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Abstract
This paper describes a fully customizable open source method to create linked origin-destination
data on commuting flows by mode at the Census tract scale by combining LODES and ACS data from
theUSCensus Bureau.With additional work, themethod could be scaled to the entire US (with a small
number of exceptions) for every year from 2002 to 2019. For demonstration purposes, the paper
applies this method to 2015 commuting flows in Cook County, Illinois. At an aggregate scale, the
results of this application show that commuting by all modes is dominated by travel to large regional
employment centres. However, the pattern is more localised for the walking mode, and focused along
corridors of mode-specific infrastructure investment for the cycling and transit modes, as might be
expected. The auto and work from home modes demonstrate the most distributed pattern of travel,
revealing more instances of commuting to regional sub-centres than the other modes.
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Introduction

Cities face a variety of urban transportation challenges in the 21st century. Managing traffic
congestion, commute times and infrastructure investment and maintenance costs have traditionally
been the primary focus for many transportation planning agencies and public officials in North
America (Rodrigue, 2020). In recent years, growing concern over the myriad climate-related,
environmental, health and social externalities from automobile-centred transportation systems has
foregrounded the need for transportation planners to better understand (and plan for) non-auto
modes (Woodcock et al. 2009; De Nazelle et al. 2011; Neves and Brand 2019; Lee et al. 2017;
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Lovasi et al. 2009; Vojnovic and Darden 2013; Frank et al., 2006; Frank et al. 2004; Wang et al.
2016; Yang et al. 2018; Lindstrom, 2008; De Hartog et al. 2010; Mueller et al. 2015). Overlaid on
these issues are the even more recent shifts in commuting and migration patterns related to the
pandemic, including apparent increases in remote working, migration from dense central cities to
more sprawling, auto-oriented ones and attendant declines in public transit ridership (Polzin and
Choi, 2021).

To make plans to address these challenges, practitioners and researchers require a high volume of
spatially and temporally fine-grained data. The standard four-step and newer activity-based travel
demand models (TDM) produce estimates of the volume of trips between urban zones by trip
purpose and mode (National Academies of Sciences, Engineering, and Medicine, 2012; 2014;
Metropolitan Washington Council of Governments, 2018). These methods often rely on expensive
household travel surveys that must be deployed at long (e.g. 10-year) intervals, and thus can become
quickly outdated (Toole et al., 2015; Cuauhtemoc et al., 2017). In addition, activity-based models
(ABM) employ computationally demanding spatial microsimulation methods to create synthetic
(disaggregate) populations from which zonal trips are estimated and could benefit from further
empirical validation1 and more lightweight, open source options (Rasouli and Timmermans, 2014;
Stabler and Freedman, 2021). Recent approaches have also moved to incorporate ‘big’ data sources
– such as GPS traces, smart card data from public transit systems and user-generated data from apps
like Strava and CycleTracks – into the transportation demand modelling process (Pelletier et al.,
2011; Toole et al., 2015; Cuauhtemoc et al., 2017; Tu et al., 2018; Zhu et al., 2019). While these data
provide automated collection with greater speed, scope and variety of information about trans-
portation patterns, significant issues remain in the application of these data sources (Milne and
Watling, 2019). Big data from smartphones have a number of known issues which create challenges
for researchers (Zandbergen 2009; Prelipcean and Yamamoto 2018), including detection accuracy
(Chen et al., 2018; Harding et al., 2021), variation in service and phone quality (Jariyasunant et al.,
2014; Harding et al., 2021), and battery drain (Jariyasunant et al., 2014). Smart cards and open
source applications like CycleTracks often feature samples which over-represent younger, eco-
nomically active and tech-savvy populations (Bagchi andWhite 2005; Milne and Watling 2019), as
well as intensive app users (Chen et al., 2018).

Given these issues, it is apparent that despite the recent methodological advances in estimating
travel demand, Cervero’s (2006) argument in favour of lightweight sketch planning models that
focus specifically on representative and reliable measures of non-auto transportation at high spatial
resolutions remains relevant. Thus, the purpose of this paper is to develop a reproducible, fully open
source method for creating detailed data on commuting flows by mode for small geographic areas.
We do this by combining ACS data on (origin-based) commuting by mode with LODES data on
residential-employment connections to derive estimates of linked origin-destination (O-D) trips by
mode. With some additional work, this method could be applied across the US at the Census tract
(neighbourhood) scale for every year that LODES and the ACS/Decennial Census are both available
(2002–2019, with a few exceptions), which would provide planners and researchers a vast resource
for investigating transportation mode-related spatial and temporal dynamics. Here, we apply the
method in Cook County, Illinois (the greater Chicago area) using 2015 data from LODES and 2013
to 2017 5-year estimates on means of transportation to work from the ACS. In this application, we
estimate more than 1.7 million commuting trips over nearly 440,000 unique tract-to-tract links for
the walking, transit, auto, work from home and cycling modes.

Importantly, we apply distance decay thresholds – derived empirically from National Household
Transportation Survey (NHTS) data on travel distance by mode in the region – to the walking and
cycling modes to redistribute (unrealistic) long distance trips to nearby tracts. Similarly, we use open
source travel times (from the R package r5r) by public transit to estimate and redistribute viable
transit trips. Even with these redistributions, the method preserves the total number of trips by the
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five modes of interest for the county from LODES, as well as the origin-based mode share per-
centage from the ACS for each individual tract.

The comprehensive, timely, and spatially granular estimates of travel flows by mode produced by
this method can inform important future work in both transportation planning practice and research.
Public planning agencies can use this technique to study aggregate travel patterns by mode without
commissioning expensive travel surveys, and as an option to validate synthetically derived activity-
based models. Researchers can use these data as inputs to discrete choice or spatial interaction
models in order to better understand the contextual and built environment-related determinants of
non-auto travel at a regional or national scale. The temporal dimension of the LODES and ACS
datasets also allow for time series analysis of the determinants or changes in modal flows at the
neighbourhood scale over time.

Modelling travel demand

The conventional travel demand modelling (TDM) process consists of four steps as follows: trip
generation, trip distribution, mode choice and route assignment (National Academies of Sciences,
Engineering, andMedicine, 2012; 2014; MetropolitanWashington Council of Governments, 2018).
In the simplest version of this framework, the region is split into areal traffic analysis zones (TAZ),
which are slightly larger than Census tracts. The number of trip ‘productions’ and ‘attractions’ for a
given trip purpose in each TAZ are estimated based on the characteristics of households gathered
from a large transportation survey, such as the NHTS, and Census data on the number of households
and/or employees in each TAZ. These trip productions and attractions are then put into a spatial
interaction model, along with the distance from each (origin) TAZ to every other (destination) TAZ,
to produce estimates of the number of linked O-D trips (by purpose). These linked trips are classified
by mode using multinomial or nested logit models, where mode choice is estimated as a function of
level of service, traveller characteristics and area characteristics. Once the number of trips by mode
between every origin and destination has been estimated, they are applied to the street (or transit)
network using algorithms that take into account shortest paths and capacity constraints to determine
the actual volume of travel on each component of the travel network (National Academies of
Sciences, Engineering, and Medicine, 2012).

While these models have been widely used in transportation planning for more than half a
century, the conventional approach has a number of serious issues. First, the data required to
estimate trip distribution (i.e. trips between origins and destinations) and mode share is extensive
and not completely available from public sources at fine-grained temporal intervals. Household
travel surveys – including the federal NHTS – are expensive to deploy and generally only updated
every 10 years (or more) (Toole et al., 2015; Cuauhtemoc et al., 2017). This means that traditional
TDMs do not have the ability to monitor or react to fast-changing conditions or events. Similarly,
TAZs are relatively large spatial units that mask fine-grained travel patterns, particularly for
nonmotorized modes (Cervero, 2006). Of course, travel by nonmotorized modes – and sometimes
even transit – is often not considered at all in conventional TDMs, which means that we have
critically little knowledge about regional-level transportation patterns by walking and cycling
(National Academies of Sciences, Engineering, and Medicine, 2012; Cervero, 2006).

More complex activity-based models (ABM) have been developed in recent years to address
some of these issues (Bhat et al., 2002; National Academies of Sciences, Engineering, and
Medicine, 2014; Rasouli and Timmermans, 2014; Stabler and Freedman, 2021). These models
use spatial microsimulation methods to generate a dataset of synthetic individuals (Tanton, 2014).
Travel is then modelled at the individual level, based on each synthetic person’s individual
characteristics, household characteristics, time constraints and activities. This provides the ability to
understand much finer-grained spatial and temporal characteristics of travel, including trip chains
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(National Academies of Sciences, Engineering, and Medicine, 2014). However, these models are
computationally intensive and even more complex to implement than conventional TDMs, with
few open source options (Stabler and Freedman, 2021) or ways to empirically validate the
results, since the outputs occur fundamentally at the individual level (Rasouli and Timmermans,
2014). They also rely on the same expensive, intermittent travel surveys as conventional TDMs
(Tajaddini et al., 2020).

Recently, the availability of new, digitally generated ‘big’ sources of data on mobility – including
smartphone GPS traces, smart card ingress and egress data from transit agencies and user-created
information from exercise apps such as Strava – have offered the potential to overcome the problem
of costly individual-level data collection (Pelletier et al., 2011; Toole et al., 2015; Cuauhtemoc et al.,
2017; Tu et al., 2018; Zhu et al., 2019; Tajaddini et al., 2020). The collection of individual-level
empirical data on mobility – rather than producing a synthetic estimate – theoretically simplifies the
ABM process and removes concerns over ‘ground-truth’ validation. However, smartphone-derived
data have several issues which increase the difficulty of using them in TDM applications (Zanbergen
2009; Preplipcean and Yamamoto 2018). A number of barriers, for example, urban canyons, user
behaviour and variation in service and phone quality (Jariyasunant et al., 2014; Harding et al.,
2021), make it difficult for smartphone GPS to consistently detect user location with accuracy
(Harding et al., 2021), which necessitates supplementary data processing to remove errors (Chen
et al., 2018). GPS tracking, especially from specialized apps created by researchers, also leads to
drain of battery life, which is a strong concern for users and limits tracking time (Jariyasunant et al.,
2014). It is also not possible to ascertain which travel mode is being used simply from the trajectory
of GPS traces alone.

Similar problems beset other sources of big transportation data like public transit smart cards.
These are credit card-sized devices that store and process data for trip fare collection systems in
public transit (Pelletier et al., 2011). Much research has employed smart card data to study public
transit (Tu et al., 2018). These data can suffer from issues of representativeness and inaccuracy due
to lack of random sampling and failure in technology (Bagchi andWhite 2005). Crucial context like
trip purpose and demographics are often missing because such information is anonymized or not
recorded at all (Cuauhtemoc et al., 2017; Milne and Watling 2019). These problems are charac-
teristic of broader issues with big transportation data (Milne and Watling 2019). And, while data
from workout trackers like CycleTracks and Strava provide concrete information on mode, as with
many internet applications, their users are often younger, more affluent and generally more
comfortable with technology than the general population (Milne and Watling 2019). These features
may correlate with their displayed mode choice preferences, which makes it somewhat difficult to
generalize patterns derived from these data to the wider population.

Given these issues with ‘big’ data on non-auto travel, and the limitations associated with es-
timating TDM and ABM in general, our method fills a number of gaps. We use open source ACS
and LODES data, so the method can be easily implemented without a purpose-built travel survey.
Since LODES contains data on the linked location of every individual employee-workplace at the
Census block scale across the country (for every year), this approach also provides high levels of
spatial and temporal granularity without the associated complexity of deriving synthetic populations
(as in ABM) or relying on potentially unrepresentative samples (as in digital sources of data or
smartphone GPS traces). We also directly estimate the modal split of each O-D link from ACS data,
foregrounding the ability to study nonmotorized travel patterns within a regional context. The data
produced by this method can also be easily combined with other (Census or locally derived) datasets
to study the role of demographics, the built environment, or other neighbourhood characteristics on
the volume of travel by mode. And, perhaps most importantly, the method is relatively lightweight
to implement, which means it can be more easily used by citizens, transportation activists, policy-
makers and land use planners. The lightweight nature of the application can also be useful for
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transportation planners in sketch planning contexts, for specific studies of nonmotorized travel, and
also as a part of the empirical validation of ABM results.

Methods

Data

This method described in this paper is based on two primary open datasets prepared by the US
Census Bureau: (1) the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination
Statistics (known as LODES) and (2) the American Community Survey (ACS) 5-year estimates
(Manson et al., 2020). LODES is collected primarily from the unemployment insurance reporting
system and delineates residential and workplace locations from these (and other federal admin-
istrative) records. It is important to note that since the employment location is reported by em-
ployers, in some cases it may not be the exact location where a given employee physically works
(Graham et al. 2014), for example, in the case of large institutional employers, which Murikami
(2007) also identifies as a particular concern for using the early LEHD data for block-level
transportation analysis. LODES also does not denote whether a given origin-destination link is
actually taken as a trip. However, the method presented in this paper helps deal with that uncertainty
by combining these employee–employer links with data on commuting by mode (including,
implicitly, the percentage working from home), thus providing an estimate for actual trips taken
across each O-D link.

Counts of the individual employee–employer links are aggregated to the Census block level for
every year from 2002 to 20192 to create the basic data product (Graham et al. 2014). Within LODES
there are three primary datasets as follows: (1) the Origin-Destination (OD) file, which contains job
totals associated with a linked residence→ workplace flow; (2) the Workplace Area Characteristics
(WAC) file, which contains job totals summed by the workplace block and (3) the Residence Area
Characteristics (RAC) file, which contains job totals summed by residence block. Each of these files
contains more detailed breakdowns of the job counts by various demographic characteristics. Since
this method is concerned primarily with creating linked origin-destination data on commuting by
mode, the OD file is used, which (due to its specificity) contains only coarse demographic in-
formation, grouping jobs into large-scale age, earnings and industry categories. For this paper’s
application, we used the total number of jobs for each linked origin-destination Census block (field
‘S000’) from the LODES 2015 ‘JT00’ (all jobs) OD file. We summed these block-level flows within
their nesting Census tracts to match the scale of analysis of the ACS mode share data.

Unlike LODES, which relies fundamentally on administrative records, the ACS is a sample
survey that is conducted at regular intervals. In order to produce a spatially representative estimate,
responses for a given geographical unit are averaged over time; the smaller the unit, the longer the
timespan needed to produce a reasonable estimate. At the Census tract scale, 5-year estimates
(averages) are used to provide figures with the lowest possible margin of error, although error
estimates can still be quite large (see the Margins of Error section in the Supplementary Material for
more detail). The ACS collects a variety of information on demographics, housing conditions, and
employment, but our interest here is solely on commuting information. The ACS questionnaire asks
respondents to describe the means of transportation used to travel to work ‘in the last week3’
(Graham et al. 2014). For this application, we used the percentage of workers 16 and over who use
each of these five means of transportation to work – ‘car, truck, or van’, ‘public transportation
(excluding taxicab)’, ‘bicycle’, ‘worked at home’ and ‘walked’ – by Census tract from the 2013 to
2017 ACS.

Since the survey is administered to people at their place of residence, the ACS counts of
commuting by mode are tabulated at the place of residence only, with no information on the
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destination of these trips. Thus, the purpose of this paper is to combine this origin-based information
on commuting by mode from the ACS with the total linked origin-destination flows from LODES to
create estimates of commuting flows by mode over each individual O-D link.

Naive method - equal distribution

The most straightforward approach to applying origin-based rates of commuting by mode to the
linked O-D flows from LODES – which we will call the ‘naive’ method here – is to multiply each
mode’s ACS commuting share (S) for a given tract (i) across all flows leaving that tract (T ) to obtain
an ‘expected’ count of flows (E) by mode m (Equation (1)).

Eim ¼ SimTi (1)

While this method produces estimates of flows by mode that preserves the correct share of
commuting by mode leaving a tract, it unfortunately assumes that this share is equally distributed
across all destinations (j). This means that for a tract a in a suburban location (e.g. Arlington
Heights) with 2% walk commute mode share and a large number of flows to the central city (e.g. the
Loop), this method will estimate that 2% of the commuting flows on this particular link (and, in fact,
all links leaving tract a) are walking flows, despite a very long distance between tract a and the Loop
(e.g. 35–40 km). Given a sufficiently large number of observed flows on a given link, especially in
the context of a traditional suburban commuting pattern, this misestimate could be quite large. To
solve this problem, and to produce more realistic estimates of commuting by mode, we developed
the ‘weighted’ method described below.

Weighted method – distance and travel time redistribution

The primary intuition of the weighted method is to weight estimated flows (Eijm) by some distance
decay parameter based on the length of a given ij link and then to redistribute the ‘excess’ (i.e.
unrealistic) flows across more realistic (i.e. nearby) links. To do this effectively, two different
methods must be employed for the walking/cycling and transit modes due to their different
characteristics4.

Weighted method for walking and cycling. For walking and cycling trips, we first calculate the street
network distance (in km) dij between tracts for all observed links in LODES based on the latitude
and longitude coordinates of tract centroids snapped to the closest street segment from Open-
StreetMap. This is calculated in R (using the r5r package5) for the nearly 440,000 unique O-D pairs
in the dataset. A constant value of 0.05 km is used for intra-tract (i.e. on-diagonal) flows to avoid
numerical issues with multiplying or dividing by 0. Then we find the weighted modal flows on each
link (WijmÞ based on a mode-specific distance decay parameter (βm) according to equation (2).

Wijm ¼ Eijmd
�βm
ij (2)

The calculation of Wijm in equation (2) is also subject to two constraints as follows: (1) a
minimum threshold υ below which the raw number of estimated flows by mode (Eijm) remains un-
weighted and (2) a maximum threshold μ above which the weighted number of flows = 0. We
discuss empirical derivations for υ and μ for walking and cycling in Section 2.3.2. The full ex-
pression of the if-else statement defining the calculation of Wijm according to these constraints is
shown in equation (3).
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�
dij < υ0Wijm ¼ EijmÞ⋀ðdij > μ0Wijm ¼ 0Þ⋀ðυ< dij < μ0Wijm ¼ Eijmd

�βm
ij

�
(3)

This method necessarily produces fewer flows than are observed in the original LODES data
because long flows are removed and medium-distance flows are discounted by β. To maintain
consistency with the original data, we need to redistribute these ‘excess’ flows (Xijm) to nearby
tracts. To do this, we start by finding excess flows by subtracting Wijm from Eijm (Equation (4)) to
find excess flows on each link.

Xijm ¼ Eijm �Wijm (4)

Now, we find the set of ‘nearby’ tracts Nim for each tract i (for each mode) by filtering the data to
find all ij links within μ. This set serves as the realistic set of (nearby) possible destinations for
redistributing the excess flows. We sum the total number of flows to all j tracts within this set for
each i (Equation (5)) to find the total number of flows to nearby tracts (TNi), which will serve as a
denominator for redistribution.

TNi ¼
XNim

j¼1

Tij (5)

We also sum Xijm for each tract i (across all observed ij links) to find the total excess flows by
origin (TXim) (Equation (6)):

TXim ¼
Xnijm
j¼1

Xijm (6)

Now, we divide TXim across all nearby tracts (Nim)weighted by the ratio of flows on an individual
link (Tij) to the total number of flows from tract i to all nearby destinations (TNi) to find each
individual link’s proportional redistributed flows by mode (ADDijm) (Equation (7)):

ADDijm ¼ TXim

�
Tij

�
TNi

�
(7)

This is added to the weighted number of flows found in equation (3) to produce the final re-
distributed weighted estimate of modal flows on each link (FijmÞ (Equation (8)):

Fijm ¼ Wijm þ ADDijm (8)

This approach has a couple of key advantages. First, excess trips are not evenly redistributed to
nearby tracts, which would be unrealistic. Instead, the redistributions follow the pattern of the full
LODES commuting data. This means that if a given ij link has a particularly high proportion of
observed flows, the redistribution of excess walking and cycling flows is weighted by that overall
proportion, so redistributions stack onto real commuting patterns appropriately. Second, this method
preserves the total number of LODES flows leaving any given tract6 (Eim), as well as the ACS
commute mode share, while still providing a much more realistic estimate of flows by mode based
on the distance of a given link than the naive method. For clarity, Figure S1 in the Supplementary
Material provides a simplified visual example of the methodology described in Equations (1)–(8).

Defining parameters for weighting walking and cycling flows. How do we obtain estimates for the β, μ
and υ parameters by mode? While our method for estimating walking and cycling flows is
completely flexible7 and allows these parameters to be customised for a given geographic area or use
case; in this application, we have defined them based on empirical data from the 2009 National
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Household Transportation Survey. First, we selected home-based work trips (from the ‘Trips’ file)
for Metropolitan Statistical Areas (MSA) of 1 million or more with heavy rail in the East North
Central Census Division. We then extracted all individual walking and cycling trip distances from
this subset. We plotted the percentage of trips in 1-km distance bands and fit them with an ex-
ponential curve, as shown in Figure S2 in the Supplementary Material.

The slope term for these curves were used as the β (distance decay) parameters for our modelling
purposes. In this case, βWALK ¼ �:714 and βCYCLE ¼ �:329. The μ parameter was determined by
the maximum observed trip distance8 in the subset. In this case, μWALK ¼ 3:5 and μCYCLE ¼ 6:8.
Finally, υ was chosen based on trial and error according to the observed β coefficients. Given the
relatively steep value for βWALK and the high proportion of observed walking trips within 1 km,
υWALK ¼ 1. Essentially, if we were to set υWALK to a smaller value, it would heavily discount a large
proportion of very short (i.e. intra-tract) walking trips whose excess values would then be re-
distributed across the larger μWALK, which seemed inappropriate. Likewise, υCYCLE was also set to 1.

Weighted method for transit times using r5r. For the transit mode, discount and redistribution of
excess flows by distance alone is not appropriate, as transit travel occurs at particular nodes and
along particular networks. In this case, we need to know which links represent ‘realistic’ potential
transit flows in order to create the transit-relevant set of ‘nearby’ tracts (NiTRANSIT ). Excess flows,
then, are those leaving a given tract i on links where transit trips are not viable. These are re-
distributed according to each individual link’s proportional flows by mode as described in Equations
(7) and (8). In this case, υTRANSIT = links with 1–3 rides. Our assumption is that transit is a viable
option only when a trip is actually taken (>0 rides), but trips with more than 3 transfers are also
extremely unlikely to actually be taken for commuting purposes. No distance decay parameter was
assigned to transit trips.

How do we obtain estimates of realistic transit links? The R package r5r (version 0.6.0) is used to
query transit travel times to and from each tract centroid in the study area. This package, which
stands for ‘Rapid Realistic Routing with R5 in R’ (Pereira et al., 2021), takes as inputs the General
Transit Feed Specification (GTFS) and OpenStreetMap (OSM) data for a particular region and uses
that data to calculate transit travel times from a set of origins to destinations directly in R (similar to
OpenTripPlanner, but operable entirely in R). The user specifies a range of parameters, including the
maximum walking distance (i.e. to a transit station) threshold, the maximum total travel time
threshold, the start date/time and a fuzzy travel time window9 for departure times. In this case, the
outputs are based on the trip whose waiting times are closest to average within the departure
window. Importantly, the ‘breakdown’ parameter provides a detailed output for each link, including
whether or not transit was actually used for a particular link (i.e. if the calculated transit travel +
waiting + transfer times ≤walking time for a particular link) and the number of transit rides required
to get to a given destination. Parameters used in this r5r application can be found in Table S1 in the
Supplementary Material.

Results

In order to gauge (1) how well the method is preserving the data inputs and (2) the extent to which
the results generally match other available sources of modal commuting data, we employ several
internal and external validation approaches, which can be accessed in the Validation section of the
Supplementary Material. Beyond validation, we can also assess the characteristics of the estimated
flows by mode in order to better understand travel patterns in Cook County. Figure 1 shows the
distribution of estimated flows by distance band and mode. Given its small overall mode share
percentage (4.27%), walking makes up a fairly considerable proportion of trips within 5 km:
28.87%. Cycling trips are most heavily concentrated in the 2–5 km band, making up 3.62% of all
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trips at that distance compared to a 1.07% overall mode share. Transit trips, which aren’t as heavily
structured by distance, are most concentrated in the 1–20 km range. Transit demonstrates a 23.25%
mode share for trips of these distances compared to an 19.40% mode share overall. Interestingly,
across all distances – even within 1 km – auto travel outcompetes all other modes.

Beyond these descriptive characteristics, the most useful application of this method is to examine
the spatial patterns of linked commuting flows by mode. Figure 2 shows maps of the weighted flows
for links with the largest 1000 trips (to increase visual clarity of the key patterns) for each of the five
modes of interest, created using the ‘FlowMapper’ tool (flowmapper.org). Commuting by auto is the
most spatially dispersed, which is not surprising given that it is the most common mode of travel
(both in Cook County and in the United States overall) and that auto infrastructure provides for rapid
travel over long distances and is widely distributed and heavily invested in. Activity concentrates on
the Loop, with the largest flows coming from neighbourhoods/suburbs such as Mount Greenwood,
Edison Park, Midway and the South Loop. At the same time, we can observe a more widespread
distribution of employment (in-commuting) sub-centres in the northwest portion of the county, for
example, Schaumburg.

The pattern is generally similar for working from home, with a much heavier concentration of
activity from near northside neighbourhoods like Lincoln Park to the Loop. Substantial ‘flows’ to
Evanston (Northwestern University) are also visible. This makes sense given the relatively high
concentration of professional, technical and creative occupations in these neighbourhoods. For
transit, the overall pattern is relatively dispersed, but the Loop remains the dominant destination,

Figure 1. Histogram showing distribution of weighted trips by mode and distance.
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with the largest flows coming from areas well-serviced by bus – including the South Loop and the
near north, for example, Lincoln Park and Lakeview – as well as areas served by specific CTA ‘L’
lines such as Edgewater (Red Line), West Town, Oak Park (Blue Line) and Ravenswood (Brown
Line). Evanston, on the CTA’s Purple Line, also shows up as a prominent commuting destination.

For cycling, the pattern displays some inhibition distance, which makes sense given the method’s
parameters as well as the basic logic of the cycling mode, that is, walking is likely preferable for very
short trips. We see the major university/employment centres, that is, the Loop (centre city), Hyde
Park (University of Chicago) and Evanston (Northwestern University), show up strongly as cycling
commuting destinations, dominated by commuting trips to the Loop. The largest of these flows
come from gentrifying, young neighbourhoods such as Pilsen, Old Town, Lincoln Park, Lakeview,
West Town and the South Loop, which matches our intuition about cyclists. These areas have also
received some of the highest profile investments in cycling infrastructure in the city, including the
Lakefront Trail, protected bicycle lanes on the Milwaukee Avenue bicycle corridor, and the 606/
Bloomingdale Trail, a previously abandoned elevated train line that has been renovated into a new
pedestrian and cycling trail.

Figure 2. Five panel map showing flows for links with largest 1000 trips for auto (top left), work from home
(top middle), transit (top right), cycling (bottom left) and walking (bottom right). Arrows denote direction of
the flows.
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Finally, for the walking mode we see the largest concentrations of activity in major employment
centres that are also located in walkable neighbourhood contexts, for example, in Hyde Park and the
Loop. Interestingly, smaller (more walkable) sub-centres in nearby neighbourhoods are also ev-
ident, including theWest Loop, Chinatown, South Loop and the North/Clybourn retail corridor. The
overwhelming regional pattern, however, consists of nearby residential neighbourhoods commuting
to the Loop (in particular, the financial district) by walking.

Discussion and conclusions

In this paper, we have developed a fully customizable method for estimating the number of
commuting flows by the walking, cycling, transit, work from home and auto modes to and from
every individual Census tract in Cook County, IL by combining origin-based information on
commuting by mode from the ACS with the linked origin-destination flows from LODES. This
method – which is implementable through the supplementary code available (https://github.com/
kcredit/LODES-ACS-commuting-flows) – provides a useful resource for transportation planners,
active transportation advocates and researchers to study spatial and temporal variation in auto and
non-auto travel patterns.

Indeed, the resulting spatial patterns of travel by mode reveal a number of interesting char-
acteristics. As expected, we observe high volumes of trips by all modes to regional employment
centres such as the Loop, Evanston and Schaumberg. The auto and work from home modes provide
the most distributed patterns of commuting, with prominent sub-centres in more outlying areas of
the county (like Schaumberg). Outside of these areas, additional mode-specific patterns also emerge.
The unique impact of cycling infrastructure is apparent in the Milwaukee Avenue bicycle corridor,
while the pattern of transit trips tends to follow the largest Chicago Transit Agency (CTA) ‘L’ lines,
including the Red, Blue, Purple and Brown Lines. A high volume of transit commuting to the Loop
is also concentrated in the well-connected near northside neighbourhoods, which are served by a
large number of frequent bus lines.

At the same time, the approach taken in this paper can be extended in a variety of useful ways.
Given sufficient computational power, this analysis could theoretically be scaled to the state- or
national-level for most years between 2002 and 2019 in order to better understand intra- and inter-
regional travel patterns. Of course, expanding beyond the application here would require some
additional work. Our method for estimating transit flows relies on r5r travel time data, which is
available only in regions with large-scale transit networks. The procedure used to fit distance decay
curves for the walking and cycling modes currently comes from 2009 NHTS data specific to the
large cities in the region of the country in which Chicago is located. If this method were expanded to
additional regions, region-specific curves would need to be fit, or a more generalised estimate used
based on state or national data. Calculating tract-to-tract street network distances at scale could also
be quite computationally expensive using r5r, and would require the manual download of area-
specific street network data from OSM, so simple great circle distance calculated directly from the
latitude and longitude coordinates of tract centroids may be preferable in that case10.

Beyond characterizing aggregate patterns, this method could also be particularly useful for
analysing specific spatially granular corridors and conditions of interest, for example, specific
neighbourhood origin-destination relationships. Fine-grained temporal analyses, particularly in
terms of changes in the work from home patterns, would also be insightful to examine in forth-
coming iterations of the LODES data (2020–on) in order to better understand the changes in
commuting due to the pandemic-era shift to remote work. Demographically, we could also look at
finer-grained subsets of commuters based on existing breakdowns in the LODES O-D data based on
age, income and broad industry classification. Further external validation for the walking and
cycling outputs could be done by comparing to other large sources of data such as Strava – although
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these data differ in terms of purpose (i.e. commuting vs. recreation), additional validation would be
interesting and useful to users of both products.

Finally, the data created by this paper’s method could be used as an important input to future
research employing spatial interaction models to explicitly study the competing importance of
various built environment and demographic ‘push’ and ‘pull’ factors on tract-level commuting. The
role of built environment factors on commuting by mode, in particular, is one of the most-studied
topics in urban and transportation planning, and could benefit from a more comprehensive analysis
using this method’s outputs.
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Notes

1. As Rasouli and Timmermans (2014, p.51) note in a mostly positive review of activity-based models, ‘a
lack of empirical evidence that activity-based models indeed perform better than four-step models [has]
been the major [reason] for not adopting activity-based models in planning practice’.

2. For all but seven states for particular years: Alaska 2017–2019, Arizona 2002–2003, Arkansas 2002, 2019,
DC 2002–2009, Massachusetts 2002–2010, Mississippi 2002–2003, 2019, and New Hampshire 2002 (US
Census Bureau, 2021).

3. Important to note that in some cases this may skew modal estimates if travel taken in the last week is not
typical for an individual.

4. In other words, what constitutes ‘nearby’ for walking and cycling trips is not the same as for transit, given
the fact that transit trips occur only along specific infrastructural networks.

5. Specifically, we ran a ‘walking’mode query with a large enough travel time threshold to capture all origins
and destinations in Cook County (3000 h), which took about an hour to run on a standard laptop. Returned
travel times are multiplied by the set walking speed parameter (5 kph) to obtain distances in km. More
information on r5r can be round in Section 3.3.3.

6. For the modes of interest, based on the ACS commute mode share.
7. As shown in the associated code here: [redacted].
8. One extremely long distance outlier for walking trips (>3.9x larger than the second-largest distance) was removed.
9. From the r5r package documentation: ‘Timewindow inminutes for which r5r will calculate multiple travel time

matrices departing each minute. By default, the number of simulations is 5 times the size of “time_window” set
by the user. Defaults window size to “1”, the function only considers 5 departure times. This parameter is only
used with frequency-based GTFS files…The travel_time_matrix function uses an R5-specific extension to the
RAPTOR routing algorithm (see Conway et al., 2017). This RAPTOR extension uses a systematic sample of
one departure per minute over the time window set by the user in the “time_window” parameter. A detailed
description of base RAPTOR can be found in Delling et al. (2015)’ (Pereira et al., 2021).

10. In our case, street network and great circle distances were correlated at 0.993.
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