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Abstract 

Large pine weevil (Hylobius abietis) is a serious pest of coniferous plantations throughout 

Northern Europe including in Ireland, causing significant mortality in replanted trees. 

Replanted trees are new transplants set on clear fell sites. This mortality results in severe 

economic losses to foresters (Langstrom and Day, 2004). Development of weevils takes place 

in the stumps of felled conifer trees and emerging adults feed directly on new transplants on 

site. Currently, young trees are mainly protected by chemical insecticides applied when weevil 

attack is anticipated. In Integrated Pest Management (IPM), adequate timing of management 

actions can help reduce the necessity for pesticides, or the amount used. In the case of pine 

weevil, forecasting the extent of weevil infestation is centred around the process of stump 

hacking to estimate numbers of weevils developing there (Teagasc, 2020).  The research 

outlined here adapts an existing UK simulation model developed to determine geographic 

variation in voltinism of pine weevil under climate change (Wainhouse et al., 2014) to forecast 

timing of first year emergence of pine weevil in Ireland. The model utilises historical 

temperature data, derived either from nearest synoptic stations (weighted for distance) or 

interpolated gridded (Walsh, 2012) to forecast cumulative weevil emergence for specific sites 

and years for which existing biological data of emerging weevil populations were available. 

Observed and model simulated emergence patterns were compared, both for an early version 

of the model and a corrected version (adapted with the machine learning algorithm random 

forest). Site-specific co-variates that affect the model forecast simulations of weevil emergence 

were identified. Previous research at Maynooth University (Williams et al., unpublished) had 

demonstrated that the original implementation of the UK model could be used to predict site-

specific patterns of weevil emergence based on data from local weather stations. This project 

builds on these findings, resulting in the development of the pineR model, incorporating data 

from additional sites to detect potential site-specific factors of influence, such as elevation, that 

could be considered to provide more accurate predictions of first year weevil emergence in 

Ireland. It also lays the groundwork for future work that would potentially incorporate 

information on weevil population structure in stumps to create an accessible version of the 

model using the in-stump values and local weather data to forecast timing of weevil emergence 

from a specific stage. It is envisaged that pineR will ultimately help refine the stump 

assessment protocol (i.e., stump hacking) currently used by foresters in Ireland.  
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Abbreviations:   

CAP: Common Agricultural Policy. 
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Chapter 1: Introduction 

Insect pests are a major constraint on productivity of agricultural and forestry systems and their 

impacts are likely to increase as the global climate warms (Lehman et al.., 2020). The 

consequences of pest outbreaks are sizeable with pest species (primarily insects) estimated to be 

responsible for losses of almost 18% of global crop production (Oerke, 2006). Insect pests have 

been reported to reduce agricultural yields by as much as 16% before harvest, and to consume a 

similar amount following harvest (Bebber et al., 2013). In the case of forest pests, they are 

equally damaging. One pest, the gypsy moth (Lymantria dispar), an introduced forest insect pest 

in North America, has annual control expenditures exceeding US$ 35 million since 1980 

(Wallner, 2000). The yield losses from different categories of pests have been estimated to be 

US$ 500 billion worldwide (Oerke, et al., 1994; Liebhold and Tobin, 2008). Several insect pests 

have been shown to defoliate trees and degrade plant biodiversity, threaten commercial forestry, 

and hinder climate change mitigation through increasing tree stress or mortality leading to 

increased greenhouse gas emissions (Bradshaw et al., 2016). In terms of the land mass of 

European forests, the area covered is more than 2 million km2, accounting for 33% of the 

continent’s land surface. Even though forests are highly resistant ecosystems, they are vulnerable 

to sudden or extreme changes in environmental conditions as the long lifespan of trees limits 

their ability to adapt, particularly for a pest outbreak (Forzieri et al., 2021).  

1.1 Background: An important forest pest 

Forest pests are wide ranging in terms of distribution. In a thematic review looking at forest pests 

in 25 countries commissioned by the Food and Agriculture Organisation (FAO) of the United 

Stations, over 54% of pests were recorded in planted forests, 31% in naturally regenerated forests 

and almost 15% in both forest types (FAO, 2009). Forest pests can also severely affect the 

environments they inhabit. Pests such as the gypsy moth (Lymantria dispar) and mountain pine 

beetle (Dendroctonus ponderosae) have been shown to cause the displacement of native trees, 

widespread defoliation and mortality disrupting habitat functioning, all of which negatively 

impact on biodiversity (Fajvan and Wood, 1996; Janes et al., 2014). 86% of pest species 

identified in the 2009 FAO review of global forest pests and diseases were insect pests with the 

majority recorded in naturally regenerated forests (almost 62%) (FAO, 2009). One of the most 

prominent and damaging pests of reforestation and establishment forestry in northern and central 

Europe is the large pine weevil (Hylobius abietis) (Leather et al., 1999; Villamor et al., 2019) 

which is the focus of this current research.  



 
 

2 
 

As a pest of young coniferous and deciduous trees, the large pine weevil is the only forest pest 

for which prophylactic treatment has become routine practice in the establishment of clear-fell 

sites. This has led to potentially harmful chemical control utilised in terms of environmental and 

worker safety as well as efficacy (Stoakley and Heritage, 1990; Dillon et al., 2006). However, it 

has been estimated that, in the absence of such insecticidal prevention, economic losses due to 

this pest would be in the region of €140 million across Europe, annually (Langstrom and Day, 

2004; Lalik et al., 2021.  

1.2 Integrated pest management (IPM) and current strategies (Large 

Pine Weevil)  

Environmental monitoring of pests and diseases has a key role to play in reducing both the 

economic and environmental impacts of pests and is part of a comprehensive system of 

Integrated Pest Management (IPM). This includes monitoring and forecasting with the aim of 

ultimately managing pests in a more environmentally friendly fashion. Monitoring involves 

regular surveillance of key insect traits from their population, development stages, biology, and 

movement or migration, amongst other criteria. In certain cases, it may be difficult to ascertain 

what pests are causing damage to a crop. In this case, symptoms of crop damage must be 

investigated (Dent, 1995). Pests have been monitored in a variety of ways with various tools 

developed, such as traps to catch and record insect activity (Prasad and Prabhakar, 2012). 

Forecasting of pest outbreaks is also essential to IPM, particularly the accurate prediction of 

severity of pest infestation. In considering how IPM might be applied in any situation, it is 

important to consider both strategic and tactical approaches to managing a pest situation and that 

IPM is a whole of the landscape, year-round, approach. A component of this involves the use of 

biological pesticides or selective synthetic pesticides that do not disrupt species other than the 

target pest (Fitt and Wilson, 2012). Many pests have traditional treatment applications. Control 

of the grain aphid (Sitobion avenae) for example and its associated viruses has been achieved via 

the routine application of chemical controls, irrespective of the level of risk from season to season 

(Duffy et al., 2017). This approach has resulted in both negative ecological effects, as well as 

the emergence of highly resistant genes in some aphid species considered highly problematic 

(Foster et al., 2007). The change of European legislation to further enforce pesticide regulations 

has only further enhanced the importance of forecasting tools to complement current IPM 

strategies and reduce the use of harmful chemical intervention.  
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Pest characteristics can also be included in IPM protocols. For instance, in the case of the large 

pine weevil, the pest is attracted to volatiles or the smell of fresh timber from felled or damaged 

coniferous trees (Dillon et al., 2006; Nordlander et al., 1986) (see Section 1.3 below). Research 

in Ireland has shown that with up to 100,000 adult weevils emerging per hectare on recently 

felled conifer sites, it would not be uncommon to observe 100% mortality of transplant seedlings 

without the aid of chemical control (Dillon and Griffin, 2008; Dillon et al., 2008). When 

chemical intervention is utilised, the protection is time limited. For example, the application of 

cypermethrin to new trees is only effective for up to 6 weeks following application.  Current 

forecasting of weevil emergence in Ireland is centred on the process of stump hacking, counting 

the number of weevil larvae and pupae in stumps - and applying a threshold to estimate pest 

emergence in accordance with the time the site was felled (Teagasc, 2017). At an operational 

level, weather conditions and site elevation are considerations in deciding to spray or not. Given 

its economic implications, control of pine weevil is essential for sustainable forest operations 

with the use of pesticides. However, chemical intervention is not completely effective as adult 

weevils tend to avoid seedlings treated with certain insecticides and seek out untreated seedlings. 

While feeding can be depressed, death may take several weeks after pesticide poisoning, during 

which time weevils continue to damage seedlings (Rose et al., 2005). Therefore, an improved 

forecasting method to identify the timing of emergence of adult weevils, especially in the first 

year when populations are highest, would significantly aid the management process providing 

more effective decision support tools for more appropriate pest management strategies. Knowing 

when plants or crops are at risk would facilitate more accurate timing of targeted chemical 

intervention if needed and minimise the use of such chemicals with potentially harmful 

consequences to the environment.  

Effective decision support tools are required to provide onsite practitioners with advice regarding 

appropriate pest management strategies for their enterprise (Duffy et al., 2017). Coillte, the 

commercial forestry body in Ireland owned by the State, has adopted many IPM methods for the 

large pine weevil (Hylobius abietis). Stump hacking, as mentioned above, is used to predict the 

severity of a weevil outbreak and inform the forester if chemical intervention is required or not. 

Non-chemical strategies have been adopted including earlier planting, use of more vigorous or 

thicker planting stock, mounding and feeding barriers around plants (Teagasc, 2020). If 

insecticide is used, dipped plants are followed up by top-up sprays if required based on the stump 

hacking results and monitoring of treated and untreated plots (Lyons, Coillte, Pers. Comm., 

2021). Extensive research has also been undertaken on the potential for using -biological control 
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agents in pine weevil management in Ireland looking at application methods, effects of soil type 

on efficacy, and operational use of entomopathogenic nematodes (EPNs) for instance (e.g., 

Williams et al., 2013; Dillon et al., 2006; Kapranas et al., 2017). Significant research has also 

been undertaken in the UK that has produced many useful findings for pine weevil management 

(Moore, 2004; Inward et al., 2012. Wainhouse et al., 2014). More recently an overview 

document on guidance for IPM of Hylobius abietis in UK forestry was completed (Willoughby 

et al., 2017). This report has relevance for Ireland but there are differences in silvicultural 

methods between the UK and Ireland which must be noted (Fedderwitz et al. 2023). Firstly, there 

is less regional variation in the life cycle duration in Ireland with less likelihood of univoltine 

cycles compared to the UK. Secondly, nurseries in the UK provide treatment via insecticides by 

spraying the seedlings whereas general practice in Irish nurseries is dipping. Thirdly, a fallow 

period of at least five years is outlined in the strategy or the UK, but in Ireland, felling licenses 

strictly limit the fallow time. Finally, due to the difference in fallow periods and the use of billet 

trap counts of weevil populations, the Hylobius decision system largely used in the UK to predict 

weevil infestation on a clear cut is not directly applicable in Ireland (Fedderwitz et al. 2023).      

1.3 Life cycle and phenological modelling of the large pine weevil 

(Hylobius abietis)  

Adult weevils first arrive via migration to clear-fell sites, attracted by the aroma of freshly cut 

wood (Dillon et al., 2008). The females oviposit in the stumps of recently felled coniferous trees, 

where immature weevils start to develop beneath the bark. Eggs hatch into larvae that appear a 

creamy white colour with a brown head capsule. Larvae feed under the bark of tree roots and 

stump, where they pass through four larval moults before pupation (Nordenham and Nordlander, 

1994). In colder climates, larval development habitually can take up to two years and can be as 

long as five years. Typically, 75% of larvae develop within one year (Bejer-Peterson et al., 1962).  

The larvae develop into pupae which are immobile, creamy white in colour and soft bodied. The 

stumps of most coniferous trees can support development, but the populations developing in the 

tree stumps and emerging from pine (i.e., Pinus species) are much higher than from spruce (i.e., 

Picea species) (Dillon and Griffin, 2008). The size of populations colonising clearfell sites from 

adjacent standing forests is largely dictated by the availability of food in these standing forests 

or access to fresh stumps. The practice of clear felling provides adult female weevils with 

breeding sites to oviposit in fresh coniferous stumps. Clear felling, where all trees are felled at 

once, is the standard forestry practice in Ireland. In non-clearfell areas, only some trees are felled 
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- at any one time (Inward et al., 2012). Figure 1.1 shows the life cycle of pine weevil infestation 

on a clear fell site.  

 

Figure 1.1: The large pine weevil life cycle on a clear fell site from initial migration and oviposition by females on 

freshly felled tree stumps to development and subsequent generations whilst feeding on new transplants, both 

coniferous and deciduous.  

Adult weevils emerge from pupal cells at the end of summer (July to September), although a 

large proportion overwinter within the pupal chamber also (Leather et al., 1999). Weevils 

develop from egg to adult in 12-36 months in Ireland and the U.K, with development typically 

taking longer in spruce compared to pine and with notably slower growth rates. The late summer 

to early autumn is the peak period of emergence for pine weevil (Dillon and Griffin, 2008; 

Teagasc, 2020). Emerging adults can remain on site for a few weeks but have been found to 

migrate to nearby sites that have been recently felled. Following emergence, adult weevils feed 

extensively on tree seedlings or transplants (both coniferous and deciduous) on site resulting in 

significant damage (Leather et al., 1999; Wainhouse et al., 2007).  In response, the current 

protocol for chemical treatment recommends intervention for regions within a 5 km radius of a 

neighbouring clear-fell site (Dillon et al., 2008; Teagasc, 2020). Weevils are normally active 

between March and October and can live for up to four years, going to ground to hibernate in the 

soil litter interface of mature forest stands during the winter (Munro, 1928; Leather et al., 1999). 

Pine weevils are semivoltine meaning they produce generations or broods less than once per -
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year. Their life cycle is an important determinant of economic impact as a pest influencing the 

length of a fallow period or the frequency of insecticide use imposed on a managed clear fell 

site.  

In Ireland and the UK, the large pine weevil typically has a 2-year life cycle, but generation time 

(voltinism) across its broad Palaearctic range can vary from a single year (univoltine) in the 

warmer southern forests, to up to 4 years in the cooler north. This indicates a pliable life cycle 

which is reactive to local conditions (Wainhouse et al., 2007).   Increasing temperatures, due to 

climate change, are likely to affect many insects and lead to complex responses of insect 

phenology with noticeable shifts towards earlier seasonal activity. Voltinism can increase with 

warming, and diapause schedules may also be impacted due to greater thermal accumulation 

before the critical photoperiod (daylength) is reached. Ultimately, forecasting changes in 

phenology requires improved understanding of insect life histories (Forest, 2016). The duration 

of the weevil life cycle is likely to be affected by such changes, resulting in alterations in the 

seasonal timing of adult activity, which will in turn affect the economic impact of the pest and 

the way it is controlled. Forest Research UK undertook research to determine the effect of 

temperature on pine weevil growth and development (Inward et al., 2012). Their research found 

that the development rate of the eggs, larvae, and pupae increased linearly with temperature but 

that development of prepupal larvae was highly variable, as that stage tends to undergo a 

facultative diapause, which was initiated by development temperature. Weevils reared at higher 

temperatures grow faster and are larger as shown in Figure 1.2.  

 

Figure 1.2 The effect of temperature and sex on mean pine weevil mass. Final mass of larvae (top) and adults below 

is shown (Inward et al., 2012).  
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Wainhouse et al. (2014) developed a model for the UK to simulate the development of weevils 

through their life cycle, to predict voltinism based on temperature in the root-stump microhabitat. 

The model was developed to predict changes in voltinism due to projected future changes in the 

climate system. Modelled future temperatures were obtained from the UK Climate Projections 

2009 generator (UKCP09) for a period from the 2030s to the 2070s. The study showed that a 

warming climate will extend the periods during which weevils can be damaging (Wainhouse et 

al., 2014), further emphasising the need for a refined forecasting method for this forest pest. 

As part of a recent INTERREG project (IMPACT), the simulation model developed in the UK 

was adapted to estimate site-specific patterns of weevil emergence for a selection of sites in 

Ireland based on observed temperature data from local weather stations. Using empirical data on 

timing of weevil emergence (assessed by emergence traps erected on clear-fell sites) it was found 

that in half of the trials, predictions did not differ significantly from the observational data 

(Williams et al., unpublished). The present research seeks to build on that work by examining 

additional factors, including site-specific factors, to see if the model can be enhanced and 

ultimately aid the development of a more accurate forecast model for use in decision making 

under current weather conditions.  

Insects as ectothermic organisms are among the group of organisms most likely to be affected 

by weather and climate with temperature noted as the dominant abiotic factor with a direct 

influence on their life cycle development (Bale et al., 2002).  The results from pest simulation 

models can be most effectively used whilst following correct biological, environmental, 

experimental, and economic inputs to analyse the most effective management options (Strand, 

2000). This thesis aims to build on existing research to refine the forecasting method for the 

emergence of pine weevil in Ireland. This was ultimately achieved through the development of 

a weevil forecasting package developed for the R programming language called pineR (Lemos 

dos Santos et al. 2023) and will be outlined in detail (See chapter 3). 
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1.4 Research focus and objectives 

This thesis focuses on developing an existing simulation model incorporating additional data and 

information from a substantial body of research on pine weevil emergence in Irish forestry, 

collected during field trials of biocontrol agents conducted by Maynooth University and Coillte. 

This project builds on previous research in Maynooth (Williams et al., unpublished) to 

investigate how site-specific covariates, such as elevation and soil type, can be included in the 

model via appropriate statistical tools to identify factors of influence. Observed temperature data 

from meteorological stations (“met stations”) and gridded climate data inputs were employed in 

the simulation model initially to forecast first year emergence and compare this with observed 

biological emergence data. Model simulated cumulative emergence of weevils were then 

compared with the available empirical data using appropriate statistical techniques to cross-

validate the model. Geographical site-specific conditions were examined also to see can they 

help provide more accurate predictions of emergence times. Population structure data from 

stump hacking is also used to compare between sites. This research ultimately examined the 

potential to refine a life cycle simulation model by taking account of important site covariate 

factors to forecast emergence of pine weevil. The final iteration of the forecast model 

implemented, pineR, was achieved with the following objectives. 

• Employ phenological data from 27 sites (emergence trial site locations) as model input along 

with local temperature data for the years of the trial, sourced from the nearest meteorological 

stations and weighted for distance, to compare observed and simulated emergence in a life 

cycle model.  

• Employ obtained gridded climate data (0.01-degree resolution; (Met Eireann 1km grids; 

Walsh, 2012)), derived from the existing network of meteorological observations using 

spatial interpolation techniques, to drive a finalised phenological forecast model for Ireland.  

• Examine site-specific geographical data as covariates in the model to see do factors such as 

elevation, soil type and slope explain any mismatches between the observed and the modelled 

data. Factors that influence the accuracy of the model in forecasting time of emergence can 

be considered in a corrected version of the model to improve accuracy of forecast. 
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• Evaluate supplementary data on weevil population structures in stumps including the 

proportion of weevils at each developmental stage (i.e., larvae, pupae, adult) for sites at 

which emergence was modelled. Population size of weevils on trial sites will also be 

examined for comparison.  

• Refine the existing simulation model using emergence data and temperature data inputs for 

Irish trial sites with a proposed correction to forecast timing of weevil emergence to inform 

pest protection protocols for pine weevil.  

All the project objectives will combine to assess whether the accurate forecasting of weevil first 

emergence times can be achieved in support of more refined decision making for management 

of the pest in Ireland. 

1.5 Context and value of this research  

Given the significant and damaging impact that the large pine weevil causes the forest sector in 

Ireland and beyond, the need for an appropriate and improved future IPM strategy is clear (Dillon 

et al., 2006; Wainhouse et al., 2014; Langstrom and Day, 2004). This research aims to create an 

improved forecasting tool via an emergence forecast model to aid foresters and inform key 

management decisions such as timings of plant protection product applications based on 

improved predictions of emergence and development patterns. Fallow periods have been 

identified as a potential viable future strategy for pine weevil management in certain locations 

but with sites having to be replanted within two years of felling in Ireland, greenplanting 

(planting large stock immediately after felling) is a more realistic and trending development in 

Irish forestry.  Forests play an important economic, environmental, and recreational role in 

Ireland today making a significant impact contribution to the Irish economy, currently valued at 

€2.3 billion, and an increasingly important role in rural development contributing to rural 

stabilisation and viability. Forestry also has a key role in climate change mitigation as part of the 

national climate strategy (DAFM, 2023). The research forms part of an overall project on 

integrated pest management of pine weevil in Ireland that will develop a critical mass of IPM for 

the forest pest in Ireland.  
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1.6 Structure of thesis 

The thesis is divided into five chapters, each addressing an aspect of the research project 

undertaken.  

Chapter one introduces the topic of pest management including a background on pests, the life 

cycle of pine weevil, the use of phenological models and current IPM strategies. The chapter 

also establishes the research focus and objectives, the context value of the research and the 

structure for the research thesis.  

Chapter two reviews existing literature of pest forecasting with an emphasis on pest monitoring 

and modelling. The history of such methods incorporated into IPM principles will be examined 

in an introduction to pest forecasting. The relationship between temperature and 

development/phenology looking at the direct influence of how temperature impacts the 

development, reproduction, distribution, and survival of insects will be discussed in detail. The 

development and application of pest forecast models will be outlined looking at benefits and 

limitations of different methods. The influence of regional specific factors will be reviewed in 

terms of potential variable importance on pest modelling. Finally, the influence of climate change 

on Insect development will be examined prior to a conclusion of the chapter.  

Chapter three describes the various data types and methodologies used to develop the forecast 

simulation tool. These include the 27 forest trial sites where pine weevil phenological data 

(emergence trap and hacking data) was recorded and the temperature data, both the local synoptic 

weather stations from which Met Eireann historical temperature data were sourced for specific 

year of trial, and temperatures derived from the Met Eireann grid.  The use of the model and any 

subsequent post processing steps (such as weighted averaging of met station data and cross 

validation methods) are explained. 
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Chapter four presents the results. The chapter begins with a look at the observed emergence 

data on trial sites used in modelling. It then evaluates the met-station temperature data against 

the gridded climate data eventually used to drive the forecasting model. The model results will 

be shown with and without a machine-learning correction using both types of temperature inputs.  

Selected sites of interest will be examined in more detail to help explain mismatches between 

observed and model-simulated weevil emergence. A section on “variable importance” will 

investigate the influence of site-specific covariates in the forecast model as identified by machine 

learning. Additional data e.g., population structure of weevils in stumps will be covered where 

relevant when discussing the model performance on trial sites. The proposed corrected finalised 

model results will conclude the chapter.  

Chapter five concludes the thesis, discussing the core aspects of the results obtained and 

findings deduced as well as providing recommendations for any future research or policy 

application from this refined forecasting method to aid IPM of pine weevil in Ireland in general.  
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 Chapter 2: Literature Review  

“If all mankind were to disappear, the world would regenerate back to the rich 

state of equilibrium that existed ten thousand years ago. If insects were to vanish, the 

environment would collapse into chaos.” 

Edward O. Wilson, American Biologist, naturalist, and writer.  

This chapter examines existing knowledge on pest forecasting, detailing pest monitoring and 

modelling. The history of such methods and how they link to Integrated Pest Management (IPM) 

principles will be outlined. This will be followed by a discussion on the relationship between 

temperature and development looking at the direct influence of how temperature impacts the 

development, reproduction, distribution, and survival of insects. The development and 

application of pest forecast models will be reviewed looking at benefits and limitations of current 

practices and how IPM of insect pests can be refined for use in forecasting methods. The 

influence of regional specific factors will be reviewed in terms of variable importance on pest 

modelling with an emphasis on the large pine weevil (Hylobius abietis). Finally, the influence of 

climate change on insect development will be briefly outlined.  

2.1 Introduction to pest forecasting  

Pest forecasting as a concept is important due to the damage that pests inflict. In an agricultural 

context, pathogens, nematodes, weeds, vertebrates as well as insects and mites are largely 

regarded all as pests. They are a major constraint to crop productivity and profitability around 

the world caused by direct and indirect damage to valuable crops (Olatinwo and Hoogenboom, 

2014). In the early ‘90s, such pests accounted for an estimated 45% of pre- and post- harvest 

(storage) losses worldwide (Oerke, 2007), in addition to losses caused by vertebrate pests 

(Strand, 2000). Even today with improved mechanisation and crop technology, between 26 to 40 

% of the world’s potential crop production is lost annually due to weeds, pests and diseases, and 

these losses could double without the use of modern crop protection methods (FAO, 2012). The 

yield losses from different categories of pests are estimated to be US$500 Billion worldwide 

(Oerke et al., 1994; Liebhold and Tobin, 2008). At a country level, the damage can be severe 

and managing pests can have multiple impacts. For example, accounting for direct damage to 

crops by the pest, the cost of chemical intervention and potential ramifications in terms of health 

(i.e., humans poisoned in areas where there is unrestricted spraying), the total economic losses 

are approximately US$ 17.7 Billion (Oliveria et al., 2017). 
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 The damage caused by pest organisms of any kind is one of the most important factors in the 

reduced productivity of any crop plant species (Fitt and Wilson, 2012; Metcalf, 1996). 

It is hard to address pest forecasting without including the importance of the origins of IPM. We 

have come a long way from when in ancient times, humans lived with crop pests without major 

efforts to control them, but as competition increased for food, humans developed ways to 

safeguard their crops against pests by using management techniques such as cultural, 

mechanical, physical, and biological control (Abroi and Shankar, 2012). This formed the 

foundations of the principles of IPM we know today. The use of natural biological control is 

almost as old as the history of agriculture itself. Chinese cave paintings clearly show ducks being 

used to consume pests off crops, a technique still operating in rural China in the late 20th Century 

(Van Emden, 1989). The mid-20th Century was significant with the advent of synthetic organic 

insecticides which initially provided successful results against pests (Metcalf, 1980). However, 

as time progressed evidence has accumulated of environmental damage in terms of pollution and 

pest resurgence particularly in scientific research and publications such as Rachel Carson’s Silent 

Spring (Carson; 1962; Dunlap, 2008). Since their advent, dependence on chemical insecticides 

has resulted in issues of developing resistance genes in over 500 insect pests by 1990 (Georghiou, 

1990).  

IPM as we know it today really came into effect in the 1960s with the aim of reducing harmful 

consequences of chemical pesticides and the need for widespread chemical intervention in the 

control of pests and diseases (Fitt and Wilson, 2012).  Within any IPM approach, monitoring for 

pests is a fundamental first step in creating a management programme to collect useful and 

informative biological data on pest species. Insect pests are monitored through a variety of 

monitoring tools such as pheromone traps, light traps, emergence traps (as displayed in the pine 

weevil trial data at the centre of this research), pitfall traps and suction traps (Prasad and 

Prabhakar, 2012). Monitoring data also serves several purposes. These include ecological impact 

studies (Pathak, 1968, Hirao et al., 2008), tracking insect migration (Drake et al., 2002), timing 

of pest outbreak into agricultural and forest ecosystems (Teagasc, 2020; Klueken et al., 2009), 

initiating field sampling procedures (Dillon et al., 2006; Prasad and Prabhakar, 2012) and timing 

of pesticide applications (Teagasc, 2020; Merril et al., 2010). This is just an overview of some 

of the practical methods adopted to aid pest monitoring and forecasting in a working IPM system.  
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2.2 Relationship between temperature and development/phenology 

Insects are incapable of internal temperature regulation and hence their development depends on 

the temperature to which they are exposed. Temperature is a fundamental driver of insect 

development and is one of the principal factors delimitating survival and reproduction. 

Temperature has been identified as the dominant abiotic factor directly affecting herbivorous 

insects (Bale et al., 2002). Temperature extremes are a cause of significant natural mortality in 

populations. Warm and cold extremes can offer potential for the development of environmentally 

safe pest management strategies (Hallman and Denlinger, 1998). Both heat and cold (i.e., thermal 

stresses) have been used to supress pests since the beginning of insect control and have been 

often classified under the broad category of physical controls which Metcalf et al. (1962) 

described as methods which employ abiological properties of the environment to the detriment 

of pests. While the damaging effects of high temperature are more obvious in terms of 

susceptibility to infection and lost vitality (Eliott et al., 2002; 2005), insects may, in certain cases, 

exploit high temperatures for their own benefit. Insects infected with viruses, bacteria or 

parasitoids frequently seek high temperatures to rid themselves of infection and promote their 

own survival (Heinrich, 1993; De roode and Lefevre,2012). Insects can also exploit low 

temperatures for their own benefit. Bumble bees for instance carrying a heavy load of conopid 

parasitoids stay away from the colony on cool nights and expose themselves to low temperatures, 

thus retarding the growth of the parasitoids and reducing the chances of successful parasitoid 

development (Muller and Schmid-Hempel, 1993). Sensitivity of pests to climatic factors such as 

precipitation and temperature varies by species. The direct effects of temperature on insects 

include effects on developmental traits, in respect to their existing habitats and life histories and 

crucially their ability to adapt during their ongoing development (Bale, et al., 2002; Regniere et 

al., 2012). 

Temperature is the main driver of key life cycle functions of insects, not only in terms of 

reproduction but also for movement, development, and survival. Temperature affects life-cycle 

duration, rate of development, voltinism, population density, size, genetic composition, extent 

of host plant exploitation as well as local and geographical distribution inked to colonisation and 

extinction (Bale et al., 2002). Temperature and infection are two of the most common factors 

exerting selective and targeted pressure on all organisms including insects (Johnston and 

Bennett, 1996; Thomas and Blanford, 2003; Wojda, 2017). Temperature shapes the processes 

and outcomes of characteristics that happen throughout life cycle development of insects 

including during mating interactions and reproduction (Regniere et al., 2012).  
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The photoperiod and temperature have been shown to have a direct effect inducing diapause 

(Velarde et al., 2002). Tolerance to high temperatures, known as heat tolerance, is a key 

determinant of an individual insect’s survival in warming environments (Colinet et al., 2015). 

Insects often must use physiological mechanisms of heat tolerance and thermoregulation as 

displayed in dispersal behavior to find cooler sites, and on the presence of refuges with 

appropriate microclimates to regulate their body temperature (Sunday et al., 2014; Duffy et al., 

2015). In recent times, focus has expanded to the metabolic theory of ecology (MTE) where 

temperature and body weight are the fundamental determinants of the rates at which life’s central 

processes occur including metabolism, development or individual growth, species diversity and 

even ecosystem processes (Brown et al., 2004). 

2.2.1 Life cycle and development (Coleoptera)  

Insects are poikilotherms meaning they cannot regulate their body temperature outside of 

behavioural means such as basking or burrowing (Regniere et al., 2012).  Early research on insect 

responses to temperature dates to the 18th century and the work of famed French entomologist 

René de Reaumur on insect parasitoids and on caterpillars (Carton, 2005). The production of 

heat by endothermy and the elevation of body temperature have been known for a long time in 

insects (Himmer, 1932; Krogh and Zuethen, 1941). More recent evidence suggests that flight 

activity in adults, as well as rate of growth of the immatures in social insects, are sometimes 

dependent on elaborate mechanisms of temperature regulation (Heinrich, 1973).  Thermal limits 

of insects have been studied as far back as the early 1900s, including factors such as the 

relationship between insect development and temperature, identifying factors such as cold 

resistance and the influence of relative humidity as well as their importance in respect to insect 

phenology (Bacmetjew, 1900; Payne, 1929). These studies identified important drivers or 

regulators of insect response to temperature such as the role of extreme temperatures of differing 

intensity and quantity, the importance of cofactors such as relative humidity and finally the 

critical importance of individual variation within a population (Rebaudo and Rabhi, 2018). 

Temperatures that exceed specific optimum ranges for an insect can lead to decreased growth 

rates, reduced fecundity and increased rates of mortality for many species (Friendenberg et al., 

2008).  

Expanding and optimising the use of laboratory and field work data coupled with parameterising 

the thermal response of insects in particular and poikilotherms in general will enhance the 

development of process based phenological models to encompass such characteristics (Regniere 

et al., 2012). This measure of accumulated heat energy is known as physiological time. 
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Physiological time provides a common reference for the development of organisms during their 

life cycle and represents an important factor in biological development (Trudgill et al 2005). 

There are three important effects of temperature on insects which are closely interrelated to insect 

performance. Firstly, temperature affects rate assessed processes such as development, 

reproduction, and movement. Secondly, acute, or chronic exposure to low or high lethal levels 

inflicts mortality. Thirdly and finally, there is a range of sub-lethal (delayed) effects that can lead 

to abnormalities to the normal response to temperature within the favourable zone of inhabitation 

(Van Emden and Harrington, 2007). The effect of temperature on development in insects is often 

displayed using the inverse of development time, that is, the development rate. The development 

rate of insects starts from a critical thermal minimum (CTmin) and increases slowly as temperature 

increases. It reaches a temperature range where development rate is almost linear, then continues 

growing up to an optimal (Topt), to finally decrease rapidly to a critical thermal maximum (CTmax) 

(Rebaudo and Rabhi, 2018). It is also worth noting the variability in terms of developmental rates 

amongst organisms and how these can vary within populations as well as influence the observed 

distribution of phenological events in those populations (Yurk and Powell, 2010). For many 

ectotherms, the relationships between ambient temperature and development, survival and 

reproduction scale up from daily or even hourly effects on individuals to seasonal patterns of 

phenology (Visser and Both, 2005). As poikilothermic organisms, the body temperature of 

insects can vary considerably. They mainly rely on ambient temperature and must adapt to 

survive any arising environmental stress.  

The metabolism of all insects is affected by environmental conditions. The influence of the 

environment can limit an insect’s development and its ability to remain active, and ultimately, 

its survival (Dent, 1991). The effect of environmental extremes has often been regarded as 

largely an all or nothing response, so that is why marked activity thresholds exist and can be 

important in relation to temperature dependent phenological models such as flight, etc. (Taylor, 

1963). Low temperature can be a potential lethal stressor for all insects. There has been intensive 

research into the effects of temperatures on winter survival and the subsequent spring abundance 

and pest outbreaks including the possible effects of warming climates (Bale, 1999). From a beetle 

(Coleoptera) perspective, it is worth noting that research has shown winter warming as the 

primary cause for beetle declines in terms of both abundance and diversity (Harris et al., 2019). 

Laboratory methods and field trials have shown that coleopteran species are negatively impacted 

when exposed to extreme temperatures. One study exposed the red flour beetle (Tribolium 

castaneum), a serious pest of stored food products, to five constant temperatures from 20 to 35 
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degrees C showing temperature negatively impacting the development and survival of the beetle 

(Skourti et al., 2019). Moisture in the form of relative humidity has also been shown to affect 

coleopteran development rates (Zhou et al., 2010). The development of insects and when their 

damaging stages emerge is of significance in entomology and agriculture when considering pest 

outbreaks. It is an essential component for building phenological models used to predict the 

effects of temperature on development (i.e., temperature dependent modelling). 

2.2.2 Linear and Non-Linear models  

Understanding life cycles of forest pest like pine weevil is important in terms of understanding 

how certain components impact their life cycles and the elements that feed phenological models. 

Linear and Non-Linear models discussed here are vital in terms of establishing relationships 

between essential components that produce forecast development models.  The most common 

development rate model, referred to as degree-day model, assumes a linear relationship between 

developmental rate and temperature, between lower and upper developmental thresholds (Allen, 

1976).  A significant number of models deal with mean development rate versus temperature and 

the distribution of development times (Wagner et al., 1984; 1985). Simulation models based on 

mathematical descriptions of biological data such as development data as influenced by the 

environment are more easily applied across locations and environments to aid pest forecasting 

(Prasad and Prabhakar, 2012).  

Models or other prediction schemes can be utilised to analyse the most effective management 

actions, based on acceptable control, sustainability, and assessment of economic or other risks 

(Strand, 2000). Whether simple or complex, a disease or pest model requires essential 

environmental variables or covariates as inputs, depending on individual pest sensitivity to 

different environmental factors. Temperature has particular importance as it drives the life cycle 

progress and development rate of insects.  Access to accurate weather data, including 

temperature, rainfall, humidity, and other relevant measurements, is essential for developing, 

testing, and evaluating the model performance (Olatinwo and Hoogenboom, 2014). For example, 

models that have been used for insect phenology, using derived variables from degree-days 

accumulation, are applicable in most environments, since they utilize knowledge about 

individual pest species and its sensitivity to baseline temperature that correlates with pest 

population growth rates (Dawidziuk et al., 2012). The rate of growth and phenological 

development of an individual plant and insect species has been found to increase almost linearly 

from a base to an upper limiting temperature threshold (Cesaraccio et al., 2001). The amount of 

heat required to complete a given organism’s development does not vary.  
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Physiological time is measured in degree days (DD). One degree day is equal to one degree 

above the lower developmental threshold over 24 hours (Zalom et al., 1983). Each species 

requires a defined number of degree days to complete its development. Therefore, the starting 

date is very important in terms of phenological modelling (Inward et al., 2012; Prasad and 

Prabhakar, 2012). The date to begin accumulating degree-days is known as the biofix and varies 

by species. Biofix points are usually based on specific biological events such as planting dates, 

first trap catches or first occurrence or emergence of a pest (Zalom et al., 1983). Population and 

development models that incorporate developmental thresholds and development rates based on 

degree days can help growers and pest control advisors to pinpoint biological events. Biological 

data can also help modelling of later generations based on size of earlier populations (Zalucki 

and Furlong, 2005). Thresholds are also important in terms of modelling processes. The lower 

developmental threshold for a species is the temperature at and below which development stops. 

The rate of development is simply the proportion of development that occurs at a specific 

temperature over a period of an hour or a day.  The upper development thresholds are less clear, 

but it is often taken as the temperature at and above which the rate of growth begins to decrease 

(Zalom et al., 1983).  

Non-linear methods have also been developed for use in life cycle development modelling. As 

increasing temperature above a threshold act to reduce development and may ultimately be lethal 

to organisms, non-linear models are required to account for aspects in insect seasonality at certain 

temperature extremes (Prasad and Prabhakar, 2012). Non-linear development rate functions 

based on enzyme kinetics were developed to describe high temperature (Johnson and Lewin, 

1946) and low-temperature (Hultin, 1955) inhibition, as well as for both extremes (Sharp and 

DeMichele, 1977). Various nonlinear models have been developed to describe the temperature 

response of developmental processes in plants and insects (Yin et al., 1995). Linear models have 

been recognised as efficient modelling functions within a restrictive temperature range 

(Campbell et al., 1974; Honek, 1999; Pollard, 2020). More realistic approaches take account of 

the non-linear, unimodal nature of physiological responses to temperature using the rate 

summation paradigm which can account for the intrinsic variation of development rates within 

populations (Sharp and DeMichelle, 1977; Lactin et al., 1995). Another non-linear model of 

temperature dependent development (Stinner et al., 1974) utilized a function that is a simple 

sigmoid curve with an inverted relationship when the temperature reaches above the optimum. 

This model, as originally given, assumed symmetry about the optimum temperature but can 

easily be adjusted for asymmetry. The non-linear model by Logan et al. (1976) uses an equation 
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that is asymmetric about the optimum but becomes negative for very high temperatures. The 

interaction of cyclical temperatures with non-linear development can introduce significant 

deviations from the linear development rate model, especially in the low- and high-temperature 

regions of the development rate function of such modelling (Worner, 1992). A practical example 

of how some of these models fit can be shown in the case of the aforementioned (Stinner et al., 

1974) model which gave the best fit for the Russian wheat aphid developmental rate data as 

judged by mean square error and successful convergence between observed and simulated data 

when 14 insects developmental models were tested (Ma and Bechinski, 2008) using appropriate 

population model design software (Logan and Weber, 1989).  

2.3 Development and application of pest forecast models.  

In the last 30 years, much effort has been spent on developing pest management systems in terms 

of first investigating the contribution that might come from ecological tools of life table studies, 

system analysis and mathematical modelling. For example, many life cycle simulation models 

have been developed for pest species such as aphids and pine weevil (Van Emden, 1989; 

Wainhouse et al., 2014; Duffy et al., 2017). In theory, it was thought that if the role of various 

factors which cause changes in insect abundance can be understood and properly identified, then 

a model of this system would enable predictions or forecasts of the consequences i.e., damage of 

a pest. In pest forecasting, several intrinsic attributes of the pest insect and the determining 

environmental and host factors need to be considered. Most pest forecast models consider the 

phenology of the herbivore and its host. Near real time or observed pest incidence data compiled 

with remote sensing or geographic information system (GIS) tools can often facilitate early 

warning of impending pest infestation in a temporal and spatial perspective. In addition, the 

collection and analysis of reliable weather data from pest affected areas is an essential input for 

predictive models (Prasad and Prabhakar, 2012). Forecasting systems indeed have become 

increasingly sophisticated also. Even the simplest approaches are based on statistical models, 

whereas the more sophisticated have required computer models and advanced specialist software 

(Dent, 2000; Olatinwo and Hoogenboom, 2014). Pest modelling seeks to predict the activity of 

biotic agents which could adversely affect a crop or plant species, to facilitate the implementation 

of preventive measures to reduce the potential negative impacts of the pest on a plant or crop. 
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2.3.1 Deployment of pest models, types and current IPM 

Detecting an impending disease outbreak or pest attack early enough to prevent severe economic 

losses serves as a strong management incentive to utilize support tools where available (Olatinwo 

and Hoogenboom, 2014). Applied modelling of crop diseases and pests has mostly targeted the 

development of support capabilities to schedule scouting or pesticide applications (Donatelli et 

al., 2017). Crop and pest models have many current and potential uses for answering certain 

questions in research, crop management and policy. Models can assist in the synthesis of research 

understanding about the interactions of insect physiology and their environments (Boote et al., 

1996).  Several reviews have documented recent advances made in the field of designing generic 

simulation models for pests, diseases, and crop losses (Savary et al., 2006; Esker et al., 2012). 

Process based modelling has been shown to be critical to quantitatively address questions 

pertaining to the behaviour of complex systems, such as crop pest and pathogen systems 

(Donatelli et al., 2017). Within the context of forecasting, models seek to quantify the important 

relationships between the environment and the development of the pest to enable prediction of 

likely incidence of pest emergence at some future time. These models commonly involve 

regression analysis of insect number of one stage against another (e.g., adults vs. larvae) or 

against damage (Dent, 2000). Some of the models most utilised in IPM are the classical linear 

regression models, for which one may construct ANOVA (Analysis of Variance) tables to study 

the effects of predictors. Other commonly used models include crop-growth and crop loss models 

(Koul et al., 2004), economic threshold and injury level models, sampling models and phenology 

models. In terms of phenological modelling use, a variety of modelling approaches and model 

development tools have been established that relate temperature to insect development rates or 

times (Sharp and DiMichele, 1977; Schoolfield et al., 1981; Wagner et al., 1984; Sporleader and 

Chavez, 2009). 

2.3.2 Modelling applications in Ireland and UK 

In terms of application of pest modelling in Ireland and the UK, many models have focused on 

process-based simulation models that aim to enhance knowledge-based decision making 

regarding both the timing and extent to which insecticides are relied upon in an agronomical 

context (Duffy et al., 2017). Models developed based on a simple technique of degree-days, may 

utilize air or soil temperatures to describe the phenology of pest species, to determine when they 

reach a pre-determined population threshold that warrants pest management actions (Olatinwo 

and Hoogenboom, 2014). The information may also be useful for more efficient scheduling of 

pesticide applications based on the known biology of the pest. It has been noted that the degree-
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day technique has been useful for predicting insect pest populations elsewhere too, such as the 

European corn borer, rice water weevil and pink bollworm, particularly in tree, vegetable, and 

field crops, where pesticide applications may be accurately timed using phenology models 

(Strand, 2000). System models or other prediction schemes can be utilised with appropriate 

biological, environmental, economic, or other inputs to analyse the most effective management 

actions in general, based on acceptable control, sustainability, and assessment of economic or 

other risks (Prasad and Prabhakar, 2012).  

A lot of phenological models are based on high quality biological data that is often gathered over 

several years of research as for example with the recent evaluation of the potato-blight 

forecasting model identifying the “Irish Rules” forecasting model for the disease dating back to 

the 1970’s developing with further knowledge as time progressed (Cucak et al.., 2019). The 

process-based modelling of the dynamics of plant pests and diseases aims at reproducing the 

biophysical processes guiding their development and spread in time. The effect of weather 

conditions has traditionally been an important focus of these models. The dependency of pest 

growth rates on the variability of weather conditions implies that models should reproduce these 

relationships by modulating their responses accordingly (Donatelli et al., 2017). Other models 

of pests in Ireland particularly relevant in terms of temperature dependence include work on the 

grain aphid (Sitobian avenae) looking at the size and timing of populations in response to 

temperature as well as work on the blue willow beetle (Phratora vulgatissima) creating a 

voltinism/phenological model as a serious pest of short rotation crop (SRC) willow in Europe 

(Duffy et al.., 2017; Pollard et al.., 2020). A simulation model in the UK followed a generation 

of pine weevils through the life cycle to predict voltinism based on temperature in the root stump 

microhabitat modelled from air temperature. The model also investigated the potential effect of 

climate change on voltinism through future projections simulated from the UK climate 

projections 2009 weather generator for the 2030s to 2070s (Wainhouse et al., 2014). This model 

is explained in detail below as it is providing the core model structure that is adapted for the 

development of the pineR forecasting tool, outlined in this research.  

2.3.3 Benefits and limitations of pest modelling 

In terms of certain pests, there can be many benefits from modelling. Forecasts can be derived 

for optimum flight periods for instance from daily synoptic weather forecasts to facilitate the 

detection of pest infestations and disease vectors as well as the timing of pesticide applications 

to intercept and eliminate pest outbreaks during displacement from breeding zones (Das et al., 

2007). Quantifying the impacts of plant pests and diseases on crop performances represents one 
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of the most important research questions that agricultural simulation modelling aims to address 

(Newman et al., 2003, Esker et al., 2012, Donatelli et al., 2017).  A carefully evaluated pest 

model coupled with weather forecasting output can provide an approach for routine 

spatiotemporal predictions of potential threats for many diseases of valuable crops, especially 

those for which IPM can play an important role in the long term (Olatinwo and Hoogenboom, 

2014).  Several crop growths and phenological models of pests have been used to evaluate 

consequences of global climate change; including elevated CO2, increased temperature, and 

altered rainfall patterns (Boote et al., 1996). Simulation approaches through modelling life cycle 

development of a pest for instance offer flexibility for testing, refinement, sensitivity analysis as 

well as field validation of developed models over a wide range of environmental conditions 

(Prasad and Prabhakar, 2012). Modelling can be a major benefit to predicting pest outbreaks or 

infestations, but it is also true that model developers must be forthright when describing their 

model identifying its direct purpose and capabilities as well as its limitations. To improve 

Helicoverpa management in Australia, a comprehensive population dynamics model was 

developed, which incorporates the spatial structure of the habitat and pest population and 

explicitly simulates the adult movement within a regional cropping system (Fitt et al., 1995) 

showing the importance of spatial dynamics, often overlooked in pest models.  

Simple growth models are often easy to comprehend and require fewer inputs, are easier to use 

and widely apply (Ritchie, 1989). Model use can be frequently limited by the unavailability of 

accurate input data. A lot of temperature models require comprehensive weather data such as 

daily maximum and minimum temperature data and errors in input data, inadequate calibration 

of recording equipment and sampling errors are common occurrences (Boote et al., 1996).  

Calibration and adjustment of certain model parameters or relationships may be necessary to 

make the model work for a particular site or sites. Validation determines whether the model 

works with independent data sets; that is, does it accurately predict growth, yield, and processes 

outside of the training data. Validation does not necessarily offer a full validation as validation 

is a continuous process hence a lot of models are referred to historically as partially validated 

(Oreskes et al., 1994).  Models also must be tested in diverse environments if modelers wish to 

make applications, changes or extrapolations to those environments and situations (Boote et al., 

1996). In this way, modelling can be limited depending on its specific requirements.  Simulation 

models on the other hand based on statistical theory and mathematical descriptions of biological 

data as influenced by a given environment (i.e., temperature dependent models) are more easily 

applied across different locations and environments. Pest simulation models offer flexibility for 
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testing, refinement through correction methods, sensitivity analysis as well as field validation of 

developed models over a wide range of environmental conditions (Prasad and Prabhakar, 2012).  

2.4 Influence of regional specific factors on pest modelling 

The issue of scales and regional specific factors offers potential insights for modelling as insect 

pests are traditionally natural disturbance agents themselves that can significantly alter the 

structure and composition of forested landscapes and thus can impede their ability to provide 

critical ecosystem services (Munro et al., 2022). The quantification of the spatial dynamics of 

pest populations especially in relation to associated environmental changes (e.g., wind direction 

or rainfall) is not a new practice. Geographic Information Systems (GIS) utilize site coordinates 

to store information such as altitude, temperature, soil type and distribution of crop varieties on 

a spatial map layer (Dent, 2000). Other factors affecting pest distribution should be investigated 

such as presence of natural enemies or evidence of activities potentially contributing to a pest 

problem such as with high disturbance in agriculture (Landis et al., 2000). With any insect pest, 

the frequency of monitoring is determined by the biology of the pest, but the crop of course is 

equally relevant. The crop may have a low damage threshold for instance and therefore may need 

more maintenance. The area of the crop to monitor also varies as it can depend on the crop type, 

the farm system or forest size and indeed the pest population structure. However, in any 

monitoring of scale of pest outbreak for example, it is advised that there should be enough of an 

area monitored to provide an adequate representation of the field. Record keeping is essential for 

decision making and evaluating trends in pest populations emerging from season to season (Koul 

et al., 2004). It is important to note too how site-specific factors can interact differently with 

insect pests which themselves act as the biological drivers of habitat (i.e., forest or crop location) 

disturbances. Often, interactions among disturbance agents or site-specific factors themselves 

amplifies the disturbance impacts on site beyond that of any single agent or cause, particularly 

under a warming climate (Raffa et al., 2008).  

2.4.1 Site specific factors impacting the status of pine weevil as a pest. 

The influence of location is significant in terms of pests and specifically pine weevil. It is difficult 

to predict the size of pine weevil population at any given place (Von Sydow, 1997; Zumr and 

Stary, 1994). Pine weevil populations on a clear-cut are affected by landscape factors, such as 

the presence of the older clear-cuts within a certain distance (up to 5km) as a source of weevils 

(Lyons, Coillte, Pers. Comm., 2021). Based on field studies in Sweden, pine weevil can fly on 

average 10km with some individuals reaching distances of up to 80km. 
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 Migration has been identified as a major factor in pest populations (Sobreck, 1980). The extent 

and scale of pine weevil flight is unknown. Data from Sweden and the UK respectively indicate 

that weevil flight is temperature dependent, only occurring at temperatures greater than 18oC 

(Solbreck and Gyldberg, 1979) and their ability to fly declines due to regression of flight span 

muscles after the main migration period in May (Tan et al., 2011). In addition, neighbouring 

forests are also a source of pine weevils, where they exist in low numbers and from which they 

can travel to infect clearfell sites. Suitability of standing forests as a source of adult weevils 

varies. A study in the Czech Republic found that old spruce forests had the lowest pine weevil 

population, compared to pine, and mixed forests (Zumr and Stary, 1994). The species of previous 

crops can affect weevil populations multiplying on site with weevil developing much faster and 

in higher numbers in pine than in spruce (Bejer-Petersen, 1975; Dillon and Griffin, 2008). Soil 

type has also been found to be a significant influence on incurred damage as weevils prefer to 

move across peat soils as opposed to a mineral substrate (Dillon and Griffin, 2008; Kapranas et 

al., 2017). Indeed, research has shown the amount of damage by weevil infestation was lowest 

on pure mineral soil and highest on undisturbed humus (Petersson et al., 2005). The impact of 

vegetation or brash on weevil damage is unclear.; positive, negative, or neutral effects have been 

reported (Nilsson & Örlander, 1995; Örlander & Nilsson, 1999; Örlander et al., 2001; Wallertz 

et al., 2005).  

2.5 Influence of temperature on Large Pine Weevil development  

Rates of development of eggs, larvae, and pupae of pine weevil increase linearly with 

temperature such that weevils reared at higher temperature grow faster, but contrary to 

expectations are also larger in mass (Inward et al., 2012). Over 80% of ectotherms mature at a 

smaller size when they develop at higher temperatures. This is known as the Temperature-Size 

rule (TSR) (Angiletta and Dunham, 2003). Pine weevils follow an Inverse TSR increasing with 

temperature.  

Being larger has advantages such as being less susceptible to mortality (i.e., having more fat 

reserves reducing overwintering mortality), and larger females will be more fecund and lay larger 

eggs increasing offspring survival (Inward et al., 2012). The influence of temperature in this case 

is shown to be positive in terms of effects on fecundity and overwintering survival. Warmer 

temperatures can also lead to an extended feeding period and a faster generation time for weevil 

development leading to the potential for considerably increased damage (Willoughby et al., 

2017). The pre-pupal stage is worth noting also as the length of time was highly variable with a 
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non-linear relationship between development time and temperature. However, as temperature 

decreases, there is a step-like increase in the length of the pre-pupal stage (Inward et al., 2012). 

An extended pre-pupal stage seems to minimise the risk of overwintering in the pupal stage and 

synchronises emergence in the spring for adults.  The data from Inward et al. (2012) was 

important for the development of the life cycle simulation model for pine weevil described 

below. 

2.6. A life cycle simulation model for pine weevil (Wainhouse et al. 2014) 

Wainhouse et al. (2014) developed a phenological model to determine geographic voltinism (i.e., 

number of broods per year) of the large pine weevil (Hylobius abietis) in the UK. The simulation 

model estimates a generation of weevils through its life-cycle development to predict voltinism 

based on temperature in the root stump microhabitat, modelled from surface air temperature. 

Daily air temperatures for representative UK locations were simulated using the UK Climate 

projections 2009 generator (Jones et al., 2009) for the 2030s – 2070s to assess potential effects 

of climate change on voltinism. Specifically, the model projected the development and timing of 

seasonal activity of pine weevil as the future climate of the UK warms, estimating how this might 

affect management of the forest pest, identifying voltinism of large pine weevil in present and 

future climates according to region. The model code from this research formed the basis of the 

adapted pineR package for forecasting emergence of large pine weevil in Ireland.  

2.6.1 Conditions, inputs, and functionality of the UK model (Wainhouse et al, 2014) 

Temperature measurements were made at 17 sites across the UK presenting a range of 

environmental conditions under which pine and spruce trees are planted and exposed to different 

environmental conditions. Scots and Corsican pine predominated in the south and east and Sitka 

spruce predominated in the north and west. Experimental sites had been clear-felled up to six 

months previously and were on level or moderately sloping ground with minimal shading by 

surrounding mature trees. At each site, air and root stump bark temperatures were measured 

within an area (6m by 6m) maintained clear of brash and vegetation with minimal disturbance to 

the soil surface. The temperature of root stump bark was measured on a single representative 

root-stump at depths of 10 and 30cm below ground level. Site specific details were recorded at 

each site covering coordinates (longitude and latitude), tree species, time of felling and the cross-

section area and height of the root stump projecting above the ground. Local observed rainfall 

data and where available, sunshine hours were obtained from the nearest meteorological weather 

station.  
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Temperatures over the recording period were used to develop a recursive model to predict daily 

mean root-stump bark temperature from the mean air temperature calculated from the minimum 

and maximum air temperatures.  The future temperature simulations were derived using the 

weather generator, which creates a synthetic time series of weather variables at 5km resolution. 

Regional variation in temperature up to the 2070s was assessed via UK wide maps produced by 

the weather generator.  

The UK-wide maps were used as a basis to select two to four representative conifer forest sites 

in each of the five regions.  Using version two of the generator (Jones et al., 2009), daily 

minimum and maximum air temperatures were simulated for a total of 12 sites, each of which 

corresponded either to an experimental field site or was within 25 miles of one. Daily air 

temperatures were estimated for the baseline period (1961-1990), incorporated by default as a 

“control” in weather generator simulations, and for the 2030s (2020-2049), 2050s (2040-2069) 

and 2070s (2060-2089) using the medium emissions scenario (A1B) (Jones et al., 2009). The 

daily mean air temperature was derived as the mean of the maximum and minimum air 

temperatures in the weather generator data and was used to predict root stump temperature at 

depths of 10cm and 30cm. The temperature at 20cm was simply calculated as the mean of values 

at 10cm and 30cm. These microhabitat temperatures were the basis for the modelling of future 

seasonal development of weevils across the UK sites. Differences in temperature from the 

baseline period (or model control) to the present were assumed to have had little effect on - 

development changes relative to that predicted for the climate of the 2030s onwards, and thus 

this data was referred to as the current climate or control climate in the model.  

2.6.2 Predicting seasonal activity and stages in the UK life cycle model.   

In terms of predicting weevil seasonal development and activity, the life cycle simulation model 

was developed to emulate a generation of weevils from egg to adult oviposition. Voltinism was 

also determined. The model runs through a series of “life cycle” stages identified by 0-10. These 

stages are grouped into a series of independent modules (as shown in Figure 2.1 below). The 

stages 0 and 10 refer to the start time of oviposition in the first generation and to the egg selection 

for the start of subsequent generations. A default population size of 1,000 females was used to 

characterise variation in weevil development with each individual weevil progressing through 

all modules. By modelling a fixed population, it was assumed in the original implementation that 

they were independent of mortality. 
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For the primary stages in the life cycle, development or activity was described by a set of 

parameters, based on temperature and/or time in days or day counts. These parameter values 

were derived largely from laboratory and field trials across northern Europe (Wainhouse et al., 

2014); however, some of the parameters were experimentally derived and a number were 

included in the model to account for observed attributes of the life cycle such as the timing of 

the transition from prepupal to pupal stage, or to define a specific overwintering period. 

Threshold temperatures for adult activity and duration of maturation feeding for weevils was less 

well defined than other earlier stages. For parameters obtained from experimental data, statistical 

models were fitted to the data and used in the simulation model. The stages of the UK model 

follow through the modularised approach in order as displayed below in Figure 2.1.  

Figure 2.1: The modular approach of the UK life cycle simulation model for large pine weevil (Hylobius abietis) 

(Wainhouse et al., 2014), implemented in pineR. 
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2.6.3 Life cycle stages of the UK model 

The life cycle stages are described below in the following sections according to progression 

within the model.  

• Oviposition and egg development (Stages 0 and 1). This is initiated during the Spring 

oviposition period which is mid-late June (~day 171; 20th June). Moving onto further egg 

development, the temperature thresholds become very important in the model. The 8 oC 

threshold for root stump temperature at the 10cm depth is key for development 

progression. At this stage, maximum development is set at 40 days. Those that take any 

longer are individuals assumed to have died and are not available for random selection 

for the start of the second generation run in the model.  

• Development of Larvae (2), eggs and subsequently pupae at different depths are 

specified by the required number of day degrees (dd) above the developmental threshold 

temperatures. The threshold for larval development is set at 4.5oC for root stump 

temperature. Here it is worth noting that 50% of larvae were assumed to develop at 10cm 

and 50% at 30cm.  

• Prepupal and pupal development (3 and 4) had notable conditions. A facultative 

diapause results in a nonlinear relationship between development time and temperature, 

with no obvious developmental threshold temperature. Prepupal development was 

therefore expressed as the number of days required at a given temperature, based on 

previous research (Inward et al., 2012). It was assumed under varying conditions, the 

number of days for pupal development was related to mean temperature over this period. 

Depth selection would only apply to prepupae and subsequent pupal development in the 

model. The model was run at 20cm as a default depth, but the option could be removed 

if more convenient to do so. 20cm is the average of the two measured depths of 10cm 

and 30cm. Regarding the transition from prepupae to pupa, the threshold is identified as 

12.5 oC. Pupae taking longer than 60 days are treated as prepupae waiting for the 

transition threshold to be hit. The threshold value here is 7.3 oC. Geographically, 12.5 oC 

allows autumn pupal development in Scotland but rapid falls in temperature prevent 

further development or completion.  This would result in overwintering of pupae which 

does not occur here.  
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• Adult activity and emergence (Stage 6) begins with melanisation (darkening of the 

beetle) which is indicated at 21 days. Emergence for summer/autumn or pre-winter 

emergence is indicated with 5 consecutive days (warm days) with mean air and 10cm 

root stump temperature more than 9 oC. It is presumed this occurs during melanisation or 

otherwise post melanisation. After emergence of overwintering weevils, they become 

inactive in further cold spells. This is where the mean air and 10cm root stump 

temperature is less than 9 oC. Therefore, they do not hibernate with a requirement to re-

emerge in the model when it warms up again or passes the threshold temperature.  

• Overwintering (Stage 6) is triggered when the mean and 10cm root stump temperature 

is less than 9 oC for 10 consecutive days (cold days).  Re-Emergence (Stage 6) is 

indicated for overwintering previously emerged adults after the first incidence of 5 

consecutive warm days with mean air and 10cm root stump temperature more than 9 oC. 

• Maturation feeding (Stage 7) is indicated with 20 days (minimum 12 days) with mean 

air and 10cm root stump temperature more than 9 oC after overwintering. Where autumn 

maturation is permitted, setting a notional feeding value (NFV) (varies from 0-1) 

effectively alters the number of days required as the NFV’s changes for different months. 

If at the start of winter, maturation is incomplete or mature, but dispersal threshold has 

not been reached, the weevil population overwinters in these criteria. No further 

accounting is needed before they disperse at the next dispersal threshold or day when 

reached. Egg maturity days are eligible for accumulation after re-emergence/emergence 

depending on settings of overwintering requirement in the model. Weevils are inactive 

on cold days.  

• Dispersal (Stage 8) is indicated when max air temperature hits 18.5 oC after the 

maturation period is complete.  

• Oviposition (Stage 9) to begin a second run of the model (and subsequent runs) starts the 

day after dispersal is initiated. It occurs over a total of 78 days when mean air and root 

stump temperature is more than 9 oC. Oviposition rate declines linearly to zero over this 

period with a mean of 1.2 eggs/day (egg laying) per individual. If incomplete at the next 

winter threshold temperature, oviposition is ended and not resumed.  
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• Egg selection (future generations) (Stage 10) occurs again with eggs taking longer than 

40 days to develop not available for selection and indicating mortality as said. If 

development of all laid eggs by an individual weevil is less than 40 days, the female 

reverts to pre dispersal state of maturation female that overwinters where necessary, 

disperses and oviposits as defined (Wainhouse et al., 2014).  

2.6.4. Validation and predictions of UK life cycle simulation model in Ireland (IMPACT 

project) 

Research in Maynooth was undertaken as part of an INTERREG project (IMPACT) (Williams 

et al., unpublished) used empirical data on weevil emergence sites collected at 4 spruce and 7 

pine clear-fell sites (Figure 2.2) and compared these observed data with simulations obtained 

using the simulation model, developed originally for the UK, and described above.  Statistical 

comparisons showed that for half of the trials the forecast simulations did not differ significantly 

from observations recorded for weevil emergence. (Williams et al., unpublished).  Four sites 

displayed similar emergence patterns to the results predicted by the life cycle model. One site 

showed no significant difference with a chi-square test, but a notable difference with the 

Kolmogorov-Smirnov test. Three sites were significantly different from the life cycle model 

predictions (Williams et al., unpublished). In addition, four sites were selected at spruce locations 

across Ireland to investigate voltinism patterns using the UK model with simulated climate data 

to evaluate potential changes in voltinism due to climate change in Ireland (Williams et al., 

unpublished) 



 
 

31 
 

 

Figure 2.2: Locations of forest trial sites used in the IMPACT project and nearest automatic weather stations 

(AWS) (Williams et al., unpublished).  
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2.7 Conclusion 

Insect monitoring involves the regular surveillance of key insect traits such as population, 

biology and movement or migration amongst other criteria. In certain cases, it may be difficult 

to ascertain what pests are causing damage to a crop. In this case, symptoms of crop damage 

must be investigated (Dent, 1995). This is important to assess the pest situation and identify pest 

activity occurring and aid future decisions on a farm or relevant enterprise. The threat of a disease 

epidemic or pest outbreak is real, hence continuous monitoring is required to avert significant 

damage to valuable crops from one year to the next. Accurate and reliable weather-based 

forecasting models can play their role as critical components in IPM strategies. It is not only 

important to protect the valuable crops and increase productivity but also for the efficient - and 

diligent use of harmful chemical intervention through pesticides only if essential and overall 

protection of the environment (Olatinwo and Hoogenboom, 2014). There are certain limitations 

to pest forecasting models as discussed especially with certain weather parameters but as our 

knowledge of the biology of an individual pest improves and with the application of emerging 

technologies, the accuracy of such forecasting models is expected to become a lot more reliable 

in future enhancing long term IPM strategies and potential to contain harmful pests (Dent, 2000).  

Pest monitoring is the foundation for the issues for early warning systems, development and 

validation of pest forecast models and decision support systems, which are crucial for the design 

and implementation of a successful IPM programme (Prasad and Prabahakar, 2012). The 

foundations of pest forecasting are equally fundamental to the modelling of pine weevil 

emergence in Ireland.  
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Chapter 3: Data and Methods 

 

The modelling framework for this project adapts an established phenological model to predict 

site-specific patterns of pine weevil emergence based on categorical weevil data and local 

temperature data. The forecast model builds off an existing UK model (Wainhouse et al, 2014) 

which was extensively reviewed and tested for this project by the researcher. The forecast model 

was then adapted to include the effect of site-specific factors to forecasting first emergence of 

large pine weevil in Ireland. This process of modelling was done via the creation of the pineR 

forecast R package (Lemos Dos Santos et al., 2023).  

In this chapter, the methodology to forecast year 1 emergence of pine weevil at 27 trial sites in 

Ireland using the UK model, as adapted by Lemos dos Santos et al. (2023) via the pineR 

forecast R package is described. The data types inputted in the model will first be described, 

divided into phenological, meteorological and geographical data. The data was compiled by the 

researcher from existing pine weevil research in Ireland.  

Following this, the forecast package (pineR) created by (Lemos dos Santos et al. 2023) and 

its implementation using temperature data from two sources (meteorological stations and gridded 

data) will be described.  

Site specific factors are then investigated to evaluate the role of site-specific covariates on the 

forecast bias, identifying factors that may influence pine weevil development rates. A ML 

(Machine Learning) method is then used to identify these factors and to correct bias in the model 

and will be briefly outlined.  

3.1 Forest Trial Sites 

This research was facilitated by a body of existing data on the large pine weevil (Hylobius 

abietis) from nearly 20 years of Irish forestry research. This data encompassed information on 

insect emergence, population structure and site-specific factors collected during field trials of 

biocontrol agents undertaken across forest trial sites in Ireland. IPM strategies for weevil 

management using biocontrol agents such as entomopathogenic nematodes (EPNs) and 

entomopathogenic fungi (EPF) were investigated in such trials. The trials were conducted by 

MU researchers and Coillte forestry operatives from 2001 to 2017. Data on the trials were 

available in the MU Biology Department and in published records (Dillon et al., 2006; 2008, 

Williams et al., 2013; Kapranas et al., 2017).  
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In the current research, 35 sites were initially examined before selecting 27 – the reduction in 

sites was mainly due to lack of appropriate data.  The location of the site coordinates was initially 

verified by access to site maps maintained in the MU Biology Department and are shown in 

Figure 3.1 and Table 3.1.   

Figure 3.1:  A map of research trial sites where data was utilized in the modelling of this project to forecast 

emergence of the large pine weevil (Hylobius abietis) in Ireland. *Sites at Glendine, Lackenrea and Ballyroan have 

more than one trial plot on site.  
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Table 3.1: Site specific covariates of Large Pine weevil trial sites examined for incorporation in the modelling to 

forecast first emergence of the forest pest in Ireland for specific years of trial including slope (angle & %), aspect, 

elevation, soil type and tree species (Additional site data in appendices Table A2).   

*These sites were merely investigated in initial analysis prior but were not included in the 

forecast model for lack of necessary observed emergence data for appropriate comparison.  

 

Site Name  Tree 

species 

Soil Type Elevation 

m 

Aspect Slope Angle 

degrees 

Slope  

% 

Annalecka Spruce Mineral 352 N/A N/A N/A 

Ballinagee Spruce Mineral  425 South 12.5 22.17 

Ballybrittas Pine Peat 68 East 7.13 12.5 

Ballymacshaneboy Pine Mineral 323 North 6.15 10.77 

Ballyroan 1 Pine Peat 100 South 2.05 3.57 

Ballyroan 2 Pine Peat 100 South 2.05 3.57 

Cashelduff Pine  Peat 215 South 3.41 5.95 

Clonoghil Pine Peat 124 South 1.69 2.94 

Cloondara Pine Peat 41 West 2.1 3.66 

Corracloon* Pine Peat 155 East 6.97 12.23 

Corrakyle* Pine Peat 245 North 9.47 16.68 

Deerpark Spruce Mineral  260 North 12.96 23.01 

Donadea Pine Peat 64 North 2.051 3.58 

Doon Pine Peat 71 West 3.71 6.48 

Emo* Pine Peat 92 N/A N/A N/A 

Glendine Pine Peat 380 South 9.35 16.46 

Glendine trial 1 Pine Peat 380 South 9.34 16.46 

Glendine trial 2 Pine Peat 380 South 9.34 16.46 

Gurtnapisha Pine Mineral 466 North 7.60 13.34 

Hortland Pine Mineral  76 East 0.41 0.72 

Kilduff Pine Peat 93 South 3.86 6.75 

Killurney Pine Mineral 371 South 14.52 25.89 

Killnaconnigan* Pine Peat 72 N/A N/A N/A 

Knockaville Pine Peat 95 West 4.067 7.11 

Knockeen* Spruce Peat 65 N/A N/A N/A 

Lackenrea 1 Pine Mineral 170 North 6.53 11.44 

Lackenrea 2 Spruce Mineral 175 North 6.53 11.44 

Longfordpass Pine Mineral 130 West 1.48 2.58 

Oakwood Spruce Mineral.  250 West 4.77 8.34 

Rickardstown Pine  Mineral  90 East 3.13 5.47 

Rossnagad Pine Peat 94 West 2.75 4.79 

Summerhill Pine Peat 90 West 1.17 2.03 

Tigroney Pine Mineral 246 South 8.94 15.72 

Woodford Pine Peat 192 South 2.60 4.54 
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3.2 Data  

The data outlined covers the key inputs of the forecasting model as well as biological data used 

for comparison with model outputs, under the headings phenological, geographical and 

temperature data.  

3.2.1 Phenological data 

This data refers to the observational data for large pine weevil recorded on trial sites. The 

biological data includes weevil emergence data that is used to compare against the model outputs, 

as well as life cycle phases recorded in population structure at stump hacking, data that were not 

included in the forecast model.  Some sites had no stump hacking data, but the final 27 trial sites 

had the required emergence data.   

Site specific data such as altitude and soil type were collected from each of the sites to identify 

any factors that may aid or provide more reliable and accurate pine weevil predictions.  

3.2.1.1 Pine weevil emergence data  

Pine weevil emergence data was sourced from 27 sites selected in Ireland. This encompassed 

empirical data on timing of weevil emergence that was assessed by emergence traps (Figure 3.2). 

Weevil emergence traps based on a design by Moore (2001) were erected at typically 10-20 

stumps per site and emptied at intervals of 2 to 4 weeks, averaging around three weeks. These 

traps captured emerging pine weevil adults. This data represents the primary phenological data 

used for simulating or forecasting weevil emergence with the accompanying meteorological 

inputs in the modelling of pineR. Only data from the first year of emergence was used in the 

present study although year two data was collated for ten sites.  

3.2.1.2 Stump hacking data (population structure)  

One of the proposed subtasks of the model was incorporating population structure in stumps for 

emergence trial sites where there was access to prior stump hacking data (17 sites). This data 

indicates the proportion of weevils at each developmental stage (larva, pupa, and adult) 

ascertained by the stump hacking on the same sites just prior to the first emergence of adult 

weevils in the year of the trial. This data is used mostly for comparison purposes at emergence 

trial sites. However, there is potential for incorporating this data into future research to 

potentially run trial sites from a specific module in the code or life cycle stage in an adapted 

iteration of the forecast model. (See discussion chapter). 
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Figure 3.2: An emergence trap for a large pine weevil research trial in Ireland (Attribution: Apostolos Kapranas, 

2017)  

 

 

Figure 3.3: A Coillte operative Stump hacking a pine stump to check for pine weevil larvae at a clear-fell site.  
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3.2.2 Geographical data 

This data details the specific location data or covariates at each large pine weevil trial site and 

factors that could be considered in the model for the model to forecast emergence patterns more 

reliably.  

 3.2.2.1 Elevation, aspect, and slope 

The altitude for most pine weevil trial sites was recorded by field trial researchers. Where it was 

not recorded, values were generated for site coordinates via a 30m DEM (Digital Elevation 

Model) for Ireland (ALOS, 2021) and raster analysis in QGIS (V.3.22.0, 2022). Calculations via 

the raster analysis for site coordinates also calculated slope angle which was converted to 

percentage via an internal algorithm for clipped raster files over areas of interest. Aspect was 

also generated via raster analysis with appropriate GIS tools in QGIS. Slope and aspect values 

were considered relevant as they can potentially affect the amount of solar radiation reaching the 

soil (McCutchan and Fox, 1986) as well as potentially affecting the microhabitat distribution 

(relative to soil surface) of developing weevils depending on where the stumps are located. 

Altitude has been shown to be relevant in research trials with the lowest beetle captures recorded 

at lower elevations where climate conditions were warmest (Harris et al., 2019). The issue of 

colder temperatures at higher elevated sites is also of note as cold sensitivity is relevant to insect 

development as ectotherms and how they respond in such environments (Hallman and Denlinger, 

1998; Denlinger and Lee Jnr., 1998).  An elevation map of all sites in the model can be seen 

below in Figure 3.4.  
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Figure 3.4: An elevation Map of Ireland with contours utilizing a 30m DEM (Digital Elevation Model) displaying 

pine weevil trial sites and weather station incorporated in the pineR model.  

 3.2.2.2 Soil type 

The soil type at each of the trial sites was classified as either peat or mineral soil. This was 

indicated according to the research trial records and in the few sites where it was not recorded 

by verification of the location of sites against national soil survey maps and GIS maps (National 

Soil Survey, 1980; Teagasc GIS, 2021).  

 3.2.2.3 Tree species  

Tree species information was collected from each of the relevant research trials classified as pine 

or spruce in the model input with the majority of these being pine sites. Tree species refers to the 

species of trees that were felled, leaving stumps in which pine weevils developed. Of the 27 sites 

used for the modelling, 24 were pine and 3 were spruce. Although Sitka spruce is the dominant 

tree species planted in Ireland, pine typically has higher populations of developing pine weevil.  
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Sites selected for the weevil field trials were largely chosen for the likelihood of infestation of 

the pest to properly assess the success or failures of biological controls investigated (O’Tuama, 

Pers. Comm., 2021). 

3.2.3 Temperature data 

Meteorological data was obtained via historical data from the national meteorological service, 

Met Éireann. Since there was no suitable temperature data available for the specific sites, the 

model was validated through two alternative sources of temperature data with two different 

approaches. The first approach employed temperature data from weather stations located in 

proximity to pine weevil trial sites. In this approach, a distance weighted temperature dataset 

was created from the nearest weather stations to weevil trials within a fixed radius for the model. 

A second approach introduced a gridded climate data product (0.01 degree/ 1km) obtained from 

Met Eireann (Walsh, 2012). 

      3.2.3.1 Observed Temperature Data (weather station) 

Publicly available observed meteorological data were used to calculate mean daily temperature 

values (Met.ie, 2021).  Both currently functional and closed stations (but functional for weevil 

trial period) were utilised. The selection of stations was based on data availability and proximity 

to each weevil trial site. The temperature datasets were compiled to represent the period of weevil 

emergence at each respective site for the expected life cycle duration and period of observation 

for biocontrol trials. In total, data from 23 weather stations was used in the model (Figure 3.5, 

Table 3.2).  These stations represented a mixture of automatic weather stations (AWS) (8), 

manned synoptic weather stations (2) and climatological stations (13) (see Figs 3.6, 3.7).  
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Figure 3.5:  A map of weather stations utilized to forecast emergence of the large pine weevil (Hylobius abietis) in 

Ireland.  

 

Figure 3.6 (Left) and 3.7 (Right).   An automatic weather station in operation, assembled at Teagasc Grange in 

Dunsany County Meath, where some of the temperature data used in the model was sourced from in accordance 

with proximity to weevil trial sites in Co. Kildare (Hortland) and Co. Meath (Summerhill) (left) and the national 

observation network of weather stations in Ireland (WOW.ie, 2022).  



 
 

42 
 

 

Table 3.2: Coordinates of all nearest weather stations incorporated in the modelling in accordance with weighted 

proximity to weevil trial sites for specific year of trial recorded temperature data and elevations of weather stations.  

Station_ID Easting Northing Altitude (m) 

Mount Dillon 201448 275143 39 

Athenry 147868 226499 40 

Oakpark 273036 179492 62 

Dunsany 288886 252601 83 

Claremorris 134497 273958 68 

Moorepark 182130 101304 46 

Gurteen 199155 200226 75 

Mullingar 242429 254343 101 

Dungarvan 220793 92939 18 

Derrygreenagh 250412 237271 90 

Shannon Airport 137813 161308 15 

Knock Airport 145683 295687 201 

Ashford 327013 197214 15 

Athy 268877 193127 61 

Lullymore 270594 225881 85 

Glenealy 324494 188337 122 

Ballinla house 257329 231932 91 

Nealstown  218639 192454 219 

Fethard (Parsonhill) 223733 140379 165 

Horseleap 227916 236217 72 

Mount Russell 161183 119830 195 

Ballincurrig (Peafield) 188204 84806 158 

Killkenny Greenhill 250546 156852 61 
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Figure 3.8: All sites utilised in the modelling of pineR in Ireland incorporating research trial sites and nearest 

weather stations. 

     3.2.3.2 Gridded Climate Dataset 

Met Eireann (0.01-degree resolution data) 1km gridded climate dataset (Walsh, 2012) was 

developed from the observed monitoring network based on spatial interpolation with covariates 

including elevation. The gridded daily values, at 1 km resolution, explicitly accounts for 

topography (Flanagan et al., 2019; Walsh et al., 2012). The coordinates for weevil trial sites were 

used to extract the temperatures for the relevant grids from the Met Eireann gridded data. This 

was done within R through NetCDF handling libraries to deal with the gridded data to extract 

the values corresponding to the weighted temperature data derived from surrounding met stations 

(distance weighted as appropriate) for each site (See Section 3.2.3.1) to compare the outputs of 

both methods.       
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3.3 pineR: A refined forecasting tool for Ireland 

The pineR Package developed for this research is an adjusted implementation of the original 

UK simulation model for voltinism of large pine weevil (Wainhouse et al. 2014) (see Section 

2.6) (Figure 3.9). For the purposes of this project, extra functionality is implemented with an 

adapted correction model based on statistical machine learning for refining the estimates of 

weevil emergence. 

 

Figure 3.9: The adapted forecast model (pineR) enacts a correction through machine learning on the modular 

approach of the UK life cycle simulation model for large pine weevil (Hylobius abietis) (Wainhouse et al., 2014) 

seen previously in Figure 2.1. 

3.3.1 The pineR package  

The model is structured in three major nested loops which follow an initialization process. After 

the initial setting up of parameters and counters in the original model, the first loop is initiated.  

This is where the Wainhouse et al. (2014) model runs over the respective input weather data and 

the model calculates mean daily air temperature, used as input the model. Once the first 

generation of model weevils completes development, the third nested loop comes into effect. 

The second loop in between just to clarify is the running over resulting generations of the model. 

The third loop allows for the simulation of further generations of weevil populations. Loop three 

works over populations regarding key life cycle stages assigned to 6 modules in a specific order 

in pineR.  
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These corresponds to dispersal, oviposition, and egg development (2), Larval development (3), 

Prepupal and pupal development (4), Emergence and overwintering if required (5), Maturation 

feeding (6) and Initial oviposition and egg development (1) in that order covering the running of 

the life cycle simulation model. In the construction of the model utilized in this project, it was 

decided to simplify the original UK model structure with multiple conditions within the code to 

create a module by module or stage by stage approach, assigning relevant functions and 

parameters to forecast first year emergence of large pine weevil. An example of the newly 

assigned functions is the weighted temperature function which was developed for the weighting 

of temperature data from nearby meteorological stations based on their respective distances from 

a trail site (distance function). The package and all relevant code and help files are available at  

https://github.com/Alessandra23/pineR.  

The development of eggs, larvae and pupae at different depths was specified by the required 

number of day degrees (DD) above the developmental threshold temperature for the stages. 

Individual DD requirements for any stage were generated from normal distributions with the 

means and standard deviations derived from the original UK model (Inward et al., 2012). For 

the prepupal stage, development was expressed as the number of day degrees required at a current 

stage to progress based on previous UK research. The life cycle stages operate as stipulated above 

in the UK model with the key degree day requirement for adult emergence set at 9oC as a 

threshold temperature for not only adult emergence, but spring re-emergence, feeding and 

oviposition as well for the second generation. The first iteration of pineR utilized the weighted 

temperature data from the nearest meteorological stations. The functioning and specific code 

methodology of the adapted pineR model is further explained in the appendices of this thesis. 

3.3.2 Weighted averaging of nearest weather station data 

The observed temperature data for pineR was initially sourced from automatic, manned, or 

climatological stations that were chosen based mainly on their relative proximity to weevil trial 

sites (Fig. 3.6).  The weighted averaging of this temperature data had specific rules for 

implementation in pineR that led to the creation of the weighted_temp function. This worked 

largely with a distances function applied to location of the weather station to organize the 

weighting of each site and its contribution to the derived ‘site’ temperature value. The formula 

for the weighted functioning to generate the temperature datasets is displayed below.  

�̂�𝑖  =  ∑𝑗=1
𝑟  𝑇𝑗𝑖  ×

∑ 𝑑𝑗𝑘≠𝑗

(𝑛−1) ∑ 𝑑𝑗
𝑟
𝑗=1

  Equation 1 

https://github.com/Alessandra23/pineR
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where 𝑖 refers to the index of the day of the year, 𝑗 refers to the index of the number of weather 

stations, 𝑇 refers the temperature in the weather station (𝑗) and on the day of measurement (𝑖) in 

the observed temperature datasets, and �̂�𝑖 refers to the weighted temperature generated on the 

day 𝑖. Equation (1) above assigns greater influence or weight to sites closer to the trial site 

location.  There is a rule system as to how sites are selected for weighting or not in the model 

package. Trial sites within a 10km radius of a weather station were considered co-located sites 

within the model and were used directly as input to the model, without any weighting function 

applied. For example, the Summerhill site is located 8.2 km from the Dunsany automatic weather 

station at Teagasc Grange, consequently, temperature data from Dunsany was used directly in 

the model. There were 8 co-located sites in the model.  

Trial sites with weather stations beyond the 10km radius were identified by proximity for 

utilization in the model via the created weighted_temp function in R. Sites beyond 40km 

were not considered in any weighting function as another rule of the model to reflect as close as 

possible the temperatures experienced at a given trial site location for the specific year of trial. 

Weather stations were selected strictly by radius within proximity to trial sites. Stations with 

significant or mostly missing data for trial periods were not included. Imputation processes were 

considered in the assembling of data, but missing values were ultimately filled by use of a 

weighting function effectively treating the missing data as a site itself with the original principles 

of the weighted temp function in pineR. An example of this is Lullymore Nature 

Reserve, which was included due to its proximity to the Hortland trial site, but needed missing 

data filled by the closest weather data to it via weighting for the relevant year of trial. The blank 

observations in this case or missing values were imputed from the nearest station data in 

accordance with proximity to the weevil trial site. The weighting process effectively ordered 

sites based on proximity for the specific year of observation.  The distances argument within 

the weighted temp function acted as a data object to organize weather stations to be weighted. 

An example for the Hortland trial site is shown in the appendices of this thesis. In most cases, 

two to three weather stations were selected within a maximum 20km distance difference of the 

trial site where possible.  
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3.3.3 Model Validation  

The research project devised a core meteorological plan to structure the implementation of 

temperature in the forecast model.  This focused on a two-tier initialization approach to 

incorporate the two different temperature data sets, including the observed meteorological station 

data (either co-located or weighted) and the 1km gridded data. The first tier examines the 

observed weevil emergence data from trial sites matched to model-predicted emergence using 

observed temperature data from the nearest meteorological station(s). In tier two, the 1km 

gridded data was employed as input to the model. Differences between model outputs run with 

the two different temperature data sets used allowed for an assessment of potential systematic 

biases between the different data sources.  

3.3.4 Incorporation of site-specific covariates  

The incorporation of site-specific parameters was a critical component in the modelling of 

pineR. In terms of site-specific factors fully factored in the variable importance and cross 

validation of the model (see table 3.1 above and appendices), certain site data was included in 

the proposed correction of the model. The site-specific factors included were elevation, aspect, 

slope (angle & percentage), soil type and tree species (Section 3.2.2). A representation of the 

elevation values for sites utilized in the modelling is shown in Figure 5.1, where a wide disparity 

is shown between high and low elevation trial sites but also compared to the nearest weather 

station utilized in the weighted iteration of the model using observed met station data.  It is 

important to note the elevation of the weather stations employed in the model were not 

necessarily at the same or similar elevation of the trial sites. In fact, many of the trial sites are in 

regions of higher elevation compared to the meteorological network of stations. An overall 

evaluation of dominant factors was taken in the later cross validation to observe effects on weevil 

life cycle simulation looking at timing of development to see could any influences or mismatches 

be identified in emergence patterns. This was achieved via appropriate statistical methods 

through machine learning methods, including extensive work undertaken by a co-modeler on the 

project (Lemos dos Santos et al. 2023). Tree species, soil type, altitude, and slope % were all 

investigated via linear regression models at all sites to identify variable importance. Eventually, 

an alternative statistical method was adopted for this process (See below and appendices). 

Descriptive graphics were created to compare all site-specific covariates of interest for analysis 

in the results and discussion chapters of the thesis.  
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3.3.5 Bias correction with machine learning  

This section examines how the correction model proposed for first emergence forecasting of 

large pine weevil was implemented via a machine learning method to correct bias. Cross 

validation was used to evaluate the machine learning model developed. The observed and 

simulated emergence data were employed to develop the correction for both the weighted and 

gridded climate data and is discussed in detail in the Appendices. This includes the consideration 

of site-specific elements and the adaptation of the existing UK simulation model (Wainhouse et 

al., 2014) to improve estimates of first year emergence of large pine weevil (Lemos dos Santos 

et al. 2023). Forecasting and classification tasks have been improved by machine learning 

method algorithms that are applied in many domains of science based on the idea of learning or 

training such tasks (Refaeilzadeh et al., 2009). 

     3.3.5.1 Initialisation of correction model 

To apply bias correction with machine learning, the initial uncorrected model had to be 

investigated.  When applied to the temperature data, the model outputs displayed a difference 

between the simulated and observed CDF (Cumulative probability distribution) for the prediction 

of the year one emergence of large pine weevil. Therefore, to correct this problem in the forecast 

model, assuming it was a systematic error, a corrective measure was proposed (Lemos dos Santos 

et al. 2023). This correction is outlined as follows. 

 

diff𝑗𝑞 =  𝑜𝑗𝑞 −  𝑝𝑗𝑞 , Equation 2 

 

where diff𝑗𝑞 is as the difference between the observed 𝑜𝑗𝑞, and the predicted 𝑝𝑗𝑞, day of 

emergence in site j (j = 1, …, 27), for quantile q. 
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The work outlined here was undertaken as part of separate, but related research and forms part 

of the pineR package developed by Lemos dos Santos et al. (2023) and additional details are 

provided in the appendices. Therefore, the method is only briefly outlined here. To begin, a 

Random Forests (RF) model was fitted to the data concerning pine weevil emergence with diff𝑗𝑞 

as the response. The data used to fit the RF model was collected from the 27 trial sites and 

contains five covariates of interest. These are altitude (m), slope (angle %), soil type 

(peat/mineral), aspect (N, S, W, E) and species (pine/spruce). As this is a relatively small dataset 

in terms of first emergence trial sites, a leave-one-out cross validation (LOOCV) method was 

used to avoid overfitting. To understand which variables were most important in the forecast 

model, a variable importance method was used to show the degree to which a single variable 

impacts on the response value showing the potential effect of the variable on other values (i.e., 

how slope influences altitude, etc.).  
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4.  Results 

In this chapter, the results of the research findings are outlined.  The adapted simulation model 

package pineR created to forecast large pine weevil (Hylobius abietis) first emergence was 

run using meteorological data from two different sources. These were 1) the historical weather 

station temperature data; and 2) the gridded temperature data for areas of interest i.e., weevil trial 

site locations. Weather station data (co-located or weighted) was used as initial input to the 

forecast model. Subsequently, the high resolution 0.01 degree (1km) gridded dataset from Met 

Eireann (Walsh, 2012) was chosen as the input to the final implemented model. Model-simulated 

emergence data, derived using both temperature datasets, were compared against the observed 

cumulative emergence recorded at weevil trial sites. The machine-learning corrected version of 

the model was then run using each of the temperature datasets. Geographical data sourced for 

each site is analysed as site covariates to evaluate the role of site-specific factors in the simulated 

results to identify potential variables of importance. The following sections cover the initial 

exploratory analysis of the data types considered for modelling, the data inputted in the model 

itself, as well as the final forecast model results.  

   4.1 Initial examination of model inputs 

This section contains an analysis of the phenological and meteorological data prior to 

implementation in the forecasting model. The observed weevil emergence data provides the core 

dataset at each trial site against which the model simulated emergence data using the various 

driving temperature data, namely the meteorological station and gridded data sources, are 

compared. 

4.1.1 Evaluation of phenological data.  

Below is an evaluation of the phenological data relevant to the forecast modelling undertook in 

this research project covering emergence data and population structure data.  

    4.1.1.1 Emergence data 

The cumulative emergence of adult weevils at each of the 27 trial sites used in the model is 

shown in Figure 4.1. Typically, emergence of weevils begins around Julian day 200 (early June) 

and is completed by Julian day 300 (late September). Emergence is more advanced at some sites 

(e.g., Summerhill) and retarded at others (e.g., Gurtnapisha).  
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The graphs for Ballinagee2, Deepark2 and Oakwood2 represents emergence in a second year- 

this data was not used in the model, but emergence in the second year begins earlier in than in 

the year one. It is worth noting that some sites included in the model had more recorded 

observations of emergence data than others.   

Figure 4.1: The cumulative emergence of large pine weevil on various days of the year recorded on each of the trial 

sites (2001-2017) incorporated in the modelling of pineR. Included are Year 2 emergence data for three of the sites 

(Ballinagee2, Deerpark2 and Oakwood2) – this data was not included in the final modelling. 

    4.1.1.2 Population structure (Hacking data) 

Figure 4.2 shows the total number of weevils in stumps prior to first emergence at each site where 

it was recorded via stump hacking. The three sites with the highest populations were pine species 

sites. Information obtained by stump hacking is a key component of current IPM to aid foresters 

deciding to treat clearfell sites or not with chemical intervention (Teagasc, 2020; Dillon et al. 

2006).   

The population structure data on-site displays each development stage of larvae, pupae and adult 

counted just prior to first emergence. Figure 4.3 shows the proportions of weevils at each 

developmental stage for all sites where such data was recorded. This was useful for discussion 

purposes between all sites that had emergence observations (utilized in modelling) and prior 

stump hacking data recorded in the same year. 
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 25 of the 27 emergence trial sites included in the forecast model had both sets of data. At most 

sites, a majority of the weevils were in the pupal stage (Fig. 4.3). Sites where the larval stage 

was dominant tended to be those at higher altitudes (e.g., Deerpark, at 260m and Gurtnapisha at 

466m), perhaps indicating delayed development at those sites. However, the stump hacking was 

not carried out with the same data, making between-site comparisons less reliable.  

 

Figure 4.2:  Total size of large pine weevil populations recorded at stump hacking prior to emergence on Irish trial 

sites. Some of these sites had no emergence data and therefore could not be included in the modelling process i.e., 

Emo and Annalecka.  
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Figure 4.3: The breakdown of larvae (L), pupae (P), and adult (A) weevil stages recorded at trial sites where stump 

hacking was undertaking prior to emergence at Irish trial sites. Some of these sites (Annalecka and Emo) were not 

included in the modelling as there was no data on emergence. 

4.1.2 Evaluation of meteorological data 

The temperature data, obtained from the meteorological stations and used as a proxy for site 

temperature, was initially compared to the Met Eireann gridded datasets (0.01-degree 

resolution).  A comparison between the meteorological station and gridded temperature data for 

all 27 emergence trial sites are shown in Figure 4.4.  The blue line corresponds to the 

temperatures in the gridded climate data from Met Eireann at 0.01 (1km) degree resolution 

(Walsh, 2012) while the red line corresponds to the temperature data obtained from weather 

stations within a certain radius of the large pine weevil emergence trial sites in accordance with 

the rules and implementation of pineR. As emergence data was available for different time 

periods and years, the temperature comparison was undertaken for equivalent periods at each 

site. The time series corresponds to three years to cover the emergence and life cycle period.   
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Figure 4.4: Met station temperature data at each emergence trial site compared against the gridded temperature data 

from the Met Eireann Grids (1km resolution) at each site taken for specific emergence trial year period on site. The 

facets highlighted in red represent weather station data. The blue is the gridded data (Walsh, 2012) 

        4.1.2.1 Comparison of met station data against gridded data. 

The observed values from the nearest meteorological stations are shown at most sites to match 

the daily variations and patterns in the gridded data (Fig. 4.4). Figures 4.5 and 4.6 show the 

weather station and gridded temperatures for Hortland and Kilduff respectively for the 

emergence trial period (2010-2012). Both sites were monitored for weevil emergence by 

Maynooth researchers in 2011 with this data used in the forecast model. 
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Figure 4.5: A comparison of the weighted observed temperature data sourced from 4 weather stations (Lullymore, 

Derrygreenagh, Ballinla House and Dunsany) against the gridded temperature data for the trial site coordinates of 

Hortland for the trial period 2010-2012. 

Figure 4.6: A comparison of the co-located observed temperature data sourced from 1 weather station within 10km 

radius as per the rules of pineR at Derrygreenagh (6.56 km) against the gridded temperature data for the trial site 

coordinates at Kilduff for the trial period 2010-2012. 
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At Hortland, the weighted temperature from 4 stations near the trial site show good agreement 

with the gridded weather data for the grid representing Hortland (Figure 4.5). Similarly, at 

Kilduff, the selected co-located weather station of Derrygreenagh, which lies within 10 km of 

the trial site, also shows good agreement with the selected gridded data for that location (Figure 

4.6). Hortland is approximately 34.1 km from the Kilduff trial site. As these are relatively low-

lying sites, the comparison between the weighted and co-located meteorological data is expected 

to be good. 

Some sites are shown to have considerable offsets, but this can be related to site specific elements 

such as altitude and slope which will be discussed in Section 4.4 covering the influence of site-

specific covariates. It is noteworthy that at some of the more elevated sites (e.g., Ballinagee, 

Deerpark, Gurtnapisha and Oakwood) values from the gridded temperature dataset are somewhat 

lower than those from the met station(s). Figures 4.6 (above), 4.7 and 4.8 (below) show the site 

comparison for gridded and met station temperature data for Kilduff (Co-located site), Deerpark 

(weighted) and Gurtnapisha (Co-located site). These latter two sites are interesting as they show 

offsets between the met station and gridded data at the higher altitude sites (Deerpark at 260m 

and Gurtnapisha at 466 m; Figs 4.7 and 4.8) but no notable offset at the lower altitude site of 

Kilduff (93m; Figure 4.6). 

There are other isolated influences too in terms of the effects of imputation for missing 

temperature values as well as coding errors in implementing the original model at certain sites. 

The initial visualisation of the Met Eireann gridded data shows that temperature largely co-varies 

with the met station temperature values. Where there are disparities, this is investigated with a 

closer look at site specific elements at these locations (e.g., elevation). All this aids the process 

of demonstrating the utility of the 1km gridded data and establishes its use for input into the 

emergence forecast model. Importantly, the use of the gridded data enables the model to be 

transferred to sites where there is none or limited meteorological information.   
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Figure 4.7:  Comparison of the met station and gridded climate data temperatures for the Deerpark trial site 

(Weighted) with use of the 0.01-degree resolution (1km) data from the Met Eireann gridded climate dataset used in 

the final forecast modelling of pineR. 

 

Figure 4.8:  Comparison of the weighted and gridded climate data temperatures for the Gurtnapisha trial site (Co-

located) with use of the 0.01-degree resolution (1km) data from the Met Eireann gridded climate dataset used in the 

final forecast modelling of pineR. 
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4.2 PineR results before correction. 

The model-simulated emergence is compared to the observed emergence data to analyse how 

close the predicted emergence was to the emergence recorded on-site. Differences (observed & 

predicted) in days for the 25%, 50% and 75% quantiles of cumulative weevil emergence are 

shown in Figures 4.9 and 4.10 visually and figuratively in Table 4.1 for the uncorrected model. 

This is the model utilising both the weighted met station data and the gridded temperature data 

at 0.01-degree resolution (Walsh,2012) for all 27 weevil trial sites in the final forecast 

predictions. These values indicate a better performance of the model using gridded temperature 

at most sites even prior to the finalised correction. When run with the met station data the model 

tended to predict somewhat earlier emergence than was observed for 17 sites with later 

emergence predicted for 12 sites and a very close match for one site (Deerpark) (Fig. 4.9). When 

using the gridded temperature as input, there was a more equal distribution of early and late 

predictions across sites (Fig. 4.10).  
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Figure 4.9 & 4.10: The difference in days at weevil trial sites in Ireland in the uncorrected model utilising 

weighted/co-located data (Top) and the gridded model at 0.01-degree resolution (Walsh, 2012) (Bottom). Values 

are Observed days – Predicted days for 25%, 50% and 75% of weevils to emerge, therefore negative values indicate 

that model-predicted emergence is later than observed. 
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Notably, when using the gridded temperature data in the model the predicted emergence at 

Deerpark was considerably later than observed emergence. This is one of the sites described in 

more detail in the following sections. Table 4.1 uses the same data shown in Figs 4.9 and 4.10 

(observed - predicted days for emergence) but displayed on a site-by-site basis, allowing a 

comparison to be made of how the model performed when using met station versus gridded 

temperature inputs at each site. Notably, when using met station inputs, the model tended to 

forecast earlier emergence than observed for high altitude sites such as Ballinagee (425 m), 

Ballymacshaneboy (323 m), Glendine (380 m) and Gurtnapisha (466 m) (Table 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

61 
 

Table 4.1: The difference in days between observed and simulated emergence at weevil trial sites utilising the 

observed meteorological data and gridded data prior to correction in pineR. The difference in days (Observed – 

predicted) are shown for the 25%, 50% and 75% quartiles of cumulative emergence. Certain sites are described in 

more detail in the text. 

Site 
Altitude 

(m) 

Weighted/co-

located 

Gridded 

  Q25 Q50 Q75 Q25 Q50 Q75 

Ballinagee 425 60 43 36 4 -14 -25 

Ballybrittas 68 37 33 12 37 30 12 

Ballymacshaneboy 323 52 58 46 13 19 11 

Ballyroan1 100 -11 -15 -21 -14 -16 -20 

Ballyroan2 100 28 12 4 26 9 4 

Cashelduff 215 -6 -22 -28 43 25 18 

Clonoghil 124 4 -1 -9 14 8 2 

Cloondara 41 27 12 -2 32 15 2 

Deerpark 260 0 2 -3 -88 -90 -91 

Donadea 64 -1 -5 -25 -5 -9 -27 

Doon 71 4 -14 -18 11 -6 -10 

Glendine1 380 52 36 27 -3 -21 -33 

Glendine2 380 30 28 19 -44 -46 -51 

Gurtnapisha 466 57 38 32 * * * 

Hortland 76 2 -15 -13 3 -14 -10 

Kilduff 93 -16 -11 -32 -36 -31 -52 

Killurney 371 35 27 17 24 19 11 

Knockaville 95 -9 -3 -9 -9 -2 -6 

Lackenrea1 190 33 15 10 17 1 -4 

Lackenrea2 195 17 13 8 3 3 -2 

Longfordpass 130 48 33 25 51 39 29 

Oakwood 250 23 26 17 -12 -7 -13 

Rickardstown 90 27 21 2 25 20 -3 

Rossnagad 94 -5 1 -18 -1 6 -14 

Summerhill 90 34 23 16 39 30 25 

Tigroney 246 17 1 14 14 -4 9 

Woodford 192 42 25 21 36 22 21 
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4.2 pineR results before correction for selected sites. 

To further examine the capabilities of the pineR package, certain sites were selected for analysis 

as being of particular interest. The selected sites were Hortland, Ballinagee, Glendine, 

Summerhill, Deerpark, Kilduff, Lackenrea (2 sites) and Gurtnapisha. These sites were selected 

for their specific differences in terms of how the sourced met station temperature data were 

handled (co-located or weighted) and in terms of site covariates used to assess forecast 

performance.  Kilduff, Summerhill and Gurtnapisha had co-located meteorological sites meaning 

their nearest weather data was sourced from a single weather station with no weighting applied. 

At the remaining sites, weighted temperature data was employed. Six of the trial sites selected 

were pine and 3 were spruce. Altogether, only 4 spruce sites were used in the model. In terms of 

soil type, 3 of the selected sites were peat and 6 had mineral substrates. Hortland as a pine site is 

useful as a comparison as it has a mineral soil substrate.  

In this section a graphical representation is given for the model run with met station and gridded 

temperatures shown side by side for the selected sites. Differences in days between model-

predicted and observed emergence at specific quartiles are noted by reference to Table 4.1. Site 

factors such as elevation, aspect and slope that may have influence on the forecast model are 

noted. Population size and structure at stump hacking (where available) are briefly described for 

each site.  

1. Hortland, a pine and mineral site located in Co. Kildare. The site is at an altitude of 76 

metres and is notably flat with a slope value of 0.72%. Four weather stations were utilised 

to give a weighted temperature for this site (Figure 4.6). These stations were Lullymore 

(13.2 km), Derrygreenagh (30.2 km), Ballinla House (22.7 km) and Dunsany (19.3 km). 

Imputation was used to fill some missing values as outlined in Chapter 3. Using the 

weighted temperature data, the model estimated emergence is between +2 days and -15 

days with respect to the observed emergence, depending on quartile (Table 4.1). Overall, 

the model indicates a slightly later emergence at Hortland compared to the observed data, 

but the predicted values lie within the 95% confidence interval for the predicted values 

(Figure 4.11). When the model was run with gridded temperature data there was a slightly 

better fit to the observed data being closer by 1-3 days depending on quartile than when 

the model used met station data (Table 4.1; Figure 4.11). There was no prior stump 

hacking data at Hortland. 
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2. Ballinagee, a spruce and mineral site in Co. Wicklow. The site is at a high altitude of 425 

metres with a slope value of 22% at the clearfell site. The temperature input at Ballinagee 

was weighted, being derived from two stations, located at Ashford (22.8km) and 

Glenealy (24.4km). Using the weighted temperature data, the model predicts much earlier 

emergence at this site compared to the observed emergence data, highlighting the 

potential influence of low-lying weather stations to estimate higher elevation 

temperatures. The model predicted emergence is between +60 and +36 days earlier than 

observed emergence, depending on quantile (Table 4.1; Figure 4.11). The model run with 

gridded temperature gives a much better fit to the observed data than when run with the 

weighted station data, predicting later rather than earlier emergence (Table 4.1; Figure 

4.11).  This site had a relatively low population of weevils recorded in the emergence 

traps (average 1.9 weevils per trap). The population structure data at stump hacking prior 

to emergence on the 6th of July 2004, recorded 70 weevils composed of larvae (30%), 

pupae (65.7%) and adults (4.3%) at 20 stumps, an average of just 3.5 weevils per stump. 

As a spruce site, the low population of weevils in stumps and in emergence traps is not 

unexpected. The late onset of emergence and low proportion of adults at stump hacking 

are also not unexpected for spruce. 

 

3. Kilduff, a pine and peat site in Co. Westmeath. The site is at an altitude of 93 metres 

with a slope value of 6% which was quite high for the region which is largely flat. Kilduff 

employed co-located temperature data in the model with the temperature derived from 

the nearest station, Derrygreenagh at 6.56 km from the clearfell site. When run with met 

station temperature data the model indicates later emergence than was observed on site, 

with a difference of between -11 and -32 days between observed and simulated values 

depending on quartile (Table 4.1; Figure 4.11). The uncorrected model run with gridded 

temperature gives a worse fit to the observed data than when run with the temperature 

data from the co-located weather station. While both temperature sets predict later 

emergence than was observed, the difference is greater using gridded temperature data 

(Table 4.1; Figure 4.11). At stump hacking on the 20th of June 2011, 71 weevils composed 

of larvae (4.2%), pupae (71.8%) and adult (23.9%) were recorded at 10 stumps on site. 

The site had lower observed numbers of weevils emerging (average 70.4 per stump) than 

nearby sites including Hortland and on a less favourable mineral substrate. The observed 
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emergence both simulated and observed, is relatively in line with expected trends for a 

pine clearfell habitat.  

 

4. Summerhill, a pine, and peat site in Co. Meath. The site is at an altitude of 90 metres 

with a slope value of 2 % which is relatively flat. Summerhill had a co-located met station 

with temperature derived from the nearest meteorological station, Dunsany, 8.2 km from 

the clearfell site. When run with the met station temperature data the model predicts 

earlier emergence than observed (Figure 4.11) with an offset of 16-36 days depending on 

quartile (Table 4.1).  The model with gridded temperature as input gives a worse fit to 

the observed data than with the temperature data from the co-located weather station 

(Table 4.1, Fig. 4.11). The site is notable for the high numbers of weevils recorded in 

emergence traps (mean 260 weevils/stump over the course of the year). At stump hacking 

prior to emergence on the 24th of June 2010, 192 weevils composed of larvae (12%), pupae 

(79.2%) and adult (8.9%) were discovered at 10 stumps on site.  

 

5. Glendine 1 is one of two trials undertaken at the site in 2007. It is a pine and peat site in 

Co. Offaly. Nestled in the Slieve Bloom mountains, it has an altitude of 380 metres and 

a slope value of over 16% - a relatively steep incline. Glendine employed weighted met 

data in the model with the temperature from the stations nearest the trial site at Nealstown 

(14.6 km), Gurteen (29.1 km) and Durrow (30.8 km). When run with the weighted met 

station temperature data, the model indicates earlier emergence compared to observed 

(Figure 4.12), with an offset of between 27 and 52 days depending on quartile (Table 

4.1).  The observed emergence was later than simulated possibly due to the altitudinal 

effect. The large offset is a repeated pattern on several high-altitude sites ran in the model. 

The uncorrected model run with the gridded temperature gives a better fit to the observed 

data than when run with the temperature data, with predicted emergence later than 

observed in contrast to the earlier emergence predicted using met station data (Table 4.1, 

Fig. 4.12). At stump hacking prior on the 20th of July 2007 (later than other hacking data), 

1480 weevils in 20 stumps were composed of larvae (26.6%), pupae (65.2%), and adults 

(7.1%) as well as a small proportion of weevils that had already emerged as indicated by 

empty chambers in the bark as a percentage gone (1.1%). This was the highest population 

recorded at stump hacking on any emergence trial site.  
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6. Lackenrea encompasses two trials of the same year at the one location with the 

difference being the species of tree - pine and spruce - on separate nearby plots on a 

mineral substrate clearfell in County Waterford. The altitudes are similar, but the spruce 

plot (175m) is slightly more elevated than the pine plot (170m). The slope value for the 

trial site coordinates was over 11%. Lackenrea employed weighted temperature data for 

both trials with the same temperature data from the nearest weather stations of Moorepark 

(30.8 km), Dungarvan (11.4 km) and Ballincurrig (31.9 km). This site is useful for 

exploring the effect of tree species in the model. However, trends are similar for both tree 

species. Observed emergence was similar in both pine and spruce, with the simulation 

model (same temperature source) estimating earlier emergence compared to observed for 

both pine and spruce (Fig. 4.12). Initially, there is a greater divergence between simulated 

and observed for pine than for spruce, with a divergence of 33 days for Lackenrea1 

(pine) compared to 17 days for Lackenrea 2 spruce at the 25 % quartile, but at higher 

quartiles the divergence between simulated and observed was similar for both species 

(Table 4.1). For both sites the predicted emergence is a better fit to observed when using 

the gridded temperature data than when using the met station data (Table 4.1, Fig. 4.12). 

It is worth noting that for both temperature data sets there is a closer fit between observed 

and predicted for spruce than for pine (Table 4.1).  

 

At stump hacking on the 10th of July 2007 there was a marked difference at the two sites 

in accordance with tree species. In the pine site, 1020 weevils composed of larvae 

(16.4%), Pupae (57.8%), Adult (0.8%) and percentage gone (25%) were observed at 10 

stumps on site. Comparing to Lackenrea 2 (Spruce), the figure was much less with only 

80 weevils recorded on site. This was comprised of larvae (11.1%), pupae (55.6%), Adult 

(22.2%) and gone (11.1%) across 10 stumps. It is worth noting also that there was a 

higher population in the pine site compared to the spruce but more importantly the 

indication of early emergence given by the percentage of empty chambers representing 

25% of the in-stump population on the pine site compared to just 11% in the spruce.  

Incorporating a correction in the model to take account of population structure might 

change the predicted emergence values for the two tree species in future (see section 5.3).  
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7. Deerpark, a spruce and mineral site in Co. Wicklow. The site is at an altitude of 260 

metres with a slope value of 23.01%, the steepest slope of all the sites used in the forecast 

model. Deerpark employed weighted temperature in the model with the data derived from 

two stations at Ashford (17.2 km) and Glenealy (25.2 km). There was a very close fit 

between predicted and observed emergence values, with observed values always within 

the 95% confidence interval of the predicted (Figure 4.12). The difference in days 

between the observed and estimated emergence was small (-3 to +2 depending on quartile 

(See Table 4.1). This was the best performing site in terms of forecasting emergence with 

the use of weighted data within the uncorrected model. This was noteworthy as the site 

was elevated and steeply sloped. When the gridded temperature data is employed, the 

model is over 70 days off at first emergence (Table 4.1, Fig. 4.12). The predicted run 

indicates much later development compared to the observed data. This site was the worst 

performing site in the whole forecast model utilising the gridded data, while also being 

noteworthy as the best performing site when using temperature data from the local 

synoptic weather stations. At stump hacking on the 3rd of July 2007, 120 weevils 

composed of larvae (57.1%), pupae (21.4%), adult (0%) and percentage gone (21.4%) 

were recorded at 10 stumps on site. This relatively high percentage gone may reflect 

different emergence patterns to other sites that may have affected forecast results. 

Emergence was probably earlier than most spruce sites utilised in pineR. 
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8. Gurtnapisha, a pine and mineral site in Co. Tipperary. The site located near Slievenaman 

is the highest trial site in the forecast model with an altitude of 466 metres and a slope 

value of 22%. Gurtnapisha employed temperature data from co-located site with the 

temperature for the site derived from Fethard (9.63 km). The model indicates emergence 

much earlier than observed (Figure 4.13), with an offset of between 32 and 57 days 

between observed and simulated forecasts (Table 4.1). The much earlier development 

indicated by the model compared to the observed data may show the potential influence 

of altitude.  When using the gridded temperature data, the forecast model did not run as 

the temperature input to the model was effectively too cold at the site coordinates or grid 

of interest. The temperatures sourced for interpolation at that location (the highest site 

within the model) did not generate enough degree day accumulation to reach the required 

thresholds for development due to insects optimising their micro-climate and finding 

suitable climate space to develop. However, if all values were raised by 1 degree for the 

years of trial within the sourced gridded data, the model worked effectively showing the 

cold sensitivity of the forecast model. At stump hacking on the 7th of July 2015, 75 

weevils composed of larvae (76%) and pupae (24%) were observed at 6 stumps on site 

indicating the population structure on site.  
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Met station temperatures as input Gridded temperatures as input 

 

Hortland  
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Kilduff  
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Figure 4.11: The observed and predicted simulation data (with 95% confidence intervals) for cumulative emergence 

of pine weevil, obtained with the uncorrected model employing temperature data either from met stations (left) or 

the national grid (right) for four selected sites.  Results for all sites are in Figures 4.14 and 4.15 respectively. 
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Met station temperatures as input Gridded temperatures as input 
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Figure 4.12: The observed and predicted simulation data (with 95% confidence intervals) for cumulative emergence 

of pine weevil, obtained with the uncorrected model employing temperature data either from met stations (left) or 

the national grid (right) for four selected sites.  Results for all sites are in Figures 4.14 and 4.15 respectively. 
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Met station temperatures as input Gridded temperatures as input 

 
Gortnapisha  

 

Model did not run 

 

Figure 4.13: The observed and predicted simulation data (with 95% confidence intervals) for cumulative emergence 

of pine weevil, obtained with the uncorrected model employing temperature data either from met stations (left) or 

the national grid (right) for Gortnapisha.  Results for all sites are in Figures 4.14 and 4.15 respectively. 

4.3 pineR results: Post correction 

To correct the difference between the observed and the predicted number of days, a machine 

learning model, using a Random Forest method was employed. This approach used five site 

covariates (altitude, slope %, soil type, aspect, and tree species) to see whether they could provide 

useful information to correct the model estimates.   In examining the correction at various 

quantiles of the cumulative emergence data, the results at the 50% quantile generally provided 

the best fit of model-simulated to observed values across trial sites according to LOOCV (Leave 

one out cross validation). The effect of correction is assessed by comparing outputs of the model 

before and after correction, firstly when run with met station temperature data and then when run 

with gridded temperature data as input (Figures 4.14 and 4.15, respectively). In general, the 

simulated emergence from the corrected model was a closer fit to the observed emergence, 

especially when using the met station temperatures as input. The effect of the correction on model 

output is described below for some of the sites previously described for the uncorrected version 

of the model.  
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4.3.1 pineR results comparing uncorrected and corrected model using the 

meteorological station data at selected sites  

Figure 4.14 shows the output from the corrected model together with the outputs from the 

uncorrected model for comparison. At some sites, such as Hortland, correction has little effect 

on the forecast emergence of large pine weevil against the observed data. At other sites, there is 

a slight improvement with the correction, for example at Kilduff, the corrected model shows an 

improvement on the uncorrected model estimates, but the observations generally still lie outside 

the confidence interval of the predicted.  

At both Lackenrea 1 (pine) and Lackenrea 2 (spruce) the correction slightly improves the 

forecast of emergence against the observed data. However, at several sites there is a more marked 

difference between the uncorrected and corrected model output (e.g., Glendine 1). At 

Gurtnapisha, the correction greatly improves the forecast of emergence against the observed 

data and there is a similar marked improvement for other high-altitude sites such as Ballinagee 

and Ballymacshaneboy (Fig. 4.14). It is noteworthy that some sloped and elevated sites remained 

offset even after the correction method was applied, suggesting that some other factor maybe be 

important on sites with these characteristics.  
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Figure 4.14: The observed and predicted simulation data (with 95% confidence intervals) for cumulative emergence 

of pine weevil at all trial sites, using met station temperature data. Above: Uncorrected model Below: correction 

is applied on the model. 
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4.3.2 pineR results comparing uncorrected and corrected model using the gridded 

temperature data at selected sites 

In this section, the performance of the model before and after correction will be investigated 

using the Met Eireann gridded data driving the forecast predictions of the final model. The model 

was investigated at 25%, 50% and 75% quantiles to ascertain how much correction was needed 

at each site by identifying the difference in days through weevil development between observed 

and predicted forecasts at each trial site utilised in the modelling of pineR. With the final 

gridded interpolation data, it was again shown that in applying the correction at various quantiles 

of the data, the correction at 50% provided the best fit for the model across trial sites.   

The outputs of the corrected model using gridded temperature data as input are shown in Figure 

4.15, where they can be compared with the output of the uncorrected model also shown there. 

The results are shown for selected sites previously described: Hortland, Ballinagee, Kilduff, 

Summerhill, Glendine 1, Lackenrea and Deerpark. For Gurtnapisha, as previously mentioned, 

the model did not function with the gridded temperature data as input in most sites. Running the 

model with the gridded data seemed to improve the forecast in comparison to the weighted 

temperature model (derived from nearby synoptic weather stations). This is noticeable in the 

uncorrected runs of the model as can be seen by comparing the upper panels in Figures 4.14 and 

4.15 and as previously described in Section 4.2.  The applied correction further had offsets 

reduced (or not greatly altered) as with Glendine 1 but some sites did not improve their forecasts 

in terms of correcting the gap in days (differences in days to observed data) as shown at 

Lackenrea 1 and possibly Lackenrea 2.  It is also noteworthy that Hortland and Glendine 1 for 

instance that the corrected model improves the initial first emergence prediction almost lining 

up with the observed data showing the effectiveness of the corrected forecast model at these 

sites. A quick overview is presented below of selected sites. Selected Individual sites with 

corrected and uncorrected panes are shown side by side for both the met station and gridded data 

are shown in the appendices for figures A3 and A4.   
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Figure 4.15: The observed and predicted simulation data (with 95% confidence intervals) for cumulative emergence of pine 

weevil at all trial sites, that utilised gridded temperature data. Above: Uncorrected model Below: correction is applied on 

the model.  
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1. Hortland: At Hortland, the model was close but not as smooth fitting as the uncorrected 

model using gridded data which was very accurate for first year emergence. The 

correction does not overly affect the forecast of year 1 emergence of large pine weevil 

on site against the observed data (Fig. 4.15).  

 

2. Ballinagee: This site is a noteworthy example of the corrected model improving the 

uncorrected model with gridded temperature data which was a considerable improvement 

over the use of met station data in pineR. With the gridded data, the model which when 

uncorrected had a slightly earlier forecast for the onset of emergence is shown to be a 

close fit with correction applied (Fig. 4.15). However, at the 25% quartile the uncorrected 

model fits the observed data more closely.    

 

3. Kilduff: Both forecasts at Kilduff, a notable improvement was recorded in the fit 

between predicted and observed emergence when the correction was applied to the 

model. 

 

4. Summerhill: This site had a similar affect as per above with correction applied.  

 

5. Glendine 1 (2007 trial): This site was like Ballinagee, being an elevated site (and notably 

sloped). Although the forecast was improved with the gridded data compared to the met 

station data in the uncorrected iteration of pineR, the fit was further improved with the 

corrected model applied here (Fig. 4.15). The forecasting of initial emergence is in line 

with the observed data but there is a notable divergence later in development.     

 

6. Lackenrea 1 (pine) and Lackenrea 2 (spruce): Given the proximity of the two sites, they 

utilised the same grid of interest from the gridded climate data. At Lackenrea 1 (Pine) the 

correction does not seem to greatly alter the prediction of first emergence (possibly 

slightly increased difference). Figure 4.15 shows the correction applied to the model did 

marginally improve the forecast for Lackenrea 2 (Spruce) for the early part of the 

emergence curve (below 50% emergence) but above that it was not improved. Using the 

gridded data overall did significantly improve the pineR forecast compared to the use of 

the met station data at this trial site as well.  
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7. Deerpark, which was the best performing site in the weighted iteration of pineR (Fig. 

4.9, Table 4.1), was found to be the worst performing site using the gridded temperature 

data in the uncorrected model, with an average nearly 90-day difference between 

observed and predicted emergence (Fig. 4.10, Table 4.1). With correction, the forecast 

model improved the simulated cumulative emergence curve bringing it closer to the 

observed data on site, but a substantial difference remained (Fig. 4.15).  

   4.4 Importance of site-specific covariates in pineR 
 

This section will cover the cross validation of site-specific covariates used in the forecast model 

to assess which features have a greater impact on the model estimates of large pine weevil 

emergence in terms of their own effect and by interaction with other variables. The random forest 

method applied assesses the difference between the observed and the predicted days of 

emergence. The model results for variable importance shown here are at the 50% quantile as this 

represented the best fit for predicted emergence. The other corrections at 25% and 75% for the 

model run with met station temperature inputs are included in the appendices and referred earlier 

in Table 4.1. One of the variables, tree species, is already incorporated from the original UK 

model as a function (Wainhouse et al., 2014), with weevils developing faster in pine than spruce. 

Tree species is an important variable but not as important as the other variables in altering or 

affecting the differences between observed and predicted values.  

Figures 4.16-4.17 show heatmaps displaying the importance of site-specific covariates in the 

model using met station and gridded temperature data, respectively. This was applied through 

the random forest method for the 50% quartile in line with the best fit for the forecast model. 

The diagonals reflect the importance of each variable while the off-diagonals indicate interaction 

between the variables. For the model runs employing the met station data (Fig. 4.16), altitude 

has the greatest influence on the forecast model and has been shown previously to have some 

effects on model performance at specific sites depending on elevation (e.g., Ballinagee, 

Gurtnapisha). Slope follows this, showing the effect of steep sites. Aspect, soil type and tree 

species are not important individually, however, the interaction between aspect and tree species 

appears to have influence followed by the interaction between slope and soil and then the 

interaction of slope and aspect in that order. The other two-way interactions are of little relevance 

to the results. Soil type is not important in this heat map. 
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 Tree species has the least influence, but this is related to the fact that species is already 

considered in the original model (Wainhouse et al., 2014) that was adapted for forecasting first 

emergence with pineR. It is also true that pineR predominantly is utilised here on pine trial 

sites. The interactions seem to be less relevant than the indicated importance in terms of affecting 

the forecast ability of the model for first emergence. When the model is run using gridded 

temperature data (Figure 4.17), a similar picture emerges, except that slope has a greater 

influence than altitude but both remain relevant. Tree species and aspect seem to have an impact 

as well but not of notable importance to the forecast model predictions.  

 

Figure 4.16: Variable importance and interaction of site-specific covariates adopted in large pine weevil (Hylobius 

abietis) final corrected emergence forecast model utilising met station temperature data. Correction here is applied 

at 50% which was the best fit for predicted emergence. 
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Figure 4.17: Variable importance and interaction of site-specific covariates adopted in large pine weevil (Hylobius 

abietis) final corrected emergence forecast model utilising gridded data (Walsh, 2012). Correction here is applied 

at 50% which was the best fit for predicted emergence.  
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5.  Discussion and Conclusion  

In this chapter, the core findings of the research will be discussed. Firstly, the performance of 

the corrected pineR model and its effectiveness in forecasting large pine weevil year one 

emergence at the 27 sites used in the model will be discussed. Limitations of the model and 

comparisons to previous modelling will also be addressed. Secondly, site specific covariates will 

be discussed focusing on specific covariates of influence on forecast simulations within pineR. 

Finally, the potential contributions of this work to integrated pest management of large pine 

weevil, pest forecasting and policy application from future work in the field will be discussed.  

5.1 Evaluation of forecast model (pineR) performance  

Evaluating the performance of pineR is needed to identify the capabilities of the model 

incorporating correction to estimate the year one emergence of large pine weevil in Ireland. This 

involves reviewing the relationship between local climate data and corresponding weevil 

development when the model was run using met station and gridded temperature inputs. 

Furthermore, site specific covariates of influence were identified that showed important 

differences between the iterations of pineR using met station and gridded temperature data that 

aids the evaluation of the corrected model. In the initial run of the model, the temperature values 

from nearest met stations (co-located or weighted) to the trial sites were used as input and 

compared with observed biological data (empirically recorded emergence of adult weevils). This 

provided evaluation of observed and forecast simulated emergence data. Following this the 

model was run using gridded temperature data. In general, the gridded temperature data was 

found to result in improved emergence forecasts, even prior to correction of the model as shown 

in Figs. 4.9-4.10 and Table 4.1. Examination of the results on a site-by-site basis allowed an 

evaluation of the model and to highlight potential differences between sites, with respect to the 

influence of certain site factors (covariates). Overall, when correction was applied, the forecast 

model was largely found to perform better across the selected sites with the Random Forest 

method using the 50% quantile for correction. It correctly estimated initial emergence at many 

sites and closed the difference in days between observed and predicted at many sites seen with 

the forecast model pre-correction.  
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There were some notable differences identified in the forecast model, most prominently seen in 

the uncorrected model runs. The temperature data for the lower Hortland site for example in both 

the weighted Met station and Gridded data followed a similar pattern but the weighted data (from 

lower weather stations than on site) seemed to underestimate the grid data at higher or more 

sloped sites such as Gurtnapisha and Deerpark. These sites contrasted with other sites but showed 

how the model when using the gridded temperature could change due to the on-site 

characteristics leading to changes in the interpolation. It is worth noting that interpolation can 

only be as good as the inputs into the forecast model. Therefore, in the case of mismatches, it 

can be because the site features are very different from what the model interprets, they are. The 

values generated are based on the interpolation of daily values across the network of sites. Based 

on this, one can calculate monthly, seasonal, and annual values.  Therefore, if the underlying 

elevation model in built (DEM) does not correctly estimate the actual site elevation at a trial site 

for instance, then errors are likely due to the input elevation and not the interpolation of the 

surface which is based on the more regular daily inputs.  A very notable trend was that many of 

the higher and more sloped sites (e.g., Glendine and Ballinagee) displayed offsets in the forecast 

modelling.  It could be theorized that the 1km elevation used in the gridded temp values (Walsh, 

2012; Flanagan et al. 2019) is having an effect at more notable high and steep sloped locations 

not appropriately captured in the 1km resolution DEM. This will be covered more in Section 5.2 

on covariates of influence. In theory it was thought that the gridded data should perform better 

in the forecast model because it has several in-built components including for instance the 

elevation at trial site coordinates factored as a covariate in its 1km digital elevation model.  This 

would include a functionality to drive cooler temperatures where appropriate to do so but there 

are potential limits.  

 It is true though also that the coarse gridded elevation model that is driving certain temperatures 

can also underestimate the actual temperature at certain locations as potentially shown in some 

of the weighted sites above (See Figure 4.4). For example, in the case of Glendine, model 

temperatures may be too warm for that site in terms of forecast performance. This could be due 

to the DEM envisaging the site is at a lower location. It is worth noting that as we assess the 

performance of forecasting at sites, we can also identify systematic bias that may over or 

underpredict relative differences in the forecast model. This brings about another question of the 

sourcing of gridded data with some sites when we look at sites that performed well at the 

weighted iteration of pineR vs with the gridded data. 
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 One site of note was Deerpark where the model using gridded data forecast a much later 

emergence (nearly 90 days) than what was recorded on site at other elevated sites such as 

Ballinagee and Glendine1. The observed data seems to indicate a further initial emergence and 

development than expected at the trial site relating to the gridded data performance. This was 

prior to correction. When the correction was applied, the model performed more accurately at 

these sites bar minor limitations which will be discussed in the appropriate section below.  

5.1.1 Comparison to previous modelling in Ireland and the UK 

The pineR model was developed based on development times of different life cycle stages in a 

modularized approach to predict year one emergence of large pine weevil. Estimates obtained 

from the existing model were compared against observed emergence data.  pineR expands on 

previous unpublished modelling research in Ireland using an existing life cycle simulation model 

(Wainhouse et al., 2014) produced by Forest Research UK, and applies a correction to the model 

using site specific factors or covariates.  The relative importance of these covariates on the ability 

of the model to accurately forecast the emergence of large pine was assessed. The original UK 

simulation model followed a generation of weevils through their life cycle stages to predict 

voltinism based on temperature in the root stump microhabitat modelled from air temperature. 

The life cycle in the UK currently takes 2-3 years in the north and west, while in the south and 

east, a 2-year cycle predominates (Wainhouse et al., 2014). The UK model forecasted that a 2-

year cycle would become predominant in the north and west that would reduce economic impact 

in that region, associated with warming temperatures. In the south and east however, a 1–2-year 

cycle would remain meaning the period of pest management required would unlikely reduce 

(Wainhouse et al., 2014).  

Previous research in Maynooth (Williams et al., unpublished) tested the UK life cycle simulation 

model, which was originally designed to predict geographical variation in voltinism in pine 

weevil under climate change, to see first could its predictions be validated by comparison with 

observed timing of emergence at 11 field trial sites in Ireland and secondly to see could the model 

in its original form be used to predict site specific temporal patterns of emergence based on data 

from local weather stations. In this previous modelling effort, four sites were found to have 

similar patterns of emergence to the results predicted by the original UK model. Some sites 

showed differences with statistical testing. One site showed no significant difference with the 

Kolmogorov-Smirnov test, and three sites were significantly different from life cycle model 

predictions.  
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There was no significant difference between predicted and observed emergence for first day of 

emergence and 50% cumulative emergence and there was a high correlation (P = 0.026) between 

predicted and observed day of 50% emergence (Williams et al., unpublished). Using the original 

life cycle model Williams et al. also showed, under current climates, a marked latitudinal 

influence on current H. abietis voltinism in Ireland, with the proportion of three-year life cycles 

varying from 50% in the north to a negligible proportion in southern Ireland populations. This is 

relevant to climate modelling of future climates excluded from this work but relevant in terms 

of the future potential for pineR. In the Williams et al. research, this component served as a 

partial validation of the existing UK voltinism model (Wainhouse et al., 2014).  The pineR 

model partly builds on this work, including an additional 16 pine weevil trial sites, with its 

correction applied through the random forest method utilizing machine learning and bias 

correction to factor in site covariates of influence to aid better forecasting of large pine weevil 

first emergence.  

5.1.2 Limitations of the model 

There are potential implications of such models in terms of development for wider use in the 

field by foresters and planters dealing directly with large pine weevil management practices. One 

issue within the correction model of note was cold sensitivity which can be noted to affect 

phenological pest models (Hallman and Denlinger, 1998). This aspect was relevant at two sites, 

Deerpark and particularly Gurtnapisha, the highest site in the model at which the gridded 

temperature data was not warm enough to drive the forecast model. This site had to be excluded 

from the gridded forecast because of this.  Interestingly, if the input temperature were increased 

by 1oC, the site did function in pineR. The very issue of the use of gridded data versus the met 

station data was also another potential limitation. Figures 4.9 and 4.10 previously displayed how 

the difference in days at each quantile in the uncorrected forecast model for all sites performed 

in both iterations of pineR using met station data and gridded data. This would also affect issues 

such as how to accurately replicate the temperatures being experienced at an elevated site and 

equally within the weevil microhabitat. A further issue to the forecast predictions could also be 

the amount of data. More environmental data or variables such as soil, or slope could help apply 

a better correction using more variables. This would not necessarily influence weevil 

development but would influence the correction. The relationship of temperature and tree species 

in relation to the original U.K model (Wainhouse et al., 2014) would also be another item of note 

in terms of the model’s ability to forecast emergence of large pine weevil. There was also an 

issue about the best fit in terms of the random forest correction to the forecast model when 
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considering the 50% and 75% quantiles. Some sites performed better with correction at the 75% 

quantile even if the overall best fit was 50% with the random forest method. This is again linked 

to possibly colder and higher sites and how the observed temperature there is estimated.  

The current work expands upon the previous research by including more sites but 27 is still a 

relatively small sample. The larger the number of trials, the more precise results will be. 

Compiling more trial data matched to independent weather station data could have possibly 

helped improve the statistical knowledge being generated in the forecast model, had they been 

available. In terms of utilising the gridded climate data in packages such as Climate4R or baseR, 

computation knowledge and timing limited the chance to incorporate further investigation into 

expanded best fit interpolation methods for the gridded climate data. More time and research 

could have possibly somewhat improved certain aspects such as the visualisation of results. 

Further research could be done in future on an expanded number of sites, should they become 

available, to broaden the work being investigated and deployed in areas such as bias correction 

within the forecast model.  

5.2 Influence of covariates in “pineR” (elevation, slope, etc.) 

The covariates of influence within pineR will now be discussed. These site-specific features 

were vital to implementing the model correction and identifying variables of importance within 

the model. Elevation and its relationship to source temperature data will be looked at in detail 

due to the primary and significant influence it had on the forecast model. This will be broken 

down by the heights of different trial sites. Glendine, Ballinagee and Gurtnapisha for instance 

are all sites considerably above 300 metres. In contrast, Summerhill, Kilduff and Hortland are 

much lower. The remaining covariates of influence on the model performance investigated in 

pineR will then be discussed. These were soil type, slope, aspect, and tree species. Site specific 

covariates form a crucial part of the proposed final correction to the model and are an important 

influence on the capabilities of forecasting emergence in pineR.  
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5.2.1 Influence of elevation and sourced temperature 

Altitude was identified as a factor of influence on pineR both when examining the actual 

forecasts of emergence and then as identified as a site-specific covariate of importance at the 

model correction stage. More elevated sites within the forecast model were shown initially to 

match less with the observed temperature data across model runs. For instance, there is a clear 

mismatch between the met station and gridded data at Glendine, which is at a height of 380m. 

The nearest station utilised in the initial run of the model using met station data is higher than 

most Met Eireann stations at 211m, but it is the wider disparity of the meteorological network 

that is important here. This offset repeats in the forecast simulations too with higher sites 

displaying mismatches between observed and simulated model runs. Altitude can help explain 

the correction factor not working as well at these sites. The performance is improved in some 

cases but once above a certain height, the same problems reoccur even with the gridded data. 

The 1km gridded Met Eireann data (Walsh, 2012) would have lower uncertainty associated with 

the temperature estimates at or below 200 metres, as most meteorological stations are below this 

elevation. This will increase largely because of the interpolation of the temperature data based 

on the 1 km digital elevation model employed. As the elevation increases, there are fewer 

observations to constrain the interpolated values. This means it is likely that the lack of correction 

in some of the higher sites (notably Glendine and the Wicklow Mountains sites of Ballinagee 

and Oakwood) is an error of an over [or under] estimation at these elevated sites.  

Glendine for example is nearly 400 metres and most Met Eireann stations are within 200 metres 

above sea level. This is not even the highest site in the model. The nearest weather station at 

Nealstown is slightly above 200 m elevation which is a climatological station about 14.6 km 

from Glendine, but this is very much an outlier in the wider measurement network and on its 

own would not have many sites round it to draw upon in terms of interpolation. It is in fact by 

far the most elevated weather station employed in the forecast model. With the Met Eireann 

gridded data, the surface values are more reliable the closer they are to sea level. In fact, most 

stations are between 0 and 100 metres. So, at elevations of 200 metres and above, there is less 

meteorological data with fewer surrounding stations. The underlying topographical values start 

to influence the forecast model with the 1km digital elevation model built within the 1km gridded 

data (Walsh, 2012) utilised in pineR. The height is effectively underestimated, due to the 

spatial resolution effectively resulting in lower elevations in the DEM with consequent impacts 

on temperature at elevation being underestimated at several weevil trial sites.  
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The mismatches at the higher sites therefore are attributable to the driving meteorology on the 

ground and related to the weather data inputs. Beyond this, there is also an issue of the weevil 

microhabitat in terms of their microclimate in the soil for example and depths of soil which is 

also inbuilt into the original model (Wainhouse et al., 2014) adapted for this work. Seeing this 

occurrence at several elevated sites means we can see a consistent error and explain it through 

the meteorology adopted in the modelling. It is worth noting that gridded data also repeatedly 

performed better than the weighted data but still tended to have errors at the higher sites. In some 

sites that performed particularly well using met station inputs such as Deerpark, there were some 

disparities but, in that case, this may be related to the sourced historical coordinate data pulled 

from within the grids.  

The distance to weather stations was identified as a potential factor of note also in the initial run 

of the model using met station temperature inputs. In the case of Glendine, the three weather 

stations utilised in the weighting were 15 km, 29.1 km, and 30.8 km away at Nealstown, Gurteen 

and Durrow respectively from the forest trial site nestled in the Slieve Bloom mountains which 

adds another factor in terms of varying regional topography. At Hortland, a relatively low-lying 

site at 76 m and on very flat terrain, the model performed much better, and this was repeated on 

other lower sites. At Glendine the model performed better with the gridded data but simulated 

later emergence than was observed while with the weighted temperature data the model-

simulated emergence was earlier than observed.  In both cases, correction improved the 

emergence forecast. The three stations employed in the weighting function were at much lower 

elevations than Glendine. The gridded data from Met Eireann (Walsh, 2012) performed a little 

better primarily because it has the elevation at the trial site as a covariate in its 1km DEM (digital 

elevation model) built into the grids. This function helps to drive cooler temperatures at these 

altitudes. The coarse gridded elevation model that is driving the temperature at Glendine and at 

other sites results in warmer estimated temperatures compared to what is experienced at these 

sites. This is likely the case at other examples covered such as at Ballinagee and Gurtnapisha and 

helps explain the offset between predicted and observed emergence, so we can rationalise this 

error in the model correction. Figure 5.1 shows the difference in altitude between the sourced 

weather stations for weighting the data and the matching large pine weevil trial sites used in the 

model. 
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 Figure 5.2 shows the spread of station distances to trial sites within the model. It is worth noting 

that development on the higher sites is largely later in the sites analysed likely due to cooler 

temperatures at higher altitudes and again as said possibly the cooling mechanism in the gridded 

model being overestimated compared to the real temperatures experienced on the ground for 

weevil populations (i.e, Glendine and Ballinagee, etc.). Figure 5.3 shows an example of the 

difference in elevation of the sourced temperature data at Ashford weather station for Ballinagee 

versus the actual site elevation at the Wicklow Mountains sites. This displays how temperatures 

experienced could be quite different and affecting model performance. It is worth noting in the 

forecast model that Ballinagee, Glendine 1, Deerpark and Gurtnapisha are sites where also the 

average and maximum temperatures on the gridded data were lower than the other trial sites. 

This meant that compared to the weighted iteration of pineR, these sites had the greatest 

difficulty in model performance and in making an accurate forecast prediction.  

 

Figure 5.1: The altitude of forest trial sites and nearest weather stations utilised in the forecast model clearly 

showing a high disparity in height between the two at several locations.  
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Figure 5.2: The distances of weather stations to trial sites showing the proximity in km to display where temperature 

data was sourced.  

 

Figure 5.3: The difference of the closest weather station to the sites at Ballinagee, Oakwood and Annalecka 

displayed with contour lines on a DEM of Ireland (ALOS, 2020) showing the sites considerably higher than Ashford 

(Inset image) which is only 15m above sea level. Annalecka was not used in the model. 
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5.2.2 Influence of remaining covariates 

The machine learning algorithm identified slope as the most influential factor when using 

gridded temperature data and as the second most influential factor on weevil development in 

pineR (after altitude) when using met station data.  This was followed in importance by Aspect 

in both cases. The orientation and steepness of slopes on clear-cuts can potentially affect weevil 

populations due to effects on soil moisture, radiation, or wind (Tolbert, 1975). Of particular 

importance is the effect on solar radiation influencing the temperature experienced by the 

developing weevils. Slope and aspect values can potentially affect the amount of solar radiation 

reaching the soil (McCutchan and Fox, 1986) as well as potentially affecting the microhabitat 

distribution (relative to soil surface) of developing weevils depending on where the stumps are 

located. Figure 5.4 shows an aspect map of Ireland generated in GIS through a 30m DEM 

(ALOS, 2020). This was used to help aid the estimation of cardinal direction at weevil trial sites. 

Sites were divided by North, East, West and South facing by degrees location or nearest to as an 

agreed rule within pineR. Originally there were more variables looking at direct location 

according to specific aspect through GIS and DEMs that identified more accurately sites as for 

instance North Easterly or South Easterly. Certain flatter sites were less affected but as shown 

above in terms of variable importance, Aspect and Slope were relevant variables in the forecast 

model. North facing sites were shown in fact to be closer in terms of predicted forecasts for pine 

weevil first emergence in the uncorrected iteration of pineR. Deerpark was one site noted as 

an outlier in the results. It also had one of the steepest slopes as well incorporated in the forecast. 

In terms of its anomaly, it is worth noting that its location in a steep valley and on a northern 

aspect at the site may have an affect (Tolbert, 1975).  A lot of headwaters of the Liffey and other 

water bodies are below Deerpark with notable wetlands. So, it is one possibility that the valley 

aspect as well as the in- built DEM in the gridded data may have its own complications in terms 

of affecting development rate in a model. Slope and aspect values are relevant in terms of how 

they may affect solar radiation reaching the soil (McCuthcan & Fox, 1986) and potentially affect 

the microhabitat population of weevils (relative to surface) of developing weevils depending on 

the location of stumps.  
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Figure 5.4. An aspect map of Ireland matching trial sites and weather stations utilised in pineR to Cardinal 

direction on a 30m DEM of Ireland (ALOS, 2020).   

The large pine weevil develops faster in pine which appears to be more suitable for the species 

than spruce, and pine stumps also support high weevil populations (Griffin and Dillon, 2008; 

Kapranas et al.., 2017) as displayed at Glendine for instance, the highest observed weevil 

population site utilised in pineR. The results from pineR forecasting reflects faster 

development occurring in pine stumps. For example, emergence occurs quicker at Kilduff, 

Summerhill and Glendine (all pine sites) compared to later development at Ballinagee and 

Oakwood (spruce sites). Figure 5.5 shows larvae, pupae and adult weevils found in an untreated 

stump at one of two Coillte trial sites visited as part of background research for this thesis.  
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This was a pine and peat clear-fell site in County Kerry where many weevils of different 

developmental stages were discovered on the site visit in August 2021 compared to a spruce and 

mineral site nearby at Direenauling, Co. Kerry where only one adult weevil was recorded at 

stump hacking on the same day.  

 

Figure 5.5:  Larvae, pupae, and adult weevil that were found on some untreated plots on a Coillte trial site of a pine 

and peat clear-fell near Cummeenvrick, Co. Kerry on the 18th of August 2021.  

As stated, stumps of most conifer species support weevil development, but the numbers 

developing in and emerging from pine (Pinus species) are far higher than from spruce (Picea 

species) in Europe and in Ireland with up to 100,000 emerging on a single site (Dillon and Griffin, 

2008). Examples too of the initial on-site investigation and indeed emergence performance in 

the simulation model display the difference between tree species at Ballinagee and Deerpark 

(spruce) versus Glendine and Summerhill (pine) for instance. In the initial modelling with 

weighted data and somewhat overall we saw some of the spruce sites were better performing 

than the pine sites. In terms of variable importance, soil type and tree species were not shown to 

carry as much significance as other covariates in the random forest correction method applied. 

Soil depth was not factored into the covariate investigation as it was predetermined by the 

original UK model (Wainhouse et al., 2014) with pine set to deeper development at 30cm and 

spruce 20cm as per the model methods (See chapter 3).  
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As previously stated, tree species is also inbuilt in the original model as a function which with 

most of the sites being pine could have affected the influence of “Species” on forecasting first 

emergence.  

Soil type can influence the extent of pine weevil damage (Luoranen et al., 2017; Wallertz et al., 

2018) but has not been reported to affect the rate of development of the species and was relatively 

unimportant in the factor analysis. Any effect on model performance either alone or by 

interaction with other site factors would likely be mediated through the substrate influencing soil 

temperature and hence the temperature experienced by weevils developing in the stumps. In the 

forecast modelling for this project, there were 16 peat-based sites and 11 mineral-based sites.  

The observed development was faster than expected suggesting that the temperature experience 

by the large pine weevil was higher than anticipated. Steep slope and mineral soil could result in 

very efficient drainage. So, soil would be dry and hence warm (despite being north facing, which 

should make it cooler) at a site such as Deerpark aforementioned. This can link to how site factors 

influence development. It is important to look at these anomalies to investigate the model 

efficacy. The depth of soils is important too. For larvae developing closer to the surface, 

especially in light soils, or in logs or fallen trees on the ground (Scott & King, 1974), temperature 

variations would be much large, resulting in greater acceleration in development rate (Inward et 

al., 2012).  Soil type and slope may influence drainage and soil temperature. The effects of 

moisture conditions on temperature have been shown to influence soil microbiology and the 

aggregate stability of the soil. One study (Dowdesdale-Downey et al., 2023) found that for sandy 

loam soils for instance, aggregate stability decreased significantly with increasing moisture 

content. For a clay soil, aggregate stability increased significantly with increasing temperature. 

For both soil textures, temperature and moisture content affected microbiological community 

composition and respiration. This can show how varying soil types respond to temperature too.  

 It is worth noting too how pine weevils’ microclimates are affected or not when developing in 

soils. The developing weevils in the stump have minimal opportunity to change their location 

but there is potential movement when adult weevils may choose the location to lay eggs, or 

feeding weevils may slowly change their location within the stump as they tunnel through the 

wood (Fedderwitz et al. 2022).  Hylobius larvae can develop in roots less than 10mm in diameter 

and may move through the soils if their food source is depleted. However, most larvae are found 

close to the body of the stump just below the soil level (Heritage & Moore, 2001).   
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Studies have shown that taxa responding to elevation (given the influence in this model) were 

indeed most strongly defined by temperature, as opposed to other environmental conditions with 

micro-topography affected taxa mainly controlled by temperature and soil moisture. This can 

show the microbial community composition is dependent on long term developments of near 

ground temperatures and soil moisture regimes with a certain resilience (Frindte et al. 2019). In 

terms of depth in the soil, the forecast model was shown to be very dependent on its “depth” 

argument input from the original model (Wainhouse et al. 2014). Sites like Hortland and Kilduff 

had a much better predicted curve when depth was equal to 1 and it got worse as this value 

increased. Interestingly, sites such as Lackenrea 1 and 2 had the opposite effect. Other sites such 

as Summerhill (co-located site) was not affected by changing the value of the variable. Other 

factors not investigated in the forecast model including time of felling. The time of felling can 

influence the time at which the parent generation of weevils colonise stumps and lay eggs and 

hence the initiation of development. (Moore et al., 2004; Teagasc, 2020).  

5.3 Potential of “pineR” within the field and future work   

The previous modelling in Maynooth by Williams et al (unpublished) aimed to inform 

management and improve management options for large pine weevil. This for example included 

indicating that fallow periods may be a viable future strategy to manage pine weevil which is not 

currently policy in Ireland but is practice in the UK. This research also laid the foundation for 

timing of plant protection products (PPPs) to be based on predicted emergence and voltinism 

patterns, as the current emergence model refines in terms of emergence. The pineR model 

proposes correcting the UK voltinism model to forecast first year emergence of large pine weevil 

at Irish clear fell sites. There is potential to expand to second year emergence in future work, 

but this was not covered in this research. The aim of this research that was to more fully validate 

a forecasting model using a more extensive dataset of Irish sites (27) presented with correction 

based on the 50% quartile in random forest. The stump hacking data in terms of weevil 

populations in-stump prior to emergence is only used for comparative purposes in my results but 

has not been integrated within pineR. It is proposed in the short term that pineR currently 

available on GitHub will be published on CRAN as a R programming package (Lemos dos 

Santos et al. 2023). Another potential avenue for future work is to use the population structure 

data to make it function within the forecast model.  
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One way to incorporate this would be to look the observed and simulated data for a particular 

site. If we had data for a given day of emergence (e.g., around day 200 for Glendine 2), we could 

integrate that as day 0 in a model or initiate a stage from this point in the model. Here the larvae 

and pupae are of most importance in terms of future emergence of adult weevils. With this data, 

a time cumulative model could be proposed that would take the proportion of pupae and use that 

as a predictor of how long it would take from now to first emergence, generating a simulated 

prediction. This facility would operate in a two-stage modelling framework where hacking data 

would be used to look at the proportion of pupae to find a prediction from when emergence is 

going to start. The model would then be used visually with for instance a curve matched to the 

predicted start date on another curve of the two stages of development. Adults could be also 

added to one value proportion of pupae if needed. A multinomial model covering larvae, pupae 

and adults could operate in this function too. Therefore, the potential model would operate with 

a proportion of larvae, pupae, and adults at one time point that can be used as a starting point to 

estimate or base a model on these proportions. This would bring us from the initial day to start 

of emergence and join the curves to create a more accurate forecast based on population structure 

information. The applicability of the pineR package and the machine learning corrected model 

in other geographical regions could also be investigated as well as different species. Additionally, 

the integration of other environmental variables may be further explored for model development 

(Lemos Dos Santos et al. 2023). 

This work could also potentially lead to an R Shiny app developed that is easy to use and 

accessible for foresters on-site. The app could also be linked to potential policy applications in 

terms of monitoring weevil emergence.  Further work could be explored based on UK modelling 

such as the Hylobius Management Support System (Willoughby et al., 2020; Forest Research, 

2021) and more recent approaches to assess weevil numbers on site using pheromones or other 

attractants and/ or the machine-vision-based Hylopod system.  Another policy application from 

this research in terms of future work could also be low-cost weather stations on clear fell sites 

above 300 metres given the noted influence of altitude on the forecast model. While this research 

showed errors exist and due diligence should be done on any further development of the pineR 

forecast model, it displays the importance of site-specific covariates within the correction model 

and how such data can aid emergence forecast particularly first year emergence of large pine 

weevil.  Further research could also adopt numerous approaches in the context of warming 

climate.  
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Williams et al (unpublished) showed that by the 2050s and 2080s climate projections, 

populations in Ireland will have an increased proportion of two-year pine weevil life cycles 

especially in the south where 100% of the population are projected to have two-year life cycles. 

Changes in voltinism reveal different temporal patterns emphasising the importance of modelling 

local, as well as regional scale variation in the effects of climate change in Europe. Further 

research would clearly require more in-depth evaluation on climate data in Ireland in the context 

of future emergence forecasts. In terms of future IPM for pine weevil, methods for various IPM 

categories are constantly developed both in Ireland and the UK such as population management 

tools, genotyping of tree species to be more tolerant, testing of alternative chemicals or more 

work on natural products or enemies such as nematodes  (Willoughby et al., 2020; Teagasc, 

2020, McNamara et al., 2018; Fedderwitz et al., 2022); accurate forecasting of weevil 

populations can have an important place in IPM of this pest.  The implication of errors (i.e. 

multiple days error) is important though in establishing forecasting of the emergence and growth 

of the pest as incorrect timing could lead to issues with pest management if incorrect.  

Ultimately, more knowledge and research are essential to provide more options and opportunities 

for managing this important forest pest. Indeed, also it is important to acknowledge that there 

will be likely changes in forest management in the future. This may affect efforts to model pine 

weevil, and the likelihood of damage. For example, as well as the rapid effects of climate change, 

sustainable forest management itself is likely to have more continuous cover forestry, and less 

clear-felling in the coming decades marking a rapid change if forestry policy (DAFM, 2023). In 

addition, mixed species stands will be much more common with native provenance too. This 

could have impacts on weevil development as this shift more towards diverse forests takes hold 

and less monoculture or Spruce stands become present with more and more multifunctioning 

forests. The changing climate equally will also impact the distribution of invasive species and 

pests. Therefore, moving forward, our forests must be resilient to cope with or even take 

advantage of growing conditions that a changing climate may bring. Forest Culture in Policy 

change is important too. For a variety of historical reasons, a culture where forestry is seen as an 

integral part of traditional agriculture has been slow to develop in Ireland. In certain parts of the 

country there is a longer tradition of forestry and greater acceptance and integration of it 

observing the benefits it can bring to local communities (Lyons, Coillte, Pers. Comm., 2021). 

However, for many farmers, forestry is considered as an alternative land-use for their most 

marginal land and is not part of their identity in the same way, dairy, beef, or crop production 

may be in rural Ireland (DAFM, 2023).  
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5.4 Key Recommendations  

5.4.1: Recommendations for Policy 

This research hopes to lead to future work in the IPM developing forecasting methods for pest 

management. The new national forestry strategy offers interesting insights in terms of forest 

management in Ireland (DAFM, 2023). It is important to consider how this work can aid IPM 

practices in Ireland. We can observe the refining of the forecast model and how that can be used 

to help forestry policy and future developments. The DAFM forestry division require forest 

managers to prepare and submit forest management plans when a conifer forest reaches 10 years 

of age and is 10 Ha or greater in area. The plan must be prepared by a registered forester 

following a field assessment. This document includes tree stocking rates, nutrient status, average 

heights, yields and crucially when any management interventions are needed (Teagasc, 2021). It 

is important to understand the dynamics of pest populations for this reason and a forecasting tool 

in the right context can make significant difference. Nearly 11% of the land of Ireland is 

afforested and the most recent national policy has promoted afforestation to reach an adjust target 

of 18% by 2050 (DAFM, 2023). In Ireland, most forest stands are managed under clearfell, and 

replant systems and it is a condition of felling sites that sites must be replanted (Fedderwitz et 

al., 2022). The changing climate will also impact the health and productivity of our forests. This 

may include the frequency and intensity of things like forest fires and extreme weather events, 

but also the phenology in terms of seasonal timing of pest attacks. This has the potential to affect 

the adaptability of trees to climate change and may have social, economic, and environmental 

consequences in terms of reduced carbon sequestration. Our forests need resilience and even 

need to be able to take advantage of things like site specific factors in a future where growing 

conditions may change as the result of climate change. Forest expansion will require sustainable 

forest management and as the latest national forest strategy emphasises growing the right trees 

in the right places to promote carbon sequestration and storage as well as general forest health 

(DAFM, 2023). This strategy also includes measures such as measuring embodied carbon and 

promotion of substitution products.  

Serious threats from forest pests and diseases are on the increase due to more globalisation, trade, 

and the impacts of climate change. This is compounded by climate-related abiotic affects such 

as fire, wind, and flooding. Ireland does not have the range of forest pests and disease that are 

endemic on the continent but has had significant outbreaks in recent years notably with ash 

dieback (Hymenocyphus fraxineus) in ash trees. Achieving favourable forest health status 

incorporates the need to ensure our forests are adaptable and resilient to the future climate. 
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 Our forestry stakeholders are important in this regard and active involvement with constructive 

input is needed as a key enabler to develop fit for purpose polices and legislation in forest 

management. Ongoing monitoring and assessment of the health and condition of Irish forests 

can contribute to their overall resilience and biodiversity to aid wood production and ecosystem 

services (DAFM, 2023). Indeed, as many county councils set about their climate action plans, 

tree strategies are as important as ever in terms of things like carbon offsets in towns through 

shading for cool urban spaces but also in terms of the protection of trees. The Laois Heritage 

Forum recently mentioned this regarding the draft county climate action plan citing their joined-

up strategy within the midlands region to review tree planting methods noting that the protection 

of existing tree stocks was as vital as future planting. It was noted how 2500 saplings carbon 

offset would be the equivalent of a 100-year-old tree to explain this point (Dempsey & Moore, 

Pers. Comm., 2023). Including biodiversity indicators into forest planning is also growing in 

importance as it is a support for other ecosystem services. The overriding objective of the 

national forestry strategy was to expand our national forest estate radically and urgently on both 

public and private land in a manner that would deliver lasting benefits for climate change 

mitigation, biodiversity, sustainable wood production, economic development, employment, and 

the quality of life. The afforestation scheme will also aim to aid the rural economy and increase 

areas of native forests as well as improving purpose designed recreational areas. Equally benefits 

for water quality and the improvement and enhancement of biodiversity is important in the policy 

(DAFM, 2023). Research and innovation are key to realising projects like this and ambitious 

goals of forest strategies. There are barriers in terms of capacity and long-term research capacity. 

Forest research is currently performed by research performing organisations (RPOs) and funded 

through the departments competitive research funding programme. This has increased the quality 

of research in terms of more peer-reviewed publications and the variety of RPOs in the area. 

However, the very long nature of forest research means due to political, funding and even 

employment timeframes, this can last decades in terms of recording. This highlights the need for 

continuity and more flexible funding models with good archiving of both specific subject and 

data, and above all a focus on key factors derived from research that can guide future good 

silvicultural practice in land use, yields and impacts. This can lead to better controlling the 

establishment, growth, composition, health and quality of our future forests and woodlands 

(DAFM, 2023; Fedderwitz et al., 2022).  
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5.4.2: Recommendations for Further Research 

The influence of site-specific factors such as elevation was shown on the model and perhaps low-

cost weather stations on site as mentioned could be utilised as one policy recommendation to 

forecast weevil populations more accurately based on the temperature, they are experiencing on 

higher altitude sites for such future development of a forecast model incorporating temperature. 

Inexpensive temperature sensors could be further adopted as used in previous Irish and UK 

Research via Tinytag sensors on site or existing lab methods (Williams et al., unpublished, 

Inward et al., 2012).  Satellite data could also be beneficial.  The Spotta system offers 24/7 

monitoring of large pine weevil as explained to the researcher on site in 2021 (Lyons, Coillte, 

Pers. Comm., 2021). Improving data quality and availability is of course important to ensure the 

robustness of a forecast model. All factors could aid future weevil research. Utilising the current 

capabilities of weevil IPM in Ireland (Fedderwitz et al, 2022; Teagasc, 2020) and abroad is 

important to consider too in terms of things like The Hylobius management Support System 

(MSS) for instance (Forest Research, 2021). Its system ultimately has similar goals to this 

proposed forecast model to minimise transplant damage for foresters and aid operational goals 

while reducing chemical intervention and having a more sustainable forest management. terms 

of slope as a factor, influence was shown as well. One field study (Tolbert, 1975) looking at the 

effect of eight different aspects (slope exposures) in eastern Tennessee on arthropod distribution 

patterns (pitfall traps used for collection) found looking at various characteristics (available 

moisture, temperature, rainfall measurements, prevailing winds, solar radiation & vegetation 

cover) that southern and western exposures were categorised as warm and dry, while northern 

and eastern slopes were cool and wet. The southern facing slopes in that study were the most 

preferred for arthropod activity. The southeast and northwest slopes and the least arthropod 

activity and both were windswept. Glendine, a south facing aspect site was the most abundant 

site of weevil trial sites utilised within pineR in terms of emergence. Studies on Forest 

composition and community structures however have shown greater productivity on Northern 

aspects but dependant on location and temperature too (Harris, et al., 2019; Solbreck & 

Gyldberg, 1979).  
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The pineR model had more sites than existing research in Ireland and aided the identification 

of mismatches between predicted and observed sites. The microhabitat distribution relative to 

the soil surface of developing weevils could be affected by aspect too. (McCutchan and Fox, 

1986). Conceivably slopes could affect the model runs in terms of temperatures offsets as shown.  

Sites with offsets regarding model performance were important too. The recognition of 

differences in the gridded data correction for instance shows that the mechanism of transferring 

the model could have a possible shortcoming in terms of the 1km gridded model when sourcing 

a mean elevation over a high terrain (Walsh, 2012). Gortnapisha, as noted above, shows 

limitations in temperature constraints or the model been “too cold” to forecast emergence in its 

development. The comparison between random forest utilised in pineR to other potential 

methods could be further investigated in future work. It is proposed that further research should 

investigate different machine learning methods to improve performance of the corrected model, 

such as Bayesian additive regression trees, regularised regression, neural networks, and support 

vector machines. Machine learning offers a range of methods in terms of statistical theory to 

investigate to further improve the forecast modelling in pineR (Mello & Ponti, 2018). Issues 

such as the influence of depth were noted in research for improvement too in terms of better 

representations of forecasting first emergence. Soil was shown to have less influence on weevil 

activity as per above.   

The economic value of the forest and maximisation of timber volumes has had more traditional 

focus in forest planning as opposed to the ecological value and presence of diverse habitats. 

(Teagasc, 2021). To forecast biodiversity potential, foresters can equally use models that 

simulate growth and other biological and ecological process. As models are simplified versions 

of reality, they may exclude important components of biodiversity’s multi scales and multi-

facets. One study (Hunault-Fontbonne & Eyvindson, 2023) found that many biodiversity models 

used in forest planning mainly focus on structure and species elements, with less complexity and 

minor focus on connectivity and functions and more on genetic diversity. The inclusion of 

connectivity and biodiversity in future models is a possible recommendation to aid research 

further aiding phenological and biodiversity models. This research aims to lead to further 

development towards improving our knowledge of species adaptability and aiding improved 

IPM. The resourcing of forest genetic research may also aid this process to improve planting 

stock (Zas et al., 2017) and ensure suitably adapted reproductive material for our range of 

commercial and native forests to help the need for forestry establishment in Ireland. Forecast 

modelling offers potential always to aid Integrated Pest management.  
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If the role of the various factors which cause changes in abundance/emergence can be understood 

and related to predictable events, then modelling in its development can be properly managed to 

enable predictions for pest control for instance (Van Emden, 1989; Duffy et al., 2017). The 

potential of Information communication Technology for the semination of farmers/foresters has 

needs to be always realised further. IPM practices utilising such may be needed to solve many 

problems of sensitivity and intractability in the sustainable development of agriculture (Zuo Rui 

et al. 2012). In terms of climatology, the development of sophisticated regional climate models 

with high resolution can help improve pest simulation modelling in areas such as topography 

influenced factors and extremes (Flannagan et al. 2019). The results of the above forecast model 

in pineR demonstrate the potential of machine learning to improve upon traditional modelling 

techniques as evidenced by the favourable outcomes mostly when apply the corrected to model 

to Irish trial site weevil data (Lemos Dos Santos et al. 2023) and equally enhancing applicability 

in an Irish context from the existing UK model (Wainhouse et al., 2014). PineR has a place in 

creating a forecasting template to be further developed with the forecast model to create a refined 

method for forecasting large pine weevil emergence in Ireland utilising domain specific 

knowledge.  
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5.5 Conclusion 

The influence of temperature on biochemical reactions and resultant arthropod activity may 

either enhance or limit the effectiveness of integrated pest management. (Hallman & Denlinger, 

1998). In the interest of optimising management including chemical intervention according to 

the principles of IPM if required at the core of this research, non-pesticide options have been 

discussed. These include early planting, mounding, feeding barriers and use of more vigorous 

and thicker girth planting stock to adapt to the challenges faced by weevil attack on site 

(Willoughby et al., 2020; Teagasc, 2020; Fedderwitz et al., 2022). Cultural methods of plant 

protection have been investigated. These are practices that avoid high levels of pest infestation 

by developing conditions that are undesirable for the pest to survive or thrive. Site specific 

parameters can also help explain mismatches on site in terms of the forecast modelling between 

the observed and modelled data as seen in this research. Ultimately the covariates of interest can 

be used as identified to show factors that may significantly influence the model and take them 

into account to provide more reliable and accurate forecast predictions. This was seen notably 

with elevation being highly influential in terms of variable importance to certain sites and taken 

account of in the corrected forecast model. A crucial part of successful IPM against the large 

pine weevil has been able to estimate when the damage risk is highest to act or respond to 

emergence. Therefore, understanding how clearfell site factors influence pine weevil, with a 

view to emergence prediction in the case of the forecast model is essential. It is also important 

to improve understanding of pine weevil dynamics in terms of peak damage periods and how 

our changing climate and warmer temperatures may affect weevil development (Inward et al., 

2012) leading to potentially extended feeding periods. The pineR corrected forecast model 

forms an invaluable step in weevil emergence forecasting in Ireland. It creates a forecast model 

proposing a correction to an existing UK model (Wainhouse et al., 2014) that utilises clearfell 

geographic data matched to temperature data that drives specifically more accurate and reliable 

predictions of large pine weevil first year emergence at sites in Ireland. The step lays a path for 

a future forecasting tool that will refine the forecasting method of this important forest pest in 

Ireland.   
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Appendices: 

The following sections were completed with the assistance of Alessandra Lemos Dos Santos, 

main author of the PineR package and referenced as such throughout text (Lemos Dos Santos 

et al., 2023). It looks at the intricate functioning of the pineR package. Additional graphics 

were not utilised in main text but are included in a final section from the whole thesis.  

A(i) Functioning of pineR (Lemos Dos Santos et al. 2023)  

 

The functioning of the pineR package ultimately has a principal function called indeed 

“pineR”. The arguments include the data input covering the variables of “day”, “month”, 

“year” “min_temp”, “max_temp” and “temp” that represents the day, month, year, 

minimum, maximum, and average temperatures respectively. With that data correctly adjusted 

and modified for use in R Code, the npop, ntimes, ngen, species and depth 

arguments are specified corresponding to population size, number of models runs, number of 

generations, tree species selected (Pine or spruce) and depth of stump or soil at clear-fell site 

respectively. The soil depth is inputted with the options 1, 2 or 3 corresponding to 10cm, 20cm 

and 30cm respectively. It is worth noting here there was observed soil and stump temperature 

data at Hortland and Summerhill that became available to researchers late in the assemblage of 

pineR which was not used in the coding of the model. The principal function it is worth noting 

is divided in the following internal functions which correspond to the previously mention life 

cycle stages of the simulation model. These include the getStumpTemp, 

GetFirstGeneration or internal functions within module 1, 2,3,4, 5 and 6 

internal functions of the overall forecasting package. These numbered modules refer to the 

modularised approach discussed extensively above of life cycle progression where there are 

internal functions implementing each of them.  The principal output of the package is generated 

as mature (maturation feeding), lavalst (Larval stage), gstmonth (the oviposition month 

for the start of final generation), geetime (number of days to start of oviposition), gemwinter 

(number of winters to emergence above ground), gemmonth (month of emergence above 

ground), stageov (number of days from completion of overwintering to start of oviposition) 

and rweevil (Overwintering status of weevil). These outputs in code ultimately correspond 

the emergence simulation and predictive capabilities at trial sites generated from the pineR 

package.  
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A (II)– Random Forests 

Random Forests (RF) is an ensemble machine learning algorithm that is used widely in 

classification and regression problems. This method builds decision trees by creating a multitude 

of decision trees at training time. These build on different sample data and take a majority vote 

for classification and average in case of regression.  In the implementation of Random Forest, 

certain variables are described. In the first instance Let 𝑌𝑖 ∈ ℝ (𝑖 = 1, … , 𝑛) be an outcome 

variable. Then 𝒙𝑖 is set as a p-dimensional vector of features, and 𝐷𝑛 (a set containing 

observations) is expressed as 𝐷𝑛 = {(𝒙1, 𝑦1), … , (𝒙𝑛, 𝑦𝑛)}.  This method was first introduced by 

Breiman (2001). RF is a non-parametric machine learning algorithm, which can be used for 

classification and regression problems, based on an ensemble of decision trees stated as  

ℎ(𝒙𝑖, ; 𝜃𝑚), 𝑚 = 1, … , 𝑀, where 𝜃𝑚 are independent and identically distributed (iid) random 

vectors, and 𝑀 is the number of trees in the ensemble. 

RF uses the Classification and Regression Tree (CART) algorithm (Breiman et al., 1984) to build 

a set of (approximately) independent trees using bootstrap sampling. As in the bagging method 

(Bootstrap aggregating) (Breiman, 2001), RF uses different bootstrapped subsets which are 

randomly drawn with replacement from the data. However, in RF each decision tree uses a subset 

of features randomly selected from the original vector of features 𝒙𝑖. To generate the final fit, 

the predictions from each decision tree are averaged, ℎ̂(𝒙𝑖;  𝜽) = (
1

𝑀
) ∑ ℎ(𝒙𝑖, ; 𝜃𝑚)𝑚 . A basic 

example of the RF method for regression is illustrated in figure 4.11 below.  

In terms of predictive power, RF is generally superior to parametric models, such as generalised 

linear/additive models, in terms of predictive performance and capabilities (Breiman, 2001) on 

a broad range of data sets as it does not impose or assume any parametric form for relation 

between the response variable and covariates. Additionally, RF is generally less computationally 

expensive than other competing machine learning algorithms (such as Bayesian Additive 

Regression Trees) and has the advantage of an in-built measure of variable importance (See 

section 4.3.6.3 for more details). However, a disadvantage of RF is the black-box nature of the 

predictions which can come with some interpretational issues (Goldstein et al., 2015). 

Additionally, for RF regression, the algorithm is incapable of extrapolating values outside of the 

range of the response (Inglis et al., 2022).  
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Figure 1:  A flowchart representation describing the Random Forest algorithm for regression.  The data is separated 

into M bootstrap samples and from each sample a tree is generated. For the final fit, the predictions from each tree 

are averaged.  

A (III) Variable Importance 

Variable importance (Vimp.) is a method used in machine learning to determine the relative 

ranking of importance of the variables used in constructing a model and gives an indication 

which variables are useful or relevant for predicting the response. Random Forests use a variety 

of techniques to determine the importance of a variable in forecasts. The most popular Vimp. 

method for regression is a permutation method which aims to calculate the reduction of some 

given metric, usually the mean square error (MSE).  

Permutation importance was introduced by Breiman (2001) and is measured by observing the 

change in the model’s predictive performance after a variable has been randomly permuted. 

Commonly, the percentage increase in MSE is used as a metric for estimating importance in 

regression models. This is achieved by initially noting the MSE for the model, then, randomly 

permuting each variable and comparing the MSE for the new dataset with the original. The 

resulting Vimp score is taken as the difference between the original model’s MSE and the 

permuted model’s MSE when a single variable value is randomly permuted. In Random Forests, 

the percentage increase in MSE is calculated by permuting the values of the out of bag (OAB) 

samples.  
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This permutation based MSE measure can be described as follows from (Grömping, 2009): The 

out of bag MSE (OOBMSE) is calculated, for a tree t, as the average of the squared deviations 

of OOB responses from their respective predictions:  

 

𝑂𝑂𝐵𝑀𝑆𝐸𝑡 =  
1

𝑛𝑂𝑂𝐵,𝑡
∑ (𝑦𝑖  −  �̂�𝑖𝑡)2

𝑛

𝑖 ∈ 𝑂𝑂𝐵𝑡

,         (1) 

 

In this formula, it is shown where �̂�𝑖𝑡 are the predictions for tree t associated with OOB 

observation 𝑖, and 𝑛𝑂𝑂𝐵,𝑡 is the number of OOB observations in tree t. The idea from this is that 

if the predictor variable  𝑥𝑗 , 𝑗 =  1 , . . . , 𝑝, is unimportant in predicting y, then randomly 

permuting the values 𝑥𝑗, in the OOB data, this should have little to no effect on the prediction of y. 

Therefore, the value of the equation (2) for the 𝑂𝑂𝐵𝑀𝑆𝐸𝑡(�̃�𝑗), where �̃�𝑗 is the permuted value of 

variable 𝑥𝑗,this should not be considerably larger than 𝑂𝑂𝐵𝑀𝑆𝐸𝑡.  

𝑂𝑂𝐵𝑀𝑆𝐸𝑡(�̃�𝑗) =  
1

𝑛𝑂𝑂𝐵,𝑡
∑ (𝑦𝑖  −  �̂�𝑖𝑡(�̃�𝑗))

2
.

𝑛

𝑖 ∈ 𝑂𝑂𝐵𝑡

                  (2) 

The difference 𝑂𝑂𝐵𝑀𝑆𝐸𝑡(�̃�𝑗) −  𝑂𝑂𝐵𝑀𝑆𝐸𝑡 is then calculated, for each variable 𝑥𝑗 in each tree 

t and is then averaged over all trees in the forest and normalised by the standard deviation of the 

differences. The result provides the percentage increase in the MSE for each predictor variable 

when compared to the MSE when that predictor is permuted.  

A(IV) - Leave One Out Cross Validation 

Cross-validation (CV) is a class of techniques to evolve the prediction performance of a model 

given a dataset by subsetting it into two groups: one to train the model and the other to validate 

the correction model in this case. In CV, different partitions can be made, depending on the data 

and the type of validation desired. Among the objectives when performing cross-validation, the 

ability of a model prediction or forecast can be evaluated, compared with the performance of one 

or more different models and determined the best model fit, as well as having control over the 

calibration of predictive distributions. A popular method for performing CV is the Leave-One-

Out-Cross-Validation (LOOCV), a particular case of k-fold cross validation, where the number 

of folds and the number of instances events are equal. In LOOCV, it is not necessary to have a 

random partition, because every fold has just one instance (Wong, 2015). 
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 This means that in each iteration of the algorithm, all the data is used to train the model, except 

for a single observation. Although LOOCV produces precision estimates with a high variance, 

these are unbiased. Also, LOOCV is a good choice when the number of instances in a dataset is 

small as in the case of this research with 27 emergence trial sites as said. For more details on this 

method, see (Wong, 2015), (Refaeilzadeh et al., 2009) and (Efron, 1983).  

A(V) – Implementation of final correction forecast model.  

In this section, all the methods previously mentioned in the last sections were used to correct the 

existing difference in the forecast predictions from the adapted Wainhouse et al. (2014) model 

and the observed emergence in each trial site in Ireland. In essence, the strategy employed was 

as follows:  

 

1. Run the model (pineR implementation of Wainhouse et al. (2014)) with Irish sites. 

  

2. Calculate the difference diff𝑗𝑞, j = 1, …, 27, q = 0.25, 0.5 and 0.75 (days offset in model)  

 

3. Create a dataset with 27 rows and 6 columns, where the first column corresponds to the 

response variable, and the other columns correspond to observations of the vector of covariates, 

for example  𝒙𝒊  =  [𝑎ltitude, slope, soil type, aspect, species]. 

 

4. Obtain the predictions of the RF algorithm, considering the LOOCV (Leave one out cross 

validation). 

 

5. Obtain the VImp. measures to identify covariates of interest.  

 

6. Add to the value of the quantile q of the distribution obtained in (1) the predicted value of the 

difference calculated in (4). (Refer to above)  

 

7. Plot the corrected CDF curve and its quantile interval to implement the finalised correction 

model.  

 

 

 



 
 

123 
 

The final corrections were based on the difference observed in the 0.5 (50%) quantile which was 

the best fit. However, for some sites the best corrections were observed for the 0.25 (25%) or 

0.75 (75%) quantile values. Sites where this occurs, and unique results of the correction model 

will be discussed in the appropriate section (see the Results chapter). The quantile intervals were 

obtained considering 50 model replicates at emergence trial sites. The RF model was fit using 

the ranger algorithm within the Caret package (Kuhn, 2009) in R. The difference in emergence 

was used as the response and a LOOCV approach was used for the implementation. The model 

was tuned to optimise the RMSE value by selecting the MTRY value (That is, the depth of each 

tree was restricted), and the number of trees strictly defined was 100. To establish which 

variables are important for the forecast model determining the VImp. measures, the package 

VIVID (Inglis et al., 2021) was used. The importance type was Permutation, and the size of the 

grid for evaluating the predictions was set to 100 to achieve this and verify the correction model.  
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A(Vi) – Additional results and graphics 

dist1 <- 22.7 (Ballinla House) 

dist2 <- 30.2 (Derrygreenagh) 

dist3 <- 19.3 (Dunsany) 

  total_dist <- dist1 + dist2 + dist3. 

w1_raw <- total_dist - dist1 

w2_raw <- total_dist - dist2 

w3_raw <- total_dist - dist3 

total_weight <- w1_raw + w2_raw + w3_raw 

w1 <- w1_raw / total_weight 

w2 <- w2_raw / total_weight 

w3 <- w3_raw / total_weight 

 weighted_temp <- site1$max_temp * w1 + site2$max_temp 

* w2 + site3$max_temp * w3. 

Figure A1: An example of the original calculation of the weighted temperature values for Hortland Trial site (2010-

2012) Inputted in the model in R code.  

 

 

Figure A2: Comparison of gridded and weighted temperature data for each trial site utilised in the modelling of 

pineR. 
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Table A1: Comparison of observed weighted and gridded data temperature values for the 27 emergence trial sites 

utilised in the forecast modelling of pineR with use of the 0.01-degree resolution (1km) Met Eireann grids.  

site DG DW 

Ballinagee -14 43 

Ballybrittas 30 33 

Ballymacshaneboy 19 58 

Ballyroan1 -16 -15 

Ballyroan2 9 12 

Cashelduff 25 -22 

Clonoghil 8 -1 

Cloondara 15 12 

Deerpark -90 2 

Donadea -9 -5 

Doon -6 -14 

Glendine1 -21 36 

Glendine2 -46 28 

Hortland -14 -15 

Kilduff -31 -11 

Killurney 19 27 

Knockaville -2 -3 

ballyrao1 1 15 

Lackenrea2 3 13 

Longfordpass 39 33 

Oakwood -7 26 

Rickardstown 20 21 

Rossnagad 6 1 

Summerhill 30 23 

Tigroney -4 1 

Woodford 22 25 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

126 
 

Uncorrected model  Corrected model 

 

Hortland  

 

 

 

 

Kilduff  

 

 

 

 

Lackenrea 1  

 

 

 

 

Lackenrea 2  

 

 

 

 



 
 

127 
 

 

Figure A3: The observed and predicted simulation data (with 95% confidence intervals) for cumulative emergence of pine 

weevil at five trial sites, using weighted/co-located met station temperature data.  Results for the uncorrected (left) and 

corrected (right) model.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gurtnapisha 

 

 

 

 

 

 

 



 
 

128 
 

Uncorrected model  Corrected model 

 

Hortland  

 

 

 

Ballinagee  

 

 

 

Kilduff  

 

 

 

Summerhill  

 
 

 
 
Glendine 1 

 



 
 

129 
 

 
 

Lackenrea1  

  
Lackenrea 2  

  
Deerpark  

 

 

 

Figure A4: The observed and predicted simulation data (with 95% confidence intervals) for cumulative emergence 

of pine weevil at five trial sites, using gridded temperature data (Walsh, 2012).  Results for uncorrected (left) and 

corrected (right) model.  Gortnpisha did not run. 
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Table A2: (Referencing Table 3.1 in main text): Site specific information of data inputs where 

trial sites were utilized (27) into the forecast modelling of pineR. Note that sites with one station 

are classified co-located sites.  

Site Name Easting Northing  Years (Trial 

years) 

Co: Weather stations used & 

Distances to trial sites* 

Ballinagee 304739 202623 03-05’ Wicklow Ashford (22.8km),  

Genially (24.4km) 

Ballybrittas 258208 205198 01-03’ Wicklow Athy(17.7km), 

Durrow(32.7km), 

B. House(25.9km), 

Derrygreenagh(32.9km) 

Ballymacshaneboy 160232 118082 06-08’ Cork Mount Russell (2.08km) 

Ballyroan 1 248305 199495 99-01’ Laois Athy (21.5km),  

B. House (32.9km), 

Nealstown (29.2km),  

Derrygreenagh (30.4km) 

Ballyroan 2 248305 199495 00-02’ Laois Athy (21.5km),  

B. House (32.9km), 

Nealstown (29.2km),  

Derrygreenagh (30.4km) 

Cashelduff* 152794 298793 16-18’ Mayo Knock Airport (6.97km) 

Clonoghil* 224771 192091 14-16’ Laois Nealstown (5.58km) 

Cloondara* 206590 276631 13-15’ Longford Mount Dillon (5.46km) 

Deerpark 319829 213339 06-08’ Wicklow Ashford (17.2km), 

Glenealy (25.2km) 

Donadea 283467 232596 03-05’ Kildare B. House (26.2km), 

Derrygreenagh (34.1km) 

Doon 210178 231902 14-16’ Offaly Horseleap (19.2km),  

Gurteen (32.9km),  

Mullingar (40km)  

Glendine 228105 205254 12-14’ Offaly Nealstown (14.6km),  

Gurteen (29.1km), 

Durrow (30.8 km) 

Glendine trial 1 228105 205254 06-08’ Offaly Nealstown (14.6km),  

Gurteen (29.1km) 

Glendine trial 2 228105 205254 06-08’ Offaly Nealstown (14.6km),  

Gurteen (29.1km) 

Gurtnapisha* 229687 133751 14-16’ Tipperary Fethard (9.63km) 

Hortland 280071 235376 10-12’ Kildare Dunsany (19.3km),  

Derrygreenagh (30.2km), 

B. House (22.7km),  

Lullymore (13.2km)  

Kilduff* 245863 232411 10-12’ Westmeath Derrygreenagh (6.56 km) 

Killurney 226985 129529 13-15’ Tipperary Fethard (11.2km),  

Dungarvan (36.6km),  

Kilkenny-Gh. (35.3km) 
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*Sites less than 10km were treated as co-located sites (one weather station used) within the 

weighted iteration of the pineR forecast model. They sites are highlighted in yellow above.  

 

 

 

 

 

 

 

 

 

Knockaville 251079 249223 13-15’ Westmeath Mullingar (10.2km),  

Derrygreenagh (11.2km), 

B. House (18.3km), 

Horseleap (26.4km)  

Lackenrea 1 213159 101660 06-08’ Waterford Moorepark (30.8km), 

Dungarvan (11.4km),  

Ballincurrig (31.9km),  

Fethard (40.2km) 

Lackenrea 2 213159 101660 06-08’ Waterford Moorepark (30.8km), 

Dungarvan (11.4km),  

Ballincurrig (31.9km),  

Fethard (40.2km) 

Longfordpass 224385 160911 15-17’ Tipperary Fethard (20.6km),  

Durrow (23.5km),  

Kilkenny GH. (26.5km),  

Nealstown(32.8km).  

Oakwood 302744 201731 04-06’ Wicklow Ashford (24.3km),  

Glenealy (25.3km) 

Rickardstown 253419 263671 15-17’ Westmeath Mullingar (14.4km),  

Derrygreenagh (25.6km),  

B. House (31.8km) 

Rossnagad 243350 203335 11-13’ Laois Oakpark (37.5km), 

B. House (31.8km), 

Durrow (26.2km),  

Nealstown (25.0km)  

Summerhill* 284015 245951 09-11’ Meath Dunsany (8.2km) 

Tigroney* 320644 183264 14-16’ Tipperary Glenealy (6.48km) 

Woodford 170183 197082 16-18’ Galway Athenry (37.2km), 

Gurteen (29.2km) 



 
 

132 
 

Table A3.  (Referencing Figure 5.1): Nearest Weather Station altitude and corresponding large 

pine weevil trial sites height of sites utilized in final modelling of pineR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Co-located sites (one weather station used in model) are marked above. 

 

 

Trial Site Name 

 

Altitude 

Nearest  

Met. Weather 

Station 

 

Altitude   

Ballinagee 425m Ashford 15m 

Ballybrittas 68m Athy 61m 

Ballymacshaneboy* 323m Mount Russell  195m 

Ballyroan 1 4m Nealstown 219m 

Ballyroan 2 4m Nealstown 219m 

Tigroney* 246m Glenealy  122m 

Cashelduff* 215m Knock Airport 201m 

Clonoghil* 127m Nealstown 219m 

Cloondara* 41m Mount Dillon 39m 

Deerpark 260m Ashford 15m 

Donadea 64m Dunsany 83m 

Doon 71m Horseleap 72m 

Glendine 380m Nealstown 219m 

Glendine trial 1 380m Nealstown 219m 

Glendine trial 2 380m Nealstown 219m 

Gurtnapisha* 466m Fethard 165m 

Hortland 76m Lullymore 85m 

Kilduff* 93m Derrygreenagh 94m 

Killurney 371m Fethard 165m 

Knockaville 95m Derrygreenagh 94m 

Lackenrea 1 170m Dungarvan 18m 

Lackenrea 2 175m Dungarvan 18m 

Longfordpass 130m Fethard (PH) 165m 

Oakwood 250m Glenealy  122m.  

Rickardstown 89m Mullingar 101m 

Rossnagad 94m Nealstown 219m 

Summerhill* 90m Dunsany 83m 
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Figure A5-A7: Boxplots displaying influence of trial sites aspect on pineR utilising data at all 27 trial sites prior 

to correction been implemented or applied in original forecast model. Boxplots are covering influence of aspect at 

each depth inputted in original model in order of 10cm, 20cm, 30cm.  

 



 
 

134 
 

 


