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A B S T R A C T   

Nigeria’s growing population faces an increasing heat burden with potential health risks. The Universal Thermal 
Comfort Index (UTCI) links outdoor conditions and human well-being but lacks comprehensive insitu data in 
developing regions like Nigeria. ERA5-HEAT reanalysis offers a solution with gridded UTCI and MRT data, but 
validation is crucial. Thus, this study evaluates the ERA5-HEAT UTCI against data from nine Nigerian weather 
stations and analysed the spatio-temporal patterns of heat stress trends. Results showed that ERA5-HEAT 
demonstrated reasonable statistical performance and captured the temporal characteristics and patterns of 
UTCI across Nigeria’s climatic zones. Seasonal variations show heat stress levels from "slightly cold" to "mod-
erate" at 0600 LST and "moderate" to "very strong" at 1500 LST. Geographical consistency exists within each 
season over the decades, with a critical "very strong" heat stress period during March-May. Additionally, there 
has been an increasing spatial expansion of areas experiencing higher heat stress levels across the country. 
Latitudinally, stable patterns exist across decades at 0600 LST for each season. Seasons show distinct UTCI 
values, and at 1500 LST, more variability and category transitions occur along latitudes. Furthermore, the results 
indicate significant positive trends and occasional non-significant negative trends over the 40-year period. 
Notably, during 0600 LST, the Guinea and Sahel regions exhibit relatively higher positive trends than the Sudan 
region in all seasons, whereas at 1500 LST, high positive trends are prominent in DJF and MAM seasons, indi-
cating increased heat stress during peak seasons. These positive deviations in UTCI are associated with adverse 
effects on human health, including increased mortality rates.   

1. Introduction 

1.1. Background of study 

The escalating global warming has given rise to critical temperature- 
related challenges, including heatwaves, heat stress, and thermal 
discomfort which are projected to increase in magnitude and frequency 
(Adelekan et al., 2022). Coupling the global warming and consequent 
effects is the challenge of the rapid pace of urbanization, driven by the 
increasing global population and a rising rate of rural-urban migration. 
Currently, over half of the global population resides in urban areas, a 

percentage projected to increase to 68% by 2050 (UNDESA, 2019). This 
substantial urbanization has given rise to the urban heat island effect, 
where urban temperatures significantly exceed those in suburban areas, 
particularly during nighttime(Okeahialam, 2016; Santamouris, 2015). 
This phenomenon exacerbates heatwaves in urban areas, and results in 
heightened levels of heat stress, consequently diminishing the quality of 
urban living in numerous cities worldwide. 

Driven by both high population growth and extreme temperatures, 
sub-saharan Africa’s exposure to dangerous heat during the 21st century 
is the highest among all regions globally (Parkes et al., 2022; Tuholske 
et al., 2021; Eresanya et al., 2018). This has been projected to increase 
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substantially, from 2 billion person-days per year in 1985–2005 to 45 
billion person-days by the 2060s at 1.5 ◦C global warming and low 
population growth. At 2.8 ◦C global warming and medium-high popu-
lation growth, the projection indicate an increase to 95 billion 
person-days, with the greatest exposure projected in West Africa where 
Nigeria, this study geographic area is located (Trisos et al., 2022). 
Moreover, the escalating population in this region implies high exposure 
to extreme heat stress conditions, and consequently heat-related 
morbidity and mortality though unreported or under-reported(Ame-
gah et al., 2016). 

The interplay of high temperatures with other weather parameters, 
such as humidity, wind speed, and solar radiation, results in varying 
degrees of human thermal stress and comfort (Morakinyo et al., 2019). 
This complex phenomenon, known as heat stress, challenges the human 
body’s ability to maintain its core temperature within the range required 
for optimal comfort, performance, and health (Di Napoli et al., 2021a; 
Ncongwane et al., 2021). Heat stress has multiple adverse effects on 
human health, livelihood, and productivity, particularly in terms of 
health-related impacts and risks resulting in morbidity and mortality 
(Ncongwane et al., 2021; Pasquini et al., 2020). Over 5 million deaths 
per year have been attributed to non-optimum temperatures, especially 
among vulnerable population groups (Zhao et al., 2021). 

1.2. Thermal studies in Nigeria: trends, patterns and applied indices 

Research on heat or thermal stress in Nigeria has been ongoing for 
approximately four decades, with pioneering work by Ayoade (1978) 
and Olaniran (1982). These early studies laid the foundation for 
assessing thermal stress conditions in Nigeria using indicators or indices 
such as Air Temperature(AT), Wet-Bulb Temperature (WBT), 
Temperature-Humidity Index (THI), and Effective Temperature Index 
(ETI). For example, Ayoade (1978) employed the ETI to depict physio-
logic comfort zones across Nigeria, recognizing four distinct zones. 
Building upon Ayoade’s work, Eludoyin and Adelekan (2013) conducted 
a climatological study of thermal stress in Nigeria from 1951 to 2009, 
employing temperature and humidity-based indices such as THI, Rela-
tive Strain Index (RSI) and ETI. These studies revealed associations be-
tween ecological zones and physiologic thermal zones, with the 
montane region identified as having the most comfortable physiologic 
climate and regions around the Rivers Niger and Benue troughs as the 
most uncomfortable for most of the year. They also observed a signifi-
cant increase in physiologic stress in Nigeria from 1981 to 2009 
compared to the period from 1951 to 1980. Subsequent studies have 
leveraged these indices to investigate and characterize thermal stress 
conditions at various spatial scales, as demonstrated by research con-
ducted by (Eludoyin, 2014). 

While temperature and humidity are essential components of ther-
mal or heat stress, the influence of radiation and wind cannot be 
underestimated. Recent studies, e.g Omonijo (2017) and Omonijo et al. 
(2013) applied energy/radiation-based human comfort indices like 
Physiological Equivalent Temperature (PET) and Universal Thermal 
Comfort Indices (UTCI) to analyze thermal stress conditions in Nigeria, 
however, their geographic coverage of studies was limited to Ondo and 
Oyo states in South-Western Nigeria. This could be partly due to com-
mon challenges of limited availability of weather stations, and where 
available, limited accessibility to requisite data. Climate Research in 
Nigeria often relies on weather data from the Nigeria Meteorological 
Agency (NIMET) and other sources, such as state ministries of envi-
ronment and agriculture, research institutes and higher education in-
stitutions, which have a sparse distribution of synoptic weather stations 
across the region. Given the constraints of observation stations, a 
comprehensive characterization of thermal stress in Nigeria using an 
human energy-balance based thermal index such as UTCI is lacking. 
Meanwhile the application of such an index could accurately reflect the 
heat perception of the populace given the tropical location of the 
country where a high amount of radiation is received across the year. 

Leveraging the freely available, temporally consistent, and spatially 
comprehensive ERA5-HEAT reanalysis data can help bridge this gap. 
Nonetheless, assessing the accuracy and potential biases of reanalysis 
data remains essential which is yet to be explored in the Nigerian 
context. The sub-section below discusses ERA5-HEAT and its utilization 
to understand heat stress/thermal comfort in specific regions around the 
world. 

1.3. Recent application of ERA5-HEAT reanalysis for heat stress studies 

Recently, the European Centre for Medium-Range Weather Forecasts 
(ECMWF) has produced advanced spatially gridded historical records of 
UTCI and MRT (Mean Radiant Temperature), known as ERA5-HEAT 
(Human thErmAl comforT) (Di Napoli et al., 2021a). These datasets 
consist of hourly UTCI and MRT, presented on a 0.25⁰ x 0.25⁰ spatial 
grid, spanning from 1940 to the present. These datasets are derived from 
atmospheric variables sourced from ERA5 reanalysis data, including 2-m 
air and dew-point temperature for relative humidity, 10-m zonal and 
meridional winds for wind speed. In addition, the MRT is calculated 
using solar and thermal radiation fluxes, as outlined in Di Napoli et al. 
(2018). Thermal radiation encompasses both the downwelling thermal 
component from the atmosphere and the upwelling thermal component 
from the ground. Solar radiation consists of a direct component from the 
sun and a diffuse component, where the latter comprises the sum of 
isotropic diffuse solar radiation flux and surface-reflected solar radiation 
flux (Di Napoli et al., 2023). , The resulting MRT, a crucial parameter in 
assessing human response to radiant effects are then integrated with 
other atmospheric data to compute UTCI using the Fiala model, 
following established operational procedures (Bröde et al., 2012; Fiala 
et al., 2012). UTCI serves as a widely accepted indicator of human 
thermal stress, created from climate variables such as air temperature, 
wind, humidity, and radiation. It is a biometeorological index used for 
evaluating the health impacts of climate conditions related to heat (Di 
Napoli et al., 2018). The ERA5-HEAT UTCI has been widely evaluated 
and applied in different countries and regions (Antonescu et al., 2021; 
Brimicombe et al., 2021; Di Napoli et al., 2023; Kyaw et al., 2023; 
Miranda et al., 2023; Roffe et al., 2023; Shukla et al., 2022; Urban et al., 
2021; and Zare et al., 2018). 

Miranda et al. (2023) analysed heat stress patterns in South America 
using ERA5-HEAT data from 1979 to 2020. They focused on 31 populous 
cities, observing more heat stress hours inland compared to coastal 
areas. The annual count of heat stress hours increased significantly from 
1979 to 2020, with varying rates. Extreme heat events surged, particu-
larly after 2000. Urban et al. (2021) conducted a comparative study 
across Europe, evaluating the potential of ERA5-based UTCI to identify 
life-threatening thermal conditions where station data are scarce. They 
analysed 21 cities in 9 European countries. While they found similarities 
in heat and cold effects in most locations, the study highlighted the 
significant influence of wind on UTCI, especially in southern Europe. 
Kyaw et al. (2023) examined heat stress patterns in South Asia from 
1979 to 2021 using ERA5-HEAT UTCI data. Their study revealed sig-
nificant regional variations. Bangladesh in the east showed the highest 
mean UTCI range (26–32 ◦C), while Afghanistan had the lowest. In the 
west, along the India-Pakistan border, the daily maximum UTCI range 
was the highest (38–46 ◦C). The research also indicated increasing mean 
and maximum UTCI levels, with a 0.25 to 0.75 ◦C per decade rise in 
Pakistan, Afghanistan, and northwest India, particularly during June to 
September. 

Shukla et al. (2022) analysed heat stress in northwest India using the 
ERA5-HEAT dataset from 1981 to 2019. Their findings revealed that this 
region experienced stronger heat stress with a monthly and seasonal 
mean UTCI ranging from 27 to 34.5 ◦C, notably higher than other areas 
in India (below 25.5 ◦C). The peak heat stress occurred in June (34.5 ◦C) 
and July (33.5 ◦C) due to elevated soil temperatures and significant 
sensible heat fluxes. The study highlighted the impact of strong westerly 
winds from the Arabian Sea, carrying substantial moisture, on the high 
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thermal stress. Importantly, both North-west India and the entire 
country showed significant rising trends in seasonal mean UTCI (0.9 ◦C 
per 39 years and 0.6 ◦C per 39 years, respectively), indicating a faster 
increase in thermal discomfort in these regions compared to the rest of 
India. 

Over sub-saharan Africa, ERA-HEAT UTCI data have been applied by 
very limited studies. For instance, Guigma et al. (2020) conducted a 
comparative analysis of Sahelian heatwaves, examining their charac-
teristics and thermodynamics using various thermal indices such as 
temperature (T), heat index (HI), Steadman non-radiant Apparent 
Temperature (AT), Net Effective Temperature (NET), and Universal 
Thermal Comfort Index (UTCI). Their findings revealed sensitivity of 
thermodynamic processes characterizing heatwaves and resulting heat 
stress to the choice of indices. In regions of the southernmost Sahel with 
low index similarity, emphasis on humidity-weighted indices like HI, 
AT, and UTCI is crucial, given the significant moisture variability, 
particularly during April-May-June. Conversely, in Northeastern Sahel 
and the broader domain during February-March, where environmental 
variable variability is minimal, the added value of complex indices like 
UTCI in heat warnings is limited. Another study applied it to understand 
the spatio-temporal pattern of heat stress in Southern Africa from 1979 
to 2021 at different time scales (Roffe et al., 2023). They found that 
spatially, there’s widespread absence of heat stress in daily mean values, 
but daily maximum and minimum values exhibit significant heat and 
cold stress incidents, including moderate and strong heat stress and 
slight to moderate cold stress. The study also highlights the impact of El 
Niño and La Niña phases on heat stress during summer, with El Niño 
intensifying heat stress and La Niña reducing it. Overall, there’s a 
notable increase in heat stress over the study period, particularly during 
spring and summer, with some regions experiencing decreasing trends. 
In South Africa, Havenga et al. (2022) utilized long-term ERA5-HEAT 
UTCI data to examine heat stress during the traditional Comrades 
Marathon, previously held in the austral winter (May-June), compared 
to a new period in the austral spring (end of August). Their findings 
reveal a higher likelihood of participants being exposed to ’strong’ and 
’very strong’ heat stress periods if the event is scheduled for August, as 
opposed to the original dates. Only a few studies have applied UTCI for 
impact research. Bonell et al. (2022, 2023) explored the impact of heat 
stress on child and maternal health in the Gambia using UTCI. They 
aimed to ascertain whether environmental heat stress affects fetal 
physiology in pregnant subsistence farmers. Their findings indicated a 
1.05-fold increase in the likelihood of pre-term birth for every 1 ◦C 
above average, suggesting that reducing maternal exposure to heat 
stress could alleviate fetal strain and potentially mitigate adverse birth 
outcomes. Furthermore, studies have consistently observed lower birth 
weights associated with exposure to extreme heat, particularly among 
mothers from lower socioeconomic backgrounds (Bonell et al., 2023). 
While the reanalysis product has been applied across geographies, it’s 
been mostly used as an alternative to observation in most cases. Very 
limited studies, for instance, Krüger and Di Napoli (2022) has evaluated 
the product’s parameters against observations. 

Therefore, this study conducts an investigation into the spatio- 
temporal patterns and trend of heat stress over Nigeria by utilizing 
ERA5-HEAT and observational datasets. The specific objectives are to: 
(1) evaluate the performance of ERA5-HEAT UTCI against observational 
data from nine weather stations distributed across three distinct eco- 
climatic zones in Nigeria; 2) analyze the long-term annual and sea-
sonal spatio-temporal trends of ERA5-HEAT UTCI across Nigeria to 
provide insights into how thermal stress and exposure have evolved over 
time; 3) identify potential latitudinal long-term shifts or changes of 
observed thermal zones within Nigeria to better understand how the 
thermal landscape in Nigeria has transformed over the years, 
1981–2020. 

2. Methodology 

2.1. Study area - geography of Nigeria 

Nigeria, located in the western part of Africa, lies between 4 and 
14◦N latitude and 3-14◦E longitude. It is bounded by the Republic of 
Benin to the west, Niger to the north, Cameroon to the east and the Gulf 
of Guinea towards the south. The total land area covers about 923,770 
km2 making it one of the largest countries in Africa. Nigeria has a wide 
variety of landscapes and landforms. The northern part is characterized 
by vast savanna grasslands and scattered shrubbery and trees, while 
Mangrove swamps and low-lying plains characterize the southern region 
(Oluleye and Adeyewa, 2016). Plateaus and hills are prevalent in the 
central part of the country, with notable ones like the Jos plateau 
(Fig. 1). It has three distinct climate zones: a tropical monsoon climate in 
the south, a tropical savannah climate characterizing its central parts, 
and a hot, semi-arid Sahelian climate in the north (World Bank, 2021; 
Omotosho and Abiodun, 2007). Nigeria in her a tropical location ex-
periences wet and dry season. The seasons are driven by the periodic 
northward and southward migration and retreat of the Inter-Tropical 
Convergence Zone (ITCZ), defined by the tropical maritime (mT) from 
the Atlantic Ocean and the tropical continental (cT) airmass (Gbode 
et al., 2019; Eludoyin and Adelekan, 2013). The northward migration of 
the ITCZ defines the wet season, a period of intense convective activity 
over the country, mostly across the southern region. The precipitation 
pattern exhibits a latitudinal gradient, with more precipitation occur-
ring in the southern parts and decreases northwards (Akinsanola and 
Ogunjobi, 2014). 

2.2. Description of observed meteorological data and stations 

In this study, we obtained observation data from nine Nigerian 
Meteorological Agency (NIMET)’s weather stations across the country 
and across the three latitudinal subdivisions i.e. Guinea (coast - 8◦N), 
Sudan (8◦N–11◦N) and Sahel (11◦N − 16◦N) (Omotosho and Abiodun, 
2007). This zonal subdivision was used in the study by Balogun et al. 
(2019), who assessed the bioclimatic conditions across Nigeria at 0600 
and 1500 Local Standard Time (LST). The data obtained from the sta-
tions includes the monthly averages of air temperature (⁰C), wind speed 
(m/s), relative humidity (%) at 0600 and 1500 LST from 1981 to 2010. 
Nevertheless, it’s crucial to note that while global radiation is zero at 
06:00 LST, the 15:00 LST global radiation was extrapolated from 
monthly mean data using a multiplication factor derived from the 

Fig. 1. Map of Nigeria and location of NiMET synoptic weather stations.  
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mean-max ratio over Ile-Ife, Nigeria (Soneye et al., 2019). 0600 and 
1500 LST, are considered two distinct periods when solar insolation was 
minimal and maximum, respectively. This was considered in the eval-
uation of the reanalysis-derived thermal indices. Due to several factors, 
such as the completeness of the data within the period 1981–2010, 
limited data access and data quality, we followed the selection of three 
stations within each zone. We checked the data for missing values and 
filtered out outliers assumed to be due to errors. 

2.3. Method of analysis 

This section elaborates on the methods adopted to achieve the ob-
jectives of this study. To assess the performance of ERA5-HEAT UTCI, 
data was collected at 0600 and 1500 LST spanning from 1981 to 2020. 
These specific hours were chosen to align with the in-situ station data (as 
described in section 2.2) and provide an adequate representation of 
distinct time periods in a day: early morning (minimum) and afternoon 
(maximum) heat stress levels experienced during the day, as previously 
discussed by Balogun et al. (2019) and Kyaw et al. (2023). The 
sub-section below details the methods used to calculate UTCI based on 
observed data, evaluate performance, and conduct spatio-temporal 
analysis. 

2.3.1. UTCI calculation based on observed data 
The UTCI at each weather station was estimated using the RayMan 

model (Matzarakis et al., 2007, 2010), which was developed for the 
calculation of the MRT and thermal indices, including UTCI, in both 
simple and complex environments. The model relied solely on data of air 
temperature, air humidity, wind speed and MRT. While the first three 
parameters obtained from the weather stations are directly fed into the 
model, to determine the MRT, shortwave and longwave radiation fluxes 
affecting the human energy balance were calculated by the model based 
on the supplied global radiation data. In Rayman, MRT is calculated 
based on globe-thermometer method following the guidelines set by the 
German VDI-Guideline (VDI, 1998) and assumed a sky view factor (SVF) 
of 1, which corresponds to an open field typical of WMO standard 
weather stations. This excludes the effects of the shading caused by 
building structures on direct and diffuse radiation. In RayMan, the UTCI 
is estimated via a regression equation based on a heat transfer model 
(Fiala et al., 2012; Fröhlich et al., 2019) which accounts for the afore-
mentioned meteorological variables as measured at the NIMET weather 
stations. 

2.3.2. Performance evaluation of ERA5-HEAT UTCI 
The performance evaluation involved subsetting the global ERA5- 

HEAT data to obtain spatial UTCI values over Nigeria for specific 
hours at 0600 and 1500 from 1981 to 2010. To match the temporal 
resolution of local observation data, the data for each grid cell was 
separately aggregated into monthly averages for the performance eval-
uation analysis. To assess ERA5-HEAT against reference (RayMan) UTCI 
values, monthly gridded UTCI values were extracted for grid cells 
overlapping with station locations. These extracted values were then 
compared directly to in-situ UTCI values from 1981 to 2010 for each 
station. Additionally, UTCI values for each climate zone (Guinea, Sudan, 
and Sahel) were compared. The performance of ERA5-HEAT was further 
evaluated using specific error statistics, including the Root Mean Square 
Error (RMSE), Mean Bias Error (MBE), Pearson Correlation Coefficient 
(R), and the RMSE-Standard Deviation Ratio (RSR). The RSR helps to 
effectively constrain uncertainty in gridded ERA5-HEAT data. 

The metrics are calculated as, 

RSR=
RMSE
SDref

=
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(3)  

where SD is the standard deviation, ref is the reference datasets, i is the 
month, n is the total number of months in the analysis period, The bar 
accent is the long-term monthly mean (1981–2010) of the reference data 
and ERA5-HEAT UTCI. The values of RSR range from 0 for zero RMSE, 
indicating perfect ERA5-HEAT, to large positive values, indicating 
imperfect ERA5-HEAT UTCI values. 

2.3.3. Spatial trend and decadal shift analysis methodology 
The spatial and temporal trend characteristics of ERA5-HEAT UTCI 

at 0600 and 1500 LST are further analysed. First, the UTCI values per 
grid cell are delineated and classified into broad thermal categories 
following Błażejczyk et al. (2013) (Table 1). Thereafter, some di-
mensions of long-term spatio-temporal characteristics and analysis were 
explored. For instance, we analysed potential spatial variation of ther-
mal classes on a decadal basis. Also, a latitudinal shift analysis of decadal 
UTCI was performed where the UTCI thermal classes are aggregated 
separately for four decades, 1981–1990, 1991–2000, 2001–2010 and 
2011–2020, and compared with reference to the earliest decade 
1981–1990; and over each zone by aggregating the grid cell values over 
a constant longitudinal band (2-15o E). These assessments are carried 
out aggregately for each of the four seasons namely December-February 
(DJF i.e. preceding year “D” with current year “J” and “F”); March-May 
(MAM), June-August (JJA), September-November (SON) and at annual 
scale. 

It should be noted that the seasons in Nigeria vary across regions, 
influenced by the periodic shift in the position of ITCZ. For example, dry 
periods (DJF) are common across the country, but the Guinea zone ex-
periences two wet seasons, one from March to July and the other from 
September to October (Adegoke and Ajayi, 2015). In contrast, the Sahel 
experiences just one wet period from June to September. Due to this 
mismatch, we are sticking to the traditional periods that are commonly 
used for seasonal analysis (e.g Adeyeri and Ishola (2021); Omotosho and 
Abiodun (2007)). Lastly, the areal coverage of each spatially dominated 
thermal class per month is extracted and further analysed separately for 
0600 and 1500 LST. In a similar vein, percentage of grid cells of sea-
sonal, annual and decadal composite UTCI values for the dominant 
thermal categories are analysed using cumulative frequency analysis in 
order to efficiently quantify the proportion of grid cells dominated by 
the ERA5-HEAT UTCI range, and also helps to determine whether or not 
the proportion of a UTCI category has changed spatially during the study 
period. Thereafter, the trends in ERA5-HEAT UTCI values are calculated 

Table 1 
Thermal comfort/Heat stress classification based on UTCI value.  

UTCI range (◦ c) a Level of thermal stress 

<- 40 extreme cold stress 
− 40 to − 27 very strong cold stress 
− 27 to − 13 strong cold stress 
− 13 to 0 moderate cold stress 
0–9 slight cold stress 
9–26 no thermal stress 
26–32 moderate heat stress 
32–38 strong heat stress 
38–46 very strong heat stress 
﹥46 extreme heat stress  

a Blazejezyky et al. (2013). 
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over the same spatial extent and resolution, using nonparametric 
Mann-Kendall trend test and Sen’s slope estimator (Adeyeri and Ishola, 
2021; Kendall, 1948; Mann, 1945; Sen, 1968). This is done across all the 
seasons and annual for 0600 and 1500 LST, using the ‘raster.kendall’ 
function in the ‘spatialEco’ R library (Evans et al., 2020). 

3. Results and discussion 

3.1. Comparative data description & performance evaluation of ERA5- 
HEAT UTCI over Nigeria 

3.1.1. Comparative description of observed and ERA5- HEAT UTCI 
Despite the remarkable achievements of producing the ERA5-HEAT 

datasets and its usefulness in addressing the problems of paucity of 
data across the globe, uncertainties due to inherent errors associated 
with ERA5 input variables such as the radiation components exists (Di 
Napoli et al., 2021a) as with other reanalysis products. Therefore, 
effective use of ERA5-HEAT in different regions requires adequate 
evaluation of its performance, instead of or before treating the products 
as observations. 

First, we illustrated and discussed the density distribution of ERA5- 
HEAT UTCI values in comparison with reference (observed) datasets 
for each region (see Fig. 2). At 0600 LST (morning), UTCI values for both 
sources are densely distributed in no thermal stress category 9–26 ◦C, 
with small variance and median values (black crossbar) of about 24 ◦C 
for observed and 25 ◦C for ERA5-HEAT, in Guinea region. While a large 
proportion of UTCI values in the Sudan and Sahel are also distributed in 
no thermal stress category with less median UTCI values, there is a 
relatively large variance in both data sources. The UTCI values extend 
beyond 0 ◦C in some instances, indicating occasional slight to moderate 
cold stress for these regions. The evidence of cold stress during 0600 LST 
in the Sudan and Sahel occur mostly in the Harmattan winter (DJF) 
season when the atmospheric condition is dominated by large-scale 
strong north-easterly trade winds that drive the meeting of dry and 
dusty surface of the Sahara with the cold airmass from the midlatitude, 
yielding a cold-dusty wind condition, in addition limit insolation at this 
time (Okeahialam, 2016). This is similar to the reports in previous 
studies (e.g. Eludoyin, 2014; Eludoyin et al., 2014) using Relative Strain 
Index (RSI) and Temperature Humidity Index (THI) which demonstrate 
that before 0600 and after 2100 LST, the Northern Nigeria for which the 

Sudan and Sahel are characterised, experiences cold stress, particularly 
during December Harmattan period. 

At 1500 LST, UTCI values are largely distributed between “moder-
ate” and “strong” heat stress in the Guinea zone, but the upper limit 
extends up to the “very strong heat stress” category for the Sudan and 
Sahel zones. Though there are observed disparities in the median UTCI 
values and the mean distribution between observed and ERA5-HEAT is 
statistically significant (α < 0.05) particularly in Sudan and Sahel, the 
broad UTCI values between both sources are generally comparable and 
effectively within the same thermal categories. In essence, ERA5-HEAT 
reproduces UTCI values that are fairly consistent with the reference 
datasets across Nigeria, notwithstanding the spatial scale difference 
between the station and ERA5-HEAT. 

Comparatively, the Sudan and Sahel regions have a relatively higher 
thermal stress category than Guinea during the hottest afternoon, due to 
higher mean radiant temperature partly associated with higher insola-
tion and temperature in these regions. A synergistic influence of high 
temperature and atmospheric moisture, exposure to insolation and poor 
ventilation has been reported as the major contributors to heat accu-
mulation in the human body (McGregor and Vanos, 2018). While this 
study does not evaluate the drivers of UTCI variations, Di Napoli et al. 
(2023) demonstrates that the combined decrease of 2-m temperature, 
relative humidity and high wind speed drives low UTCI in the Carib-
bean. These characteristics are evident for 0600 LST during which the 
UTCI values are slightly lower for Sudan and Sahel than for Guinea. 

The higher thermal stress during 1500 than 0600 LST across the 
region is typical of tropical regions where heat accumulates during the 
day shortly after the peak of insolation, usually at noon. Previous studies 
in the tropical region (Kyaw et al., 2023; Morakinyo et al., 2019) have 
shown that human thermal discomforts occur during the peak of heat 
and temperature around 1500 LST. This is further supported by Runnalls 
and Oke (2000) who reveal afternoon has the maximum heat conditions 
and morning or nighttime as the best human thermal condition. In the 
context of Nigeria, Eludoyin (2014) also demonstrates that the period 
between 1200 and 1500 LST is thermally stressful in Nigeria. While 
identifying the best human thermal condition is beyond the scope of this 
study, our results are broadly consistent with previous studies, as 
evidently illustrated in Fig. 2. 

Fig. 2. Comparison between ERA5-HEAT and observed (calculated with RayMan) monthly UTCI distribution across stations, grouped into three geographical zones 
(Guinea, Sudan and Sahel), over the period 1981–2010 for 0 600 and 1 500 LST. 
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3.1.2. Performance evaluation of ERA5-UTCI over Nigeria 
The results of performance statistics of ERA5-HEAT for each station 

and cumulatively for each region are presented in Fig. 3 while the line 
plot for each station at 0600 and 1-500 is shown in Figure A1 and A2, 
respectively and the regional scattered plots at both times are shown in 
Fig. 4. ERA5-HEAT shows varying performance across stations and re-
gions. For example, the product performs best at Warri station (located 
in the Guinea zone), with the lowest RMSE of 1.47 and 1.64 ◦C, MBE of 
1.21 and 0.61 ◦C at 0600 and 1500 LST, respectively. ERA5-HEAT also 
performs relatively well in other stations based on the error statistics 
results especially at 1500 LST. However, the relatively higher errors 
were observed which might be due tolarge missing data in the reference 
datasets in the case of Ibadan at 0600 LST (see Fig. A1, A2). The per-
formance is also low in Kano and Yobe both in the Sahel zone, where 
ERA5-HEAT largely overestimates or misrepresents the UTCI values 
especially in the morning (Figures A1,A2). 

At regional scales, ERA5-HEAT performs best in the Guinea region, 
followed by Sudan while Sahel shows the lowest performance during the 
analysis period (see Figs. 3 and 4). Whereas the products are better for 
1500 LST than 0600 LST, likely due to a better representation of physical 
drivers, particularly mean radiant temperature (see Fig. A3), the errors 
for both periods are generally well below the uncertainty values that 
have been previously reported for some stations across the globe (Di 
Napoli et al., 2021a). Overall, the reference UTCI values for the coldest 
and hottest times are sufficiently captured by ERA5-HEAT through the 
analysis period (Fig. 4). Therefore, the product demonstrates reasonable 
performance in capturing patterns and the spatial and temporal char-
acteristics of human thermal and heat stress conditions across Nigeria. 

3.2. Long term spatio-temporal variation of UTCI over Nigeria 

This section discusses the results of long-term spatio-temporal vari-
ation of UTCI over Nigeria between 1981 and 2020. To further under-
stand the temporal changes, we divided the datasets by decades i.e. 
1981-1990, 1991–2000, 2001–2010 and 2011–2020 across seasons: 
Dry (DJF), pre-Wet (MAM), Wet (JJA) and pre-Dry (SON), for early 
morning (0600 LST) and afternoon (1500LST) times. 

3.2.1. Long-term pattern of minimum UTCI over Nigeria 
The spatial characteristics of decadal mean ERA5-HEAT UTCI across 

the seasons for 0600 LST are presented in Fig. 5. The results show 
varying thermal stress categories in space and seasons. For the DJF 
season, moderate heat stress (MHS) covers the south of Guinea, mostly 
along the coast of Atlantic Ocean, whereas, slight cold stress (SLCS) 
dominates the Sahelian region. The regional difference in thermal cat-
egories between Guinea and Sahel is distinguished by the differing in-
fluence of localized phenomenon. Due to its proximity to the Atlantic 
ocean, the Guinea coast is subject to relative high atmospheric humidity 
and air temperature consequently modifying the microclimate of the 
region with high thermal stress, even during the DJF season (Eludoyin, 
2014; Eludoyin and Adelekan, 2013). However, the Sahelian region is 
majorly influenced by strong large-scale northeasterly trade winds that 
bring cold air mass from the mid-latitude during this season. Similar 
pattern of MHS for the Guinea region is also observed for SON season 
and annual scale, and this is consistent for each decade within the study 
period. 

For other seasons, the thermal condition ranges from “No thermal 
stress (NTS)” and “moderate heat stress (MHS)” across regions, albeit 
with different patterns of coverage. For instance, during the MAM 
mornings, NTS prevailed over the Sahel and Sudan whereas MHS was 
dominant in the Guinea region. The NHS prevailed over the entire 
country in the JJA mornings except in the North-eastern states like 
Borno, Adamawa and Gombe state where MHS were observed. Simi-
larly, the NHS prevailed over Sudan, Sahel and Guinea at SON except for 
the coastal states (Cross River, Akwa Ibom, Bayelsa and Lagos) and 
Adamawa where the MHS was observed. 

Overall, while the NTS category covers the large part of the country 
in all seasons during 0 600 LST (Fig. 5), the MHS category is more 
widespread in Guinea and some parts of Sudan region for MAM season. 
Patches of MHS are also observed in the Northeast of the country for 
JJA. Notably, some NTS areas in the Guinea, Sudan and Northeast in the 
early decades (1981–1990) have shifted to MHS in recent decades 
(2011–2020). This positive shift in the thermal stress category over the 
40-year period is broadly eastwards, particularly in the Sudan for MAM 
season and Guinea for SON, DJF and annual. It further suggests a rising 
trend in UTCI drivers, especially air temperature, likely associated with 
increasing global warming and climate change. Fig. 6 illustrates and 
quantifies the changes in the spatial coverage and cumulative frequency 
of grids of each dominant thermal stress category over the study period. 
It shows that while the proportion of area coverage of SLCS is broadly 
consistent over the years, the proportion of grids for NTS has consider-
ably reduced from 80 to 95% in 1981–1990 to 60–85% in recent years. 
This is compensated by the increase in the proportion of areas covered 
by MHS. Further, the cumulative frequency curve (Fig. 6) shows that the 
Guinea in DJF and SON, and Sudan in MAM have a major decrease and 
increase in the coverage of NTS and MHS, respectively. 

3.2.2. Long-term pattern of maximum UTCI over Nigeria 
The peak time (1500 LST) UTCI distribution reveals evident “mod-

erate heat stress” (MHS), “strong heat stress” (SHS) and “very strong 
heat stress” (VSHS) over the country (see Fig. 7). However, the spatial 
pattern differs across seasons and decades. In DJF, the VSHS thermal 
condition is dominant in the Sudan except in Kaduna state where SHS 
was observed with the same dominant over the Guinea and Sahel zones. 
During the peak heat stress season i.e. MAM, VSHS and SHS were 
dominant in the Sahel-Sudan and Guinea respectively. Whereas, during 
SON and JJA, SHS prevailed in the most part of the country with sig-
natures of MHS in the Guinea region and VSHS in upper Sahel. Overall, 
the VSHS and MHS coverage increases and reduces over Sudan and 
Guinea across decades, respectively. For JJA, SON and on an annual 
scale, VSHS covers the northern Sahel, MHS in the Guinea region, and 
the rest of the country is dominated by SHS. Regions around the Rivers 
Niger and Benue troughs as the most uncomfortable for most of the year 
as also found by Eludoyin and Adelekan (2013). Notwithstanding the 
seasons, a close observation indicates that the North-central and eastern 
Sudan region, are relatively characterised by lower thermal stress cat-
egories, which are apparently different from the rest of the Sudan-Sahel 
regions. These areas are majorly characterised by high topography 
(Fig. 1) such as the Jos and Mambilla Plateau, suggesting the effect of the 
landscapes on the local thermal stress conditions of the area (Eludoyin, 
2014; Ogbonna and Harris, 2008). Additionally, the overarching at-
mospheric dynamics significantly influence the spatial distribution of 
heat stress across West Africa in general, manifesting distinct charac-
teristics in various seasons (DJF, MAM, JJA, SON) and between morning 
and afternoon periods. During the dry season (DJF), the Harmattan 
wind, originating from the northeast, induces cold stress by transporting 
cool and dry air from the midlatitude. Nevertheless, in the afternoon, the 
absence of cloud cover and the consequent maximum solar radiation 
reaching the Earth’s surface intensify heat stress (Guigma et al., 2020). 
In the pre-monsoon season (MAM), escalating temperatures and hu-
midity levels, due to influx of moist maritime air from the Atlantic Ocean 
prompted by the northward shift of the ITCZ, culminate in heightened 
heat stress, especially during the afternoon, as the region transitions to 
the wet season (Nikulin et al., 2012). Throughout the wet season, the 
West African Monsoon (WAM) brings convective activities i.e. cloud 
cover and precipitation, relatively reducing the intensity afternoon heat 
stress (Nicholson, 2013). In the post-monsoon season (SON), despite 
declining temperatures, lingering humidity levels contribute to sus-
tained heat stress levels before dissipating in the afternoon (Sultan et al., 
2003). Overall, the variations in thermal stress characteristics are due to 
the interactions among the local geography (e.g. relief), nearness to 
waterbody, large-scale wind patterns, and high relative humidity and air 
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Fig. 3. Performance statistics of monthly ERA5-HEAT across the selected stations and cumulatively for each region, over 1981–2010 for 0 600 and 1 500 LST.  
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temperature. 
Fig. 8 illustrates the spatial coverage of each thermal stress category 

per decade. The percentage area of SHS in its dominant season drops 
averagely from 70% to 60 % over a 40-year period, resulting in a rise in 
the percentage area of VSHS. In the Guinea region, SHS covers about 
70% of the area and the rest is covered by MHS and VSHS in DJF and 
MAM seasons regardless of the year/decade (Fig. 8). The area coverage 
in other seasons is majorly shared between MHS (50–75 %) and SHS 
(20–50 %) in the Guinea region regardless of the year/decade. These 
variations are almost similar for Sudan, but the area coverage of VSHS is 
relatively higher (80 %) in the MAM season regardless of the year/ 
decade. The cumulative frequency curve further reveals that the area 
coverage of heat stress in the Sahel is broadly 60–80 % in all seasons, 
except MAM in which the entire area is covered by VSHS. 

Overall, the results reveal the obvious seasonal differences and lon-
gitudinal shifts in heat stress levels; more areas experience a higher heat 
stress levels in MAM than other seasons during the day. These wide-
spread shifts occur notably in the last two decades following the year 
2000. Earlier studies using other indices such as ET, RSI and THI (e.g. 
(Eludoyin et al., 2014)) have reported a significant increase in the 
spread of thermal stress across Nigeria from 2000 which is in agreement 
with our study. 

3.3. Latitudinal shift in seasonal-decadal UTCI 

In this section, we analysed the latitudinal variation of UTCI and the 
shifts, denoted as ΔUTCI, averaged across the Sahel, Sudan, and Guinea 
zones longitudinally for the four decades at 0600 and 1500 LST across 
different seasons. The purpose is to investigate potential changes in 
latitudinal UTCI variation and identify the precise locations where these 
changes occur. This analysis is illustrated in Fig. 9. 

Generally, at 0600 LST, a consistent latitudinal pattern was observed 
across the decades per season, and the heat stress category per latitude 
largely remained unchanged. Although the magnitude of UTCI differed 
across the seasons at this time, a similar latitudinal pattern was observed 
in the monsoon months (MAM and JJA) and the drier months (SON and 
DJF). Evident variation in the latitudinal UTCI occurred in DJF, ranging 
from 2 to 25 ◦C, and in SON, it ranged from 11 to 25 ◦C. In contrast, there 
was limited variation between 22 and 27 ◦C observed latitudinally in 
MAM and JJA, regardless of the decade and year period. Notably, in the 
last three decades, during MAM, the index increased above the 26.0 ◦C 
threshold and changed from the NTS to the MHS around 8–9◦N. 

Quantitatively, the relative change in UTCI ranged between − 0.4 and +
1.5 ◦C regardless of the zone and season. However, during DJF, MAM, 
and JJA seasons, the UTCI shifted in a positive direction over the last 
three decades (1991–2000, 2001–2010, and 2011–2020) across lati-
tudes, with a stronger magnitude of change observed at higher latitudes. 
A wider and stronger positive shift was observed in the normally cooler 
months/season, particularly in DJF, in the Sahel, with an increase of up 
to 1.5 ◦C. In the SON season, lower UTCI values were observed in the 
recent decade, especially in the Sudan region, leading to a negative 
difference, although not strong enough to effect a thermal categorical 
change. Overall, across seasons and regions, the changes or shifts have 
not been large enough to effect a categorical change in thermal classi-
fication, except during MAM at around latitude 8–9◦N, where the UTCI 
change resulted in a thermal class change from the NTS to the MHS. A 
similar situation is expected in the coming decades if the rate of change 
continues. 

At 1500 LST, as earlier mentioned, heat stress level ranges between 
MHS to VSHS regardless of the latitude and decade (Fig. 9a). However, 
heterogeneity of heat stress level was observed, that is, transitioning 
from one heat stress level to another across the latitude was more 
prevalent unlike at 0600 LST. Also, the seasonal latitudinal pattern 
shows no similarity of any two seasons implying distinct characteristics 
of peak time heat stress pattern over the country. 

However, UTCI ranges between 28 and 39 ◦C in both DJF and SON 
regardless of decade and year period exhibiting similar variability in the 
drier months. However, it ranges between 31 and 45 ◦C, and 28–41 ◦C in 
MAM and JJA regardless of decade and year period, respectively indi-
cating a similar variability higher than the other two seasons. 

Quantitatively, the relative change in decadal averaged UTCI is − 0.5 
– (+1.5)⁰C regardless of regions and season. Regionally, in DJF, over 
Guinea, the UTCI value increased continuously leading to a thermal 
category change from the MHS to SHS and increased continuously in the 
Sudan transiting to VSHS in recent three decades. However, in the Sudan 
region, the UTCI value reduced and changed to SHS, reducing contin-
ually into the Sahel region. In the MAM and JJA, the UTCI values in-
crease continuously across the regions changing across thermal 
categories (Fig. 9b) with the greatest deviation in the MAM. Moreover, 
in the SON, the UTCI increased and transit from MHS into SHS in Guinea 
and continued to Sudan. However, a reduction in UTCI was observed 
around 9◦N and a further increase above 11◦N in the Sahel was 
observed. Overall, obvious thermal contrasts exist at 0600 LST and 1500 
LST across the latitudinal belt; at 06:00 LST, the UTCI deviation is within 

Fig. 4. Scatterplot between ERA5-HEAT and observed (calculated with RayMan) monthly UTCI values across the selected stations, grouped into geographical zones 
(Guinea, Sudan and Sahel) over 1981–2010 periods for 0 600 and 1 500 LST. 
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the NTS zone while 1500 LST revealed a wider deviation spanning three 
thermal zones (MHS, SHS and VSHS). 

3.4. The spatio-temporal trend of ERA5-HEAT UTCI 1981–2020 

The spatio-temporal trends of ERA5-HEAT UTCI from 1981 to 2020 
are shown in Fig. 10. The results broadly show significant positive trends 
and occasional non-significant negative trends over the 40-year period. 
For early morning (0600 LST), the positive trends are relatively higher 
up to 0.06 ◦C/year in the Guinea and Sahel region than the Sudan region 

in all seasons. The non-significant negative trends up to − 0.02 ◦C/year 
occur mostly in the Sudan zone around the so-called middle belt region 
characterised as mountainous, in DJF season. For the hottest afternoon 
period (1500 LST), the high positive trends occur majorly in DJF and 
MAM seasons indicating the increasing intensity of heat stress during the 
peak seasons, and low positive trends in other seasons. On an annual 
scale, most regions experience elevated thermal stress particularly in the 
early morning, based on ERA5-HEAT UTCI. The observed positive trends 
when accumulated over a decade (0.6 ◦C/decade) are broadly compa-
rable within the range of values (0.2–0.75 ◦C/decade) reported in 

Fig. 5. Spatial, seasonal and decadal characteristics of ERA5-HEAT UTCI at 0 600 LST for the period 1981–2020 over Nigeria.  
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related studies (e.g. Shukla et al., 2022; Shukla et al., 2022; Kyaw et al., 
2023; Roffe et al., 2023). Such a positive deviation in UTCI has been 
demonstrated as having adverse effects on human health, including 
mortality (e.g. Di Napoli et al., 2018). 

4. Conclusion 

Due to its tropical location, Nigeria is naturally exposed to high solar 
intensity, leading to warmer temperatures throughout the year. High 
temperatures, in combination with atmospheric parameters like hu-
midity, wind speed, and mean radiant temperature, determine human 
thermal comfort and heat stress. This complex phenomenon challenges 
the body’s ability to maintain an optimal core temperature, affecting 
comfort, performance, and health. Heat stress has multiple adverse ef-
fects on human health, livelihood, and productivity, particularly in 
terms of health-related impacts, resulting in morbidity and mortality. 
Unfortunately, knowledge about heat stress is primarily clustered in 
higher-income regions of the Northern Hemisphere and Australia, 
leaving tropical and subtropical regions of the global south underrep-
resented, despite their vulnerability due to poor health infrastructure 

and adaptive capacities. 
Continuous monitoring of heat stress levels is crucial for early 

warning and adaptation planning. However, due to limited observation 
stations and the required instrumentation, a comprehensive character-
ization of thermal stress in Nigeria and most of sub-Saharan Africa using 
an energy-based thermal index like UTCI is lacking. Access to near-real- 
time heat index data, such as ERA5-HEAT UTCI, provides an opportunity 
to comprehend and monitor heat stress patterns and trends on a large 
scale, which is vital for countries with low-resolution meteorological 
networks like Nigeria. However, before adopting this reanalysis product 
as an alternative to observation in a region, it is essential to conduct a 
performance evaluation analysis. This study utilizes long-term climate 
reanalysis data, ERA5-HEAT, to examine the spatio-temporal trends of 
heat stress across geographic zones in Nigeria. Overall, our findings 
indicated that ERA5-HEAT exhibits reasonable statistical performance 
in capturing the temporal characteristics and patterns of UTCI across 
Nigeria’s different climatic zones. We also observed that the spatial 
(longitudinal) distribution of heat stress varies by season, encompassing 
a range from "slightly cold" to "moderate" at 0600 LST and from "mod-
erate" to "very strong" at 1500 LST. Latitudinally, we noticed consistent 

Fig. 6. Cumulative frequency distribution of regional and seasonal ERA-HEAT UTCI values per decade from 1981 to 2020, for 0 600 LST.  
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patterns across decades for each season at 0600 LST, indicating stable 
heat stress categories. While UTCI values varied by season, a similar 
latitudinal pattern was observed in both monsoon and drier months. At 
1500 LST, more variability in heat stress levels and transitions between 
categories along latitudes were observed. These seasonal latitudinal 
patterns were distinct from each other, demonstrating variations in 
peak-time heat stress across the country. Our long-term spatio-temporal 
analysis showed a consistent geographical pattern within each season, 
with March-May (MAM) standing out as a critical period characterized 
by widespread "very strong" heat stress. Moreover, our results show 

significant positive trends over the 40-year period, along with occa-
sional non-significant negative trends. Notably, during the early morn-
ing (0600 LST), the positive trends are more pronounced in the Guinea 
and Sahel regions compared to the Sudan region, regardless of the sea-
son. Conversely, during the hottest afternoon period (1500 LST), we 
observe high positive trends mainly during DJF and MAM seasons, 
indicating an increase in heat stress intensity during peak seasons, with 
lower positive trends in other seasons. These positive deviations in UTCI 
are linked to adverse effects on human health, including increased 
mortality rates. 

Fig. 7. Spatial, seasonal and decadal characteristics of ERA5-HEAT UTCI at 1 500 LST for the period 1981–2020 over Nigeria.  
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While this study has provided context for the application of ERA5- 
HEAT UTCI datasets as climatological and diagnostic tools for heat 
stress, it’s pertinent to note their potential for driving country or 
regional-level forecasting systems. The successful prediction of thermal 
health hazards using UTCI forecasts generated from state-of-the-art 
Numerical Weather Prediction (NWP) models indicates the maturity of 
technical capabilities for operational UTCI implementation (Pappen-
berger et al., 2015). Recently, there has been a rise in UTCI-based 
forecasting systems in Europe, notably in countries such as the Czech 
Republic, Italy, Poland, and Portugal, as well as at the pan-European 
level (Di Napoli et al., 2021b). These systems utilize forecasted vari-
ables including air temperature, humidity, wind speed, and mean 
radiant temperature (MRT) from ECMWF’s Integrated Forecasting Sys-
tem (IFS) and further research are required in this regard over Africa in 
general. Other future work could link heat stress data with vulnerability 
indicators such as socioeconomic data, average income, public health 
infrastructure, land use changes, and education levels to develop 
frameworks for heat risk assessment and adaptation plans. Additionally, 
future work could examine the influence of different meteorological 
variables and large-scale atmospheric phenomena, such as the El-Nino 

Southern Oscillation, on UTCI in Nigeria. It is also important to extend 
this study to other global South countries with high heat vulnerability. 
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Fig. 9. (a) Averaged UTCI variation between 3 and 15 longitudes for 4 decades from 1981 to 2020, (b) seasonal change in UTCI between the reference period, 
1981–1990 and each of the other decade. 
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Appendix

Fig. A1. Temporal comparisons of ERA5-HEAT and observed (calculated with RayMan) monthly UTCI values from 1981 to 2010 across the selected stations, for 
0600 LST. The top, mid and bottom rows are for Guinea, Sudan and Sahel stations in that order.  

Fig. 10. ERA5-HEAT UTCI trends for 0 600 and 1 500 LST for annual and each season. The stipplings represent the grids with statistical significance (p-value <0.05).  
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Fig. A2. Temporal comparisons of ERA5-HEAT and observed (calculated with RayMan) monthly UTCI values from 1981 to 2010 across the selected stations, for 1 
500 LST. The top, mid and bottom rows are for Guinea, Sudan and Sahel stations in that order. 

Fig. A3. Scatterplot between ERA5-HEAT and observed (calculated with RayMan) monthly MRT values across the selected stations, grouped into geographical zones 
(Guinea, Sudan and Sahel) over 1981–2010 periods for 0 600 and 1 500 LST 
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Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., 
Kampmann, B., 2013. An introduction to the universal thermal climate index (UTCI). 
Geogr. Pol. 86 (1), 5–10. 

Bonell, A., Sonko, B., Badjie, J., Samateh, T., Saidy, T., Sosseh, F., Sallah, Y., Bajo, K., 
Murray, K.A., Hirst, J., Vicedo-Cabrera, A., Prentice, A.M., Maxwell, N.S., Haines, A., 
2022. Environmental heat stress on maternal physiology and fetal blood flow in 
pregnant subsistence farmers in The Gambia, west Africa: an observational cohort 
study. Lancet Planet. Health 6 (12), e968–e976. 

Bonell, A., Vicedo-Cabrera, A., Murray, K., Moirano, G., Sonko, B., Moore, S., Haines, A., 
Prentice, A., 2023. Assessing the impact of heat stress on growth faltering in the first 
1000 days of life in rural Gambia, pp. 1–16. 

Brimicombe, C., Di Napoli, C., Cornforth, R., Pappenberger, F., Petty, C., Cloke, H.L., 
2021. Borderless heat hazards with bordered impacts. Earth’s Future 9 (9). https:// 
doi.org/10.1029/2021EF002064. 
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