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ABSTRACT

We investigate a simple model for a galactic halo under the assumption that it is dominated by
a dark matter component in the form of a Bose-Einstein condensate involving an ultra-light scalar
particle. In particular we discuss the possibility that if the dark matter is in a superfluid state then
a rotating galactic halo might contain quantised vortices which would be low-energy analogues of
cosmic strings. Using known solutions for the density profiles of such vortices we compute the self-
gravitational interactions in such halos and place bounds on the parameters describing such models,
such as the mass of the particles involved.

1. INTRODUCTION

In the standard model of galaxy formation, the visible component of a galaxy is supposed to be embedded in an
invisible halo of non-baryonic matter; see, for example, Jenkins & the Virgo Consortium Collaboration (1998) and
Coles (2005). This dark component is further supposed to be cold, meaning that it is usually assumed to consist of
very heavy particles with very low thermal velocities. However, it has been known for some time that Cold Dark Matter
(CDM) models have certain problems in reproducing observable properties of galaxies, among them being the predicted
presence of central density cusps and the overabundance of small scale structure; see for example Navarro et al. (1997),
Moore et al. (1999) and Romanowsky et al. (2003). In the light of these issues, some authors, e.g. Hu et al. (2000)
have suggested that the Dark Matter could instead consist of ultralight particles possessing a de Broglie wavelength
sufficiently large that quantum-mechanical effects might manifest themselves on astrophysically interesting scales. Such
models would naturally predict smoother and less centrally concentrated galaxy haloes than in the CDM case.
Advocating a particular version of this idea, Silverman & Mallett (2002) suggested a symmetry-breaking mechanism

for the production of such a particle, based upon a real-valued scalar field. Although in this case the symmetry-
breaking mechanism provides a nice example of particle production in a universe with a cosmological constant,
symmetry-breaking with a real scalar field generically produces a catastrophic domain wall problem as argued by
Vilenkin & Shellard (1986), and this example would seem to be no exception so this is probably not a viable sce-
nario; see Brook (2010) for a further discussion. However, these papers consider the possibility that the Dark Matter
component resides in a Bose-Einstein condensate (BEC). The dynamics and possible observational consequences of a
cosmological fluid with such properties has been investigated by Boehmner & Harko (2007), using techniques devel-
oped in the field of condensed matter physics. The equation describing a BEC is known to condensed matter theorists
as the Gross-Pitaevskii (GP) equation, but is probably more familiar to cosmologists as the nonlinear Schrödinger
equation (NLSE).
In condensed matter theory, the term Bose-Einstein condensate is usually applied to a dilute bosonic gas confined

by an external potential, the bosons occupying the lowest available quantum state. Typically, in the limit of large
particle number, the density distribution of the condensate is taken to be described by a macroscopic wave-function
that is considered to be a quantum field. This field is manipulated by the Gross-Pitaevskii equation, or nonlinear
Schrödinger equation, rather than working with the usual creation and annihilation operators of quantum mechanics.
The density distribution of the condensate can be represented by a macroscopic wave-function of the same form as the
ground state wave-function of a single particle. The momentum distribution of the condensate is obtained by taking
the Fourier transform of this wave-function. In an experimental setup, the occurrence of a Bose-Einstein condensate
is confirmed by a sharp peak in the momentum space distribution of the gas of particles.
More speculatively, the concept of a BEC can also be applied to such hypothetical particles as axions or ghosts. In

this context, the axion field, for example, is coherent and has relatively small spatial gradients. The gradient energy
can be interpreted as particle momenta, which will be the same and small for each particle, hence giving a sharp peak
in the momentum space distribution as in the case of the more familiar BEC described above.
In quantum field theory, a condensate corresponds to a non-zero expectation value for some operator in the vacuum

and, in the limit of large occupation number, this condensate can be considered to be a classical field. This is a
good model for the condensate of Cooper pairs in a superconductor, or for helium atoms in a superfluid, as shown by
Pethick & Smith (2008).
The usual linear Schrödinger equation, coupled to the Poisson equation, can be used to model many phenomena

in cosmology. As well as modelling a quantum mechanical system, as in Hu et al. (2000), it has also been used as a
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classical wave equation to model structure formation. It has been shown that using the condensed matter concept of a
Madelung transformation to yield the Euler and continuity equations from the Schrödinger equation, applies as well as
to a cosmological fluid as it does to fluids in the laboratory. For further discussion see Spiegel (1980); Widrow & Kaiser
(1993); Coles (2002b,a); Coles & Spencer (2003); Short & Coles (2006).
Silverman & Mallett (2002) also considered the rotation of a galactic-scale dark matter halo. Using a phenomeno-

logical description taken directly from condensed matter, they concluded that a galactic halo should be threaded by
a lattice of quantised vortices as a consequence of the rotation of that galaxy. Indeed, from studies of rotating BECs
and quantum turbulence by Vinen (2000) and Short (2007), it would seem to be difficult to prevent such vortices from
forming. The galaxy velocity rotation curve produced by these authors reproduces the approximate form of observed
rotation curves.
A similar conclusion was reached in Yu & Morgan (2002). This paper considered stationary cylindrical solutions of

a complex φ4 scalar field model, coupled to gravity. These solutions are Nielson-Olesen vortices, also known as local
U(1) Cosmic Strings; see Vilenkin & Shellard (1986). To describe the motion of these vortices in the galaxy, Yu and
Morgan’s procedure was to calculate the motion of one vortex according to a gradient in the phase induced by the
surrounding vortices.
There are many models using the Schrödinger-Poisson, or the relativistic Einstein-Klein-Gordon system to de-

scribe slightly different physical processes. A non-exhaustive list includes scalar field dark matter (Matos & Guzman
(2000); Lesgourgues et al. (2002); Guzman & Urena-Lopez (2003)), boson stars (Seidel & Suen (1990)), Oscillatons
(Seidel & Suen (1991)); condensate stars (Mazur & Mottola (2001)), repulsive dark matter (Goodman (2000)) and
fluid dark matter (Arbey et al. (2003); Peebles (2000)), as well as the fuzzy dark matter and classical fluid approaches
that we have already mentioned, and the more established theories such as the Abelian Higgs model in field theory,
and the Landau-Ginzberg model in condensed matter. We will not attempt a thorough review of each model here,
except to say that it is sometimes difficult to explicitly distinguish between them.
The effects of the interaction of gravity with a coherent state of matter, such as a BEC, have certainly been considered

(Carroll (2007, 2008)), and prompted the question of whether it is actually possible for DM to be in a coherent quantum
state if the only interaction with visible matter is gravitational. Penrose has also used the Schrödinger-Poisson system
during his ‘Quantum State reduction’ research program; see Moroz et al. (1998).
In this paper we seek to determine some of the properties of a quantised vortex residing in a galactic-scale Bose-

Einstein condensate dark matter. In particular, we will place bounds on the parameters that are used to describe such
a vortex. For the purposes of this paper we presume that the DM does indeed consist of a BEC, formed at an earlier
stage of cosmological history and described by the coupled nonlinear Schrödinger-Poisson system, and that vortices
are present in this cosmological fluid.
In Section 2 we introduce the basic formalism for describing a BEC using the Gross-Pitaevskii (nonlinear Schrödinger)

equation, and vortices within it. In Section 3 we discuss coupling the NLSE to the Poisson equation. In Sections 4
and 5 we look at some of the properties of a vortex as a result of gravitational coupling. We present some results in
Section 6 and a discussion in Section 7, including updates from the literature since the original version of this paper
was published.

2. SETUP

For our discussion, we use some of the conventions and procedures set out by Roberts & Berloff (2001) and
Pethick & Smith (2008). The nonlinear Schrödinger equation is written in the form

i~Ψt = − ~
2

2m
∇2Ψ+Ψ

∫

|Ψ(x′, t)|2V (|x− x′|)dx′, (1)

wherem is the mass of a particle in the BEC, and V (|x−x′|) is the interaction potential between bosons. The potential
is simplified for a weakly interacting Bose system by replacing V (|x − x′|) with a δ-function repulsive potential of
strength V0, giving

i~Ψt = − ~
2

2m
∇2Ψ+ V0|Ψ|2Ψ. (2)

Defining a state that is independent of time to be the ‘laboratory frame’, Ψ = exp(iEυ/~), it is then possible to
consider deviations from that state by considering the evolution of ψ, where ψ = Ψexp(iEυt/~). Here, Eυ is the
chemical potential of a boson, in the sense that it is the increase in ground state energy when one boson is added to
the system. The nonlinear Schrödinger equation used for subsequent analysis is then

i~ψt = − ~
2

2m
∇2ψ + V0|ψ|2ψ − Eυψ. (3)

Multiplying equation (3) by ψ∗ and subtracting the complex conjugate of the resulting equation we obtain

∂|ψ|2
∂t

= ∇.
[

~

2mi
(ψ∗∇ψ − ψ∇ψ∗)

]

. (4)
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We notice that this is of the form of a continuity equation.

∂|ψ|2
∂t

+∇.(|ψ|2v). (5)

We identify |ψ|2 as the number density n, and the related momentum density is given by

j =
~

2i
(ψ∗∇ψ − ψ∇ψ∗), (6)

which is equivalent to
j = mnv. (7)

This defines for us the mass density as ρ = mn = m|ψ|2, and the velocity

v =
~

2mi

(ψ∗∇ψ − ψ∇ψ∗)

|ψ|2 . (8)

As suggested in the Introduction, we can make a ‘Madelung transformation’

ψ = α exp (iφω) , (9)

and from equation (8), we obtain an expression for the velocity of the condensate

v =
~

m
∇φω. (10)

Here, φω is the velocity potential. Substituting the Madelung transformation and taking real and imaginary parts
yields the fluid equations: the continuity equation

∂
(

α2
)

∂t
+

~

m
∇.(α2∇φω) = 0; (11)

and the (integrated) Euler equation:

~
∂φω
∂t

=
~
2

2m

∇2α

α
− 1

2
mv2 − V0α

2 + Eυ. (12)

Often the identification

φω
′ =

~

m
φω (13)

is used, to maintain contact with the more familiar form of the fluid equations:

∂
(

α2
)

∂t
+∇.(α2∇φω ′) = 0, (14)

∂φω
′

∂t
=

~
2

2m2

∇2α

α
− (∇φω ′)2

2
− V0
m
α2 +

Eυ

m
. (15)

Here the quantum nature of the fluid is evident only in the first term on the right hand side of the second equation,
which is often known as the quantum pressure term, although dimensionally it is a chemical potential. This term
is relevant only on small scales, where quantum effects become important, such as in a vortex core, or where the
condensate meets a boundary. This identification rather hides the quantum nature of the fluid with respect to the
fluid velocity, which will become particularly relevant when we start talking about vortices in the next section.
By assuming that the condensate reaches a stationary equilibrium state at a distance far from any disturbance,

equation (3) gives us the relation

ψ∞ =

(

Eυ

V0

)
1

2

. (16)

When the condensate wave-function reaches a boundary, such as the wall of a container, or the core of a vortex is
being considered, we can define a distance over which the wave-function changes from zero to its bulk value, or where
quantum effects become important:

a0 =
~

(2mEυ)
1

2

(17)

This is known as the coherence length, or healing length, as it is the distance over which the wave-function requires
‘healing’; see Roberts & Berloff (2001) and Pethick & Smith (2008).
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2.1. Vortices

We have already seen that the velocity of the condensate is given by

v =
~

m
∇φω. (18)

One would expect then, that the condensate would be irrotational, as

∇× (∇f) = 0 (19)

for any scalar, f . This restricts the motion of the condensate much more than a classical fluid. The circulation around
any contour then, should also be zero. By Stokes’ theorem

Γ =

∮

l

v.dl =

∫

A

(∇× v).dA = 0. (20)

This condition, known as the Landau state, was first derived in an analysis of superfluid HeII by Landau (1941), and
it suggests that rotation of such a condensate should be impossible. Experiments by Osbourne (1950) indicated that
the condensate did indeed experience rotation. Building on the independent work of Onsager (1949), Feynman (1955)
suggested that rotation and hence non-zero circulation could be explained by assuming that the condensate is threaded
by a lattice of parallel vortex lines. It is possible to have circulation surrounding a region from which the condensate
is excluded and in this case this would be the vortex core. To see this, we note that the condensate wave-function
must be single-valued, and so around any closed contour the change in the phase of the wave-function ∆φ must be a
multiple of 2π.

∆φω =

∮

∇φω.dl = 2πl (21)

where l is an integer. We immediately see that the circulation is quantised in units of h/m.

Γ =

∮

v.dl =
~

m
2πl = l

h

m
(22)

To obtain vortex solutions, we work in cylindrical coordinates (r, χ, z) and look for a static solution of the nonlinear
Schrödinger equation, equation (3). To satisfy the requirement of single-valuedness, the condensate wave-function
must vary as exp(inχ), with n integer. We make the vortex ansatz

ψ = R(r) exp(inχ). (23)

It is interesting to note the similarity between this procedure, and that used in obtaining Nielson-Olesen vortices, or
Cosmic Strings, in the Abelian-Higgs model discussed by Vilenkin & Shellard (1986). This was mentioned in Section
1, and will be useful shortly for obtaining equation (31), as shown in Section 2.2. We can obtain an expression for the
velocity of a vortex by substituting the vortex ansatz, equation (23) into equation (8)

vω =
~n

r

1

m
χ̂, (24)

and we note again the discrete nature of the allowed values of velocity. From now on we will consider only n = 1
vortices. Vortices with n > 1 are generally expected to be unstable, from energy considerations - see for example
Chapter 9.2.2 of Pethick & Smith (2008) - and will break up into several n = 1 vortices to make up a vortex lattice,
as described above. We can note further that Cosmic Strings with winding numbers n > 1 are also unstable to
perturbations Vilenkin & Shellard (1986). Such defects break down to several n = 1 configurations in both a condensed
matter environment, and a high-energy field-theoretic one. Feynman initially introduced quantised vortices as a
purely theoretical tool with which to explain the rotation of the condensate, but the experimental verification of the
quantisation of rotational velocities (by, e.g. Packard & Sanders Jr (1972), demonstrated that these vortices were
indeed real. The density profile ρ(r) = m|R(r)|2 is defined by the vortex equation, which results from substituting the
vortex ansatz into equation (3)

− ~
2

2mEυ

[

d2R(r)

dr2
+

1

r

dR(r)

dr
− 1

r2
R(r)

]

+
V0
Eυ

R(r)
3 −R(r) = 0 (25)

From equation (16) we see that the density far from the vortex is given by

ρ∞ = mR∞ = m
Eυ

V0
. (26)

Analytic solutions of this equation are not available so it must be solved numerically if very precise results are needed.
There are however a number of approximate techniques available.
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2.2. Approximations to the Density Profile

The numerical solution to the NLSE can be cumbersome to work with, so we provide some discussion of some
approximations that can be used. It is possible to scale the the variables r and R(r) in equation (25) to obtain a
scale-free equation. Scaling r by the healing length, r′ = r/a0, and R(r) by the steady state value, R′(r′) = R(r)/R∞

we obtain
d2R′(r′)

dr′2
+

1

r′
dR′(r′)

dr′
− R′(r′)

r′2
−R′(r′)

3
+R′(r′) = 0. (27)

Our first idea for an approximation comes from the field of cosmic strings. The method of approximation is detailed
in Vilenkin & Shellard (1986). Looking at the profile of the Higgs field in a Nielson-Olesen vortex we see that it can
be written, in a similarly scaled way, as

d2R′(r′)

dr′2
+

1

r′
dR′(r′)

dr′
− R′(r′)

r′2
(A(r′)− 1)2 − λ

2
R′(r′)(R′(r′)

2 − 1) = 0 (28)

Here A(r′) is a gauge term arising from the coupling to electromagnetism, and λ is determined by the potential term of
the theory. It is possible to linearise equation (28) to obtain a modified Bessel function as the first order approximation
to R’(r’) - the zeroth order being 1. This happens in the string case, because the gauge contributions serve to cancel
one of the terms, leaving the modified Bessel’s equation. The linearised version of equation (27) does not quite reduce
to a modified Bessel’s equation, but taking our lead from the cosmic string example, we write

R′(r′) ∼ 1− exp(−r′). (29)

Another approximation, which might seem to be more accurate, was developed by Berloff (2004) in a condensed
matter context. The Padé approximation has the same asymptotics at r = 0 and r = ∞ as the function one is trying
to approximate. The Padé approximation in this case gives

R′(r′) ∼

√

r′2(0.3437 + 0.0286r′2)

1 + 0.3333r′2 + 0.0286r′4
. (30)

This solution is plotted in Figure 1 along with the numeric solution given by equation (27), and the previous ap-
proximation, equation (29). The Padé approximation is indeed much more accurate in the small and large r regions.
However, the Padé approximation has the tendency to overestimate the density in the central region, producing a den-
sity function whose derivative is negative in this region. As discussed in the main body of this paper, the gravitational
potential is proportional to the density, and so the gravitational force will be proportional to the derivative of the
density function. If we chose to use the Padé approximation for our density profile, we could be potentially misled by
its behaviour in the central region.
To illustrate the results obtained in the following, we will therefore use the approximation

R(r) =

(

Eυ

V0

)
1

2

[1− exp[−r/a0]) , (31)

though the bounds we obtain are relatively insensitive to this choice.

3. SELF-GRAVITY OF A BEC VORTEX

In considering Bose-Einstein condensates on scales relevant to structure formation in the universe, we must necessarily
include gravitational effects. BECs are typically sufficiently dilute that the mass densities are not very large, and so
a Newtonian approximation is sufficient. Gravitational effects can be added to the BEC by including a term in the
nonlinear Schrödinger equation that couples to the Poisson equation. We then have a pair of equations modelling a
gravitationally coupled fluid.

i~ψt = − ~
2

2m
∇2ψ + V0|ψ|2ψ − Eυψ +mφGψ (32)

∇2φG = 4πGρ = 4πGm|ψ|2. (33)

3.1. Vortices in Gravitationally Coupled BECs

To obtain vortex solutions, we again work in cylindrical coordinates (r, χ, z), and substitute the vortex ansatz
ψ = R(r)exp(iχ) into equations (32) and (33). The system of equations describing a gravitationally coupled BEC fluid
becomes

− ~
2

2mEυ

[

d2R(r)

dr2
+

1

r

dR(r)

dr
− 1

r2
R(r)

]

+
V0
Eυ

R(r)3 −R(r) +mφG(r) = 0 (34)

∇2φG(r) =
d2φG(r)

dr2
+

1

r

dφG(r)

dr
= 4πGmR(r)2 (35)
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Fig. 1.— Numeric solution to equation (27) (blue), the Padè approximation equation (30) (red), and the scaled approximation used in
this analysis, equation (29) (green).

Ideally, we would like to find a solution describing the function R(r) in this system, so we can compare the density
profile of a quantum vortex, to that of one that is gravitationally coupled. However, finding a full simultaneous
solution to these coupled equations is difficult. Firstly, because the nonlinear Schrödinger equation itself is not soluble
analytically. Secondly, because the vortex density tends to a constant, so the Newtonian potential tends to diverge,
and thirdly because these equations do not define the vortex velocity, which would be providing the centripetal force
to withstand the gravitational collapse. In other words, all the variables required to provide a fully simultaneous static
solution are not defined within these two equations.

4. VORTEX STABILITY IN GRAVITATIONALLY COUPLED BECS

Rather than solving the coupled equations (32) and (33) directly, we can make some arguments regarding the stability
of a gravitationally coupled BEC vortex, and consequently give some bounds on the parameters that describe it. Our
analysis is based upon consideration of the radial velocity profile of a BEC vortex, vω(r), and the radial velocity
induced from gravitational attraction, vG(r); vω(r) is the velocity that the vortex density distribution is moving at, for
a particular r, while vG(r) would be the velocity experienced by a test particle orbiting that density distribution, at a
distance r. To sustain a vortex, vω(r) must at least be greater than vG(r), otherwise the quantum-mechanical forces
at work in the vortex are not sufficiently strong to hold itself up against gravitational collapse. That is, the vortex is
spinning too slowly to provide enough centripetal force to balance the gravitational force. For stability, we therefore
have the bound,

vω(r) ≥ vG(r) (36)

4.1. Gravitational Field of a Cylindrically Symmetric System

To obtain vG(r), we turn to Gauss’s Law to determine the gravitational field of a cylindrically symmetric mass
distribution, and hence obtain the radial gravitational velocity of a test particle moving in the field of that system.
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Gauss’s law is
∮

g · dA = −4πGMencl (37)

The density, ρ(r) = m|R(r)|2, is already determined in terms of the cylindrical r co-ordinate, as it is a solution of the
vortex equation. The mass enclosed is the density pervading a cylinder of radius r and length L.

Mencl = L

∫ r

0

2πrρ(r)dr (38)

The left-hand side of Gauss’s law, in cylindrical co-ordinates, is
∫

grdχdz, (39)

where the integral over the z co-ordinate is again L, the length of the vortex. Gauss’s law, then, gives us

gr2πL = −4πG2πL

∫ r

0

ρ(r)rdr (40)

giving

g = −4πGm

r

∫ r

0

|R(r)|2rdr. (41)

The sign is negative as we have chosen an outward-pointing surface normal in our formulation of Gauss’s Law, equa-
tion (37), which indicates that the gravitational flux will always be towards the origin. This leads to the slightly
counter-intuitive conclusion that a hole (the vortex) in a constant mass density background would seem to produce a
gravitational force towards it, but this is really a manifestation of the (extremely) thick shell condition. Viewed another
way, this static configuration will want to act to collapse in, and close the hole. It is this force that is ‘unopposed’ in
equations (34) and (35). This need not concern us further, as it is the magnitude that is required for our argument.
The magnitude of the induced centripetal force is

g =
vG

2

r
, (42)

and the gravitational circular velocity profile vG is given by

vG(r)
2
= 4πG

∫ r

0

ρ(r)rdr = 4πGm

∫ r

0

|R(r)|2rdr. (43)

5. BOUNDS ON PARAMETERS

We now have expressions for vG(r) and vω(r), equations (24) and (43), to go in the bound given by equation (36).
To enable us to obtain actual values for the velocity and density profiles that we are considering, we must provide

values for the parameters m, V0, and Eυ. The properties of Dark Matter particles are, by their very nature, unknown,
so we must make some approximations. We use the analysis in Silverman & Mallett (2002) to provide us with some
data values. The mass of the Bose Einstein condensate Dark Matter particle in that paper is 3.56 × 10−59 kg (2 ×
10−23 eV). Their analysis is based on the mass and angular rotation of the Andromeda galaxy. The mean density is
given as 2 × 10−24kg m−3, and they estimate that the vortex line density in the galaxy would be about 1 vortex per
208 kpc2. This gives a vortex radius of rω ∼ 2.5 × 1020 m. We again turn to vortex lattices in condensed matter
systems to provide us with some further estimates of vortex properties in a BEC.
Taking the distance between two vortices to be twice the vortex radius, we note from experimental observations of

vortex lattices in a BEC that the vortex density reaches the normal density at about half the vortex radius; see, for
example, Figure 9.3 in Pethick & Smith (2008), taken from Coddington et al. (2003). From Figure (1), we also see
that the vortex density reaches the normal condensate density at around five healing lengths. This gives us an estimate

of rω/2 = 5a0. We then use rω ∼ 2.5 × 1020 m, a0 = ~/(2mEυ)
1

2 , and ρ∞ = mEυ/V0 to give estimates for Eυ and
V0. With these approximations we find values of Eυ = 2.5 × 10−49 J (1.56 × 10−30eV) and V0 = 4.45× 10−84 J m3

(3.7 × 10−45 eV−2).
In Figure 2 we plot, as an example, vω(r) and vG(r) and the density profile for comparison. For this example, we

have used values of m = 3.56 × 10−59kg (2 × 10−23 eV), Eυ = 2.5 × 10−49 J (1.56 × 10−30eV) and V0 = 4.45 ×
10−84 Jm3 (3.7 × 10−45 eV−2) as explained above.
The bound on stability, vω(r) ≥ vG(r), will always be violated at some point, as outside the vortex core vω(r) ∼ 1/r

and vG(r) ∼ r. We must specify what might be an acceptable value of r for vω(r) and vG(r) to meet. For a vortex to
exist, the density profile should be fully established. We take this to mean that the density has essentially reached its
background level. From the scaled density profile in discussed in 2.2, and plotted in Figure (1), we see that the density
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Fig. 2.— Velocity Profiles for vG (green) and vω (blue). Density profile plotted schematically for comparison (red).

reaches its background level at a value of about ten times the healing length. Using equation (31) in (43), equations
(43) and (24) in (36), and substituting for Eυ from equation (17) we obtain

√
2π

2

(

G~2

V0a02

[

2r2 + 8ra0e
−

r

a0 + 8a0
2e

−
r

a0 − 2ra0e
−

2r

a0 − a0
2e

−
2r

a0

]

)
1

2

≤ ~

mr
. (44)

We will fix the healing length a0, and plot V0 against m (fixing a0 and m fixes Eυ , from equation (17)) to give an
allowed range of parameter values. We will do this for various values of a0, and for various values of r, which we will
take to be an integer number of healing lengths, r = na0, with the minimum n = 10 as outlined above. Equation (44)
then becomes

V0 ≥ π

2
Gm2n2

(

2n2a0
2 + 8na0

2e−n + 8a0
2e−n − 2na0

2e−2n − a0
2e−2n

)

. (45)

5.1. Other Bounds

We can obtain some other bounds to cut off other bits of parameter space. The asymptotic vortex density is given
by

ρ∞ = m

(

Eυ

V0

)

. (46)
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Fig. 3.— Allowed region in V0 −m parameter space, for a healing length of a0 = 1× 1016 m (∼ 1 parsec)

If the vortex exists as a component of a galaxy, then there is a minimum and maximum density that the vortex can
have, given by the maximum and minimum known values of mass density within the system:

ρmin ≤ ρ∞ ≤ ρmax. (47)

The value of Eυ in equation (46) is fixed (as we are fixing the healing length), and so the bound on the density becomes
a bound on V0.

~
2

2a02ρmax

≤ V0 ≤ ~
2

2a02ρmin

. (48)

Equation (45) gives a lower bound on V0, so to obtain an upper bound, we use the second half of the above relation.

V0 ≤ ~
2

2a02ρmin

. (49)
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Another bound is provided because the vortex velocity should never exceed the speed of light,

vω =
~

mr
≤ c. (50)

This is an extremely conservative bound because the assumption of Newtonian dynamics itself would break down here.
A tighter limit would be obtained by using, e.g. the escape velocity from a galactic halo, but this would depend on
galaxy mass so for simplicity we stick with the safer bound.
It can be seen from equation (24) that the vortex velocity increases with decreasing radius. This relation breaks

down within the vortex core, a0, where the vortex velocity diverges. Finding an appropriate description is a topic
of some interest in condensed matter theory; see for example Sadd et al. (1997). We evaluate the maximum vortex
velocity at a distance of 5a0 from the origin. i.e. in a regime where we are sure the relation holds. This gives a bound
on the mass.

m ≥ ~

5ca0
. (51)

5.2. Values

To see how the restriction on m and V0 varies, we can think of a range of healing lengths that cover all possible
scales in a galaxy.

1× 1010m (3.2× 10−10kpc, ∼ 7× 10−2AU) ≤ a0 (52)

a0 ≤ 1× 1022m (324kpc) (53)

This range of scales takes us from sub solar system, to that of the largest known galaxies, e.g. IC 1101 in the Abell
2029 cluster discussed by Uson et al. (1990). At fixed a0 we will also cover a large range of n; the number of healing
lengths where the velocity profiles cross. For the bound given in equation (49), we take the minimum density found
within a galaxy to be the cosmological density. This minimum must necessarily be close to the critical density of the
universe.

ρmin = ρcΩc =
3ΩcH

2
0

8πG
. (54)

With H0 = 70 km s−1 Mpc−1, and Ωc = 1 this gives a value of ρmin = 9.2×10−27 kg m−3. This is a rather conservative
bound and is chosen to be applicable to as general a situation possible: one could obtain tighter limits for specific
systems by fixing the density by more detailed dynamical considerations; see, e.g. Johnson & Kamionkowski (2008).

6. RESULTS

The vortex systems we have discussed so far are characterized by a number of parameters that can be related by
physical considerations. To simplify the presentation in this paper we choose to take a0 as a free parameter and then
use the preceding section to impose bounds on the other parameters. Alternative approaches are possible, including
fixing all parameters to be consistent with the size and rotation velocity of galaxies, which would give tighter bounds.
For modelling a specific system, such as galaxy like the Milky Way, the range of allowed parameters would be smaller
still. One most therefore take the following results to be conservative and illustrative only.
In Figure (3), we show a region of the V0 −m parameter space for the healing length a0 = 1 × 1016 m (∼ 1 pc).

The lower bound on V0 is given when vω and vG cross at a value of ten times the healing length, n = 10. A vortex
could be considered more stable if vω and vG cross at a greater number of n, moving us up into the allowed triangular
region. However, this can soon reach the minimum density bound on V0. A value of n = 106 is also plotted, and it is
clear that this is outside the bounded region. The lines bounding the region of allowed parameter values are given by
equations (45), (51) and (49).
Figure (4) shows allowed regions for various healing lengths, all at a value of n = 10. We see that as we move to

smaller values of a0, the allowed bounds on m and V0 both move up, as expected from equations (49) and (51). More
physically, as the mass of the particle is increased, the repulsive potential V0 must increase to balance the stronger
gravitational force.

7. DISCUSSION

In this paper we have used techniques from condensed matter theory in a cosmological setting to place bounds on
parameters describing a Dark Matter candidate, on the assumption that the Dark Matter halo consists of a Bose-
Einstein condensate, in which quantised vortices reside. In the case of a laboratory BEC, self-gravitational forces are
not important but even in that case analytical progress is limited. Using a simple physical argument however, we have
shown how rough limits on the consistency of such a model can be imposed. Considering a Dark Matter particle of
a particular mass, and a vortex of a certain radius places constraints on the values that the chemical potential and
interaction potential can take. There remain sizeable regions of parameter space in which the model appears to be
viable.
In future work, it would be interesting to investigate further whether a Dark Matter candidate could reside in a

coherent quantum state, if the only interaction was gravitational. A less ambitious undertaking would be to see if
the Madelung transformation provides a solution to the problem of defining all the relevant variables, as suggested in
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Fig. 4.— Allowed regions in V0 −m parameter space, with n = 10. Healing lengths as labelled.

Section 3.1. This would give a set of fluid equations that includes the velocity giving rise to the stabilising centripetal
force. One problem to be anticipated in such a solution would be that the velocity in the vortex core would still be
ill-defined, as alluded to in Section 5. The system would therefore have to be solved by a more complete numerical
method than we have been able to implement so far.
We end with some comments on work that has been carried out since the original version of this paper was written,

although a complete review of the literature is beyond the scope of this work.
First, vortices have been observed in turbulent interference patterns generated in numerical simulations of the model

we discuss in this paper with no self-interaction; see, e.g. Schive et al. (2014). In haloes described by this model, a
random superposition of wave functions ψ leads to regions of phase-winding throughout the outer part of the halo; see,
e.g. Lin et al. (2018). In condensed matter this type of solution is sometimes called an incoherent soliton: the vortices
are short-lived compared to a timescale defined by the virial velocity, and surround volumes defined in scale by the
de Broglie wavelength. Obviously these vortices do not form a regular distribution like a lattice, but are turbulent in
nature.
Vortices in halo cores have been discussed by Rindler-Daller & Shapiro (2012); this work was expanded to complete

studies of vortex lines in cores taking into account rotational motions, vertices in the outer halo and in cases with
and without self-interaction, by Aragón-Muñoz et al. (2020) and Schobesberger et al. (2021). Simulations in this field
generally study the case with no self-interaction in the boson field. An exception is the work of Chen et al. (2021)
which considers a turbulent outer halo for both attractive and repulsive interactions, as long as these are not too
strong.
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