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This work is concerned with the design of state-feedback, and static output-feedback con-
trollers for uncertain discrete-time systems. The reinforcement learning (RL) method is
employed and the controller to be designed is considered as an agent changing the behav-
ior of the plant, which is the environment. A State-Action-Reward-State-Action (SARSA)
algorithm is developed to achieve this goal. This is an open problem, as this offline design
through the usage of RL is an approach not so well explored in the literature. The gain
matrices are used directly as design variables in the SARSA algorithm, and a time-
varying incremental step is employed. The method uses a grid in the uncertain parameters
to place the poles of the closed-loop system in a disk on the complex plane. In addition, a
stability test based on the Lyapunov theory is performed to provide a hard stability certifi-
cate for the closed-loop system. Numerical experiments from the literature are used to
illustrate the efficacy of the method, through the use of benchmark examples and exhaus-
tive testing.

� 2023 Elsevier Inc. All rights reserved.
1. Introduction

Reinforcement Learning (RL) is a subfield of machine learning [19], and it has been widely employed in several areas,
mainly due to its learning abilities, that can provide solutions for problems with little information about the environment
[33]. One may cite the salesman problem [26,27], sequential ordering problem [25], multidimensional knapsack problem
[6], power systems transient stability [9], applications in communications and networking [21], and autonomous driving
[16]. There are many algorithms and methods to solve RL problems, with each being more appropriate to certain scenarios.
Methods based on Monte-Carlo [15], Dynamic Programming [4], Temporal Difference [33], as well as the Actor-Critic method
[14] can be brought forth. It is also worth mentioning Deep Reinforcement Learning (DRL) [3], which fuse concepts from RL
with deep neural networks, allowing to tackle highly complex problems with an elevated number of states.

Reinforcement learning for control design has received significant attention in the last years, among others one may find
works dealing with tracking control for time-delayed non-linear systems [22,24] where a distributed control strategy was
employed in a model-free scenario with stability guarantees for a class of interconnected linear subsystems. Instances where
metaheuristic algorithms were employed in combination with RL can also be found, with methods such as Gravitational
muceno),
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Search Algorithm (GSA) [37] and Grey Wolf Optimizer Algorithm (GWO) [36] being used to train the Neural Networks uti-
lized. In [17], the H1 performance was used within the reinforcement learning method to solve the game algebraic Riccati
equation for discrete-time precisely known systems.

Different from existing works using reinforcement learning for control systems, the class of uncertain linear models is
considered in this paper. It is well known that the design of controllers for uncertain systems is a very challenging problem.
One may find results based on the use of Riccati equations [12,13], and also methods that rely on the Lyapunov theory, deriv-
ing Linear Matrix Inequalities (LMIs) that provide sufficient conditions for the design of state and static output-feedback con-
trollers [23,11]. Recently, approaches based on an iterative method have emerged, for instance [28] which makes use of past
measured outputs to design non-minimal controllers. Furthermore, the approach in [30] applies an iterative framework to
reduce conservatism in both state-feedback and output-feedback design problems. However, these methods’ design tech-
niques are also based on the solution of LMIs. It is a consensus that Lyapunov-based methods for control design of uncertain
systems have had increasing difficulty in reducing conservatism [31]. In contrast, the stability certificates for uncertain sys-
tems via LMIs and Lyapunov theory have provided necessary and sufficient conditions to guarantee the stability of the uncer-
tain systems [7,29].

The main drawback of the use of Lyapunov-based methods for control design is to obtain convex formulations that can be
solved by the available semi-definite programming software. The methods rely on structural constraints, polynomial
degrees, and specific structures imposed on the Lyapunov function, which can lead to the introduction of conservatism.
In [5] the authors have proposed a method based on the use of genetic algorithms and in the solution of LMIs to solve
the pole placement problem by using static output-feedback controllers. In [35], a set of LMIs is presented to design a full
order dynamic output-feedback controller which can assign the poles of the closed-loop system and guarantees an upper
bound to the output covariance of the controlled system.

In this paper, we are addressing both the state-feedback and the static output-feedback design problems. The state feed-
back controller assumes that all the states from the system are accessible and can be utilized as inputs on the controller.
However, this full readability is not always possible in practical implementations. In contrast, in the output-feedback con-
troller, the output of the system is utilized as input to the controller. It is more applicable since the output is generally avail-
able in real systems. However, the design of output-feedback controllers poses additional challenges in LMI-based methods
due to convexity problems in acquiring the design conditions.

This paper provides a solution to the open problem of robust state-feedback and static output-feedback controllers design
for discrete-time uncertain systems through offline design by RL methods. The controllers guarantee the stability and the
pole placement of the closed-loop eigenvalues in a disk on the complex plane. The proposed technique is based on the
use of the reinforcement learning approach by employing the SARSA (State-Action-Reward-State-Action) algorithm. The
agent represents the controller, which is considered directly as a design variable in the method. This is an important feature
of this method since there is no need for transformations to recover the gain matrices. Moreover, unlike existing methods,
there are no concerns about specific structures for a Lyapunov function that allows obtaining convex conditions. The agent
interacts with the plant model in an offline manner and, while interacting with it, learns the controller values that guarantee
the desired pole placement. A time-varying incremental step is adopted to change the agent along the process. The method
makes use of a switched subset for the uncertain parameters to reduce the computational burden. The technique starts with
the evaluation of the vertices of the polytope, and after the desired state is reached by its vertices, a grid on the uncertain
parameters is performed. If the designed controller shows satisfactory performance through the grid, a hard stability certifi-
cate is obtained via an LMI-based method, which is inspired by existing methods from the literature [18,29].

2. Problem statement

In this section, the considered system characteristics and uncertainties will be defined, as well as the utilized control laws.
An LMI-based method to certify stability will be stated followed by a general exposition of the RL problem and its elements.

2.1. The uncertain system

Consider the following Linear Time-Invariant (LTI) discrete-time uncertain system
xðkþ 1Þ ¼ AðaÞxðkÞ þ BðaÞuðkÞ;
yðkÞ ¼ CðaÞxðkÞ; ð1Þ
where x 2 Rn is the state vector, u 2 Rnu is the control input, y 2 Rny is the output vector and k is the time instant. The matri-
ces AðaÞ 2 Rn�n;BðaÞ 2 Rn�nu , and CðaÞ 2 Rny�n belong to a polytopic domain, whose parameters are time-invariant and are
included in the vector a. A generic matrix GðaÞ is given by:
GðaÞ ¼ PV
v¼1avGv ; a 2 KV ;

KV ¼ fa 2 RV :
PV

v¼1av ¼ 1;av P 0; v ¼ 1; . . . ;Vg;
ð2Þ
where V is the number of vertices of the polytope. The vertices of the polytope are known and can be used to define the
region in which the uncertainties lie.
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Our goal is to design robust state-feedback controllers, consisting in the gains Kx 2 Rnu�n and the following control law:
uðkÞ ¼ KxxðkÞ; ð3Þ

and static output-feedback controllers, consisting in the matrix gain Ky 2 Rnu�ny , and the following law:
uðkÞ ¼ KyyðkÞ: ð4Þ

Both state-feedback and static output-feedback control problems for uncertain systems are well-known challenging

issues, that remain without an optimal solution. Even though several LMI-based methods have been reported in the last
years, the conservatism introduced by the choice of a specific Lyapunov function, and the use of technical lemmas to provide
convex conditions, still are problems to be overcome.

In this paper, the controllers will be designed to guarantee that the closed-loop poles lie in the disk Dðr;qÞ with center r
and radius q. The closed-loop system for the state-feedback control action is obtained by using the control input (3) in the
system (1), which gives
xðkþ 1Þ ¼ AðaÞ þ BðaÞKxð ÞxðkÞ;
¼ AclðaÞxðkÞ:

ð5Þ
The closed-loop system for static output-feedback control is attained by plugging the control action (4) in the system (1),
yielding
xðkþ 1Þ ¼ AðaÞ þ BðaÞKyCðaÞ
� �

xðkÞ;
¼ AclðaÞxðkÞ:

ð6Þ
To design the gain matrices Kx, and Ky, we propose a new method based on a machine learning technique, more specif-
ically, in this work the reinforcement learning approach will be employed. Although it is known as a stochastic approach, in
this paper a stability certificate for the closed-loop system will be obtained by means of a Lyapunov function.

2.2. Stability certificate

The matrix AclðaÞ in the closed-loop systems (5), and (6) must have all the eigenvalues in the unit circle to guarantee the
stability of the system. To check the stability of the system, the following result, which is an analysis condition, will be
employed.

Theorem 1. The system xðkþ 1Þ ¼ AclðaÞxðkÞ is asymptotically stable, if and only if there exist N P 1 and symmetric
matrices PiðaÞ 2 Rn�n; i ¼ 1;2; . . . ;N, such that the following conditions hold:
XN
i¼j

PiðaÞ > 0; j ¼ 1;2; . . . ;N; a 2 KV ; ð7Þ

XN
i¼1

AclðaÞi
T

PiðaÞAclðaÞi � PiðaÞ < 0; a 2 KV : ð8Þ
Proof. The proof is presented in A.
In what follows, a brief summary of the RL method is presented.

2.3. Fundaments of reinforcement learning

Fig. 1 presents the generic outline of an RL problem. In this schematic, it is possible to consider the agent as the controller
and the environment as the plant and its respective characteristics. The problem, then, involves a loop where the agent takes
an action at towards the environment and receives a reading of the consequential state stþ1 and a reward signal rtþ1. Through
this new state, and mainly through the reward signal, the agent will learn how well his action was, given the previous state,
and continue to interact with the environment until it reaches a terminal state. In the feedback control problem, the states
can be defined as ranges of the closed-loop system poles values in the complex plane.

Problems in RL operate in a Markov Decision Process (MDP). The mathematical formulation of an MDP considers the exis-
tence of the following.

� The State-Space ðs 2 SÞ is the set of states of the environment.
� The Action Space ða 2 AÞ contains the set of possible actions the agent may take in each iteration.
� The Reward Signal ðr 2 RÞ is a scalar that evaluates the quality of the action taken in each iteration.
� The Policy pðat jstÞð Þ chooses an action at given the current observed state st .
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Fig. 1. Agent-Environment interaction in Reinforcement Learning. The agent interacts with the Environment through actions, receiving a reward evaluating
its action quality and a reading of its new state.
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� The Transition Probability Distribution Pðstþ1; rtþ1jst; atÞð Þ that describes the probability of a reward rtþ1 being provided
given an action at that translates the system from the state st to a state stþ1.

The agent’s overall objective is to maximize the accumulated discounted reward Rt . The use of the subscript t refers to the
iteration number. This sum of rewards uses a discount factor c 2 ½0;1� that weights how much the returns of short and long-
term rewards shall be taken into account.
Rt ¼ rtþ1 þ crtþ2 þ c2rtþ3 þ . . . ¼
X1
i¼0

ckrtþiþ1 ð9Þ
It is worth noting the existence of Model-Free methods [33], which do not rely on a Transition Probability Distribution to
solve RL problems. This is particularly useful in the considered problem, as P is not known and the systems are deterministic
in nature.

The use of Model-Free methods will impact the process in which the agent defines its policies. Simply put, the agent will
choose a greedy policy, as it seeks to maximize the expected accumulated returns through its actions. By not utilizing any
kind of transition probability, this may be done through the state-action function Qðs; aÞ. The value of this function defines
which action is expected to be the worthiest to be taken, given the agent state st , a policy p and it is described by the fol-
lowing generic equation.
Qpðst; atÞ ¼ Ep Rtjst ¼ s; at ¼ a½ � ð10Þ

There are many techniques to evaluate the state-action function. Among them, it is worth citing Dynamic Programming

(DP) methods [4], Monte Carlo (MC) based methods [15] and Temporal Difference (TD) methods [33]. Methods based on DP
may be vulnerable to the called ”curse of dimensionality”, where the computational cost required to solve big state space
problems becomes impracticable, and MC methods require obtaining the average of many sequences until an optimal policy
emerges. In this paper, a method based on TD was selected, as the agent can learn from the environment by interacting with
it, even in an offline manner, offering a decision-making process.

3. Feedback control using SARSA

The SARSA algorithm is a TD method based on the tuple ðst ; at ; rtþ1; stþ1; atþ1Þ. Departing from the state st , the agent
chooses an action at resulting in a transition to stþ1 and a reward signal rtþ1. Based on this new state, the agent then chooses
a new action atþ1. This series of decisions one iteration forward is then employed to update the state-action function Qðst ; atÞ.

The state-action function (10) assumes a look-up table format in this instance, where the number of rows is equivalent to
the dimension of the state space S, and the number of columns is equal to the number of possible actions the agent is able to
take. In the SARSA algorithm, the update rule to the state-action function is described by the following equation
Qðst ; atÞ ¼ Qðst; atÞ þ l rtþ1 þ cQðstþ1; atþ1Þ � Qðst ; atÞð Þ; ð11Þ

where l 2 ½0;1� is a learning coefficient, and c 2 ½0;1� a discount factor.

An important aspect of RL problems is the balancing between exploration and exploitation [8]. Choosing an exclusively
greedy policy favors only the latter, preventing the agent from exploring actions that would be better in the long term. To try
to prevent this, the �-greedy strategy was selected to define the agent’s decision criteria [33]. The at decision will be made
according to the following rule, noting that a is the vector with all possible actions.
at ¼
max

at
Qðst ; aÞ; withprobability 1� �:

randomaction; withprobability �:

(
ð12Þ
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The iterative process of SARSA is an on-policy approach, thus, the policy chosen by the agent is the same evaluated in the
learning process. As the utilized method is stochastic, to ensure the convergence of (11), a GLIE (Greedy in the Limit with
Infinite Exploration) policy criteria was utilized. This criteria requires two properties: i) each action must be executed infi-
nitely often in every state that is visited often; ii) in the limit, the learning policy is greedy with respect to the state-action
function value with probability 1.

To ensure the greedy policy in the limit, the value of �, as utilized in (12), will be dependent on the iteration number t and
the maximum iteration number tmax, departing from a maximum value of �max.
Fig. 2.
circles.
�t ¼ tmax � t
tmax

� �
�max ð13Þ
Furthermore, SARSA convergence is shown in Theorem 2, as proposed by [32]:

Theorem 2 [32]. Considering a finite state-action MDP and a GLIE learning policy p given as a set of probabilities
Prðajs; t;gtðsÞ;QÞ. at is the chosen action according to p at the iteration t, where p uses Q ¼ Qðst; atÞ, where Qðst ; atÞ is
computed by (11). Then Qðst ; atÞ converges to the optimal state-action function value and policy pt converges to the optimal
policy, as long as the conditions of immediate rewards, state transitions and learning rates satisfy the following:

1. The Q values are stored in a lookup table
2. The learning rate satisfy 0 6 l 6 1;

P
tl ¼ 1 and

P
tl2 < 1.

3. Varfrðs; aÞg < 1

where, beyond the already declared variables, gtðsÞ is the number of times the s state was visited before iteration t and
Prðajs; t;gtðsÞ;QÞ is the probability that action a is selected given the history.

Proof. The proof can be found in [32].
3.1. State space

The state space will be constructed on the complex plane. Departing from the disk Dðr;qÞ, various concentrical disks in r
will be considered, each having an increment in radius size of Dq, as illustrated in Fig. 2. From the Figure, we see the num-
bered regions 1;2;3; . . ., that are used to locate the poles of the closed-loop system. This means that based on the position of
the eigenvalues in the complex plane, the agent’s state takes on a different value and location.

At each iteration t the algorithm must compute the state of the agent. Define k as the function that calculates the system
eigenvalues and Ht as
Ht ¼ max kðAclðaÞÞ � rj j; fora 2 Ps; for t P 1;
H0 ¼ max kðAðaÞÞ � rj j; fora 2 Ps;

ð14Þ
where Ps � KV . Note that Ht is used to indicate the maximum distance of the eigenvalues of the closed-loop matrices to the
center r of the disk. To reduce the computational burden of the method, the subset Ps will be considered as follows
Concentric circles for r ¼ 0 defining the utilized state space S. The agent’s current state location is defined by (14) in relation to the concentric
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Ps ¼
vertices of AclðaÞ; ifHt P q;
grid on AclðaÞ; ifHt < q:

�
ð15Þ
The procedure in (15) checks only the vertices of the closed-loop system when the agent is outside of the region of inter-
est (Ht P q). When all the vertices have poles in the desired position of the complex plane (Ht < q), the set Ps switches to a
grid on the uncertain parameter a where 1000 randomly generated points are considered.

Remark 1. It is important to highlight that the stability of the vertices of the uncertain polytopic system is only a necessary
condition to certify the stability of the polytope. That is the main reasoning behind the idea of using a switching set Ps.

For a givenHt , it will be possible to define the state of the system according to Fig. 2. In this way, whenHt < q, andPs is a
grid on AclðaÞ, the agent will be located in the terminal state, successfully performing the pole placement.

To avoid the creation of a greater number of states, the maximum radius is defined by considering 1:02H0, where H0 is
computed using (14), under the (15) subset. If during the algorithm execution Ht > 1:02H0, the agent will be positioned in
the last state defined at the beginning of the algorithm.

3.2. Space of actions

Given that the agent represents the controller itself, the actions will consist of individual increments in the values of the
gain K, being it either K ¼ Kx or K ¼ Ky. These increments may be positive or negative, which results in 2nnu possible actions
for (3) and 2nynu for (4).

To ease the convergence, mainly when (14) is close to the value of q, a time-varying incremental step is defined as
Ht=1000. When the distance Ht increases, the incremental step also increases. In the same way, when Ht is close to the ter-
minal state, the incremental step will be smaller.

To better illustrate the Action Space and gain increment process, consider the control law (3) and n ¼ 2;nu ¼ 1. We will
have
A ¼ Ht
1000 0

� �
; 0 Ht

1000

� �
; � Ht

1000 0
� �

; 0 � Ht
1000

� �	 

; ð16Þ
and K ¼ Kx ¼ ½K1K2�. The increment is done by directly adding the chosen action at to K. Note that the set of actions A could
be modified to include or to remove actions.

3.3. Reward process and algorithm

Next, the reward process will be defined. Its objective is to encourage the agent to move towards the terminal state, that
is, towards state 1, defined by the interior of the disk Dðr;qÞ. stþ1; st refer to the number of the state, as seen in Fig. 2.
Decreasing the value of Ht (stþ1 < st) results in a less negative reward, which becomes proportionally even less negative
according to the number of states traversed towards the terminal state. Stagnating in the same state (stþ1 ¼ st) is somewhat
undesirable, receiving a more negative reward. Providing poorer performance (stþ1 > st) is rewarded with the most negative
reward, which is also multiplied by the number of states traversed in the opposite direction of the terminal state, further
discouraging the action taken. Ultimately, the reward process is described by the following function,
rtþ1 ¼
�10ðstþ1 � stÞ; stþ1 > st;

�5; stþ1 ¼ st;
�1

ðst�stþ1Þ ; stþ1 < st;

8><
>: ð17Þ
Having defined the outline of the RL problem, the SARSA algorithm implemented is the following.
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Algorithm1:SARSA Algorithm

Remark 2. The algorithm has the state-space model matrices and the desired q and r for the pole-placement as inputs. If the
process converges, the gain matrix Kx or Ky that stabilize the closed-loop system is the output.
Remark 3. Even though the iterative process is bounded by a maximum number of iterations tmax, the process will terminate
as soon as Theorem 1 is feasible to a given K.
Remark 4. Note that the initial condition considered for the gain matrices Kx and Ky is simply a matrix of zeros. However,
different initializations could be considered, leading to different results.
Remark 5. The last step performed by the algorithm is used to provide a hard stability certificate for the closed-loop system
via Theorem 1. Even though the gain matrices are directly the design variables in the algorithm, and the search for stabilizing
gains does not rely on a Lyapunov function, this step is employed to provide guarantees that the closed-loop system is
asymptotically stable. Different from the control design problem based on LMI methods, the stability conditions for uncer-
tain polytopic systems via LMI provide necessary and sufficient conditions to certificate the stability of the closed-loop
system.
Remark 6. The values of r and q may be changed to find different solutions, being r ¼ 0;q ¼ 1 the most conservative sce-
nario in terms of performance. Also, not every pole placement is possible to every system, which makes the decision of these
parameter values important to the method convergence.
4. Numerical experiments

Benchmark examples borrowed from the literature were selected to test the method and to illustrate its effectiveness. As
far as the authors’ knowledge, there are no RL methods in the literature dealing with state-feedback and static output-
feedback control design for uncertain polytopic systems. For this reason, we focus on comparisons with LMI-based methods.
These examples include the system utilized in [10], where a parameter can be increased as a way to test a method’s conser-
vatism, as well as a set of randomly generated systems proposed in [23]. The numerical experiments were performed using
MATLAB (R2016b) 64 bits for Windows 10, with the aid of the parsers YALMIP [20] and ROLMIP [1], and the solver MOSEK
[2], in a machine with Intel Core i7-8550U (1.8 GHz) processor and 12 GB RAM. In all experiments the following parameters
423
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have been employed for the proposed method: c ¼ 0:9;l ¼ 0:3; �max ¼ 0:3, and Dq ¼ H0
2000 as computed by (14), and a maxi-

mum number of iterations tmax ¼ 500000.

4.1. Example 1

Consider the discrete-time system borrowed from [10], with uncertain matrices given by
A ¼

0:8 �0:25 0 1
1 0 0 0
0 0 0:2 0:03
0 0 1 0

2
6664

3
7775þ t

0
0
1
0

2
6664

3
7775

0:8
�0:5
0
1

2
6664

3
7775

T

;

B ¼ b

0
0
1
0

2
6664

3
7775þ ð1� bÞ

1
0
0
0

2
6664

3
7775; 0 6 b 6 1;
where jtj < s. The system can be described by a polytope with V ¼ 4 vertices. The goal is to determine the maximum value s
such that the system can be stabilized by a state-feedback control law as in (5). The method in [10] is able to design con-
trollers that stabilize the system up until s ¼ 0:8892, while the method proposed in this paper achieves s ¼ 1:2400, an
improvement of more than 39:45%.

Since the method is stochastic in nature and provides different answers after each iterative process, the algorithm was
executed 100 times to test its capability to reach the terminal state. In 99% of the time, the method was able to provide gains
which made the closed-loop system (3) meet the project criteria. For this example, it was considered q ¼ 1 and r ¼ 0. One of
the resulting gains was K ¼ 0:3547 �0:2596 �1:2610 �0:2477½ �, and required 3:9814 seconds of computational time.
Given the obtained state-feedback controller, the stability certificate proposed by Theorem 1 was able to guarantee
closed-loop stability for N ¼ 2.

In Fig. 3, the spectrum of the closed-loop system AclðaÞ, as in (5), is plotted for different stages of the convergence process.
As it can be seen, the method is able to place all the poles in the unit circle throughout the execution of the algorithm.

4.2. Example 2

In this example we intend to perform a statistic comparison with the approaches presented in [10,23]. To this end, a data-
base proposed in [23] is considered. This database is composed of systems that are open-loop unstable and cannot be sta-
bilized by quadratically stabilizing feedback gains.

Uncertain polytopic systems of dimensions nu ¼ 1;n ¼ 2;3;4;5, and vertices V ¼ 2;3;4;5, were considered. The percent-
age of systems that were stabilized by 5 executions of the RL-based method was compared to the method SAL (Stabilizability
with Affine Lyapunov matrix) [10] and the method in [23] that rely on the use of a scalar parameter search. Moreover, the
approach in [30], where a scalar parameter search is combined with a heuristic method through an algorithm also was
employed for comparisons. It is worth noting that for the state-feedback case the method presented in [30] reports only
the values for dimensions n ¼ 2, and n ¼ 3, and for the number of vertices from V ¼ 2 to V ¼ 5. The results are presented
in Table 1.

It can be seen that the RL-based method provides competitive results when compared to the different techniques avail-
able in the literature. In this example, the poles were placed in the unit circle centered in zero. As we have mentioned before,
the parameters used in the RL algorithm are the same for all tests. However, it is possible to adjust the parameters c;l; �max,
and Dq to treat different classes of problems.

4.3. Example 3

To illustrate the pole placement capabilities of the method, consider the randomly generated discrete-time system with
n ¼ 2;nu ¼ 1, and V ¼ 5 vertices, which was created following the procedures proposed by [23], and whose matrices are
given by:
A1 ¼ 6:7130 0:6065
�17:0763 �0:1702

� �
;A2 ¼ �15:6627 �0:8770

�15:6627 0:3010

� �
;

A3 ¼ �26:2615 �1:3832
�5:2994 �0:3709

� �
;A4 ¼ �20:9621 �0:5411

�26:2615 �1:3832

� �
;

A5 ¼ 26:4971 1:1476
10:3633 0:2706

� �
; B1 ¼ �1

3

� �
; B2 ¼ 3

3

� �
;
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Fig. 3. Spectrum of the closed-loop matrix taken from different stages of the convergence process. (a) is the initial time step (Kx ¼ 0 0 0 0½ � and
H ¼ 1:4912). (b) is (Kx ¼ �0:1475 �0:1815 �0:7789 �0:3312½ � and H ¼ 1:1734). (c) is (Kx ¼ 0:1627 �0:2279 �1:2467 �0:3636½ � and
H ¼ 1:0328) (d) is the end of the iterative process (Kx ¼ 0:3547 �0:2596 �1:2610 �0:2477½ � and H ¼ 0:9998).

Table 1
LTI systems stabilized by state-feedback controllers.

n V [10](%) [23, Cor. 1](%) [30](%) RL(%)

2 2 80.0 85.0 91.0 95.6
3 90.0 93.0 95.0 96.2
4 91.0 91.0 96.0 90.6
5 89.0 93.0 99.0 93.6

3 2 85.0 86.0 92.0 98.4
3 97.0 97.0 100.0 99.2
4 95.0 95.0 96.0 99.4
5 92.0 96.0 99.0 99.0

4 2 89.0 90.0 – 95.0
3 94.0 94.0 – 99.0
4 96.0 96.0 – 99.4
5 94.0 94.0 – 99.6

5 2 94.0 95.0 – 83.8
3 96.0 96.0 – 94.0
4 93.0 93.0 – 97.2
5 93.0 95.0 – 98.4

Total 91.8 93.1 – 96.2

P.M. Oliveira, J.M. Palma, E.G. Nepomuceno et al. Information Sciences 625 (2023) 417–429

425



Fig. 4. Convergence process for the meanHt of 100 algorithm executions considering Example 3 along the iterations of the algorithm. (—–) is the value of q.

Fig. 5.
provide
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B3 ¼ 5
1

� �
;B4 ¼ 4

5

� �
; B5 ¼ �5

�2

� �
;C ¼ 5:2994 0:1353½ �:
The goal is to design a static output-feedback controller that places all the poles of the closed-loop system in the disk of
center r ¼ 0:1, with the smallest possible radius q. This value was found to be q ¼ 0:86. The proposed SARSA-based algo-
rithm was executed 100 times, and was able to stabilize and perform the pole placement of the closed-loop system (4) in
every execution.

One of these iterative processes resulted in the gain Ky ¼ 0:9994, requiring 2:2221 seconds of computational time. The
convergence process for Ht , which represents the distance of the poles to the center of the disk Dð0:1;0:86Þ, is depicted
in Fig. 4, which contains the mean answer of the 100 algorithm executions. It is possible to see that the convergence process
is not monotonically decreasing, however, along with the iterations of the algorithm the agent can achieve the desired goal,
which is placing all the poles of the closed-loop system in the defined disk. The spectrum of the closed-loop system is shown
in Fig. 5. The method in Theorem 1 ðN ¼ 1Þ was employed to certify the stability of the closed-loop.

The iterative LMI-based technique proposed by [28], to design memory static output-feedback controllers, was not able to
find a solution for this example, even when there were no constraints for pole placement. This method considers a buffer
with the past output signals of the system in its control law, being a more complex method to design and implement.
The iterative memory method has been tested up to yðk� 7Þ (seven memories) seeking to design a memory controller,
and it did not present feasible solutions.
Spectrum of the closed-loop matrix. ( ) is the unit circle and ( ) is the disk Dð0:1;0:86Þ. In the terminal state, the resulting gain Ky ¼ 0:9994
d H ¼ 0:8590.
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Fig. 6. Time-based simulation of the APS under 1000 randomly generated initial conditions x0 and a. Ky ¼ �0:3806.
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4.4. Example 4

To apply the proposed technique in a real scenario, an Angular Position System (APS) is borrowed and adapted from [34].
It consists of a system with an antenna that moves towards a flying target through the use of a motor. The discretized state-
space model with sample time of 0:1s is as follows:
1 To
AðaÞ ¼ 1 0:1
0 1� 0:1d

� �
; B ¼ 0

0:1j

� �
; C ¼ 1 0½ �
where 0:1s�1 6 d 6 10s�1 is proportional to the viscous friction coefficient of the rotation parts of the system,

j ¼ 0:787rad�1V�1s�2.
The goal in this example is to design a static output-feedback controller that is applicable in a real-world scenario. The

pole-placement parameters were set in q ¼ 0:9970;r ¼ 0. The algorithm was executed 100 times, and in all of them, the
technique was successful.

Randomly selecting one of the designed controllers, Ky ¼ �0:3806, whose closed-loop stability was certified by Theorem 1
(N ¼ 1). In order to test the system response in multiple scenarios, 1000 different combinations of initial conditions xð0Þ and
time-invariant parameter a are randomly selected. In this case, ð�p;�2Þ 6 x0 6 ðp;2Þ and a1 and a2 belong to the unit sim-
plex presented in (2).

Fig. 6 shows the designed controller was able to stabilize the system even when it is subjected to different initial condi-
tions and parameter uncertainties. This illustrates the robustness of the method in front of polytopic uncertainties in the
model.
5. Conclusions

The design of state-feedback and output-feedback controllers poses a problem with many possible solutions, which are,
however, susceptible to a certain conservatism. Methods which grant a stability certificate, however, are less prone to said
conservatism and provide necessary and sufficient conditions to guarantee uncertain systems stability. This paper exploits
this idea, and proposed a solution to the problem of robust state-feedback and static output-feedback controllers design for
discrete-time uncertain systems with pole placement criteria, which proved itself less conservative than other methods
found in the literature, and whose system characteristics are not as well explored by RL-based methods. The reinforcement
learning technique was employed allowing the controller to be used directly as a design variable. The efficacy of the
approach was demonstrated through benchmark examples from the literature, and exhaustive testing to prove the method’s
robustness even when given its stochastic nature, illustrating its capabilities in providing stabilizing controllers for uncertain
systems. A real scenario example with an Angular Position System considering multiple values for the initial conditions and
uncertainty parameter has shown the designed controller’s effectiveness. Future directions include the use of performance
criteria such as the H2 and the H1 problems and the use of deep reinforcement learning techniques.
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Appendix A. Proof of Theorem 1

By multiplying (8) by x>k on the left and by xk
1 on the right yields
1 To
x>k AclðaÞ>P1ðaÞAclðaÞxk � x>k P1ðaÞxk þ x>k AclðaÞ2
>
P2ðaÞAclðaÞ2xk

�x>k P2ðaÞxk þ . . .þ x>k AclðaÞN
>
PNðaÞAclðaÞNxk � x>k PNðaÞxk < 0:

ðA:1Þ
Define ViðxkÞ ¼ x>k PiðaÞxk; i ¼ 1; . . . ;N, and rewrite the inequality (A.1) as
V1ðxkþ1Þ þ V2ðxkþ2Þ þ . . .þ VNðxkþNÞ < V1ðxkÞ þ V2ðxkÞ þ . . .þ VNðxkÞ:

Adding the term S ¼ PN

j¼2

PN
i¼jV iðxkþj�1Þ to both sides it follows that
V1ðxkþ1Þ þ V2ðxkþ2Þ þ . . .þ VNðxkþNÞ þ S < V1ðxkÞ þ V2ðxkÞ þ . . .þ VNðxkÞ þ S: ðA:2Þ

In this way, one can rewrite (A.2) as Wðxkþ1Þ �WðxkÞ < 0, with WðxkÞ ¼

PN
j¼1

PN
i¼jV iðxkþj�1Þ. Moreover, WðxkÞ can be writ-

ten as
WðxkÞ ¼ x>k P1ðaÞ þ P2ðaÞ þ . . .þ PNðaÞð Þxk þ x>kþ1 P2ðaÞ þ . . .þ PNðaÞð Þxkþ1 þ . . .

þx>kþN�2 PN�1ðaÞ þ PNðaÞð ÞxkþN�2 þ x>kþN�1PNðaÞxkþN�1:
ðA:3Þ
Note that if the conditions (7) hold then the Lyapunov function (A.3) is positive definite. From (A.2) one concluded that
Wðxkþ1Þ �WðxkÞ < 0. Thus, WðxkÞ is a Lyapunov function that assures the asymptotic stability of the closed-loop system
xðkþ 1Þ ¼ AclðaÞxðkÞ.

Necessity: Assume that the closed-loop system xðkþ 1Þ ¼ AclðaÞxðkÞ is asymptotically stable. Considering Theorem 1 with
matrices PiðaÞ ¼ 0; i ¼ 1; . . . ;N � 1 and PNðaÞ ¼ P a constant matrix. In this way condition (8) yields
AclðaÞN
>
PAclðaÞN � P < 0: ðA:4Þ
Notice that the asymptotic stability assumption guarantees that a N value exists and satisfies condition (A.4) with
PNðaÞ ¼ P > 0; as stated in (7).
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