made at its central
point, as shown in the “Function” box at the bottom of the figure.

included in the statistical tree. Therefore, µi depends on the evaluation method of each

node, which has an unknown distribution D̂i. Note that when more nodes are expanded

from node ni and its reward is updated, the new reward will no longer be a sample from

D̂i given the tree policy’s influence.

The initial belief value has a great impact on how the statistical tree is built by MCTS,

as it shows how each node is likely to bias the search when it is first incorporated into the

statistical tree. It can be said that when a node has a greater initial belief value than its

siblings it will attract the search initially, as its exploitation term is likely to be greater

than the exploitation term of its siblings, at least on the first few iterations after they are

expanded. Hence, by knowing the initial belief value, we can predict in which order the

statistical tree will be built. That knowledge gives us the arguments to claim whether a

problem is deceptive or not for MCTS, as we will see in the next section.

The initial belief value of a node can be very different from the game-theoretical value.

The FOP problem allows us to compare the initial belief values with the game-theoretical

values of each node in the game tree, given that both values can be predicted. In FOP, the

48

4.3. TEST PROBLEM: FUNCTION OPTIMISATION PROBLEM

Figure 4.3: Plots of the functions used in the Function Optimisation Problem. The
vertical dashed red line illustrates their global maxima, except for f3, as it has
multiple optima on the first half of its domain. The domain (x-axis) and range
(y-axis) for each function extend from 0 to 1.

game-theoretical value of a node is the value of the maximum available in the subdomain

that it represents, and its initial belief value is calculated as illustrated in Figure 4.4.

When MCTS uses a Monte Carlo simulations as its default policy, we calculate the

initial belief value of node ni as the average evaluation of every terminal state reach-

able from ni. In the FOP, the initial belief value of a node ni, called µi, converges to

Equation 4.1 as the size of the terminal states decreases.

µi =

∫ bi
ai

f(x)dx

bi − ai
(4.1)

where ai and bi are the beginning and end of the domain represented by node ni respec-

tively, and f(x) is the function of the FOP. Figure 4.5 presents an analysis of the initial

belief values of the game tree of f1, formally expressed in Equation 4.2. The same analysis

is done for the rest of the functions in Figure 4.3. These analyses illustrate the expected

rewards that MCTS algorithms will find when traversing the game tree.

49

4.4. DEFINITION OF THE FUNCTIONS AND THEIR ANALYSIS

Figure 4.4: The initial belief value of a node in FOP when MCTS uses Monte
Carlo simulations as its evaluation method is approximated by averaging the
outcomes of all the reachable terminal states from that node, as every terminal is
equally likely to be sampled. The dashed nodes have not been added to the
statistical tree. Node a has 4 unique reachable terminal states, while node b has 2.

4.4 Definition of the Functions and their analysis

f1 shown at the top of Figure 4.3 and plotted again at the top of Figure 4.5 for convenience,

depicts a unimodal function. The global optimum is represented by a vertical dashed red

line. The function is defined by Equation 4.2.

f1(x) = sin(πx) (4.2)

There is only one global optimum in f1, plotted at the top of Figure 4.5, and it can

be accessed from both sides of the search when the branching factor is equal to 2. This

function can aid in comprehending how MCTS behaves when multiple branches of the

tree have the same rewards, how biased the search can become owing to the randomness

of the rewards, and whether both sides of the search converge to an even ground.

f2, proposed in [29], depicted at the second plot from top to bottom in Figure 4.3 and

plotted again at the top of Figure 4.6 for convenience, is a multimodal function with a

single global optimum and multiple local optima. The function is defined by Equation 4.3.

f2(x) = 0.5 sin(13x) sin(27x) + 0.5 (4.3)

This function is characterised by a smooth profile across its entire domain, with dis-

tinct gradients that aid in identifying optimal regions. It helps to exemplify resource

50

4.4. DEFINITION OF THE FUNCTIONS AND THEIR ANALYSIS

Figure 4.5: Initial belief values of the nodes in the game tree of f1, plotted at the
top. Each bar in the graph represents the initial belief value for each node within
the tree. Sibling nodes are enclosed in the same black box. The horizontal dotted
line represents the maximum initial belief value at each depth, facilitating
comparison with other bars.

allocation when multiple easily found optima show similar levels of significance.

Figure 4.6 indicates that the rewards around the global optima are not the most

favourable for the search up until a tree depth of 5. Up until tree depth 2, the best

rewards come from the right-hand side of the domain, but in tree depths 3 and 4 the

highest rewards are attainable on the left-hand side, potentially attracting the search’s

focus. This means that the tree search will invest resources on the left-hand side of the

domain until the rewards on the right-hand side become more significant by sampling the

best node at tree depth 5.

f3, illustrated at the third plot from top to bottom in Figure 4.3 and plotted again at

the top of Figure 4.7 for convenience, is a rugged function inspired by [87] characterised

by several global optima scattered throughout the first half of the domain from left to

right. As the domain ranges from 0 to 0.5, the optimal points become progressively less

dense. Conversely, there is a smoother but less rewarding region in the range of 0.5 to 1.

Equation 4.4 defines this function.

51

4.4. DEFINITION OF THE FUNCTIONS AND THEIR ANALYSIS

Figure 4.6: Initial belief values of the nodes in the game tree of f2, plotted at the
top. Each bar in the graph represents the initial belief value for each node within the
tree. Sibling nodes are enclosed in the same black box. The horizontal dotted line
represents the maximum initial belief value at each depth, facilitating comparison
with other bars. The vertical dashed red line shows f2’s global maximum.

f3(x) =

{
0.5 + 0.5| sin(1

x5)| when x < 0.5,

7
20 + 0.5| sin(1

x5)| when x ≥ 0.5.
(4.4)

The hypothesis in [87] was that MCTS will be inclined to explore the smooth region

of the function rather than the rugged region in order to minimise risk. This notion

arises from the assumption that the search might encounter unfavourable rewards near

the optima at the rugged portion of the function, potentially discouraging the search from

further exploration in those areas.

Figure 4.7 shows that the search will initially focus on the rugged area because the

maximum initial belief values are present on the left-hand side of the function for tree

depths 1 and 2. At Depths 3 to 6, the right-hand side of the function becomes more

attractive and will get more attention once they are reached, as it contains the nodes

with the largest initial belief values.

The search will not be able to identify any global optima on the rugged side of the

52

4.4. DEFINITION OF THE FUNCTIONS AND THEIR ANALYSIS

Figure 4.7: Initial belief values of the nodes in the game tree of f3, plotted at the
top. Each bar in the graph represents the initial belief value for each node within
the tree. Sibling nodes are enclosed in the same black box. The horizontal dotted
line represents the maximum initial belief value at each depth, facilitating
comparison with other bars.

domain until it reaches a tree depth of 7. Even at this depth, the maximum values of

the smooth region remain competitive, making it hard for the algorithm to focus on

approximating more to the global optima.

f4, is one of our proposed functions, denoted as f4 in the fourth row from top to bottom

in Figure 4.3 and plotted again at the top of Figure 4.8 for convenience, is a deceptive

function that contains multiple local optima. Equation 4.5 defines this function.

f4(x) = 0.5x + (−0.7x + 1) sin(5πx)4 (4.5)

Analysing Figure 4.8, we can see that the maximum initial belief values are present on

the right-hand side of the domain for tree depths 1,2 and 3, whereas the global optimum

is on the left-hand side. This means that the global optimum of f4 will remain concealed

within an initially less rewarding region of the domain until it is eventually sampled,

making f4 a deceptive function designed to guide the search away from the global optimum.

53

4.4. DEFINITION OF THE FUNCTIONS AND THEIR ANALYSIS

Figure 4.8: Initial belief values of the nodes in the game tree of f4, plotted at the
top. Each bar in the graph represents the initial belief value for each node within the
tree. Sibling nodes are enclosed in the same black box. The horizontal dotted line
represents the maximum initial belief value at each depth, facilitating comparison
with other bars. The vertical dashed red line shows f4’s global maximum.

This is achieved by surrounding the global and local optima with narrow regions of high

reward, meaning that FOP states will not return high rewards on those regions until the

state is small enough, which happens at tree depth 4. Hence, reaching a certain depth is

necessary to observe a substantial increase in rewards near the local or global optima.

We can summarise the difficulty of finding the f4’s global optimum in three factors.

First, the global optimum is located within a narrow region of the domain. Second, the

global optimum is located within an initially less rewarding region of the domain. Third,

the local optima have comparable values to the global optimum.

f5, also proposed in this work, is shown at the bottom of Figure 4.3 as f5 and is plotted

again at the top of Figure 4.9 for convenience, is also a deceptive function containing

multiple local optima. The highly rewarding region around the global optimum is narrower

than in f4 and is expected to be harder to find. Equation 4.6 defines this function.

f5(x) = 0.5x + (−0.7x + 1) sin(5πx)80 (4.6)

54

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.9: Initial belief values of the nodes in the game tree of f5, plotted at the
top. Each bar in the graph represents the initial belief value for each node within the
tree. Sibling nodes are enclosed in the same black box. The horizontal dotted line
represents the maximum initial belief value at each depth, facilitating comparison
with other bars. The vertical dashed red line shows f5’s global maximum.

f5 exhibits similar characteristics to f4. The former function, however, features thinner

regions of high rewards around both local and global optima. This results in the best

rewards being concealed deeper within the tree and making it more challenging for search

algorithms to find them. As depicted in Figure 4.9, the largest initial belief values are

concentrated in the right-hand side region in tree depths 1 through 5. The maximum

initial belief value is found near the global optimum only until tree depth 6. It is expected

that the significant disparity in rewards between the left-hand and right-hand sides will

deter exploration around the global optimum for a relatively prolonged search period.

4.5 Test problem: The Game of Carcassonne

Carcassonne is a board game designed by Klaus-Jürgen Wrede, released in 2000 and

winner of the “Spiel des Jahres” (game of the year) award in 2001. The game takes its

name from the town of Carcassonne in southern France, known for its fortified city walls.

55

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.10: Carcassonne base game tiles with their duplicate count. Taken
directly from the original rulebook.

Of particular interest for our research is the base version of Carcassonne. This version

is used for the Carcassonne World Championship, which has been held annually since

2006. Although the game has simple rules, it involves complex player interactions and

deep strategic opportunities, making it a challenging and interesting subject for Artificial

Intelligence (AI) research.

4.5.1 Carcassonne base game description

In Carcassonne, players take alternate turns trying to score more points than their oppo-

nent. To score points, players use figurines called “meeples” (short for “my people”). The

game is played with a stack of 71 tiles, composed of tiles with 24 unique configurations,

each with a different duplicate count, as shown in Figure 4.10.

The game begins with the “starting tile” (tile D in Figure 4.10) on the board, separate

from the main stack. The remaining 71 tiles are shuffled and placed in a face-down stack

to be randomly drawn throughout the game. Players then take alternate turns adding

56

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.11: Sample state of the game of Carcassonne after 2 turns of play. The
starting tile (a) is the same for each game and is on the board when the game
begins. Player 1 played tile b and placed a meeple on the field. Player 2 played tile c
with a meeple also on the field. The city in tile a was “completed” when tile c was
played, while the road is still incomplete.

tiles next to the ones on the board with the only limitation being that the edges of the

tiles must match the edges of the tiles they are placed next to. In very unusual cases,

it is possible that a tile cannot be legally placed on the board. In this case, the tile is

discarded out of the game and a new tile is drawn from the stack.

As the game progresses, the board expands as players add tiles to it. The game con-

cludes when the tiles are exhausted. An example of a Carcassonne board is shown in

Figure 4.11.

Each player’s turn consists of four phases:

• Drawing a tile: A tile is drawn from the stack of tiles at random. If there are no tiles

in the stack, the game is over.

• Placing a tile: The player chooses any valid spot on the board to play the drawn tile.

If it is not possible to legally place the tile, it is discarded and a new tile is drawn. Tile

placement follows two rules: (i) the tile must be played in contact with at least one tile

that is already on the board, and (ii) all the features on the edges of the played tile

that are in contact with other tiles must match the features on the edges of those tiles.

• Placing a meeple: The player can choose to place a meeple on a feature of the played

tile. A meeple cannot be placed in a feature that, once connected with the board,

already has any meeples on it.

• Scoring a feature: All the features with meeples that were completed with the tile

placement are scored and those meeples are returned to their owners.

The base game of Carcassonne has four features: roads, cities, monasteries, and fields,

each one with its unique scoring and completion rules, described in Table 4.3.

In Carcassonne, points can only be scored using meeples, which are limited to 7 per

57

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Table 4.3: Carcassonne features completion and scoring rules.

Feature Completion
condition

On completion End of the game

Road No more tiles can be
added to the road

Return meeples. 1 point per
tile

1 point per tile

City No more tiles can be
added to the city

Return meeples. 2 points
per tile + 2 points per shield

1 point per tile + 1
point per shield

Cloister Cloister’s sides and
diagonals have tiles

Return meeple. 9 points 1 point + 1 point per
surrounding tile

Field Never completed N/A 3 points per adjacent
completed city

player. If a meeple is played, it remains on the board and cannot be used again until it is

released. When a feature is completed, the meeples in that feature are released and the

player or players with the majority of meeples in that feature receive its points. When a

meeple is released, it is returned to its owner to be used again.

Throughout the game, players diligently monitor their scores. Upon reaching the

game’s conclusion, all unfinished features that are occupied by meeples are scored fol-

lowing the criteria outlined in the final column of Table 4.3. The player who has the

highest total score is proclaimed the victor. To predict the potential outcome of the game

at any given non-terminal turn, one can compute its final score as though the game had

concluded at that specific moment. This predictive heuristic is well-known in competitive

Carcassonne and is called the “virtual score”.

Carcassonne’s game tree

Research in Carcassonne is scarce. In her master thesis, [78] analysed its complexity,

concluding that it has a game-state complexity of approximately 1040 and a game-tree

complexity of approximately 10194, which are comparable to those of Chess and Go as

can be seen in Figure 4.12.

Although the analysis by [78] indicates an average branching factor of 55 for Carcas-

sonne, the number of possible resulting states after an action is significantly higher if we

factor in the tile drawn by the next player. The 71 tiles from the stack have 24 possible tile

designs. Some of those unique 24 tiles run out as the game progresses, therefore reducing

the potential outcomes from the random event. Regardless, the average branching factor

remains relatively consistent throughout the game given the proportional increase of the

board size.

Regarding Carcassonne’s random events, as the unique tiles vary in quantity, there is

always an uneven probability of drawing each of them throughout the game. Despite its

unpredictability, the game remains fully observable. Both players have access to informa-

58

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.12: State-space complexity and game-tree complexities in base log(10) of
games commonly used for research, including Carcassonne.

tion about the remaining tiles in the stack and possess complete knowledge of the game

state at all times.

Carcassonne is a game with atomic actions, despite them having four phases as we

previously described. The first phase (drawing a tile) corresponds to a random event.

The following two phases (placing the tile and placing a meeple) are modelled as single

actions where both the tile and the meeple are played simultaneously. This makes all

possible actions atomic, with or without a meeple. The final phase of the turn, scoring,

is automatic and does not require a decision from the player.

Thus, given its atomic turns and the random event at the beginning of each turn,

Carcassonne has a regular *-minimax tree (refer to Chapter 2). Moreover, because the

game’s length depends on the number of tiles only, it has a constant depth, meaning that

we do not have to worry about abrupt termination states in the game tree.

4.5.2 Carcassonne fitness landscape analysis

Conducting an analysis based on depth, similar to the one we did for FOP in Section 4.3,

is not feasible for Carcassonne due to its considerable branching factor and the indetermi-

nacy of optimal moves. Unlike in FOP, where we possess clear insights into the optima’s

location and can thus identify the best action, Carcassonne’s intricate fitness landscape

demands a different methodological approach.

The gameplay mechanics of Carcassonne incorporate a resource management dimen-

59

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

sion, given that players are restricted by the finite number of meeples they can play

throughout the game. This limitation injects the scoring system in Carcassonne with a

potentially deceptive quality. The following observations are made to support this claim:

(1) Players have a limited number of meeples, fewer than the total number of turns,

making it impossible to play a meeple on every turn. Therefore, employing a strategy

that uses meeples indiscriminately will likely lead to a shortage, preventing the player

from capitalising on scoring opportunities later in the game.

(2) The completion of features is uncertain due to the randomness of tile draws. It may

require several turns to complete a feature, and opponents have the potential to

block it. Consequently, the reclamation of meeples from completed features demands

strategic foresight and is not always assured.

(3) Situations may arise during the game where a player can claim, complete, and score

an unclaimed feature, all while retrieving the meeple used within the same turn. These

moments increase the strategic advantage of maintaining meeple availability.

In other words, adopting greedy strategies to maximise score gains on every turn

does not necessarily lead to optimal outcomes, as such approaches may lead to meeples

shortages and eventually lower scores. Greedy strategies are typically employed by inex-

perienced players who soon recognise them as suboptimal. This tendency also presents

challenges for algorithms based on the minimax principle, as they struggle to forecast

strategies that account for future meeple usage. This suggests that Carcassonne has a

deceptive fitness landscape with respect to its scoring system.

Scores in Carcassonne are a state evaluation function embedded within the game and

available to the players at all times. The virtual score (discussed in section 4.5.1) is even

more precise and is easy to calculate with the information available to the players. The

difference of final scores was proven superior by [78] when used to calculate the rewards in

MCTS upon the conclusion of a game, instead of the classic win-loss-draw type of reward,

and is the one adopted in this work.

Previous works that involve the game of Carcassonne and MCTS use the difference of

final scores as is [78] or divided by a large arbitrary number [19]. We remind the reader

that the original C proposed for UCB1 is
√

2 [10], meant for rewards in the range [0,1] [99]

(or occasionally [-1,1] for adversarial games) as it satisfies the Hoeffding inequality [79,

19]. In other words, very large rewards require equally large C values to be properly

explored. Similarly, dividing the scores by large numbers makes the rewards comparably

small, requiring smaller C values to strike a healthy balance. Thus, it is important to

define an upper bound for Carcassonne scores to find an adequate and standardised way

to normalise the score.

60

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Carcassonne maximum theoretical score

To the best of our knowledge, there is no formally estimated maximum score achievable

with the tiles of the base game of Carcassonne (71 tiles plus the starting tile), besides

empiric calculations. We now define a maximum theoretical bound for the score in Car-

cassonne that ignores the limitations of the number of players or the game version and is

easy to implement. In this way, our score bound is generalisable across different variants

of the game and for any amount of players with minimum overhead, enabling its indistinct

usage for tree search algorithms in Carcassonne. Our calculation of the maximum score

is shown in Equation 4.7.

Max Score = 2 ∗ pc + pr + pm + 3 ∗ nc ∗m (4.7)

where m is the number of initial meeples. pr and pm are the sum of the scorable potential

of the roads and cloisters in all the tiles, respectively. Similarly, pc is the sum of the

potential value of every city in every tile. To calculate nc, which is the maximum count

of completed cities achievable with the available tiles, we first introduce the concept of

a city opening. A city opening refers to a space on the board adjacent to an existing

city, requiring a city segment on the newly placed tile to match it. As an example, the

initial state of the game shown in Figure 4.11 has a city with one city opening. This also

means that any tile placed adjacent to the top of the initial tile needs to have a city in

it. Tiles that contribute to city completion are tiles that never increase the number of

city openings of cities already on the board when played on a city opening. With this

knowledge, we now define the tiles with city configurations that can contribute to city

completion, shown as A and B in Figure 4.13.

City configurations A and B in Figure 4.13 are the only ones that contribute to city

completion in the base game of Carcassonne. A and B include any tiles with that city

configuration regardless of the non-city features on the other sides of the tile. A and B

can be found more than once in a single tile if the cities are not connected in between

them. We can prove that any other tiles with cities, e.g. tiles with a single connected city

on three of its sides (see, for example, tile Q in Figure 4.10) cannot complete cities by

themselves by arguing that there is no possible arrangement of such tiles on the board,

where placing another of them decreases the number of city openings. In other words, if

a tile has the same city on three or more of its sides, that tile can never decrease other

cities’ opening count, hence not contributing to their completion.

Figure 4.13 defines the three basic city completion configurations: AA, AB, and BB.

These configurations represent the smallest possible completed cities and are the only

ones considered in the score calculation. Thus, we can calculate the maximum completed

cities nc in Equation 4.8 as follows:

61

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.13: Carcassonne city completion tiles (A, B) and their respective basic
completion configurations (AA, AB, BB).

nc = count(AA) + count(BB) + count(AB) (4.8)

where count(AA) = count(A)
2 , count(BB) = count(B)

4 and count(AB) is typically zero. It

equals 1 only in the specific scenario where there is exactly 1 leftover A city configuration

and 3 leftover B city configurations remaining. The rest of the city tiles in the stack

are assumed to fit in between the completed city configurations from Figure 4.13 for

simplicity. For this reason, the maximum score calculation counts every city in the stack

as if they were part of completed cities by multiplying their values by 2, to match the

rules described in Table 4.3. The assumptions done to calculate our maximum score in

Carcassonne are listed below:

• All scored points are attained by the same player.

• There are meeples available to score all the features throughout the game.

• There are enough turns to place and collect all the meeples required to score throughout

the game.

• There are as many completed cities as possible.

• There are at least as many farms as meeples.

• Every city is completed, and all cities on the tiles are part of those completed cities.

• Every road is scored, and all cities on the tiles are part of those completed cities.

• Every cloister is scored with the maximum score possible.

62

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

• Every farm is in contact with all the completed cities.

It should be noted that some of these assumptions are not always realistic in actual

gameplay. For example, it is not always possible to have every city in contact with every

farm. The listed assumptions are aimed at simplicity, as most of their limitations are

far from trivial and may greatly vary from one version of the game to another. Using

our calculation, we find that the base game of Carcassonne has a maximum score of 593

points, with the following breakdown:

• 120 points from cities.

• 62 points from roads.

• 54 points from cloisters.

• 357 points from farms (7 farms, each with 17 completed cities).

The aforementioned score calculation method has been implemented in the Carcas-

sonne game simulation environment used in this research to automatically normalise

MCTS rewards based on scores in any variant of the game.

Monte Carlo simulations in Carcassonne

Monte Carlo methods use random sampling to compute numerical results. Specifically,

MCTS applies this approach to approximate heuristic evaluations of states using a ran-

dom uniform default policy. During the simulation phase, MCTS employs this policy to

accumulate rewards by simulating complete games through random move selection. Al-

though this policy is considered mostly domain-independent, its effectiveness can greatly

vary. For example, in Chess, randomly simulated games often result in draws, leading

to inconsistent reward retrieval. Additionally, research indicates that biases can still be

present in random simulations. For instance, players with more move alternatives might

also be more prone to blunders compared to players with fewer options. To back this

claim, we present Figure 4.14, where a Chess position with a decisive material advan-

tage for white is shown. However, Monte Carlo simulations are more likely to return a

favourable evaluation for black. Further analysis by [7] indicates that this is due to the

random policy being more likely to blunder with white, as the white queen has multiple

actions from where it can be easily captured. Furthermore, the move Qd7+ forces black

to capture the white queen, making that move an unavoidable loss of material for white.

For this reason, we now analyse how insightful Monte Carlo simulations are in the

game of Carcassonne for MCTS. To do so, we determine if they are informative, prone to

biases and how detrimental those biases are to the search. We also use them to observe

how the simulation rewards correlate to the game features among different turns.

A major difference between Carcassonne and Chess is Carcassonne’s scoring system.

In Carcassonne, draws are far less common than in Chess and the scoring system provides

63

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.14: Chess position where Monte Carlo simulations indicate that black is
slightly better, although white’s material advantage should be decisive. Taken
from [7].

additional information about the game state.

The reward used in the MCTS variants presented in this work for the game of Car-

cassonne is the normalised difference of the final scores at the end of the game, from the

perspective of the player using the algorithm. In the case of single-player Carcassonne

variants, the reward is the normalised final score. Throughout this section, we present the

scores used as rewards before normalisation, for discourse simplicity.

To measure how deceptive rewards are for tree search algorithms in Carcassonne when

using Monte Carlo simulations as the default policies, we compared the scores for every

type of action, grouped by meeple usage. We first focused on the actions available to

Player 1 on Turn 1 to visualise how the initial belief value varies for every type of feature

claimed with a meeple. To do so, we ran 1, 000 Monte Carlo simulations from each state

possible after Turn 1. For their initial action, Player 1 could potentially draw any one

of the 24 distinct tile configurations available in the game. Each of these configurations

allows for an average of approximately 20.95±13.15 alternative actions, leading to a total

of 482 distinct states after Turn 1. The results of the total 482, 000 random games are

shown in Figure 4.15.

Figure 4.15 shows that using a meeple in a cloister gives the largest positive difference

of final scores overall, as well as the largest average score for Player 1. The rewards of the

cities are the second best and are better than those of the roads. Interestingly, actions

64

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.15: Scores of the base game of Carcassonne averaged from 1, 000 Monte
Carlo simulations from every possible state available after Turn 1, grouped by how
the meeple was used on Turn 1.

that play a meeple on a farm, referred to as farm-actions from now on, are the least

rewarding type of action on average, giving negative rewards. Furthermore, farm-actions

have worse rewards than not using a meeple at all. It is worth noting that farms are the

most commonly available feature in Carcassonne, present in 23 out of the 24 unique tile

configurations (refer to Figure 4.10) and accounting for 98.59% of the tiles in the base

game tile stack. Moreover, most of the tiles have multiple farms. For instance, tile X in

Figure 4.10 has four unique farms, isolated by the roads.

The low rewards of the farm-actions shown in Figure 4.15 are a consequence of random

play being unlikely to complete cities, implying a bias in random play. To demonstrate

how completed cities on the board influences the rewards of the farm-actions, we ran the

same experiment for all the states possible after Turn 2, taking into consideration two

contrasting states for Turn 1 shown in Figure 4.16.

In the board state B1, depicted in Figure 4.16, Player 1 has already completed a

city on Turn 1. In the board state B2, Player 1 placed a tile that makes the city require

more tiles to be completed, from an original minimum of 1 to a minimum of 3. For each

board in Figure 4.16, we ran 1, 000 Monte Carlo simulations from each state available

after every action possible from each of the boards in Fugure 4.16. In the case of board

state B1, Player 2 can potentially draw any one of the remaining 23 tile configurations

(not 24 configurations, because one specific tile configuration is unplayable in the current

board context) each with an average of 28 ± 16.49 alternative actions, resulting in 644

total possible game states after Turn 2. For board state B2, only 23 tile configurations

65

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.16: Two different Carcassonne game states after Turn 1. In B1, Player 1
completed a city in its turn. In B2, Player 1 placed a tile that makes the city
require additional tiles to be completed.

remain available for Player 2, as the tile used in Turn 1 had only one copy in the tile stack

(Tile C in Figure 4.10). Each of those tile configurations has an average of 31.91± 17.23

alternative actions, resulting in 734 total possible game states after Turn 2. The results

of this experiment are shown in Figure 4.17.

Figure 4.17 shows the difference of final scores from the perspective of the player

choosing the action, which in this case is Player 2. The rewards of the farm-actions are

influenced by the presence of a city already completed, illustrated by the difference in

farm rewards with and without a completed city (boards B1 and B2 from Figure 4.16,

respectively). Interestingly, given a board with a single completed city (B1), farm-actions

are already as rewarding as any action with no meeples. Thus, 1 completed city is enough

to make farm-actions more appealing to players based on Monte Carlo simulations than

actions that do not use a meeple. Note that in the base game of Carcassonne, 22 tiles

out of the initial 71 (that is, a likelihood of 31% of the initial tile stack) can complete

a city on Turn 1, which is the most rewarding meeple usage alternative for Player 1

according to Figure 4.15. Additionally, claiming and completing cities is arguably almost

always the best action for any player whenever possible, ensuring an increasing number

of completed cities as the game progresses. This indicates that farm-actions are expected

to be increasingly more rewarding as the game progresses when played between agents

with some degree of optimal play.

Among all the moves available to a player in Carcassonne, farm-actions have the

peculiarity of losing the played meeple permanently. As discussed before, meeples are a

limited resource in the game of Carcassonne and when used in farm-actions they remain

on the board for the rest of the game, thus they are not available for reuse. While farm-

actions may be optimal in certain situations, they tend to be suboptimal in the early

66

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.17: Difference of final scores (Score P2 - Score P1) in the base game of
Carcassonne, averaged from 1, 000 Monte Carlo simulations from every possible
state available after Turn 2, grouped by meeple usage in Turn 2 and previous board
state B1 or B2 introduced in Figure 4.16.

stages of the game, thus becoming a source of deception if the Monte Carlo simulations

favour them early. To demonstrate that fact, Figure 4.18 shows the average difference of

final scores from Player 1 perspective, grouped by when and how the meeples were used,

with data from 482, 000 Monte Carlo simulations (1, 000 from each of the 482 possible

states after Turn 1).

Figure 4.18 differentiates only between farms and the rest of the features, as farms are

the only feature with the particularity of losing the played meeple permanently, whereas

the rest of the features share completion and meeple release conditions, described in

Table 4.3.

From the plot on the left-hand side of Figure 4.18, we observe that the difference of

final scores decreases as more meeples are invested in farms, irrespective of the turn. This

trend is visually represented by progressively darker shades moving towards the right-

hand side of the plot. Additionally, this plot highlights that playing meeples in farms at

the early stages of the game is less optimal, as evidenced by the darker shades in the

plot’s bottom, particularly on its left-hand side.

The middle plot in Figure 4.18 shows the number of played meeples on non-farm

features. It reveals that the count of meeples on the x-axis can exceed the initial allocation

67

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.18: Impact of meeple usage on the difference of final scores (Score P1 -
Score P2) in the base game of Carcassonne. Data is averaged from 1, 000 Monte
Carlo simulations from every possible state after Turn 1. Each plot point aggregates
the mean difference of final scores for game instances where Player 1’s total played
meeples match the x-axis value by the game turn specified on the y-axis. The same
dataset is segmented differently by meeple usage in each plot: on farms in the left
plot, on non-farm features in the middle plot, and overall usage in the right plot.

of 7, indicating that some meeples were recycled. Importantly, when 8 or more meeples are

played, there is a noticeable increase in the difference of final scores. This pattern suggests

that recycling meeples by completing features enhances overall performance. Moreover,

the middle plot demonstrates that the difference of final scores grows with the increased

use of meeples in non-farm features, contrasting with the findings for farms depicted in the

left plot. This further indicates the advantage of quickly playing meeples to claim non-farm

features, underlining the distinct scoring dynamics between farm and other game features.

It is crucial to note that Monte Carlo simulations have a low probability of completing

cities from random choices. As a result, farms are shown to be less advantageous in

Figure 4.18 under random play conditions, compared to strategic play.

When turning our attention towards right-hand side plot in Figure 4.18, we can observe

that the maximum meeples used increased from 12 in the middle plot to 14. This implies

that every game with 12+ meeples in the right-hand side plot includes at least 1 meeples

on a farm, showcasing that high and positive differences of final scores are achievable

with meeples on farms. Furthermore, the games with 12+ played meeples are the most

rewarding overall, shown by the larger scores when nearing the right-hand side of the

68

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Table 4.4: Carcassonne variants.

Variant Players Initial meeples Tiles Nature

Carcbase 2 7 72 stochastic
Carc1,s 1 1 24 stochastic

Carc1,d 1 1 24 deterministic

Carc3,s 1 3 24 stochastic

Carc3,d 1 3 24 deterministic

plot.

As an additional note, from the 488, 000 games used to generate Figure 4.18, there

was no single instance of a game where Player 1 did not play any meeple by Turn 21,

indicated by the empty spaces at the top of the right-hand side plot. This illustrates that

Monte Carlo simulation have a bias towards using meeples.

4.5.3 Carcassonne proposed variants

We use Carcassonne as a benchmark to compare and analyse the behaviour of the MCTS

agents. To do so, we propose simplified versions of the game. We propose to simplify the

base game of Carcassonne by altering the following aspects of the game:

• Making the game deterministic.

• Removing tiles from the game.

• Decreasing the number of players.

• Decreasing the number of initial meeples.

We include a deterministic version to reduce the branching factor of the game, to al-

low our agents to explore the game tree more deeply. The search horizon of a tree search

algorithm is the limit of the tree that it evaluates. Vanilla MCTS’s search grows asym-

metrically but is also width-first, as it prioritises unexplored nodes in the selected branch

before going any deeper. This characteristic is very effective in general, as actions that are

closer to the root are more likely to be relevant for decision-making. It also implies that

games with large branching factors limit the depth MCTS’s can search. Carcassonne has

a relatively large branching factor, becoming a game where MCTS struggles to evaluate

the game tree deeply, especially because Carcassonne incorporates long-term plans and

strategies that are rewarding and require a deep search to be identified.

When proposing Carcassonne variants, it needs to be taken into consideration that

there should be fewer meeples than turns to play for each player, to keep the resource

management aspect of the game. We want to decrease the complexity, to make easier

conclusions about both the game and the agents that play it. Table 4.4 summarises our

proposed Carcassonne variants with their assigned names.

69

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Besides the base game for two players, we introduce a single-player version of the game

with a decreased number of tiles. Our proposed single-player variants follow the original

rules of Carcassonne, but are limited to one player. We also offer two different sets of

initial meeple counts. Further description for each variant is given next.

Single-player Carcassonne with 3 initial meeples

In the single-player variant of Carcassonne, the player sequentially takes turns until all

tiles have been used, aiming to achieve the highest possible score. Beyond the adjustment

to the number of players, we suggest varying the initial number of meeples to accentuate

distinct aspects of the game. Furthermore, we investigate the potential for playing the

game in a deterministic manner.

To make the game deterministic, we let the order of the tiles be randomised at first but

remain constant and known to the player throughout the game, removing the recurrent

stochastic nature of drawing a random tile. Regarding the tiles, we use one single tile

of each unique configuration to keep the properties of the game. This means that the

game will have 24 tiles in total, one for each unique tile configuration in Figure 4.10. The

single-player variants with 3 initial meeples are referred to as Carc3,s and Carc3,d, for

stochastic and deterministic, respectively.

We performed an analysis of the initial belief values of each action for every stochas-

tic single-player version of the game. We ran 1, 000 Monte Carlo simulations from each

state and available after every possible state after Turn 1. The results are presented in

Figure 4.19.

According to Figure 4.19, actions that claim a cloister on the first turn are the most

valuable ones. The rewards of the cities are the second best and are better than those

of the roads. Farm-actions are the least rewarding type of action on average, even worse

than not playing a meeple at all. The relative values of every feature from Figure 4.19

for Carc3,s and Carc3,d are consistent with those from Figure 4.15 for the base game

of Carcassonne. This indicates that the single-player Carcassonne variants with 3 initial

meeples effectively simplify the game without altering its essence. However, the maximum

achievable score is significantly reduced, despite removing the interaction between players.

Based on our calculations from Section 4.5.2, the maximum theoretical score for our single-

player Carcassonne variants with three meeples is 135 points, detailed as follows:

• 52 points from cities.

• 20 points from roads.

• 18 points from cloisters.

• 45 points from farms (3 farms, each with 5 completed cities).

To continue comparing the proposed variants, we show the average score at the end

70

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.19: Final scores of the single-player Carcassonne variant with 3 initial
meeples, averaged from 1, 000 Monte Carlo simulations from every possible state
available after Turn 1, grouped by how the meeple was used on Turn 1.

of Carc3,s and Carc3,d according to when and where the meeples are used, as we did for

the base game of Carcassonne. The results are presented in Figure 4.20.

.

The left-most plot in Figure 4.20 is equivalent to the left-most plot in Figure 4.18,

showing that allocating more meeples to farms and doing so earlier in the game, negatively

impacts final scores under random play, as evidenced by the darker shades on the bottom

and right-hand side of the plot. The middle plot in Figure 4.20 indicates that the number

of meeples played on non-farm features can exceed the initial allocation of 3, going up

to 8. It also demonstrates that final scores increase with the greater use of meeples on

non-farm features, as the plot progressively brightens towards the right-hand side.

The middle plot in Figure 4.20 has an evident low final score data point for 6 total

played meeples by Turn 7, depicted by the darker isolated box at the bottom-right, which

contrasts with the final scores of the rest of the games for the same column. This is an

isolated unlikely game where 6 meeples were played in non-farm features within the first

7 turns and led to a relatively low final score with random play.

The right-most plot in Figure 4.20 also shows a maximum of 8 played meeples, con-

sistent with the middle plot. The major difference between the middle and right-most

plots is the increased contrast in final scores for games with 7 and 8 total played meeples,

71

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.20: Impact of meeple usage on the final scores in the single-player
Carcassonne variant with 3 initial meeples. Data is averaged from 1, 000 Monte
Carlo simulations from every possible state after Turn 1. Each plot point averages
the final scores for game instances where Player 1’s total played meeples match the
x-axis value by the game turn specified on the y-axis. The same dataset is
segmented differently by meeple usage in each plot: on farms in the left plot, on
non-farm features in the middle plot, and overall usage in the right plot.

more pronounced in the right-most plot. This suggests that including farm meeples in the

segmentation criteria for the right-most plot reveals more games with lower final scores

in the column for 7 total played meeples, indicating that farms may be less rewarding in

the Carc3,s and Carc3,d variants than in the base game of Carcassonne, likely due to the

reduced number of cities that can be completed.

Lastly, the right-most plot in Figure 4.20 shows that final scores are highest as more

meeples are used across all features, aligning with the observations from the right-most

plot in Figure 4.18 for the base game of Carcassonne.

Single-player Carcassonne with 1 initial meeple

We now introduce our single-player Carcassonne variant with 1 initial meeple. This ver-

sion is intended as a base case for resource management, since a single meeple demands

strategic usage to achieve high scores. In a Carcassonne game with 1 meeple for the full

game, farm-actions are never the best option unless it is the last turn (or a couple of

turns) of the game. A meeple, while available, has the potential to score multiple in-

stances of each of the other features, while a meeple on a farm can only score that farm.

72

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Additionally, due to the high density of tiles with farms, a player has a high likelihood of

having the opportunity to claim a farm towards the end of the game, if it is the case that

it is the most rewarding feature on the board.

According to our analysis from Section 4.5.2, the maximum number of cities that

can be completed in our single-player Carcassonne variants equals 5 with the 24 tiles

stack. That means the maximum value a farm can have is 5× 3 = 15 points in the game

variants Carc1,s and Carc1,d. So, for Turn 1, a meeple on a farm will score a maximum

of 15 points, as the meeple cannot be collected to be used again. On the other hand, the

meeple can be recycled multiple times by claiming and completing other features, such

as cities and roads, easily surpassing those 15 points of the farm. Thus, we can declare

that farm-actions are never the best option on Turn 1 for our Carcassonne variants with

1 initial meeple.

Using our calculation from Section 4.5.2, we find that our single-player Carcassonne

variants with 1 initial meeple have a maximum score of 105 points, with the following

breakdown:

• 52 points from cities.

• 20 points from roads.

• 18 points from cloisters.

• 15 points from farms (1 farm with 5 completed cities).

We ran 1, 000 Monte Carlo simulations from each state available after Turn 1. The

results are presented in Figure 4.21.

Figure 4.21 further proves that random play is biased to not completing cities, as

the mean of the scores when the first and only meeple is used in a farm is zero. It is

worth noting that using the meeple in a city is now the most rewarding first action, in

contrast with the other Carcassonne versions. This is because the meeple in the city can

be collected and used again with a higher probability than from the cloister, making the

city the most rewarding feature to claim on the first turn of play.

Figure 4.22 shows the average final score in the game variants Carc1,s and Carc1,d

according to when and how the meeple is used, collected from 1, 000 Monte Carlo simu-

lations from each of the 452 possible states after Turn 1.

From the left-most plot in Figure 4.22, we observe that final scores are generally lower

when meeples are used on farms, regardless of the turn. By the end of the game, any

other feature proves to be more rewarding than farms, as they allow for the completion

and recycling of meeples. The observations from Figures 4.18 and 4.20 are consistent with

those in Figure 4.22.

It is noteworthy that in the right-most plot of Figure 4.22, there are diminished final

scores for games involving 5 meeples used early, as indicated by the darker shaded group

of games at the bottom of the right-most column. This trend is absent in the middle

73

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.21: Final scores of the single-player Carcassonne variant with 1 initial
meeple, averaged from 1, 000 Monte Carlo simulations from every possible state
available after Turn 1, grouped by how the meeple was used on Turn 1

plot, suggesting it results from scenarios where the meeple was played on a farm as its

fifth placement. A similar pattern is observed in the right-most plot of Figure 4.20, where

the final scores are lower for games with early meeple usage in the right-most column,

but less pronounced. Conversely, Figure 4.18 does not exhibit this pattern, likely due to

the ability to complete a larger number of cities with the original set of 71 tiles and the

availability of more meeples, which increases the potential value of the farms.

The Carcassonne variants Carc1,s, Carc1,d, Carc3,s, and Carc3,d preserve the game

tree characteristics and fitness landscape that are of interest. Furthermore, we observed

that Monte Carlo simulations, whether using the difference of final scores in the base

game of Carcassonne, or using the final score for single-player variants, are sufficiently

informative to direct MCTS algorithms, albeit not without biases. Our findings indicate

that random play tends to undervalue farms due to their reduced likelihood of completing

cities and exhibits a propensity for rapidly playing meeples, given the greater density of

meeple placement options within the set of available actions. This tendency, combined

with the misleading nature of score-driven greedy play, establishes Carcassonne as a valu-

able benchmark for tree search algorithms. The single-player variants not only facilitate

the ranking of agents based on final scores but also provide more interpretable insights

into their strategic depth and preferred tactics.

74

4.5. TEST PROBLEM: THE GAME OF CARCASSONNE

Figure 4.22: Impact of meeple usage on the final scores in the single-player
Carcassonne variant with 1 initial meeple. Data is averaged from 1, 000 Monte
Carlo simulations from every possible state after Turn 1. Each plot point aggregates
the mean final scores for game instances where Player 1’s total played meeples
match the x-axis value by the game turn specified on the y-axis. The same dataset
is segmented differently by meeple usage in each plot: on farms in the left plot, on
non-farm features in the middle plot, and overall usage in the right plot.

75

5
Empirical Analysis of Evolving Selection Policies in

MCTS

Related publication to this chapter: Fred Valdez Ameneyro and Edgar Galván. “Towards

Understanding the Effects of Evolving the MCTS UCT Selection Policy”. In: 2022 IEEE

Symposium Series on Computational Intelligence (SSCI). IEEE. 2022, pp. 1683–1690.

5.1 Introduction

In this chapter, we introduce Evolutionary Algorithm Monte Carlo Tree Search (EA-

MCTS) and Semantically-Inspired Evolutionary Algorithm Monte Carlo Tree Search

(SIEA-MCTS), two variants of the Monte Carlo Tree Search (MCTS) algorithm that

use Genetic Programming (GP) to evolve their selection policies. EA-MCTS, outlined in

Section 5.2, is a novel algorithm aimed at optimising the selection policy of MCTS for

navigating the search tree without prior knowledge of the problem domain. SIEA-MCTS

builds on the evolutionary process of EA-MCTS by incorporating semantics, a technique

shown to improve GP and is elaborated on in Section 5.3. We then present the results of

experimental comparisons between EA-MCTS, SIEA-MCTS, and the traditional MCTS

algorithm, focusing on the test problems described in Chapter 4. In Section 5.5 we exam-

ine the construction process and structure of the statistical trees produced by each MCTS

algorithm, analysing their performance across different Function Optimisation Problem

(FOP) functions. We also conduct a quantitative comparison using single-player variants

of Carcassonne in Section 5.7, to assess the performance of MCTS-based agents versus

those using the minimax principle in scenarios requiring complex and long-term strate-

gic planning. The chapter concludes with an analysis of the selection policies evolved by

EA-MCTS and SIEA-MCTS in Section 5.8.

76

5.2. EVOLVING SELECTION POLICIES IN MCTS USING EAS

MCTS evolved Tree PolicyMCTS initialisation

MCTS
iterations

Offspring
generation

Root node
fully

expanded?

Evaluation

MCTS
iterations

EA
stopping
criteria?

Selection

MCTS
iterations

GP

MCTS
stopping
criteria?

Current
state

INPUT

Chosen
action

OUTPUT

Yes Yes Yes

No

No

No

Figure 5.1: EA-MCTS algorithm. The agent receives the current state as an input
and outputs the action to be executed.

5.2 Evolving selection policies in MCTS using EAs

To enhance the adaptability of MCTS, we recently introduced the Evolutionary Algorithm

Monte Carlo Tree Search (EA-MCTS) [61], inspired by the existence of a wide range of tree

policies found in the literature. This MCTS variant seeks to evolve the Upper Confidence

Bounds (UCB1) formula within the tree policy dynamically. Other works attempt to

evolve the tree policy offline to then use the evolved formula in subsequent decisions [18,

25]. EA-MCTS differs from them as it attempts to evolve the formula from scratch for

every single decision throughout a game, including additional steps between iterations

but only effectively modifying the selection step of the MCTS algorithm.

EA-MCTS is a first step towards the development of a more general MCTS algorithm

that can adapt to different domains and situations. We will now describe the algorithm and

discuss its properties. We can separate the functionality of EA-MCTS into the following

steps, also illustrated in Figure 5.1.

• MCTS Initialisation:The EA-MCTS algorithm starts similarly to the conventional

MCTS, described in Chapter 2. It does so by executing the selection, expansion, simula-

tion, and backpropagation phases iteratively. Typically, vanilla MCTS employs the tree

policy for node selection from the root until an expandable node is found, meaning the

selection policy returns the root node initially and until it can no longer be expanded.

UCB1 begins to apply only after the expansion of all root node children, marking the

start of GP within the EA-MCTS algorithm.

• GP Evolution: From this step, the vanilla MCTS algorithm starts being modified.

First, an initial population is formed using the UCB1 formula as the parent. The initial

population consists of the parent and λ offspring, generated with subtree mutation. The

GP evolves this formula population via a (µ+λ)-Evolution Strategy (ES), evaluating

each formula’s fitness over S fitness iterations within the vanilla MCTS selection pol-

icy, with the goal of maximising the average rewards from these iterations. Following

the evaluation of all population members, the fittest formula is selected as the subse-

77

5.2. EVOLVING SELECTION POLICIES IN MCTS USING EAS

Algorithm 1 EA-MCTS

1: Input: Number of gen. G, lambda λ, fitness iterations S, statistical tree T
2: Output: Evolved tree policy
3: procedure Evolving UCB1 EA
4: P ← UCB1 formula
5: for g ← 0, · · · , G do
6: for i← 0, · · · , λ do
7: Oi ← subtree mutation(P)
8: a fitness ← 0
9: for s← 0, · · · , S do

10: temp fit(Oi) ← select T (S) and rollout(Oi)
11: update T
12: a fitness(Oi) ← a fitness(Oi) + temp fit(Oi)
13: end for
14: fitness(Oi) ← a fitness(Oi) / S
15: end for
16: P ← best individual(O)
17: end for
18: return P
19: end procedure

quent generation’s parent, discarding the rest. This cycle repeats for G generations,

culminating in the selection of the optimal formula.

• MCTS with evolved Tree Policy: The evolutionary process’s resultant formula

substitutes UCB1 as the tree policy in all future MCTS iterations, which then proceed

as standard using the same updated statistical tree.

An overview of the evolutionary process in EA-MCTS is depicted in Algorithm 1. EA-

MCTS is designed to optimise the selection policy on the go while making a single decision.

Within EA-MCTS, the MCTS algorithm undergoes modifications through an evolutionary

process. This process consists of a GP that executes MCTS iterations, labelled as fitness

iterations, to assess the fitness of individual solutions. The individuals within the GP

are represented as syntax trees modeling the UCB1 formula. In this context, any formula

f̂ participating in the evolutionary process is termed an individual or a solution. The

GP begins with the UCB1 formula and generates a population of λ offspring. It takes

the statistical tree, which has been developed thus far by the MCTS, as input. This

statistical tree is then updated based on the outcomes of the fitness iterations until the

GP concludes and produces a new formula. Upon completion of the evolutionary process,

this newly evolved formula substitutes UCB1 as the tree policy for all subsequent MCTS

iterations, which proceed as usual. Notably, EA-MCTS maintains the any-time stopping

property inherent to the traditional MCTS algorithm, allowing it to be stopped at any

point during the evolutionary process and still yield a valid solution.

In EA-MCTS, the fitness of each individual, f̂ , is determined with S fitness iterations

that use f̂ as their tree policy, with the objective of maximising their average reward.

78

5.3. EVOLVING SELECTION POLICIES IN MCTS USING EAS AND SEMANTICS

The fitness iterations adhere to the same four phases as the standard vanilla MCTS

iterations: selection, expansion, simulation, and backpropagation. However, during each

fitness iteration, the selection phase employs different formulae f̂ as the tree policy. While

fitness iterations primarily serve the purpose of fitness evaluation, they also contribute to

the updating of the statistical tree. The precision of this fitness assessment improves with

an increased number of fitness iterations. However, allocating more iterations for fitness

evaluation implies fewer resources available for the tree search, presenting a trade-off.

Moreover, the number of individuals to be generated and evaluated throughout the GP

is limited, leading to the need for a small population size.

5.3 Evolving selection policies in MCTS using EAs and semantics

Given the limited population size in the GP of EA-MCTS, promoting diversity is cru-

cial for avoiding stagnation. Specifically, Semantically-Inspired Evolutionary Algorithm

Monte Carlo Tree Search (SIEA-MCTS) improves EA-MCTS by making use of seman-

tics, a well-known concept in the field of GP [60], with previous success when applied to

GP operators like the Semantic Similarity-based Crossover (SCC) [170], used as a similar-

ity measure like the Semantic-based Crowding Distance (SCD) [62] and as an additional

Multi-Objective Genetic Programming (MOGP) objective like in the Semantic-based dis-

tance as an additional criteriOn (SDO) [63], to mention a few. The core principle of

SIEA-MCTS is to use semantic information to discern the most suitable offspring for

progression to the next generation when multiple candidates exhibit the same fitness.

Algorithm 2 describes the SIEA-MCTS algorithm.

Algorithm 2 differs from Algorithm 1 by introducing the procedure Sem Sel, which uses

a distance measure based on semantics, the Sampling Semantic Distance (SSD) [69]. SSD

is calculated between the offspring with the best fitness and their parent. Any offspring

with an SSD in the window [α, β] is preferred as the new parent. If no offspring falls

within this range, one of them is returned at random. If both offspring fall in the window,

the one with the smallest SSD is returned. This approach is based on the assumption

that a semantically different individual, yet sufficiently close to its parent, tends to yield

superior results [170].

5.3.1 Extending semantics to work with selection policies in MCTS

The concept of semantics, including the Sampling Semantics (SS), can be extrapolated

to a program p that serves as a tree policy in MCTS. We denote MCTSp to the vanilla

MCTS algorithm using p as the formula for the tree policy. In MCTS, the input to the

tree policy is a statistical tree τ , and its output is the selected leaf node n ∈ τ . Since the

relevant attribute of n for the tree policy is its numerical evaluation v(n), we can infer

79

5.3. EVOLVING SELECTION POLICIES IN MCTS USING EAS AND SEMANTICS

Algorithm 2 SIEA-MCTS

1: Input: Number of gen. G, lambda λ, fitness iterations S, statistical tree T
2: Output: Evolved tree policy
3: procedure Evolving UCB1 EA SIEA
4: P ← UCB1 formula
5: for g ← 0, · · · , G do
6: for i← 0, · · · , λ do
7: Oi ← subtree mutation(P)
8: a fitness ← 0
9: for s← 0, · · · , S do

10: temp fit(Oi) ← select T (S) and rollout(Oi)
11: update T
12: a fitness(Oi) ← a fitness(Oi) + temp fit(Oi)
13: end for
14: fitness(Oi) ← a fitness(Oi) / S
15: end for
16: P ← Sem Sel(O,P) procedure
17: end for
18: return P
19: end procedure
20:

21: Input: Population offspring O, Parent P
22: Output: Best program based on fitness and semantics
23: procedure Sem Sel(O,P)
24: Hf ← max(fitness(O))
25: if More than one offspring from O equals Hf then
26: SSD ←Sampling sem dist(O,P)
27: if one individual within SSD range (α, β) then
28: New P ← individual within range
29: else if more than one individual within SSD range (α, β) then
30: New P ← individual closest to lower-bound α
31: else
32: New P ← random(O)
33: end if
34: end if
35: return New P
36: end procedure

80

5.3. EVOLVING SELECTION POLICIES IN MCTS USING EAS AND SEMANTICS

that the output of p(τ) is equal to v(n). Therefore, assuming a consecutive and finite set

of MCTSp iterations are executed as part of a fitness evaluation for program p, we can

now define the SS of the tree policy p as shown in Def. 2.

Def. 2 The Sampling Semantics SS(p) of a program p used as the tree policy of an

MCTS algorithm (MCTSp) is the vector of evaluations v(n) of each node n ∈ N . Given

k iterations of MCTSp, N is the collection of leaf nodes from the statistical tree selected

by p.

The SS of a tree policy is represented as SS(p) = [p(τt=0), p(τt=1), · · · , p(τt=k)], where

k denotes the number of MCTSp iterations carried out using policy p. In this case, the

input set for any tree policy p consists of a collection of versions of the same statistical tree,

denoted as I = {τt=0, τt=1, · · · , τ t = k}, where τt is updated according to p whenever p(τt)

is computed. Therefore, even if the initial statistical tree τt=0 is identical when provided

to two tree policies p and q, the subsequent input set {τt=1, τt=2, · · · , τt=k} will differ. This

occurs because policies p and q update τt=j differently whenever p ̸= q. Consequently, the

SSD between two tree policies p and q is calculated using Equation 5.1

SSD(p, q) =
k∑

l=0

|p(il)− q(jl)|
k

(5.1)

Where l is the index of the elements in each ordered input set (in descending order),

and i ∈ I and j ∈ J are elements in the input sets for p and q respectively. The input

sets I and J share the first element τt=0, which corresponds to the initial statistical tree.

However, the remaining elements may not be the same. A significant difference between

Equation 5.1 and the previously defined Equation 2.2 is that SS(p) and SS(q) are now

sorted before the element-wise comparison is performed. The rationale behind ordering

the collection of rewards is that the tree policy aims to identify the best leaf node in the

statistical tree at each iteration, considering both exploration and exploitation aspects.

Thus, the ordering makes SSD compare the maximum rewards of p with those of q, and the

minimum rewards of p with those of q, respectively. In simpler terms, the SSD effectively

measures the difference in the exploration-exploitation balance between the tree policies.

Semantics under the context of MCTS tree policies rely on the aggregation of rollout

outcomes. For this reason, its impact may vary across various applications. For example,

the available rewards in the Function Optimisation Problem (FOP) that will be discussed

in Section 5.4 are binary, which increases the probability of equal fitness among individ-

uals. However, in applications that involve a wider range of rewards like Carcassonne,

ties become less likely. In summary, SIEA-MCTS and EA-MCTS are unique algorithms

with an interesting proposal. However, it comes with the downside of requiring addi-

81

5.4. FOP EXPERIMENTAL SETUP

Table 5.1: Vanilla MCTS parameters

Parameter Value

Tree policy UCT with UCB1, where C ∈ {0.5, 1,
√

2, 2, 3}
Default and expansion policy Random uniform

Rollouts, Iterations 1, 5000

Table 5.2: SIEA-MCTS and EA-MCTS parameters

Parameter Value

Initial UCB1 C =
√

2
Rollouts 1
(µ+λ)-ES µ = 1, λ = 4

Generations g, Fitness iterations S g = 20, S = 30

Genetic operator Subtree mutation (90%− 10% policy)

Mutation subtree generation method Full (depth ∼ Uniform(1, 3))

Initialisation Method UCB1 formula + λ mutations
Maximum syntax tree depth 8
SSi L = 0.1, U = 0.5

Total fitness iterations λ ∗ g ∗ S + S = 2, 430

Total MCTS iterations 5, 000

tional parameters for the evolutionary process. Both EA-MCTS and SIEA-MCTS are a

first-of-a-kind type of approach that evolves MCTS’s selection policy on the fly.

5.4 FOP experimental setup

The algorithms were allocated a number of iterations that allowed them to explore the

bottom of the tree given enough exploitation. This can happen if the search focuses on

a branch of the tree for a time long enough to expand it to the end. The parameters for

every vanilla MCTS used in this experiment are shown in Table 5.1.

Table 5.2 presents the parameters that were used in the SIEA-MCTS algorithm. SIEA-

MCTS employs more parameters than MCTS, and are also utilised in the EA-MCTS

algorithm. The parameters were hand-tuned and are consistent with those reported in

our IEEE Transactions on Games article [61].

The subtree mutation in EA-MCTS has a 90% − 10% policy, meaning that it has

a 90% of choosing an internal node and a 10% probability of selecting a leaf node in

the parent’s syntax tree to be mutated. The selected node is swapped with a subtree

randomly generated using the full method [103] previously described in Chapter 2. This

method generates syntax trees with a random uniform depth for all of its branches, set

between 1 and 3. The mutation operator is constrained to produce offspring that are

82

5.4. FOP EXPERIMENTAL SETUP

Table 5.3: Function Optimisation Problem parameters

Parameter Value

Initial state domain [a0, b0] a0 = 0, b0 = 1

Branching factor K k = 2

Terminal state size threshold t = 10−6

Function f(x)

f1(x) = sin(πx)

f2(x) = 0.5 sin(13x) sin(27x) + 0.5

f3(x) =

{
0.5 + 0.5 · | sin(1

x5)| when x < 0.5,
7
20 + 0.5 · | sin(1

x5)| when x ≥ 0.5.

f4(x) = 0.5x + (−0.7x + 1) sin(5πx)4

f5(x) = 0.5x + (−0.7x + 1) sin(5πx)80

different from their parent and have a syntax tree’s maximum depth smaller than 8. It

does so by iteratively generating performing mutation until a valid offspring is found.

The terminal set T and function set F used in the construction of the evolved formulae

in EA-MCTS and SIEA-MCTS are T = {Qi, N, ni, C}, F = {+,−,×,÷, log,
√}, where

Qi is the reward and ni the number of visits of state i. N is the number of visits of the

parent of i, and C is the exploration-exploitation constant, which is randomly sampled

from the set {0.25, 0.5, 1, 2, 3, 5, 7, 10}. Regarding the function set, the division operator

returns 1 for any divisor with an absolute value lower than 0.001. The natural logarithm

and square root operators take the absolute value of their inputs. Given that the evolution

is performed online, the total population is set to 5, which is the sum of the parent and

offspring, and the number of generations is limited to 20.

We allocated 5, 000 iterations for each algorithm, both for the vanilla and the evolutionary-

based MCTS variants. In both SIEA-MCTS and EA-MCTS, evolution involves performing

a set of fitness iterations to evaluate each of the the evolved formulae. In our implemen-

tation, the evaluation of a single formula requires S = 30 fitness iterations. SIEA-MCTS

conducts S iterations for λ individuals and g generations as fitness evaluations, resulting

in λ ∗ g ∗ S + S = 2430 total fitness iterations invested in the evolutionary process.

Every MCTS variant was asked to make a decision from the initial state in FOP using

the functions and parameters described in Table 5.3 for 100 runs. The experiments share

random seeds within equivalent runs, meaning that each MCTS variant was tested under

equal random rewards. It also implies that EA-MCTS evolved formulae differ from those

evolved by SIEA-MCTS only whenever semantics are involved in the evolutionary process.

The results are presented in Section 5.5.

83

5.5. FOP RESULTS

Bins

Statistical
tree

Central
points

Figure 5.2: The nodes from the statistical tree are allocated in the histogram’s
bins according to the central point of the state they represent.

5.5 FOP results

We will examine how MCTS explores the game tree of each FOP function when tasked

with determining the optimal move from the initial state. To do so, we will analyse the

statistical trees produced by each MCTS variant, by showing a histogram and a table

with the results for every function, to finally wrap up with an integral analysis of all

the functions in Section 5.5.6. The histograms aim to demonstrate the distribution and

search intensity across the domain for each function, and are constructed with the nodes

in the statistical trees. The histograms are averaged over all the runs, where the nodes of

the statistical tree are allocated in 128 bins based on the central point of the states they

represent. An illustration of their construction is shown in Figure 5.2

The resulting histograms will be presented in Figures 5.4 through 5.8, corresponding

to functions f1 to f5, in that order. Tables 5.4 through 5.8 complement said histograms

by describing the characteristics of the statistical trees. The calculation of those charac-

teristics is explained next using the statistical tree example given in Figure 5.3.

• Node expansion rate per iteration: Ratio of expanded nodes within the final sta-

tistical tree to the total number of iterations executed by the algorithm. MCTS usually

adds a node to the statistical tree in each iteration achieving a rate of 1. However,

84

5.5. FOP RESULTS

Figure 5.3: Sample statistical tree generated after 15 MCTS iterations, where each
node has a reward Q and a visit count n. The game tree has a maximum depth of 3.
Terminal nodes are enclosed in the dashed box, and leaf nodes are highlighted with
darker contours. The reward v is MCTS’s belief of the outcome with optimal play.

when MCTS selects a terminal node during its selection phase, it cannot expand the

statistical tree further on that iteration’s expansion phase, hence reducing the node ex-

pansion rate per iteration. Selecting a terminal node is more likely for agents favouring

exploitation. As an example, the statistical tree shown in Figure 5.3 expanded only 12

nodes after 15 iterations, resulting in a node expansion rate per iteration of 12
15 = 0.8.

• Number of terminal states reached: Number of unique terminal states present in

the final statistical tree. This metric illustrates the diversity of terminal states MCTS

explored, providing insights into the algorithm’s exploration capabilities. As an exam-

ple, the statistical tree in Figure 5.3 has a number of terminal states reached of 6.

• Leaf nodes’ average depth: Average depth of the leaf nodes in the final statistical

tree. Generally, a deeper statistical tree depicts more exploitation, whereas a shallower

tree depicts more exploration. As an example, the value of this column equals 2.85 for

the statistical tree in Figure 5.3.

• Most visited node-based result: Indicates MCTS’s predicted optimal play outcome,

reflecting the algorithm’s ability to identify optimal moves. It is the evaluation of the

leaf node reached by traversing the statistical tree from the root, selecting the most

visited child at each step. This is illustrated as v in the function section of Figure 5.3.

85

5.5. FOP RESULTS

5.5.1 FOP f1 results

Figure 5.4 depicts the search conducted on each experiment when the MCTS variants try

to find the optimal action from the initial state of the FOP with f1 as its reward function.

This function, plotted at the top of Figure 5.4, is selected to illustrate how each particular

algorithm behaves when symmetrical rewards exist in different areas of the domain and

there is a single global optimum, surrounded by the most rewarding region of the domain.

The bars are shaded based on the percentage of total iterations executed so far when

each node was added to the statistical tree, depicting the behaviour of each search stage.

The green bars represent the nodes expanded on the first third of the iterations, the blue

bars the second third, and the brown bars the last third. From this information, it can

be seen that as more iterations are performed, the search of each MCTS variant becomes

more localised. Nodes corresponding to the latter portion of iterations (66.7 to 100% of the

total, shown with the brown bars) are denser around the global optima when compared

to those from the initial stages of the search. This tendency is the outcome of the bias

towards exploiting the best nodes as more information is gathered. Note that the total

number of nodes varies significantly among algorithms since not every statistical tree has

the same number of nodes. In some instances, an MCTS algorithm may not add a node

to the statistical tree if the node selected by the tree policy is a terminal state.

As anticipated, the C parameter of every version of the vanilla MCTS has a significant

impact on the exploration/exploitation trade-off. An increase in C leads to more explo-

ration and less exploitation. Therefore, the region of the search that receives attention

widens as C grows. Furthermore, the average number of nodes allocated to agents with

lower C near the global optimum is higher than that for agents with higher C.

Note that the height of the bars is not always smooth among the bars next to each

other. These variations arise where a low-depth node’s domain ends and another node’s

domain begins, reflecting the different intensities of the search for nodes closer to the root.

The Evolutionary Algorithm (EA)-based MCTS variants (SIEA-MCTS and EA-MCTS,

presented in the last two rows of Figure 5.4) show a considerable preference for exploita-

tion. The nodes are predominantly localised around the global optimum and in a larger

count than those of the MCTS with C = 0.5 (i.e. the vanilla agent with less exploration).

The EA-based MCTS variants demonstrate success in sampling the region near the

global optimum. However, very small bars can be observed at the left and right edges of

their plots. These regions correspond to the global minima, and the presence of nodes in

that area indicates undesired behaviour from the agents. Note that the average number

of nodes allocated to that region is almost negligible because they reflect the impact of

only a few evolved formulae out of the hundred runs. Those evolved formulae preferred

regions with the lowest rewards instead of the highest rewards on rare occasions.

86

5.5. FOP RESULTS

Figure 5.4: Statistical tree nodes sorted by the location of their respective states
for f1, plotted at the top and defined in Table 5.3. For the rest of the plots, the
x-axis is the domain of the function and the y-axis is the average of allocated nodes.
The dashed vertical red line shows f1’s global optimum.

87

5.5. FOP RESULTS

Table 5.4: Average of 100 statistical trees grown by the agents for f1.

MCTS
variant

Node
expansion
rate per
iteration

Number of
terminal
states
reached

Leaf nodes’
average
depth

Most visited
node-based

result

MCTS C=0.5 1± 0 0± 0 14.04± 1.38 0.999± 0
MCTS C=1 1± 0 0± 0 13.14± 1.37 0.999± 0

MCTS C=
√

2 1± 0 0± 0 12.85± 1.39 0.999± 0

MCTS C=2 1± 0 0± 0 12.58± 1.29 0.999± 0
MCTS C=3 1± 0 0± 0 12.33± 1.18 0.999± 0
EA-MCTS 0.56± 0.25 544.52± 469.55 13.53± 2.82 0.999± 0

SIEA-MCTS 0.54± 0.24 417.62± 376.36 13.39± 2.85 0.999± 0

Table 5.4 describes the agents’ resulting statistical trees for f1. The data represents an

average of 100 runs. This table shows that all the MCTS variants successfully identified

the global optimum in every run, as all of them have a most visited node-based result

close to 1, which is this function’s maximum value. None of the vanilla MCTS variants

have expanded terminal nodes in their respective statistical trees, reflected by 0 number

of terminal states reached, which means that they did not reach the bottom of the tree.

This is a consequence of the combination of their high exploration and the wide region

of interesting rewards spreading the search. In contrast, every EA-based MCTS variant

added terminal nodes, with EA-MCTS adding more than SIEA-MCTS.

In the sixth row of Table 5.4, EA-MCTS achieved a node expansion rate per iteration

of 0.56 on average. This means that in 44% of the cases, equivalent to 2, 200 iterations, it

repeatedly selected up to 544.42 unique terminal nodes (as shown in the third column),

thus not being able to expand them. A similar pattern is observed with SIEA-MCTS, as

noted in the last column, with a node expansion rate per iteration of 0.54 and a number

of terminal states reached of 417.62. The number of terminal states reached for both EA-

based MCTS variants is relatively low compared to the number of iterations that did not

result in node expansion. This suggests that both agents have evolved selection policies

that repeatedly select a limited number of tree branches, indicating a strong preference

for exploitation over exploration. A detailed analysis of the evolved selection policies will

be provided in Section 5.8.

The leaf nodes’ average depth column illustrates that for vanilla MCTS variants, the

depth of the leaf nodes in the statistical tree decreases with an increase in the C parameter,

ranging from 14.04 at C = 0.5 to 12.33 at C = 3. For EA-based MCTS variants, the trees

are relatively deeper, with leaf nodes’ average depth values of 13.53 for EA-MCTS and

13.39 for SIEA-MCTS. The standard deviation in leaf nodes’ average depth for the EA-

based variants, at 2.82 for EA-MCTS and 2.85 for SIEA-MCTS, is considerably higher

88

5.5. FOP RESULTS

compared to the vanilla MCTS variants, which range between 1.18 and 1.39. This finding

highlights the variability in the statistical trees generated by the evolved formulae.

The differences between the EA-MCTS and SIEA-MCTS variants are minimal across

most metrics, except for number of terminal states reached. This observation suggests that

incorporating semantics influenced the construction of the statistical trees to a certain

degree, but did not significantly alter the most visited node-based result in f1.

5.5.2 FOP f2 results

Figure 5.5 depicts the search conducted by the agents in f2, the multimodal function. As

can be observed in Figure 5.5, all the variants expanded the most nodes around the global

optimum, with some agents also investing resources in local optima. Notably, the MCTS

C =
√

2 and MCTS C = 2 variants showed minimal investment at any local optima. On

the other hand, MCTS C = 0.5 and MCTS C = 1 explored both global and local optima.

Moreover, they invested resources around the local optimum on the left-hand side of the

plot at all stages of the search, illustrated by the multiple shades of the bars on that

region. MCTS C = 3 also invested resources on that local optimum, but it managed to

shift its focus towards the global optimum on its last portion of iterations.

The EA-based MCTS variants exhibit a consistently low number of nodes allocated

(y-axis), even around the global optimum, contrasting sharply with the node allocation

observed in vanilla MCTS variants. This discrepancy comes from averaging the results

from effective formulae that explore extensive areas of the search space with formulae

that get stuck and expand fewer nodes in the statistical tree. While it might appear that

EA-based MCTS variants distribute their search more evenly across the search domain,

it is a secondary product of the reduced node count at the tallest bars. This reduction

diminishes the visual contrast, making even minor bars more prominent.

Interestingly, the EA-based MCTS variants have allocated some resources around

local and global minima, similar to what we observed in f1. Moreover, those nodes were

expanded in the final stages of the search (66% to 100% of the total iterations), which

confirms that the EA-based MCTS variants evolved formulae that preferred low-reward

regions of the domain. As a final observation, the allocation of nodes along the search

space is distributed similarly for both EA-based MCTS variants, with a slightly higher

number of nodes allocated by EA-MCTS on the global optimum.

The results for f2 are presented in Table 5.5. High exploitation proves unsuitable in this

function, as evidenced by the MCTS C = 0.5 having the lowest most visited node-based

result among the vanilla variants. The best most visited node-based result was achieved

by the MCTS C = 2, closely followed by MCTS C = 3 and MCTS C =
√

2, in that order.

On the other hand, the EA-based MCTS variants achieved a maximum value of 0.922,

89

5.5. FOP RESULTS

Figure 5.5: Statistical tree nodes sorted by the location of their respective states
for f2, plotted at the top and defined in Table 5.3. For the rest of the plots, the
x-axis is the domain of the function and the y-axis is the average of allocated nodes.
The dashed vertical red line shows f2’s global optimum.

90

5.5. FOP RESULTS

Table 5.5: Average of 100 statistical trees grown by the agents for f2.

MCTS
variant

Node
expansion
rate per
iteration

Number of
terminal
states
reached

Leaf nodes’
average
depth

Most visited
node-based

result

MCTS C=0.5 0.49± 0.2 621.06± 383.92 15.65± 2.14 0.936± 0.04
MCTS C=1 0.96± 0.05 1063.9± 381.89 15.61± 2.21 0.964± 0.02

MCTS C=
√

2 1± 0 739.44± 260.14 15.05± 2.54 0.971± 0.01

MCTS C=2 1± 0 196.51± 146.44 14.25± 2.55 0.973± 0
MCTS C=3 1± 0 0± 0 12.96± 2.12 0.972± 0.01
EA-MCTS 0.21± 0.08 68.96± 49.39 11.35± 3.27 0.922± 0.05

SIEA-MCTS 0.23± 0.11 73.65± 66.67 11.37± 3.21 0.922± 0.05

which is lower than any vanilla variant. This is a consequence of the EA-based MCTS

variants’ propensity to get stuck in local minima. This phenomenon is more evident in

this function, given the comparatively low node expansion rate per iteration and number

of terminal states reached of the EA-based MCTS variants. Both EA-MCTS and SIEA-

MCTS report low node expansion rate per iteration (0.21 and 0.23, respectively), even

lower than in f1 (0.56 and 0.54, respectively) meaning that more terminal nodes were

reached in f2 than in f1. However, the number of terminal states reached for those agents

is lower in f2 (69.96 for EA-MCTS and 73.65 for SIEA-MCTS) than in f1 (544.52 for EA-

MCTS and 417.62 for SIEA-MCTS. These observations suggest that a greater proportion

of evolved formulae got stuck selecting the same branches of the tree multiple times in f2,

compared to f1.

Note that the vanilla MCTS variants have more number of terminal states reached

than any of the EA-based MCTS variants. This is an indication that the vanilla MCTS

variants never get stuck, which is a characteristic of the UCB1. The UCB1 formula is

designed to eventually select any node with optimism, regardless of the rewards obtained.

This property is then proven to be occasionally lost when the formula is evolved.

The vanilla MCTS variants with C =
√

2 and C = 2 expanded nodes on every iteration

(node expansion rate per iteration = 1), but some of them were terminal states (number

of terminal states reached > 0). This means that terminal nodes were expanded, but not

selected again, otherwise the node expansion rate per iteration would be lower than 1.

In contrast, the vanilla MCTS variant with C = 3 did not reach any terminal state, as

reflected by the 0 number of terminal states reached.

5.5.3 FOP f3 results

Figure 5.6 displays the search conducted by the agents in f3, the rugged function. f3

is remarkable for having multiple global optima, which are unevenly distributed on the

91

5.5. FOP RESULTS

left portion of the domain. The concentration of these global optima gradually decreases

as the domain of the function goes from 0 to 0.5. The agents in our study preferred

the region with global optima near the centre of the domain, where the global optima

are surrounded by larger regions with higher values, and the fitness landscape is less

rugged. This circumstance facilitates the agents’ ability to locate and consistently exploit

the optima. Conversely, if the region were more volatile, small variations in the input

would yield significant fluctuations in the output, making it more difficult for the agents

to identify the global optima. Note that the preference for the global optima with the

smoothest surroundings becomes less apparent as C increases.

Even though the domain’s right-hand side lacks a global optimum, it is still explored

to some extent by the agents, though not as much as the left-hand side. This is because

the right-hand side features local optima surrounded by consistent rewards, making it

initially appealing to the search due to the high average value of the region. The reward

structure, as depicted in Figure 4.5, reveals that from a tree depth of 3 up to a tree depth

of 6, the highest rewards available to the search are situated on the domain’s right-hand

side. However, the agents will not exploit the right-hand side as heavily since the globally

optimal points of the left-hand side are likely to be eventually discovered.

With MCTS C = 0.5 and C = 1, a couple of global optima are discovered and

thoroughly sampled. The lower count of nodes (y-axis) for MCTS C = 0.5 in contrast to

MCTS C = 1 suggests that the lack of exploration of the former made it expand fewer

nodes, as it likely reached the bottom of the tree. As the value of C increases, vanilla

MCTS variants exhibit a more dispersed node distribution on the domain’s left-hand side,

while also intensifying their search efforts around the local optima on the right-hand side.

The EA-based MCTS variants exhibit erratic preferences, with scattered nodes on the

whole domain. This is a consequence of the EA-based MCTS variants’ tendency to get

stuck in the first local or global optimum found, which varies on each run. Remarkably,

the EA-based variants exhibit a significant number of nodes around the right-most global

minimum in f3 found on the right-hand side of the domain. This global minimum is the

one with the most consistent rewards around it, making it the most appealing to the

formulae that occasionally evolved to prefer low-reward regions.

Table 5.6 highlights that the EA-based MCTS variants have considerably fewer nodes

in their statistical trees than the vanilla MCTS variants, indicating a lower exploration

intensity and explaining the low node counts found in the last couple of plots in Figure 5.6.

Table 5.6 also shows that MCTS C = 1 achieved the highest most visited node-based

result for f3, with a value of 0.993. The vanilla agent with the worst performance was

the MCTS with a value of C = 3, with a value of 0.903 which is significantly lower than

the rest of the vanilla MCTS variants. This can be explained by the combination of high

exploration and the large number of global optima present in f3, making MCTS C = 3 not

92

5.5. FOP RESULTS

Figure 5.6: Statistical tree nodes sorted by the location of their respective states
for f3, plotted at the top and defined in Table 5.3. For the rest of the plots, the
x-axis is the domain of the function and the y-axis is the average of allocated nodes.

93

5.5. FOP RESULTS

Table 5.6: Average of 100 statistical trees grown by the agents for f3.

MCTS
variant

Node
expansion
rate per
iteration

Number of
terminal
states
reached

Leaf nodes’
average
depth

Most visited
node-based

result

MCTS C=0.5 0.53± 0.13 492.54± 241.58 14.62± 2.77 0.970± 0.06
MCTS C=1 1± 0 117.18± 113.42 13.46± 2.34 0.993± 0.02

MCTS C=
√

2 1± 0 0± 0 12.28± 1.49 0.986± 0.02

MCTS C=2 1± 0 0± 0 11.82± 0.98 0.964± 0.07
MCTS C=3 1± 0 0± 0 11.66± 0.74 0.903± 0.13
EA-MCTS 0.19± 0.1 38.59± 30.76 10.47± 2.89 0.970± 0.07

SIEA-MCTS 0.19± 0.08 34.39± 22.53 10.42± 2.84 0.971± 0.06

able to sufficiently sample any of them, investing its resources in all of them instead. This

can be further confirmed with Figure 5.6, where we can see that MCTS C = 3 expanded

nodes in multiple regions of the domain, resulting in decreased precision for each local or

global optimum.

For f3, the only vanilla MCTS variants that expanded terminal states were the MCTS

C = 0.5 and MCTS C = 1. The former also has a node expansion rate per iteration lower

than 0.53, meaning that it reached the bottom of the tree repeatedly, whereas MCTS

C = 1 did not revisit its expanded terminal nodes. Since f3 has multiple global and

local optima, it is likely for MCTS C = 0.5, which is the vanilla variant with the lowest

exploration, to solely focus on the first few global or local optima that it finds. This is

reinforced by the most visited node-based result of MCTS C = 0.5 being lower than some

other vanilla variants because in some runs MCTS C = 0.5 failed to sample global optima

from the left-hand side of the domain and got stuck on local optima on the right-hand

side. On the other hand, the MCTS C =
√

2, MCTS C = 2, and MCTS C = 3 did not

expand any terminal nodes, and have less leaf nodes’ average depth as C increases.

The EA-based MCTS variants exhibited no significant differences among themselves.

They faced difficulty in generating explorative formulae, as demonstrated by their low

node expansion rate per iteration and number of terminal states reached, which imply

that a large portion of the evolved formulae got stuck. We observed that the function’s

nature harmed the evolutionary process, as it offered good rewards in several regions,

implying that the fitness evaluation of the formulae did not provide any incentive to

explore the tree. However, the most visited node-based result of the EA-based MCTS

variants are comparable to that of the vanilla MCTS variants.

94

5.5. FOP RESULTS

5.5.4 FOP f4 results

Figure 5.7 illustrates the search conducted by the agents in f4, a function designed to

exhibit a deceiving fitness landscape that could potentially pose a challenge to the agents.

However, even with f4’s deceptive reward landscape, the vanilla MCTS variants were not

significantly misled. Most vanilla MCTS variants had their nodes concentrated around

the global optimum, except for MCTS c = 0.5, which allocated some resources around

multiple local optima. Conversely, the EA-based MCTS variants consistently invested

resources in every optima present in the function. Moreover, the EA-based variants were

the only ones to explore the right-most local optimum. We can also observe some expanded

nodes in the regions with the lowest rewards, especially on the left-hand side of the domain.

In Table 5.7, we observe that the maximum most visited node-based result is achieved

by MCTS C =
√

2 with a value of 0.978, closely followed by MCTS C = 2, and MCTS

C = 3. The lowest most visited node-based result among the vanilla variants is from MCTS

C = 0.5, which was sometimes deceived towards local optima as shown in Figure 5.7. The

lack of exploration from the latter is also reflected in the low node expansion rate per

iteration and number of terminal states reached, meaning that the statistical trees it

generated had fewer and more localised nodes. In contrast, the next vanilla agent with

the lowest exploration, MCTS C = 1, has a number of terminal states reached larger than

any other agent, suggesting that it found more regions of interest than MCTS C = 0.5.

This is consistent with MCTS C = 1 also having the largest leaf nodes’ average depth,

meaning that many of the expanded nodes were sampled deeper in the tree. Furthermore,

MCTS C = 1 has a number of terminal states reached of 0.91, which is lower than 1

but still larger than that of MCTS C = 0.5, which was 0.36. In summary, the slightly

higher exploration of MCTS C = 1 was sufficient to avoid getting stuck in local or global

optima as often as MCTS C = 0.5 while also expanding more nodes on the statistical

tree, highlighting the importance of an adequate C value in deceptive functions like f4.

The EA-based MCTS variants achieved a maximum most visited node-based result

of 0.87, which is lower than any of the vanilla variants. In f4, the number of terminal

states reached by the EA-based MCTS variants (53.82 for EA-MCTS and 52.14 for SIEA-

MCTS) paired with the low node expansion rate per iteration (0.21 for EA-MCTS and

0.23 for SIEA-MCTS) suggest that a large proportion of evolved formulae got stuck when

searching the tree in f4. Interestingly, MCTS C = 0.5 exhibited the most similar behaviour

to the EA-based variants, with the lowest number of terminal states reached and node

expansion rate per iteration among the vanilla variants, suggesting that it also got stuck

in some regions of the tree. This showcases how a decrease in exploration in MCTS leads

to the behaviour exhibited by the EA-based variants, at least in domains with small

rewarding regions and deceptive fitness landscapes. This behaviour is not necessarily

95

5.5. FOP RESULTS

Figure 5.7: Statistical tree nodes sorted by the location of their respective states
for f4, plotted at the top and defined in Table 5.3. For the rest of the plots, the
x-axis is the domain of the function and the y-axis is the average of allocated nodes.
The dashed vertical red line shows f4’s global optimum.

96

5.5. FOP RESULTS

Table 5.7: Average of 100 statistical trees grown by the agents for f4.

MCTS
variant

Node
expansion
rate per
iteration

Number of
terminal
states
reached

Leaf nodes’
average
depth

Most visited
node-based

result

MCTS C=0.5 0.36± 0.2 446.54± 372.17 15.3± 2.46 0.912± 0.05
MCTS C=1 0.91± 0.09 1212.1± 274.43 15.73± 2.27 0.974± 0.02

MCTS C=
√

2 1± 0.01 1029.2± 192.22 15.35± 2.49 0.979± 0

MCTS C=2 1± 0 415.14± 154.97 14.58± 2.59 0.978± 0
MCTS C=3 1± 0 0± 0 13.46± 2.42 0.977± 0
EA-MCTS 0.21± 0.1 53.82± 57.15 11.09± 3.15 0.874± 0.06

SIEA-MCTS 0.21± 0.1 52.14± 57.84 10.99± 3.08 0.873± 0.06

undesirable, as it can lead to the discovery of new regions of interest in the domain.

5.5.5 FOP f5 results

Figure 5.8 displays the search conducted by the agents in f5 (shown at the top of Fig-

ure 5.8), a function built to be more challenging to MCTS variants than f4 due to its

increased deceiving nature. To find the global optimum, a significant amount of explo-

ration is necessary, which is only consistently achieved by vanilla MCTS variants with

C = 2 and C = 3. Moreover, they only find and invest their resources around the global

optimum after the first 33% of their iterations, as is reflected by the shades of the bars

in that region (left-hand side of the fifth and sixth plots in Figure 5.8). On the other

hand, although the rest of the vanilla variants did exhibit some interest around the global

optimum, this region was not compelling enough for them to explore it further.

Interestingly, the maximum count of allocated nodes (y-axis) increases as C increases

for the vanilla MCTS variants. The low count of allocated nodes in the plot for MCTS

C = 0.5 is a consequence of the low count of total nodes in the statistical tree, with a

node expansion rate per iteration of 0.11 according to Table 5.8. This means that the

MCTS C = 0.5 reached the bottom of the tree and got stuck in the same terminal nodes

repeatedly. In contrast, MCTS C = 3 has the highest maximum count of allocated nodes,

with a low count around other local optima. Furthermore, the shades of the bars around

the global optimum indicate that once found, the rewards of that optimum were large

enough to attract the subsequent search.

The behaviour of the EA-based MCTS variants on f5 mirrors their behaviour on f4.

They tend to sample local optima on the right-hand side of the domain and struggle to

consistently find the global optimum. This is evident in Table 5.8, where the agents’ most

visited node-based result have the lowest values compared to the previous functions.

The best most visited node-based result is 0.957 achieved by MCTS C = 3, which

97

5.5. FOP RESULTS

Figure 5.8: Statistical tree nodes sorted by the location of their respective states
for f5, plotted at the top and defined in Table 5.3. For the rest of the plots, the
x-axis is the domain of the function and the y-axis is the average of allocated nodes.
The dashed vertical red line shows f5’s global optimum.

98

5.5. FOP RESULTS

Table 5.8: Average of 100 statistical trees grown by the agents for f5.

MCTS
variant

Node
expansion
rate per
iteration

Number of
terminal
states
reached

Leaf nodes’
average
depth

Most visited
node-based

result

MCTS C=0.5 0.11± 0.04 120.91± 98.29 14.35± 3.44 0.822± 0.08
MCTS C=1 0.31± 0.05 393.43± 152.67 15.01± 3.11 0.865± 0.05

MCTS C=
√

2 0.45± 0.06 567.67± 158.25 14.85± 3.16 0.875± 0.06

MCTS C=2 0.64± 0.07 771.57± 133.4 14.66± 3.17 0.915± 0.06
MCTS C=3 0.9± 0.06 704.82± 211.08 13.92± 3.01 0.957± 0.04
EA-MCTS 0.19± 0.1 53.26± 69.47 10.85± 3.08 0.809± 0.1

SIEA-MCTS 0.2± 0.09 46.98± 45.15 10.9± 3.06 0.812± 0.1

decreases as C decreases for the rest of the vanilla variants. As the rewards in f5 are very

deceptive, exploration proves to be crucial in finding the global optimum. The vanilla

MCTS variants with C = 0.5 and C = 1 failed to find the global optima, as they did

not explore the domain sufficiently, and performed particularly poorly in this function,

with a most visited node-based result of 0.822 and 0.865, respectively. On the other

hand, the EA-based variants achieved a maximum most visited node-based result of 0.81,

which is lower than the lowest achieved by any vanilla variant (0.82) only by a small

margin. Moreover, the EA-based MCTS variants in f5 have the lowest most visited node-

based result compared to all other functions but also have the largest standard deviation,

suggesting greater volatility in the search.

We can observe that no MCTS variant had a node expansion rate per iteration equal

to 1, meaning that all of them failed to expand nodes on some iterations, hence implying

that every variant reached the bottom of the tree. The third column of Table 5.8 shows

that the number of terminal states reached increases as C increases for the vanilla MCTS

variants, except for MCTS C = 3, which also has the most volatile number of terminal

states reached. This is likely a consequence of the variability in the timing of finding the

region near the global optimum, a region only consistently found and exploited by MCTS

C = 3 according to Figure 5.8.

Note that the standard deviation of the leaf nodes’ average depth of every MCTS

variant in f5, which ranges from 3.01 to 3.44, is greater overall than in any of the previous

functions, which can go as low as 0.74 for MCTS C = 3 in f3 (shown in Table 5.6),

illustrating the variability of the statistical tree construction for f5 given the difficulty to

find the best rewards in it.

99

5.5. FOP RESULTS

Figure 5.9: Distribution of the most visited node-based result by MCTS variant
for all the functions in the FOP.

5.5.6 Integrated analysis of FOP results

We now compare the results of all the experiments of the FOP functions presented in this

chapter. Figure 5.9 shows the distribution of the most visited node-based result metric,

with a plot for each function and a row for every MCTS variant.

Figure 5.9 makes evident that different C parameters of the vanilla MCTS variants

are required to perform better on each function according to its characteristics. The best

mean most visited node-based result in the most deceptive function, f5 (found in the

right-most plot in Figure 5.9), is achieved by MCTS C = 3 values, whereas lower C

values performed better in f3, the function with a rugged reward landscape and multiple

global optima (found in the middle plot in Figure 5.9). Interestingly, the EA-based MCTS

variants have a most visited node-based result distribution similar between them and to

MCTS C = 0.5, for each FOP function.

We performed a D’Agostino and Pearson’s normality test on the most visited node-

based result of every MCTS variant for every function. The null hypothesis of the test is

that the data is normally distributed with a significance level of 0.05. The test rejected

the null hypothesis for almost every MCTS variant in every function, meaning that the

data is not normally distributed. In f3, the variants EA-MCTS and MCTS had p-values of

0.069 and 0.103 respectively, meaning that there is not enough evidence to reject the null

hypothesis for them. Overall, the normal distribution is not expected, as the most visited

node-based result is a metric bounded between the minimum and the maximum of each

function, making its distribution skewed towards the maximum, as shown in Figure 5.9.

Given that we learned that the distribution of the most visited node-based result

cannot be assumed to be normal, we performed a non-parametric test, the two-sided

Mann-Whitney U test, to compare the performances of each MCTS variant on every

100

5.5. FOP RESULTS

Figure 5.10: Average leaf node depth by MCTS variant and FOP function,
extracted from the final statistical tree generated by each MCTS variant.

function independently with an alpha level of 0.05. The null hypothesis of the test is that

the samples of the results for each variant come from the same distribution. We found

that, when comparing different versions of the vanilla MCTS variants, those with similar

C values showed statistically similar results. This suggests that minor adjustments to the

MCTS settings do not drastically change how well the method works in most situations.

For example, MCTS C = 1 and C =
√

2 have no statistically significant difference between

them in most of the functions, whereas MCTS C = 1 and C = 3 do. However, function f5

is the exception, as most of the vanilla variants perform significantly differently from each

other regardless of their C. In f5, only the vanilla MCTS variants with C = 1 and C =
√

2

did not have a significantly different most visited node-based result between them, with

p-value = 0.283, p-value > 0.05.

This statistical test also indicates that there is no significant difference between the

performances of both EA-based MCTS variants for any function. However, note that

this test took into consideration only the most visited node-based result, ignoring how

the statistical tree was constructed. For instance, the performance of EA-MCTS is not

significantly different from that of MCTS C = 0.5 for functions f1, f2, f3, and f5, but

their statistical trees are structured very differently. This difference can be observed in

Figure 5.10 where the leaf nodes’ average depth for each variant and function is shown.

From Figure 5.10, we can observe that the vanilla MCTS variants with more exploita-

tion (lower C values) have deeper leaf nodes overall, as they can exploit the interesting

regions more deeply. However, this does not hold for the deceptive functions (f4 and f5 at

the fourth and fifth plots of Figure 5.10, respectively), where the vanilla MCTS variants

with C = 1, C =
√

2 and C = 2 have deeper nodes in average than the vanilla MCTS

with C = 0.5. The decrease in depth of the leaf nodes of MCTS C = 0.5 in f4 and f5 is a

101

5.6. SINGLE-PLAYER CARCASSONNE EXPERIMENTAL SETUP

consequence of its lack of exploration, as it is prone to exploit any optima found with a

lesser incentive to explore different regions than in the other functions. As f4 and f5 are

deceptive functions, the optima found by MCTS C = 0.5 easily become the only regions

of interest for the agent, resulting in a deep statistical tree around the optima but shal-

lower everywhere else. On the other hand, the EA-based MCTS variants have shallower

leaf nodes on every function, except f1. They also feature a larger variance in the depth

of their leaf nodes than the vanilla variants, which is a consequence of the volatility of

the evolutionary process.

Based on the Central Limit Theorem (CLT), the leaf nodes’ average depth metric

can be assumed to follow a normal distribution for each function and MCTS variant.

This assumption is grounded in the fact that leaf nodes’ average depth represents an

aggregation of averages obtained from independent distributions across 100 runs. We

performed a two-sample t-test with unequal variances (Welch’s t-test) on the leaf nodes’

average depth for every MCTS variant pair and each function. The null hypothesis of

the test is that the distributions of the leaf nodes’ average depth for each variant are

the same with an alpha value of 0.05. In other words, we are verifying if two variants

constructed statistical trees with similar depths. We found that the EA-based variants

had no statistically significant difference between them for any of the functions, allowing

us to conclude that the inclusion of semantics is also not influencing the construction of

the statistical tree, for the specific case of FOP. On the other hand, there is a significant

difference between the leaf nodes’ average depth of every other MCTS variant pair for

every function except for MCTS C = 0.5 and MCTS C = 1 in f2, and MCTS C = 0.5 and

MCTS C =
√

2 in f4. These observations show how even if the most visited node-based

result is similar between two MCTS variants (Figure 5.9), their statistical trees can be

significantly different (Figure 5.10).

5.6 Single-player Carcassonne experimental setup

The FOP experiments were designed to assess the effectiveness of EA-based MCTS vari-

ants in a simplified and controlled setting. While informative, these experiments do not

fully capture the strategies available in more complex environments. To address this, we

explored single-player Carcassonne variants, characterised by their variable branching fac-

tors and the unpredictability of optimal actions and rewards. The variants Carc1,d and

Carc3,d, which are the deterministic single-player Carcassonne variants with 1 and 3 ini-

tial meeples respectively, have long-term strategies based on their resource management

aspect, while also having a constant tree depth and higher branching factors than FOP.

On the other hand, the variants Carc1,s and Carc3,s, which are the stochastic single-player

Carcassonne variants with 1 and 3 initial meeples respectively, incorporate chance nodes,

102

5.6. SINGLE-PLAYER CARCASSONNE EXPERIMENTAL SETUP

Table 5.9: Expectimax parameters, named according to their maximum depth and
heuristic function.

Name Description

Expectimax− 1− s Maximum depth=1, Heuristic=score (s)

Expectimax− 1− vs Maximum depth=1, Heuristic=virtual score (vs)

Expectimax− 2− s Maximum depth=2, Heuristic=score (s)

Expectimax− 2− vs Maximum depth=2, Heuristic=virtual score (vs)

thus forming regular minimax game trees and elevating their complexity. We remind the

reader that our deterministic variants of Carcassonne have a fixed sequence of tiles in the

tile stack, which is shuffled at the beginning of each game, while the stochastic variants

draw tiles at random from the tile stack on every turn.

This section outlines the experimental setup for the single-player Carcassonne vari-

ants. We included each variant previously detailed in Table 4.4. For consistency, the MCTS

variants, including EA-MCTS and SIEA-MCTS, were configured with equal parameters

to those used in the FOP experiments (see Tables 5.1 and 5.2). However, for this series

of experiments we focused exclusively on vanilla MCTS variants using exploration con-

stants C = 0.5,
√

2, and 3, to illustrate the highest contrast in strategies according to

the exploration and exploitation balance. We also increased the iteration count for each

MCTS variant to 10, 000 to potentially accentuate any particularity in their behaviour

and strategies. To provide a comparative baseline, the MCTS variants were compared to

the Expectimax algorithm, which is a well-known decision-making algorithm that strate-

gically minimises the maximum possible loss by evaluating all potential outcomes, and the

random agent, which selects actions uniformly at random. These algorithms have been

tested with the base game of Carcassonne previously in [78], also more recently in our

IEEE SSCI paper [5] and our IEEE Transactions in Games article [61].

5.6.1 Expectimax in Carcassonne

In our research, we use both Minimax and Expectimax (explained in Chapter 2) as bench-

marks for the single-player Carcassonne variants, with the agents having access to game

scores. The specifics of the agents’ configurations are detailed in Table 5.9. Note that

when applying Expectimax to the stochastic Carcassonne variants, the maximum depth

parameter does not consider layers of chance nodes, and the algorithm behaves as Mini-

max.

Since the Expectimax agents, as detailed in Table 5.9, employ heuristic functions for

state evaluation rather than the random uniform simulations used by MCTS, and possess

differing stopping conditions, a direct comparison is not feasible. Nevertheless, they offer

103

5.7. SINGLE-PLAYER CARCASSONNE RESULTS

Figure 5.11: Breakdown of scores for every agent in each single-player
Carcassonne variant.

a behavioural baseline, demonstrating the performance of agents that can foresee game

scores one or two turns ahead in the single-player Carcassonne variants. We used both the

scores and virtual scores from the game as heuristics for Expectimax to observe variations

in agent behaviour when granted differing levels of game state information. The scores,

integral to the game state, are always accessible to the player, reflecting the current state

of play. Conversely, virtual scores, while also accessible at any moment, are not inherent

to the game state and function as a “best-guess” heuristic.

5.7 Single-player Carcassonne Results

Figure 5.11 displays the final scores of each agent over 30 independent games for the

single-player Carcassonne variants, with scores broken down by source: city, road, cloister,

and farm. This breakdown aims to highlight strategic differences among the agents. The

figure’s plots are arranged as follows, from left to right: deterministic with 1 meeple,

deterministic with 3 meeples, stochastic with 1 meeple, and stochastic with 3 meeples.

In terms of total scores, no single agent consistently outperforms the others across

all variants. The large score gap between the random agent and the rest underscores the

strategic depth of Carcassonne. Regarding the vanilla MCTS variants, the one with the

highest exploration factor, MCTS C = 3, excelled in the game variants with 1 initial

meeple (first and third plots, from left to right, in Figure 5.11), whereas the less ex-

ploratory vanilla variant, MCTS C = 0.5, had the best scores in the game variants with

3 initial meeples (second and fourth plots, from left to right, in Figure 5.11).

The EA-based MCTS variants performed marginally worse than the vanilla MCTS on

almost every game, with the exception of Carc1,s, where MCTS C = 0.5 scored lower.

Notably, SIEA-MCTS consistently achieved higher scores than EA-MCTS, though the

differences were not statistically significant in any game variant when assessed using a

104

5.7. SINGLE-PLAYER CARCASSONNE RESULTS

student’s t-test with an alpha value of 0.05.

Focusing on the deterministic Carcassonne variants (two left-most plots of Figure 5.11),

it is apparent that the Expectimax agents scored lower than any vanilla MCTS agents.

Among them, Expectimax− 2− s, using the game score as its heuristic and a maximum

depth of 2, outperformed EA-MCTS. Interestingly, Expectimax − 2 − s, despite having

a deeper search, scored less than Expectimax − 1 − vs, which operates at a maximum

depth of 1 but employs the virtual scores heuristic. This highlights the effectiveness of

the virtual score in enabling agents to more accurately anticipate game outcomes. For

instance, Expectimax − 1 − s and Expectimax − 2 − s cannot always predict the value

of the farms, as farms are only scored at the end of the game. This is further confirmed

by Expectimax − 2 − s’s score percentage coming from farms being 3.6% and 13.5% in

Carc1,d and Carc3,d, respectively, whereas Expectimax−2−vs’s score percentage coming

from farms are 6.95% and 20.21% in the same game variants.

In contrast, in the stochastic variants (two right-most plots of Figure 5.11), the Ex-

pectimax agents with a maximum depth of 2 consistently outperformed those with a

maximum depth of 1. Expectimax− 2− s scored higher than Expectimax− 2− vs in al-

most every game variant except for Carc1,s. A difference in their playing styles is evident

in the scores coming from roads. Expectimax− 2− s has 22.32% and 23.9% of its points

coming from roads, which is the highest among all agents. Expectimax− 2− vs, with a

greater focus on farms, outscored all agents in Carc3,s.

A key takeaway from Figure 5.11 is the dominance of cities as a scoring source for

all agents across all game variants. Even the random agent’s score is mostly composed

of city points, ranging from 49.1% to 73% of its total score across all the game variants.

This indicates cities’ efficiency and reliability for point accumulation are superior to the

rest of the features in the game of Carcassonne.

The increased availability of meeples in variants with 3 initial meeples (Carc3,d and

Carc3,d at the second and fourth plots from left to right, respectively) facilitated a broader

distribution of points across different features. This is shown by the clear increase in score

percentage coming from features that are not cities in those plots. For instance, all the

MCTS variants had 1.71% to 9.37% of their scores coming from farms in the variants

with 1 initial meeples (Carc1,d and Carc1,s at the first and third plots from left to right,

respectively), whereas in the variants with 3 initial meeples, the same agents had 16.59%

to 20.24% of their scores coming from farms. Figure 5.12 shows the total number of

meeples played on farms by each agent on average for every turn of the game. Note that

the total meeples played can exceed the initial allocation of meeples because meeples can

be recycled when features are completed.

Figure 5.12 highlights a surprising trend: Expectimax − 1 − s, which employs the

scores as its heuristic function, consistently played the highest number of meeples on

105

5.7. SINGLE-PLAYER CARCASSONNE RESULTS

Figure 5.12: Total number of meeples placed on farms by each MCTS variant up
until the turn number indicated on the x-axis.

farms, despite lacking a mechanism to evaluate farm value. This outcome is attributed to

its tendency to select a random action when presented with a tile that cannot complete a

feature, as these tiles do not offer immediate rewards. In Carcassonne, actions that involve

placing meeples on farms are more widely available than any other feature, making it likely

for a random choice to make them. The pattern exhibited by Expectimax−1−s diminishes

significantly when its maximum depth is increased to 2 as rewards can be found more

easily, evidenced by the lower average of meeples on farms for Expectimax− 2− s.

Figure 5.12 also shows that the MCTS variants generally used fewer meeples on farms

compared to other algorithms. This suggests that MCTS, by using full random playouts as

evaluations, can find different insights into state value compared to Expectimax, and yield

a different strategy. The EA-based MCTS variants mirrored the vanilla MCTS variants in

terms of meeple placement on farms. Remarkably, despite placing fewer meeples on farms,

the MCTS variants achieved comparable farm scores to the Expectimax algorithms. In

other words, the MCTS variants efficiency for meeples on farms was greater. The difference

in meeple placement on farms between MCTS variants and the Expectimax algorithm is

especially notorious in Carc3,d and Carc3,s, the game versions with 3 initial meeples

(second and fourth plots, from left to right in Figure 5.12).

Figure 5.13 reveals each agent’s total meeple usage per game. It shows that while

MCTS variants exhibited distinct farming patterns, their overall meeple usage across all

features was similar to the Expectimax algorithms. The agents Expectimax− 2− s and

random stand out for their unique meeple usage. The random agent’s limited ability to

complete features led to a consistent meeple count near its initial allocation (1 for Carc1,d

and Carc1,s, and 3 for Carc3,d and Carc3,s). In contrast, Expectimax− 2− s displayed

the most meeple reuse, caused by its heuristic evaluation (scores) which can only increase

on feature completion. Surprisingly, Expectimax − 1 − s, with the same heuristic as

106

5.7. SINGLE-PLAYER CARCASSONNE RESULTS

Figure 5.13: Total number of meeples played by each MCTS variant up until the
turn number indicated on the x-axis.

Expectimax− 2− s, was far less effective in reusing meeples. This suggests the existence

of valuable two-turn strategies in the game of Carcassonne that Expectimax−1−s failed

to anticipate and Expectimax− 2− s is able to exploit.

Figure 5.14 illustrates the visit count for the most visited node by each MCTS variant

per game turn. The vanilla MCTS variants have a lower visit count than any of the

EA-based agents in general. Among the vanilla MCTS variants, the visit count seems to

increase as the C parameter increases. For instance, the MCTS C = 3 shows the lowest

visit count on average whereas MCTS C = 0.5 shows the highest. This is expected, as

the higher the C parameter, the more the agent will explore alternative options.

The EA-based MCTS variants allocated a significant portion of their iterations to

repeatedly exploring the same node, with an average visit count per turn of 77.68% to

93.34% across all game variants from turns 1 to 21. In contrast, vanilla MCTS variants

concentrated only 7.07% to 40.42% of their iterations on the most visited node. Despite

their narrower exploration, the EA-based MCTS variants achieved scores comparable to

the vanilla ones (refer to Figure 5.11). This suggests that the EA-based MCTS variants

were able to find a strategy that was as effective as the vanilla MCTS variants, despite

their limited exploration.

Table 5.10 presents a summary of the outcomes from the single-player Carcassonne

experiments. The first column identifies the specific Carcassonne variant being examined,

and the second column lists the agent used in that variant. The third column, labelled

“score”, displays the agent’s average score over 30 game runs. The fourth column, titled

“meeple efficiency” describes the average points each played meeple scored for the player.

Note that a high meeple availability is not necessarily always desirable. The fifth column

is the “meeple availability” illustrates the proportion of turns during which the agent

had at least one meeple available for play. Meeple availability reflects the agent’s ability

107

5.7. SINGLE-PLAYER CARCASSONNE RESULTS

Table 5.10: Scores and meeple usage statistics for each Carcassone single-player
variant. The best MCTS and non-MCTS agent for each game variant are
highlighted.

Game Agent Score Meeple
efficiency

Meeple
availability

Carc1,d

MCTS C=0.5 30.83± 9.38 11.86 0.122
MCTS C=

√
2 31.7± 7.21 11.19 0.128

MCTS C=3 31.8± 10.17 11.36 0.128
EA-MCTS 27.27± 8.53 12.21 0.107
SIEA-MCTS 29.23± 8.81 11.54 0.114
Expectimax− 1− s 7.53± 8.94 3.83 0.101
Expectimax− 1− vs 21.93± 11.72 9.4 0.101
Expectimax− 2− s 13.83± 11.78 4.94 0.171
Expectimax− 2− vs 27.33± 12.88 8.54 0.226
Random 3.13± 3.79 2.76 0.059

Carc3,d

MCTS C=0.5 50.2± 5.65 7.76 0.307
MCTS C=

√
2 49.4± 7.85 7.48 0.310

MCTS C=3 49.13± 6.48 7.48 0.314
EA-MCTS 43.4± 5.46 7.8 0.271
SIEA-MCTS 46.07± 8.18 7.72 0.296
Expectimax− 1− s 16.2± 7.32 3.26 0.288
Expectimax− 1− vs 40.77± 11.48 7.24 0.245
Expectimax− 2− s 26.53± 12.29 3.83 0.438
Expectimax− 2− vs 45.5± 10.51 7.04 0.358
Random 8.07± 5 2.47 0.19

Carc1,s

MCTS C=0.5 27.83± 7.5 11.6 0.106
MCTS C=

√
2 31.97± 10.52 13.9 0.100

MCTS C=3 33.07± 11.02 12.88 0.114
EA-MCTS 29.03± 8.19 13.61 0.094
SIEA-MCTS 31.43± 9.28 13.47 0.103
Expectimax− 1− s 5.53± 5.59 3.32 0.081
Expectimax− 1− vs 22.03± 13.5 10.84 0.088
Expectimax− 2− s 32.7± 18.47 5.25 0.552
Expectimax− 2− vs 30.07± 14.22 8.28 0.242
Random 3.73± 4.26 3.39 0.064

Carc3,s

MCTS C=0.5 49.9± 7.29 7.84 0.294
MCTS C=

√
2 49.13± 5.75 7.8 0.288

MCTS C=3 48.57± 6.92 7.59 0.294
EA-MCTS 45.87± 5.73 7.56 0.286
SIEA-MCTS 47.6± 7.5 7.32 0.316
Expectimax− 1− s 18.7± 7.76 3.53 0.290
Expectimax− 1− vs 36.43± 9.31 7.01 0.239
Expectimax− 2− s 48.67± 8.68 4.66 0.812
Expectimax− 2− vs 53.33± 11.2 7.62 0.404
Random 10.27± 5.25 3.02 0.209

108

5.7. SINGLE-PLAYER CARCASSONNE RESULTS

Figure 5.14: Visit count of the most visited node for each MCTS variant on the
turn indicated by the x-axis.

to manage its resources effectively throughout the game, as having at least one meeple

available allows the agent to capitalise on opportunities as they arise.

The highest scores are achieved by MCTS C = 3 in the game variants with 1 initial

meeple, while MCTS C = 0.5 achieves the best scores in the game variants with 3 initial

meeples. This suggests that exploration is crucial for the game variants with 1 initial

meeple, whereas exploitation becomes more important for the game variants with 3 initial

meeples. Table 5.10 clearly shows that a high availability of meeples is correlated with high

scores for the game variants with 1 initial meeple (Carc1,d and Carc1,s), as the algorithms

with the highest scores are the ones with the highest meeple availability. MCTS C = 3 has

the highest meeple availability in every game variant, demonstrating that it is the most

efficient at managing its resources, especially regarding the last meeple it has available.

MCTS C = 3’s high meeple availability comes from its likelihood to invest resources in

actions that appear suboptimal at first, enabling it to uncover multi-turn opportunities

that other vanilla MCTS variants overlook. On the other hand, EA-MCTS has the highest

meeple efficiency among the MCTS agents in 3 out of the 4 game variants, implying it is

the most efficient in making the most points out of the meeples it uses, without focusing

on recycling them. Despite this efficiency, EA-MCTS’s strategy leads to the lowest scores

among the MCTS variants. SIEA-MCTS has better scores than EA-MCTS in all game

variants, also with a greater standard deviation, implying a positive impact of the use of

semantics. However, it is only in the stochastic game variant with 1 initial meeple that

both EA-MCTS and SIEA-MCTS have success with their strategies comparable to MCTS

C = 0.5 and MCTS C =
√

2.

109

5.8. ANALYSIS OF THE EVOLVED SELECTION POLICIES

5.8 Analysis of the evolved selection policies

UCB1, shown again Equation 5.2 for convenience, is widely used due to its desirable

properties. It guarantees that all actions will eventually be explored, bounds the regret at

any given time, and ensures convergence to the optimal action [10]. Exploitation (on the

right-hand side of the equation) and exploration (on the left-hand side of the equation)

are both crucial in maintaining these properties.

UCB1i = Qi + C

√
2 · ln (N)

ni
(5.2)

Equation 5.2, shows the UCB1 formula for arm i. In it, Qi is the average reward

of arm i and ni is its number of tries. N is the total number of tries among all the

arms. C is the exploration and exploitation balance constant. The desirable properties

of the UCB1 formula can be easily modified by the mutation operator of the GP used

in EA-MCTS and SIEA-MCTS, explained previously in Chapter 2. The search space is

extensive, and the chance of producing useful formulae with random alterations, such as

the ones performed by the mutation operator, is low. Hence, the evolutionary process in

EA-MCTS and SIEA-MCTS as proposed in this chapter struggled to consistently discover

formulae that balance exploration and exploitation.

Any tree policy requires the presence of at least ni and Qi to make informed choices,

as stated by [33]. If either of them is absent, or if one is so dominant that it can account

for most of the variance in the formula thereby rendering the other terminal almost

inconsequential, the formula might not exhibit balanced exploration and exploitation.

When exploration is entirely lost, the tree policy becomes stuck when searching the tree,

repeatedly trying the same action and focusing on the same branch of the tree without

any reason to switch to a different one.

The appearance rate of each terminal in the syntax trees of the evolved formulae

across all the experiments in this chapter is provided in Table 5.11. The column “rate

of n” indicates that only 49% to 73% of the final evolved formulae contained at least

one n as a terminal, which is a critical piece of data to perform exploration, highlighting

the difficulty of evolving a balanced tree policy formulae. On the other hand, Q is the

most frequently used terminal overall, with an 88% to 99% presence among all the MCTS

variants and domains, well above those of N (49% to 67%) and n (49% to 73%). This

is expected since the fitness evaluation of the GP used in the EA-based MCTS variants

favours greedy formulae that exploit rather than those that explore. Additionally, the

number of fitness iterations used to evaluate the fitness of each formula is not enough to

effectively illustrate the benefits of exploratory formulae. Notably, none of the terminals

were present in the totality of the formulae, which was a key factor contributing to

110

5.8. ANALYSIS OF THE EVOLVED SELECTION POLICIES

Table 5.11: Analysis of the formulae evolved by EA-MCTS and SIEA-MCTS for
all the functions in FOP and all the single-player Carcassonne variants. The
columns with a rate show the percentage of final evolved formulae that contained at
least one terminal of each n, N , and Q respectively.

Problem
Rate of n Rate of N Rate of Q Syntax tree nodes

EA SIEA EA SIEA EA SIEA EA SIEA

FOP f1 0.49 0.5 0.52 0.52 0.95 0.95 12± 5.7 11.92± 5.5
FOP f2 0.55 0.63 0.53 0.49 0.93 0.93 13.2± 7.4 12.81± 8.2
FOP f3 0.73 0.72 0.6 0.59 0.91 0.88 13.69± 6.8 14.69± 7.5
FOP f4 0.61 0.65 0.6 0.52 0.93 0.94 14.24± 7.1 13.07± 7.3
FOP f5 0.58 0.59 0.67 0.61 0.99 0.99 14.32± 7.5 13.86± 6.9
Carc1,d 0.59 0.53 0.62 0.63 0.94 0.93 14.26±8.41 14.05±7.96

Carc1,s 0.58 0.57 0.64 0.64 0.88 0.89 13.23±8.11 13.74±8.06

Carc3,d 0.57 0.55 0.63 0.61 0.94 0.94 14.38±8.12 14.15±8.13

Carc3,s 0.61 0.55 0.61 0.61 0.89 0.89 13.59±8.15 13.26±7.89

evolution failure.

The last column shows the number of nodes of the formula when represented as a

syntax tree by the GP. Its average is comparable to that of the original UCB1 formula

(13 nodes). This indicates that the proposed GP does not encourage bloating. On the

other hand, its high variance implies that the evolutionary process has considerably varied

results in terms of the size of the evolved formulae.

There are significant differences in the columns “rate of Q” and “Syntax tree nodes”

between Carcassonne’s deterministic variants (Carc1,d and Carc3,d) and its stochastic

variants (Carc1,s and Carc3,s). Both EA-MCTS and SIEA-MCTS had a rate of Q of

0.93 0.94 for the deterministic Carcassonne variants, whereas the rate of Q for the stochas-

tic variants was 0.88 0.89. This suggests that the impact of dropping Q is smaller in the

stochastic Carcassonne variants, likely due to their decreased reward certainty. This is

further supported by f3, which is the FOP function with the most volatile rewards, hav-

ing the smallest rate of Q (0.88 0.91) among all the FOP functions which range from 0.91

to 0.99. Similarly, the average number of syntax tree nodes for the deterministic variants

ranged from 14.05 to 14.38, whereas the average number of syntax tree nodes for the

stochastic variants ranged from 13.23 to 13.74.

5.8.1 Summary of findings

Function f1 had a single global optimum, where all MCTS variants consistently achieved

maximum scores in every run. This function helped us demonstrate that the EA-based

MCTS variants can evolve tree policies as effective as the vanilla MCTS variants when

the reward landscape is simple and smooth, with the major difference being that the

111

5.8. ANALYSIS OF THE EVOLVED SELECTION POLICIES

EA-based MCTS variants showed less exploration than any of the vanilla variants.

Function f2 features multiple local optima and a single global optimum. The EA-

based MCTS variants performed similarly to the vanilla MCTS variants with low C,

getting stuck in local optima and failing to consistently find the global optimum. In this

function we observe that, in sharp contrast to vanilla MCTS, the EA-based MCTS vari-

ants sometimes explore the regions of the tree with the lowest rewards. This hints at the

evolutionary process promoting exploration of the tree by simply evaluating the formu-

lae in the population. This phenomenon, particular of our algorithms, is not necessarily

undesired and has potential to be manipulated with further research.

Function f3 offered multiple global optima and a rugged fitness landscape. In this

function, EA-MCTS and SIEA-MCTS consistently sampled different optima on each run,

searching deeper than the vanilla MCTS variants. This deep exploitation was proven

desirable to a certain extent in this type of landscape, as the EA-based MCTS variants

achieved higher scores in this function than some of the vanilla MCTS variants.

The functions f4 and f5 are deceptive to different extents. Specifically, the branches

of their trees initially offering the highest rewards at first do not lead to optimal results.

Our analysis demonstrated how vanilla MCTS agents require more exploration as the

deception in the reward landscape of the problem increases because exploration is needed

to avoid getting stuck in local optima. The EA-based MCTS variants demonstrated a

likelihood of focusing on the first few local or global optima they found because their

evolutionary process had no incentive to explore other branches of the tree once a branch

was explored sufficiently to yield good rewards. This indicates that the exploration offered

by the evolutionary process was insufficient to find the global optima in these functions,

and requires further development. However, the EA-based MCTS variants were able to

find the global optimum in some of the runs.

In the single-player Carcassonne experiments, the EA-based MCTS variants achieved

scores comparable to the vanilla MCTS variants. Moreover, in the case with the most lim-

ited resources, EA-MCTS and SIEA-MCTS score higher than the vanilla MCTS variant

with the most suboptimal C constant. The EA-based MCTS variants were able to find

long-term strategies by methodically employing their limited game resources, in sharp con-

trast to greedy algorithms like the Expectimax agents. Although the strategic behaviour

was similar between the vanilla and the EA-based MCTS variants, their statistical trees

presented major structural differences, indicating that the EA-based MCTS variants had

a distinctive approach to searching the tree.

Overall, EA-MCTS and SIEA-MCTS are volatile, evolving primarily exploitative tree

policies, with exploration primarily driven by the evolutionary process itself. They offer

adaptable solutions that vary from attempt to attempt and have the potential to out-

perform the vanilla MCTS algorithm with a suboptimal C constant. Additionally, the

112

5.8. ANALYSIS OF THE EVOLVED SELECTION POLICIES

resulting evolved tree policy serves as an additional output of the search process. The

tree policies evolved by their GP occasionally omitted informative terminals, revealing

the significance of these terminals in the problem, despite this being an undesirable phe-

nomenon. The number of nodes in the syntax tree of the evolved formulae is comparable

to that of the original UCB1 formula, suggesting that the proposed GP does not promote

excessive growth. The high variance in the number of nodes of the evolved formulae sug-

gests that the evolutionary process has considerably varied results in terms of the size of

the evolved formulae.

113

6
Evolutionary MCTS in the base game of

Carcassonne

Related publication to this chapter: Edgar Galván, Gavin Simpson, and Fred Valdez

Ameneyro. “Evolving the MCTS Upper Confidence Bounds for Trees Using a Semantic-

inspired Evolutionary Algorithm in the Game of Carcassonne”. In: IEEE Transactions

on Games (2022).

6.1 Introduction

In this chapter, we analyse applying MCTS, as well as our proposed Evolutionary Al-

gorithm (EA)-based Monte Carlo Tree Search (MCTS) agents in the game of Carcas-

sonne for two players, jumping from the synthetic Function Optimisation Problem (FOP)

to more of a real-world problem. To do so, we executed a series of matches between

them and other state-of-the-art Carcassonne agents. First, we analyse the performance of

vanilla MCTS in the base game of Carcassonne in Section 6.2. We face multiple vanilla

MCTS variants with different C constants against a random uniform agent to compare

their performance. We then determine the best vanilla MCTS variant with a round-robin

tournament discussed in Section 6.3. Next, we proceed to confront our EA-based MCTS

variants, EA-MCTS and SIEA-MCTS, against two of the best vanilla MCTS variants, the

best Expectimax agents, and a random uniform agent in a final round-robin tournament

presented in Section 6.4.

6.2 Performance of vanilla Monte Carlo Tree Search in the base

game of Carcassonne

In two-player games, the reward Q used for the Upper Confidence Bounds (UCB1) formula

is normally defined as 1 for a win, 0 for a draw, and −1 for a loss. We will refer to this

114

6.2. PERFORMANCE OF VANILLA MONTE CARLO TREE SEARCH IN THE
BASE GAME OF CARCASSONNE

Table 6.1: MCTS parameters for reward comparison

Parameter Value

Iterations, Rollouts 5, 000, 1

UCB1’s C constant Random float in [0.5, 3]

Reward Q (R1) Win:1, Draw:0, Loss:−1

Reward Q (R2) Normalised difference of final scores

Normalisation factor 593

Table 6.2: Results of 100 games between two vanilla MCTS agents with R1 and
R2 as their reward types.

Reward type
As Player 1 As Player 2

Wins Draws Losses Wins Draws Losses

R1 2 0 48 4 1 45
R2 45 1 4 48 2 0

reward as reward type 1 (R1). However, the normalised difference of final scores, referred

to as reward type 2 (R2), is more informative as a reward for MCTS in the game of

Carcassonne as discussed in Chapter 4. To back this claim, we performed a series of games

between two vanilla MCTS agents, each using the reward types R1 and R2, respectively.

The difference of final scores in R2 is normalised with our maximum score presented in

Chapter 4, which equals 593 for the base game of Carcassonne. The parameters for those

games are presented in Table 6.1.

We compared the performance of MCTS with R1 and R2 in 100 games, where each

agent played 50 games as Player 1 and then 50 as Player 2. The constant C for every pair

of games with swapped player order was chosen at random from the range [0.5, 3], equal

for both agents. The results of this experiment are displayed in Table 6.2. The MCTS

agent with R2 won 93 of the games (45 as Player 1 and 48 as Player 2), while MCTS

with R1 won 6 (2 as Player 1, 4 as Player 2), with only 1 drawn game. The results of this

experiment reveal that there is a clear advantage in using the normalised difference of

final scores as the reward for MCTS in the game of Carcassonne, and is the one adopted

for the rest of the experiments presented in this chapter. The superiority of R2 over R1

is because R2 gives additional information that helps MCTS to increase its advantage

when winning, or decrease the gap when losing, where R1 would give similar rewards to

multiple alternatives.

The performance of MCTS is also greatly affected by the constant C from the UCB1

formula. In Chapter 5, we learned that the constant C = 0.5 achieved the highest scores

among the vanilla MCTS variants for the stochastic single-player versions of Carcassonne,

Carc1,s and Carc3,s, which are direct simplifications of the base game used in this chapter.

Here, we explore the impact of the C constant in the full base game of Carcassonne for

115

6.2. PERFORMANCE OF VANILLA MONTE CARLO TREE SEARCH IN THE
BASE GAME OF CARCASSONNE

Table 6.3: MCTS’s average scores against a random uniform agent. The difference
of final scores (DFS) and proportion of final scores (PFS) are calculated from
MCTS’s perspective

Agent DFS PFS Score Meeples played

MCTS as Player 1

C = 0.5 97.05± 4.8 7.07± 2.9 113.05± 17.2 16.2± 2.5
C = 1 85.75± 4.1 8.9± 4.1 96.6± 11.9 14.3± 2.2

C =
√

2 84.05± 4.4 7.07± 3.3 97.9± 13.1 14.75± 2.4
C = 2 75.15± 5 5.83± 2.7 90.7± 18.3 13.35± 2.3
C = 3 71.35± 4.3 5.66± 1.8 86.65± 14.6 12.95± 1.8

MCTS as Player 2

C = 0.5 90.8± 4.8 6.99± 3.2 105.95± 16.1 14.05± 1.8
C = 1 86.4± 4.7 7.31± 3.1 100.1± 16.5 14.5± 2.5

C =
√

2 79.9± 4.5 6.85± 2.5 93.55± 15.5 14± 2.4
C = 2 71.9± 4.8 5.57± 2.8 87.65± 15.2 13± 2.5
C = 3 67.15± 4.9 5.9± 3.6 80.85± 16.6 12.45± 1.7

two players. The parameters used for this experiment are the same as MCTSR2, as seen

in Table 6.1, but with C ∈ {0.5, 1,
√

2, 2, 3}. We compared the performance of vanilla

MCTS when facing a random uniform agent in matches of 20 games as Player 1 and 20

games as Player 2 each. The results of this experiment are presented in Table 6.3.

Table 6.3’s difference of final scores (DFS) column shows the difference of final scores

between MCTS and the random agent, from MCTS’s perspective. As can be seen, the

largest positive difference of final scores is attained by MCTS C = 0.5, both when playing

as Player 1 or as Player 2. This difference of final scores decreases as C increases, a trend

persistent regardless of the player order. Similarly, MCTS’s final scores, found in the

fourth column from left to right in Table 6.3, are larger for smaller C values, regardless

of the player order. These results are consistent with the results from the single-player

versions of Carcassonne in Chapters 4 and 5. The column proportion of final scores (PFS)

shows the proportion of MCTS’s final score to the random agent’s final score, relevant in

the game of Carcassonne given that a plausible strategy is to block scoring opportunities

for the opposing player instead of trying to score the most points for oneself. The column

meeples played shows the total count of meeples played by MCTS, reflecting the ability of

MCTS to recycle the limited resources available in the game of Carcassonne. The highest

average meeples played are achieved by MCTS C = 0.5 when playing as Player 1, and the

lowest by MCTS C = 3. However, the MCTS variant with the most meeples played as

Player 2 is MCTS C = 1. Note that while the total count of meeples played is correlated

to the final score, it is not a direct measure of the agent’s performance in this version

of the game. While MCTS C = 0.5 has the largest scores overall, MCTS C = 1 has the

116

6.3. ROUND-ROBIN TOURNAMENT BETWEEN VANILLA MCTS VARIANTS
IN THE BASE GAME OF CARCASSONNE

best proportion of final scores, regardless of the player order. Moreover, MCTS C = 1

outstands as the only MCTS variant that achieves larger scores, difference of final scores,

and total played meeples as Player 2 than it does as Player 1. This suggests that MCTS

C = 1 has a playing style that can take better advantage of playing as Player 2, but not

enough to outperform MCTS C = 0.5.

By using a two-sided Mann-Whitney U test with alpha = 0.05, MCTS’s final scores

as Player 1 were found significantly different to its final scores as Player 2, except for

MCTS C = 2. This confirms that the game of Carcassonne gives an advantage to Player

1. Table 6.3 also shows that MCTS C = 0.5 is the best variant when playing as Player 1

and Player 2, proving 0.5 to be the best C constant from the ones we tested, for the base

game of Carcassonne and versus a random uniform player.

6.3 Round-robin tournament between vanilla MCTS variants in

the base game of Carcassonne

The games versus the random uniform agent, although informative, are not enough to

claim that MCTS C = 0.5 is the best among the vanilla MCTS variants. To complement

the results from the previous section, we performed a round-robin tournament between

them. Given that Player 1 has a slight advantage in the game of Carcassonne, when we

compare two agents in a direct confrontation, each must get an equal number of games

as Player 1 and as Player 2. For the experiments in this chapter, we define a match as a

fixed number of games between two players, meaning that we require 2 matches to evenly

confront a pair of agents switching the player order. This is analogous to most major

sports leagues, with players/teams playing each other twice.

The parameters used for the round-robin tournament are the same as in Table 6.1,

using the reward type R2, but with C ∈ {0.5, 1,
√

2, 2, 3}. Each match was composed of

10 games for each agent as Player 1 and as Player 2. The same 10 random seeds are used

in each game of every match, to compare the agents under equivalent circumstances. The

results of each individual match in the round-robin tournament are presented in Table 6.4,

where the player on the left is Player 1 in the match against the player on the top as

Player 2. Each cell of Table 6.4 displays the count of wins, draws, and loses, as well as

the average difference of final scores (final score of Player 1 - final score of Player 2) with

its standard deviation in each individual match.

We can observe that MCTS C = 0.5 wins all of its matches when playing as Player 1.

Furthermore, it wins every single game in those matches except for a single drawn game

against MCTS C = 3. On the other hand, MCTS C = 0.5 did not win every match as

Player 2, as it was defeated by MCTS C = 1 in their match. That match, however, was

very close, with 5 wins for MCTS C = 1, 1 draw, and 4 wins for MCTS C = 0.5. The

117

6.3. ROUND-ROBIN TOURNAMENT BETWEEN VANILLA MCTS VARIANTS
IN THE BASE GAME OF CARCASSONNE

Table 6.4: Carcassonne’s vanilla MCTS round-robin matches. Each cell displays
Player 1’s wins/draws/losses, as well as the average difference of final scores from
Player 1’s perspective.

Player 2

C = 0.5 C = 1 C =
√
2 C = 2 C = 3

P
la
y
e
r
1

C = 0.5 - 10/0/0
20.1± 15.8

10/0/0
24.8± 19.8

10/0/0
29.6± 24.9

9/1/0
25.5± 16.2

C = 1 5/1/4
2.2± 18.0

- 9/0/1
13.9± 18.1

5/0/5
4.8± 15.3

8/1/1
13.3± 14.3

C =
√
2 2/0/8

−13.2± 15.0
3/0/7

−6.0± 15.5
- 5/0/5

5.9± 21.1
7/0/3
8.6± 17.2

C = 2 0/0/10
−24.6± 20.1

5/0/5
−1.0± 11.2

4/0/6
−2.2± 16.5

- 7/1/2
9.8± 12.3

C = 3 1/0/9
−22.7± 19.1

3/0/7
−5.3± 23.3

2/0/8
−13.7± 21.2

4/1/5
−0.3± 14.4

-

Table 6.5: League points (LP) awarded to each agent after a Carcassonne match.

Name Description LP

Bonus win points (BWP) Games won to games lost ratio ≥ 3 1

Bonus loss points (BLP) If lost, games lost to games won ratio ≤ 1.5 1

Win(W), Draw(D), Loss(L) Match won, drawn, or lost 4, 2, 0

evenness of the match can also be appreciated in their relatively low difference of final

scores, which was 2.2 ± 18 on average. To perform a quantitative analysis of how each

agent compared to each other in their matches and in the tournament overall, we propose

to use a cumulative scoring system across all their matches. Table 6.5 describes the league

points (LP) we are awarding each agent after a Carcassonne match.

We awarded 4 points for a win, 2 for a draw, and 0 for a loss, as shown in Table 6.5.

Additionally, we awarded bonus win points (BWP) to the winning player when it clearly

outperforms its opponent, and bonus lost points (BWP) to the losing agent when the

match is near to even. The summary of the results of the round-robin tournament is

presented in Table 6.6, where rankings are determined according to each agent’s league

points (column “LP”), using the cumulative difference of final scores across all the games

(column “DFS”) as a tie-breaker. The league points are calculated from the results of the

matches in Table 6.4 using the scoring system in Table 6.5. The columns W, D, and L

present the total number of matches won, drawn, and lost, respectively.

Table 6.6 shows that MCTS C = 0.5 is the best vanilla MCTS variant for the base

game of Carcassonne, with a clear advantage over the other variants. MCTS C = 1 is the

second best, with a significant difference in league points from the other variants. MCTS

C =
√

2 and MCTS C = 2 are tied in the third position, with the same amount of league

points but with MCTS C =
√

2 having a better difference of final scores. MCTS C = 3 is

the worst variant, with the lowest league points and the worst difference of final scores.

118

6.4. EA-MCTS AND SIEA-MCTS IN THE BASE GAME OF CARCASSONNE

Table 6.6: Carcassonne’s vanilla MCTS round-robin tournament results.

Rank Agent LP DFS W D L BWP BLP

1 MCTS C = 0.5 38 158.3± 13.8 7 0 1 7 1
2 MCTS C = 1 28 26.4± 15.2 5 2 1 2 0

3 MCTS C =
√

2 15 −27.5± 22.7 3 1 4 1 0
4 MCTS C = 2 18 −58.0± 16.8 2 3 3 1 1
5 MCTS C = 3 5 −99.2± 9.8 0 0 8 0 1

We found that the value of Q of the UCB1 formula in the base game of Carcassonne

for two players is relatively small compared to the single-player versions, given that in

the multi-player setting the difference of final scores is used instead of the full score.

This makes the reward Q comparatively small after normalisation, requiring a small C to

compensate and find a good exploration versus exploitation balance.

6.4 EA-MCTS and SIEA-MCTS in the base game of Carcas-

sonne

Vanilla MCTS’s tree search alternates the priority of the moves to explore next according

to the turn of the player making the choice, following the minimax principle. During the

selection step of MCTS, if the move to be chosen is on the agent’s turn, it chooses the

action that gives the highest rewards. Conversely, if the move is on the opponent’s turn, it

chooses the action that gives the lowest rewards. This is typically done by alternating the

sign of the exploitation part in the UCB1 formula, or its equivalent for any of the MCTS

variants found in the literature [162]. However, the tree policy formulae evolved by EA-

based MCTS and Semantically-Inspired Evolutionary Algorithm Monte Carlo Tree Search

(SIEA-MCTS)-based MCTS agents are not ensured to have distinguishable exploration

and exploitation parts. To alternate the priority of the actions according to the player

taking the turn, Evolutionary Algorithm Monte Carlo Tree Search (EA-MCTS) and SIEA-

MCTS alternate the sign of every instance of the Q terminal in the evolved formula

accordingly.

Regarding handling stochastic events like the ones in the base game of Carcassonne,

when vanilla MCTS traverses trees with chance nodes, it typically samples any random

events it encounters and continues the search. When a random event is sampled it creates

a chance node, which is not considered a new expansion. MCTS then adds a random

node to the outcome of the random event in its expansion phase. When the reward is

backpropagated through a chance node, it is weighted with the probability of the related

random event. Because of this, in regular minimax trees, the selection step of the vanilla

MCTS chooses actions according to the pondered rewards it has collected from its chance

119

6.4. EA-MCTS AND SIEA-MCTS IN THE BASE GAME OF CARCASSONNE

Table 6.7: Parameters of the agents for the base game of Carcassonne

Parameter Value

All MCTS variants

Iterations, Rollouts 5, 000, 1

Reward Q Normalised difference of final scores

UCB1’s C constant 0.5
Normalisation factor 593

EA-based MCTS variants

(µ+λ)-ES µ = 1, λ = 4

Generations g, Fitness iterations S g = 20, S = 30

Genetic operator Subtree mutation (90%− 10% policy)

Mutation subtree generation method Full (depth ∼ Uniform(1, 3))

Initialisation Method UCB1 formula + λ mutations
Maximum syntax tree depth 8

Total fitness iterations λ ∗ g ∗ S + S = 2, 430

SSi (SIEA-MCTS) L = 0.1, U = 0.5

Expectimax variants

Maximum depth 2

Heuristic (Expectimax− 2− s) Difference of scores

Heuristic (Expectimax− 2− vs) Difference of virtual scores

nodes. EA-MCTS and SIEA-MCTS behave analogously: the Q terminal is the pondered

reward of the chance nodes. Thus, the evolved formulae are expected to have the same

behaviour as vanilla MCTS when traversing chance nodes.

We now proceed to compare the EA-based MCTS variants with the rest of the agents.

The parameters used for the round-robin tournament with the best agents of each type in

the base game of Carcassonne are presented in Table 6.7. The base game of Carcassonne

has a stochastic event at the beginning of every turn, meaning that it has a regular

minimax tree [15] with a layer of chance nodes alternated with a layer of decision nodes

(refer to Chapter 2). The maximum depth of the Expectimax agents, Expectimax−2−s

and Expectimax−2−vs, does not consider chance nodes for its depth calculation. In other

words, Expectimax samples every potential random outcome in a chance node without

increasing its internal depth counter. Under those circumstances, a depth of 2 is the

maximum depth feasible for an exhaustive search within a reasonable time frame, even

considering pruning techniques like the *-minimax group of algorithms. The *-minimax

group of algorithms [15] with the virtual scores as their heuristic state evaluation are

reported to be the previous state of the art for Carcassonne [78]. They use a heuristic move

order and reward bounds to prune the tree, while a probing factor parameter determines

the name of the Star algorithm. In this chapter, we use Expectimax without pruning in

order to perform an exhaustive search within the established maximum depth, avoiding

120

6.4. EA-MCTS AND SIEA-MCTS IN THE BASE GAME OF CARCASSONNE

Table 6.8: Carcassonne’s round-robin matches. Each cell displays Player 1’s
wins/draws/losses, as well as the average difference of final scores from Player 1’s
perspective.

Player 2

Vanilla MCTS EA-based MCTS Minimax

RandomMCTS

C=0.5

MCTS C=1 EA-MCTS SIEA-

MCTS

Exp-2-s Exp-2-vs

P
la

y
e
r

1

V
a
n
il
la

MCTS

C=0.5

- 13/0/7

6.75 ± 17.2

15/1/4

11.95 ± 23.4

15/0/5

15.05 ± 21.0

20/0/0

62.6 ± 19.7

17/0/3

27.65 ± 27.9

20/0/0

97.05 ± 18.2

MCTS

C=1

12/0/8

1.1 ± 22.3

- 12/0/8

6.7 ± 21.9

12/0/8

4.4 ± 23.0

20/0/0

52.4 ± 16.9

19/0/1

26.4 ± 22.1

20/0/0

85.75 ± 12.9

E
A

-
b
a
s
e
d EA-

MCTS

11/0/9

−3.1 ± 22.7

10/1/9

5.0 ± 18.2

- 12/1/7

−1.3 ± 22.5

20/0/0

64.55 ± 19.3

17/1/2

31.0 ± 21.4

20/0/0

86.95 ± 17.0

SIEA-

MCTS

7/1/12

−2.6 ± 20.1

6/0/14

−6.8 ± 20.0

11/1/8

3.35 ± 24.4

- 20/0/0

57.95 ± 21.6

16/0/4

16.15 ± 24.4

20/0/0

98.65 ± 17.7

M
in

im
a
x Exp-

2-s

0/0/20

−54.2 ± 18.1

0/0/20

−59.4 ± 22.1

0/0/20

−52.7 ± 19.8

0/0/20

−56.5 ± 25.7

- 0/0/20

−38.2 ± 25.3

20/0/0

33.5 ± 17.8

Exp-

2-vs

3/0/17

−29.3 ± 23.1

5/0/15

−20.7 ± 24.9

6/0/14

−15.6 ± 24.9

7/1/12

−12.3 ± 25.4

20/0/0

48.7 ± 23.8

- 20/0/0

71.8 ± 23.7

Random 0/0/20

−90.8 ± 17.4

0/0/20

−86.4 ± 17.3

0/0/20

−85.0 ± 17.5

0/0/20

−84.1 ± 16.3

4/0/16

−23.1 ± 19.1

0/0/20

−64.2 ± 17.4

-

any dependency on the quality of the pruning parameters of the *-minimax algorithms.

The results of each individual match in the final round-robin tournament which in-

cludes MCTS C = 0.5, MCTS C = 1, EA-MCTS, SIEA-MCTS, Expectimax − 2 − s,

Expectimax − 2 − vs and a random agent are presented in Table 6.8. In its right-most

column, corresponding to matches where the random agent is Player 2, we can observe

that SIEA-MCTS is the agent with the largest positive final score difference. On the other

hand, in the bottom-most column which corresponds to matches where the random agent

is Player 1, MCTS C=0.5 is the agent with the largest positive final score difference. All

the agents won all their games against the random agent, except for Expectimax− 2− s,

who lost 4 games as Player 2. This was unexpected, given that Expectimax− 2− s was

the agent with the second highest average final score in Carc1,s, the single-player Carcas-

sonne variant with 1 initial meeple, and had superior results than the EA-based MCTS

variants in Carc3,s, the single-player Carcassonne variant with 3 initial meeples (refer

to Chapter 5). We found that the greedy nature of Expectimax − 2 − s, which tries to

maximise its immediate score within its maximum depth of 2, is particularly harmful in

the base game of Carcassonne. Expectimax − 2 − s plays its meeples on almost every

move from the beginning of the game until it runs out of them, making the agent miss

more scoring opportunities than in the single-player versions of the game because the

base game has more turns and has an opposing player that can potentially complicate

meeple recollection. Note that greedy gameplay is not necessarily always a bad strategy

in Carcassonne. However, Expectimax − 2 − s’s extremely greedy nature is enough to

make it lose against the random agent, showcasing the deceptive nature of the base game

of Carcassonne.

MCTS C = 0.5 managed to win all of its matches as Player 1 and as Player 2, except

for the match where it plays as Player 2 against EA-MCTS and MCTS C = 1. However,

121

6.4. EA-MCTS AND SIEA-MCTS IN THE BASE GAME OF CARCASSONNE

Table 6.9: Carcassonne’s round-robin tournament results.

Rank Agent LP DFS W D L BWP BLP

1 MCTS C = 0.5 50 400.0± 43.1 10 0 2 8 2
2 MCTS C = 1 47 338.35± 42.8 10 0 2 6 1
3 EA-MCTS 43 314.45± 69.8 9 0 3 5 2
4 SIEA-MCTS 34 301.55± 53 7 0 5 5 1
5 Expectimax− 2− vs 20 43.85± 54.1 4 0 8 4 0
6 Expectimax− 2− s 10 −490.8± 37.7 2 0 10 2 0

7 Random 0 −907.4± 45.4 0 0 12 0 0

Figure 6.1: EA-MCTS’s average number of nodes in the syntax tree (x-axis) of the
evolved formulae per turn (y-axis). The horizontal solid line denotes the size of
UCB1. Each marker denotes a random evolved formula taken during the game.

the matches were very close. For instance, the match with EA-MCTS had 11 wins for

EA-MCTS and 9 wins for MCTS C = 0.5, with a difference of final scores of −3.1± 22.7

on average.

Note that there is no single instance of a match where an Expectimax variant wins

against any of the MCTS variants, suggesting that MCTS is particularly well suited for

the base game of Carcassonne. To quantitatively compare the agents in this round-robin

tournament, Table 6.9 shows the rankings of the agents determined according to their

league points (column “LP”), using the cumulative difference of final scores across all the

games (column “DFS”) as a tie-breaker. The league points are calculated from the results

of the matches in Table 6.8 using the scoring system in Table 6.5.

Table 6.9 ranks MCTS C = 0.5 as the best agent for the base game of Carcassonne with

50 LP, followed by MCTS C = 1 with 47, which was then followed by the EA-based MCTS

variants. EA-MCTS, with 43 LP, only won 2 more matches than SIEA-MCTS, who got 34

122

6.4. EA-MCTS AND SIEA-MCTS IN THE BASE GAME OF CARCASSONNE

Figure 6.2: SIEA-MCTS’s average number of nodes in the syntax tree (x-axis) of
the evolved formulae per turn (y-axis). The horizontal solid line denotes the size of
UCB1. Each marker denotes a random evolved formula taken during the game.

LP. Their DFS, however, is very similar, with 314.45±69.8 for EA-MCTS and 301.55±53

for SIEA-MCTS. Note that the DFS’s standard deviation of EA-MCTS is the largest

overall, setting it apart as the agent with the most volatile results. Expectimax− 2− vs

was the only agent other than any MCTS variant to get a positive DFS, however, its LP

are significantly lower than the EA-based MCTS variants. Expectimax − 2 − s and the

random agent are the worst agents in the round-robin tournament, with negative DFS.

We kept track of all the evolved formulae generated by our EA-based MCTS variants

in the round-robin. Figures 6.1 and 6.1 show the number of nodes (y − axis) of these

evolved formulae throughout each of the 36 turns (x− axis) in the game of Carcassonne

for EA-MCTS and SIEA-MCTS, respectively. In them, the solid horizontal line denotes

the size of the UCB1 formula, which is the initial formula of the evolutionary process.

We can observe that 50% of the central data is around the size of the UCB1 expression

(see first and third quartiles of the boxplots in both figures), regardless of the EA method

used. This can go as small as 10 nodes up to around 20 nodes. Note how this varies as

the game progresses. In particular, it is interesting to observe how at the end of the game

(Turn 36, right-hand side in each figure), SIEA-MCTS and EA-MCTS tend to produce

expressions of similar length compared to UCB1 or slightly shorter when the game is

about to finish. These fluctuations in the sizes of the evolved UCB1 formula, along with

the performance discussed in the previous section, indicate how our proposed EA-based

MCTS variants adapt to different time frames within the game.

123

6.4. EA-MCTS AND SIEA-MCTS IN THE BASE GAME OF CARCASSONNE

6.4.1 Summary of findings

This chapter begins by examining two reward systems for the full game of Carcassonne:

R1 and R2. R1 assigns 1 for a win, 0 for a draw, and -1 for a loss, while R2 represents the

normalised difference of final scores. We found that the latter (R2) provided significantly

more information for MCTS, enabling the agent to pursue higher scores in winning or

losing positions. As a result, it was utilized as the reward system for all MCTS variants in

this chapter. In matches against a random agent, as well as in a round-robin tournament,

we found that MCTS with lower C performed the best in the game of Carcassonne. A

potential reason for requiring low C constants is the normalisation of the rewards which

makes them relatively small.

Subsequently, we conducted a comparative analysis involving the top-performing MCTS

variants, the EA-based MCTS variants, Expectimax variants, and a random agent in an-

other round-robin tournament within the game of Carcassonne. Each agent competed

against all others in matches where half were played as the first player and the remain-

ing half as the second player. Our experiments resulted in MCTS with C = 0.5 as the

top-performing agent, followed by MCTS with C = 1, EA-MCTS, and SIEA-MCTS. The

EA-based MCTS variants achieved average scores nearly comparable to the best vanilla

MCTS variants, with most games won by the vanilla MCTS variants, albeit by narrow

margins. Moreover, the EA-based MCTS variants consistently defeated the expectimax-

based agents. Our findings suggest that EA-MCTS and SIEA-MCTS show promise in

Carcassonne gameplay but may require further refinement. Additionally, Carcassonne

demonstrates promise as a valuable benchmark for the development and evaluation of

tree search algorithms. Notably, EA-MCTS demonstrated slightly superior performance

compared to SIEA-MCTS, implying that enhancements to the inclusion of semantics in

the evolutionary process may be beneficial, requiring further investigation.

124

7
Conclusions

Our research contributes to the field of artificial intelligence and decision-making by de-

veloping and evaluating two novel variants that integrate EAs with MCTS, namely EA-

MCTS and SIEA-MCTS. These approaches dynamically optimise the MCTS selection

policy using Genetic Programming (GP). Our EA-based MCTS variants, through an

online evolutionary approach, aim to adapt the selection policy to various problem char-

acteristics. Through a series of experiments in domains ranging from multiple reward

distributions in the Function Optimisation Problem (FOP) to different Carcassonne vari-

ants, we found that EA-MCTS and SIEA-MCTS have promising capabilities, working as

stepping stones towards the online evolution of dynamic and context-aware tree policies.

7.1 Evolutionary Algorithms-inspired Monte Carlo Tree Search:

Strengths

EA-MCTS and SIEA-MCTS have been shown to offer potential benefits in terms of

adaptability and performance, with competitive results in the FOP and the game of

Carcassonne. We identified the following strengths:

• EA-MCTS and SIEA-MCTS can be stopped at any time to yield a result, without the

need of a fixed number of iterations to complete the evolutionary process.

• Dynamic evolution allows for adaptability that is sensitive to both the problem at hand

and to the stages of the search process.

• The exploration of the tree can be orchestrated by the evolutionary process itself, rather

than the exploration component of the evolved formulae. In other words, by evaluat-

ing suboptimal evolved formulae, the evolutionary process can potentially positively

contribute to exploring regions of the tree that no robust tree policy formulae would.

• EA-MCTS and SIEA-MCTS offer the potential to discover alternative selection policies

that are not based on the UCB1 formula.

125

7.2. EVOLUTIONARY ALGORITHMS-INSPIRED MONTE CARLO TREE
SEARCH: CHALLENGES

7.2 Evolutionary Algorithms-inspired Monte Carlo Tree Search:

Challenges

These strengths are a significant advantage over other evolutionary algorithms, as they

allow the method to be used in real-time decision-making applications without major

drawbacks. We found that the following challenges need to be addressed for effective

incorporation of EAs, and specifically GP, into MCTS for online decision-making

• The search space is vast and flooded with trivial solutions, which makes it difficult to

find useful formulae through random mutations.

• Comparing selection policies is far from trivial, even more so with limited resources.

• There is a trade-off between adaptability and robustness. If more resources are invested

in the evaluation of each evolved formula, the evolutionary process will be more robust,

but it will also be less adaptable.

• The inclusion of EAs incorporates additional parameters that need to be optimised.

The solutions offered by our EA implementation in MCTS can be further refined to

address the identified challenges in our research.

7.3 Evolutionary Algorithms-inspired Monte Carlo Tree Search:

Conclusions

Our experiments with the FOP confirm that the UCB1’s C values required by MCTS vary

across different reward landscapes, as no parameter was universally superior. Specifically,

deceptive reward landscapes require more exploration (greater C values) to find rewards

that are hidden deeper in the tree. EA-MCTS and SIEA-MCTS performed inferiorly

compared to the vanilla MCTS variants with optimal C values in the FOP domains and

the game of Carcassonne. However, EA-MCTS and SIEA-MCTS were superior to the

worst-performing vanilla MCTS variants in some cases, like the deceptive functions in

FOP and the single-player Carcassonne variants, demonstrating their potential to adapt

to different problem characteristics.

EA-MCTS and SIEA-MCTS showed a preference for exploitation over exploration,

often exploiting the same few branches of the tree exclusively. However, their behaviour is

greatly influenced by their evolutionary process, making them behave very differently from

the vanilla MCTS variants with low C values. For instance, on occasion, some iterations of

the EA-based MCTS variants were spent in branches of the tree with the lowest rewards.

Although not necessarily undesirable, this finding suggests that the evolutionary process

can potentially positively contribute to exploring regions of the tree that no robust tree

policy formulae would.

126

7.3. EVOLUTIONARY ALGORITHMS-INSPIRED MONTE CARLO TREE
SEARCH: CONCLUSIONS

EA-MCTS and SIEA-MCTS were found to be very volatile and sensitive to local

optima. During the evolutionary process, it is hard for any newly evolved formula with

a preference for exploration to compete with other formulae that focus on exploiting the

best rewards. This is caused by a combination of many factors, but primarily by the

fitness evaluation. The fitness evaluation in EA-MCTS and SIEA-MCTS measures the

cumulative reward of the fitness iterations in which each evolved formula is used. This

implies that formulae exploiting rewarding regions of the statistical tree in all of their

fitness iterations are more likely to achieve better fitness than those investing resources in

exploring less rewarding branches, biasing the search towards exploitation. Furthermore,

greedy formulae that primarily exploit the same rewarding branches were found to survive

over multiple generations due to the unlikelihood of producing offspring that can compete

with them because the search space for tree policies is vast and flooded with undesirable or

trivial solutions. For instance, we found that tree policies evolved by our EA-based MCTS

variants can lack crucial terminals like the reward or the number of visits of each node on

occasion, which are the primary source of information for the selection policy. Thus, by

the time a new competitive formula is produced, the overall behaviour of EA-MCTS and

SIEA-MCTS is heavily impacted and the statistical tree has already been biased. While

that bias is not necessarily harmful, it can make exploration less rewarding for upcoming

generations. This observation describes a feedback loop [119] in the evolutionary process

in EA-MCTS and SIEA-MCTS, where each individual updates the statistical tree when

evaluated, which is then used as input for the fitness evaluation of the next individual.

This creates a runaway sexual selection [77] phenomenon where the preferred individuals

are those who find the best rewards, which are then available to the next individuals who

have no incentive to explore.

While the inclusion of semantics can be beneficial to guide the search and ensure a

diverse population, we found that it did not yield significant benefits as implemented

in SIEA-MCTS. SIEA-MCTS uses semantics when two evolved formulae share the same

fitness evaluation, which has a variable likelihood of happening that depends on the

domain. FOP and Carcassonne have continuous rewards, which made the likelihood of

two formulae sharing the same fitness evaluation very low. We believe that semantics have

potential in this domain, but the current implementation is not effective at exploiting it.

We discuss a way to solve this issue in Section 7.5.

Overall, EA-MCTS and SIEA-MCTS offer a competitive alternative to the UCB1

formula, which is the default selection policy in MCTS. They are a promising first step

toward the development of a more general and adaptable MCTS based on evolution.

Our results indicate that, although competitive, EA-MCTS and SIEA-MCTS are not

universally superior to vanilla MCTS variants and require further improvements to be

competitive in all domains.

127

7.4. TAXONOMY AND TRANSFERABILITY

7.4 Taxonomy and transferability

MCTS has been expanded to address problems with various characteristics, such as

MCTS-Solver [174], designed for games with abrupt termination states. However, many

extensions are tailored to specific features of the game tree and lack general applicability.

Moreover, it is generally unclear where each extension can be successfully applied and how

the impact is altered when the attributes of the problem differ. We proposed Evolutionary

Algorithm Monte Carlo Tree Search (EA-MCTS) and Semantically-Inspired Evolution-

ary Algorithm Monte Carlo Tree Search (SIEA-MCTS) to address the adaptability of the

selection policy in MCTS, which is a general problem that can be applied to any domain.

This thesis focuses on the domains we tested, which may not encompass all possible game

tree characteristics and require further research. However, we can offer building blocks

for a taxonomy based on the problem characteristics we have discussed in this thesis and

how they relate to our results. This taxonomy is important to group problems [73] and to

determine the transferability of our results to domains with similar characteristics and,

in this case, to also identify the most suitable domains for evaluating MCTS variants.

Table 7.1 is compiled from Tables 2.1 and 4.1 in Chapters 2 and 4, respectively. It

summarises the problem characteristics that we deemed ideal for testing various tree poli-

cies. These characteristics represent the simplest form of decision-making while yielding

the most interpretable results.

The categories for branching factor and tree depth depend on several factors, including

the time constraints of the algorithms, available computational resources, the cost of the

forward model, and the problem’s stages. We offer three categories: small, moderate, and

large, as rough estimates based on the following criteria.

A small tree depth enables the algorithm to reach the bottom of the tree and expand

terminal nodes in a few iterations, rendering exploitation less impactful on those branches.

Conversely, a large tree depth is deep enough to render reward retrieval with Monte Carlo

simulations inconsistent or unfeasible. A moderate tree depth allows the algorithm to

retrieve rewards from terminal states while also requiring a balance between exploration

and exploitation.

Regarding the branching factor, a large branching factor prevents MCTS from ex-

panding beyond a few levels of depth, effectively functioning as a breadth-first algorithm.

Conversely, a small branching factor demands a deeper tree to prevent the algorithm

from reaching its bottom and incurring associated consequences. A moderate branching

factor enables the algorithm to explore the tree in a balanced manner while maintaining

a reasonable depth.

Additionally, we offer a taxonomy focused on the underlying reward landscapes of

the problems that influence the performance of MCTS and its selection policy. Table 7.2

128

7.5. FUTURE WORK

Table 7.1: Problem characteristics

Characteristic FOP Carcassonne Suggested

Problem definition
Pace Turn-based Turn-based Turn-based
Turns Atomic Atomic Atomic
Order Sequential Sequential Sequential

Information
Perfect Perfect Perfect
Complete Incomplete Complete

Randomness Deterministic Stochastic Deterministic

Zero-sum N/A Non zero-sum Any

Symmetry N/A Asymmetric Any

Tree structure
Abrupt termination states No No No

Tree depth Small Moderate Moderate

Branching factor Small Large Moderate

Game state equivalences Yes Yes Any

Progression Progressive Progressive Progressive

Transpositions No Yes Any

elaborates on Table 4.1 from Chapter 4 and summarises the reward landscapes of the

problems we tested. The last column reflects the characteristics we believe offer the algo-

rithms proposed in this thesis the most potential with their current design, but they are

not limited to them.

Some of the characteristics presented in Table 7.2 are quantitative but lack defined

thresholds. For instance, quantifying the smoothness or ruggedness of a function often

involves calculating the Lipschitz constant, which is challenging in practice and requires

knowledge of the function [88]. However, reward landscapes and their characteristics are

typically unknown and difficult to evaluate, requiring estimations based on problem knowl-

edge. We speculate that EA-MCTS and SIEA-MCTS could be enhanced to address the

challenges posed by the reward landscapes of the problems under examination. For ex-

ample, the deceptive functions in the FOP problem require enhanced exploration to find

rewards hidden deeper in the tree. A summary of potential improvements to our proposed

EA-based MCTS variants is provided in Section 7.5.

7.5 Future Work

We identified the following aspects of EA-MCTS and SIEA-MCTS that can potentially

be improved.

• Although undesired or trivial formulae can be arguably beneficial as explained before,

129

7.5. FUTURE WORK

Table 7.2: Reward characteristics

Characteristic f1 f2 f3 f4 f5 Carcassonne Potential

Modality Uni Multi Uni Uni Uni Multi Uni

Deceptive No No No Yes Yes Yes No

Bias in suboptimal
moves

No No No No No Yes No

Shallow search traps No No No No No No No

Smoothness Yes Yes No Yes No No Any

Sparse rewards No No No No No No No

the evolutionary process could benefit from a constrained offspring generation method

that ensures that the offspring are valid. For instance, they can be tested on independent

artificial statistical trees to ensure that a) they prefer the nodes with higher rewards

when tied in visits, and b) they prefer the nodes with fewer visits when tied in rewards.

• A fitness evaluation based on rewards might not be the most effective approach. The

current fitness evaluation is inherently biased toward exploitation. This problem can be

addressed with a multi-objective optimisation approach, where the fitness evaluation is

based on the trade-off between exploration and exploitation. Moreover, the co-existence

of multiple solutions that do not dominate each other, as often occurs in populations of

Multi-Objective Genetic Programming approaches, can be particularly beneficial under

the context of evolving tree policies.

• While the fitness in EA-MCTS and SIEA-MCTS is permanent, the utility of each

evolved formula can change as the statistical tree grows and updates. This implies that

evolved formulae might become suboptimal as more MCTS iterations are executed.

This can be addressed by re-evaluating the formulae in every generation. Under the

context of selection policies, the additional resources investment used for re-evaluation

are not a waste, since the game tree continues being explored and the statistical tree

continues growing.

• Semantics can be re-defined for tree policies. To this end, semantics could focus on

the traversed tree branches instead of the collected rewards. In this way, the algorithm

would have access to valuable information about how the tree policy behaves, which

can be used to guide the search and ensure a diverse population.

• Semantics could be employed in the offspring generation process rather than just when

two individuals share a fitness. This solution could: a) prevent repetitive exploitation

of the same tree branches, especially in consecutive iterations, and b) help mitigate the

runaway sexual selection phenomenon.

• The evolutionary process can be extended beyond a fixed number of generations to

effectively evolve the selection policy for as long as the MCTS is used. This would allow

130

7.5. FUTURE WORK

the evolutionary process to adapt to the changes in the game tree as it grows and is

updated, especially when used for an increasing number of iterations.

• The terminal set in the GP implementation for EA-MCTS and SIEA-MCTS could be

expanded to include additional statistical tree information, such as the maximum re-

ward of node children, the branching factor, or the standard deviation of the rewards.

This approach could potentially increase the effectiveness ceiling of the evolved selection

policy, assuming the evolutionary process can handle the expanded search space. Addi-

tionally, the implementation could be tailored to incorporate available domain-specific

heuristic information, if so desired.

• The representation of the individuals in the population can be greatly improved through

the use of a more expressive language, like grammatical evolution [142] or Cartesian

Genetic Programming (CGP) [118]. This would allow for a more diverse population,

a better shape of the solution search space and potentially more effective evolved se-

lection policies. Furthermore, it is of interest to maintain mathematical expressions in

the formula that serve a specific purpose, like the regret bound term in Upper Con-

fidence Bounds (UCB1). To this end, the representation could be tailored to protect

mathematical structures that provide specific benefits to the selection policy or ensure

the inclusion of crucial terminals and functions that are known to be beneficial for the

selection policy. For example, the evolutionary process might be focused on evolving the

exploitation term of the selection policy, while the exploration term is kept constant.

This would allow the evolutionary process to focus on optimising specific parts of the

selection policy while ensuring that crucial information is not lost.

131

Bibliography

[1] Alexandros Agapitos, Julian Togelius, and Simon M Lucas. “Multiobjective tech-

niques for the use of state in genetic programming applied to simulated car racing”.

In: 2007 IEEE Congress on Evolutionary Computation. IEEE. 2007, pp. 1562–1569.

[2] Shipra Agrawal and Navin Goyal. “Analysis of thompson sampling for the multi-

armed bandit problem”. In: Conference on learning theory. JMLR Workshop and

Conference Proceedings. 2012, pp. 39–1.

[3] Atif M Alhejali and Simon M Lucas. “Using genetic programming to evolve heuris-

tics for a Monte Carlo Tree Search Ms Pac-Man agent”. In: 2013 IEEE Conference

on Computational Inteligence in Games (CIG). IEEE. 2013, pp. 1–8.

[4] Fred Valdez Ameneyro and Edgar Galván. “Towards Understanding the Effects of

Evolving the MCTS UCT Selection Policy”. In: 2022 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE. 2022, pp. 1683–1690.

[5] Fred Valdez Ameneyro, Edgar Galván, and Ángel Fernando Kuri Morales. “Playing

carcassonne with monte carlo tree search”. In: 2020 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE. 2020, pp. 2343–2350.

[6] Per-Arne Andersen, Morten Goodwin, and Ole-Christoffer Granmo. “Deep RTS:

a game environment for deep reinforcement learning in real-time strategy games”.

In: 2018 IEEE conference on computational intelligence and games (CIG). IEEE.

2018, pp. 1–8.

[7] Oleg Arenz. “Monte carlo chess”. B.S. thesis. Technische Universität Darmstadt,

2022.

[8] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. “Best arm identification

in multi-armed bandits.” In: COLT. 2010, pp. 41–53.

[9] Peter Auer. “Using confidence bounds for exploitation-exploration trade-offs”. In:

Journal of Machine Learning Research 3.Nov (2002), pp. 397–422.

[10] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the

multiarmed bandit problem”. In: Machine learning 47.2-3 (2002), pp. 235–256.

[11] Peter Auer et al. “The nonstochastic multiarmed bandit problem”. In: SIAM jour-

nal on computing 32.1 (2002), pp. 48–77.

[12] Thomas Back. Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford university press, 1996.

[13] Hendrik Baier and Peter Cowling. “Evolutionary MCTS with flexible search hori-

zon”. In: Proceedings of the AAAI Conference on Artificial Intelligence and Inter-

active Digital Entertainment. Vol. 14. 1. 2018, pp. 2–8.

132

BIBLIOGRAPHY

[14] Hendrik Baier and Peter I Cowling. “Evolutionary MCTS for multi-action ad-

versarial games”. In: 2018 IEEE Conference on Computational Intelligence and

Games (CIG). IEEE. 2018, pp. 1–8.

[15] Bruce W Ballard. “The*-minimax search procedure for trees containing chance

nodes”. In: Artificial Intelligence 21.3 (1983), pp. 327–350.

[16] Marc G Bellemare et al. “The arcade learning environment: An evaluation plat-

form for general agents”. In: Journal of Artificial Intelligence Research 47 (2013),

pp. 253–279.

[17] Amit Benbassat and Moshe Sipper. “EvoMCTS: A scalable approach for general

game learning”. In: IEEE Transactions on Computational Intelligence and AI in

Games 6.4 (2014), pp. 382–394.

[18] Amit Benbassat and Moshe Sipper. “EvoMCTS: Enhancing MCTS-based play-

ers through genetic programming”. In: 2013 IEEE Conference on Computational

Intelligence in Games (CIG). IEEE. 2013, pp. 1–8.

[19] Peter Bergh. Domain independent enhancements to Monte Carlo tree search for

eurogames. 2020.

[20] Hans J Berliner. “Backgammon computer program beats world champion”. In:

Artificial Intelligence 14.2 (1980), pp. 205–220.

[21] Christopher Berner et al. “Dota 2 with large scale deep reinforcement learning”.

In: arXiv preprint arXiv:1912.06680 (2019).

[22] Hans-Georg Beyer. The theory of evolution strategies. Springer Science & Business

Media, 2001.

[23] Yngvi Björnsson and T. Anthony Marsland. “Risk management in game-tree prun-

ing”. In: Information Sciences 122.1 (2000), pp. 23–41.

[24] Djallel Bouneffouf and Irina Rish. “A survey on practical applications of multi-

armed and contextual bandits”. In: arXiv preprint arXiv:1904.10040 (2019).

[25] Ivan Bravi et al. “Evolving game-specific UCB alternatives for general video game

playing”. In: Applications of Evolutionary Computation: 20th European Confer-

ence, EvoApplications 2017, Amsterdam, The Netherlands, April 19-21, 2017, Pro-

ceedings, Part I 20. Springer. 2017, pp. 393–406.

[26] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[27] Cameron B Browne et al. “A survey of monte carlo tree search methods”. In: IEEE

Transactions on Computational Intelligence and AI in games 4.1 (2012), pp. 1–43.

133

BIBLIOGRAPHY

[28] Sébastien Bubeck and Nicolo Cesa-Bianchi. “Regret analysis of stochastic and

nonstochastic multi-armed bandit problems”. In: arXiv preprint arXiv:1204.5721

(2012).

[29] Sebastien Bubeck et al. “X-Armed Bandits”. In: Journal of Machine Learning

Research 12 (2011), pp. 1655–1695. issn: 1532-4435.

[30] Michael Buro. “The Othello match of the year: Takeshi Murakami vs. Logistello”.

In: ICGA Journal 20.3 (1997), pp. 189–193.

[31] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. “Deep blue”. In:

Artificial intelligence 134.1-2 (2002), pp. 57–83.

[32] Rodrigo Canaan et al. “Leveling the playing field: Fairness in AI versus human

game benchmarks”. In: Proceedings of the 14th International Conference on the

Foundations of Digital Games. 2019, pp. 1–8.

[33] Tristan Cazenave. “Evolving Monte Carlo tree search algorithms”. In: Dept. Inf.,

Univ. Paris 8 (2007).

[34] Olivier Chapelle and Lihong Li. “An empirical evaluation of thompson sampling”.

In: Advances in neural information processing systems 24 (2011).

[35] Guillaume M JB Chaslot et al. “Progressive strategies for Monte-Carlo tree search”.

In: New Mathematics and Natural Computation 4.03 (2008), pp. 343–357.

[36] Kumar Chellapilla and David B. Fogel. “Evolving an expert checkers playing pro-

gram without using human expertise”. In: IEEE Transactions on Evolutionary

Computation 5.4 (2001), pp. 422–428.

[37] Kumar Chellapilla and David B Fogel. “Evolving neural networks to play checkers

without relying on expert knowledge”. In: IEEE transactions on neural networks

10.6 (1999), pp. 1382–1391.

[38] Hao-Cheng Chia, Tsung-Su Yeh, and Tsung-Che Chiang. “Designing card game

strategies with genetic programming and monte-carlo tree search: A case study

of hearthstone”. In: 2020 IEEE Symposium Series on Computational Intelligence

(SSCI). IEEE. 2020, pp. 2351–2358.

[39] Benjamin E Childs, James H Brodeur, and Levente Kocsis. “Transpositions and

move groups in Monte Carlo tree search”. In: 2008 IEEE Symposium On Compu-

tational Intelligence and Games. IEEE. 2008, pp. 389–395.

[40] Rudi Cilibrasi and Paul MB Vitányi. “Clustering by compression”. In: IEEE Trans-

actions on Information theory 51.4 (2005), pp. 1523–1545.

[41] Zillions Development Corporation. Zillions of Games. http://www.zillions-of-

games.com. Accessed: yyyy-mm-dd. 1998.

134

http://www.zillions-of-games.com
http://www.zillions-of-games.com

BIBLIOGRAPHY

[42] Rémi Coulom. “Efficient selectivity and backup operators in Monte-Carlo tree

search”. In: International conference on computers and games. Springer. 2006,

pp. 72–83.

[43] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. “Exploration and exploitation

in evolutionary algorithms: A survey”. In: ACM computing surveys (CSUR) 45.3

(2013), pp. 1–33.

[44] Luis DaCosta et al. “Adaptive operator selection with dynamic multi-armed ban-

dits”. In: Proceedings of the 10th annual conference on Genetic and evolutionary

computation. 2008, pp. 913–920.

[45] Fernando Fradique Duarte et al. “A Survey of Planning and Learning in Games”.

In: Applied Sciences 10.13 (2020), p. 4529.

[46] Amaury Dubois, Julien Dehos, and Fabien Teytaud. “Improving Multi-modal Op-

timization Restart Strategy Through Multi-armed Bandit”. In: 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA). IEEE.

2018, pp. 338–343.

[47] Prajit K Dutta. Strategies and games: theory and practice. MIT press, 1999.

[48] Agoston E Eiben and James E Smith. Introduction to evolutionary computing.

Springer, 2015.

[49] Anikó Ekárt and Sándor Zoltán Németh. “A metric for genetic programs and fit-

ness sharing”. In: Genetic Programming: European Conference, EuroGP 2000, Ed-

inburgh, Scotland, UK, April 15-16, 2000. Proceedings 3. Springer. 2000, pp. 259–

270.

[50] Michael Emmerich. “Single-and multi-objective evolutionary design optimization

assisted by gaussian random field metamodels”. In: PhD diss., University of Dort-

mund (2005).

[51] Alvaro Fialho. “Adaptive operator selection for optimization”. PhD thesis. Uni-

versité Paris Sud-Paris XI, 2010.

[52] Álvaro Fialho et al. “Analyzing bandit-based adaptive operator selection mecha-

nisms”. In: Annals of Mathematics and Artificial Intelligence 60.1-2 (2010), pp. 25–

64.

[53] Álvaro Fialho et al. “Dynamic multi-armed bandits and extreme value-based re-

wards for adaptive operator selection in evolutionary algorithms”. In: International

Conference on Learning and Intelligent Optimization. Springer. 2009, pp. 176–190.

[54] Hilmar Finnsson and Yngvi Björnsson. “Game-tree properties and MCTS perfor-

mance”. In: IJCAI. Vol. 11. 2011, pp. 23–30.

135

BIBLIOGRAPHY

[55] David B Fogel et al. “A self-learning evolutionary chess program”. In: Proceedings

of the IEEE 92.12 (2004), pp. 1947–1954.

[56] Lawrence J Fogel, Alvin J Owens, and Michael J Walsh. “Artificial intelligence

through simulated evolution”. In: (1966).

[57] Raluca D Gaina, Simon M Lucas, and Diego Pérez-Liébana. “Population seeding

techniques for rolling horizon evolution in general video game playing”. In: 2017

IEEE Congress on Evolutionary Computation (CEC). IEEE. 2017, pp. 1956–1963.

[58] Raluca D Gaina, Simon M Lucas, and Diego Perez-Liebana. “Rolling horizon evo-

lution enhancements in general video game playing”. In: 2017 IEEE Conference

on Computational Intelligence and Games (CIG). IEEE. 2017, pp. 88–95.

[59] Edgar Galván and Peter Mooney. “Neuroevolution in Deep Neural Networks: Cur-

rent Trends and Future Challenges”. In: IEEE Trans. in Artificial Intelligence

(2021).

[60] Edgar Galván and Marc Schoenauer. “Promoting semantic diversity in multi-

objective genetic programming”. In: Proceedings of the Genetic and Evolution-

ary Computation Conference, GECCO 2019, Prague, Czech Republic, July 13-

17, 2019. 2019, pp. 1021–1029. doi: 10.1145/3321707.3321854. url: https:

//doi.org/10.1145/3321707.3321854.

[61] Edgar Galván, Gavin Simpson, and Fred Valdez Ameneyro. “Evolving the MCTS

Upper Confidence Bounds for Trees Using a Semantic-inspired Evolutionary Algo-

rithm in the Game of Carcassonne”. In: IEEE Transactions on Games (2022).

[62] Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. “Highlights of semantics

in multi-objective genetic programming”. In: Proceedings of the Genetic and Evo-

lutionary Computation Conference Companion. 2022, pp. 19–20.

[63] Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. “Semantics in multi-objective

genetic programming”. In: Applied Soft Computing 115 (2022), p. 108143.

[64] Edgar Galván et al. “Statistical tree-based population seeding for rolling horizon

eas in general video game playing”. In: arXiv preprint arXiv:2008.13253 (2020).

[65] Edgar Galván-López et al. “Autonomous Demand-Side Management System Based

on Monte Carlo Tree Search”. In: IEEE International Energy Conference (Ener-

gyCon). Dubrovnik, Croatia: IEEE Press, 2014, pp. 1325 –1332.

[66] Edgar Galván-López et al. “Evolving a ms. pacman controller using grammat-

ical evolution”. In: Applications of Evolutionary Computation: EvoApplicatons

2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM,

136

https://doi.org/10.1145/3321707.3321854
https://doi.org/10.1145/3321707.3321854
https://doi.org/10.1145/3321707.3321854

BIBLIOGRAPHY

and EvoSTOC, Istanbul, Turkey, April 7-9, 2010, Proceedings, Part I. Springer.

2010, pp. 161–170.

[67] Edgar Galván-López et al. “Heuristic-Based Multi-Agent Monte Carlo Tree Search”.

In: IISA 2014, The 5th International Conference on Information, Intelligence, Sys-

tems and Applications. IEEE. 2014, pp. 177–182.

[68] Edgar Galván-López et al. “Towards an understanding of locality in genetic pro-

gramming”. In: Proceedings of the 12th annual conference on Genetic and evolu-

tionary computation. 2010, pp. 901–908.

[69] Edgar Galvan-Lopez et al. “Using semantics in the selection mechanism in genetic

programming: a simple method for promoting semantic diversity”. In: 2013 IEEE

Congress on Evolutionary Computation. IEEE. 2013, pp. 2972–2979.

[70] Aurélien Garivier and Eric Moulines. “On upper-confidence bound policies for

switching bandit problems”. In: International Conference on Algorithmic Learning

Theory. Springer. 2011, pp. 174–188.

[71] Sylvain Gelly et al. “Modification of UCT with patterns in Monte-Carlo Go”. PhD

thesis. INRIA, 2006.

[72] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learn-

ing. Addison-Wesley, 1989. isbn: 0-201-15767-5.

[73] Mario Graff and Riccardo Poli. “Automatic creation of taxonomies of genetic pro-

gramming systems”. In: European Conference on Genetic Programming. Springer.

2009, pp. 145–158.

[74] Ole-Christoffer Granmo. “Solving two-armed Bernoulli bandit problems using a

Bayesian learning automaton”. In: International Journal of Intelligent Computing

and Cybernetics 3.2 (2010), pp. 207–234.

[75] Arthur Guez et al. “Learning to search with MCTSnets”. In: International confer-

ence on machine learning. PMLR. 2018, pp. 1822–1831.

[76] Shaun Hargreaves Heap and Yanis Varoufakis. Game theory: a critical text. Psy-

chology Press, 2004.

[77] Jonathan M Henshaw and Adam G Jones. “Fisher’s lost model of runaway sexual

selection”. In: Evolution 74.2 (2020), pp. 487–494.

[78] C. Heyden and Master Thesis Dke. “IMPLEMENTING A COMPUTER PLAYER

FOR CARCASSONNE”. In: 2009.

[79] Wassily Hoeffding. “Probability inequalities for sums of bounded random vari-

ables”. In: The collected works of Wassily Hoeffding (1994), pp. 409–426.

137

BIBLIOGRAPHY

[80] John Henry Holland et al. Adaptation in natural and artificial systems: an intro-

ductory analysis with applications to biology, control, and artificial intelligence.

MIT press, 1992.

[81] Christoffer Holmg̊ard et al. “Automated playtesting with procedural personas

through MCTS with evolved heuristics”. In: IEEE Transactions on Games 11.4

(2018), pp. 352–362.

[82] Jean-Baptiste Hoock and Olivier Teytaud. “Bandit-based genetic programming”.

In: European Conference on Genetic Programming. Springer. 2010, pp. 268–277.

[83] Hendrik Horn et al. “MCTS/EA hybrid GVGAI players and game difficulty es-

timation”. In: 2016 IEEE Conference on Computational Intelligence and Games

(CIG). IEEE. 2016, pp. 1–8.

[84] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Sequential model-based

optimization for general algorithm configuration”. In: International conference on

learning and intelligent optimization. Springer. 2011, pp. 507–523.

[85] Takahisa Imagawa and Tomoyuki Kaneko. “Enhancements in monte carlo tree

search algorithms for biased game trees”. In: 2015 IEEE Conference on Computa-

tional Intelligence and Games (CIG). IEEE. 2015, pp. 43–50.

[86] Mohiul Islam, Nawwaf Kharma, and Peter Grogono. “Mutation operators for ge-

netic programming using Monte Carlo tree search”. In: Applied Soft Computing 97

(2020), p. 106717.

[87] Steven James, George Konidaris, and Benjamin Rosman. “An analysis of monte

carlo tree search”. In: Thirty-First AAAI Conference on Artificial Intelligence.

2017.

[88] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. “Lipschitzian opti-

mization without the Lipschitz constant”. In: Journal of optimization Theory and

Applications 79 (1993), pp. 157–181.

[89] Terry Jones, Stephanie Forrest, et al. “Fitness distance correlation as a measure of

problem difficulty for genetic algorithms.” In: ICGA. Vol. 95. 1995, pp. 184–192.

[90] Arthur Juliani et al. “Unity: A general platform for intelligent agents”. In: arXiv

preprint arXiv:1809.02627 (2018).

[91] Niels Justesen, Tobias Mahlmann, and Julian Togelius. “Online evolution for multi-

action adversarial games”. In: Applications of Evolutionary Computation: 19th

European Conference, EvoApplications 2016, Porto, Portugal, March 30–April 1,

2016, Proceedings, Part I 19. Springer. 2016, pp. 590–603.

138

BIBLIOGRAPHY

[92] Niels Justesen and Sebastian Risi. “Continual online evolutionary planning for

in-game build order adaptation in StarCraft”. In: Proceedings of the Genetic and

Evolutionary Computation Conference. 2017, pp. 187–194.

[93] Niels Justesen et al. “Playing multiaction adversarial games: Online evolution-

ary planning versus tree search”. In: IEEE Transactions on Games 10.3 (2017),

pp. 281–291.

[94] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E Eiben. “Parameter control

in evolutionary algorithms: Trends and challenges”. In: IEEE Transactions on

Evolutionary Computation 19.2 (2014), pp. 167–187.

[95] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. “Thompson sampling: An

asymptotically optimal finite-time analysis”. In: Algorithmic Learning Theory:

23rd International Conference, ALT 2012, Lyon, France, October 29-31, 2012.

Proceedings 23. Springer. 2012, pp. 199–213.

[96] Thomas Keller and Malte Helmert. “Trial-based heuristic tree search for finite hori-

zon MDPs”. In: Twenty-Third International Conference on Automated Planning

and Scheduling. 2013.

[97] Shauharda Khadka et al. “Collaborative evolutionary reinforcement learning”. In:

arXiv preprint arXiv:1905.00976 (2019).

[98] Donald E Knuth and Ronald W Moore. “An analysis of alpha-beta pruning”. In:

Artificial intelligence 6.4 (1975), pp. 293–326.

[99] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo planning”. In:

European conference on machine learning. Springer. 2006, pp. 282–293.

[100] Levente Kocsis and Csaba Szepesvári. “Discounted ucb”. In: 2nd PASCAL Chal-

lenges Workshop. Vol. 2. 2006.

[101] Richard E Korf. “Depth-first iterative-deepening: An optimal admissible tree search”.

In: Artificial intelligence 27.1 (1985), pp. 97–109.

[102] Jakub Kowalski and Rados law Miernik. Legends of Code and Magic. CodinGame.

GitHub Repository. 2018. url: https://github.com/CodinGame/LegendsOfCodeAndMagic.

[103] John R Koza. “Genetic programming II: Automatic discovery of reusable subpro-

grams”. In: Cambridge, MA, USA 13.8 (1994), p. 32.

[104] Kamolwan Kunanusont et al. “The n-tuple bandit evolutionary algorithm for auto-

matic game improvement”. In: 2017 IEEE Congress on Evolutionary Computation

(CEC). IEEE. 2017, pp. 2201–2208.

139

https://github.com/CodinGame/LegendsOfCodeAndMagic

BIBLIOGRAPHY

[105] Joel Lehman et al. “Safe mutations for deep and recurrent neural networks through

output gradients”. In: Proceedings of the Genetic and Evolutionary Computation

Conference. 2018, pp. 117–124.

[106] Ke Li et al. “Adaptive operator selection with bandits for a multiobjective evolu-

tionary algorithm based on decomposition”. In: IEEE Transactions on Evolution-

ary Computation 18.1 (2013), pp. 114–130.

[107] Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its

applications. Vol. 3. Springer, 2008.

[108] Jialin Liu, Diego Pérez-Liébana, and Simon M Lucas. “Bandit-based random muta-

tion hill-climbing”. In: 2017 IEEE Congress on Evolutionary Computation (CEC).

IEEE. 2017, pp. 2145–2151.

[109] Richard Lorentz. “Using evaluation functions in Monte-Carlo tree search”. In: The-

oretical computer science 644 (2016), pp. 106–113.

[110] Simon M Lucas, Jialin Liu, and Diego Perez-Liebana. “The n-tuple bandit evo-

lutionary algorithm for game agent optimisation”. In: 2018 IEEE Congress on

Evolutionary Computation (CEC). IEEE. 2018, pp. 1–9.

[111] Simon M Lucas, Spyridon Samothrakis, and Diego Perez. “Fast evolutionary adap-

tation for monte carlo tree search”. In: European Conference on the Applications

of Evolutionary Computation. Springer. 2014, pp. 349–360.

[112] Simon M Lucas et al. “Efficient evolutionary methods for game agent optimisation:

Model-based is best”. In: arXiv preprint arXiv:1901.00723 (2019).

[113] Xiaobai Ma et al. “Monte-Carlo tree search for policy optimization”. In: arXiv

preprint arXiv:1912.10648 (2019).

[114] Hammad Majeed and Conor Ryan. “A less destructive, context-aware crossover

operator for GP”. In: Genetic Programming: 9th European Conference, EuroGP

2006, Budapest, Hungary, April 10-12, 2006. Proceedings 9. Springer. 2006, pp. 36–

48.

[115] Jorge Maturana et al. “Extreme compass and dynamic multi-armed bandits for

adaptive operator selection”. In: 2009 IEEE Congress on Evolutionary Computa-

tion. IEEE. 2009, pp. 365–372.

[116] Reid McIlroy-Young et al. “Aligning superhuman ai with human behavior: Chess

as a model system”. In: Proceedings of the 26th ACM SIGKDD International Con-

ference on Knowledge Discovery & Data Mining. 2020, pp. 1677–1687.

[117] Zbigniew Michalewicz. Genetic algorithms+ data structures= evolution programs.

Springer Science & Business Media, 2013.

140

BIBLIOGRAPHY

[118] Julian Francis Miller and Simon L Harding. “Cartesian genetic programming”. In:

Proceedings of the 10th annual conference companion on Genetic and evolutionary

computation. 2008, pp. 2701–2726.

[119] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[120] Thomas M Moerland et al. “Monte carlo tree search for asymmetric trees”. In:

arXiv preprint arXiv:1805.09218 (2018).

[121] David E Moriarty, Risto Miikkulainen, et al. “Discovering complex Othello strate-

gies through evolutionary neural networks”. In: Connection Science 7.3 (1995),

pp. 195–210.

[122] Rémi Munos et al. “From bandits to monte-carlo tree search: The optimistic prin-

ciple applied to optimization and planning”. In: Foundations and Trends® in

Machine Learning 7.1 (2014), pp. 1–129.

[123] Miguel Nicolau et al. “Evolutionary behavior tree approaches for navigating plat-

form games”. In: IEEE Transactions on Computational Intelligence and AI in

Games 9.3 (2016), pp. 227–238.

[124] Tomasz P Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. “Semantic backprop-

agation for designing search operators in genetic programming”. In: IEEE Trans-

actions on Evolutionary Computation 19.3 (2014), pp. 326–340.

[125] Judea Pearl. “The solution for the branching factor of the alpha-beta pruning algo-

rithm and its optimality”. In: Communications of the ACM 25.8 (1982), pp. 559–

564.

[126] Tom Pepels, Mark HM Winands, and Marc Lanctot. “Real-time monte carlo tree

search in ms pac-man”. In: IEEE Transactions on Computational Intelligence and

AI in games 6.3 (2014), pp. 245–257.

[127] Diego Perez, Spyridon Samothrakis, and Simon Lucas. “Knowledge-based fast evo-

lutionary MCTS for general video game playing”. In: 2014 IEEE Conference on

Computational Intelligence and Games. IEEE. 2014, pp. 1–8.

[128] Diego Perez et al. “Evolving behaviour trees for the mario ai competition using

grammatical evolution”. In: European Conference on the Applications of Evolu-

tionary Computation. Springer. 2011, pp. 123–132.

[129] Diego Perez et al. “Rolling horizon evolution versus tree search for navigation in

single-player real-time games”. In: Proceedings of the 15th annual conference on

Genetic and evolutionary computation. 2013, pp. 351–358.

141

BIBLIOGRAPHY

[130] Diego Perez-Liebana et al. “General video game ai: A multitrack framework for

evaluating agents, games, and content generation algorithms”. In: IEEE Transac-

tions on Games 11.3 (2019), pp. 195–214.

[131] Diego Perez-Liebana et al. “General video game ai: Competition, challenges and

opportunities”. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[132] Diego Perez Liebana et al. “Open loop search for general video game playing”. In:

Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Compu-

tation. 2015, pp. 337–344.

[133] James Pettit and David Helmbold. “Evolutionary learning of policies for MCTS

simulations”. In: Proceedings of the international conference on the foundations of

digital games. 2012, pp. 212–219.

[134] Eric Piette et al. “Ludii–The Ludemic General Game System”. In: arXiv preprint

arXiv:1905.05013 (2019).

[135] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[136] Xin Qiu and Risto Miikkulainen. “Enhancing Evolutionary Conversion Rate Opti-

mization via Multi-Armed Bandit Algorithms”. In: Proceedings of the AAAI Con-

ference on Artificial Intelligence. Vol. 33. 2019, pp. 9581–9588.

[137] Raghuram Ramanujan, Ashish Sabharwal, and Bart Selman. “On adversarial search

spaces and sampling-based planning”. In: Twentieth International Conference on

Automated Planning and Scheduling. 2010.

[138] Raghuram Ramanujan, Ashish Sabharwal, and Bart Selman. “On the behavior of

UCT in synthetic search spaces”. In: Proc. 21st Int. Conf. Automat. Plan. Sched.,

Freiburg, Germany. 2011.

[139] Ingo Rechenberg. “Evolution Strategy: Nature’s Way of Optimization”. In: Opti-

mization: Methods and Applications, Possibilities and Limitations. Ed. by H. W.

Bergmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 106–126. isbn:

978-3-642-83814-9.

[140] Norman Richards, David E Moriarty, and Risto Miikkulainen. “Evolving neural

networks to play Go”. In: Applied intelligence 8 (1998), pp. 85–96.

[141] Franz Rothlauf and Franz Rothlauf. Representations for genetic and evolutionary

algorithms. Springer, 2006.

142

BIBLIOGRAPHY

[142] Conor Ryan, John James Collins, and Michael O Neill. “Grammatical evolution:

Evolving programs for an arbitrary language”. In: Genetic Programming: First

European Workshop, EuroGP’98 Paris, France, April 14–15, 1998 Proceedings 1.

Springer. 1998, pp. 83–96.

[143] Ethan Dreyfuss Sam Schreiber Michael Genesereth et al. GGP Base. GitHub

Repository. 2010. url: https://github.com/ggp-org/ggp-base.

[144] Maarten PD Schadd et al. “Single-player Monte-Carlo tree search for SameGame”.

In: Knowledge-Based Systems 34 (2012), pp. 3–11.

[145] Jonathan Schaeffer and Robert Lake. “Solving the game of checkers”. In: Games

of no chance 29 (1996), pp. 119–133.

[146] Tom Schaul. “A video game description language for model-based or interactive

learning”. In: 2013 IEEE Conference on Computational Intelligence in Games

(CIG). IEEE. 2013, pp. 1–8.

[147] Marc Schoenauer, Fabien Teytaud, and Olivier Teytaud. “A rigorous runtime anal-

ysis for quasi-random restarts and decreasing stepsize”. In: International Confer-

ence on Artificial Evolution (Evolution Artificielle). Springer. 2011, pp. 37–48.

[148] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint

arXiv:1707.06347 (2017).

[149] Steven L Scott. “A modern Bayesian look at the multi-armed bandit”. In: Applied

Stochastic Models in Business and Industry 26.6 (2010), pp. 639–658.

[150] Claude E Shannon. “XXII. Programming a computer for playing chess”. In: The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science

41.314 (1950), pp. 256–275.

[151] Brian Sheppard. “World-championship-caliber Scrabble”. In: Artificial Intelligence

134.1-2 (2002), pp. 241–275.

[152] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-

theoretic, and logical foundations. Cambridge University Press, 2008.

[153] David Silver et al. “Mastering chess and shogi by self-play with a general reinforce-

ment learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

[154] David Silver et al. “Mastering the game of Go with deep neural networks and tree

search”. In: nature 529.7587 (2016), pp. 484–489.

[155] David Silver et al. “Mastering the game of go without human knowledge”. In:

nature 550.7676 (2017), pp. 354–359.

143

https://github.com/ggp-org/ggp-base

BIBLIOGRAPHY

[156] Chiara F Sironi and Mark HM Winands. “Analysis of self-adaptive monte carlo

tree search in general video game playing”. In: 2018 IEEE Conference on Compu-

tational Intelligence and Games (CIG). IEEE. 2018, pp. 1–4.

[157] Chiara F Sironi and Mark HM Winands. “On-line parameter tuning for Monte-

Carlo tree search in general game playing”. In: Computer Games: 6th Workshop,

CGW 2017, Held in Conjunction with the 26th International Conference on Ar-

tificial Intelligence, IJCAI 2017, Melbourne, VIC, Australia, August, 20, 2017,

Revised Selected Papers 6. Springer. 2018, pp. 75–95.

[158] Chiara F Sironi et al. “Self-adaptive mcts for general video game playing”. In: In-

ternational Conference on the Applications of Evolutionary Computation. Springer.

2018, pp. 358–375.

[159] Aleksandrs Slivkins et al. “Introduction to multi-armed bandits”. In: Foundations

and Trends® in Machine Learning 12.1-2 (2019), pp. 1–286.

[160] Kenneth O Stanley et al. “Real-time evolution of neural networks in the NERO

video game”. In: AAAI. Vol. 3. 2006, p. 13.

[161] Felipe Petroski Such et al. “Deep neuroevolution: Genetic algorithms are a com-

petitive alternative for training deep neural networks for reinforcement learning”.

In: arXiv preprint arXiv:1712.06567 (2017).

[162] Maciej Świechowski et al. “Monte Carlo tree search: A review of recent modifica-

tions and applications”. In: Artificial Intelligence Review (2022), pp. 1–66.

[163] William R Thompson. “On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples”. In: Biometrika 25.3/4 (1933),

pp. 285–294.

[164] Yuandong Tian et al. “Elf: An extensive, lightweight and flexible research platform

for real-time strategy games”. In: Advances in Neural Information Processing Sys-

tems 30 (2017).

[165] Julian Togelius, Simon M Lucas, and Renzo De Nardi. “Computational intelligence

in racing games”. In: Advanced Intelligent Paradigms in Computer Games (2007),

pp. 39–69.

[166] Julian Togelius et al. “Super mario evolution”. In: 2009 ieee symposium on com-

putational intelligence and games. IEEE. 2009, pp. 156–161.

[167] Marco Tomassini et al. “A study of fitness distance correlation as a difficulty mea-

sure in genetic programming”. In: Evolutionary computation 13.2 (2005), pp. 213–

239.

144

BIBLIOGRAPHY

[168] John Tromp and Gunnar Farnebäck. “Combinatorics of go”. In: Computers and

Games: 5th International Conference, CG 2006, Turin, Italy, May 29-31, 2006.

Revised Papers 5. Springer. 2007, pp. 84–99.

[169] Andrew Trusty, Santiago Santiago Ontañón, and Ashwin Ram. “Stochastic plan

optimization in real-time strategy games”. In: Proceedings of the AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment. Vol. 4. 1. 2008,

pp. 126–131.

[170] Nguyen Quang Uy et al. “Semantically-based crossover in genetic programming:

application to real-valued symbolic regression”. In: Genetic Programming and

Evolvable Machines 12 (2011), pp. 91–119.

[171] John Von Neumann and Oskar Morgenstern. “Theory of games and economic

behavior”. In: Theory of games and economic behavior. Princeton university press,

2007.

[172] Che Wang et al. “Portfolio online evolution in StarCraft”. In: Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.

Vol. 12. 1. 2016, pp. 114–120.

[173] Linnan Wang et al. AlphaX: eXploring Neural Architectures with Deep Neural

Networks and Monte Carlo Tree Search. 2019. arXiv: 1903.11059 [cs.CV].

[174] Mark HM Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. “Monte-Carlo tree

search solver”. In: Computers and Games: 6th International Conference, CG 2008,

Beijing, China, September 29-October 1, 2008. Proceedings 6. Springer. 2008, pp. 25–

36.

[175] Sewall Wright et al. “The roles of mutation, inbreeding, crossbreeding, and selec-

tion in evolution”. In: (1932).

145

https://arxiv.org/abs/1903.11059

Acronyms

AI Artificial Intelligence
ALE Arcade Learning Environment
AMAF All-Moves-As-First
AOS Adaptive Operator Selection

B-RMHC Biased-mutation RMHC
Bandit-based RMHC Bandit-based Random-Mutation Hill-

Climber
BB Bridge Burning
BGP Bandit-based Genetic Programming

CAC Context Aware Crossover
CCG Collectible Card Game
CERL Collaborative Evolutionary Reinforcement

Learning
cGA Compact Genetic Algorithm
CGP Cartesian Genetic Programming
CLT Central Limit Theorem
CMAB Combinatorial Multi-Armed Bandit
COEP Continuous Online Evolutionary Planning
CoG Conference on Games
CRO Conversion Rate Optimisation

D-UCB Discounted Upper Confidence Bounds
DeepGA Deep Genetic Algorithm
DMAB Dynamic Multi-Armed Bandit
DNN Deep Neural Network
DOTA Defense of the Ancients

EA Evolutionary Algorithm
EA-MCTS Evolutionary Algorithm Monte Carlo Tree

Search
EAaltActions RHEA then MCTS for alternative actions
EAroll RHEA with rollouts
EAroll-att EAroll plus NPC attitude check
EAroll-occ EAroll plus occlusion detection
EAroll-seqPlan EAroll plus sequence planning
ED Edit Distance
EDI Explicitly Defined Intron
ELF Extensive, Lightweight and Flexible
EMCTS Evolutionary Monte Carlo Tree Search
EP Evolutionary Programming
ES Evolution Strategy

146

Acronyms

Fast-Evo MCTS Fast Evolutionary Monte Carlo Tree Search
FDC Fitness Distance Correlation
FH-EMCTS Flexible Horizon Evolutionary Monte Carlo

Tree Search
FLA Fitness Landscape Analysis
FOP Function Optimisation Problem
FRGS Fast Random Genetic Search
FRRMAB Fitness-Rank-Rate-based Multi-Armed Ban-

dit

GA Genetic Algorithm
GAI General Artificial Intelligence
GGP-Base General Game Playing Base
GP Genetic Programming
GVGAI General Video Game AI
GVGP General Video Game Playing

HOO Hierarchical Optimistic Optimisation

IDDFS Iterative Deepening Depth-First Search

KB Fast-Evo MCTS Knowledge Based Fast Evolutionary Monte
Carlo Tree Search

KB MCTS Knowledge Based Monte Carlo Tree Search

LOCM Legends Of Code and Magic

MAB Multi-Armed Bandit
MCTS Monte Carlo Tree Search
MCTSnets Monte Carlo Tree Search Networks
MCTSPO MCTS for Policy Optimization
MDP Markov Decision Process
ML Machine Learning
MMO Multi-Modal Optimisation
MOEA/D Multi-Objective Evolutionary Algorithm

based on Decomposition
MOGP Multi-Objective Genetic Programming
MSE Mean Squared Error

NCD Normalised Compression Distance
NN Neural Network
NPC Non-Player Character
NTBEA N-Tuple Bandit Evolutionary Algorithm

147

Acronyms

OEP Online Evolutionary Planning

QRDS Quasi-random Restart with Decreasing Step-
size

RHEA Rolling Horizon Evolutionary Algorithm
RL Reinforcement Learning
RMHC Random-Mutation Hill-Climber
rtNEAT Real-time NeuroEvolution of Augmenting

Topologies
RTS Real-Time Strategy

SA-MCTSEA SA-MCTS with a simple Evolutionary Algo-
rithm

SA-MCTSNEA SA-MCTS with N-Tuple Bandit Evolutionary
Algorithm

SA-MCTSNMC SA-MCTS with Näıve Monte Carlo
SA-MCTS Self-Adaptive Monte Carlo Tree Search
SAC Semantics Aware Crossover
SCC Semantic Similarity-based Crossover
SCD Semantic-based Crowding Distance
SDO Semantic-based distance as an additional cri-

teriOn
SIEA-MCTS Semantically-Inspired Evolutionary Algo-

rithm Monte Carlo Tree Search
SMAC Sequential Model-based Algorithm Configu-

ration
SPO Stochastic Plan Optimisation
SS Sampling Semantics
SSC Semantic Similarity-based Crossover
SSD Sampling Semantic Distance
SSi Semantic Similarity
STPS-RHEA Statistical Tree-based Population Seeding

RHEA
SW-UCB Sliding Window Upper Confidence Bounds
SWcGA Sliding Window compact Genetic Algorithm

TRPO Trust Region Policy Optimization
TS Thompson Sampling

UCB++ UCB1 with Tree and Agent Variables
UCB+ UCB1 with Tree Variables
UCB# UCB1 with Tree, Agent and Game Variables

148

Acronyms

UCB1 Upper Confidence Bounds
UCT Upper Confidence Bounds for Trees
URDS UCB Random-restarts with Decreasing Step-

size

VGC Video Game Championship
VGDL Video Game Descriptive Language

149

	Introduction
	Introduction and Motives
	Research Goals
	Scope and limitations
	Thesis Structure

	Background
	Introduction
	Decision theory
	Game theory
	Game trees
	Game trees in multi-agent adversarial domains with uncertainty

	Monte Carlo Tree Search
	Monte Carlo simulations
	The tree policy

	Classic tree search algorithms: Minimax
	Expectimax

	Evolutionary Algorithms
	Genetic Programming
	Evolution Strategies

	Surveying synergies: Monte Carlo Tree Search and Evolutionary Algorithms
	Evolutionary Algorithms in Monte Carlo Tree Search
	Evolutionary Algorithms in Monte Carlo Tree Search's simulation phase
	Evolutionary Algorithms in Monte Carlo Tree Search's selection phase

	Monte Carlo Tree Search in Evolutionary Algorithms
	Monte Carlo Tree Search in Rolling Horizon Evolutionary Algorithms
	Generating EA offspring using Monte Carlo Tree Search

	Multi-Armed Bandits in Evolutionary Algorithms
	Evaluation of EA individuals using Multi-Armed Bandits
	Generating EA offspring using Multi-Armed Bandits

	Online evolutionary-based planning in games
	Artificial Intelligence-based decision-making in games
	Games used for research in Artificial Intelligence

	Test problems and their analysis
	Introduction
	The tree policy and its interaction with the game tree properties
	Test problem: Function Optimisation Problem
	Test Functions

	Definition of the Functions and their analysis
	Test problem: The Game of Carcassonne
	Carcassonne base game description
	Carcassonne fitness landscape analysis
	Carcassonne proposed variants

	Empirical Analysis of Evolving Selection Policies in MCTS
	Introduction
	Evolving selection policies in MCTS using EAs
	Evolving selection policies in MCTS using EAs and semantics
	Extending semantics to work with selection policies in MCTS

	FOP experimental setup
	FOP results
	FOP f1 results
	FOP f2 results
	FOP f3 results
	FOP f4 results
	FOP f5 results
	Integrated analysis of FOP results

	Single-player Carcassonne experimental setup
	Expectimax in Carcassonne

	Single-player Carcassonne Results
	Analysis of the evolved selection policies
	Summary of findings

	Evolutionary MCTS in the base game of Carcassonne
	Introduction
	Performance of vanilla Monte Carlo Tree Search in the base game of Carcassonne
	Round-robin tournament between vanilla MCTS variants in the base game of Carcassonne
	EA-MCTS and SIEA-MCTS in the base game of Carcassonne
	Summary of findings

	Conclusions
	Evolutionary Algorithms-inspired Monte Carlo Tree Search: Strengths
	Evolutionary Algorithms-inspired Monte Carlo Tree Search: Challenges
	Evolutionary Algorithms-inspired Monte Carlo Tree Search: Conclusions
	Taxonomy and transferability
	Future Work

	References
	Acronyms

