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Abstract
This paper introduces constraints on player choices in a broad class of all-pay auctions
by allowing for upper bounds on players’ strategy sets. It proves the existence of
equilibrium and derives simple closed-form formulae for players’ expected payoffs in
any equilibrium. These formulae are straightforward to calculate in applications and do
not require the derivation of the equilibrium or equilibria. This may be useful because:
(i) In some applications players’ expected payoffs are the main item of interest. For
example, one may be concerned about the effect of a policy on the market participants.
In these cases the results can be used directly, bypassing the need for the full derivation
of the equilibrium. (ii) In all-pay auctions, equilibrium is typically in mixed strategies.
So in applications where the full characterization of the equilibrium is of interest,
finding the players’ expected payoffs is a crucial first step in the derivation of the
equilibrium.
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1 Introduction

Often agentsmake costly irreversible investments in hope ofwinning a prize. In all-pay
auctions, the playerswith the highest scores obtain a prize each but thewinners’ and the
losers’ costs of effort are at least partially sunk.All-pay auctions are used inmany areas
of research including rent-seeking, political contests, lobbying, patent races, litigation,
job tournaments, sports economics, advertising competition, and competition over
college seats in selective universities. In any of these competitive settings, contestants
maybe facedwith constraints.1 For instance, in theUSAacaponpolitical contributions
restricts lobbyists who may be attempting to buy policy favors through their political
donations (Che and Gale 1998; Pastine and Pastine 2010). In most of Europe and
in Canada politicians and political parties are faced with campaign spending limits
(Meirowitz 2008; Pastine and Pastine 2012b). In rent-seeking and R&D contests,
participants may have liquidity constraints (Leininger 1991). In litigation, the plaintiff
and the defendant fighting over a favorable court decision have a deadline for collecting
evidence (a time constraint) and they may face liquidity constraints. In the labor
market, employees aiming to impress for promotion are restricted by a maximum of
24h of work in a day. In US professional sports leagues (NBA, NFL, NHL, MLS)
teams are constrained with annual salary caps. There are score ceilings in the college
admissions process as one cannot exceed 2400 on the SAT. The literature on contests
with constraints has proceeded via complete characterization of equilibria in well-
chosen problems. However, the need to derive the equilibrium in order to have any
results naturally limits analysis to problems which are analytically tractable.

In this paper we incorporate constraints on players’ actions in a broad class of
complete information all-pay auctions by imposing upper bounds on the strategy sets
of some, all or none of the players. We show that equilibrium exists and derive simple
closed-form formulae for players’ equilibrium expected payoffs.

The expected payoff formulae are straightforward to calculate and do not require the
full derivation of the equilibrium or equilibria. The results are useful for two reasons:
(i) In some applications players’ expected payoffs are the main item of interest. For
example, one may be concerned about the effect of a policy on the market participants.
In these cases the results can be used directly, bypassing the need for the full derivation
of the equilibrium. (ii) In all-pay auctions equilibrium is typically in mixed strategies,
so in applications where the full characterization of the equilibrium is of interest,
finding the players’ expected payoffs is a crucial first step in the derivation of the
equilibrium.

1 See, among others, Hillman and Samet (1987), Hillman and Riley (1989), Ellingsen (1991), Baye et al.
(1993), and Konrad (2002) for contests in rent seeking; Che and Gale (2006), Kaplan andWettstein (2006),
Pastine and Pastine (2013) and Szech (2015) for political contests; Bond (2009) for litigation contests;
Clark and Riis (1998) for job tournaments; Pastine and Pastine (2011) for advertising competition; Fu
(2006) and Pastine and Pastine (2012a) for affirmative action in college admissions Che and Gale (1996).
Gavious et al. (2002), Dekel et al. (2007), Sahuguet (2006), Kirkegaard (2008), and Pai and Vohra (2014)
for frameworks with incomplete information and constrained players. See Rapoport and Amaldoss (2000)
for an experimental analysis of all-pay auctions with bid caps and the comment in Dechenaux et al. (2006).
See Megidish and Sela (2014) for constraints in a sequential contest. See Konrad (2009) for an extensive
survey on contests.
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The secondmajor result showing that equilibrium exists is non-trivial because there
is a continuum of pure strategies and payoffs are discontinuous in a player’s choice
and so classical existence proofs do not apply. Moreover, we cannot use the innovative
existence literature based on Reny (1999) as in this setting better-reply security and
related concepts are generally incompatible with constraints which result in compact
strategy sets. Somewhat unusually, we can guarantee equilibrium existence only for
cases were players have non-compact strategy sets.

The class of contests we work from was first analyzed in Siegel (2009). The class
includes standard linear all-pay auctions as well as contests with many players and
multiple prizes. The framework can incorporate contests with conditional investments
(costs that are paid only in victory or only in defeat), head starts, and non-ordered
payoff functions. We extend this framework to include constraints on some, all, or
none of the players’ actions. Hence the results of Siegel (2009) are a special case.

Section 2 presents the model. The two main results are developed in Sects. 3 and 4:
Sect. 3 derives the payoff results while Sect. 4 presents the proof of equilibrium exis-
tence. Section 5 provides an illustrative application taken from the literature showing
how the results can be used in practice. Finally, Sect. 6 presents a straightforward but
potentially useful participation result.

2 Themodel

The paper closely tracks the framework of Siegel (2009)—henceforth Siegel. Wher-
ever possible we maintain the same notation. Here we follow the bulk of the literature
by using the terminology “all-pay auction” for any contest with a perfectly discrimi-
nating contest success function. Siegel adopts a narrower definition. In order to avoid
confusion when utilizing the work in Siegel we will use the terms auction and contest
interchangeably, with the proviso that here “contests” will include only contests with
perfectly discriminating contest success functions. In cases where we alter an assump-
tion or a result in Siegel and the change is a strict generalization from the no-constraints
case, we add “generalized” to the label of the assumption/result to make the changes
clear. In cases where the assumption/result is altered and the change is not a strict
generalization we append “modified” to the label. Subsequently these qualifiers are
omitted when no confusion is likely to result.

n players compete for m homogeneous prizes where 0 < m < n. Each player i
simultaneously and independently chooses a score si from his set of feasible scores
Si which is an interval of R. ai ∈ [0,∞) is the initial score of contestant i if he puts
forth no effort to improve his score, ai = inf Si , and we assume that ai ∈ Si . Players’
initial scores give their degree of headstart advantage.

The players with the highest m scores each win one prize. In the case of ties, any
tie-breaking rule to allocate the prizes among the tied players is permitted. Given a
profile of scores s = (s1, . . . , sn), player i’s expected payoff is:

Qi (s)vi (si )−[ 1 − Qi (s)]ci (si )

where Qi (s) is player i’s probability of winning at profile s. His payoff if he wins is
given by vi (si ). His payoff if he loses is −ci (si ). vi and ci are defined ∀si ∈ Si .
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There are certainly important issues that this specification cannot address.2 How-
ever, it does allow for a broad class of all-pay auctions: It can incorporate contests
with many players with potentially differing valuations, identical prizes, conditional
investments, non-ordered asymmetric cost functions with players who have cost or
payoff advantages in different ranges of scores, and contests with variable rewards
where the value of the prize to the player depends on his own score. Note that vi (si )
is the net value of winning the prize. There is no requirement that −ci be parallel
to vi . This permits analysis of contests where players make conditional investments.
For example, an Olympic committee may promise to build a stadium if the games
are held in their city. By specifying a range of si in which ci is constant while vi is
decreasing, the framework permits such promises of actions to be taken only in vic-
tory. Disconnecting the cost of losing and the value of winning also permits analysis
of situations where the difficulty in carrying out an action depends on the outcome of
the competition. For example, a politician who borrows money for his campaign may
find it easier to raise the funds to repay the loan if he is elected.

Denote ki = sup Si so that for cases where ki < ∞, ki is a ceiling on the player’s
choice of score. Such an upper bound on a player’s strategy set will be termed a
constraint. Section 5 presents an example showing how constraints on players’ choices
result in upper bounds on players’ strategy sets. We permit either ki ∈ Si or ki /∈ Si .
The introduction of a constraint is without loss of generality as the affinely extended
real numbers permit the notation ki = ∞ to represent the absence of a constraint.
Constraints are permitted for any, none or all players and at any scores. Hence the
paper generalizes Siegel in which players do not have constraints, i.e. ki = ∞ for all
players.
To proceed we need to place three assumptions on vi and ci :
Assumptions:
A1: vi and −ci are continuous and nonincreasing
Generalized A2: ci (ai ) = 0, vi (ai ) > 0 and if ki = ∞ then lim si→∞vi (si ) < 0
A3: ci (si ) > 0 if vi (si ) = 0

The framework permits analysis of auctions where effort increases the value of the
prize. However, the assumption on vi in A1 implies that conditional on winning an
increase in the score does not increase the value of the prize by more than the cost
of additional effort. A3 and the assumption on ci in A1 capture the feature of all-pay
auctions where the winners’ and the losers’ costs of effort are at least partially sunk.
However, they do not require that the cost of incremental effort is sunk. A2 implies
that a prize has a strictly positive value for each player and the payoff conditional on
winning is negative with a high enough score.
It is useful to define some terminology which is key to the analysis.
Definitions:
(i) A player i is said to be restricted at x if x = ki and one of two conditions are
satisfied: (a) x ∈ Si and vi (x) > 0 or (b) x /∈ Siand limz→x−vi (z) > 0. So, a player
is restricted at x if he has a positive value from winning at score at x or approaching
x from below, but he is unable to exceed that score due to his constraint.

2 Examples include identity-dependent externalities, Klose and Kovenock (2015), non-identical prizes,
Olszewski and Siegel (2020), stochastic prize valuations, Siegel (2014b) and Antsygina and Teteryatnikova
(2022), minimum bids, Muratov (2021), and score ranges that are effectively ties, Gelder et al. (2019).
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Fig. 1 Low reach does not imply
low power

(ii) Player i’s generalized reach, ri , is the supremum of the feasible scores at which
the player’s valuation for winning is non-negative, ri = sup{si ∈ Si : vi (si ) ≥ 0}. Re-
index players in any decreasing order of their reach, so that r1 ≥ . . . ≥ rm ≥ . . . ≥ rn .
(iii) Player m + 1 is the marginal player. The indexing of the players ensures that
there is only one marginal player. If there are multiple players with the same reach the
identity of the marginal player will be arbitrary but there will only be a single marginal
player.

(iv) The threshold, T , of the contest is the reach of the marginal player: T = rm+1.
(v) Player i’s generalized power, wi , is his valuation of winning at his highest

feasible score that is less than or equal to the threshold if he is able to choose such a
score. If he can only choose scores above the threshold, his power is his valuation from
winning at his lowest feasible score. Formally, if ai ≤ T let z = sup{si ∈ Si : si ≤ T }
and if ai > T let z = ai . Player i’s power is:

wi =
{

vi (z) if z ∈ Si
limx → z−vi (x) if z /∈ Si

The definitions of reach and power are generalizations of the concepts from Siegel
to permit the possibility that players may be constrained at their reach.

When players have no constraints, players with ri ≤ T have power wi ≤ 0.
However with constraints, the power of players with ri ≤ T may be positive. If a
player i > m is constrained at his reach, then it is possible that wi > 0. For instance,
consider the contest in Fig. 1with one prize and two players. Player 1 has no constraint.
Player 2’s valuation of the prize is high but he is constrained and cannot achieve a
score greater than k2. The reach of Player 1 is r1. The reach of Player 2 is k2. Since
r1 > r2, Player 2 is the marginal player. The threshold of the contest is T = k2. The
marginal player has a higher power than player 1,w2 > w1 > 0, which cannot happen
in the model without constraints.

In order to focus on the pertinent issues, in the figures for the examples we graph
only vi and not ci . Notice that given vi (ai ) > ci (ai ) = 0, the definitions of reach,
threshold and power are based only on the players’ valuations from winning and not
on the shape of players’ costs of losing, ci (si ). Under the assumptions above and some

123



988 I. Pastine and T. Pastine

additional assumptions below, it will be shown that to find player i’s expected payoff
in any equilibrium, all one needs to calculate is the players’ reaches, the threshold and
wi . While a player’s cost of losing and shape of vi away from the threshold typically
alter the equilibrium, they do not affect the expected payoffs.

We need to place additional restrictions on the game, termed generic conditions.
These conditions restrict attention to games that are generic in the sense that any auction
that fails to meet the conditions can be perturbed slightly so that it does. In many
sufficiently parameterized models the generic conditions will hold with probability
one if the relevant parameters are drawn from continuous distributions before they
become common knowledge. For example, the applications presented in Sect. 5 have
this feature.

The generic conditions are needed to guarantee that there is at least one equilibrium
where tied scores occur in with probability zero—although such ties are permissible.
When the generic conditions do not hold, general statements about player expected
payoffs are not likely to be forthcoming. Klose and Kovenock (2015) show that such
games can have multiple equilibria which are not payoff equivalent.

The generic conditions are divided into two groups, weak generic conditions and
strict generic conditions. A contest that satisfies the weak generic conditions, is a
weakly generic contest. The weak generic conditions are requirements on the game
in the neighborhood of the threshold. They are sufficient to establish the expected
payoff result. If an auction satisfies both the weak and strict generic conditions, it
is a strictly generic contest. The strict generic conditions are requirements on the
game in the neighborhood of the constraints of players whose constraints may be
binding in equilibrium. Any auction without constraints that is generic in the sense of
Siegel satisfies both sets of generic conditions and hence any generic contest without
constraints is also a strictly generic contest.

Section 3’s results deriving simple closed-form formulae for players’ expected
payoffs in any equilibrium are valid for contests that satisfy the followingweak generic
conditions:

(i) Generalized Power Condition: Themarginal player is the only player with reach
at the threshold and players {1, . . . ,m} have non-zero power.

(ii) Generalized Cost Condition: The marginal player has strictly decreasing
valuation from winning just below the threshold. That is, for any x ∈ [am+1, T ),
vm+1(x) > limz→T−vm+1(z).

The Generalized Power Condition parallels Siegel’s Power Condition which
requires that the marginal player is the only player with power zero. However with
constraints the marginal player may be restricted at the threshold. As in Fig. 1, there
may be no player with zero power. It is also possible that a player i > m+1 has power
zero if vi (ki ) = 0. The conditions are equivalent in cases where ki > ri ∀ i > m.

Note that the Generalized Power Condition rules out the cases where the value of
winning vi of any player i∈ {1, . . . ,m} is zero at the threshold. The Generalized Cost
Condition rules out cases where the value of winning of the marginal player, vm+1, is
constant in si in the neighborhood just below the threshold. Contests that do not meet
the weak generic conditions can be perturbed slightly to meet them. For instance, if
there are two players with the same reach at the threshold, giving one of the players an
arbitrarily small headstart advantage or the slightest valuation advantage can create a
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contest thatmeets theGeneralized PowerCondition. Likewise, perturbing themarginal
player’s head start or valuation for winning around the threshold can generate a contest
that meets the Generalized Cost Condition.

At first glance, the Generalized Power Condition may seem problematic in applica-
tionswhere constraints are legal prohibitions. It seems intuitive that theremay bemany
players with reach at the threshold since all players may be subject to the same legal
constraint. However, legal restrictions are typically on actions rather than on scores.
Arbitrarily small differences in players’ head starts or technology of converting actions
into scores will lead to different score constraints even with identical constraints on
actions. For instance, in Che and Gale (1998) political donors face the same contri-
bution cap. The contest does not satisfy the Generalized Power Condition because
the donors have the identical effectiveness in converting donations into political influ-
ence (scores). However, the political donation contest satisfies the Generalized Power
Condition if the donors have even the slightest difference in technology of converting
donations into influence, see Pastine and Pastine (2010). Likewise, the Generalized
PowerCondition is satisfied if the politician has any initial policy preference—however
small—providing one of the contributors a head start.

It will prove useful to define several sub-groups of players. Let Nw = {1, . . . ,m}
denote the set of players with the m highest reaches. In any weakly generic contest
each player in Nw has reach greater than the threshold. NL = {m + 1, . . . , n} denotes
the set of remaining players. All players in NL have reaches less than or equal to the
threshold. Define N̂L as the subset of players in NL who have reaches equal to their
constraint, N̂L = {i ∈ NL : ri = ki }.

Since for the players in NL scores si > T are either infeasible or strictly dominated
by ai , the players in NL are either unable or unwilling to exceed the threshold. So any
of the m players in Nw can guarantee victory by choosing si = max{ai , T + ε} for
sufficiently small, positive ε. They do not have to go all the way up to their reach in
order to ensure victory. So in equilibrium their constraints will not be binding. Players
in NL\N̂L have reaches less than their constraint. In equilibrium their constraints will
not be binding. Therefore N̂L contains all the players whose constraints may possibly
be binding in equilibrium.

In order to guarantee that an equilibrium existswe need to impose additional generic
conditions in the neighborhood of the constraints of the players in N̂L . A contest is
strictly generic if in addition to the above weak generic conditions, it satisfies the
following strict generic conditions:

(i) Strategy set condition No player in N̂L has si = ki in his set of possible choices.
That is ki /∈ Si∀i ∈ N̂L .

(ii) Strict cost condition All players in N̂L have their valuation from winning
strictly decreasing just below their reach and if player m + 1 is in N̂L then he has
a strictly positive payoff from winning for scores approaching his constraint. That
is ∀ i ∈ N̂L , vi (x) > limz→r−

i
vi (z) for any x ∈ [ai , ri ) and if m + 1 ∈N̂L then

limz→k−
m+1

vm+1(z) > 0.

(iii) All-pay condition All players in N̂L have a positive cost of losing when
approaching their constraint. That is ∀ i ∈ N̂L , limz→k−

i
ci (z) > 0.
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(iv) Constraint condition No two players in N̂L have identical constraints. That is
∀ i, j ∈ N̂L where i �= j , ki �= k j .

Since these strict generic conditions are on the specification of the game in the
neighborhood of the constraints of players in N̂L , any weakly generic contest without
constraints is also strictly generic. These are generic conditions in the sense that any
contest that fails to meet them can be perturbed slightly to meet them.

The Strategy Set Condition permits constraints of the form “spending must be less
than x” but precludes constraints of the form “spending cannot be greater than x.”
Any contest that fails to meet the Strategy Set Condition can be perturbed to meet
it by removing a single point (ki ) from the set of possible choices for each of the
offending players. Also notice that this condition implies ki > ai for players in N̂L .
It is interesting to note that many games in the literature involve spending money to
increase players’ scores. In these cases the underlying reality is a discrete-choice game
as monetary units are not infinitely divisible. Continuous-choice games are analyzed
solely due to their tractability. However in these cases, the choice of open or closed
intervals for constraints is entirely arbitrary. In reality “spending cannot be greater
than $10,000” is equivalent to “spending must be strictly less than $10,000.01”. When
moving to a continuous-choice approximation of the discrete-choice reality, there is
no reason to prefer one over the other except for tractability.

The first part of the Strict Cost Condition is an extension of the Generalized Cost
Condition to players in N̂L , rather than applying it just to the marginal player. The
second part says that if themarginal player’s constraintmaybe binding he has a positive
payoff from winning approaching his constraint. As such, any game that fails to meet
the Strict Cost Condition can be perturbed to meet it by increasing any offender’s
payoff from winning at or just below the constraint by an arbitrarily small amount.

The All-Pay Condition requires that for players in N̂L at least some of the cost
of effort is sunk locally in the neighborhood of their constraint. The contest has an
all-pay nature for those players. A contest that fails to meet the All-Pay Condition
can be perturbed to meet it by adding an arbitrarily small amount to each offending
player’s cost of losing just below his constraint.

The Constraint Condition guarantees that no two players have binding constraints at
the same score. A contest that fails to meet the Constraint Condition can be perturbed
to meet it by arbitrarily small changes to the offending players’ constraints. Again
at first glance this may seem problematic in applications where the constraints come
from legal prohibitions, since all players may be subject to the same laws. However,
arbitrarily small differences in players’ head starts or technology of converting actions
into scores will lead to different score constraints even with identical constraints on
actions. The application in Sect. 5 provides an example from the literature which
illustrates this.

3 Payoff characterization

In this section we develop the characterization for the expected payoffs in any
equilibrium of any weakly generic contest. Three lemmas are used in the payoff
characterization. The first two of these intermediate steps are modifications of the
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corresponding items in Siegel rather than strict generalizations. Here we permit con-
straints but confine the domain to weakly generic contests whereas the proofs in Siegel
apply to any unconstrained contest whether generic or not.

For each player define Gi as a cumulative distribution function that assigns prob-
ability one to scores in Si and let Gi (si ) be that c.d.f. evaluated at score si . For a
strategy profile G = (G1, . . . ,Gn), let G−i = (G1, . . . ,Gi−1,Gi+1, . . . ,Gn), the
strategy profile of all players except player i. Pi (si ;G−i ) is player i’s probability of
winning when he chooses si ∈ Si and all other players play according to G. Similarly
define expected utility ui (si ;G−i ) =Pi (si ;G−i )vi (si )−[1−Pi (si ;G−i )]ci (si ).3 The
score si is in player i’s best response set if si ∈ argmaxx∈Si ui (x;G−i ). si is in the
support of player i’s strategy if it is chosen with non-zero probability in Gi . G forms
an equilibrium if in G for each player i, all scores in the support of i’s strategy are in
his best response set.

Modified Least Lemma In any equilibrium of a weakly generic contest, the
expected payoff of each player in Nw is at least his power and the expected payoff
of each player in NL is at least zero .

Proof In equilibrium no player would choose a score higher than his reach since such
a score is either infeasible or is strictly dominated by ai . By the definition of a player’s
power and the threshold at mostm players can have reach strictly greater than T . Since
players i ∈ Nw who have ai ≤ T are not restricted at T and are able to exceed the
threshold by ε (Assumption A1), they can guarantee an expected payoff that is equal
to their power. Players i ∈ Nw who have ai > T can win with certainty at si = ai
by the Power Condition and hence can guarantee a payoff equal to their power. Each
player i ∈ NL can guarantee a payoff of at least zero by simply choosing ai . 	


The Modified Least Lemma establishes a lower bound for player payoffs in any
equilibrium. We now need to establish an analogue of the Zero Lemma (Siegel pg 80)
showing that for the players in NL the expected payoff must be equal to this lower
bound. In Siegel this is done using an intermediate step termed the Tie Lemma (Siegel
pg 80) which shows that in any equilibrium if two or more players play strategies with
atoms at the same score (choose that score with strictly positive probability) then all
such players either win or lose with certainty at that score. In the next section we will
develop an analogue of the Tie Lemma for strictly generic contests with constraints.
As in the original Tie Lemma, the proof relies on a player’s ability to increase his score
slightly to avoid ties when his probability of winning is positive but less than one in a
tie. Unfortunately, this is not always possible for ties at ki when ki ∈ Si . However, we
will need to show the expected payoff result for cases where ki ∈ Si in order to prove
the existence of equilibrium in the next section. Therefore here we tweak the proof of
the Zero Lemma to bypass the use of the Tie Lemma:

Modified Zero Lemma In any equilibrium G of a weakly generic contest, all
players in NL must have scores in the support of their strategies in G with which they

3 In order to emphasize the dependence of player i’s probability of winning and expected utility on the
strategies of the other players we’ve altered the notation in Siegel slightly here. When following the proofs
in Siegel it is useful to note that our Pi (si ;G−i ) is the same as Siegel’s Pi (si ) and our ui (si ;G−i ) is the
same as Siegel’s ui (si ).
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win with probability zero or arbitrarily close to zero. These players have expected
payoff of zero.

Proof Let J denote a set of players including the m players in Nw plus any one other
player j ∈ NL . Let S̃ be the union of the best-response sets of the players in J and let
sinf be the infimum of S̃. Consider three cases: (i) two or more players in J have an
atom at sinf , (ii) exactly one player in J has an atom at sinf , and (iii) no players in J
have an atom at sinf . Examination of these cases helps establish the expected payoffs
of players in NL .

Case (i) Initially denote N ′ ⊆ J as the set of all players in J with an atom at
sinf where |N ′| > 1. Every player in J \ N ′ chooses scores greater than sinf with
probability 1. Therefore even if every player that is not in J chooses scores strictly
below sinf with probability 1, that leaves one too few prizes to be divided between |N ′|
players. So not all players in N ′ can win at sinfwith certainty.

If there are any players in N ′ with probability of winning at sinf equal to 1, remove
them from N ′ so that Pi (sinf ;G−i ) < 1 ∀ i∈N ′. If |N ′|=1 then that player i loses
with certainty with score sinf and i’s expected payoff cannot be positive. From the
Modified Least Lemma and the Generalized Power Condition this player cannot be
in Nw, so he must be the one player in J \ Nw, and he must have expected payoff
equal to zero. If |N ′| > 1, then let H be the set N’ ∩ Nw. Since there is only one
player in J \ Nw, |H |∈ {|N ′| − 1, |N ′|}. For no player i ∈ H can the probability of
winning at sinf be equal to zero. If it were, i would have ui (sinf ;G−i ) ≤ 0 and he
must have a positive payoff by the Modified Least Lemma and the Generalized Power
Condition because H⊂Nw. If player i loses ties with other players in N ′ with positive
probability, Pi (sinf ;G−i )∈(0,1). But this is not possible for any i ∈ H, since i can
do better by increasing his score slightly above sinf to avoid ties by the Generalized
Power Condition. Hence at sinf every player in H must win every tie with other players
in N ′. This is not possible if |H |=|N ′| since there are not enough prizes for all the
players in N ′. Hence |H |=|N ′| − 1 so j∈N′ and j loses all ties with members of N ′
at sinf . Therefore Pj (sinf ;G− j ) = 0 and ui (sinf ;G−i ) ≤ 0 since j ∈ N’ and j ∈NL .
By the Modified Least Lemma his expected payoff must be zero.

Cases (ii) and (iii) The corresponding proofs in Siegel apply without modification
and establish that in both cases one player i ∈ J has a score in the support of his strategy
in which he wins with probability 0 or arbitrarily close to 0 and has an expected payoff
of at most 0. By the Modified Least Lemma i must have a payoff of 0, and by the
Generalized Power Condition i ∈ NL and so i = j .

The above applies for each player j ∈ NL. 	


Generalized threshold lemma In any equilibrium G of a weakly generic contest,
the players in Nw have scores in the support of their strategies in G that approach or
exceed the threshold and, therefore, the players in Nw have an expected payoff of at
most their power.

The proof is omitted here as the proof of the Threshold Lemma in Siegel applies
without modification noting only that with constraints players in NL\{m + 1} may
or may not have negative powers, however they still have reaches strictly below the
threshold.
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From these intermediate results we can establish the first of the two main results of
the paper. The Expected Payoff Result is a generalization of Theorem 1 in Siegel.

Expectedpayoff result In any equilibriumof aweakly generic contest, the expected
payoff of each player in Nw is equal to his power which is greater than zero, and the
expected payoff of each player in NL is zero, which is less than his power if he is
restricted at his reach.

Proof The Modified Least Lemma and the Generalized Threshold Lemma establish
that players in Nw have expected payoffs equal to their power which is greater than
zero by the Generalized Power Condition. The Modified Zero Lemma establishes that
the players in NL have expected payoffs equal to 0. If a player in NL is not restricted
at his reach, his power is less than or equal to zero. If he is restricted at his reach his
power is greater than zero so his expected payoff is less than his power. 	


Because players’ expected payoffs from the contest depend only on the order of
their reaches and on their valuation of winning at the threshold, the striking implication
of Siegel continues to hold in contests with constraints; The players’ costs of losing
and the shape of vi away from the threshold do not affect equilibrium expected pay-
offs. They will typically have an effect on equilibrium strategies, but not on expected
payoffs. Similarly, presuming that an equilibrium still exists (which will be addressed
in the next section) and that the contest remains weakly generic, a change in the con-
straint of any player other than the marginal player does not affect the expected payoff
of any player as long as the change does not alter the identity of the marginal player:

Implications of theExpectedPayoffResult In any equilibriumof aweakly generic
contest, consider a small change in a player’s constraint such that the identity of the
marginal player remains the same:

• A small change in the constraint of any player other than the marginal player
does not affect the payoff of any player.

• A small change in the marginal player’s constraint does not affect the payoff of
any player in NL(including his own).

• If the marginal player is restricted at km+1 then relaxing his constraint (weakly)
decreases the expected payoff of each player in Nw.

Proof Follows directly from the Expected Payoff Result, assumption A1, the defini-
tions of reach and power and the Generalized Cost Condition. By the definitions of
reach and power any change to a single player’s constraint that doesn’t alter the identity
of the marginal player will leave the members of the sets NL and Nw unaltered. Since
there is only one player with reach at the threshold by the Generalized Cost Condition,
a change in one player’s constraint that doesn’t alter the identity of the marginal player
can only alter the threshold if that player with the changed constraint is the marginal
player. If the player with the changed constraint is not the marginal player then all
players in NL have expected payoff of zero before and after the change and all players
i ∈ Nw have expected payoff of vi (T ) both before and after the change, proving the
first part. Since the members of NL are unaltered and include the marginal player,
by the Expected Payoff Result they all have an expected payoff of zero before and
after the change in constraint, proving the second part. By the definitions of reach and
the threshold, if the marginal player is restricted at km+1, then relaxing his constraint
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(increasing km+1) will increase the threshold. By the Expected Payoff Result players
i ∈ Nw have expected payoff of vi (T ) so by A1 increasing T weakly decreases vi (T ),
proving the third part. 	


It follows that a player’s expected payoff is affected by a change in his ownconstraint
only if the change in his constraint switches him between Nw and NL . Other changes
in his constraint will typically affect equilibrium strategies, but they will not affect the
player’s own payoffs.

This may have useful applications. Consider a two-stage game in which in the first
stage players invest in relaxing their constraints by increasing their credit limits, adding
factory capacity, registering voters, building an R&D lab etc. Then in the second stage
they engage in a contest. The Expected Payoff Result in the second stage implies that
the investment decision in the first stage would also have an all-pay contest structure.
Players would either want to invest enough to become playerm, and not more, or they
would not want to invest at all. This is but one of many possible multi-stage contests.
Other examples include contests where the first stage is in another dimension such as
Kaplan andWettstein (2021) and frameworkswhere the participants repeatedly engage
in contests such as in Hafner and Noldeke (2019). A simple closed-form solution for
player expected values may simplify analysis of such games as typically early-stage
actions depend only on later-stage expected payoffs, not on the complete later-stage
strategies.

4 Existence of equilibrium

In this section we derive the second main result of the paper which shows that a
Nash equilibrium exists in any strictly generic contest. Classical existence proofs do
not apply because players have a continuum of pure strategies and their payoffs are
discontinuous in their choices. A literature based on the path-breaking work of Reny
(1999) has made great strides in proving existence in discontinuous games. While this
literature can be used to show that equilibrium exists in unconstrained all-pay contests,
unfortunately it does not apply to all-pay contests with constraints.

For example, Monteiro and Page (2007) shows that any compact game that is upper
semicontinuous and uniformly payoff secure has an equilibrium in mixed strategies.
The all-pay auction without constraints has these features, but the same auction with
constraints does not. Uniform payoff security means that in any strategy profile each
player has a strategy he can use to guarantee almost the same payoff if other players
make small deviations from their strategies. In a contest where all players’ constraints
are higher than their reaches (an effectively unconstrained contest) if other players
make small changes to their strategies each player can guarantee at least epsilon
below his current payoff by increasing his score slightly or, if that is higher than his
reach, by choosing ai . Hence such contests are uniformly payoff secure. However,
with constraints this is not the case. Epsilon above a players’ current choice may not
be feasible while still providing a positive expected payoff at the initial strategy profile.
This problem can be corrected by making ki /∈ Si for each player. In that case for any
si ∈ Si , si + ε ∈ Si for sufficiently small, positive ε. However in this case players’
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strategy sets are no longer compact. Hence, in order to satisfy the payoff-security
condition we must violate the compact strategy set condition. Similar issues arise
when trying to apply any of the existence proofs based on variations of better-reply
security. Hence we have to proceed in another way.

Most existence proofs require compact strategy sets while here we impose the
Strategy Set Condition which requires non-compact strategy sets for a subset of the
players and permits them for all players. This is to deal with a specific problem that
arises in finding equilibria in constrained contests. The issue is best illustrated by a
series of examples which provide insight into the approach used in the existence proof.

Example 1 Consider a standard linear two-player all-pay auction with a single prize
with a common value equal to two, vi (si ) = 2−si and ci (si ) = si . Player 1’s constraint
is higher than the value of the prize, S1 = [0, 3], but player 2 is constrained at one,
S2 = [0, 1). Ties are decided by coin flip. This contest is strictly generic. Player 2 has
a reach of one, player 1 has a reach of 2 and hence player 2 is the marginal player
and the threshold is one. Equilibrium exists and is in mixed strategies which are given
by the following cumulative distribution functions: G1(s1) =s1/2 for s1 ∈ [0, 1), and
G1(s1) = 1 for s1 ≥ 1. G2(s2) = 1

2 + s2/2 for s2 ∈ [0, 1). So player 1 puts an atom
of probability of 1/2 at s1 = 1 and spreads the remaining probability uniformly over
[0, 1). Player 2 puts an atom of 1/2 at s2 = 0 and spreads the remaining probability
uniformly over (0, 1). This gives an expected payoff equal to one for player 1 and an
expected payoff of zero for player 2 as required by the Expected Payoff Result and no
player has a profitable deviation.

Example 2 Take the contest from Example 1 and change the action space for player 2
to include his constraint, S2 = [0, 1]. In this case the contest is weakly generic but it
is not strictly generic as it violates the Strategy Set Condition. It is now possible for
player 2 to deviate from the equilibrium strategy in Example 1, matching player 1 at
his atom at s1 = 1. Deviating to s2 = 1 gives player 2 a probability of winning of
3/4 and an expected payoff of 1/2. This is a violation of the Expected Payoff Result
since player 2 is still the marginal player and therefore must have an expected payoff
of zero. In order to create an analogue of the equilibrium in Example 1, player 1 needs
to move his probability mass high enough so that player 2 cannot match that choice.
So he needs to move it just above s1 = 1. But “just above” is not defined.

Example 3 Take the contest of Example 2 but abandon the tie-breaking rule. Replace it
with a rule in which ties are decided by coin flip everywhere except at si = 1 where all
ties are decided in favor of player 1. This may or may not be a reasonable tie-breaking
rule in a particular application, but it does mean that the equilibrium strategies from
Example 1 also form an equilibrium in Example 3. It is not possible for player 2 to
capture an excessive payoff by deviating to s2 = 1, even though that score is now
technically feasible.

In general, when player i is restricted at his constraint, which may be the case for
any of the players in N̂L not just the marginal player, equilibrium may require a rival
to put an atom just above i’s highest feasible score. This is well defined only when the
Strategy Set Condition holds. However, the tools in the literature for proving existence
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of equilibrium largely require compact strategy sets. Hence we start with a game like
Example 1, except that we don’t yet know whether equilibrium exists. Then we create
a new game with compact strategy sets as was done moving from Examples 1 to 2.
Then we use the results of Simon and Zame (1990) to show that there exists some
tie-breaking rule under which equilibrium exists in the new game, as in Example 3.
We then establish that at least one of the equilibria of the new game with the new
tie-breaking rule is also an equilibrium of the original game with its tie-breaking rule
replaced by the new rule. And finally we use an insight from Siegel to show that
this equilibrium is also an equilibrium of the original game for any tie-breaking rule.
It is important to note that while the result of Simon and Zame (1990) is used as an
important intermediate step, it is just an intermediate step. The existence result applies
to contests with any tie-breaking rule, not just the special rule from Simon and Zame
(1990).

We will first need to establish the Tie Lemma, which in the unconstrained case held
for all contests whether generic or not. The proof is built on the ability of all players
with atoms at x to exceed x if desired, and so the lemma does not apply for contests
that are not strictly generic as a player cannot exceed x if x = ki which can happen
when the Strategy Set Condition does not hold.

Modified Tie Lemma In any equilibrium of a strictly generic contest, if two or
more players have an atom at a score x, that is, choose x with a strictly positive
probability, then players who have an atom at x either all win with certainty or all
lose with certainty when choosing x.

Proof Since their reaches are less than or equal to the threshold none of the (n − m)

players in NLwill choose scores exceeding the threshold. Hence if x > T then any
player choosing x will win with certainty, satisfying the lemma. So we only need to
consider x ≤ T . By the Generalized Power Condition all players in Nw have reaches
greater than T so x < ki ∀ i ∈ Nw. By the definition of N̂L all players in NL\N̂L

have ri < ki . These players will only place an atom at x if x ≤ ri and so if any player
i ∈ NL\N̂L places an atom at x it must be the case that x < ki . Finally, if any player
i ∈ N̂L places an atom at x it must be the case that x < ki since ki /∈ Si by the
Strategy Set Condition. Thus for any players placing an atom at x ≤ T it must be that
x < ki . Hence all players with an atom at x ≤ T have x +ε ∈ Si for sufficiently small
ε > 0. From this, the proof of the Tie Lemma in Siegel applies without modification
and hence is omitted here. 	


We now prove the second primary result of the paper. This is a modification of the
existence result in Siegel, Corollary 1. It is not a strict generalization because Siegel
shows the existence of equilibrium for any unconstrained contest, whether generic or
not. Here we include contests with constraints but as a consequence have to limit the
domain to strictly generic contests.

Existence of Equilibrium Result Every strictly generic contest has a Nash
equilibrium.

Proof Take a strictly generic contest and define Na as the set of players who are
constrained at their head start, Na = {i ∈ N : ai = ki }. By the Generalized Power
Condition, the definition of N̂L and the Strategy Set Condition, Na ⊆ Nw and hence
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|Na | ≤ m and ai > T ∀ i ∈ Na . If |Na | = m then m players have head starts which
exceed the threshold so each player i ∈ N playing a pure strategy of si = ai is
an equilibrium, and the result holds. If |Na | < m construct a new contest C which is
identical to the original contest except with the players in Na and |Na | prizes removed.
In the original game the players in Na are by necessity entirely passive since for them
Si = {ai } and they each win a prize with certainty since ai > T . Hence removing
them and their prizes does not change the strategic environment for any remaining
player at any feasible score that is not strictly dominated. The contest is still strictly
generic, the threshold does not change, players in NL are either unwilling or unable
to exceed the threshold and players in Nw win with certainty with any score greater
than the threshold in both games. Hence for the players that are in both games, the
strategies that form an equilibrium in C will also form an equilibrium in the original
game, with the players in Na playing their only feasible strategy of choosing si = ai
with certainty. Hence it suffices to show that C has an equilibrium. In what follows
define all variables with respect to contest C . So N is the set of players in C , m is the
number of prizes in C , players are indexed with respect to the order of their reaches
in C and so on.

Consider a new contest C ′ which is identical to C except that each player’s set
of feasible scores is capped at K = maxi∈Nri < ∞. So for each player i in C ′,
Si ′ = Si∩[ai , K ]. Define each player’s constraint inC ′ as ki ′ = sup Si ′ = min{ki , K }.
Since in C scores greater than K are either infeasible or strictly dominated by ai , any
equilibrium of C ′ is also an equilibrium of C. Hence it is sufficient to show that C ′
has an equilibrium.

Let Nk be the set of players whose constraints are not in their strategy set in C ′,
Nk = {i ∈ N : ki ′ /∈ Si ′}. Create a third contest C ′′ which is identical to C ′ but with
an expanded action space for the players in Nk so that all players in C ′′ have ki ′ in
their strategy set. Specifically, for each i ∈ N let Si ′′ = [ai , ki ′], for all si ∈ Si ′ let
vi

′′(si ) = vi (si ) and ci ′′(si ) = ci (si ), and for all {si ∈ Si ′′ : si /∈ Si ′} let vi
′′(si ) =

limz → ki ′−vi (z) and ci ′′(si ) = limz → ki ′−ci (z), noting that {si ∈ Si ′′ : si /∈ Si ′} only
for i ∈ Nk at si = ki ′. So we have added a single point, ki ′, to the strategy set of
players in Nk ensuring that all players have compact strategy sets. The resulting game
is still weakly generic, but it is not necessarily strictly generic. It continues to meet
all the other conditions but it violates the Strategy Set Condition for players in N̂L .
However, because C ′′ has compact strategy sets it is more amenable to analysis than
C ′.

In particular, the results of Simon and Zame (1990) show that if we abandon the
tie-breaking rule shared by C ′ and C ′′, then there exists some tie-breaking rule, which
may be dependent on the score and/or identity of the players, in which C ′′ has at least
one mixed-strategy equilibrium when that tie-breaking rule is employed. Denote the
games when this tie-breaking rule is employed by C̃ ′ and C̃ ′′ respectively. So C̃ ′′ has
at least one equilibrium, but strategy profiles that form an equilibrium in C̃ ′′ may or
may not form an equilibrium in C̃ ′. However below we show that there is at least one
equilibrium of C̃ ′′ whose equilibrium strategies also form an equilibrium in C̃ ′. The
key to this is showing that there is at least one equilibrium of C̃ ′′ in which no player
puts an atom at his constraint, ki ′.

123



998 I. Pastine and T. Pastine

Take an equilibrium G of C̃ ′′ and a player i ∈ Nw. Take a small ε > 0 and
let b = max{ai , T + ε}. Since i can win with certainty with any si > T by the
Generalized Power Condition, if there exists an ε > 0 such that vi

′′(ki ′) < vi
′′(b)

then in Gi he must place zero probability on si = ki ′. By A1 the only other possibility
is vi

′′(ki ′) = vi
′′(b) ∀ ε > 0, however small. In this case it is possible that inGi player

i has an atom at si = ki ′. Suppose this is the case and construct an alternative strategy
for i which is the same as Gi but with the upper end of the distribution truncated at
some score h ∈ [b, ki ′): Ĝi (si ) = Gi (si ) ∀ si < h and Ĝi (si ) = 1 ∀ si ≥ h. Replace
i’s strategy in G with this new strategy. G still forms an equilibrium of C̃ ′′. Player i
wins with certainty with all si > T and each score gives the same payoff so altering
his strategy does not alter his own payoffs. The new strategy for i does not alter the
probability of winning for any player at any score less than h, so such scores still
yield the same expected payoff for each player. For all j ∈ NL , scores s j ≥ h are
either infeasible or strictly dominated by a j , so G j still forms a best response. For all
j ∈ Nw, player j wins with certainty with any s j > T whether i plays Gi or Ĝi , so
the new strategy does not change the expected payoff of j for any s j . By iterating this
argument over each i ∈ Nw we can construct an equilibrium G of C̃ ′′ in which no
player in Nw places an atom at si = ki ′. In what follows consider such an equilibrium.

We now show that in G no player in NL places an atom at his constraint either. The
reach of each player in i ∈ NL/N̂L is strictly less than his constraint and so si = ai
strictly dominates si = ki ′ by A3. So we only need to consider the players in N̂L . The
proof will proceed by contradiction:

Suppose that there exists an i ∈ N̂L with an atom at si = ki ′. Considering i’s
probability of winning when choosing si = ki ′, one of three cases must be true:
Pi (ki ′;G−i ) = 0, Pi (ki ′;G−i ) = 1 or Pi (ki ′;G−i ) ∈ (0, 1).

Case 1: Pi (ki ′;G−i ) = 0. By the All-Pay Condition player i∈ N̂L receives a
negative payoff when choosing si = ki ′, a contradiction of the Expected Payoff Result.

Case 2: Pi (ki ′;G−i ) = 1. If i>m+1 then ki ′ < rm+1 by the Generalized Power
Condition, so player m+1 can choose sm+1 = max{am+1, ki ′ + ε} and win with cer-
tainty receiving a payoff strictly greater than zero by the Generalized Cost Condition,
a violation of the Expected Payoff Result. So if Pi (ki ′;G−i ) = 1 then i = m + 1. But
since i ∈ N̂L , vm+1

′′(ki ′) > 0 by the Strict Cost Condition. So player m+1 receives a
strictly positive payoff, which violates the Expected Payoff Result.

Case 3: Pi (ki ′;G−i ) ∈ (0, 1). By the definition of N̂L , the Constraint Condition
and the fact that Si is an interval, for all players j �=i with sufficiently small ε, if
[ki ′ − ε, ki ′) ⊂ S j

′′ then [ki ′, ki ′ + ε] ⊂ S j
′′. Hence for small ε no player j �=i will

put any probability on s j ∈ [ki ′ − ε, ki ′) as doing so is either infeasible or moving
such probability to s j = ki ′ + ε, just above i’s atom, will result in an increase in
his probability of winning of at least [Gi (ki ′) − limz →ki ′−Gi (z)]Pi (ki ′;G−i ) > 0 at
negligible cost, by A1. Likewise no player j �= i who has any probability of losing ties
to i at ki ′ will place any probability at s j = ki ′ since increasing his score to s j = ki ′+ε

will eliminate the non-zero probability of such ties. Hence player i’s probability of
victory will not decrease if he drops his atom from si = ki ′ to si = ki ′ − ε. Since
Pi (ki ′;G−i ) > 0 this would increase his expected payoff by the Strict Cost Condition
and A1, a contradiction.
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Therefore there exists at least one equilibrium of C̃ ′′ in which no player places an
atom at his constraint. Take such an equilibrium G and a player i ∈ Nk . Since si = ki ′
is a zero probability event in Gi , removing ki ′ from Si ′′does not change the expected
payoffs in G for any player at any feasible score and Gi is still a valid distribution
function. Hence if we remove ki ′ from Si ′′ for all i ∈ Nk , G still forms an equilibrium
of the resulting game which is C̃ ′.

To complete the proof we need to show that this equilibrium of C̃ ′—a game with
a special tie-breaking rule—is also an equilibrium of C ′—a game with the original
tie-breaking rule. This uses the same steps as Siegel (the last two paragraphs of the
proof of Corollary 1). Therefore we omit that portion of the proof here to save space,
and just point out that in Siegel C̃ is our C̃ ′, ũi denotes player i’s expected payoff
in the equilibrium G of C̃ ′, and the Modified Tie Lemma applies rather than the Tie
Lemma that is used in Siegel. 	


5 Application

Derivation of players’ equilibrium expected payoffs only requires simple calculations
of the reaches and powers of the players in Nw. To illustrate the use of the results
consider the following application from the literature.

Meirowitz (2008) analyzes the sources of incumbency advantage in a first-past-the-
post electoral contest where politicians compete in campaign spending. One dollar of
campaign spending raises the score of the political candidate by one. The incumbent
(I) and the challenger (C) have a common valuation of the prize which is normalized
to 1. The candidates have potentially different marginal utility cost of raising funds, βi
∀i ∈ {I ,C}.Meirowitz argues that incumbents tend to bemore efficient at fundraising.
As a sitting officeholder an incumbent is in a position to dispense political favors and
hence has better access to resources, in which case βI < βC . Meirowitz’s framework
allows for a positive headstart advantage α > 0 for the incumbent due to existing name
recognition. In the analysis for spending limits with a positive headstart, Meirowitz
only presents the case where the spending limit,m, is so restrictive that the incumbent
would win the contest even if the challenger where to spend the maximum permissible
amount and the incumbent were to spend zero, m < α. Hence the equilibrium is in
pure strategies where no candidate engages in campaign spending.

In application (i) below we extend Meirowitz’s analysis to less restrictive spending
limits where the limit does not completely curb competition, m > α. Pastine and
Pastine (2012b) addressed this via full derivation of the players’ equilibrium strategies.
This example demonstrates how much simpler the task becomes using the Expected
Payoff Result. In application (ii) we extend the analysis to elections with more than
two candidates and we allow the effectiveness of spending to vary across candidates.

(i) A spending limit that does not completely curb competition The main argu-
ment in favour of spending limits is that they restrict incumbents’ ability to exploit
their fundraising advantage—see the elegant argument from Justice Stevens in the US
Supreme court case McConnell v. FEC (2003). Opponents of limits suggest that a
spending limit restricts the challenger’s ability to catch up with the incumbent who
often enjoys a headstart advantage due to the incumbent’s initial name recognition.
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In his dissenting opinion in McConnell v. FEC (2003), Supreme Court Justice Scalia
writes: “… any restriction upon a type of campaign speech that is equally available
to challengers and incumbents tends to favour incumbents.” Opponents of spending
limits also follow the line of logic in Stigler (1971) and suggest that incumbents would
not legislate limits if the legislation did not serve them.

The Expected Payoff Result can be applied to show that with any headstart advan-
tage, α > 0, however small, in any equilibrium a spending limit benefits the incumbent
no matter how dramatic the difference in fundraising abilities may be. The “headstart
advantage” argument of the opponents of spending limits always trumps the “fundrais-
ing efficiency” argument of the proponents of limits.

In order to use the Equilibrium Existence Result we make one modification to the
Meirowitz (2008) framework. In Meirowitz (2008) the contest with spending limits
is weakly generic, but not strictly-generic because spending is less than or equal to
the limit, a violation of the Strategy Set Condition. We require that spending must be
strictly less than the limit, creating a strictly-generic contest and hence the Equilibrium
Existence Result applies. In this context little is lost by the change, as continuous
spending games such as this are intended as analytically tractable approximations to
the discrete choice reality, where monetary units are not infinitely divisible. Since
equilibrium always exists in discrete-choice games, choosing a continuous-choice
approximation in which equilibrium also exists seems reasonable.

Next convert Meirowitz’ framework into the notation of this paper. The monetary
limit on campaign spending,m, is common to both players. However, since the incum-
bent has a headstart advantage of aI = α while aC = 0, the constraints on scores are
asymmetric: kI = α + m and kC = m. The challenger’s payoff and cost functions
are given by vC (sC ) = 1 − βCsC and cC (sC ) = βCsC for sC ∈ [0, kC ). Since the
incumbent starts with a score of α his payoff function is vI (sI ) = 1 − βI (sI − α)

and cI (sI ) = β I (sI − α) for sI∈ [α, kI ). Therefore the reach of the challenger is
rC = min{m, (1/βC )} and the reach of the incumbent is rI = min{α+m, α+(1/βI )}.

Without a spending limit the challenger is the marginal player; the reach of the
challenger is lower than the reach of the incumbent, 1/βC < α + (1/βI ). From the
ExpectedPayoffResult the challenger has zero expected payoff. The threshold is 1/βC ,
so the incumbent has an expected payoff equal to his power, 1−βI [(1/βC )−α] > 0.

If the spending limit is less than 1/βC , then it is binding and rC = m < (1/βC ).
Since rC is less than the incumbent’s reach rI = min{α+m, α+(1/βI )} the challenger
is still the marginal player and his expected payoff remains zero. However the limit
reduces the challenger’s reach (the threshold of the game) and hence increases the
expected payoff of the incumbent to 1−βI (m−α) > 0. The imposition of a spending
limit always benefits the incumbent as long as the incumbent has a headstart advantage
however small that may be.

In addition, suppose that prior to the above game the two parties had the opportunity
to increase their initial score ai through voter registration drives. Increases in aI would
have a positive benefit for the incumbent butmarginal increases inaC would not change
the challenger’s expected payoff.

(ii) A spending limits with multiple candidates and asymmetric campaign
spending effectiveness In countries such as France and the U.K. where campaign
spending limits are in place, often more than two political parties compete. Elec-
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Fig. 2 Multiple candidates
without spending limits

tions with more than two candidates are significantly more difficult to analyze if full
derivation of the equilibrium is required. Therefore the literature largely focuses on
two-candidate races as in Meirowitz (2008) and Pastine and Pastine (2012b). How-
ever since the Expected Payoff Result and the Existence of Equilibrium result do
not require the full derivation of equilibrium, we can easily add more candidates and
compute which political candidate benefits from a spending limit in any equilibrium.
Below we employ our results in a model with multiple candidates who may have
asymmetric campaign spending effectiveness. Application (i) already demonstrates
that the “headstart advantage” argument against spending limits always dominates the
“fundraising efficiency” argument in favor of spending limits if candidates have equal
spending efficiency. Here we show that limits may benefit an opponent if his spend-
ing is more effective, which is often found empirically. A moderate cap on spending
may benefit a charismatic third-party candidate, but a very restrictive cap benefits the
incumbent.

Add a third-party candidate to the model described in application (i) with the same
notation. Suppose that the third-party candidate (candidate L) is charismatic and has
leadership skills so that one dollar of campaign spending increases his score byηL > 1.
So the third-party candidate’s cost of achieving the score sL is (

βL
ηL

)sL and his reach is
rL = min{ηLm, (ηL/βL)}. In order to restrict attention to the most interesting cases,
assume that as a third party candidate he lacks a large fundraising base so fundraising
is more onerous for him than for candidate C, βL ∈ (ηLβC ,

ηL−1
α

). This implicitly
assumes that the range exists, i.e. the incumbent’s headstart advantage is not too large,
α <

ηL−1
ηLβC

.

The contest is strictly generic except when parameter values are such that there are
two players with reach at the threshold, which is a violation of the Generalized Power
Condition. L and C have the same reach if m = ηL/βL . And L and I have the same
reach ifm = α

ηL−1 orm = (
ηL
βL

)−α. Notice that for any givenm, if ηL was drawn from
any continuous distribution, the contest would be strictly generic with probability one.
So if the spending limit is legislated before candidates’ abilities are randomly drawn
and become common knowledge, the existence and payoff results will apply.

In the absence of a spending limit r I > rC > rL . Since the contest is strictly generic
we know that at least one equilibrium exists by the Equilibrium Existence Result. The
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Fig. 3 Multiple candidates with
spending limits

challenger is the marginal player (Fig. 2). He is disadvantaged because the incumbent
has a head-start advantage and is a better fundraiser. By the Expected Payoff Result, in
any equilibrium the incumbent has a positive expected payoff of 1−βI [( 1

βC
)−α] > 0,

while the challenger and the third party candidate receive an expected payoff of zero.
The third-party candidate has greater effectiveness of campaign spending than either of
his rivals but this is not enough to outweigh the incumbency advantage or the superior
fundraising abilities of his rivals.

However, with a common monetary cap m < ( 1
βL

), all candidates are restricted at
their score constraints and the reaches of the candidates are given by r I = α + m,
rC = m and r L = ηLm. If the cap is moderate m ∈ ( α

ηL−1 ,
1

βL
), then r L > rI > rC

as shown in Fig. 3.
Although all three candidates face the same legal constraint on campaign spend-

ing, their asymmetries result in different constraints on their scores. The incumbent’s
head-start advantage means that his reach is higher than the challenger’s. And the
third-party candidate’s effectiveness in spending means that his reach is higher than
the challengers, and with these parameters higher than the incumbent’s as well. The
incumbent is now the marginal player. The threshold of the contest is T = α +m. By
the Expected Payoff Result, the incumbent and the challenger have expected payoffs
of zero and the third-party candidate receives an expected payoff of 1−βL(α+m

ηL
) > 0.

With a moderate limit, the campaign spending effectiveness of the third-party candi-
date overwhelms the head-start advantage of the incumbent. Hence a moderate limit
hurts the incumbent compared to no restrictions.

If the cap is very restrictive, m ∈ [0, α
ηL−1 ), then the order of candidates’ reaches

is r I > rL > rC . The third-party candidate is the marginal player and ηLm is the
threshold. By the Expected Payoff Result, the incumbent has the expected payoff
1 − (ηLm − α)βI > 0. The challenger and the third-party candidate have expected
payoff of zero. The head-start advantage of the incumbent overwhelms the campaign
spending effectiveness of the third-party candidate with leadership skills. The cap is
too restrictive for the third-party candidate to catch up with the incumbent’s head start.
Note that the expected payoff of the incumbent in this case is higher than the expected
payoff he would have had if there were no campaign spending restrictions.
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6 Participation

A player is said to participate in an equilibrium of a contest if he chooses scores with a
positive cost of losing with strictly positive probability. Here we present a very simple
generalization of the results on participation for unconstrained contests to contests
with constraints.
Participation Result In a strictly generic contest with or without constraints, if

(i) cm+1(max{am+1,x})
vm+1(am+1)

<
ci (x)
vi (ai )

for all x ∈ {Si : x ≤ ri and ci (x) > 0} and
(ii) vm+1(max{am+1,x})

vm+1(am+1)
≥ vi (x)

vi (ai )
for all x∈{Si : x ≤ ri } then player i does not

participate in any equilibrium. In particular, if these conditions hold for all players in
NL \ {m + 1} then only the m+1 players in Nw ∪ {m + 1} may participate.

Since with constraints it is possible for sup Si > km+1 = sup Sm+1 even when i >

m + 1, the conditions restrict attention to x∈{Si : x ≤ ri } which implies x < km+1by
the Generalized Power Condition. Since in equilibrium player i will not exceed his
reach this change is innocuous. The proof is otherwise identical to the proof of the
corresponding result in Siegel and so is omitted.

So a player will not participate if for every possible score he might choose: (i) his
cost of losing at that score relative to his value of winning with no effort is strictly
higher than the same ratio for the marginal player and (ii) his value from winning at
that score relative to his value of winning with no effort is weakly less than the same
ratio for the marginal player. This simply says, unsurprisingly, that if at every possible
score a player has higher (normalized) costs and a lower (normalized) valuation than
the marginal player, that player will not participate.

This straightforward result may be useful for two reasons. The corresponding result
for contests without constraints has been crucial in developing general algorithms for
finding players’ equilibrium strategies in unconstrained contests, see Siegel (2010;
2014a), and so the extension to constrained contests may also prove useful. Moreover,
extensive work has been done exploring participation in contest models, see Hillman
and Riley (1989), Ellingsen (1991), Baye et al. (1993, 1996), Siegel (2012) and Klose
and Kovenock (2015). One of the major issues in this literature is finding conditions
under which only m + 1 players participate in an (unconstrained) all-pay auction.
The Participation Result provides sufficient conditions for these results to generalize
to contests with constraints. This can be seen by considering a well-known example
from the literature.

Example 4 Take the following model from Hillman and Riley (1989) and Baye et al.
(1993, 1996). There is m = 1 prize and n ≥ 3 players with vi (si ) = Vi − si ,
ci (si ) = si and Si = [0,∞). Ties are decided with even probability. Denote the
players A, B, C etc. and assume VA > VB > VC > VD ≥ · · · ≥ Vn .4 Hillman and
Riley (1989) shows that there exists an equilibrium where only the two players with
the highest valuation participate and Baye et al. (1993, 1996) shows that there does not
exist any equilibrium where any other player or players participate. These results can
also be seen by straightforward application of the Equilibrium Existence Result and

4 The authors also permit equality of valuation for the first four players. Here we restrict the domain in
order to ensure a strictly generic game throughout the example.
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the Participation Result since player B is the marginal player and for i ∈ {C, D, . . . n}
(i) x

VB
< x

Vi
and (ii) VB−x

VB
≥ Vi−x

Vi
for all x ∈ (0, Vi ].

Now impose a constraint onplayerB so that SB = [0, kB). Consider first a constraint
in the range kB ∈ (VC ,∞). The introduction of the constraint is not innocuous when
kB ∈ (VC , VB); The constraint changes both the equilibrium and the expected payoff
for player A. This can be seen from the Expected Payoff Result which, since the
threshold is kB , yields an expected payoff to playerAofVA−kB > 0which implies that
the equilibrium strategies of the players are altered by the existence of the constraint.
Nevertheless, the participation results of Hillman and Riley (1989) and Baye et al.
(1993, 1996) are robust to the imposition of a constraint on player B in the range kB ∈
(VC ,∞). For kB �= VC the game is strictly generic and hence from the Equilibrium
Existence Result we know that at least one equilibrium exists. For kB > VC player
B is still the marginal player, and hence direct application of the Participation Result
implies that only the m + 1 players in Nw ∪ {m + 1} participate, so only A and B
participate in any equilibrium.

However, in the range kB ∈ (0, VC ) more than m + 1 players may participate.
When the constraint is in this range, player C is the marginal player and the threshold
is VC . Application of the Participation Result implies that players D, E . . . n do not
participate in any equilibrium, so they all choose scores of zero with probability one.
However participation by player B cannot be ruled out as cm+1(max{am+1,x})

vm+1(am+1)
= x

VC
>

cB (x)
vB (ai )

= x
VB

for all x ∈ (0, kB).

In fact for kB ∈ (0, VC ) all three must participate. Player A∈ Nw will participate
since the Generalized Threshold Lemma shows he has a score in the support of his
strategy in G that approaches or exceeds the threshold. Since A’s payoffs from both
winning and losing are strictly decreasing in his score, the only reason hewould choose
such a high score is that C has a score in the support of his strategy inG that approaches
the threshold. SoCparticipates aswell. Now conjecture that there exists an equilibrium
where player B does not participate. In this equilibrium player B chooses sB = 0 with
certainty and his probability of winning is arbitrarily close to zero by the Modified
Zero Lemma. As shown in Hillman and Riley (1989) and Baye et al. (1993, 1996)
the two-player game with just players A and C has unique equilibrium distribution
functions of GA(x) = x/VC and GC (x) = (VA − VC + x)/VA for x ∈ [0, VC ].
With these strategies, a score of zero has zero probability of winning. Hence in the
three-player game if player B plays his conjectured pure strategy of sB = 0, players
A and C will play according to the Hillman and Riley strategies. However, given
these conjectured equilibrium strategies, in the full game with many players, if player
B chooses sB ∈ (0, kB) he gets an expected payoff of GA(sB)GC (sB)VB − sB =
sB

VAVC
[VB(VA − VC ) − sB(VB − VAVC )] which is greater than zero for sufficiently

small sB . So player B has a profitable deviation which contradicts the Expected Payoff
Result. Hence, when kB ∈ (0, VC ) in any equilibrium all three players A, B and C
must participate.
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7 Conclusion

In this paper, we analyze constraints on players’ choices in a broad class of all-pay
auctions which incorporates contests with many players and multiple prizes, con-
tests with conditional investments, head starts and non-ordered payoff functions. In
the first main contribution of the paper we derive simple closed-form formulae for
players’ expected payoffs in any equilibrium where some, all or none of the players
are constrained. The formulae are straightforward to calculate and do not require the
derivation of the equilibrium or equilibria.

In the secondmain contribution of the paper we employ the Expected Payoff Result
to prove the existence of equilibrium. This is not-trivial since player payoffs are dis-
continuous in their pure-strategies and there are infinitely many pure-strategies.

Together these results mean that in applications one can easily calculate player
expected payoffs in all-pay contests with constraints, bypassing the need for a full
characterization of the equilibrium or equilibria. In some applications, the expected
value of the contest to the players may be the main item of interest. For instance the
question may concern the impact of a policy change on the players in equilibrium,
such as the relaxation of a liquidity constraint, imposition of a binding deadline, a
salary cap, or utilization of an affirmative action policy. The expected value of the
contest to the players is also potentially useful in analyzing players’ incentives to
invest in relaxing their constraints prior to the contest. We show that no player has
any incentive to marginally relax his constraint. A relaxation of a player’s constraint
is only beneficial to him if it is a significant enough change to allow him to have a
higher reach than all butm−1 of his competitors and further relaxation has no benefit
to him.

In other applications where full characterization of the equilibrium is of interest,
calculation of players’ expected values from the contest is the first crucial step since
typically all-pay contests have equilibrium in mixed strategies.
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