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A B S T R A C T

Electric mobility is critical to reducing emissions from transport and dependency on Internal Combustion Engine
vehicles. This study attempts to model the suitability of the built environment for electric vehicle (EV) adoption
in urban areas based on sociodemographics and access to driveways for installing charging infrastructure. A
novel approach using geospatial techniques is adopted to detect driveways from multispectral remote sensing
information. A region in Dublin, Ireland, has been chosen as the study area. The region is further categorised
based on the feasibility of EV adoption using hierarchical cluster analysis. Initial results highlight the disparity in
access to low-emission modes to those not dependent on cars. Results from zero-inflated count models at the
neighbourhood level reiterate the impact of driveways and sociodemographic factors on EV adoption. The
proposed methodology can help evaluate infrastructure availability for widespread EV transition and inform
strategic planning. The driveway detection framework may be adapted to other regions while accounting for
geographic characteristics.

1. Introduction

The transport sector accounts for 20% of Ireland’s greenhouse gas
(GHG) emissions, of which 96% can be attributed to road transport
(Government of Ireland, 2021). These vehicular emissions lead to poor
urban air quality and significantly contribute to climate change. A pri-
mary policy approach to reducing emissions from road transport has
centred on decreasing the use of Internal Combustion Engine Vehicles
(ICEVs) and promoting the electrification of transportation. While such
policies are critical for reducing GHGs, significant additional benefits
can accrue in urban areas due to air quality enhancement (Buberger
et al., 2022; Kouridis and Vlachokostas, 2022; Metais et al., 2022).

Although initiatives have been taken to increase private passenger
EV uptake, they have not reached their full potential due to high cost,
low driving range, and unavailability of charging infrastructure (Bas-
tida-Molina et al., 2022; Caulfield et al., 2022). Despite people’s pref-
erence to charge their EVs at home, limited research has explored the
infrastructure available for installing home chargers (Francfort et al.,

2015). In urban regions, residences are Multi-Unit Developments
(MUDs) with limited access to charging infrastructure, which could
further hinder EV adoption. Therefore, a more nuanced understanding
of the built environment is required to predict EV adoption in dense
urban areas without targeted interventions.

This research proposes a methodology to evaluate the suitability of
the built environment for private EV adoption in urban areas, consid-
ering their sociodemographics, travel characteristics and home charging
infrastructure. The main contribution of this work lies in identifying the
infrastructure for potential home charger installation to facilitate the
widespread transition into EVs. Infrastructure is measured regarding
access to private driveways where chargers can be installed. This study
adopts a novel approach to identify driveways from multispectral
remote sensing images using geospatial techniques, a unique problem
that contemporary studies have not yet addressed to the best of our
knowledge.

However, a rich body of work exists for detecting vehicles using
machine learning-based object detection techniques (Q. Li et al., 2019;
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Liu and Mattyus, 2015; Zambanini et al., 2020; Zhou et al., 2018). These
methods can help detect parked vehicles within property boundaries,
indicating an existing driveway. Nevertheless, identifying empty
driveways is crucial since it shows the total number of available drive-
ways and is an area unexplored by previous studies. The study also re-
lates EV adoption to sociodemographic characteristics, which can
inform targeted marketing. Results from this work can help identify
locations with adequate infrastructure and those requiring additional
support in terms of public charging points.

The remainder of the paper is organised as follows. Section 2 ex-
amines previous studies on EV transition. Section 3 outlines the study
area and methodology. Section 4 presents the analysis, results, and
discussion. The final section addresses the study’s conclusions and
limitations.

2. Literature review

This section discusses the factors influencing EV transition, charging
infrastructure, transport policies and innovative modelling techniques
adopted in the field.

2.1. Sociodemographic characteristics influencing EV adoption

EV adoption is highly influenced by people’s sociodemographic
characteristics and environmental awareness. Several sociodemographic
and travel characteristics influence an individual’s transition to EV.
Having high educational qualifications, being a homeowner, and living
in a detached or semi-detached house (with a driveway or garage)
positively influences EV adoption (Hidrue et al., 2011; Williams and
Kurani, 2006). However, living in rented accommodation and belonging
to the younger age group (19 to 34 years) affects EV uptake negatively.
Owning more than two vehicles and using a car more frequently are
often considered characteristics of EV adopters (Campbell et al., 2012).
Table 1 summarises some of the critical sociodemographic and travel
characteristics and their influence on EV adoption.

2.2. EV charging infrastructure

EV charging can be categorised based on ownership (public, private),
type (slow, semi-fast, fast) and location (home, public, workplace).
Although home charging is slow, low cost and convenient, the owner

requires access to an off-street parking space or a driveway to avail of it.
Studies show that EV uptake, until now, has been dominated by those
with off-street parking (Collett et al., 2022). However, off-street parking
is not accessible to many people, especially in urban areas, as a high
share of urban residents live in MUDs (Gilbert et al., 2020; International
Energy Agency, 2018a).

Public charging infrastructure impacts EV uptake more than finan-
cial incentives (Hall and Lutsey, 2017). However, there are barriers to
improving charging infrastructure, including uncertainty in utilisation,
costs, and difficulty in assessing the revenue models (Falchetta and
Noussan, 2021). Workplace charging provides an opportunity for those
without access to home charging and can encourage EV uptake,
considering the influence of peer communication (LaMonaca and Ryan,
2022). Nevertheless, >90% of EV owners in countries including Norway
and Sweden, which have the highest share of EV sales, prefer to charge
at home, thus reiterating the importance of access to home charging
(International Energy Agency, 2018b).

2.3. Policies to facilitate EV uptake

To realise the full potential of EVs, there is a need for supportive
transport policies. Ireland has introduced several policies, including a
vehicle purchase and home charger installation grant, tax relief and toll
incentives to support EV adoption (Pillai et al., 2022). Financial in-
centives can accelerate EV adoption, leading up to 1.91 times emission
reduction compared to a do-nothing scenario (Wu and Kontou, 2022).

Though purchase subsidies have increased the EV penetration rate
worldwide, these are not sustainable due to their financial burden on
governments (Lu et al., 2022). Reduction in EV prices, operational in-
centives and sustainable transport policies are required to maintain EV
penetration. Some policies adopted in European cities include offering
public charging for EV owners without a driveway upon request and
imposing elevated parking fees for conventional vehicles (Bernard et al.,
2021; Held and Gerrits, 2019). The EU Commission proposes pre-cabling
new buildings to ensure adequate access to charging (European Com-
mission, 2021). Shared electric mobility, including shared e-cars, e-bikes
and e-scooters, is another promising service that can potentially deliver
the positive impacts of both shared mobility and electric mobility (Liao
and Correia, 2022).

2.4. Innovative modelling techniques to facilitate EV transition

The most commonly used modelling techniques to predict EV
adoption are agent-based models (Maybury et al., 2022). Recent studies
have adopted innovative methodologies, such as the Geospatial Evaluator
for EV Charging in Car Parks Overnight,which identifies potential car park
locations through geospatial analysis for overnight charging (Collett
et al., 2022). An integrated optimisation platform was formulated to
estimate charging requirements at home and non-home locations while
considering infrastructure and dynamic electricity costs (X. Li and Jenn,
2022). Determining the placement of charging stations relies on the
nighttime demand from residential areas and the daytime demand from
workplaces (Frade et al., 2011). Previous research has employed
maximal covering models and mixed integer programming approaches
to calculate the required number and capacity of charging points,
considering user behaviours and budget limitations (Cavadas et al.,
2015). More recent studies have explored geospatial methods and the
potential for converting existing shared parking areas and streetlights
into slow charging points for residents without off-street parking facil-
ities (Charly et al., 2023; Janjić et al., 2021; Kaya et al., 2020).

While the decision to adopt an EV is made at the household level, it is
influenced by socio-technical factors at the spatial level, such as famil-
iarity with this technology within the neighbourhoods (Selena et al.,
2022). Sheng et al. (2021) found that EV charging infrastructure in the
neighbouring areas significantly impacts EV adoption. Spatial autocor-
relations or “neighbour effects” are crucial in how vehicle owners respond

Table 1
Sociodemographic and travel characteristics influencing EV adoption.

No Parameter Influence on EV adoption

1 People in the age group 25–59

Younger or middle-aged populations are
more likely to adopt EVs (Campbell et al.,
2012; Hidrue et al., 2011; Nayum et al.,
2016).

2 Owner-occupier
Homeowners are more likely to invest in
charging infrastructure (Campbell et al.,
2012; Williams and Kurani, 2006).

3
Large households (at least four
rooms)

More rooms indicate financial stability and
large household size (Mukherjee and Ryan,
2020).

4
Highly educated (with an
honours bachelor’s degree and
above)

Being highly educated is linked to
environmental awareness and willingness
to try new technologies (Hidrue et al.,
2011; Nayum et al., 2016; O’Garra et al.,
2005; Sierzchula et al., 2014).

5 Drive a car to work
Driving for daily commutes indicates
dependence on their car (Campbell et al.,
2012).

6
Households with at least two
cars

Multi-car households have a conventional
vehicle as a backup for long journeys, thus
addressing range anxiety (Gärling and
Thøgersen, 2001; Graham-Rowe et al.,
2012; Kurani et al., 1995; Williams and
Kurani, 2006).
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to relatively new transport technologies. Hence, it is essential to incor-
porate the spatial component and sociodemographic characteristics
while assessing the suitability of the built environment for EV adoption.

2.5. Inferences from the literature and objectives of the study

Electrifying transport plays a vital role in cutting GHG emissions
from road transport, enhancing air quality, and addressing climate
change. Charging infrastructure is essential for the widespread adoption
of EVs, with home charging being the most favoured method. However,
not everyone has access to a dedicated space for home charging, which
could hinder EV uptake unless supplemented with charging points near
residential areas lacking private driveways. Incentives are required at
the operational level in addition to grants and subsidies. Identifying the
residential areas where potential EV adopters are located can help pol-
icymakers and vehicle manufacturers create targeted strategies to boost
EV adoption.

This research seeks to understand the suitability of the built envi-
ronment for private EV adoption among urban dwellers based on their
sociodemographic characteristics and access to driveways. A specific
region within Dublin, the capital city of Ireland, has been chosen as the
study area. Residents in the study area are classified according to the
availability of infrastructure for adopting EVs. The current rate of EV
uptake and accessibility to alternate low-emission modes of transport
within the region is also examined. EV uptake is modelled at the
neighbourhood and individual household levels to understand the in-
fluence of driveways and various sociodemographic factors.

3. Data and methods

This section describes the study area and the data used. Then, the

overall framework is discussed, followed by a detailed methodology and
description of the parameters.

3.1. Study area

The study focuses on a specific region in Dublin, the capital of the
Republic of Ireland, as shown in Fig. 1. This study location was chosen
due to its dense residential nature in Ireland’s capital city. The avail-
ability of a high-resolution multispectral aerial remote sensing image
and other geospatial data also helped in the study site selection. This
region comprises 193 small area populations (SAPs), which are minor
administrative divisions in the Republic of Ireland for which Census data
is accessible. Each SAP contains between 80 and 120 dwellings. The
chosen study area encompasses a total of 18,107 households and a
population of 44,228. This area accounts for approximately 8.5% of the
total households in Dublin City County.

3.2. Data collection

The datasets used in the study include census data for 2016 obtained
from the Central Statistics Office, driveways detected using geospatial
techniques, location of bus stops, location of shared bike stations, and
EV data obtained from the Sustainable Energy Authority of Ireland.
Sociodemographic information and travel characteristics of residents
were aggregated from the census data. The 2016 Census data was used in
this study as it was the most up-to-date data available. Two datasets
corresponding to EV uptake are used: the EV grant data and the home
charger installation data. The EV grant data and the sociodemographic
data are available at the SAP level, whereas the home charger installa-
tion data and detected driveways are identified at the household level.

Fig. 1. Illustration of the study area in Dublin and boundaries of SAPs within the region.
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3.3. Study framework

The study aims to assess the infrastructure suitability for private EV
adoption in urban regions. The framework followed to achieve the same
is illustrated in Fig. 2.

First, the factors influencing an individual’s decision to transition to
EV are identified based on literature and computed for each SAP. A
driveway is necessary to install EV home chargers in Ireland (myenergi.,
2024; Sustainable Energy Authority of Ireland, 2024). However, the
information regarding driveways’ presence is unavailable from Census
information. Hence, driveways are identified from aerial images using
geospatial techniques. The SAPs are grouped into clusters based on
sociodemographic factors using hierarchical clustering analysis, and
driveways are collated for these clusters. Cluster analysis was conducted
as the first step to identify homogeneous groups in the study area and to
better understand the relationship between sociodemographic factors
and infrastructure availability. The clusters aid the analysis and help
provide insights into different groups in the analysis.

Further, each cluster’s actual EV adoption trend and accessibility to
low-emission modes are examined using data from home charger in-
stallations, EV purchase grants, and the number of shared bike stations
and bus stops. EV adoption is then modelled at the SAP level using zero-
inflated count models and at the household level using a binary logistic
regression approach. Finally, strategies for improving sustainable
transport practices are suggested for each cluster. The following section
discusses the sociodemographic and travel characteristics considered for
clustering.

3.4. Sociodemographic and travel characteristics influencing EV adoption

All the sociodemographic and travel characteristics influencing EV
adoption discussed in Error! Reference source not found. Are considered
in this study. These parameters include People in the age group 25–59,
Owner-occupier, Large households (at least four rooms), Highly educated
(with an honours bachelor’s degree and above), Drive a car to work and

Households with at least two cars. The data corresponding to these soci-
odemographic parameters was extracted from Census data for every
SAP. Further, driveway detection was conducted through image pro-
cessing, as discussed in the following section.

3.5. Urban driveway detection using geospatial techniques

Visual interpretation of high-resolution multispectral images yielded
a simple schema to detect driveways. An overview of the driveway
detection framework is shown in Fig. 3.

Driveways were defined as accessible by road (driveways are ex-
pected to be in the front yard of properties), un-vegetated (mostly built/
concrete surface), reasonably flat and of a minimum dimension to fit a
vehicle. The parking spaces in the study area in Dublin are majorly
located in the front yard of the property. Therefore, the front yard
detection was included as a rule in the decision tree framework for
detecting driveways. A buffer of 15 m from the road centre line inter-
secting the property boundary and simple thresholding of the Normal-
ised Difference Vegetation Index (NDVI) data were sufficient to identify
the property’s front yard and un-vegetated pixels. NDVI enhances
vegetation signals, and studies have successfully used NDVI-based
thresholds to discriminate vegetation from other areas (Aryal and
Sitaula, 2022; Montandon and Small, 2008; Spadoni et al., 2020).

The inputs in the model used were NDVI, a LiDAR (Reigl VUX-1LR
and 15 points per metre points density) based height dataset and
PRIME-2 (GIS dataset developed by the Ordnance Survey of Ireland
consisting of property boundaries and road centre line) for constraining
the model within the property boundaries (Ordnance Survey Ireland,
2018). The NDVI was calculated from an Altum Micasense 20 cm reso-
lution multispectral aerial image, and the LiDAR data was resampled to
20 cm to match the aerial data.

The driveway detection model identifies flat and unvegetated pixels
in the property’s front yard. These were polygonised using QGIS and
filtered based on a minimum area requirement (3*3 m2). An additional
filter was also applied to the area: perimeter ratio (> 0.50) was

Fig. 2. Methodology to assess the suitability of the built environment for private EV adoption.
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calculated for each polygonised potential driveway to limit the detected
driveways to only simple geometries. Pixels <2 m in height were
considered flat areas to identify driveways with parked vehicles. This
knowledge was then applied through a decision tree framework to
detect potential driveways. Residential driveways have previously been
identified using GIS datasets, remote sensing, and Google Street View

maps (Brealy et al., 2022; Flynn et al., 2021; Flynn and Giannetti, 2021).
These studies had limited capabilities to distinguish between paved
driveways and front gardens, inability to detect driveways with parked
cars and limited access to clear street view images. Our study’s workflow
leverages these studies’ strengths and proposes a simple geospatial
method to overcome some of their limitations. The property boundaries

Fig. 3. Simplified framework to detect driveways within property boundaries.

Fig. 4. True colour aerial image of selected regions with property boundaries (in blue). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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and potential driveways for a few sample regions within the study area
are shown in Fig. 4 and Fig. 5.

This model was applied across the selected study area in Dublin, the
results of which are shown in Fig. 6. The driveway detection algorithm
performed well, with approximately 90% accuracy for positive cases
across multiple test sites within the study area.

4. Analysis and results

First, the SAPs were clustered based on sociodemographic factors.
Further, statistical models were used to predict EV adoption at the SAP
and individual property levels.

4.1. Clustering SAPs based on sociodemographic characteristics

Cluster analysis was performed initially to identify homogeneous
groups within the study area and to enhance understanding of the
relationship between sociodemographic factors and infrastructure
availability to facilitate EV transition. Clustering analysis is suggested to
be the most suitable approach to generate groups based on similarities
among the data points (Hair Jr et al., 2009). Ward’s hierarchical clus-
tering technique was used to cluster the SAPs based on sociodemo-
graphic parameters. The data corresponding to these parameters was
extracted from Census data and normalised into percentage values.

Clustering is done at the SAP level under the assumption that a

household’s decision to adopt EV, especially since it is a relatively new
technology, is influenced by sociodemographic characteristics at the
neighbourhood level. Analysis was done for varying numbers of clusters
ranging from two to six. Finally, a four-cluster solution was considered
based on the dendrogram and the variations observed between the
different cluster solutions (Campbell et al., 2012; Choudhari and Maji,
2019). The descriptive statistics of each sociodemographic factor in each
cluster are tabulated in Table 2.

The first cluster also referred to as Potential early adopters, has a high
share of owner-occupiers (64.25%) who live in large houses (72.98%).
They are also highly dependent on cars, with a significant percentage of
residents owning at least two cars (15.44%) and driving to work
(36.56%). The second cluster, also referred to as Potential early adopters
needing infrastructure, has a high share of residents with high educational
qualifications (45.1%). They mostly live in rented smaller accommo-
dations but are expected to be aware of the environmental impacts of
ICEVs owing to their level of education. The third cluster, also referred
to as Potential late adopters, is not entirely dependent on cars (a lower
percentage share of people driving to work and owning two cars).
However, they still constitute the younger population (38.9%) of highly
educated people (38.87%). Hence, they might adopt EVs later when
provided with adequate infrastructure. The fourth cluster, Unlikely
adopters, does not have the sociodemographic characteristics that match
a potential EV adopter. Additionally, this group is not car-dependent, as
it was observed that most of these households do not own a car.

Fig. 5. Potential driveways (in red) detected in the test area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

A. Charly et al.
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4.2. Comparison of clusters with driveways, EV adoption and access to
low-emission modes

Further, the driveways detected in the region based on geospatial
techniques were segregated for each SAP and then aggregated for each
cluster, as illustrated in Fig. 7.

It can be observed that the Potential early adopters also had the
highest share of driveways. Since driveways indicate the infrastructure
required to install a home charging point, this suggests that the Potential
early adopters have adequate infrastructure for a smooth transition to
EVs.

The cluster solution was also compared with the actual EV adoption,
using the count of home charger installations and the count of EV grants
for each cluster, as shown in Fig. 8. The Potential early adopters have the
highest count of home charger installations and EV grants, suggesting that
the cluster solution based on sociodemographic characteristics aligns
with the actual EV adoption trend. It was observed that the count of EV
grant applications was also higher among Potential early adopters needing
infrastructure and Potential late adopters, indicating a positive attitude
towards EV adoption among these clusters despite not having
infrastructure.

To assess the accessibility of low-emission transport options for

different clusters, the locations of bus stops and shared bike stations
were analysed (Fig. 9). The availability of these facilities was calculated
per 100 people for each cluster, as detailed in Table 3.

Potential early adopters rely heavily on cars and have the highest
number of bus stops per 100 people. In contrast, the Unlikely adopters,
who depend more on public transport, have the lowest, indicating
limited accessibility to low-emission options for this group. Bike station
availability per 100 people is highest for Potential late adopters, followed
by Potential early adopters needing infrastructure.

4.3. Modelling EV uptake at the SAP level

EV grant and home charger installation data were used to model EV
uptake at the SAP level. The frequency distribution showed a significant
number of SAPs with no home charger installations or EV grant appli-
cations (Table 4).

Table 5 displays descriptive statistics for the variables, with the
count of home charger installations and EV grants as dependent vari-
ables. Independent variables were assessed for multicollinearity before
model inclusion.

The dependent variables showed overdispersion, with variance
exceeding the mean and a significant number of zeros. A zero-inflated

Fig. 6. Map showing driveway detection in the study area in Dublin (regions in green indicate properties with detected driveways, and regions in red indicate
properties without driveways). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Clusters based on sociodemographic characteristics (Results from cluster analysis).

No Cluster No of
SAPs

Statistic Population in the age
group 25–59 (%)

Owner-
occupiers (%)

Large
houses (%)

High level of
education (%)

Drive to
work (%)

Households with at
least two cars (%)

1 Potential early adopters 58 Mean 25.26 64.25 72.98 19.87 36.56 15.44
Std. dev. 3.60 9.43 9.46 14.91 8.62 5.00
Minimum 18 39 49 1 15 6
Maximum 34 87 94 58 53 30

2
Potential early adopters
needing infrastructure 49

Mean 35.3 35.51 34.05 45.1 28.43 11.01
Std. dev. 5.23 11.18 15.42 12.70 8.54 5.73
Minimum 22 14 4 21 14 1
Maximum 46 68 67 70 50 28

3 Potential late adopters 63

Mean 38.9 11.95 20.84 38.87 14.18 5.83
Std. dev. 7.80 6.76 8.82 17.16 7.00 5.61
Minimum 23 0 4 8 2 0
Maximum 57 27 40 77 39 28

4 Unlikely adopters 23

Mean 19.99 8.35 35.78 6.38 25.3 4.78
Std. dev. 4.19 12.47 7.88 5.11 9.78 2.88
Minimum 11 0 13 0 9 1
Maximum 26 40 49 17 46 11

A. Charly et al.
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negative binomial model was deemed suitable for modelling EV adop-
tion at the SAP level due to these characteristics (Charly and Mathew,
2019a; Mukherjee and Ryan, 2020). Two zero-inflated negative bino-
mial models were developed: one using home charger installations and the
other using EV grants as dependent variables. Results are presented in
Table 6 and Table 7. Home charger installations increased with higher
education levels and driveway availability, likely due to the need for
private parking (Table 6). This suggests that higher education may lead
to greater environmental awareness and openness to new technologies.
Regular car commuters are more likely to apply for EV grants, whereas
households with multiple cars are less likely (Table 7).

Standard count models, including negative binomial and Poisson,
were developed for comparison with the zero-inflated negative binomial
models, as presented in Table 8. Log-likelihood and Akaike Information
Criterion (AIC) values were used to assess model quality. A lower AIC
indicates a better model fit for the data, while higher log-likelihood
values suggest a better goodness of fit (Charly and Mathew, 2019b;
Washington et al., 2011). Zero-inflated negative binomial models pro-
vided a better fit in both cases.

The discussed results focus on EV adoption at the SAP level, where
neighbourhood factors play a role. However, EV adoption ultimately

hinges on household-level decisions. Therefore, a binary logistic
regression model is developed to understand EV adoption at the
household level.

4.4. Binary logistic regression to model EV uptake at the household level

A binary logistic regression model was employed to predict EV
adoption at the property level, with details of the included variables in
Table 9. The dependent variable is home charger installation, a binary
categorical variable. Independent variables, also categorical, include
driveway presence, identified through geospatial analysis, and cluster
membership, determined using Ward’s hierarchical clustering
technique.

Out of 9415 properties in the study area, only 0.5% had home
chargers, indicating data limitations. However, 52.9% had driveways,
63.3% were in the Early EV adopter cluster, and 19.2% were in the Po-
tential early adopters needing infrastructure cluster. Parameter estimates
for the binary logistic regression model are presented in Table 10.

Results suggest that having a private driveway increases the likeli-
hood of home charger installation. While the cluster categorical variable
was insignificant, properties in clusters 1 and 2 were more likely to
install home chargers, whereas clusters 3 and 4 showed less likelihood
for EV adoption.

4.5. Discussion, policy implications, and limitations

Access to a dedicated driveway significantly influences the avail-
ability of EV infrastructure, with the study also revealing insights into
the accessibility of alternative low-emission transport modes. Modelling
results at both the SAP and household levels reinforced the relationship
between the current state of EV adoption and access to a driveway.
These findings also align with other recent studies in the field (Collett
et al., 2022). Charging should be made available to those without
driveways to achieve increased EV uptake.

This work reiterates the existence of population clusters with
distinctive travel and sociodemographic characteristics influencing EV
adoption. This is evident in the higher application rates for EV grants,

Fig. 7. Comparison of clusters based on sociodemographic characteristics and driveways.

Fig. 8. Comparison of sociodemographic clusters with actual EV adoption.
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even among those without driveways but possessing favourable socio-
demographic characteristics. This also indicates the influence of
neighbourhood-level sociodemographic factors on EV adoption.

Another fascinating insight from the study is the accessibility to
alternate low-emission modes of transport. Bus stops and shared bike
stations were not easily accessible to those more likely to depend on
them. These findings align with other studies examining the equity of
urban transit, indicating that neighbourhoods with lower-income
households tend to have more circuitous transit journeys (Dixit et al.,
2021).

Hence, an in-depth understanding of the sociodemographic charac-
teristics, travel patterns, and infrastructure availability is necessary to
plan sustainable transportation alternatives for all. Such an

Fig. 9. Location of bus stops and shared bike stations.

Table 3
Number of bus stops and bike stations per 100 people in each cluster.

No Cluster No. of bus stops
per 100 people

No. of bike
stations per 100
people

1 Potential early adopters

Sum 21.02 0.54
Mean 0.36 0.01
Std.
Dev. 0.47 0.05

2
Potential early adopters
needing infrastructure

Sum 15.71 3.00
Mean 0.32 0.06
Std.
Dev. 0.66 0.20

3 Potential late adopters

Sum 15.43 6.18
Mean 0.24 0.10
Std.
Dev. 0.43 0.30

4 Unlikely adopters

Sum 6.26 0.32
Mean 0.27 0.01
Std.
Dev. 0.50 0.07

Table 4
Frequencies of home charger installation and EV grants in SAPs.

Count of home charger installations Count of EV grants

Valid Frequency Percent Valid Frequency Percent

0 154 79.8 0 139 72.0
1 24 12.4 1 38 19.7
2 9 4.7 2 10 5.2
3 4 2.1 3 4 2.1
4 1 0.5 4 1 0.5
5 1 0.5 7 1 0.5

Table 5
Descriptive statistics of variables considered in the model at the SAP level.

Variable Unit Minimum Maximum Mean Std.
dev.

Count of home charger
installations count 0 5 0.33 0.78

Count of EV grants count 0 7 0.42 0.87
Population in the age
group 25–59

% 11 57 31.63 9.03

Owner-occupiers % 0 87 33.22 24.60
Large houses % 4 94 41.64 24.00
High level of education % 0 77 30.87 19.63
Drive to work % 2 53 25.85 12.17
Households with at least
two cars

% 0 30 9.91 6.70

Number of driveways count 0 138 25.8 32.87
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understanding could lead to a targeted provision of facilities based on
the population’s needs while adhering to the State’s goals.

For instance, the ‘Potential early adopters’ identified in the study are
highly dependent on cars and probably contribute to a high share of
emissions yearly as per their current travel pattern. However, since they
already have the infrastructure for EV transition, the focus should be on

improving environmental awareness among them and providing alter-
native solutions. Considerable emission reduction can be achieved if
some households from this category shift to EVs. Charger installations
exceed EV grants for the ‘Potential early adopters’ (Fig. 8), which is not
the case for the other three clusters. Interestingly, the ‘Potential early
adopters’ cluster has the highest proportion of owner-occupiers. This is
consistent with prior research indicating that homeowners are more
inclined to invest in charging infrastructure (Campbell et al., 2012;
Williams and Kurani, 2006). More public charging points may be offered
to the cluster ‘Potential early adopters needing infrastructure’ who might
depend on cars to facilitate a smooth EV transition.

However, care must be taken to provide adequate low-emission al-
ternatives for those in the other clusters. Shared bike stations, more
stops, and increased bus frequencies may be provided to support low-
emission modes, including active travel and public transport.

This study has several limitations, as discussed below. The presented
algorithm for detecting driveways is limited by the thresholds set to
identify un-vegetated and flat areas in the front yard of properties but
was found to perform very well in the residential neighbourhoods of the
study area. Replicating this study in a new location would need re-
examining thresholds, but the basic logic behind the algorithm is ex-
pected to hold. The current driveway detection algorithm is set to find
open driveways in the properties’ front yards, which worked well for the
study area in Dublin. This rule in the framework can be easily modified
to include properties with parking areas on the side. For example,
including connectivity of main roads/ streets to the parking area within
a property boundary as an additional rule set could overcome the issue
of detecting the front yard or side of properties. Regardless, buildings
with underground and covered parking areas would still be left out since
they are impossible to view from aerial images.

The driveway detection algorithm can also underperform in areas
with wider roads. In such areas, a larger buffer from the main road is
required to identify the front yards of residential properties. Therefore,
selecting the buffer from the road’s central line is important. One way to
overcome this issue could be to use image segmentation techniques to
identify the sides of the road that would serve as the reference for the
buffer. However, the algorithm would still fail to identify parking spaces
detached from property boundaries (these would be considered on-road
parking and hence beyond the scope of this study). Additionally, the
criteria of driveways being limited to simple geometries and car height
being <2 m are some other rules that need to be adapted before appli-
cation to newer regions.

The sociodemographic information of the study area is collated from
the Census data 2016, which was the latest detailed information avail-
able at the time of the study. These limitations need to be considered
when interpreting the results.

5. Conclusions

This study assesses the infrastructure suitability for private EV
adoption in urban areas using sociodemographic parameters and access
to driveways. The main contribution of this research lies in identifying
the infrastructure available for the widespread transition of EVs. Infra-
structure is measured in terms of driveways detected through a novel
approach using geospatial techniques frommultispectral remote sensing
images.

The study results indicate the existence of distinctive sociodemo-
graphic clusters within the study area, which require different focus
strategies for reducing transport emissions. Statistical modelling
confirmed the influence of access to private driveways and favourable
sociodemographic factors on EV adoption and home charger installation
until now.

In the current deployment phase, several uncertainties can affect the
mass roll-out of charging points and EVs. Hence, it is essential to identify
strategic locations of charging points and profile Potential early
adopters for targeted marketing and provision of charging infrastructure

Table 6
Zero-inflation model coefficients for the count of home charger installations.

Estimate Std.
Error

z Value Significance

(Intercept) 27.126 11.427 2.374 0.018
Population in the age group
25–59

− 1.037 0.425 − 2.438 0.015**

Owner-occupiers 0.049 0.100 0.493 0.622
Large houses − 0.411 0.199 − 2.067 0.039**
High level of education 0.400 0.174 2.298 0.022**
Drive to work 0.149 0.108 1.380 0.168*
Households with at least two
cars

− 0.145 0.165 − 0.877 0.380

Number of driveways 0.135 0.064 2.123 0.034**

Dependent Variable: Count of home charger installations.

Table 7
Zero-inflation model coefficients for the count of EV grant.

Estimate Std.
Error

z Value Significance

(Intercept) − 15.939 8.441 − 1.888 0.059
Population in the age group
25–59

0.168 0.161 1.046 0.296

Owner-occupiers 0.004 0.054 0.081 0.935
Large houses 0.085 0.060 1.416 0.157
High level of education 0.159 0.097 1.631 0.103
Drive to work 0.208 0.096 2.168 0.030**
Households with at least two
cars

− 0.681 0.235 − 2.891 0.004**

Number of driveways 0.036 0.030 1.207 0.228

Dependent Variable: Count of EV Grants.

Table 8
Comparison of quality of estimated count models.

Dependent Variable Model Log-
likelihood

AIC

Count of home charger
installations

Zero-inflated negative
binomial

− 105.51 245.02

Negative binomial − 117.79 251.58
Poisson − 121.88 259.75

Count of EV Grants Zero-inflated negative
binomial

− 145.71 325.41

Negative binomial − 155.14 326.29
Poisson − 161.40 339.58

Table 9
Descriptive statistics of variables considered in the binary logistic regression
model.

Variable Type Levels Description Frequency Percent

Home
charger

Cat. 0 No 9368 99.5

1 Yes 47 0.5
Driveway Cat. 0 No 4435 47.1

1 Yes 4980 52.9
Cluster Cat. 1 Potential early adopters 5957 63.3

2 Potential early adopters
needing infrastructure

1808 19.2

3 Potential late adopters 1040 11.0
4 Unlikely adopters 610 6.5

Cat.: categorical.
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while ensuring that this does not become discriminatory to any sector of
the population. A successful transition to sustainable mobility requires
that all have equal access to low-emission alternatives based on their
travel needs. While increasing EV adoption is important, it should be
accompanied by promoting a broader socio-demographic shift towards
low-emission alternatives, such as public transport. Otherwise, the
existing issues related to car dependency will persist.

The results from this study provide meaningful insights that could
help identify ideal locations for deploying public charging infrastructure
and shared mobility hubs. While the methodology can be adapted to
other cities with minor adjustments to the driveway detection thresholds
based on regional geography, it has limitations. These include set
thresholds for identifying un-vegetated and flat areas in property front
yards, which may require tweaking for different locations. Moreover, as
discussed in the limitations section, the algorithm may not perform well
in areas with wider roads, necessitating a larger buffer from the main
road.
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