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Summary

Additive Manufacturing (AM), commonly referred to as 3D printing, is the technology

associated with manufacturing objects through computer-aided design, by building them

layer-by-layer. The flexibility of AM allows for creating custom objects with very compli-

cated geometries, utilising a wide variety of different materials. Despite its great potential,

AM still faces some challenges that hinder its wider adoption. These challenges are cen-

tred around the lack of appropriate modelling, monitoring and closed-loop control in AM

processes, given the large number of factors that influence the performance of an AM

system. Temperature has proven to be one of the most significant aspects, making its

effective control of crucial importance.

In this thesis, we address the problem of temperature control in AM. As a case study,

we use the temperatures in the extruder of a Big Area Additive Manufacturing (BAAM)

system. We first solve the problem in a model-based manner, assuming access to the full

system state, a linear process model and a quadratic performance index. We then develop

an equivalent data-driven controller that learns optimal behaviours directly from process

data. Next, we present a solution accounting for no direct access to the system state. We

incorporate a state estimation step and compare the data-driven algorithm trained on

input-output data with a model-based, observer-based controller. In both cases, we can

achieve parity with the model-based algorithms, while learning directly from data, with

no knowledge of the system’s dynamics.

Finally, we remove all assumptions about the process dynamics and performance index

form. We solve the temperature control problem using Deep Reinforcement Learning

techniques, training Deep Neural Networks to learn about the process itself as well as the

optimal course of action needed to achieve the desired behaviour.

Our findings can be extended to different temperature systems in AM, or to control

completely different aspects of AM, making the idea of an intelligent, self-correcting AM

system a real possibility.
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1
Introduction

1.1 Motivation and Background

In this thesis we focus on the design of closed-loop control algorithms for applications in

Additive Manufacturing systems. Additive Manufacturing (AM), more commonly known

as 3D printing, is the technology associated with creating 3D objects by building them in

a layer-by-layer fashion [1]. There are many different AM technologies, involving a wide

array of materials and used for different applications [2–4]. In general, AM has revolu-

tionised the field of Manufacturing due to its ability to build very complicated structures

through computer aided design. Contrary to traditional manufacturing methods, AM

allows for production without the need of dedicated tooling to remove material from a

work-piece, which also implies a significant reduction in the material needed. This cost-

efficiency associated with AM is a significant factor driving the desire for wider adoption

of these technologies. Modern applications range from automotive and aerospace, to bio-

medicine, prosthetics and robotics. In addition to such industrial-scale applications, the

appeal of 3D printing also comes from its ability to bring manufacturing to the hands of

the consumer. In recent years, 3D printers are becoming more common in households,

small businesses and even schools and academic institutions.

As AM technologies become more widespread, there is an evident need to ensure the

accuracy, safety and repeatability of the process. This need can be directly translated as a

need for efficient closed-loop controllers, an area that is currently under-developed within

the AM space [5]. Given the numerous facets of AM processes that require monitoring

and control, the active research focus lies in the creation of monitoring systems [6,7] and

efficient feedback controllers [8, 9]. Some of the most noteworthy aspects needing to be

controlled are the temperature in various steps of the process, the printing speed, the

geometry design, the material viscosity and flow, the layer thickness and many others.

Some control problems are specific to a particular AM technology, while others may be

universally applicable.
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1.1. MOTIVATION AND BACKGROUND

Control Theory [10,11] is the field dedicated to studying and controlling the behaviour

of dynamical systems. Traditionally, control design is based on a mathematical model of

the process, meaning that the system dynamics are known. Classical approaches involve

studying the system through the frequency domain, expressing the system dynamics using

a transfer function. Modern control theory commonly refers to the study of systems in

the time domain, usually through expressing differential (in the continuous time case) or

difference (in the discrete time case) equations in state space form. The most popular

feedback controller is the proportional-integral-derivative (PID) controller [12] whose role

is to reduce the error between the system’s current and desired output, by tuning the

three PID gains. Another equally popular and more versatile control design is the state

feedback controller where, as the name suggests, the control action is informed by the

current state.

A concept that goes hand-in-hand with state feedback controllers is the state observer,

which is used to estimate the system state when it is not directly available, but the system

output and a state space model of its dynamics are known. Tuning of PID controllers,

state feedback controllers and state observers can be done in a number of ways, with the

most popular being pole placement where the design parameters are chosen so that the

resulting system has the desired poles. While these techniques provide consistently good

results, they offer no guarantee of optimality.

Optimal Control theory [10, 13] is the sub-field that deals with optimisation in the

context of control, where the main tool is a performance index, usually representing the

process cost to be minimised. The most popular optimal controller for linear systems is

the Linear Quadratic Regulator (LQR) [14] where the performance index is a quadratic

function, allowing for convexity and hence good convergence of the optimisation. Depend-

ing on the problem at hand the LQR can be replaced by the Linear Quadratic Tracker

(LQT) when the optimisation goal is tracking a specific reference signal, or the Linear

Quadratic Gaussian (LQG) in the presence of Gaussian noise. Two of the most popu-

lar approaches to solving optimal control problems are through Pontryagin’s maximum

principle and the calculus of variations [15] and Dynamic Programming and the Bellman

Optimality condition [13, 16]. These algorithms are more flexible and widely applicable

for a range of systems, without the assumption of linearity in the system’s dynamics.

In the context of AM, there has been a number of control theory applications in

order to regulate various aspects of the manufacturing process. For the most part, these

applications involve PID controllers. In material extrusion systems, an important part of

the process that needs to be controlled is the melt temperature. In works such as [17]

and [18] it is controlled using PID controllers, based on a transfer function model of the

process. In [19] PID controllers were used to control the volumetric flow in a polymer

extruder, addressing separately the control of the pressure and the temperature. The

2
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work in [20] presents the design of a PID controller for the material melt viscosity. In [21]

the control of the cooling rate in laser-based AM is addressed through PID controllers

and in [22] they are used to control the laser power. In [23] the meltpool in a Robotized

Laser-based Direct Metal Addition process is controlled by means of a PID controller.

Many other control applications involve non-linear, physics-based models of the process,

as linearity is not always a realistic assumption, despite its simplicity and convenience for

control design. Control of the layer height for Laser Metal Deposition is studied in [24]

while the width and height of the molten puddle is controlled in [25] using a model of its

geometry. Controlling the meltpool in Selective Laser Melting is addressed in [26], in [27]

for Material Deposition and in [28] for Directed Energy Deposition.

In many physical systems, AM included, accurate models of the system are a very rare

occurrence, making the modelling of AM processes a very active research field [29]. As a

result, some attempts have been made at designing feedback controllers whose parameters

can be tuned through information learned from process data. In [30] a PID controller

for the melt temperature is tuned using a neural network. A controller for the extrusion

force for Freeze-form Extrusion Fabrication is designed in [31] using a dynamic model

of the process with parameters tuned using Recursive Least Squares. Iterative learning

controllers are used in [32] and [33] to control the final part geometry and the meltpool

characteristics respectively.

In general, lack of access to exact models of physical systems, is an overarching issue

in Control Theory applications. This gave rise to the area of data-driven control [34–37],

a very active research field of its own. The rise and popularisation of Machine Learning

(ML) [38–40] has lead control engineers to use ML algorithms as a tool to designing

intelligent control algorithms, that can be trained from process data. There is a particular

category of ML algorithms that is very closely linked to Optimal Control theory and more

specifically Dynamic Programming (DP) [13, 16]. Reinforcement Learning (RL) [41, 42]

refers to the family of ML algorithms that learn optimal strategies through sequential

decision making, within intricate and unpredictable settings by maximizing rewards (or

minimizing costs). The usual setup of a reinforcement learning problem is that of an

agent that acts in a certain environment, its actions affecting its state and resulting

in some reward that it receives from the environment. This means that there is no

supervision of the process, only a reward signal. Additionally, the actions that the agent

takes directly influence its next states and hence the rewards it receives. The goal of

reinforcement learning algorithms is to maximise the reward the agent receives from the

environment. In the control theory literature, such decision making problems are solved

using DP techniques, usually assuming knowledge of an underlying model of the process,

although model-free approaches have been heavily studied, giving rise to Approximate

Dynamic Programming [43]. In this setting the agent is referred to as the controller, the

3



1.1. MOTIVATION AND BACKGROUND

actions as the controls and usually instead of receiving a reward from the environment,

the controller is burdened with some cost. Hence, while in RL problems the optimisation

goal is to maximise the reward, in DP problems, the goal is to minimise the cost. Though

the terminology is somewhat different, any RL problem can be viewed as a DP problem

and vice versa. Consequently, the methodology between the two fields is mostly shared

and the two communities have greatly influenced each other. Some of the most popular

DP/RL algorithms are value iteration [16], relative value iteration [13], Q-learning [44,45]

and the actor-critic framework [46]. A noteworthy extension to RL that has shown great

potential is Deep Reinforcement Learning (DRL) [47], where Deep Learning [48, 49] is

used to enhance the capabilities of RL. The most noteworthy application of DRL that

caused its rise in popularity, is its success in learning how to play Atari games [50].

In recent years, as RL has gained popularity, researchers have employed it to address

various issues within AM. Model-based RL has been applied on implementing corrective

actions on a robot wire arm AM system [51] while in [52] a data-driven RL algorithm

was trained for defect prevention, that also utilised prior knowledge about the process.

The problem of scheduling multiple AM machines was solved using RL in [53] and in [54]

RL was used to optimise laser power and velocity in metal AM. RL has also been used

in toolpath generation [55,56] and process monitoring through imaging [57] and acoustic

emissions [58]. Traditionally, RL techniques are designed for systems with discrete state

and action spaces and all the above studies are applied to such systems, or use discreti-

sation of the state and action spaces, to obtain the desired structure. DRL algorithms

for continuous control have been the subject of recent research, with the most popular

developments being the Proximal Policy Optimisation (PPO) algorithm [59] and the Deep

Deterministic Policy Gradient (DDPG) algorithm [60]. In the AM space, PPO has been

used for optimising melt pool depth in [61] and tool path in [62]. Variations of DDPG

have been used to control the motion of a Robot arm AM system [63] and a tower-crane

AM system [64].

While one half of controlling AM processes is choosing appropriate control algorithms,

the other half is choosing the right aspect of the process to control. Our ultimate goal is to

minimise the number of faulty prototypes, while maintaining a safe and efficient process.

There are many different causes of defects in AM processes [65, 66] but a primary factor

is the temperature at different steps of the proces [67, 68]. This may be the temperature

of the build-plate, the temperature of the chamber in the case of enclosed systems, the

melting temperature inside the nozzle in extrusion systems or the laser temperature in

laser-based metal AM. Temperature can influence the quality of the finished product in

terms of the fusion between the layers, the porosity, and the solidification cracking [65].

This implies that there is a strong need for well designed control of the temperatures

throughout the AM process.
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Motivated by all the above, we dedicate our efforts in designing efficient controllers for

the extrusion temperature in AM systems. In particular, we study a Big Area Additive

Manufacturing (BAAM) system, due to the complexity of the heating system in its ex-

truder, as opposed to commercial extrusion-based systems. We design controllers both in

a model-based and a data-driven manner. This highlights the need for a process model,

which we specifically choose to be a model in state-space form. In Optimal Control appli-

cations, state space models are very popular, however they have not been widely used in

AM applications. Previous work in state space modelling in manufacturing includes the

identification of a state space model and its use to design a controller for temperature reg-

ulation [69], the development of a state space model for product quality [70], and the use

of a state space model for observer design of temperature states within an AM-produced

part [71].

1.2 Outline of the thesis

The thesis is organised as follows:

In Chapter 2 we provide a thorough introduction to Reinforcement Learning and

Dynamic Programming. We give the underlying structure of classic RL and DP problems,

which are traditionally formulated as a Markov Decision Process [72], and the main tool in

solving these problems, the Bellman Optimality Equation [16]. Next, we introduce some

of the most noteworthy RL and DP algorithms, starting with the Relative Value Iteration,

a very popular DP algorithm. We then present the Q-learning algorithm and its most

notable extension, the Deep Q Network. Following is a popular family of RL algorithms,

namely Actor-Critic methods. Finally, we discuss approaches to solving continuous RL

problems, which is the focus of our work in the consecutive chapters.

In Chapter 3 we address the problem of controlling the temperature in the extruder

of a Big Area Additive Manufacturing (BAAM) system. In particular, we consider the

Linear Quadratic Tracking (LQT) framework for the control design, where we aim for

the temperature to track a given reference signal, a goal quantified through a quadratic

performance index. We design 3 different feedback controllers to solve this problem, two

model-based and one data-driven. In the case where we consider a process model to be

available, we explore both the finite horizon scenario and the infinite horizon scenario.

We then use the infinite horizon control design as a basis for designing a data-driven

controller, that learns directly from data using Reinforcement Learning techniques. We

present our findings through simulations from a state space model of the heating system.

We simulate the system’s behaviour after the application of all three controllers and find

that it is possible to achieve comparable performance both in the model-based and data-

driven case. This is a very encouraging result, as accurate models are very rare in AM.
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The ability to train effective controllers strictly from data, overcomes this limitation and

paves the road towards intelligent manufacturing.

Chapter 4 presents an extension to the work done in Chapter 3. We again solve the

problem of temperature control in a BAAM system but this time we have one important

additional limitation. We no longer assume access to the internal system state, instead

we only observe the state through sensors, in the form of measurements. This creates

the need for a state estimation step, which in the case of model-based control can be

performed with the help of a State Observer. In the model-free RL-based scenario, we

include a state estimation step in the control design, through a record of past inputs

and outputs. This significantly increases the complexity of the problem, which highlights

the need for generating “good” data. As the RL-based controller learns information

about the system dynamics, we require data rich in information for training. We provide

a detailed discussion on ways to generate “good” data, with which we can obtain a

data-driven controller that achieves parity with the model-based, Observer-based control.

Finally, we address an important factor in the controller’s performance, the design of the

optimisation problem and more specifically the weighting parameters in the quadratic

performance index. As there is no systematic way to select these parameters, we explore

the application of Bayesian Optimisation and find that we can achieve improved tracking

performance and a significant reduction in the overall cost. These results are another

important step towards fully autonomous manufacturing processes that can learn optimal

behaviours from process data with no prior knowledge of the system’s dynamics.

In Chapter 5, we solve the temperature control problem while removing all assump-

tions about the system structure or the performance index. To that end, we employ

the Deep Deterministic Policy Gradient (DDPG) algorithm [60] to train an optimal con-

troller. DDPG is a popular Deep Reinforcement Learning algorithm combining Actor-

Critic methods and Q-learning. We train two Deep Neural Networks (DNNs), one tasked

with learning the optimal policy and the other with learning the value function, the tool

that quantifies how “good” each policy is. This is done in a completely data-driven way

and the versatility of DNNs allows for the use of complicated forms for the value function.

In our application, we consider a constrained optimisation problem resulting in a value

function that is no longer quadratic, which makes the methods of the previous chapters

not applicable. We use the same linear state space model of the previous chapters to

simulate the system’s behaviour and generate data to train a DDPG agent. We were

successful in learning a policy that closely tracks the reference signal, within a small er-

ror margin. This result showcases that an autonomous system trained on its own past

behaviour, with no prior knowledge of its environment is a real possibility.

In Chapter 6 we offer a summary of our findings and conclude this thesis with topics

for future research.
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Finally, in Appendix A we present a side research project conducted during the course

of this PhD. With the outbreak of the COVID-19 pandemic, there was a large focus on

modelling, predicting and controlling the spread of the virus. As the vaccines started

becoming available, an important problem to be solved was their optimal allocation.

In our work, we introduce a new compartmental model that describes the transmission

dynamics of the virus. We consider two age groups and several compartments representing

different stages in the vaccination process. We then use Optimal Control techniques to

obtain a vaccination control program that effectively minimised the total infections. Using

data from Ireland’s COVID-19 Data Hub, we simulate the evolution of infections with

and without vaccination control, both in the case of strict lockdown measures and in

the case where the restrictions are loosened. Our findings showcase that vaccinating

both age groups simultaneously can be very beneficial, which is different to the approach

taken by the state. Comparing our findings with the vaccination policy taken by the

Irish government, we found that similar results would be possible through our obtained

optimal vaccination strategy while using significantly fewer resources.

The methods proposed in Chapters 3, 4 and Appendix A were implemented using R

and the approach taken in Chapter 5 is implemented in Python. All R and Python scripts

are available on the author’s Github https://github.com/elenizavrakli.
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2
Reinforcement Learning basics

Reinforcement Learning (RL) is a Machine learning tool concerned with solving sequential

optimisation problems using intelligent decision-making. This means that the goal of

RL is to train an agent to take optimal actions in a specific environment, in order to

achieve high rewards. An RL agent, much like a biological agent, learns from its past

experience, namely by interacting with its environment, taking actions and receiving

rewards corresponding to those actions.

The dynamics of a reinforcement learning problem can be formally described with the

help of Markov Decision Processes [73].

Definition 1 A Markov Decision Process (MDP) is a tuple ⟨S,A,P,R⟩ where

• S is a finite set of states

• A is a finite set of actions

• P is a state transition probability matrix whose elements are of the form

pss′(a) = P
[
St+1 = s′|St = s,At = a

] �� ��2.1

i.e., the probability of the next state being s′ given that the current state is s and

the action that was chosen is a.

• R is a reward function of the form

r(s, a) = E [Rt|St = s,At = a]
�� ��2.2

i.e., the expected reward given that the current state is s and the action that was

chosen is a.

It should be noted that MDPs are generally studied in the context of finite and discrete

state and action spaces, as in the definition above, but they can also be generalised to

continuous state and action spaces [74].
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Figure 2.1: Dynamics of a Reinforcement Learning problem. At state St the agent receives
a reward Rt and interacts with the environment by taking an action At.

This type of decision process is called Markov because we are assuming that each state

includes all the necessary information from the previous steps to inform our decision, i.e.,

satisfies the Markov property. At each time step t, the agent

• observes the environment’s state St = s ∈ S,

• selects and executes an action At = a ∈ A,

• receives a numerical reward Rt = r(s, a) ∈ R and

• transitions to a new state St+1 = s′ ∈ S with probability pss′(a).

The goal of the agent is to maximise the cumulative rewards it receives from the

environment. The theory of reinforcement learning is based on the reward hypothesis.

Definition 2 (Reward Hypothesis) [45] All goals can be described by the maximisa-

tion of the expected cumulative reward.

What we are hoping to accomplish in any reinforcement learning problem is to find

the best action to take at each given state in order to obtain the best possible future

reward. In other words, we are looking for a function of the state π(s) that informs us of

the best action to take at said state. This function is called a policy function and we

are trying to determine the optimal one. A policy can either be deterministic (π(s) = a)

or stochastic (π(a|s) = P [A = a|S = s]). When our policy is independent of the time step

it is called stationary and it is the type of policy that will be the focus of our study.

Definition 3 A policy is called proper if the probability of being at an absorbing state

converges to 1 as time converges to infinity. By absorbing state, we refer to a state that

once it is reached, our agent can not transition to any other state.
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The basic tool used to determine optimal policies is value functions. Informally,

a value function informs us about how rewarding the combination of a given state and

action is. Formally, it is a prediction of future rewards if we follow a certain policy. There

are two types of value functions:

→ The state value function: The expected reward starting from state s and then

following policy π.

vπ(s) = Eπ

[
Rt + γRt+1 + γ2Rt+2 + . . . |St = s

] �� ��2.3

→ The state-action value function: The expected reward starting from state s, taking

action a and then following policy π.

qπ(s, a) = Eπ

[
Rt + γRt+1 + γ2Rt+2 + . . . |St = s,At = a

] �� ��2.4

γ is a small constant 0 < γ ≤ 1 known as the discount factor, which is used to indicate

that we are more interested in immediate rewards over future rewards.

The type of value function depends on the algorithm chosen to target each problem.

If the agent follows policy π and averages the returns for each state that it visits then

a state value function is preferable. If on the other hand, our algorithm keeps separate

averages for each action taken at each state, then a state-action value function is more

suitable. An interesting feature of these two types of value functions is that one can be

obtained from the other, utilising their definition with the use of the following relations:

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a)
�� ��2.5

qπ(s, a) = r(s, a) +
∑
s′∈S

pss′(a)vπ(s
′)

�� ��2.6

Regardless of the specific problem we are studying, the key idea motivating the opti-

mization process is the principle of optimality :

Definition 4 (Principle of optimality) [16] An optimal policy has the property that

whatever the initial state and initial decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first decision.

More formally: Let
{
a∗0, . . . , a

∗
N−1

}
be an optimal action sequence, which together with

s0 determines the corresponding state sequence {s∗1, . . . , s∗N}. Consider the sub-problem

whereby we start at s∗k at time k and wish to maximise the “reward-to-go” (or minimise
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the “cost-to-go”) from time k to time N ,

rk(s
∗
k, ak) +

N−1∑
m=k+1

rm(sm, am) + rN (sN )

over {ak, . . . , aN−1} with am ∈ Am(sm), m = k, . . . , N − 1. Then the truncated optimal

action sequence
{
a∗k, . . . , a

∗
N−1

}
is optimal for this sub-problem.

A policy is considered to be optimal when it maximizes the corresponding value func-

tion, i.e., achieves the best possible reward for each state. An optimal policy is denoted

by π∗ and the optimal value function that is obtained by following the optimal policy can

be denoted by v∗ = vπ∗ or q∗ = qπ∗

The principle of optimality can be expressed mathematically by the Bellman opti-

mality equation [13, 45]. For the two types of value functions the respective Bellman

equation will be:

v∗(s) = E [Rt + γv∗(St+1)|St = s]
�� ��2.7

q∗(s, a) = E [Rt + γq∗(St+1, At+1)|St = s,At = a]
�� ��2.8

In an ideal setting, we would also have access to a model describing the system, i.e.,

the transition probability matrix and the reward function. That is not always the case.

Depending on whether there is a model available or not, the algorithm can be classified

as model-based or model-free.

There are two main approaches to learning optimal policies, Value based and Policy

based algorithms.

Value based methods concentrate on iteratively determining (or approximating) the

optimal value function and from that extracting the optimal policy. These methods start

with some initial value for each state and generate a sequence of value functions that

converges to the optimal. While the iterations are taking place, there is no explicit policy.

One can be derived at any step if the algorithm is stopped but there is no guarantee that

it will be admissible. The optimal policy is obtained once the algorithm has converged

by extracting the actions that have achieved the maximal reward for each state (or the

minimal cost). Examples of value based methods are the relative value iteration algorithm

and the Q-learning algorithm.

Policy based methods on the other hand start with a policy π0 and generate a sequence

of policies π1, π2, . . . that converge to the optimal one. Given a policy πk, we start

by evaluating it, computing vπk
(s) for each state s. In the case where the transition
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probabilities are known [43], vπk
(s) is evaluated using the following equation:

vπk
(s) =

n∑
s′=0

pss′(πk(s))
(
r(s, πk(s)) + γvπk

(s′)
) �� ��2.9

where 0, . . . , n denote the states of the environment. Next, we perform a policy improve-

ment step by acting greedily with respect to vπk
(s). With the transition probabilities

available, a new policy πk+1 is obtained by:

πk+1(s) = argmax
a

n∑
s′=0

pss′(a)
(
r(s, a) + γvπk

(s′)
) �� ��2.10

The process is repeated with πk+1 in the place of πk until vπk+1
(s) = vπk

(s) in which

case πk is the optimal policy. The most popular example of policy based methods is the

Actor-Critic method.

2.1 Relative Value Iteration

Value iteration [13,73] is a value-based and model-based approach coming from the field

of control theory and is based on the dynamic programming algorithm for solving decision-

making problems. This implies that traditionally it is formulated as a cost minimisation

algorithm as opposed to a reward maximisation algorithm. The available information in

this setting is:

• The possible states: {s1, . . . , sn} which for simplicity we represent as {1, . . . , n}

• The available controls (actions) depending on the state: a ∈ A(i)

• The transition probabilities pij(a)

• A set of admissible policies of the form π = {µ0, µ1, . . . } , µk(i) ∈ A(i). This means

that for each state i, there is a set of admissible actions A(i) and the functions µt

choose at each time step t an action dependent on the current state.

• A cost function depending on the state and the action at each time step: g(i, µ(i)).

The purpose of the cost function is the same as that of the reward function as

described in
�� ��2.2 with the difference that our problem is now a minimisation instead

of a maximisation problem.

The value function in this setting is defined as the average cost per stage starting

from a state i:

vπ(i) = lim
N→∞

1

N
E

{
N−1∑
k=0

g(sk, µk(sk))|s0 = i

}
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In this setting, stage refers to the current time step/iteration. This means that at each

stage, the average cost depends on the current policy. We are aiming to determine an

optimal stationary policy π∗ = {µ, µ, . . . }, independent of time, that achieves the optimal

average cost which is denoted by λ∗. This is done iteratively by executing the dynamic

programming algorithm starting from an arbitrary initial value for v, denoted by v0. When

our iterations converge we will have obtained the optimal average cost from which we can

extract the optimal policy. This cost at each iteration step k has to satisfy the Bellman

equation which for this problem would be:

vk+1(i) = min
a∈A(i)

g(i, a) + n∑
j=1

pij(a)vk(j)

 �� ��2.11

We are expecting vk to converge to the optimal average cost as the iteration steps k →∞.

This method is known as the value iteration algorithm. However, it is not uncommon

for some of the components of vk to diverge to ∞ or −∞ thus complicating the calcula-

tions. This drawback is overcome by the introduction of the relative value iteration

algorithm. We consider the vectors:

hk(i) = vk(i)− vk(s)

where s is some arbitrarily chosen fixed state. By substituting equation
�� ��2.11 in the

above definition we obtain:

hk+1(i) = vk+1(i)− vk+1(s)

= min
a∈A(i)

g(i, a) + n∑
j=1

pij(a)vk(j)

− min
a∈A(s)

g(i, a) + n∑
j=1

psj(a)vk(j)


= min

a∈A(i)

g(i, a) + n∑
j=1

pij(a)hk(j)

− min
a∈A(s)

g(s, a) + n∑
j=1

psj(a)hk(j)


If the algorithm converges to some vector h, we have:

λ+ h(i) = min
a∈A(i)

g(i, a) + n∑
j=1

pij(a)h(j)


where

λ = min
a∈A(s)

g(s, a) + n∑
j=1

psj(a)h(j)


13



2.2. Q-LEARNING

is the optimal average cost per stage for all initial states.

The convergence of the relative value iteration is extensively studied in [13] and [75].

The following proposition provides good intuition to some conditions for convergence.

Proposition 1 [75] Assume that there exists a positive integer m such that for every

admissible policy π = {µ0, µ1, . . . }, there exists an ϵ > 0 and a state s such that

[
PµmPµm−1 . . . Pµ1

]
is
≥ ϵ, i = 1, . . . , n

�� ��2.12[
Pµm−1Pµm−2 . . . Pµ0

]
is
≥ ϵ, i = 1, . . . , n

�� ��2.13

where Pµj denotes the transition probability matrix coressponding to action µj and [·]is
denotes the element of the ith row and the sth column of the corresponding matrix. Fix a

state t and consider the relative value iteration algorithm

hk+1(i) = vk+1(i)− vk+1(t), , i = 1, . . . , n
�� ��2.14

where h0(i) are arbitrary scalars. Then the sequence {hk} converges to a vector h satis-

fying

min
a∈A(t)

g(t, a) + n∑
j=1

ptj(a)h(j)

+ h(i) = min
a∈A(i)

g(i, a) + n∑
j=1

pij(a)h(j)


so that λ = mina∈A(t)

[
g(t, a) +

∑n
j=1 ptj(a)h(j)

]
is equal to the optimal average cost per

stage for all initial states and h is an associated differential cost vector.

Conditions
�� ��2.12 and

�� ��2.13 imply that there exists a state that is reachable from ev-

ery other state within a finite number of steps with nonzero probability. Algorithm 1

gives a step-by-step description of executing the relative value iteration algorithm until

convergence to the optimal average cost and the optimal policy.

2.2 Q-learning

Q-learning [45] refers to a family of RL algorithms that involve the use of Q-functions,

namely the state-action value function form of
�� ��2.4 . The algorithm that is most com-

monly referred to as Q-learning or Q-value iteration is a method and was first introduced

by Watkins in 1989 [44]. Being an RL algorithm implies that it is formulated as a max-

imisation of rewards problem as opposed to a minimisation of costs. It can be applied to

problems where the transition probabilities are not available and it is a value-based and

off-policy method. By off-policy, we mean that the agent learns the value function without
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Algorithm 1: Relative value iteration

Result: Optimal policy π and optimal average reward λ
Input: Transition probabilities pij(a), Set of admissible policies A(i), Reward

function g(i, a), Accuracy ϵ, Fixed state s
1 Randomly initialise h for all states;
2 h′(i) =

mina∈A(i)

[
g(i, a) +

∑n
j=1 pij(a)h0(j)

]
−mina∈A(s)

[
g(s, a) +

∑n
j=1 psj(a)h0(j)

]
for all states i;

3 while |h− h′| ≥ ϵ do
4 h = h′;
5 h′(i) =

mina∈A(i)

[
g(i, a) +

∑n
j=1 pij(a)h(j)

]
−mina∈A(s)

[
g(s, a) +

∑n
j=1 psj(a)h(j)

]
for all states i;

6 end

7 π(i) = argmina∈A(i)

[
g(i, a) +

∑n
j=1 pij(a)h

′(j)
]
for all states i

λ = mina∈A(s)

[
g(s, a) +

∑n
j=1 psj(a)h(j)

]

necessarily following the same policy throughout the training. We consider a state-action

value function qπ(s, a) of action a in state s under policy π to be the expected return

starting from state s, performing action a and following policy π thereafter.

qπ(s, a) = Eπ [Rt + γqπ(St+1, At+1)|St = s,At = a]

The values of q(s, a) for each state st are called the Q-values and are stored in the Q-

table. The Q-table is initialized to zero or some other arbitrary value, and after enough

iterations will converge to the optimum values, under certain sufficient conditions. That

means that when the learning is complete, we can simply look at the values for a given

state and decide on the best possible action for that state, thus deriving the optimal

policy.

The agent starts exploring the environment (or playing the game) many times, study-

ing the rewards it gets for each action and uses them to update the Q-table. The formula

for these updates is:

Qnew(st, at) = (1− α) ·Q(st, at) + α ·
(
r(st, at) + γ ·max

a
Q(st+1, a)

) �� ��2.15

where

• Qnew(st, at) is the new Q-value for the particular state-action pair,

• Q(st, at) is the old Q-value,
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• maxaQ(st+1, a) is an estimate of the optimal future value,

• r(st, at) is the reward obtained for the particular state-action pair,

• γ is the discount factor, 0 < γ ≤ 1,

• α is the learning rate. The meaning of this factor is to determine how much of the

old values we will retain. Generally α is chosen as 0 < α < 1. A learning rate of

0 will mean that there is nothing new to be learnt while a learning rate of 1 will

mean that the old value will be completely discarded.

The Q-table continually gets updated until the agent reaches some terminal state that

will cause it to stop moving. Then it will reset to the initial state and the algorithm runs

again. Each repetition of the algorithm from initial to terminal state is called an episode.

We would ideally like to let the updates run for an infinite number of episodes, as that will

allow the q-values to converge to their optimals, as we will see at the end of the section.

So depending on the problem we are trying to solve, we choose a number of episodes as

large as possible. To make sure that no infinite loops occur, within each episode, we also

introduce a maximum number of steps (updates) for the case where a terminal state is

not reached.

Finally, an important notion in Q-learning is the trade-off between exploration and

exploitation. By the term exploration, we mean the tendency our agent has to further

explore the environment and by exploitation, we refer to how much our agent tends to

exploit the knowledge it has already gained. Naturally, at the start of the learning process,

our agent will need to explore more than exploit, since it has no prior knowledge of its

environment. However that need for exploration is reduced as the learning progresses. To

deal with this trade-off we introduce an exploration factor ϵ to control the way our agent

chooses its next action. ϵ is a number between 0 and 1 decreasing after each iteration of

the learning process (or episode), according to a chosen decay factor. The way our agent

will choose an action at time t can be described by:

at =

{
argmaxaQ(s, a), R > ϵ

Random a ∈ A, R ≤ ϵ

�� ��2.16

where R is a randomly generated number between 0 and 1.

An interesting feature of the Q-learning algorithm as opposed to the relative value

iteration algorithm is that it requires a specific initial state from which it can start ex-

ploring the environment. However, in order to obtain a Q-table somewhat independent of

the initial state, we can sample a different initial state at the start of each episode. That

will cause the Q-table to be filled in its entirety but it will cause our algorithm to take

much longer to converge. This means that if we are interested in learning the best policy
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starting only from one specific initial state, it is better to let the algorithm run without

sampling different starting states for each episode. If, on the other hand, we aim to use

the results of the algorithm to obtain the optimal policy from more than one initial state,

then the sampling approach will generate an appropriate Q-table.

The convergence of the Q-learning algorithm has been studied along with the original

introduction of the algorithm in [44]. Further results were presented in [76], which can

be summarised by the following theorem.

Theorem 1 [76] The q-values Q(s, a) converge to the optimal q∗(s, a) with probability

1, for every s and a in each of the following cases:

(1) If γ < 1.

(2) If γ = 1, the Q-table is initialised to all zeros and all policies are proper.

(3) If γ = 1, the Q-table is initialised to all zeros, the q-values are guaranteed to be

bounded with probability 1 and the following assumption holds:

• There exists at least one proper stationary policy.

• Every improper stationary policy yields an infinite expected cost for at least one

initial state.

In most cases, we choose a discount factor γ < 1, in which case the theorem implies

that the q-values should converge to their optimal values. However, it is important to

note that the Q-table is updated only when a certain state is visited and if that state is

not visited, that entry is not updated. Since in practice, we are using a finite number of

steps and episodes, it is possible that certain states are not visited frequently enough for

them to converge to their respective optimals. Hence we might obtain some sub-optimal

policy instead of the true optimal. Once again, the importance of using a large number of

episodes is highlighted. Algorithm 2 provides the steps to implementing the Q-learning

algorithm and obtaining the optimal Q-table.

2.2.1 Deep Q Learning

While Q-learning is a very powerful algorithm that allows for the learning of optimal

policies with no prior knowledge of the system’s dynamics, it has one major drawback.

The algorithm is built on the Q-table, in which estimates of the Q-function values for each

state-action pair are stored. When dealing with problems that have large state spaces,

this table becomes very large, making it a major storage issue. Given that most modern

problems are complicated, implying large dimensions, a different approach needs to be

introduced. The role of the Q-table is to estimate the Q-values which essentially is an
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Algorithm 2: Q-learning

Result: Q-table
Input: Number of episodes N , max steps per episode m, discount factor γ,

learning rate α, maximum exploration rate ϵmax, maximum exploration
rate ϵmin, exploration decay rate δ, termination state sT

1 Initialise Q-table to all zeros;
2 Set exploration rate ϵ = ϵmax;
3 for episode in 1:N do
4 t=1;
5 Sample an initial state s1 ;
6 while st ̸= sT and t < m do

7 Choose at according to
�� ��2.16 ;

8 Receive reward r(st, at) from environment;
9 Sample the next state st+1 from environment;

10 Update Q-table value corresponding to the pair (st, at) according to
Qnew(st, at) = (1− α) ·Q(st, at) + α · [r(st, at) + γ ·maxaQ(st+1, a)];

11 t=t+1;

12 end
13 if ϵ > ϵmin then
14 ϵ = ϵ ∗ δ;
15 end

16 end

estimate of the value function. Considering this, the Q-table can be replaced by a function

approximator, with the most popular choice being Deep Neural Networks (DNN)s [49].

This combination of Deep learning and Q-learning gave rise to the Deep Q Learning

algorithm, also known as the Deep Q Network (DQN) [77].

The main idea for this algorithm is to use a Deep Neural Network (DNN) in place of

the Q-table, which receives the current state as input and produces the q-values for all

possible actions as outputs. The DQN is updated using the same formula as the Q-table�� ��2.15 , but there are a few adjustments that need to be made, which stem from the way

neural networks operate and learn. Two main adjustments need to be made for the DQN

to be successfully trained, the introduction of a Replay Buffer and a Target Network.

Replay Buffer

In each update step
�� ��2.15 , we require information about the current state, the action

taken, the reward received and the next state that the agent transitions to. This infor-

mation can be represented as a tuple {st, at, rt, st+1}. If we were to train the network on

the data gathered at each time step, we would be training with sequential data. How-

ever, DNNs are designed to learn better when trained on independent and identically
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distributed (i.i.d.) data. To get as close to that as possible, we introduce a Replay Buffer,

which is a memory where we store data tuples of the form {st, at, rt, st+1} while “playing

the game”. At each training step, we randomly sample a batch of data from the Buffer and

use that to train the DQN. This way, the data used for training are no longer sequential

and hence more appropriate for training.

Target Network

Looking at the update formula
�� ��2.15 again, we may notice that the DQN itself is needed

to produce its updated value. This may cause the network to “chase its own tail” and as

a result end up not learning efficiently. To remedy this, we introduce a second network,

called the Target Network, which is identical to the DQN in configuration and initialisa-

tion. The target network is used to produce the target values, namely the right-hand side

of equation
�� ��2.15 , and its weights get updated periodically to match the weights of the

DQN.

These two structures can ensure the successful training of a DQN, a step-by-step

description of which is given in Algorithm 3. Notice the freedom in the initialisation of

the neural networks, the loss function for training and the optimiser for backpropagation

of the loss. Depending on the environment, different choices may be appropriate.

2.3 Actor-Critic algorithms

The Actor-Critic framework [42,46,78] refers to a family of policy-based algorithms used

to learn optimal policies in environments where the dynamics are unknown. The main

idea is instead of using one algorithm which learns the optimal value function and from

that extracting the optimal policy, we use two algorithms that interact and learn from

each other, one called the Actor, tasked with learning the optimal policy, and a Critic,

tasked with learning the value function. In simple terms, the Actor decides how to act in

the environment, and the Critic judges how good these actions were in order to inform

the next actions the Actor chooses. Similarly to Q-learning and Deep Q Learning, Actor-

Critic algorithms can be designed both with the help of lookup tables when the state

space is small, or with Deep Neural Networks when the dimensions increase. Actor-critic

algorithms are also very popular in the case where the policy function is not deterministic.

In the following, we present the steps to training an Actor-Critic algorithm for the case

where the resulting policy is deterministic.

The Actor learns a policy π mapping states to actions. The Critic learns a state value

function
�� ��2.3 vπ and evaluates the new state after each action is selected by the Actor.
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Algorithm 3: Deep Q Learning

Result: DQN
Input: Number of episodes N , Max steps per episode m, Discount factor γ,

Learning rate α, Maximum exploration rate ϵmax, Maximum exploration
rate ϵmin, Exploration decay rate δ, Termination state sT , Batch size bs,
Period for equalising the NNs τ , Chosen initialisation, loss function and
back-propagation optimiser for NNs.

1 Initialise DQN and Target network (denoted as TN) to be identical;
2 Set exploration rate ϵ = ϵmax;
3 for episode in 1:N do
4 t=1;
5 Sample an initial state s1 ;
6 while st ̸= sT and t < m do

7 Choose at according to
�� ��2.16 ;

8 Receive reward r(st, at) from environment ;
9 Sample the next state st+1 from environment;

10 Augment the replay buffer by the tuple {st, at, rt, st+1};
11 Sample a batch of size bs from the replay buffer;
12 for i in 1:bs do
13 Extract i-th tuple {si, ai, ri, sinext};
14 Set the target for the terminal node of the DQN corresponding to

action ai to be
(1− α) · TNpred(s

i, ai) + α ·
[
ri + γ ·maxa TNpred(snext, a)

]
;

15 Set the targets for all other terminal nodes of the DQN equal to the
corresponding predictions from the TN.;

16 Train the DQN by back-propagating the loss between the target values
and the predictions from the DQN.

17 end
18 t=t+1;

19 end
20 if ϵ > ϵmin then
21 ϵ = ϵ ∗ δ;
22 end
23 if episode mod τ == 0 then
24 Set TN=DQN;
25 end

26 end
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That evaluation happens through the error

δt = rt + γv(st+1)− v(st)
�� ��2.17

where v is the current value function estimate that the critic has learned, rt is the reward

obtained by applying the selected action at at state st and transitioning to state st+1 and

γ is the discount factor. If this error is positive, the selection of at at st is encouraged,

while if it is negative, it is discouraged. The updates to the actor happen according to

πnew(st) = (1− α)π(st) + αδt
�� ��2.18

where α is the learning rate chosen for the actor. For the critic updates, let β be a chosen

learning rate, then

vnew(st) = (1− β)v(st) + β[rt + γv(st+1)].
�� ��2.19

The learning process happens similarly to Q-learning where we “play the game” for many

episodes starting from an initial state that is either predetermined by the environment or

randomly chosen until a termination state is reached or the maximum number of steps

is completed. Algorithm 4 provides the steps to implementing the above Actor-Critic

algorithm.

Algorithm 4: Actor-Critic

Result: trained Actor and Critic
Input: Number of episodes N , max steps per episode m, discount factor γ,

learning rate for actor α, learning rate for critic β, termination state sT
1 Initialise Actor (π) and Critic (v) to all zeros;
2 for episode in 1:N do
3 t=1;
4 Sample an initial state s1 ;
5 while st ̸= sT and t < m do
6 Choose action using the actor at = π(st);
7 Receive reward rt from environment;
8 Sample the next state st+1 from environment;
9 Update the actor using πnew(st) = (1− α)π(st) + αδt;

10 Update the critic using vnew(st) = (1− β)v(st) + β[rt + γv(st+1)];
11 t=t+1;

12 end

13 end
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2.4 Continuous Reinforcement Learning

Most Reinforcement Learning algorithms were initially designed for problems with finite

and discrete state and action spaces, such as the famous Atari games application [50].

However, applying RL to solving control problems immediately creates the need for algo-

rithms that can handle continuous state and action spaces, as discrete ones are very rare

in physical systems.

As discussed at the beginning of the chapter, RL techniques are shared with the field

of Dynamic Programming, where the focus is the optimisation of value functions with the

use of the Bellman Equation. When the value function has a particular structure that can

be exploited, then this information can be used to obtain approximation formulas for the

solution. For example, if the value function is in quadratic form, then LQR [14] techniques

can be used to obtain a closed form of the solution. The terms of the closed form can

then be estimated using only process data, without any need for prior knowledge about

the system’s dynamics [79, 80]. Works like these are the inspiration behind our work in

Chapters 3 and 4.

From the algorithms introduced in the sections above, the only one that could be

applicable in continuous problems is the Actor-Critic framework, which belongs to the

wider family of Policy Gradient algorithms [81]. The main difference between algorithms

in that family, to algorithms in the Q-learning family is the approach taken to choose the

best action to take at each state. In the Q-learning family, we heuristically determine the

best action by directly looking at the value function output for all possible actions, and

choose the one that gives the highest return. This approach by its nature does not allow

for infinitely large action spaces. Policy Gradient methods on the other hand are, as the

name suggests, based on the idea of using the gradient of the policy itself to “push” the

policy towards the action that maximises the value function at each state.

In recent years, two very powerful algorithms have emerged that can solve RL prob-

lems with continuous state and action spaces, the Proximal Policy Optimisation [59] and

the Deep Deterministic Policy Gradient [60]. The Proximal Policy Optimisation (PPO)

algorithm is an improvement upon Policy Gradient algorithms which lack robustness.

The main idea in PPO is to refine the current policy based on data generated by an older

policy while also making sure the ratio between the two policies falls within a specific

“comfortable zone”. This way, we discourage drastic changes in the learned policy, lead-

ing to smoother learning. The Deep Deterministic Policy Gradient (DDPG) algorithm

combines the main strengths of Deep Q-learning and Actor-Critic methods. In this set-

ting, there are 4 networks in total, the actor, the critic and the corresponding target

networks. The training happens by sampling batches from a replay buffer, so as to have

data as close to being i.i.d. as possible. The weights of the actor network are updated

22



2.4. CONTINUOUS REINFORCEMENT LEARNING

through the policy gradient, while the critic is updated using the sampled policy from

the target actor network, and the estimate of value function given by the target critic

network. The DDPG algorithm inspired our work in Chapter 5.
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3
Data-driven Linear Quadratic Tracking based

Temperature Control of a Big Area Additive

Manufacturing System

Abstract

Designing efficient closed-loop control algorithms is a key issue in Additive Manufacturing

(AM), as various aspects of the AM process require continuous monitoring and regula-

tion, with temperature being a particularly significant factor. Here we study closed-loop

control of a state space temperature model with a focus on both model-based and data-

driven methods. We demonstrate these approaches using a simulator of the temperature

evolution in the extruder of a Big Area Additive Manufacturing system (BAAM). We

perform an in-depth comparison of the performance of these methods using the simula-

tor. We find that we can learn an effective controller using solely simulated process data.

Our approach achieves parity in performance compared to model-based controllers and

so lessens the need for estimating a large number of parameters of the intricate and com-

plicated process model. We believe this result is an important step towards autonomous

intelligent manufacturing.

3.1 Introduction

Additive Manufacturing (AM) is shaping up to be one of the most promising methods in

manufacturing, with its applications ranging from medicine, aerospace, and architecture

to most aspects of daily life [2–4]. AM has become popular partially because of its ability

to handle very complex geometries and due to bringing manufacturing into the hands of

the consumer. However, while AM processes are becoming more widely adopted, there

is still a substantial lack of efficient closed-loop control algorithms [5]. More specifically,

many aspects of the process require constant monitoring and control, some specific to

24



3.1. INTRODUCTION

a type of AM, others more universal to manufacturing systems. These aspects include

temperature, printing speed, layer thickness, material viscosity and flow, and extrusion

pressure, among others.

Control theory [10, 11] offers an array of methods that address the problem of con-

trolling a system’s behaviour. Most classic approaches involve designing controllers using

a model of the system dynamics. This presents a very important limitation, as an ex-

act model is not always available. The lack of knowledge of the system dynamics gave

rise to the area of data-driven control [34–37]. Reinforcement Learning (RL) [41, 42] is a

family of data-driven Machine Learning algorithms that address the problem of finding

optimal policies within complex and uncertain environments through maximising rewards

(or minimising costs). In the Control Theory literature, optimal policies are created via

Dynamic Programming [13, 16, 43] with many similarities to RL but with differing ter-

minology. Whilst some RL approaches have been developed in a deterministic fashion

assuming knowledge of the system dynamics, most RL applications are data-driven and

model-free.

Some previous approaches have applied control algorithms to address specific chal-

lenges in metal AM, including the design of Proportional Integral Derivative (PID) con-

trollers for the cooling rate [21] and laser power [22] in laser-based AM, the melt pool in

Selective Laser Melting [26], and layer height for Laser Metal Deposition [24]. In recent

years, with RL gaining in popularity, researchers have applied it to solve various AM-

related problems including improving process monitoring through imaging [57], acoustic

emissions [58], and solving the machine scheduling problem [53]. Additionally, RL has

been used in toolpath generation [55] and optimising melt pool depth [61]. An RL frame-

work has also been used in a model-based application for implementing corrective actions

on a robot wire arm AM system [51].

We study the problem of designing closed-loop controllers for a state space temperature

model. State space models are very useful in the design of optimal controllers [10,11] but

have not been widely used in AM applications. Previous work in state space modelling

in manufacturing includes the identification of a state space model and its use to design

a controller for temperature regulation [69], the development of a state space model for

product quality [70], and the use of a state space model for observer design of temperature

states within an AM-produced part [71].

The control objective throughout our chapter can be considered as the optimisation of

a quadratic performance index, namely the Linear Quadratic Tracking (LQT) problem.

Our chapter is structured as follows. Section 3.2 provides a brief introduction to the family

of manufacturing systems that are the subject of this work. Section 3.3 introduces the

problem statement and the particular system that is used as a case study. We introduce

a model describing the temperatures within the extruder head of a Big Area Additive
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Manufacturing (BAAM) system, in state space form. In Section 3.4, we perform an

in-depth analysis of model-based control methods. We explore the finite horizon LQT

controller, and for the infinite-horizon case, we create a model-based RL controller. The

model-based methods designed in this section can be applied to any state space model.

In Section 3.5, we develop a model-free, data-driven controller. We use a discrete-time,

continuous state and action space Q-learning algorithm. Finally, in Section 3.6, we present

the setup of our simulations, followed by a detailed comparison of the performance of

all the methods. Apart from simulating the system’s behaviour after each controller is

implemented, the system model is used for the design of all model-based controllers, and

for generating the data that will be used to train the data-driven controller. We provide

a thorough discussion of the results in Section 3.7.

3.2 BAAM - Big Area Additive Manufacturing heating systems

BAAM style 3D printing systems are becoming more widely utilised in the areas of large-

scale polymer and composite manufacturing. This technology is a derivation of the MEX

(Material Extrusion) technology prevalent in desktop sized 3D printers (Examples include

Prusa i3 and Ultimaker S5). Unlike the majority of desktop MEX systems which con-

tain one heating source (Typically a ceramic heater cartridge) and a sensor (Thermistor,

Thermocouple or similar), BAAM systems contain multiple heaters at different points

along the length of their heated melt zone. The primary reason for this is the substan-

tially larger volume of material that is processed through a BAAM extruder per unit of

time, which can range from 2 - 20 kg per hour, compared with desktop systems which

would average 0.05 kg per hour. As polymers are almost exclusively insulative materials

(although sometimes containing conductive additives such as Carbon black or metallic

powders), heat transfer from the melt zone wall into the polymer itself is poor, and thus

it is necessary to increase the length of time the polymer resides inside the melt zone so

as to evenly melt the polymer granules. In order to reach the desired residency times

whilst maintaining a high throughput of material, melt zones are staggered across a long

heated bore (which can commonly range from 0.2 to 0.5 meters in length).

The benefit of a multi-zone heating system is the accurate control of the melt pool,

which is typically arranged in a steadily increasing temperature so as to slowly increase

polymer temperature until the optimum state is reached for extrusion. An example of

this heating system is visually represented in Figure 3.1. It is therefore vital that a

robust method of controlling these temperatures is used, particularly as this technology

is adopted for printing of PEEK, PEI and other high-value polymers, where the cost of

a print failure can be significant. Finally, to ensure that a temperature is maintained

throughout the printing process, it is essential that an adaptive technique be adopted to
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ensure that temperature variance is minimal, even as unavoidable systems changes such

as flow rate, ambient temperature, power supply etc occur during the print.
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Figure 3.1: Example of heater staggering for a BAAM system using PLA, consisting of 4
heating zones to melt the material.

3.3 Linear Quadratic Tracking Control of a State-Space Tem-

perature System

We focus on the heating and melting of the material, specifically PLA during an MEX

process. To that end, we will be using a model introduced in [69]. It is a discrete-time

linear model in state space form and was obtained using system identification methods

using input and response data from a BAAM system. Specifically, we are dealing with a

model of the temperatures within the extruder of the system. The extruder comprises five

key components, namely the hopper, the screw, the barrel, the hose, and the nozzle, with

thermal energy being supplied by four heaters in the barrel, one in the hose and one in

the nozzle. An AC motor powers the rotation of the screw, which affects the temperature

in each thermal cell as well as the adjacent cells. Figure 3.2 shows the heating system

within the extruder, as well as indicates where the inputs are applied. The dynamics of

the system can be expressed in standard state space form as:

x(t+ 1) = Ax(t) +Bu(t), t ≥ t0
�� ��3.1

where x(t) ∈ Rn is the system state vector at time t and u(t) ∈ Rm is the system input

at time t. A ∈ Rn×n and B ∈ Rn×m are the state and input matrices respectively. In our

case of the extruder temperature model, x(t) ∈ R6 is the set of the temperatures in each
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thermal cell and u(t) ∈ R7 is the input provided by the heaters and the motor for each

time point t.

Material 
Pellets

AC
Motor

Nozzle

Screw

Thermal cell 1

Thermal cell 2

Thermal cell 3

Thermal cell 4

Thermal cell 5

Thermal cell 6
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Figure 3.2: Extruder setup for BAAM system. Inputs 1 through 6 represent the heat
applied to each thermal cell and u7 represents the input from the motor. There are four
heating zones inside the barrel, one on the hose and one on the nozzle. The red dotted
lines denote the heating zones in the barrel. The system states represent the temperatures
in each thermal cell.

The control objective is defined as the tracking of a reference signal r(t) ∈ Rn and can

be expressed mathematically as in [10] through the performance index

Vf (x, r, u) =

T∑
t=t0+1

{[x(t)− r(t)]TQ[x(t)− r(t)] + uT (t− 1)Ru(t− 1)}
�� ��3.2

which quantifies how well the reference signal is tracked under input u, starting from

time t0 until the end of a time horizon T . Q and R are matrices applying appropriate

weights to the tracking error and the control function respectively. To ensure that the

optimisation can converge, Q is required to be a positive-semidefinite matrix, while R

needs to be positive definite. In certain applications, there is either no specifically defined

time horizon, or it is too large. In those cases the infinite horizon performance index can

be defined as in [79]

Vinf (x, r, u) =

∞∑
t=t0+1

γt−t0−1{[x(t)− r(t)]TQ[x(t)− r(t)] + uT (t)Ru(t)}
�� ��3.3

where 0 < γ ≤ 1 is the discount factor, whose role is to emphasise short-term costs as

opposed to costs in the more distant future. In the RL literature, the performance index

is often called the value function.

The optimal tracking problem is defined as the search for the optimal control u∗ such

that the state x tracks the reference r while minimising the performance index. In the next

28



3.4. MODEL-BASED CONTROL

sections, we explore solutions to the optimal tracking problem for the finite and infinite

horizon cases. We consider the ideal scenario of having access to the system dynamics as

well as the more realistic scenario of an unknown model. In the latter case, the problem

is solved strictly using data.

3.4 Model-based Control

The main idea in model-based control is the design of a controller offline, using knowl-

edge from the model that describes the system. The controller is then brought online,

interacting with the system, using the state of the system to adjust its input in order to

achieve the desired behaviour.

3.4.1 Finite Horizon

Assume the finite horizon, discrete, linear time-invariant (LTI) system defined in
�� ��3.1

and the corresponding finite horizon performance index
�� ��3.2 . The solution to the optimal

tracking problem, as thoroughly studied in [10], can be found as follows:

u∗(t) = −(BTS(t+ 1)B +R)−1BT [S(t+ 1)Ax(t) + b(t+ 1)−Qr(t+ 1)]
�� ��3.4

for all t0 ≤ t ≤ T − 1, where

b(t) = (AT +KBT )(b(t+ 1)−Qr(t+ 1)), with b(T ) = 0 and
�� ��3.5

KT = −(BTS(t+ 1)B +R)−1BTS(t+ 1)A
�� ��3.6

and

S(t) = AT {S(t+ 1)− S(t+ 1)B(BTS(t+ 1)B +R)−1BTS(t+ 1)}A+Q,

S(T ) = Q
�� ��3.7

In order to obtain a formula for u∗(t) for all t0 ≤ t ≤ T − 1, given system
�� ��3.1 and

performance index
�� ��3.2 , Equations

�� ��3.5 and
�� ��3.7 need to be solved offline, backwards in

time to determine b(t) and S(t) for all t. Then the control u∗ can be used online, through

Equation
�� ��3.4 , for all t. A step-by-step description of the solution to the finite-horizon

LQT problem is given in Algorithm 5.

An important prerequisite for the design of the above controller is the predefined

time horizon as it is necessary for the calculation of the terms b(t) and S(t). However,
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Algorithm 5: Finite-Horizon LQT

Result: Optimal controller u∗(t) and optimal trajectory x∗(t)
Input: State and input matrices A,B, Weighting matrices for performance index

Q,R, Reference trajectory r(t), initial state x(t0), Time horizon T
1 Initialise b(T ) = 0 and S(T ) = Q;
2 for t = T − 1, t0 do
3 KT = −(BTS(t+ 1)B +R)−1BTS(t+ 1)A;
4 b(t) = (AT +KBT )(b(t+ 1)−Qr(t+ 1));
5 S(t) = AT [S(t+ 1)− S(t+ 1)B(BTS(t+ 1)B +R)−1 BTS(t+ 1)]A+Q ;

6 end
7 for t = t0, T − 1 do
8 u∗(t) = −(BTS(t+ 1)B +R)−1BT [S(t+ 1)Ax(t) + b(t+ 1) −Qr(t+ 1)];
9 x∗(t+ 1) = Ax∗(t) +Bu∗(t) ;

10 end

this approach is not feasible in cases where the horizon is not explicit. This led to the

development of infinite horizon approaches.

3.4.2 Infinite Horizon

The infinite Horizon Optimal Tracking Problem can be addressed in a slightly different

way from the previous case. Specifically, the performance index is now of the form
�� ��3.3 .

Assume that the reference signal r(t) ∈ Rn is generated by

r(t+ 1) = Fr(t).
�� ��3.8

Consider the augmented state, including the system state and reference,

X(t) =

[
x(t)

r(t)

]

and construct the augmented system state equation

X(t+ 1) =

[
x(t+ 1)

r(t+ 1)

]
=

[
A 0

0 F

][
x(t)

r(t)

]
+

[
B

0

]
u(t) = TX(t) +B1u(t).

�� ��3.9

The performance index
�� ��3.3 can be written in terms of the augmented state as

Vinf (X,u) =
∞∑
t=k

γt−k{XT (t)Q1X(t) + uT (t)Ru(t)}
�� ��3.10
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where Q1 =
[
I −I

]T
Q
[
I −I

]
. The solution to the optimal tracking problem is a

policy of the form [79]:

u(t) = −KX(t)
�� ��3.11

where

K = (R+ γBT
1 PB1)

−1γBT
1 PT

�� ��3.12

and P is the solution to the Algebraic Riccati Equation (ARE):

Q1 − P + γT TPT − γ2T TPB1(R+ γBT
1 PB1)

−1BT
1 PT = 0.

�� ��3.13

An alternative to solving the ARE can be obtained with through Reinforcement Learn-

ing (RL). The Lemma proven in [79,80], states that the value function
�� ��3.10 can be written

in quadratic form

V (x, r, u) = V (X) =
1

2
XT (t)PX(t)

�� ��3.14

for some matrix P = P T > 0, any stabilising policy
�� ��3.11 and reference signal

�� ��3.8 . This

form of the value function gives rise to the LQT Bellman equation

XT (t)PX(t) = XT (t)Q1X(t) + uT (t)Ru(t)

+γXT (t+ 1)PX(t+ 1).
�� ��3.15

Consider an arbitrarily chosen stabilizing policy K∗ in
�� ��3.15 . Then

�� ��3.15 can be tran-

sormed into the Lyapunov equation

P = Q1 + (K∗)TRK∗ + γ(T +B1K
∗)TP (T +B1K

∗).
�� ��3.16

Iteratively solving the Lyapunov equation while updating the optimal control estimate can

effectively lead to the solution to the Optimal Tracking Problem. This result was shown

in [82] where P j was proven to converge to the optimal solution of the LQT problem, and

KJ was shown to be stabilising at each step j.

A step-by-step description of the solution to the infinite-horizon problem can be found

in Algorithm 6.

3.5 Data-driven Q-Learning Control

In the previous sections, the Linear Quadratic Tracking problem was thoroughly studied in

the case where a model of the system of interest is available. However, this is not the case

in most applications. In most instances, a model is either entirely unknown or not accurate

enough to be considered ground truth. This is the motivation behind the constantly
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Algorithm 6: Infinite-Horizon LQT with RL

Result: Optimal control gain K∗, optimal controller u∗(t) and optimal
trajectory x∗(t)

Input: State and input matrices A,B, Weighting matrices for performance index
Q,R, Initial state x(t0), Initial reference signal r(t0), Discount factor γ,
Initial control policy K0, Error threshold ϵ, Simulation length N

1 Create augmented system matrices T =

[
A 0
0 F

]
, B1 =

[
B
0

]
;

2 Augment weighting matrix Q1 =
[
I −I

]T
Q
[
I −I

]
;

3 Set Knew = K0 and randomly initialise K;
4 while ∥K −Knew∥ > ϵ do
5 Set K = Knew. ;
6 Solve the LQT Lyapunov equation

P = Q1 +KTRK + γ(T −B1K)TP (T −B1K);
7 Compute the control gain estimate Knew = (R+ γBT

1 PB1)
−1 γBT

1 PT ;

8 end
9 Set K∗ = K;

10 Design initial augmented state X(t0) =

[
x(t0)
r(t0)

]
;

11 for t = t0, N do
12 u∗(t) = −K∗X(t);
13 X∗(t+ 1) = TX∗(t) +B1u

∗(t);
14 Retrieve optimal state x∗(t);

15 end

developing field of data-driven control. In this section, we explore Reinforcement Learning

based algorithms, specifically ones in the Q-learning [44] family, which are named after

the use of Q-functions as value functions.

We explore an online Q-learning solution to the LQT problem that is dependent solely

on acquired data of the state trajectories [79]. The data is used to estimate the solution

to the algebraic Riccati equation
�� ��3.13 following the analysis described below.

Let our system be described by the augmented state equation of the previous section

X(t+ 1) = TX(t) +B1u(t)
�� ��3.17

and let the weighting matrices Q1 and R be defined as in
�� ��3.10 . The Q-function is defined

with the help of the Bellman equation as the sum of the current cost and the discounted

future cost.

Q(x, r, u) =
1

2
XT (t)Q1X(t) +

1

2
uT (t)Ru(t) +

1

2
γXT (t+ 1)PX(t+ 1)

�� ��3.18

32



3.5. DATA-DRIVEN Q-LEARNING CONTROL

where P is the solution to
�� ��3.13 . Using the system dynamics, the Q-function can be

written as:

Q(X,u) =
1

2
XT (t)Q1X(t) +

1

2
uT (t)Ru(t)

�� ��3.19

+
1

2
γ(TX(t) +B1u(t))

TP (TX(t) +B1u(t))
�� ��3.20

=
1

2

[
X(t)

u(t)

]T [
Q1 + γT TPT γT TPB1

γBT
1 PT R+ γBT

1 PB1

][
X(t)

u(t)

] �� ��3.21

=
1

2

[
X(t)

u(t)

]T

H

[
X(t)

u(t)

] �� ��3.22

where H is the symmetric kernel matrix. H can be written in block form as:

H =

[
HXX HXu

HuX Huu

] �� ��3.23

Due to the quadratic form of the Q-function, its minimisation can be reduced to the

solution of ∂Q(X(t),u(t))
∂u(t) = 0. This yields

u(t) = −H−1
uu HuXX(t) = −(R+ γBT

1 PB1)
−1γBT

1 PTX(t)
�� ��3.24

which is the same result as in equations
�� ��3.11 and

�� ��3.12 . It is evident that the key to

obtaining the optimal control policy in this formulation is the kernel matrix H. This

matrix is what will be estimated through the Q-learning algorithm.

Setting Z(t) =

[
X(t)

u(t)

]
, the Q-function becomes

Q(Z) =
1

2
ZT (t)HZ(t)

�� ��3.25

and consequently,
�� ��3.18 can be written as

ZT (t)HZ(t) = XT (t)Q1X(t) + uT (t)Ru(t) + ZT (t+ 1)HZ(t+ 1).
�� ��3.26

In the above expression, the only element that requires knowledge of the system dynamics

is H. However, it can be approximated using obtained data, namely a set of state tra-

jectories with the corresponding references and inputs (x, r, u). The weighting matrices

Q1, R are predefined by the design of the optimisation problem. In order to estimate H,

it needs to be isolated, meaning that the quadratic form of
�� ��3.26 needs to be transformed

into an equivalent form. We start by vectorising
�� ��3.26 and then use the “vector trick”
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associated with the Kronecker product.

vec
(
ZT (t)HZ(t)

)
= XT (t)Q1X(t) + uT (t)Ru(t)

+γvec
(
ZT (t+ 1)HZ(t+ 1)

) �� ��3.27(
ZT (t)⊗ ZT (t)

)
vec(H) = XT (t)Q1X(t) + uT (t)Ru(t)

+γ
(
ZT (t+ 1)⊗ ZT (t+ 1)

)
vec(H)

�� ��3.28

where the vec operator stacks the columns of a matrix to create a single column.

Equation
�� ��3.28 can be iteratively solved through the Value Iteration algorithm [42]

which consists of two steps:

(1) Policy Evaluation

(
ZT (t)⊗ ZT (t)

)
vec(H i+1) = XT (t)Q1X(t) + uT (t)Ru(t)

�� ��3.29

+γ
(
ẐT (t+ 1)⊗ ẐT (t+ 1)

)
vec(H i)

where Ẑ(t+ 1) =
{
X(t+ 1), ui(t+ 1)

}
(2) Policy Improvement

ui+1(t) = −(H i+1
uu )−1H i+1

uX X(t)
�� ��3.30

The Policy evaluation step can be solved through the Least Squares algorithm using

measured data Z(t), Z(t + 1) and calculating the cost term XT (t)Q1X(t) + uT (t)Ru(t)

for each data point. Matrix H is an (2n+m)× (2n+m) symmetric matrix which means

that its determination is a problem with (2n+m)× (2n+m+ 1)/2 degrees of freedom.

Hence, at least (2n + m) × (2n + m + 1)/2 data points are required to solve
�� ��3.29 . It

is worth noting that in practice, many more data points are usually needed, especially

when dealing with larger state and action spaces. Another important note is the need to

include a regularisation step in the Least Squares algorithm. When the data are highly

correlated, the inversion step becomes numerically unstable. This problem can be reduced

with the choice of an appropriate regularisation parameter µ. A step-by-step description

of the solution to the LQT problem using Q-learning for the state feedback case can be

found in Algorithm
�� ��7 .

3.6 Simulations and Numerical Results

The model used throughout the simulations is identified in [69]. In particular, the system

matrices A ∈ R6×6 and B ∈ R6×7 were determined through system identification ap-
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Algorithm 7: State Feedback Q-Learning

Result: Kernel matrix H, optimal controller u∗(t) and optimal trajectory x∗(t)
Input: Weighting matrices for performance index Q1, R, regularisation

parameter µ, Discount factor γ, initial kernel matrix estimate H0, Error
threshold ϵ

1 Collect N >> (2n+m)× (2n+m+ 1)/2 consecutive data tuples
2 Z(t) = {X(t), u(t)} where X(t) = {x(t), r(t)};
3 For each Z(t), calculate the Kronecker product KZ(t) := ZT (t)⊗ ZT (t);
4 Set Hnew = H0 and randomly initialise H;
5 while ∥H −Hnew∥ > ϵ do
6 Set H = Hnew ;
7 for t = 1, N do
8 Determine ui(t+ 1) = −(Huu)

−1HuXX(t+ 1);

9 Create the updated augmented state Ẑ(t+ 1) =
{
X(t+ 1), ui(t+ 1)

}
and

the corresponding Kronecker product KẐ(t+ 1) = ẐT (t+ 1)⊗ ẐT (t+ 1);
10 Compute the future expected cost term c(t) = XT (t)Q1X(t)

+uT (t)Ru(t) + γKẐ(t+ 1)vec(H);

11 end

12 Calculate the sums L =
∑N

1 KT
Z (t)KZ(t) and S =

∑N
1 KT

Z (t)c(t) ;
13 Regularise matrix L: Lr = L+ µI;
14 Produce new H estimate Hnew = L−1

r S;

15 end

proaches using data from a real BAAM system. The system is comprised of a FANUC S-

420iF industrial robot arm, equipped with a thermoplastic extrusion machine and a heated

industrial hose. Two system identification techniques are discussed, namely the Output-

error Parametric Model Estimation method and the subspace identification method. The

first method is used to identify the temperature model, namely the linear state space

model describing the effect that the heater signals and the motor power have on the

temperatures in each thermal zone, as represented in
�� ��3.1 . The Output-error Parametric

Model Estimation technique comprises 4 main steps, The parameterisation of the model,

the formulation of the estimation objective as an optimisation problem, the solution of

the optimisation problem using numerical methods, and finally, the evaluation of the ac-

curacy of the obtained model. The name of this approach implies the formulation of the

optimisation problem to estimate the model parameters. The optimal parameter vector

minimises the expected squared norm of output error between the actual system out-

put and the output of the parameterised model [83]. Following these steps, the system

matrices were found to be:
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A =



0.992 0.0018 0 0 0 0

0.0023 0.9919 0.0043 0 0 0

0 −0.0042 1.0009 0.0024 0 0

0 0 0.0013 0.9979 0 0

0 0 0 0 0.9972 0

0 0 0 0 0 0.9953


�� ��3.31

B =



1.0033 0 0 0 0 0 −0.2175
0 1.0460 0 0 0 0 −0.0788
0 0 1.0326 0 0 0 −0.0020
0 0 0 0.4798 0 0 −0.0669
0 0 0 0 0.8882 0 0.1273

0 0 0 0 0 1.1699 −0.1792


�� ��3.32

This model will be used for two main purposes. Firstly, it will be the basis around which

the model-based control algorithms will be built. Secondly, it will be used throughout

the simulation steps, generating data with which to train the data-driven algorithms.

It must be noted that the use of linear state space models to represent temperature

evolution comes with certain limiting considerations. In general, using models that are

simpler in form to describe complex dynamics inevitably means that many factors are

ignored, or assumed to be constant. In particular, given that linearisations simplify the

dynamics of a non-linear system at equilibrium, the accuracy greatly depends on the point

around which the linearisation takes place. This implies that the system dynamics over

a large range of temperatures may not be accurately described through a linear model.

However, these considerations are beyond the scope of this thesis, and for the purpose of

our analyses we will assume the accurate representation of the extruder heating system

by the linear state space system
�� ��3.1 .

We set up an optimisation problem to be solved with all methods mentioned in the

above sections. The goal of the optimisation is to control the behaviour of the system

introduced in Section 3.3 so as to maintain the temperatures of all system states at some

predefined set of increasing values, similar to Figure 3.1. We chose the reference trajectory

to be the vector of increasing values: r(t) = (155, 160, 165, 170, 180, 190) ∈ R6 for all time

points t, so that the last two heaters bring PLA within its melting temperature range.

This also implies that the reference generator matrix F = I6.

Starting with the model-based methods, we initially focus on the finite-horizon LQT

problem. The parameters that need to be determined for the implementation of Algo-

rithm 5 are the weighting matrices Q and R, the initial state x(t0) and the time hori-
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zon T . For Q,R we chose identity matrices of appropriate dimensions, namely Q = I6

and R = I7. The initial state was arbitrarily chosen to be x(t0) = (50, . . . , 50) ∈ R6

and the time horizon was chosen to be T = 100. Being the most reliable and effi-

cient controller, implementation of Algorithm 5 results in an ideal system behaviour,

where the optimal is achieved and maintained within very few steps. Specifically, all 6

heaters achieve temperatures within less than 0.09°C of the optimal temperature vec-

tor, within 16 steps. The values that the heater temperatures converge to are x∗ =

(154.918, 159.985, 164.992, 169.922, 179.926, 189.955). This result can be seen in Figure

3.3a.

Next, we explore the case of the infinite time horizon, while still assuming full knowl-

edge of the system dynamics, making use of Algorithm 6. The weighting matrices for

the performance index Q,R and the initial state x(t0) are chosen to be the same as the

finite horizon case. There are a few additional parameters that need to be determined.

The discount factor is chosen as γ = 0.99, and the initial control policy K0 is chosen as a

7×12 matrix populated by normal random numbers with mean 0 and standard deviation

10. Finally, the error threshold needed for the estimation of the control policy K is cho-

sen to be ϵ = 0.1. The RL-based controller is successful in bringing and maintaining all

temperatures within 0.04 degrees of the optimal and more specifically, the temperature

vector converges to the vector x∗ = (154.972, 159.996, 164.966, 169.989, 179.997, 189.955).

17 time steps are needed for the heaters to approach within 0.1 °C of the optimal and

finally settle to their final values after 36 steps. This result is visualised in Figure 3.3b

where we plot the state trajectories for the first 100 time steps.
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(a) Finite Horizon LQT
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(b) Infinite Horizon LQT

Figure 3.3: Model based control. Both algorithms successfully bring and maintain the
heater temperatures within a small margin of the optimal values. In the finite horizon
case, the convergence is achieved more quickly, while in the infinite horizon case, more
time steps are required before the temperatures converge to the optimal.

Table 3.1 summarises all the parameters used in the model-based approaches to pro-

duce Figure 3.3.

Finally, we focus on the Q-learning algorithm introduced in Section 3.5. As this is a
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Table of parameters - Model based methods

Parameter Symbol Value

Universal parameters

Tracking reference r (155, 160, 165, 170, 180, 190)
Initial state x(t0) (50, . . . , 50)

Tracking error weighting matrix Q I6
Input weighting matrix R I7

Finite Horizon LQT

Time horizon T 100

Infinite Horizon LQT

Discount factor γ 0.99
Error threshold ϵ 0.1

Table 3.1: Parameters chosen for model-based control implementations. The information
listed includes the parameter names, the corresponding symbol and the value that was
chosen, grouped by the algorithms in which they were used.

learning algorithm, there is no access to the model of the system for the design of the

controller, i.e., matrices A,B are unknown. Instead, the model introduced in Section 3.3

is used only as a data generator. In a real application of this learning approach, the data

will be made available by sensorising the process itself, meaning that the steps regarding

the data generation will not be necessary.

The simulated data needs to be varied enough so that it holds sufficient information

about the system. This can be achieved by applying an input that is persistently exciting

[35,84], which can be achieved by the inclusion of probing noise. For our application, we

consider the following random vectors

ω1 ∼ N (0,
√
σI7), ω2, . . . ω8 ∼ N (0, I7)

�� ��3.33

where σ = 0.5. We design the probing noise vector for time t by summing sinusoidal

signals of various frequencies and periods, as follows:

ωpr(t) = ω1 + 10 sin

(
ω2πt

5

)
+ 8 sin

(
2ω3πt

5

)
+ 7 sin

(
3ω4πt

5

)
+6 sin

(
4ω5πt

5

)
+ 4 sin

(
5ω6πt

5

)
+ 3 sin

(
6ω7πt

5

)
+0.5 sin

(
7ω8πt

5

) �� ��3.34

It is important that the process remains stable during the simulations so that the

states do not end up diverging towards infinity. This means that the input, apart from
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being persistently exciting, also needs to be stabilising. To that end, we use the following

stabilising gain:

K =



0.7395 −0.0076 −0.0003 −0.0264 0.0194 −0.0170
−0.0076 0.7430 0.0031 −0.0093 0.0068 −0.0060
−0.0003 −0.0033 0.7599 0.0021 0.0002 −0.0002
−0.0126 −0.0042 0.0016 1.0971 0.0092 −0.0079
0.0171 0.0058 0.0002 0.0170 0.8179 0.0108

−0.0198 −0.0067 −0.0002 −0.0193 0.0143 0.6823

−0.1525 −0.0519 −0.0018 −0.1412 0.1091 −0.0977


�� ��3.35

In a real-life application, a stabilising gain would not need to be independently determined.

The process would be tuned from the manufacturer to avoid divergence that would cause

damage to the equipment. In our case, we can use the Matlab Control System Toolbox,

along with the system representation
�� ��3.31 , to obtain a stabilising gain. In particular,

the toolbox offers two of the most popular approaches to stabilising a system’s behaviour,

namely the Pole Placement method and the Linear Quadratic Regulator (LQR). To obtain

the gain
�� ��3.35 , we used the LQR approach.

Considering all the above, the input to the system for time t can be defined as

u(t) = −Kx(t) + ωpr(t)
�� ��3.36

where ωpr is the probing noise vector, as defined in
�� ��3.34 . Starting with the same state

initialisation as the previous cases, namely x(t0) = (50, . . . , 50) and initialising the input

function as u(t0) = ω1, we produce a set of 2000 data points that will be used for training.

In order to train the Q-learning based controller, a few more parameters need to be

determined. Firstly, the weighting parameters of the value function are chosen as above,

Q = I6 and R = I7. The discount factor was chosen to be γ = 0.99 and the regularisation

parameter µ = 0.001. Finally, the initial estimate of the kernel matrix is chosen to be

H0 = I19. We train the algorithm until the error between the estimates of H becomes

smaller than 0.001 or for a maximum of 30 iterations. Table 3.2 summarises all parameter

values used for the implementation of Q-learning for the state feedback problem.

Figure 3.4 displays the state trajectories that result by applying to the sys-

tem the controller learned with the use of Algorithm 7. The trajectories

are plotted over 100 time steps. The states converge to the vector x∗ =

(154.984, 159.998, 165.001169.994, 179.991, 189.991) which means they achieve tempera-

tures within 0.02°C of the optimal. The state trajectories arrive within that error margin

of the optimal in 20 time steps and convergence to their final values is completed within

36 steps. The results have a slight deviation from the optimal results produced by the
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Table of parameters - Q-Learning

Parameter Symbol Value

Tracking reference r (155, 160, 165, 170, 180, 190)
Initial state x(t0) (50, . . . , 50)

Tracking error weighting matrix Q I6
Input weighting matrix R I7

Discount factor γ 0.99
Regularisation parameter µ 0.0001

Initial kernel matrix estimate H0 I19

Table 3.2: Parameters chosen for the implementation of Q-learning. The information
listed includes the parameter names, the corresponding symbol and the value that was
chosen.

model-based methods but are close enough that plots 3.3b and 3.4 seem almost iden-

tical to the naked eye. This implies that the Q-learning algorithm converges to some

sub-optimal kernel matrix H (and corresponding gain K). The Frobenious norm of the

absolute difference between the optimal gain K∗ as determined by Algorithm 6 and the

estimated gain K̂ = H−1
uu HuX from Algorithm 7 is 0.753. The mean absolute error of the

individual elements populating the gain matrix is 0.0803.

100

125

150

175

0 25 50 75 100
time

h
e

a
te

r 
te

m
p

e
ra

tu
re

 e
v
o

lu
ti
o

n

variable

heater 1

heater 2

heater 3

heater 4

heater 5

heater 6

Figure 3.4: State Feedback Q-learning. The learning algorithm obtains a control gain
that is sub-optimal but successfully brings and maintains all temperatures within 0.11
degrees of the reference.

A different choice in the discount factor γ would result in a different tracking perfor-

mance. For example, choosing γ = 0.95 would cause the state trajectories to arrive and

remain within 0.07°C of the optimal, and choosing γ = 0.9 would bring the temperatures

within 0.14°C of the reference trajectory.

Another way to compare the performance of the Q-learning data-driven controller

with its model-based counterpart is to look into the minimisation of the performance

index
�� ��3.10 . This is a particularly important measure of performance, considering that the

data-driven controller seemingly performs better at tracking the optimal vector. However,

for both algorithms, the optimisation goal is the minimisation of the infinite sum of
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discounted costs, which includes both the tracking cost and the cost associated with the

input. Specifically, the model-based algorithm after 500 steps achieves a cumulative cost

of 153, 367 while the data-driven method reaches the value of 153, 743. In around 900

steps both algorithms have achieved their final performance index which is 153, 368 and

153, 745 for the model-based and model-free cases respectively. Figure 3.5 shows the two

cumulative costs over the first 500 time steps.
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Figure 3.5: Comparison of the cumulative costs between the model-based and model-
free algorithms. When the system dynamics are known, the performance index is more
effectively minimised.

It is worth noting that some of the numerical results might slightly vary between

different implementations, as they are dependent on the randomness introduced in the

algorithm.

3.7 Conclusion

We have studied the problem of controlling a state space temperature system of mate-

rial extrusion AM. Specifically, the system at hand was the heating system within the

extruder of a BAAM system. The control objective was set to be bringing and maintain-

ing the temperatures to some predetermined set of values. The problem was approached

through different lenses, namely classic Control Theory techniques as well as Reinforce-

ment Learning approaches. Initially, the focus was on model-based methods, exploring

both the finite and infinite horizon cases, the first approached through the standard LQT

algorithm, the second through Reinforcement Learning. Finally we explored the case of

data-driven, model-free state feedback.

We showed that, in the case when an exact model of the system is available, the design

of controllers is a deterministic process as it stems directly from the system dynamics.

Both the finite and infinite horizon LQT controllers successfully achieve the optimisation

goal, with a small error margin and within very few steps.

Given that obtaining exact models of physical processes is usually not possible, with

that being evident also in Additive Manufacturing, the field of Data-driven Control is be-
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ing very actively researched and developed. We approached the problem of optimising the

temperatures within the extruder without knowledge of its exact dynamics, using Rein-

forcement Learning techniques and specifically Q-learning. The assumption is made that

the entire state of the system is available for measurement. With an appropriate choice of

parameters and a large training data set, the obtained controller was able to achieve the

desired behaviour in the system within a few time steps. This is a very encouraging result

since it implies that many systems in general and 3D printers in particular, can learn

to optimise their behaviour simply by gathering data, without the need for complicated

models. The more advanced data-driven controllers become, the closer the idea of truly

Intelligent Manufacturing gets.

The results in this chapter are evidence to the fact that Reinforcement Learning, and

more specifically Q-learning, can produce comparable results to model-based methods

when controlling a state-space system. However, a few drawbacks of the approaches

are highlighted. Firstly, the assumption that the entire state is exactly measurable is

unrealistic. In real-life applications, measurements are obtained through sensors, which

can produce errors or measure multiple states at once. Hence, output feedback approaches

need to be investigated. Secondly, the training of the Q-learning algorithm requires a large

amount of data which can be an issue, especially when dealing with more complicated

systems. Machine learning approaches that are good at handling big data need to be

explored, such as Deep Learning. These issues remain as future work.
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4
Output Feedback Reinforcement Learning with

Parameter Optimisation for Temperature Control in

a Material Extrusion Additive Manufacturing system

Abstract

With the rapid development of Additive Manufacturing (AM) comes an urgent need

for advanced monitoring and control of the process. Many aspects of the AM process

play a significant role in the efficiency, accuracy and repeatability of the process, with

temperature regulation being one of the most important ones. In this work, we solve

the problem of optimal tracking control for a state space temperature model of a Big

Area Additive Manufacturing (BAAM) system. In particular, we address the problem

of designing a Linear Quadratic Tracking (LQT) controller when access to the exact

system state is not possible, except in the form of measurements. We initially solve the

problem with a model-based approach based on reinforcement learning concepts, with

state estimation through an observer. We then design a model-free reinforcement-learning

based controller with an internal state estimation step and demonstrate its performance

through a simulator of the systems’ behaviour. Our results showcase the possibility of

achieving comparable results while learning optimal policies directly from process data,

without the need for an accurate, intricate model of the process. We consider this outcome

to be a significant stride towards autonomous intelligent manufacturing.

4.1 Introduction

Additive Manufacturing (AM) is becoming one of the most popular manufacturing tech-

niques, with its appeal lying in the ability to build very complicated structures without

the need for a mould and without the waste of a lot of materials. There is an array

of different AM techniques, using different materials, and targeting different problems.
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For example, on the industrial scale, metal-based AM is being adopted at an increasing

scale due to its cost-effective and energy-saving nature [85–87]. Material extrusion (MEX)

on the other hand, a technique using different polymers such as PLA, allows consumers

to design and manufacture their own prototypes at home, making it more appealing to

hobbyists and small business owners, neither of which would normally have access to

traditional manufacturing techniques and equipment. While many different aspects of

AM processes need to be monitored and controlled [6–8], efficient closed-loop control

algorithms are still lacking in the AM space [5].

Control Theory techniques [10,11], specifically proportional integral derivative (PID)

controllers have been widely used to control various aspects of AM processes [19, 21,

22, 24, 26]. However, the lack of accurate models of the process is very challenging has

led to the development of controllers tuned through information learned from process

data. Reinforcement Learning (RL) [41, 42], and its Control Theory equivalent Dynamic

Programming [13,16,43], offer an array of techniques for learning optimal strategies within

intricate and unpredictable settings by maximizing rewards (or minimizing costs). In

recent years, as RL has gained popularity, researchers have employed it to address various

issues within AM [51, 53, 55–58, 61]. However, none of these papers use RL as a tool to

design optimal feedback controllers. For more references we refer to our previous work [88],

where we investigated the problem of temperature control in an AM system, when the

exact system state is directly available.

In this chapter, we address the problem of temperature control for a MEX AM sys-

tem without access to the exact system state, but with available sensor measurements

only. Specifically, we control the temperatures within the extruder of a Big Area Ad-

ditive Manufacturing (BAAM) system. We design a controller that solves the Linear

Quadratic Tracking (LQT) problem, derived directly from the process model. However,

we ultimately aim to have a controller that can learn optimal policies directly from pro-

cess data. We utilise Reinforcement Learning techniques to design a data-driven LQT

controller [79]. In the model-based case, the state can be estimated with the help of

an observer [89]. In the case of the data-driven controller, we incorporate a data-driven

state-estimation step in the controller, using a record of past inputs and outputs from

the system only, inspired by the work done in [90]. Furthermore, we optimise the param-

eters used to define the LQT problem using Bayesian Optimisation [91, 92]. As there is

no systematic way to choose these parameters, Bayesian Optimisation has been explored

in the literature due to its ability to handle optimising complex objectives when trial-

and-error approaches do not suffice [93–95]. Finally, while setting up our simulations, we

provide detailed guidelines on how to generate appropriate data to train the data-driven

controller. These data generation tools can be useful in many settings, in particular when

one needs to train a learning algorithm for dynamical systems.
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4.2. LINEAR QUADRATIC OUTPUT FEEDBACK CONTROL FOR A
STATE-SPACE SYSTEM

The structure of our chapter is as follows: In Section 4.2, we introduce the BAAM sys-

tem we wish to control and define the optimisation problem to be solved. Section 4.3 deals

with the design of the model-based state observer and controller, while in Section 4.4 we

present the design of the RL-based data-driven controller which includes state estimation

through input-output data. Section 4.5 introduces the main concepts of Bayesian Opti-

misation and Section 4.6 presents the results of our simulations, using both controllers,

before and after Bayesian Optimisation. Finally, in Section 4.7 we provide a thorough

discussion of our findings.

4.2 Linear Quadratic Output Feedback Control for a state-space

system

Faulty prototypes often occur in AM processes due to issues related to temperature reg-

ulation in various subprocesses. More specifically, the cause of these faults may be the

insufficient or excessive melting of the material, the unsuccessful binding between layers

or the non-uniform heating of the build-plate which can stop the print from adhering

properly.

In this work, we study the heating system of a Material Extrusion (MEX) system. In

particular, we are focusing on the temperatures within the extruder of a Big Area Additive

Manufacturing (BAAM) system. The extruder consists of 5 main parts, the hopper, the

barrel, the hose, the nozzle and the AC motor. The hopper is where the material is

inserted and gets fed to the barrel containing the screw which gets rotated by the motor.

The screw pushes the material towards the hose and finally to the nozzle. There are four

heaters placed along the barrel, one heater in the hose and one in the nozzle. The reason

behind the use of multiple heaters in BAAM systems is to address the large volume of

material that gets processed by the system. The areas where the heat is applied can be

viewed as thermal cells, each influencing their neighbouring cells and all getting influenced

by the motor. We adopt a discrete time, linear state-space representation of the system

inspired by the system model obtained in [69] through system identification methods,

using real process data. We make the further assumption that the temperatures within

the extruder are not directly available, instead, a set of measurements can be obtained

through a number of sensor measurements of the process.

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
�� ��4.1

where t ≥ t0 is the discrete time step, x(t) ∈ Rn is the system state at time t, u(t) ∈ Rm

is the system input at t and y(t) ∈ Rp is the system output obtained as measurements.
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Matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are the state, input and measurement

matrices respectively. For our system, there are m = 7 inputs, the first 6 representing the

load applied to each thermal cell by the corresponding heater and the last relaying the

input applied by the motor. The system state is a vector of length n = 6 representing the

temperature within each thermal cell. We assume that the sensor system obtains p = 5

measurements of the internal states of the system. A visual representation of the system

setup can be seen in Figure 4.1.
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Figure 4.1: Heating system for a BAAM extruder. The inputs include the heat applied
in each thermal cell and the input provided by the AC motor rotating the screw. The
system states represent the temperatures within the extruder, which are measured by the
sensors.

The temperature control problem is defined as the infinite horizon optimal tracking

problem, where the goal is to obtain the optimal input (or control) u∗ such that the

system output accurately tracks the reference signal r(t) ∈ Rp, generated according to

matrix F ∈ Rp×p

r(t+ 1) = Fr(t).
�� ��4.2

In most applications r(t) is chosen to be constant, namely F = Ip or r(t) = r ∈ R for

all t. However, the general, time-varying reference signal
�� ��4.2 can also be adopted in our

formulation. The control objective can be formally expressed as the minimisation of the

performance index defined as the total sum of discounted costs over an infinite horizon,
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namely:

min
u

J(x(0),u) = min
u

∞∑
t=0

γt
{
[y(t)− r(t)]TQ[y(t)− r(t)] + uT (t)Ru(t)

}
= min

u

∞∑
t=0

γt
{
[Cx(t)− r(t)]TQ[Cx(t)− r(t)] + uT (t)Ru(t)

}
�� ��4.3

where 0 < γ ≤ 1 is the discount factor, putting greater emphasis on short-term costs.

Q ∈ Rp×p and R ∈ Rm×m are positive definite symmetric matrices applying weight to

the tracking error and the input cost respectively. x(0) gives rise to all future states

x(t) and we define u as the infinite sequence containing all inputs {u(0), u(1), u(2), . . . },
also known as a policy. This means that the minimisation problem is equivalent to the

search for an optimal policy u∗. In the Reinforcement Learning literature [13,16,42], the

minimisation problem is addressed through the principle of optimality:

Definition 5 (Principle of optimality) [16] An optimal policy has the property that

whatever the initial state and initial input are, the remaining inputs must constitute an

optimal policy with regard to the state resulting from the first decision.

To utilise the principle of optimality, we define the Value Function as the cost-to-go at

time t, namely the sum of discounted future costs from time t onwards.

V (x(t),ut) =
∞∑
k=t

γk−t
{
[y(k)− r(k)]TQ[y(k)− r(k)] + uT (k)Ru(k)

}
=

∞∑
k=t

γk−t
{
[Cx(k)− r(k)]TQ[Cx(k)− r(k)] + uT (k)Ru(k)

} �� ��4.4

where ut = {u(t), u(t + 1), u(t + 2), . . . }. The Value function allows for the principle of

optimality to be expressed mathematically as theBellman optimality equation [13,42].

Let c(x(t), u(t)) = [Cx(t)−r(t)]TQ[Cx(t)−r(t)]+uT (t)Ru(t) be the cost at time t. Then

for the optimal policy u∗, the principle of optimality yields

V (x(t),u∗
t ) = c(x(t), u∗(t)) + γV (x(t+ 1),u∗

t+1)
�� ��4.5

for all t. In the following sections, we explore two different approaches to solving the

optimal tracking problem. The first is based on the design of a state observer while the

second utilises a record of past inputs and outputs to estimate the internal state. While

the observer design requires knowledge of the system dynamics, the second approach can

be adapted to be completely model free and data-driven.
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4.3 State Observer based Output Feedback

An important issue in the design of efficient controllers is the lack of access to the exact

system state x(t). Assuming knowledge of the system dynamics
�� ��4.1 , a state observer

can be implemented to provide an informed estimate of the state, that can then be used

for control design. This observer is also known as a closed loop observer or a Luenberger

observer [11,89].

In practice, the Luenberger observer is another state space system, made up of the

same state, input and output matrices as the original system, where the state equation has

an additional term associated with the error between the system output and the observer

output.

x̂(t+ 1) = Ax̂(t) +Bu(t) + L [y(t)− ŷ(t)]

ŷ(t) = Cx̂(t)
�� ��4.6

The matrix L ∈ Rn×p is known as the observer gain. The goal is to have an observer that

emulates the behaviour of the original system as closely as possible. In control theory

terms, we need to find a gain matrix L such that the matrix A− LC is stable [11]. This

problem can be approached as a pole placement problem, where the objective is to place

the poles of A − LC inside the unit circle. For that to be possible, the system needs to

be completely state observable [11]. The observability condition requires the column rank

of the matrix

O =



C

CA

CA2

...

CAn−1


�� ��4.7

to be n. If this condition is satisfied, the system state can be fully determined from

the system inputs and outputs. One approach to solve the pole placement problem is to

choose a small positive number τ and calculate the observer gain through:

L = ACTΨ−1 where Ψ = CCT + τIp
�� ��4.8

Once L is determined, the state estimate x̂ can be used in place of x to design a controller.

This means that the value function
�� ��4.4 can be rewritten as follows:

Vobs(x(t),ut) =
∞∑
k=t

γk−t
{
[Cx̂(k)− r(k)]TQ[Cx̂(k)− r(k)] + uT (k)Ru(k)

} �� ��4.9
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For the optimal control problem to be successfully solved, the system needs to be

controllable [11]. System
�� ��4.1 is said to be controllable when the matrix

C =
[
B AB A2B · · · An−1B

] �� ��4.10

known as the controllability matrix, has full row rank n. The controllability condition

implies that the system can be controlled to have the desired behaviour within a finite

number of steps, through an appropriate choice of control function u.

For the infinite horizon LQT problem
�� ��4.9 , a controller can be designed by adopting

the approach in [79]. Consider the augmented state

Xobs(t) =

[
x̂(t)

r(t)

] �� ��4.11

and the corresponding system dynamics

Xobs(t+ 1) = TXobs(t) +B1u(t).
�� ��4.12

where T =

[
A 0

0 F

]
and B1 =

[
B

0

]
. Using

�� ��4.11 ,
�� ��4.9 can be rewritten as

Vobs(X(t),ut) =
∞∑
k=t

γk−t{XT
obs(k)Q1Xobs(k) + uT (k)Ru(k)}

�� ��4.13

where

Q1 =

[
CTQC −CTQ

−QC Q

]
.

�� ��4.14

The optimal policy is in feedback form of the augmented system state

u∗(t) = −KXobs(t).
�� ��4.15

whereK is the optimal gain. K is commonly obtained through the solution of an Algebraic

Riccati Equation (ARE) which can be a challenging task and computationally expensive.

An alternative approach to determining K, particularly useful for large-scale models,

is through Reinforcement Learning (RL) techniques, namely, by utilising the Bellman

equation [41–43]. In order to form the Bellman equation, the following lemma is needed.

Lemma 1 [79] For the optimal tracking problem with value function of the form
�� ��4.9

and reference generated by robs(t+ 1) = Fobsxobs(t), then for any stabilising policy of the
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form
�� ��4.15 , the value function can be written in quadratic form as

Vobs(x(t),ut) = Vobs(X(t)) =
1

2
XT

obs(t)PX(obst)
�� ��4.16

for some matrix P = P T > 0.

Utilising the quadratic form of the value function, it can be rewritten as the Bellman

equation

XT
obs(t)PXobs(t) = XT

obs(t)Q1Xobs(t) + uT (t)Ru(t) + γXT
obs(t+ 1)PXobs(t+ 1).

�� ��4.17

Consider a stabilising policy K̂∗ in
�� ��4.17 . A matrix K is said to be stabilising when the

matrix A−BK is stable, namely has eigenvalues strictly within the unit circle [10]. Using

the augmented system dynamics
�� ��4.12 , we obtain the Lyapunov equation

P = Q1 + (K̂∗)TRK̂∗ + γ(T +B1K̂
∗)TP (T +B1K̂

∗).
�� ��4.18

Iterative solutions of the Lyapunov equation while updating the optimal control gain

estimate where

K̂∗ = (R+ γBT
1 PB1)

−1γBT
1 PT

�� ��4.19

and the corresponding control signal û∗ = −K̂∗Xobs can effectively lead to the solution to

the Optimal Tracking Problem. A step-by-step description of the RL based solution to

the LQT problem using state estimation through a state observer is given in Algorithm

8.

If the initial conditions given to the observer are the same or close in value to the true

initial conditions of the system, the observer estimates the state very closely within a few

time steps. The further away the initial values are, the longer it takes for the observer

to estimate the state correctly, so the longer it takes for the system’s behaviour to be

optimised, as the controller is designed based on the state estimates.

While the observer is a powerful estimator of the state, it includes an important

assumption which is access to the system dynamics, namely matrices A, B and C. This

is an unrealistic assumption in many applications, where a model of the process is either

not available or not accurate enough. In the next section, we explore another approach

for control design with state estimation.

4.4 Output Feedback using Input-Output data

Consider the performance index
�� ��4.4 to be minimised with r generated as in

�� ��3.8 . Simi-

larly to the previous section, we augment the state with the reference and construct the
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Algorithm 8: LQT control with state estimation through Luenberger observer

Result: State estimate x̂(t), Optimal control gain K∗, optimal controller u∗(t)
Input: State input and output matrices A,B,C, Weighting matrices for

performance index Q,R, Initial state estimate x̂(t0), small positive
number τ , Initial reference signal r(t0), Discount factor γ, Initial control
policy K0, Error threshold ϵ,, Simulation length N

1 Create augmented system matrices T =

[
A 0
0 F

]
, B1 =

[
B
0

]
;

2 Augment weighting matrix Q1 =

[
CTQC −CTQ
−QC Q

]
.;

3 Set Knew = K0 and randomly initialise K;
4 while ∥K −Knew∥ > ϵ do
5 Set K = Knew;
6 Solve the LQT Lyapunov equation

P = Q1 +KTRK + γ(T −B1K)TP (T −B1K);
7 Compute the control gain estimate Knew = (R+ γBT

1 PB1)
−1 γBT

1 PT ;

8 end
9 Set K∗ = K;

10 for t = t0, N do

11 Design augmented state Xobs(t) =

[
x̂(t)
r(t)

]
;

12 Obtain system input u∗(t) = −K∗Xobs(t) ;
13 Obtain output estimation ŷ(t) = Cx̂(t);
14 Observe system output y(t) = Cx(t);
15 Determine L = ACTΨ−1 where Ψ = CCT + τIp;
16 State estimate x̂(t+ 1) = Ax̂(t) +Bu∗(t) + L(y(t)− ŷ(t));
17 System state update (not measurable) x(t+ 1) = Ax(t) +Bu∗(t);
18 Reference signal update r(t+ 1) = Fr(t);

19 end
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augmented system dynamics:

X(t+ 1) =

[
x(t+ 1)

r(t+ 1)

]
=

[
A 0

0 F

][
x(t)

r(t)

]
+

[
B

0

]
u(t) = TX(t) +B1u(t).

�� ��4.20

The value function can be written in terms of X as

V (X(t),ut) =
∞∑
k=t

γk−t{XT (k)Q1X(k) + uT (k)Ru(k)}
�� ��4.21

where Q1 defined as in
�� ��4.14 . Assuming a feedback control policy, Lemma 1 allows for

4.21 to be written as

V (x(t),ut) = V (X(t)) =
1

2
XT (t)P1X(t)

�� ��4.22

which gives rise to the Bellman equation

XT (t)P1X(t) = XT (t)Q1X(t) + uT (t)Ru(t) + γXT (t+ 1)P1X(t+ 1).
�� ��4.23

Unlike the previous section, in addition to not having access to the internal system

state, we no longer assume knowledge of the system dynamics. Instead, we estimate the

state through a record of past inputs and outputs, under the assumption that the system�� ��4.1 is controllable and observable. Consider a time horizon N and recursively express

the state x(t) in terms of past inputs u(t− 1), . . . , u(t−N)

x(t) = Ax(t− 1) +Bu(t− 1)

= A2x(t− 1) +ABu(t− 2) +Bu(t− 1)

. . .

= ANx(t−N) +
[
B AB A2B . . . AN−1B

]

u(t− 1)

u(t− 2)
...

u(t−N)


:= ANx(t−N) + UN ū(t− 1, t−N).

�� ��4.24

Similarly, the system output can be expressed recursively as

y(t) = Cx(t) = CANx(t−N) + CUN ū(t− 1, t−N).
�� ��4.25
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Consider a sequence of N outputs

ȳ(t− 1, t−N) =



y(t− 1)

y(t− 2)

y(t− 3)
...

y(t−N)


�� ��4.26

which can be expressed in terms of x(t−N) and ū(t− 1, t−N) as

ȳ(t− 1, t−N) =



CAN−1

CAN−2

...

CA

C


x(t−N)

+



0 CB CAB . . . CAN−2B

0 0 CB . . . CAN−3B
...

...
...

. . .
...

0 0 0 . . . CB

0 0 0 . . . 0




u(t− 1)

u(t− 2)
...

u(t−N)


:= WNx(t−N) +DN ū(t− 1, t−N)

�� ��4.27

Matrix WN has full rank for N ≥ O where O is the rank of the observability matrix
�� ��4.7 .

Since we assume our system to be observable, then O = n. If N is chosen to be equal

to n, matrix UN is equal to the controllability matrix C
�� ��4.10 and WN is equal to the

observability matrix O
�� ��4.7 flipped from top to bottom.

We aim to express the state x(t) in terms of past inputs and outputs. Based on
�� ��4.24 ,

x(t − N) needs to be replaced by an expression in terms of u(t − 1), . . . , u(t − N) and

y(t− 1), . . . , y(t−N). This can be achieved by solving
�� ��4.25 for x(t−N). To that end,

consider the generalised Moore-Penrose inverse [96, 97] of WN , W+
N = (W T

NWN )−1W T
N .

Then

x(t−N) = W+
N (ȳ(t− 1, t−N)−DN ū(t− 1, t−N)).

�� ��4.28

53



4.4. OUTPUT FEEDBACK USING INPUT-OUTPUT DATA

Considering that r(t) = FNr(t−N), the augmented state X(t) can be written as:

X(t) =

[
AN 0

0 FN

][
x(t−N)

r(t−N)

]
+

[
UN

0

]
ū(t− 1, t−N)

=

[
AN 0

0 FN

][
W+

N (ȳ(t− 1, t−N)−DN ū(t− 1, t−N))

r(t−N)

]

+

[
UN

0

]
ū(t− 1, t−N)

=

[
UN −ANW+

NDN ANW+
N 0

0 0 FN

]ū(t− 1, t−N)

ȳ(t− 1, t−N)

r(t−N)



:= M

ū(t− 1, t−N)

ȳ(t− 1, t−N)

r(t−N)

 �� ��4.29

The above result establishes that the system state can be expressed in terms of past inputs

and outputs with the help of matrix M . Let Z(t) =

[
X(t)

u(t)

]
and consider the quadratic

form of the value function 4.22. It can be rewritten as

V (Z(t)) =
1

2
ZT (t)HZ(t)

�� ��4.30

with H =

[
Q1 + γT TP1T γT TP1B1

γBT
1 P1T R+ γBT

1 P1B1

]
. Using 4.29 in 4.30 we obtain

V (Z(t)) =
1

2

[
X(t)

u(t)

]T

H

[
X(t)

u(t)

]

=
1

2

M
ū(t− 1, t−N)

ȳ(t− 1, t−N)

r(t−N)


u(t)


T

H

M
ū(t− 1, t−N)

ȳ(t− 1, t−N)

r(t−N)


u(t)


�� ��4.31

Set Z̄(t) =


ū(t− 1, t−N)

ȳ(t− 1, t−N)

r(t−N)

u(t)

 and H̄ =

[
M 0

0 Im

]T

H

[
M 0

0 Im

]
. Then we can rewrite
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4.30 as

V (Z̄(t)) =
1

2
Z̄T (t)H̄Z̄(t)

=
1

2


ū(t− 1, t−N + 1)

ȳ(t, t−N + 1)

r(t−N + 1)

u(t)


T 

Hūū Hūȳ Hūr Hūu

Hȳū Hȳȳ Hȳr Hȳu

Hrū Hrȳ Hrr Hru

Huū Huȳ Hur Huu



ū(t− 1, t−N + 1)

ȳ(t, t−N + 1)

r(t−N + 1)

u(t)


�� ��4.32

The decomposition of H̄ in blocks of the form Hij is according to the dimensions of each

set of i, j. For example block Hūū will be a Nm × Nm matrix and block Huȳ will be a

m×Np matrix.

Due to the quadratic form of the value function, the optimality condition ∂V
∂u = 0 is

sufficient to ensure its minimisation. Solving for u(t) yields

u(t) = −H−1
uu (Huūū(t− 1, t−N) +Huȳȳ(t−N, t−N) +Hurr(t−N)).

�� ��4.33

If the system model is available,
�� ��4.33 can be used to directly determine the optimal

LQT controller using input-output information. The kernel matrix H̄ can be directly

determined using

H̄ =

[
M 0

0 Im

]T

H

[
M 0

0 Im

]
=

UN −ANW+
NDN ANW+

N 0 0

0 0 FN 0

0 0 0 Im


T

[
Q1 + γT TP1T γT TP1B1

γBT
1 P1T R+ γBT

1 P1B1

]UN −ANW+
NDN ANW+

N 0 0

0 0 FN 0

0 0 0 Im


�� ��4.34

where P1 is obtained by solving the standard LQT problem as in
�� ��4.18 .

We are interested in the case when a reliable model of the system is not available,

meaning matrices A,B and C are unknown. In this case, the kernel matrix H̄ needs to

be estimated strictly from data. To that end, consider the Bellman equation derived from

the quadratic form
�� ��4.30

Z̄(t)T H̄Z̄(t) = (y(t)− r(t))TQ(y(t)− r(t)) + uT (t)Ru(t)

+γZ̄(t+ 1)T H̄Z̄(t+ 1).
�� ��4.35

55



4.4. OUTPUT FEEDBACK USING INPUT-OUTPUT DATA

To obtain an approximation formula for H̄, it needs to be isolated from the quadratic

form. This can be achieved by firstly vectorising
�� ��4.35 :

vec
(
Z̄T (t)H̄Z̄(t)

)
= (y(t)− r(t))TQ(y(t)− r(t)) + uT (t)Ru(t)

+γvec
(
Z̄T (t+ 1)H̄Z̄(t+ 1)

) �� ��4.36

where the vec operator stacks the columns of a matrix to create a single column. We then

apply the “vector trick” associated with the Kronecker product

(
Z̄T (t)⊗ Z̄T (t)

)
vec(H̄) = (y(t)− r(t))TQ(y(t)− r(t)) + uT (t)Ru(t)

+γ
(
Z̄T (t+ 1)⊗ Z̄T (t+ 1)

)
vec(H̄).

�� ��4.37

To solve 4.37, we may employ the Policy Iteration (PI) or Value Iteration (VI) algorithm

[42]. In the standard Reinforcement Learning framework, where the problem is modelled

as a Markov Decision Process with discrete state and action spaces, there are two main

differences between the algorithms: Firstly, the PI assumes that the initial policy is an

admissible one while VI has no such requirement. The second difference lies in the way

the optimal policy is built. VI focuses on optimising the value function over all possible

actions and extracting the optimal policy at the end. PI updates the value function based

on the current policy estimate and extracts a new, better policy afterwards, iteratively

until the optimal is reached. In the case of continuous state and action spaces, such as

our control problem, we will focus on the VI algorithm, mainly due to the lack of need

for an initial stabilising controller (admissible policy). When the system dynamics are

not known, the design of such a controller becomes very challenging, though some work

has been done in recent literature on obtaining stabilising controllers through measured

data [98]. The algorithm iterates between a Policy Evaluation and a Policy Improvement

step. We start with an arbitrarily chosen initial kernel matrix H̄0 that obtains an initial

policy u0(t). We then iterate between the following two steps:

(1) Policy Evaluation

(
Z̄T (t)⊗ Z̄T (t)

)
vec(H̄ i+1) = (y(t)− r(t))TQ(y(t)− r(t)) + uT (t)Ru(t)

+γ
(
ˆ̄ZT (t+ 1)⊗ ˆ̄ZT (t+ 1)

)
vec(H̄ i)

(2) Policy Improvement

ui+1(t) = −(H i+1
uu )−1(Huūū

i+1(t− 1, t−N) +H i+1
uȳ ȳ(t− 1, t−N)

+H i+1
ur r(t−N))
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The Policy evaluation step can be solved through the Least Squares (LS) algo-

rithm using measured data Z̄(t) and calculating the corresponding cost term (y(t) −
r(t))TQ(y(t) − r(t)) + uT (t)Ru(t). It is worth noting that for the discounted fu-

ture cost term γ
(
ˆ̄ZT (t+ 1)⊗ ˆ̄ZT (t+ 1)

)
vec(H̄ i), we are not using the measured in-

put u(t + 1) but instead the estimated optimal input ui(t + 1), namely ˆ̄Z(t + 1) =[
ū(t, t−N + 1) ȳ(t, t−N + 1) r(t−N + 1) ui(t+ 1)

]T
. In RL terms, this yields the

expected future reward based on the current policy. Matrix H̄ is an ((N + 1)m + (N +

1)p)× ((N +1)m+ (N +1)p) symmetric matrix which means that its determination is a

problem that requires a minimum of ((N+1)m+(N+1)p)× ((N+1)m+(N+1)p+1)/2

data points. In practice, many more data points are usually needed, especially when

dealing with more complicated systems with larger state and action spaces. When the

data is highly correlated, which is often the case with sequential input output data from

a control system, the inversion step in the LS algorithm becomes challenging. This can

be rectified with a regularized LS approach, which includes an appropriate regularisation

parameter µ. A step by step description of the method introduced in this section is given

in Algorithm 9.

From a software point of view, the implementation of Algorithm 9 can become very

computationally expensive with larger system dimensions. There are a few ways to work

around this problem. The construction of matrix L in step (12) consists of the Kronecker

product terms obtained directly from the dataset. This means that L can be determined

only once outside the training iterations. Similarly for its regularised version Lr and more

importantly for the inverse L−1
r . Matrix inversion is a very expensive operation and an

approximation of the inverse might be necessary. Specifically, we chose to calculate the

inverse with the use of the Cholesky decomposition [99].

4.5 Parameter Tuning through Bayesian Optimisation

There are multiple aspects that influence the performance of a controller, both in the

model-based scenario and especially in the model-free, data-driven scenario. In the model-

based case, these aspects concern mainly the control objective design. In the case of

data-driven control, the resulting controller’s performance is influenced as much by the

characteristics of the data as by the definition of the optimisation problem. In the next

section we discuss the setup of our simulations so as to generate informative data, that

can be used to effectively train a controller. In this section, we focus on optimising the

design of the performance index, which dictates the control objective.

Apart from the system dynamics
�� ��4.1 , the main parameters influencing the optimisa-

tion are the weighting matrices Q and R in the performance index
�� ��4.3 . However, there is

no systematic way to choose the optimal values for these matrices, as their direct relation-
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Algorithm 9: LQT output-feedback control using input-output measured data

Result: Optimal kernel matrix estimate H∗, optimal controller estimate u∗(t)
Input: Weighting matrices for performance index Q1, R, regularisation

parameter µ, Reference signal r(t), Discount factor γ, Initial kernel
matrix H0, Error threshold ϵrl, time horizon N

1 Collect M ≫ ((N +1)m+ (N +1)p)× ((N +1)m+ (N +1)p)/2 consecutive data
tuples {y(t), u(t)};

2 Create vectors ū(t− 1, t−N), ȳ(t− 1, t−N) and

Z̄(t) =
[
ū(t− 1, t−N) ȳ(t− 1, t−N) r(t−N) u(t)

]T
;

3 For each Z̄(t), calculate the Kronecker product KZ̄(t) := Z̄T (t)⊗ Z̄T (t);
4 Set Hnew = H0 and randomly initialise H;
5 while ∥H −Hnew∥ ≤ ϵrl do
6 H = Hnew;
7 for t=N,M do
8 Determine

uest(t+1) = −(Huu)
−1(Huūū(t−1, t−N)+Huȳȳ(t−1, t−N)+Hurr(t−N));

9 Create the updated augmented state
ˆ̄Z(t+ 1) =

[
ū(t, t−N + 1) ȳ(t, t−N + 1) r(t−N + 1) uest(t+ 1)

]T
and the corresponding Kronecker product

K ˆ̄Z
(t+ 1) = ˆ̄ZT (t+ 1)⊗ ˆ̄ZT (t+ 1);

10 Compute the future expected cost term c(t) = XT (t)Q1X(t)
+uT (t)Ru(t) + γK ˆ̄Z

(t+ 1)vec(H);

11 end

12 Calculate the sums L =
∑M

t=N+1K
T
Z (t)KZ(t) and S =

∑M
t=N+1K

T
Z (t)c(t) ;

13 Regularise matrix L: Lr = L+ µI;
14 Produce new H estimate Hnew = L−1

r S;

15 end
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ship to the controller performance cannot be expressed by a known function. Hence, they

are commonly chosen empirically by the engineer, or for simpler problems, an exhaustive

search may be performed to obtain the best choice. For our system, an exhaustive search

would not be feasible, especially in the model-free case where the calculations become

vastly more computationally expensive due to the system augmentation. Motivated by

this we explore Bayesian Optimisation [91,92,100], which is a powerful optimization tool

in which uncertainty over the objective function is typically represented as a Gaussian

process (GP) [101].

In particular, we want to design a fitness function which quantifies the effect of Q and

R on the controller’s performance. We consider a controller to have good performance if

it tracks the reference signal closely, whilst not applying costly inputs to the system. A

choice for the fitness function could be the performance index itself as defined in
�� ��4.3 .

There are two main drawbacks to this choice. Firstly, an infinite sum is not feasible,

which means it would need to be replaced by a finite sum corresponding to the length of

the experiment. Secondly, using
�� ��4.3 as the fitness function to be minimised, may imply

that using very small values for Q and R is sufficient to have a good performance. Such

a choice, however, would only ensure that the sum of discounted costs is small, without

necessarily guaranteeing good tracking performance and low input costs. Hence, we define

the simpler fitness function

F (θ) =

l∑
t=0

γt(∥y(t)− r(t)∥2 + ∥u(t)∥2)
�� ��4.38

where ∥ · ∥ denotes the Euclidian norm and l is the length of the experiment. θ ∈ D
represents the parameterised choice of Q and R sampled from a bounded search domain

D. Considering that Q and R are symmetric positive definite matrices, we can choose

them to be diagonal matrices with all positive entries, as is common practice for simplicity.

This means that θ can be written as θ = {q1, . . . , qp, r1, . . . , rm} and D ⊂ Rp+m
+ . This

choice for F allows us to investigate the tracking and input costs as an indirect result of

Q and R, with the weighting matrices being used in the Bellman equation to obtain the

optimal policy and thus the optimal trajectory.

We want to minimise the fitness function with respect to θ. F can be modelled through

a GP prior as

F (θ) ∼ GP(µ(θ), k(θ, θ′))
�� ��4.39

The GP is characterised by a mean µ(θ) and a covariance or kernel function k(θ, θ′).

Consider a sample of l points {x1, . . . , xl} and calculate the covariance for each pair

{xi, xj}. The mean for this initial sample may be chosen as µ0 = 0 which is a common

choice for the mean when no prior information is available. For the kernel, we choose
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one of the most popular and simpler kernel functions which is the Square Exponential or

Gaussian kernel

k0(θ, θ
′) = exp(−∥θ − θ′∥2) where ∥θ − θ′∥2 =

p+m∑
i=1

(θi − θ′i)
2.

�� ��4.40

All the above yield the prior distribution

F (x1:l) ∼ N (µ0(x1:l), k0(x1:l))
�� ��4.41

where F (x1:l) = {F (x1), . . . , F (xl)}, µ0(x1:l) = 0l and k0(x1:l) = {k(x1, x1), . . . ,
k(x1, xl); . . . ; k(xl, x1), . . . , k(xl, xl)}. Once the prior distribution has been determined

for the initial sample of points, we can evaluate F at a new point x and compute the

conditional distribution of F (x) using Bayes’ rule

F (x)|F (x1:l) ∼ N (µl(x), kl(x))
�� ��4.42

where µl(x) = k0(x, x1:l)k0(x1:l, x1:l)
−1(F (x1:l)− µ0(x1:l)) + µ0(x) and kl(x) = k0(x, x)−

k0(x, x1:l)k0(x1:l, x1:l)
−1k0(x1:l, x). Distribution

�� ��4.42 is also known as the posterior prob-

ability distribution. The more points that are sampled, the more informed the posterior

becomes.

Returning to the optimisation problem at hand, we are looking for a choice of Q

and R that minimise F . The tool used in Bayesian Optimisation to find such a point is

known as the acquisition function. Acquisition functions provide a candidate for the best

point to sample next, based on the current estimate for the distribution. There are a few

different choices for acquisition functions, the most common including Expected Improve-

ment, Probability of Improvement and Gaussian Process Upper Confidence Bound. For

our application, we will be using the latter, defined as follows

aUCB(x;x1:l) = µl(x)− ϵkl(x)
�� ��4.43

where ϵ is a parameter balancing exploration against exploitation. The next point to

sample V is chosen as xnext = argmin aUCB. The new point can be used to update the

posterior distribution, while resulting in a more informed acquisition function that will

in turn suggest a better point to sample next. The process is repeated for a predefined

number of steps and the optimal is extracted at the end if M points have been sampled

in total, as

xbest = argmin
x

µM (x).
�� ��4.44
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4.6 Simulation setup and results

In this section we perform numerical simulations to investigate the behaviour of the

extruder heating system introduced in Section 4.2 after a controller is introduced to the

system. We assume partial access to the system state in the form of measurements and

explore both the case of full knowledge of the system dynamics and the case where a system

model is unknown. For our simulations, we need a model of the extruder dynamics which

will be used for the design of the model-based controller and to generate data to train

the data-driven controller. In [69], system identification methods were used to obtain the

following state and input matrices for a BAAM system:

A =



0.992 0.0018 0 0 0 0

0.0023 0.9919 0.0043 0 0 0

0 −0.0042 1.0009 0.0024 0 0

0 0 0.0013 0.9979 0 0

0 0 0 0 0.9972 0

0 0 0 0 0 0.9953



B =



1.0033 0 0 0 0 0 −0.2175
0 1.0460 0 0 0 0 −0.0788
0 0 1.0326 0 0 0 −0.0020
0 0 0 0.4798 0 0 −0.0669
0 0 0 0 0.8882 0 0.1273

0 0 0 0 0 1.1699 −0.1792


�� ��4.45

In addition, we design an output matrix for the system as follows:

C =


0.992 0.00018 0 0 −0.0001 0

0.0023 1.3 0.0043 0 0 0

0 −0.0042 1.0109 0.0024 0 0.201

0 0 0.0013 0.989 0.00031 0.64

0 0 0 0 0.923 0.3


�� ��4.46

We can easily verify that the system described by the above matrices is controllable and

observable. As highlighted in the previous section, the most important design parameters

for the optimisation are the weighting matrices Q and R. Before performing Bayesian

Optimisation to obtain the best values, we chose as a baseline, identity matrices of ap-

propriate dimensions, namely Q = Ip and R = Im.
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In BAAM systems, the multiple heaters located across the barrel heat the material

in steadily increasing temperatures until the material reaches a suitable temperature

for extrusion. For our simulations, we assume the polymer used is PLA, whose melting

temperature ranges between 160 and 180 °C. With this in mind, we set the reference signal

to be r(t) = (150, 160, 170, 175, 180),∀t ≥ t0. This means that the reference generating

matrix is F = I5. This reference will be used throughout the simulations, both for the

model-based controller and the data-driven case.

4.6.1 State Observer based Output Feedback

We first focus on the approach introduced in Section 4.3, starting with the design of

the State Observer, for which we choose τ = 0.002. For the controller design, we use a

discount factor γ = 0.99 and an error threshold for convergence ϵ = 0.01. We arbitrarily

initialise the state estimate with x̂(t0) = (50, . . . , 50) and the control policy with random

normally distributed numbers as K0 = (k1, . . . , kn+p) where ki ∼ N (0, 10). Finally, even

though we assume that the system state is not directly available, we need to initialise it

so that it can be updated and measured during the simulations. That starting point is

chosen to be x(t0) = (20, . . . , 20). Table 4.1 summarises all parameter values used for the

observer-based simulations.

Table of parameters - Observer based output feedback

Parameter Symbol Value

Tracking reference r (150, 160, 170, 175, 180)
Initial state x(t0) (20, . . . , 20)

Initial observer state x̂(t0) (50, . . . , 50)
Observer pole τ 0.002
Error threshold ϵ 0.01

Initial control gain K0 = {ki}n+p
i=1 ki ∼ N (0, 10)

Table 4.1: Parameters chosen for observer-based control implementations. The informa-
tion listed includes the parameter names, the corresponding symbol and the value that
was chosen.

Figure 4.2 shows the output trajectories obtained as a result of applying the

model-based controller for 100 time steps, as described in Algorithm 8. The con-

troller manages to bring all measurements within 0.03°C of the optimal. The mea-

sured temperatures arrive within 0.1 degrees of the target within only 10 steps and

remain there. The values that the measurements finally converge to are y∗ =

(149.9798, 159.9932, 169.9795, 174.9815, 179.9859). The error between the final measure-

ment values and the reference, calculated through the Euclidean norm, is ∥r − y∗∥2 =

0.0376. The value of the performance index obtained by this controller, approximated as
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4.6. SIMULATION SETUP AND RESULTS

the discounted sum of the first 100 cost terms is 183,362.5. When calculated over 1000

steps, it reaches 183,436.2. The performance index trajectory for 100 time steps can be

seen in Figure 4.3a. The good performance of the controller is due to the fact that the ob-

server approximates the system state very closely, thanks to the knowledge of the system

dynamics. The estimation error, calculated as the Euclidean norm e(t) = ∥x̂(t)− x(t)∥2,
is decreasing with each time step, reaching the value 0.008 in 100 steps. It is worth not-

ing that the closer the initial state estimate is to the initial state, the faster the error

decreases. This decreasing trend can be seen in Figure 4.3b where we plot the estimation

error for the first 100 time steps.
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Figure 4.2: Observer-based Output Feedback. The system output achieves temperatures
very close to the optimal within a few steps.
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Figure 4.3: Performance index and state estimation error for the Observer-based Output
feedback.

We perform Bayesian Optimisation to obtain better choices for the weighting matrices

Q and R and study the effect they have on our results. For simplicity, as is common

practice, we assume these matrices are diagonal and positive definite. Through some

trial and error attempts, we find that the best range of values for the diagonal entries is

positive numbers ≤ 1. To avoid numerical instability, we assume a lower limit for these
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4.6. SIMULATION SETUP AND RESULTS

values to be 0.01. Additionally, we want to put a higher emphasis on the tracking of the

reference signal. This is expressed by choosing appropriate upper limits for the entries of

each matrix. Specifically, we chose 1 as the upper limit for Q and 0.4 as the upper limit

for R.

We run the Bayesian Optimisation procedure as described in Section 4.5 with 50 initial

randomly sampled points for 100 iterations. The optimal values obtained for the matrices

Q and R rounded up to 3 decimal points are

Q∗ =


0.943 0 0 0 0

0 0.762 0 0 0

0 0 0.542 0 0

0 0 0 0.420 0

0 0 0 0 0.514


�� ��4.47

and

R∗ =



0.300 0 0 0 0 0 0

0 0.270 0 0 0 0 0

0 0 0.281 0 0 0 0

0 0 0 0.092 0 0 0

0 0 0 0 0.054 0 0

0 0 0 0 0 0.269 0

0 0 0 0 0 0 0.318


�� ��4.48

Using the optimised values Q∗ and R∗ we obtain the updated trajecto-

ries seen in Figure 4.4a. The values that the outputs converge to are:

(149.9940, 159.9946, 169.9843, 174.9873, 179.9834) which means they all arrive within

0.02°C of the optimal (cf 0.03°C for the previous version). The error of the final val-

ues from the optimal is ∥r − y∗∥2 = 0.0274, verifying that the tracking performance is

improved. Additionally, the performance index is significantly lower in this case, as can

be seen in Figure 4.4b. Specifically, the performance index obtains the value 76,060.36

after 100 steps and converges to 76,072.6 over 1000 steps. This means that the updated

weighting matrices result in a 58.5% reduction of the performance index.

4.6.2 Data generation

When designing and training model-free, data-driven controllers, much like any learning

algorithm, it is important to have data that is rich in information. In the case of the

algorithm introduced in Section 4.4, the iterative algorithm learns the kernel matrix H

through input-output tuples. Matrix H includes information of the system dynamics

as seen in Equation
�� ��4.34 , meaning that learning H is equivalent to learning the system
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(a) System output trajectories
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Figure 4.4: Output trajectories and performance index comparison for the Observer-
based Output feedback where the weighting matrices Q and R were obtained through
Bayesian Optimisation. The output trajectories are similar to the default case while
the performance index is minimised more effectively through the Bayesian Optimisation
approach.

model. This means that the problem can also be viewed as a system identification problem

[83].

An important advantage of working with simulated data generated from an assumed

model is that we can ensure the data is appropriate to train our algorithms. The way to

achieve that is by using a well-designed input signal to the system. Firstly, we need the

system output to stay bounded and not diverge towards infinite values, in which case the

data would not be usable. To that end, we can design the input to be in feedback form

u(t) = −Kdatax(t)
�� ��4.49

where the feedback gain Kdata is stabilising. In the case where the training data is

obtained from a real process, this step is not applicable, however, the process would be

tuned from the manufacturer to avoid extreme divergence. In the case of the system

introduced in
�� ��4.45 and

�� ��4.46 , we can use the Matlab Control System Toolbox to obtain

a stabilising gain. In particular, two of the most popular approaches to stabilising a

system’s behaviour are the Pole Placement method and the Linear Quadratic Regulator
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4.6. SIMULATION SETUP AND RESULTS

(LQR). Using the LQR approach, we obtain the gain:

Kdata =



0.7395 −0.0076 −0.0003 −0.0264 0.0194 −0.0170
−0.0076 0.7430 0.0031 −0.0093 0.0068 −0.0060
−0.0003 −0.0033 0.7599 0.0021 0.0002 −0.0002
−0.0126 −0.0042 0.0016 1.0971 0.0092 −0.0079
0.0171 0.0058 0.0002 0.0170 0.8179 0.0108

−0.0198 −0.0067 −0.0002 −0.0193 0.0143 0.6823

−0.1525 −0.0519 −0.0018 −0.1412 0.1091 −0.0977


�� ��4.50

Secondly, to ensure the output data is varied enough to efficiently train the control algo-

rithm, we require the input signal to not be ‘too simple’. This requirement can be fulfilled

by the addition of an appropriate probing noise signal to the input, meaning that it will

now be of the form

u(t) = −Kdatax(t) + ωpr.
�� ��4.51

We define the probing noise as a sum of a Gaussian noise signal and sinusoidal signals, of

varying ranges and frequencies. Specifically, to ensure great variety in the data, we chose

ranges between 10 and 100. The choice of sampling frequencies is more particular, where

an appropriate choice is the system’s bandwidth, i.e. the part of frequency domain where

most of signal’s energy is contained. Formally, a system’s bandwidth is the frequency

at which the magnitude of the system’s response drops below 0.707 (-3dB). In the case

of multi-input multi-output (MIMO) systems, the bandwidth is the frequency where the

maximum singular value of the frequency response crosses 0.707 from below [102]. In

Matlab, this value can be easily obtained for any system using the sigma function. The

bandwidth for our system is 1.65, so we use it as the maximum frequency from which to

sample sinusoidal signals. Finally, we add a normally distributed random vector to our

noise signal, to add an extra element of randomness. We consider the variance for this

vector to be σ = 1.5. Bringing all the above elements together, we have

ωpr = ω1 + 100 sin(ω2t) + 90 sin(ω3t) + 80 sin(ω4t) + 70 sin(ω5t)

+60 sin(ω6t) + 50 sin(ω7t) + 40 sin(ω8t) + 30 sin(ω9t)

+20 sin(ω10t) + 10 sin(ω11t)
�� ��4.52

where

ω1 ∼ N (0,
√
σI7), ω2 = (16.5, . . . , 16.5) ∈ R7, and ω3, . . . ω11 ∼ U7(0, 1.65).

�� ��4.53
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4.6.3 Data-driven Output Feedback

Using the input signal designed in the previous section, we can obtain data tuples

{y(t), u(t)} to train the data-driven RL based controller introduced in Section 4.4. In

particular, we generate M = 15000 samples and set a maximum number of iterations to

be 1000 in case the algorithm does not converge according to the error threshold chosen

as ϵrl = 0.001. As the system is fully observable, we choose the time horizon N for the

augmented data tuples to be N = 6. We choose the discount factor to be γ = 0.99 and

the regularisation parameter to be µ = 0.0001. Finally we initialise the kernel matrix H

as the identity matrix of appropriate dimensions, namely H0 = I(N+1)m+(N+1)p. We run

two sets of simulations, one with the weighting matrices Q,R chosen arbitrarily, and one

using the values for Q and R obtained through Bayesian Optimisation.

Table of parameters - Model based methods

Parameter Symbol Value

Universal parameters

Tracking reference r (150, 160, 170, 175, 180)
Initial state x(t0) (50, . . . , 50)

Discount factor γ 0.99
Error threshold ϵrl 0.001

Regularisation parameter µ 0.0001
Time horizon N 6

Initial kernel matrix H0 I(N+1)m+(N+1)p

Table 4.2: Parameters chosen for data-driven RL based implementations. The information
listed includes the parameter names, the corresponding symbol and the value that was
chosen.

Firstly, we focus on the case of the arbitrarily chosen weighting matrices Q and R.

We chose them to be identity matrices of appropriate dimensions, namely Q = I5 and

R = I7. Figure 4.5 shows the output trajectories obtained through the data-driven

controller described in Algorithm 9, and the corresponding performance index. The

measurements converge to values within 1°C of the optimal, specifically to the vector

y∗ = (150.0857, 160.1181, 171.0027, 175.7926, 180.1416). The performance index, defined

as the infinite sum of discounted costs, is estimated by a large finite sum which for 1000

steps is 1,074,985. We plot it for the first 100 steps, in which period the sum has obtained

the value 1,065,077.

We now perform Bayesian Optimisation on Q and R using the same upper and lower

bounds for the search space as in Section 4.6.1, namely we chose 0.1 as the lower bound

for both matrices and chose 1 as the upper bound for Q and 0.4 as the upper bound for

R. We generate a grid of 50 random initial samples and then train the algorithm for 100
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(b) Performance Index

Figure 4.5: Output trajectories and the performance index the data-driven Output feed-
back algorithm using input-output data, where the weighting matrices Q and R were
chosen as identity matrices of appropriate dimensions.

iterations. The optimal values found for Q and R rounded to 3 decimal points are

Q∗ =


0.174 0 0 0 0

0 0.056 0 0 0

0 0 0.010 0 0

0 0 0 0.010 0

0 0 0 0 0.160


�� ��4.54

and

R∗ =



0.145 0 0 0 0 0 0

0 0.389 0 0 0 0 0

0 0 0.020 0 0 0 0

0 0 0 0.116 0 0 0

0 0 0 0 0.099 0 0

0 0 0 0 0 0.316 0

0 0 0 0 0 0 0.010


.

�� ��4.55

With these values for Q and R, Algorithm 9 obtains a controller that produces

the output seen in Figure 4.6a. The measurements converge to the vector y∗ =

(150.069, 160.154, 170.011, 175.199, 180.176) after 100 steps, namely they converge within

0.2°C of the optimal. This means that tracking performance is significantly improved

compared to the previous case. In addition, the overall cost is much lower, as can be

seen by the comparison of the two performance indices, before and after Bayesian Opti-

misation, in Figure 4.6b. In particular, the new infinite sum of discounted costs, when

approximated by the first 100 steps, obtains the value 204, 635.7, while the value reached

after 1000 steps is 206, 358.8. This means that Bayesian Optimisation achieves an 80.8%

decrease in the cost, as expressed through the performance index.
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Bayesian Optimisation
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Figure 4.6: (a) Output trajectories where the weighting matrices Q and R were obtained
through Bayesian Optimisation. (b) A comparison of the performance index before and
after the optimisation of Q and R. There is a significant decrease of the total cost after
Bayesian Optimisation.

It is important to note that in Figure 4.6b, the two quantities being compared are being

weighted by the corresponding weighting matrices Q and R. The matrices resulting from

Bayesian Optimisation are populated by elements that are significantly smaller than 1,

which implies that the weights applied to the cost terms are much smaller in the Bayesian

Optimisation case. This makes the comparison biased and does not provide clarity on the

improvement that Bayesian Optimisation offers. To get a clear picture of this, we look at

the individual unweighted cost terms achieved in both cases, after convergence. Table 4.3

displays the input, tracking and total costs after the first 10,000 steps in the simulation,

after convergence is achieved. By input, tracking and total costs we refer to the terms

∥u∥2, ∥r−y∗∥2 and ∥u∥2+∥r−y∗∥2 respectively, where ∥·∥2 denotes the Euclidean norm.

The comparison of the individual unweighted costs proves that Bayesian Optimisation

achieves a significant reduction in all costs, namely an 87.5% reduction of the total cost

and an 87.8% and 86.6% reduction of the input and tracking costs respectively.

Comparison of costs

Cost Before B.O. After B.O.

Input 12.840 1.726

Tracking 68.309 8.363

Total 81.149 10.089

Table 4.3: Comparison of unweighted costs before and after Bayesian Optimisation. The
weighting matrices obtained through Bayesian Optimisation result in learning a controller
that achieves much lower costs after convergence.

Different implementations might yield slightly different numerical results, depending

on the randomness introduced into the algorithm. In particular, randomness is introduced
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in the data generation step, as well as the sampling for Bayesian Optimisation. However,

as long as the learning algorithm is designed according to Algorithm 9 and the data

is generated appropriately, as described in Section 4.6.2, the resulting controller will

successfully track the reference signal, and Bayesian Optimisation will consistently reduce

the cost while maintaining good tracking performance.

4.7 Conclusion

In this work, we investigated the problem of temperature LQT control within the extruder

of a Big Area Additive Manufacturing system, through tracking a reference signal. In

particular, we focused on the case where direct access to the system state is not possible,

instead, some measurements of the state are available. We considered a state-space model

identified and validated based on real data describing the system dynamics, and used it to

simulate the system’s behaviour and response to different controllers. The lack of access

to the system state introduces the need for a state estimation step, to better inform the

controller. Assuming the system model is available, the task of state estimation can be

performed through the implementation of a state observer. The resulting state estimate

is then used to inform a feedback controller, designed using model-based Reinforcement

Learning Techniques, with the Bellman equation being the main tool.

Next, we investigated solving the Output Feedback problem in a model-free and data-

driven way. We used the state space temperature model for data generation but no

longer assumed it to be available for the control design. We instead used Least Squares

to train a controller directly from process data, while incorporating a state estimation

procedure in the algorithm. As with many learning algorithms, the data quality is really

important when training data-driven controllers. For this reason, we provide an in depth

discussion on the input signals that would generate “good” data when applied to the

system. Finally, we explored the use of Bayesian Optimisation to improve the choice of

weighting parameters in the performance index.

We presented our results before and after the implementation of Bayesian Optimisa-

tion, both for the model-based and data-driven controllers. For the model-based scenario,

the obtained controller successfully tracks the reference signal, which was expected given

the access to full information about the system. We were able to achieve comparable

results while alleviating the need for knowledge of the system dynamics. This is a very

encouraging result, considering how challenging it is to have accurate models of AM

processes. Our results also indicate the improvement Bayesian Optimisation offers, as

expressed through the significant reduction of the performance index, namely a 58.5%

improvement in the model-based case and an 80.8% improvement in the data-driven case.

The improvement can also be highlighted by examining the individual unweighted costs
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after convergence, where Bayesian Optimisation improves the total cost by 87.5%.

While our approach is a valuable tool to solving the LQT problem, it presents certain

limitations. The basis of our approach is the quadratic form of the objective function

(performance index). When defining a control problem, the objective function can take

many forms, especially when introducing constraints into the problem. For example,

we can impose constraints on the output response of the system so that the values fol-

low steadily increasing trajectories and the dip seen in Figures 4.6a and 4.5a is avoided.

Another important drawback of our approach stems from its mathematical and computa-

tional complexity. In particular, the implementation of Least Squares for the estimation

of kernel matrix H involves matrix operations between very large matrices. Normally,

the more complex the system to be controlled is, the larger the state space needed to de-

scribe it is. This means that the matrices involved in the introduced method can become

significantly larger than the ones in our case study.

The above concerns can be addressed through the introduction of more abstract Rein-

forcement Learning algorithms, based on incorporating Deep Neural Networks [43]. These

are powerful function approximators that can handle large amounts of data, thus being

able to handle much more complicated systems and alieviating the need for a particular

form to the value function. These approaches are widely known as Deep Reinforcement

Learning methods. A very popular one among them is the Actor-Critic framework [46],

where one network approximates the value function (critic) and another produces the new

action to be taken (actor). We leave these approaches as future work which we explore

elsewhere.
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5
Deep Reinforcement Learning based Temperature

Control for Material Extrusion

Abstract

With the wider adoption of Additive Manufacturing (AM) both in industrial settings

and in everyday life, comes a strong need to ensure the safety, repeatability, and cost

efficiency of the process. This need can be addressed by the development of efficient

monitoring and control algorithms to ensure all aspects of the process are performing

according to certain expectations. The lack of exact and simple process models in AM

makes the use of traditional model-based control approaches inapplicable. We propose

a Deep Reinforcement Learning approach using the Deep Deterministic Policy Gradient

(DDPG) algorithm, to learn an optimal controller without any prior knowledge of the

system’s dynamics, purely based on available measurements. Our results indicate that we

can have efficient controllers that satisfy a constrained optimisation criterion and learn

directly from process data.

5.1 Introduction

Additive Manufacturing (AM) is the technology currently at the front stage of the manu-

facturing field. It has revolutionised the field, thanks to its flexibility in building compli-

cated structures with minimal waste of material. AM technologies are being integrated

into various applications such as the design of parts in aerospace industries [86, 103, 104]

and the design of biomedical devices [105, 106]. They are also becoming increasingly

popular as educational tools used by institutions, as well as becoming a favourite for hob-

byists, that now have the power of manufacturing in their own hands. Despite its overall

promising future, there remains one main barrier to the wide adoption of AM, the lack

of efficient monitoring and feedback control of the process [8, 9, 107].

Traditionally, the design of feedback controllers for AM would be approached through
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standard Control Theory techniques [19, 21, 22, 24, 26]. However, the scarcity of accurate

models of AM processes has inspired the adoption of Reinforcement Learning (RL) [41,42]

to solve control problems by formulating them as sequential decision-making problems. An

important extension to RL is Deep Reinforcement Learning (DRL) [77] which involves the

incorporation of Deep Neural Networks (DNNs) [49] as function approximators, allowing

RL to scale decision-making problems with large state and action spaces that were previ-

ously intractable. DRL offers another advantage over standard RL, the ability to handle

continuous actions, something that many RL approaches by design cannot do. Some pre-

vious work has explored applying RL concepts, mainly value functions and the Bellman

Optimality Equation [16], to solve Optimal Control problems when the value function

can be assumed to have a quadratic form [79, 80]. Our previous work involved applying

these concepts to controlling the temperature in Material Extrusion AM systems both in

the fully observable case [88] and when the system state needs to be estimated [108,109].

However, while this algorithm can achieve very good performance, the assumption of a

particular form for the value function is an important limitation that we are aiming to

overcome in this work. The use of DRL for continuous control can achieve this, as these

approaches involve approximating the value function. The flexibility and adaptability of

DNNs allow for value functions that may be non-linear, involve additional constraints

etc. Two of the most popular DRL algorithms that have been recently developed are the

Proximal Policy Optimisation (PPO) algorithm [59] and the Deep Deterministic Policy

Gradient (DDPG) algorithm [60]. Some early attempts have been made at using these

algorithms in the context of AM. Specifically, PPO has been used for optimising the melt

pool depth in [61] and tool path in [62]. An extension of DDPG called Twin Delayed

DDPG [110], has been used to control the motion of a Robot arm AM system [63] and a

tower-crane AM system [64].

In this work, we explore the use of the DDPG algorithm for controlling the temper-

atures within the extruder of a Big Area Additive Manufacturing (BAAM) system that

uses Material Extrusion technology. We use a state-space model of the heating system

introduced in recent literature [69] to simulate the behaviour of the system and produce

data to train the data-driven controller. The reason behind the use of simulations is the

need to interact with the system to produce new data as the optimal policy gets up-

dated. Contrary to other Machine Learning approaches that can be trained on previously

acquired data, RL agents need to interact with their environment during training. To

interact and explore their environments efficiently, they need to try a wide range of ac-

tions and observe the corresponding rewards. If this process were to happen in a real-life

system, there is the risk of exploring actions that can damage the machine and waste a

lot of material and resources.

In Section 5.2 we introduce the BAAM temperature system to be controlled as well as
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the control objective. Section 5.3 consists of the main ideas of the DDPG algorithm and

its adaptation to solving the temperature regulation problem. In Section 5.4 we provide

the details of our simulations and the results obtained from them. Finally, in 5.5 we offer

some concluding remarks and future research directions.

5.2 Material extrusion temperature model and control

We consider the heating system within the extruder of a Big Area Additive Manufacturing

(BAAM) system. BAAM technology involves the adaptation of Material Extrusion to

large-scale manufacturing with the use of polymers and composite materials. Due to

the large volume of material used in BAAM applications, the heating process requires

multiple steps, to ensure even melting of the material before extrusion. This is achieved

by the inclusion of multiple heaters along the extruder that melt the material in stages,

achieving the ideal extrusion temperature by the time the material reaches the nozzle.

A typical BAAM extruder consists of 5 main parts, the hopper, the screw, the barrel,

the hose and the nozzle, as can be seen in Figure 5.1. The material gets fed into the

extruder through the hopper and gets pushed along the barrel with the screw, which

gets rotated with the help of an AC motor. The heating of the material takes place

in the barrel, specifically in 4 consecutive heating zones, then gets fed into the hose,

where it is further heated, and finally reaches the nozzle where it reaches its final melting

temperature for extrusion. The temperature of the heating zones is dependent on the

heat input applied to each of them and their neighbouring zones, as well as the input

from the AC motor. A state space temperature model of this temperature system was

introduced in [69] and has the form

x(t+ 1) = Ax(t) +Bu(t)
�� ��5.1

where x(t) ∈ R6 is the system state at time t, representing the temperatures in each

thermal zone, and u(t) ∈ R7 is the system input at time t, namely the heat applied to the

6 zones and the motor input. A ∈ R6×6 and B ∈ R6×7 are the state and input matrices

respectively that have been estimated through system identification methods from real

process data in [69].

We aim to control the temperatures within the extruder in order to ensure the proper

gradual melting of the material. In other words, our goal is to design a controller of the

system state x(t) so that it tracks a certain reference signal r(t) ∈ R6 representing the

ideal temperatures for each thermal cell. This objective can be expressed in terms of a
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Figure 5.1: Heating system in the extruder of a BAAM system. The heater consists of 6
heating zones, or thermal cells. The temperature at each thermal cell gets influenced by
its neighbouring cells as well as the motor rotating the extruder screw.

quadratic performance index to be minimised (subject to
�� ��5.1 )

J(x(0),u) =
∞∑
t=0

γt
{
[x(t)− r(t)]TQ[x(t)− r(t)] + uT (t)Ru(t)

} �� ��5.2

where u is the control policy to be optimised, Q ∈ R6×6 is a weighting matrix for the

tracking error, and where we also include a cost term associated with the input weighted

by matrix R ∈ R7×7. We also assume the time horizon has not been predefined, so we

consider it to be infinite, which creates the need for a discount factor 0 < γ < 1 that

attributes a higher importance to immediate costs over future ones. Furthermore, we

impose constraints upon the upper and lower limits of the temperature. The physical

interpretation of these constraints can be attributed to the machine itself, the cost of

achieving such extremes or the strain caused to the material by excessive heating and

cooling. Consider bu to be the upper limit and bl the lower limit for the state. Then the

constrained optimisation problem can be written as

min J(x(0),u)

subject to x(t) ≤ bu, ∀t
x(t) ≥ bl, ∀t.

�� ��5.3

In the unconstrained case, a formula for the analytical solution to the minimisation

problem can be found, due to the convenient quadratic form of the performance index.

The Least Squares algorithm can then be used to estimate the terms of the formula, using

process data [88]. With the complexity of the problem increased by the introduction of

constraints, a more sophisticated algorithm is needed to learn the optimal policy.
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5.3 Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient (DDPG) [60] is a powerful Deep Reinforcement

Learning algorithm capable of handling continuous state and action spaces, complicated

environments and value functions. This algorithm combines two of the most popular DRL

frameworks, the Actor-Critic framework [46] and Q-learning [44] or more specifically Deep

Q-learning [77].

DDPG consists of two Deep Neural Networks, the Actor and the Critic. The Actor

is tasked with learning the optimal policy and the Critic with learning the optimal value

function. During training, the Actor chooses actions to perform at each state, and the

Critic judges how good that action was, by producing an estimate of the value function

for that particular state-action pair. By action in the context of RL, we refer to the

system inputs in Control Theory terms. In what follows, we will be using the two terms

interchangeably. The action is deterministic in terms of the state, which means that at

each state the action to be taken is the same every time the state is visited. In classic RL

and DRL problems, the value functions quantify how good a state-action pair is through

the rewards received. In our application, however, instead of acquiring rewards that we

intend to maximise, we are burdened with costs that need to be minimised. Specifically,

following the definition of the constrained optimisation problem
�� ��5.3 , the cost of choosing

action u(t) at state x(t) is

c(t) = [x(t)− r(t)]TQ[x(t)− r(t)] + uT (t)Ru(t) + λ1(x(t)− bu) + λ2(bl − x(t))
�� ��5.4

where λ1, λ2 are constants, serving the same purpose as Lagrange multipliers in Optimal

Control Theory [10].

The value function is defined as the expected sum of discounted future costs, starting

from state x(t), choosing action u(t) and then following the deterministic policy µ(x)

onwards

qµ(x(t), u(t)) = Eµ[c(t) + γc(t+ 1) + γ2c(t+ 2) + . . . |x(t), u(t)].
�� ��5.5

The main tool used in RL to optimise value function is the Bellman Equation [16]. It is

the mathematical expression of the Optimality Principle, which states that an optimal

policy for state x(t) will also be optimal for the state resulting from the action u(t)

qµ(x(t), u(t)) = E [c(t) + γqµ(x(t+ 1), µ(x(t+ 1)))] .
�� ��5.6

In order to train the Actor and the Critic networks, we employ two important tech-

niques associated with training Deep Q Networks (DQN), the Replay Buffer and the
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incorporation of Target Networks. The target networks are two additional DNNs, identi-

cal to the Actor and the Critic in structure, used to generate the target values for training.

In particular, considering that the Critic is estimating the value function qµ and the Actor

is estimating the policy µ, if we were to use them to calculate the right-hand side of the

Bellman equation
�� ��5.6 , it would lead to great instability. The cause of this instability is

the overestimation of the Q-values, an effect commonly referred to as “catastrophic for-

getting”. What this means is that the network gets continuously updated, not allowing

itself time to consider the effect of the actions that have recently taken place. To circum-

vent this issue, we use two target networks, whose structure is identical to the original

networks. The use of target networks is a technique first introduced in [50] and has since

been widely adopted in the training of Deep RL agents. Instead of updating them after

each training instance, we use “soft updates” to update their weights. Let θa, θc be the

weights of the actor and the critic respectively, and θ′a, θ
′
c the weights of the respective

target networks. The weight updates happen according to

θ′a ← τθa + (1− τ)θ′a

θ′c ← τθc + (1− τ)θ′c
�� ��5.7

where τ is a very small positive number.

The Replay Buffer is a tool meant to aid us in training the networks on data that are

i.i.d., or as close to i.i.d., as possible. At each iteration step t, we store a tuple of the

form {x(t), u(t), c(t), x(t + 1)} in a memory buffer, and sample a minibatch of size N of

tuples to train the DNNs with. For each tuple in the minibatch, {xi, ui, ci, x′i}, calculate
the right hand side of

�� ��5.6 using the target networks

yi = ci + γqtarget(x′i, µ
target(x′i))

�� ��5.8

which will be the target value for the Critic, associated with the input pair (xi, ui). The

critic gets trained by back-propagating the error (q(xi, ui)−yi)2 for each i ∈ 1, . . . N , where

q(xi, ui) is the current value function estimate produced by the critic. To train with the

entire minibatch, we calculate all the target values according to
�� ��5.8 and back-propagate

the mean squared error L = 1
N

∑
i(q(xi, ui)− yi)

2.

The Actor on the other hand gets updated with the use of the deterministic policy

gradient [81]. Let θa be the Actor’s weights and θc be the Critic’s weights. Considering a

minibatch of size N , the sampled gradient of the performance index in terms of the policy

is

∇θaJ ≈
1

N

∑
i

∇aq(x, a|θc)|x=xi,a=µ(xi)∇θaµ(x|θa)|xi

�� ��5.9
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where µ is the current learnt policy from the actor. From an implementation point of

view, we first calculate the recommended actions µ(xi) from the Actor for each state xi

in a minibatch and then obtain the value function estimate from the Critic for each pair

(xi, µ(xi)). The mean of the value function estimates q(xi, µ(xi)) gets backpropagated

through the actor network to update its weights towards the minimisation of q.

A final but very important aspect of training a DDPG agent, or any DRL agent, is the

environment exploration. For the agent to effectively learn the environment’s dynamics,

it needs to sufficiently explore it, something that might not be possible if the actions taken

are only the ones generated by the Actor. For this reason, we include a noise processM
to the action at time t:

u(t) = µ(x(t)) +M
�� ��5.10

The noise process M is chosen according to the application at hand. Integrating all of

the above elements, Algorithm 10 gives the steps to implementing the DDPG algorithm

within a certain environment.

5.4 Simulation setup and results

We set up a simulation environment of the extruder temperatures using the model
�� ��5.1

and the system matrices identified in [69] through system identification methods, using

process data. The state and input matrices used are:

A =



0.992 0.0018 0 0 0 0

0.0023 0.9919 0.0043 0 0 0

0 −0.0042 1.0009 0.0024 0 0

0 0 0.0013 0.9979 0 0

0 0 0 0 0.9972 0

0 0 0 0 0 0.9953


�� ��5.11

B =



1.0033 0 0 0 0 0 −0.2175
0 1.0460 0 0 0 0 −0.0788
0 0 1.0326 0 0 0 −0.0020
0 0 0 0.4798 0 0 −0.0669
0 0 0 0 0.8882 0 0.1273

0 0 0 0 0 1.1699 −0.1792


�� ��5.12

We design the environment to be bounded, with the range of admissible actions to be

(0, 1) and the range of temperatures the heaters can reach to be (50, 300) °C.
We consider the extruded material to be PLA, whose melting point is between 170

°C and 180 °C. We set the reference signal r(t) = (150, 160, 165, 170, 175, 180) for all t,
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Algorithm 10: DDPG algorithm

Result: Actor and Critic Networks
Input: Number of episodes n, Max steps per episode m, Discount factor γ,

Batch size N , Soft updates parameter τ , Initial state x(0), Noise term
processM

1 Initialise Actor µ(x|θa) and Critic q(x, u|θc)with weights θa and θc;
2 Initialise target networks µtarget and qtarget with weights θ′a ← θa and θ′c ← θc;
3 Initialise replay buffer;
4 for episode = 0,n-1 do
5 for t = 0,m-1 do
6 Choose action according to u(t) = µ(x(t)) +M;
7 Receive cost c(t) from environment;
8 Sample the next state x(t+ 1) from environment;
9 Augment the replay buffer by the tuple {x(t), u(t), c(t), x(t+ 1)};

10 Sample a batch of size N from the replay buffer;
11 for i in 1:N do
12 Extract i-th tuple {xi, ui, ci, x′i};
13 Set the target for the critic yi = ci + γqtarget(x′i, µ

target(x′i)) ;
14 Obtain recommended actions µ(xi) from the Actor and corresponding

value function estimates from the Critic qi = q(xi, µ(xi))
15 end
16 Update the critic by minimising the loss L = 1

N

∑
i(q(xi, ui)− yi)

2;
17 Update the actor by minimising the mean qi ;
18 Update the target networks:

θ′a ← τθa + (1− τ)θ′a

θ′c ← τθc + (1− τ)θ′c

19 end

20 end
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so that the final heating of the material that happens in the nozzle, will bring it to its

melting temperature. We further assume that the the upper and lower bounds for the

state are bu = (220, . . . , 220) ∈ R6 and bl = (110, . . . , 110) ∈ R6, indicating that it is

overly costly for the machine to exceed those bounds. To further test our algorithm’s

ability to remain within the bounds, before each episode we reset the environment to a

state outside the minimum bound, x(0) = (60, . . . , 60) ∈ R6. For the cost function
�� ��5.4

we choose multipliers λ1 = λ2 = 0.1 and the weighting matrices Q = I6 and R = I7. The

value function discount factor is chosen to be γ = 0.99 and the soft updates parameter

τ = 0.005.

Both the Actor and the Critic Networks have two fully connected layers of 1000 and 800

nodes respectively. The learning rates, determining how quickly the DNNs’ weights get

updated, are chosen to be a = 0.002 and β = 0.0005 for the Actor and Critic respectively.

The networks get trained for a total of n = 600 episodes of m = 1000 time steps each

using minibatches of size N = 128. In order to ensure stable training of the networks, we

also standardise the data before training with each minibatch.

In the original DDPG paper [60], the action noise is generated from an Ornstein-

Uhlenbeck process [111]. However, a simple normal distribution can be as effective, an

assertion supported by empirical evidence that was comprehensively shown in a com-

parative study [112]. We chose a mean of 0 and a standard deviation of 0.3. In order

to provide an even wider variety of data for training, we generate data in a uniformly

random manner, within the predetermined environment limits, for the first 30 episodes.

This means that we randomly pick an action between (0, 1) for each state, apply it to

the system and observe the cost and new state. After the first 30 episodes, the data gets

generated from employing actions as in
�� ��5.10 , withM∼ N (0, 0.3). Table 5.1 lists all the

parameters chosen for our simulations.

Within 600 episodes of 1000 time steps each, the losses of the two DNNs quickly

decrease, showing the convergence to a local minimum. The two losses throughout training

can be seen in Figure 5.2.

The agent successfully learns a policy that can bring and maintain the

heater temperatures very close to their optimal values, as can be seen in Fig-

ure 5.3. In particular, the heaters temperatures converge to the vector x∗(t) =

(143.496, 160.609, 163.017, 157.298, 167.876, 161.216), which means all heaters achieve

temperatures within 18 °C of the optimal. Additionally, even though all states are ini-

tialised outside the desired bounds, they are all brought and kept within the bounds very

quickly. It is also important to note that the learnt policy brings the temperatures within

5°C of their final values in 373 time steps and within 1°C in 494 steps.

While these results are very encouraging, they still deviate from the optimal behaviour

we have defined for our system. This can be attributed to the sensitivity of the DDPG
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Table of parameters

Parameter Symbol Value

Tracking reference r (150, 160, 165, 170, 175, 180)
Initial state x(0) (60, . . . , 60)

State upper bound bu (220, . . . , 220)
State lower bound bl (110, . . . , 110)

Multiplier for upper bound λ1 0.1
Multiplier for lower bound λ2 0.1

Tracking error weighting matrix Q I6
Input weighting matrix R I7

Discount factor γ 0.99
Batch size N 128

Soft updates parameter τ 0.005
Actor learning rate α 0.002
Critic learning rate β 0.0005

Noise term M ∼ N (0, 0.3)
Number of episodes n 600

Max steps per episode m 1000

Table 5.1: Parameter values chosen for the implementation of the DDPG algorithm.

algorithm to the choice of hyper-parameters, inherited by the use of DNNs. DNNs require

fine-tuning of their hyper-parameters to adjust to each individual task. In particular, the

range of the state and action spaces, the complexity of the system’s dynamics, and the

form of the value function are the most important factors that influence the problem

formulation. As a result, different choices for the above factors would require completely

different choices for the design parameters. Furthermore, the performance of the DDPG

algorithm, as with any Machine Learning algorithm, is greatly influenced by the qual-

ity of the data used for training. While we ensured the data is varied and the inputs

used to generate it sufficiently explore the environment, it is evident that more careful

consideration of the input choice is required.

5.5 Conclusion

In this work, we addressed the problem of temperature control in the extruder of a Big

Area Additive Manufacturing system using Deep Reinforcement Learning. We use a linear

state space model as a simulator of the heating system’s behaviour and design a data-

driven controller that optimises that behaviour according to a constrained optimisation

performance index. The controller is designed based on the DDPG algorithm, a very pow-

erful Deep Reinforcement Learning algorithm that learns optimal policies in complicated

environments. The algorithm was able to learn a policy that brought and maintained the
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Figure 5.2: Loss function for the Actor (a) and the Critic (b) networks. Both losses get
significantly reduced over time, indicating the successful training of the networks.
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Figure 5.3: Heater temperatures after applying the learned policy for 1000 iterations. All
temperatures remain within the constraints imposed by our cost function, and they are
all brought and maintained within small error margins of their optimal reference values.

temperatures within a very small error margin of their predefined optimals.

The versatility of the DDPG algorithm allows for training optimal controllers under

uncertain conditions, with no prior knowledge about its environment. However, the lack

of prior knowledge results in suboptimal behaviour, which is the main drawback of this

approach. It is important to highlight the sensitivity that this algorithm has to the

configuration of the neural networks as well as the inputs used to generate the data for

training. Given the large number of hyper-parameters involved in this method, as well as

the wide variety of “tricks” that could be employed to boost training, the improvement

of the algorithm’s performance remains an open research question.

There are several extensions to our work worth exploring. In the context of simula-

tion work, using more complex nonlinear models as simulators would result in a vastly

more complicated environment and would further test the algorithm’s capabilities to

learn optimal policies. An additional intriguing extension would be the incorporation of
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5.5. CONCLUSION

more advanced optimisation criteria, namely introducing additional non-linearities and

constraints in the problem formulation. Finally, testing the learning capabilities and per-

formance of this algorithm in a real-life scenario would be an exciting research direction.

We leave these extensions as future work which we will pursue elsewhere.
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6
Conclusion

In this thesis we have introduced a number of methods for closed-loop temperature control

in Additive Manufacturing (AM). With the rise and wider adaptation of AM, there is an

increasing need for effective feedback controllers that ensure the safety and repeatability of

the process. However, similarly to many other physical systems, AM systems are difficult

to accurately model. Even when an accurate model of the process is available, it is usually

too complex for traditional closed-loop control design. This obstacle can be overcome with

the adoption of data-driven control techniques and specifically Reinforcement Learning

(RL). In our work, we designed and implemented RL-based closed-loop controllers and

compared them with their model-based counterparts, whenever they were available. In

this final Chapter we revisit these methods introduced in Chapters 3-5, discuss their

performance and their limitations, as motivation for future research.

In Chapter 3, we formulate the control problem as a Linear Quadratic Tracking (LQT)

problem and solve it by first assuming knowledge of a model describing the system’s

dynamics. We explored both the finite horizon and the infinite horizon case. Thanks to

the form of the performance index, an analytical solution to the problem can be found.

The form of the analytical solution was then used as the basis for designing an RL-based

data-driven controller that estimates the system model in order to obtain the optimal

policy. The estimation step involves the implementation of the Least Squares algorithm.

Through simulations, we showcased the performance of all controllers. We found that

the data-driven controller was on a par with its model-based counterpart. This is a very

important step towards autonomous intelligent manufacturing.

While our approach is very powerful and provides encouraging results, it comes with

certain drawbacks that result from the limiting assumptions that were made. Firstly, the

choice of the LQT framework limits the application of this approach to linear systems

optimised under quadratic costs. This is due to the fact that the estimation formula

for the optimal policy is based on the analytical solution of the LQT. Linear models are

very convenient for control design but are a very rare occurrence in physical systems.
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Similarly, quadratic objective functions are useful due to their convexity but they are

often not appropriate to express all optimisation objectives. The development of data-

driven controllers, that can learn optimal policies in more complicated environments, is

an important extension to our work. Finally, we assumed that the system state was fully

available for observation, an assumption that is not realistic in many physical systems, as

the state is usually measured through sensors. This limitation is addressed in the next

chapter.

In Chapter 4, we explore the case of output feedback, namely the case where the system

state is not fully observable. We use the LQT framework again and we incorporate a state

estimation step in the control design. In the case where a process model is available, we

design a state observer. In the model-free case, the state is estimated through a record

of past inputs and outputs, which significantly increases the dimension of the problem.

We highlighted the importance of generating appropriate data for training and provided a

detailed analysis of the best techniques we used for generating data in our simulations. We

were able to train a controller that performs comparably to the model-based case, while

learning strictly from the input-output data. In addition to the data-driven control design,

we explored the use of Bayesian Optimisation to improve the design of the optimisation

objective. Specifically, we optimised the design of the weighting matrices in the quadratic

performance index. Our experiments verified the value of this approach, as it led to higher

tracking performance as well as lower overall costs.

The main advantage of the introduced method is its ability to learn optimal poli-

cies without prior knowledge about the system and without direct access to the internal

system state. Additionally, the description of “good” data generation can be a very im-

portant guide for many intelligent manufacturing applications. A lot of AM processes are

very costly and time-consuming, so it is important to design the experiments correctly

so as not to waste resources. However, similarly to the method introduced in Chapter

3, this approach is also based on the assumption of a linear model and a quadratic per-

formance index. The search for more versatile algorithms that can handle complicated

environments is the most important extension to this work. The other important draw-

back of this approach stems from the use of the Least Squares algorithm. It involves a

matrix inversion step that becomes computationally expensive and slow as the problem’s

dimension increases. This drawback was evident in the work of Chapter 3 as well, but the

state augmentation through past inputs and outputs in Chapter 4 made this issue more

prevalent. If this approach were to be applied to systems with much higher state and

action spaces, the inversion step would become almost intractable, which motivates the

need for algorithms that circumvent that step. All the above concerns can be addressed

by the use of Deep Neural Networks. They are powerful function approximators, that can

handle non-linear dynamics and non-quadratic value functions.
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In Chapter 5 we explored the use of Deep Reinforcement Learning, and specifically

the Deep Deterministic Policy Gradient (DDPG) algorithm for solving the temperature

control problem. We trained two Deep Neural Networks (DNNs), the Actor and the

Critic, learning the optimal policy and the value function respectively. They interact

with each other, while exploring the environment, learning from past experience how to

act optimally. To showcase the flexibility of this approach, we consider a value function

that is no longer quadratic. We introduce constraints on the system’s response, which

is imperative in real-life applications, where if certain bounds are exceeded it can cause

damage to the machine, or increase the cost beyond an acceptable amount. With the

help of the Critic, the Actor learns a policy that successfully tracks the reference signal

within a small error margin. This approach does not need any prior assumptions about

the system or the control design.

Even though we used the same linear model for our simulations as the previous chap-

ters, the DDPG algorithm can handle complicated non-linear systems, with appropriate

tuning of its parameters. This is a big advantage of this method over the previous ones.

However, the existence of many different parameters to be tuned, makes it difficult to

find the best values as there is no systematic way to chose them. Applying this approach

to more complicated problems is a research venue worth exploring. Apart from using

non-linear models and non-quadratic value functions, the complexity can be introduced

in terms of the data that is used. In our applications the data is numerical, as it is re-

ferring to temperatures. Depending on the problem, the data can be of different formats

such as visual, acoustic etc. Different data formats would need the introduction of more

complicated layers in the DNNs, for example convolutional layers.

All the methods we have introduced throughout the thesis have proven to be very

powerful and successful in designing effective data-driven controllers. They were all tested

through simulations, which was a useful tool when wanting to compare them to a baseline,

model-based situation. The next step would be to test all these algorithms in a real-life

scenario, to control the temperatures in a real AM system. Training these algorithms

requires a large amount of data and long computations which means the machine in

question would need to operate for a long period of time and repeat experiments multiple

times. This can be a costly process that will also produce a lot of waste. Furthermore, the

agent needs to thoroughly explore the environment during training, by trying a variety of

different actions. This has the potential to damage the machine, if the actions explored

are close to or beyond certain safe bounds. These issues need to be considered and

addressed in future research. One course of action could be to pre-train a RL controller

using simulations, based on the most accurate model available, and then bring it online

to continue training from process data. That way, the advantages of both model-based

and data-driven methods can be exploited.
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Finally, we note that the code used for the implementations of the methods in Chapters

3-5 is freely available on https://github.com/elenizavrakli. This ensures all results

are reproducible and the methods are accessible to future practitioners. We remark that

our code has not been optimised in terms of computational speed, with a few exceptions

such as the matrix inversion step in the Least Squares algorithm in 4. Further improve-

ments would allow the wider adoption of these methods, especially for real-time control

applications.
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A
Optimal age-specific vaccination control for

COVID-19: an Irish case study

Abstract

The outbreak of a novel coronavirus causing severe acute respiratory syndrome in De-

cember 2019 has escalated into a worldwide pandemic. In this work, we propose a com-

partmental model to describe the dynamics of transmission of infection and use it to

obtain the optimal vaccination control. The model accounts for the various stages of the

vaccination, and the optimisation is focused on minimising the infections to protect the

population and relieve the healthcare system. As a case study, we selected the Republic

of Ireland. We use data provided by Ireland’s COVID-19 Data-Hub and simulate the

evolution of the pandemic with and without the vaccination in place for two different sce-

narios, one representative of a national lockdown situation and the other indicating looser

restrictions in place. One of the main findings of our work is that the optimal approach

would involve a vaccination programme where the older population is vaccinated in larger

numbers earlier while simultaneously part of the younger population also gets vaccinated

to lower the risk of transmission between groups. We compare our simulated results with

those of the vaccination policy taken by the Irish government to explore the advantages

of our optimisation method. Our comparison suggests that a similar reduction in cases

may have been possible even with a reduced set of vaccinations available for use.
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Code availability

The code used for our simulations was written in R and can be found at: https://

github.com/elenizavrakli/Optimal-Age-Specific-Vaccination-Control

A.1 Introduction

In late 2019, an outbreak of pneumonia of unknown cause was reported in the city of

Wuhan in the Hubei province of China [1–7]. The virus was named Severe Acute Res-

piratory Syndrome Coronavirus 2 (SARS-CoV-2) by the World Health Organisation [8]

and the disease that it causes is referred to as COVID-19 [9]. The disease quickly became

a source of international worry as it spread around China with most countries around the

world following [10]. By March 2020, most countries in the world had confirmed cases

of COVID-19, including the Republic of Ireland, where the first confirmed case was on

February 29th 2020 [11], the same day that WHO raised the risk warning for the virus

to “very high” [12]. In the absence of an effective treatment or a vaccine, governments

worldwide started implementing protective measures with most of them announcing a

national lockdown to try and control the spread of the virus and reduce the strain on

their healthcare systems. In Ireland, the first restrictive measures and social distancing

guidelines were first announced on March 12th 2020 and were initially intended to last

until March 29th. While countries tried to control the virus and protect their citizens, the

scientific community committed to developing an effective vaccine to put an end to the

pandemic. At the same time, researchers dedicated themselves to study, model and pre-

dict the evolution of the pandemic as well as investigate non-pharmaceutical intervention

methods to control the spread of the virus [13–25].

On November 9th 2020 Pfizer and BioNTech [26, 27] announced a vaccine candidate

that successfully completed the clinical trials and was 90% effective in preventing infec-

tion from the virus. Shortly after, two more vaccines were announced, namely the one

by Moderna [28] and the one by AstraZeneca [29]. All three vaccines got approved by

the European Union [30–32], and a fourth vaccine was granted commercial authorisa-

tion in March 2021, namely the Jcovden one (previously known as Janssen) [33]. As of

2023, there are seven different vaccines approved for use by European citizens, with more

in development [34]. Worldwide, certain states have made different decisions regarding

available vaccines. Since the start of 2021, a vaccination roll-out commenced in most

countries, including Ireland, taking into account the number of available vaccines and the

level of risk that different groups of people are considered to be in. As of 2022, first-world

countries have for the most part completed the first round of vaccinations and are in the

process of administering booster shots. On the other hand, as of the appendix composi-

tion in 2023, many countries are still in very early stages of vaccination [35]. Given this
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situation, a need that naturally arises is that of a way to determine the optimal vacci-

nation strategy, especially in the cases where the resources to reduce the severity of the

pandemic are still limited [36, 37]. This idea was the main motivation for our study. In

addition to improving the current state of the pandemic in certain countries, our work

can be adapted for use in the unfortunate scenario of future pandemics or COVID-19

variants that require the distribution of new vaccines from scratch.

Modelling, predicting, and controlling the behaviour of epidemics has been a widely

studied area [38, 39]. A very prominent example is the pandemic influenza, a virus that

caused an outbreak of severe pneumonia in 2009, commonly known as ”swine-flu” [40].

Several models were developed to evaluate the implementation of mitigation strategies

[41–44], with a great focus on optimising these strategies. Since the outbreak of COVID-

19 and the wider availability of the vaccines, a number of studies have been conducted

on modelling and simulating the evolution of the pandemic under different scenarios,

in order to draw conclusions on the best mitigation strategies, often considering different

strategies for different age groups. In [45] the main questions that were investigated relate

to the minimum vaccination coverage for each older age group before starting vaccination

for a subsequent group, the optimal interval between administering vaccine doses and

the corresponding minimum number of vaccine doses that can make the implementation

of this interval possible. [46] considered two age groups and two different mathematical

models to describe the dynamics of transmission. Using these models, the authors drew

conclusions about vaccination strategies based on different assumptions on the efficacy

of the vaccines and the transmission rate of the infection. In [47], UK based simulations

were conducted to assess factors that influence the success of any vaccination program,

considering 3 types of vaccines, each targeting a different aspect of infection. Optimal

control [48–51] is an important tool that allows for optimising these mitigation strategies

in a systematic way, according to a minimisation objective. In [52], 3 different objectives

where considered, using South Korea as a case study and considering 16 age groups. In [53]

two objectives are explored, namely the minimisation of infections and the minimisation

of deaths, and the problem is solved through the interior point method, for China, Brazil,

and Indonesia. In [54], the authors consider two age groups and use both vaccination

and medical treatment as control variables and find that combining both works best

in reducing infection and deaths. In [55], China is used as a case study and 3 control

measures are considered vaccination, isolation and nucleic acid testing. Forecast and

impact of vaccination during the third wave in Pakistan is studied in [56], along with

estimation of some epidemiological parameters. Finally, in [57] optimal control is applied

when 3 different intervention methods are considered, namely isolation, vaccination and

treatment.

In this work, we introduce a new model that describes the transmission dynamics of
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the virus among different groups of the population in a more complete way compared to

the well known SEIR model [13,58–60] which is commonly used in the study of epidemics.

In the context of COVID-19, SEIR-based models have been widely used for forecasting

purposes in works such as [61–63]. Specifically, in [61] the focus is on simulating infections

using data from Singapore, while in [62] data from many different countries are being

used. In [63], the authors use an SEIR model to estimate the distribution of time delays in

reported data, in Italy and Austria. The novelty of our approach lies in the introduction of

new compartments to the model accounting for stages of the vaccination process as well as

two different age groups. Using this model as our baseline, we explore a way to determine

the optimal vaccination strategy, applying through optimal control theory methods. The

control action applied to the system is considered to be the vaccination percentage for each

age group. Using these tools, we studied the evolution of the pandemic in the Republic

of Ireland, starting from January 2021 when the vaccination roll-out began, using data

provided by Ireland’s COVID-19 Data-Hub [64] and parameter values according to the

work done in [65]. We obtained the optimal vaccination strategy based on estimates of

the initial conditions, which is similar to the course of action taken by the state. However,

we find that it is beneficial to start vaccinating people under the age of 65 in parallel with

people in older age groups but in smaller numbers, as opposed to exclusively vaccinating

the older population first. We compare our obtained strategy with the course of action

taken by the state and comment on the benefits and disadvantages of both approaches.

In Section A.2 we introduce our model and express it as a system of ordinary dif-

ferential equations. In Section A.3 we use optimal control theory techniques to obtain

the optimal vaccination strategy, given our model. In Section A.4 we produce two sets

of simulations to compare the evolution of the pandemic with and without the vaccina-

tion strategy in place, under strict and loose restrictions. In Section A.5 we present a

comparative study of the strategy obtained through our optimisation against the strategy

chosen by the government. Finally, in Section A.6 we discuss our findings, the possible

drawbacks of our method, and extensions to our approach that are worth exploring.

A.2 Model

The model most commonly used in the study of epidemics was first introduced byM’Kendrick

in [59, 60] and is known as the SIR model. This model suggests that every member of

a population can be considered to belong in one of the three compartments: Susceptible

(S), Infectious (I) or Recovered (R). In the study of COVID-19, an extra compartment is

usually added to the SIR model, namely the Exposed (E) compartment, consisting of the

people who have been in contact with the virus but have not developed any symptoms.

This is known as the SEIR model [13]. All compartments can be indexed by time (t),
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since they express the number of individuals in each compartment for each moment in

time. In a closed population with no births and no deaths, the model can be expressed

as a system of ordinary differential equations as follows:

dSt

dt
= −βIt

N
St

dEt

dt
=

βIt
N

St − σEt

dIt
dt

= σEt − γIt

dRt

dt
= γIt �� ��A.1

where N = St+Et+It+Rt is the total population which we assume constant, namely we

are dealing with a closed population. β is the infectious rate, which expresses the proba-

bility that a susceptible person gets infected by an infectious person, σ is the incubation

rate, meaning the rate at which an exposed individual becomes infectious and γ is the

recovery rate calculated as the inverse of the average time of infection.

In this study, we use a model that takes the idea of the SEIR model one step fur-

ther, with additional compartments related to whether an individual has been vaccinated

and whether the vaccination was effective, hence protecting the individual. The new

set of states consists of the following: Susceptible not yet vaccinated (S); Received the

vaccine; waiting for it to take effect (V); Received the vaccine but it was not effective

(N); Susceptible, refusing or unable to receive the vaccine (U); Exposed, infectious but

still asymptomatic (E); Infectious symptomatic (I); Recovered or deceased (R); Protected

from vaccine (P).

A full table of the notations used throughout the appendix can be found in A.7. In

addition, we assume that a susceptible individual may get infected by exposed as well

as infectious individuals. Furthermore, we consider two different age groups, those over

65 years old and those younger than 65. The reasons for this distinction can be found

in [66], the main ones being that 80% of the hospitalised individuals are over the age

of 65 and this age group has a 23 times higher risk of death compared to those under

65. This results in two identical models, one for the younger population and one for the

older which allows for the introduction of different parameters to account for the way

the virus affects people of different ages. Figure A.1 is a depiction of our model for an

individual age cohort (for brevity we do not show the full model configuration). The state

configuration is exactly the same in both cases with the difference being in the transition

rates from one state to the other.

We distinguish the states of the two models by adding an O or a Y as an subscript to
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Figure A.1: Vaccination Compartmental model
The model compartments (states) are indicated by the coloured circles. Blue indicates states at
which one might get infected by an exposed or infectious person and green indicates the states at
which a person is considered to be safe from infection. The parameters describing the transmission
rates are indicated on the arcs between the states. The models for the over and under 65 popula-
tions (indicated by O and Y subscripts) are identical with the only differences being the age specific
control functions uO(t), uY (t) which express the percentage of the susceptible population to be
vaccinated at each time point, and the rates of infection from an exposed or infectious individual

BO = βOO(EO(t)+IO(t))
TO

+ βY O(EY (t)+IY (t))
TY

and BY = βOY (EO(t)+IO(t))
TO

+ βY Y (EY (t)+IY (t))
TY

.

the state name to indicate the older or younger than 65 age group respectively e.g. SO,

VY etc. Since the states are time dependent, we can write them in function notation e.g.

SO(t), VY (t), however, for brevity, we will omit the (t) in the equations that follow. We

also use the notation TO, TY to indicate the total number of people in each age group,

which is assumed to not be time dependent. The two populations influence each other in

the sense that a susceptible person in any of the two groups may be infected by an exposed

or infectious person from either group. For brevity, we will indicate the older than 65

age group as o65 and the younger than 65 age group as y65. We will be using upper-

case Roman characters to indicate the model states and lower-case Greek characters to

indicate model parameters.

The model is expressed as a system of ordinary differential equations (ODEs), each

of them describing the evolution through time of one of the states. The ODEs describing

the dynamics of our model are given by:

dSO

dt
= −

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
SO − uOSO

dSY

dt
= −

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
SY − uY SY
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dVO

dt
= uOSO −

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
VO

−(1− αV )γV VO − γV αV VO

dVY

dt
= uY SY −

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
VY

−(1− αV )γV VY − γV αV VY

dNO

dt
= (1− αV )γV VO −

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
NO

dNY

dt
= (1− αV )γV VY −

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
NY

dUO

dt
= −

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
UO

dUY

dt
= −

(
βOY · (EO + IO)

TO
+

βY Y · (EY + IY )

TY

)
UY

dEO

dt
=

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
(SO + VO +NO + UO)

−γEEO

dEY

dt
=

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
(SY + VY +NY + UY )

−γEEY

dIO
dt

= γEEO − γIIO

dIY
dt

= γEEY − γIIY

dRO

dt
= γIIO

dRY

dt
= γIIY

dPO

dt
= γV αV · VO

dPY

dt
= γV αV · VY

�� ��A.2

where TO, TY denote the total number of people in the over and under 65 years old

populations respectively. These populations are divided in those willing and those un-

willing to get vaccinated (SO, SY , UO, UY ). This division happens based on estimates of

the percentages of people who refuse the vaccine in each age group. The only option for

individuals in the U compartments, apart from staying there if the pandemic ends early,

is to eventually get infected and be moved to the exposed compartments E.

The terms uO, uY are the control functions and represent the percentage of the old

and young population respectively to be vaccinated at each time point, which means

that they are also time dependent. Each control function is applied to the respective

susceptible population (SO, SY ), moving that percentage of the population to the re-
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spective vaccinated compartment (VO, VY ). The optimal values for uO, uY are obtained

through the application of the Optimal Control techniques [48, 67] discussed in the next

section. Any person in the states (S, V, U,N) is considered susceptible to getting infected

by an infectious or exposed person (E, I). That is because they are either not yet chosen

for vaccination, they received the vaccine and are waiting for it to take effect, they re-

ceived the vaccine and it was ineffective, or they chose not to get vaccinated. The terms

βij , i, j ∈ {O, Y } describe the transmission rates of the infection between the age groups

and they are analogous to the β parameter in the standard SEIR model. Specifically:

• βOO = rate at which an o65 susceptible person becomes infected by an o65 exposed

or o65 infected person

• βY O = rate at which an o65 susceptible person becomes infected by an y65 exposed

or y65 infected person

• βOY = rate at which a y65 susceptible person becomes infected by an o65 exposed

or o65 infected person

• βY Y = rate at which a y65 susceptible person becomes infected by an y65 exposed

or y65 infected person

There are three rates taken into consideration in the model, the first being γE which is the

rate at which an exposed person becomes symptomatic. This rate can be calculated as the

inverse of the mean holding time to develop symptoms and become infectious. The next

rate is γI which is the rate at which an infectious person recovers and can be calculated

as the inverse of the mean time to recovery. The final rate considered in the model is

γV which is the rate at which vaccination becomes effective and can be calculated as the

inverse of the mean holding time until protected from the vaccine. The last parameter

influencing the model is αV which is the vaccine effectiveness. This is expressed as the

percentage of people who become protected (PO, PY ) from the vaccine at a rate γV , out

of those who have received it (VO, VY ).

A.3 Optimal control

Optimal control theory [48,50,67] is the study of strategies to obtain the control function

that optimises a certain objective over a time horizon, possibly under suitable constraints.

These types of techniques have been widely adopted to biological systems in general [38]

but also more specifically to obtain optimal vaccination strategies when dealing with

viruses and epidemics [44, 68–70]. More specifically, Pontryagin’s Maximum Principle

[51,71,72] is the main tool that is used when dealing with a problem whose dynamics are

described by a set of Ordinary Differential Equations.
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An optimisation problem can be expressed as the problem of minimising an objective

(cost) functional under certain constraints. Let f(t, x, u) denote the objective functional.

Also, let g(t, x, u) denote the state equation (or set of state equations) of our system.

Using f and g we can form a Hamiltonian function [49,50] as follows:

H(t, x, u, λ) = f(t, x, u) + λ(t)g(t, x, u)
�� ��A.3

where λ is a continuous function of time(t). For simplicity, we will write λ(t) as just

λ in the expressions that follow.

For the COVID-19 control problem and our spcific model, we can express the goal of

our optimisation as the minimisation of the number of infectious individuals, at a minimal

cost via vaccination, within a certain time frame [0, T ]. That goal can be expressed with

the help the following objective functional to be minimised:

F (U(t)) =

∫ T

0

[
IO(t) + IY (t) +

WO

2
u2O(t) +

WY

2
u2Y (t)

]
dt

�� ��A.4

where U(t) = (uO(t), uY (t)) and WO,WY ≥ 0 are the age specific weight constants

enforcing the severity of the optimisation constraints. This type of choice of the objective

functional as a non-negative increasing function of the control inputs, is common practice

in optimal control applications [44, 50, 69]. The control functions are squared in order to

ensure the convexity of the functional, guaranteeing a sufficient condition for the existence

of an optimal solution (to be proved later in detail). Consider X(t) = ( SO(t), VO(t),

NO(t), UO(t), EO(t), IO(t), RO(t), PO(t), SY (t), VY (t), NY (t), UY (t), EY (t), IY (t), RY (t),

PY (t) ). We are looking for the optimal pair of solutions (U∗(t), X∗(t)), i.e. the optimal

control U∗ and the corresponding trajectory X∗ when U∗ is applied, such that

F(U∗(t)) = min
Ω
F(U(t))

�� ��A.5

where Ω =
{
U(t) ∈ L2(O, T )2∥a ≤ uO(t), uY (t) ≤ b, t ∈ [0, T ]

}
, a and b are the upper

and lower bounds for the control function and can usually be expressed as real values,

and T is the time horizon for our optimisation.

There are a few different approaches that can be taken in defining the constrained

optimisation problem and are worth mentioning. We can include weighting factors to

the infectious compartments (IO, IY ) in the objective functional F that correspond to the

mortality rates for each age group or more factors that generally model the cost that large

number of infections can have in the healthcare system. Additionally, when it comes to

bounding the control functions, we can chose a constraint of the form a ≤ uO(t)+uY (t) ≤ b

which can be interpreted as the total percentage of vaccinations being bounded as opposed

to bounding them per age group. This kind of constraint would result in an extra term
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in the objective functional and the Hamiltonian function having the form λ · (uO + uY ).

The following theorem describes the main conditions that when satisfied can lead us

to the optimal control that solves the minimisation problem.

Theorem 2 (Pontryagin’s maximum principle) Given the Hamiltonian

H(t, x, u, λ) = f(t, x, u) + λg(t, x, u),
�� ��A.6

then the following conditions are satisfied by the optimal control u∗ ∈ Ω =
{
U(t) ∈ L2(O, T )2∥a ≤ uO(t), uY (t) ≤ b, t ∈ [0, T ]

}
:

∂H

∂u


= 0 at u∗ if a < u∗ < b

≥ 0 at u∗ if u∗ = a

≤ 0 at u∗ if u∗ = b

Optimality Condition
�� ��A.7

λ̇ = −∂H

∂x
Adjoint Equation

�� ��A.8

λ(T ) = 0 Transversality Condition
�� ��A.9

ẋ = g(t, x, u), x(0) = x0 Dynamics of state equation
�� ��A.10

where λ̇ = ∂λ/∂t and ẋ = ∂x/∂t.

In order to apply the maximum principle we first need to define the Hamiltonian

function, omitting for brevity the time dependence from the state notations:

H =

[
IO + IY +

WO

2
u2O +

WY

2
u2Y

]
+ λSO

{
−
(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
SO − uOSO

}
+ λSY

{
−
(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
SY − uY SY

}
+ λVO

{
uOSO −

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
VO − γV VO

−αV VO}

+ λVY

{
uY SY −

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
VY − γV VY

−αV VY }

+ λNO

{
γV VO −

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
NO

}
+ λNY

{
γV VY −

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
NY

}
− λUO

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
UO
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− λUY

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
UY

+ λEO

{(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
(SO + VO +NO + UO)

−γEEO}

+ λEY

{(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
(SY + VY +NY + UY )

−γEEY }
+ λIO {γEEO − γIIO}
+ λIY {γEEY − γIIY }

�� ��A.11

where Λ := { λSO
, λSY

, λVO
, λVY

, λNO
, λNY

, λUO
, λUY

, λEO
, λEY

, λIO , λIY } is a set of

continuous functions of time (Λ(t)), given the states and controls. These functions have

a key role in our optimisation technique.

Applying each of the conditions of the maximum principle (2) we obtain the following:

• From the optimality condition, the optimal control strategies are given by:

u∗O(t) = min

{
max

{
a,

SO(t)

WO
(λSO

(t)− λVO
(t))

}
, b

} �� ��A.12

u∗Y (t) = min

{
max

{
a,

SY (t)

WY
(λSY

(t)− λVY
(t))

}
, b

} �� ��A.13

• Adjoint Equation: Λ̇ = −∂H/∂X which results in the following system of ODEs:

λ̇SO
=

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY
+ uO

)
λSO
− uOλVO

−
(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
λEO

�� ��A.14

λ̇SY
=

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY
+ uY

)
λSY
− uY λVY

−
(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
λEY

�� ��A.15

λ̇VO
=

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY
+ γV

)
λVO
− (1− αV )γV λNO

−
(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
λEO

�� ��A.16

λ̇VY
=

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY
+ γV

)
λVY
− (1− αV )γV λNY
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−
(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
λEY

�� ��A.17

λ̇NO
=

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
(λNO

− λEO
)

�� ��A.18

λ̇NY
=

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
(λNY

− λEY
)

�� ��A.19

λ̇UO
=

(
βOO(EO + IO)

TO
+

βY O(EY + IY )

TY

)
(λUO

− λEO
)

�� ��A.20

λ̇UY
=

(
βOY (EO + IO)

TO
+

βY Y (EY + IY )

TY

)
(λUY

− λEY
)

�� ��A.21

λ̇EO
=

βOOSO

TO
(λSO

− λEO
) +

βOOVO

TO
(λVO

− λEO
)

+
βOONO

TO
(λNO

− λEO
) +

βOOUO

TO
(λUO

− λEO
)

+
βOY SY

TO
(λSY

− λEY
) +

βOY Y Vt

TO
(λVY

− λEY
)

+
βOY NY

TO
(λNY

− λEY
) +

βOY UY

TO
(λUY

− λEY
)

+ γEλEO
− γEλIO

�� ��A.22

λ̇EY
=

βY OSO

TY
(λSO

− λEO
) +

βY OVO

TY
(λVO

− λEO
)

+
βY ONO

TY
(λNO

− λEO
) +

βY OUO

TY
(λUO

− λEO
)

+
βY Y SY

TY
(λSY

− λEY
) +

βY Y VY

TY
(λVY

− λEY
)

+
βY Y NY

TY
(λNY

− λEY
) +

βY Y UY

TY
(λUY

− λEY
)

+ γEλEY
− γEλIY

�� ��A.23

λ̇IO =
βOOSO

TO
(λSO

− λEO
) +

βOOVO

TO
(λVO

− λEO
)

+
βOONO

TO
(λNO

− λEO
) +

βOOUO

TO
(λUO

− λEO
)

+
βOY SY

TY
(λSY

− λEY
) +

βOY VY

TO
(λVY

− λEY
)

+
βOY NY

TO
(λNY

− λEY
) +

βOY UY

TO
(λUY

− λEY
)

+ γIλIO − 1
�� ��A.24

λ̇IY =
βY OSO

TY
(λSO

− λEO
) +

βY OVO

TY
(λVO

− λEO
)

+
βY ONO

TY
(λNO

− λEO
) +

βY OUO

TY
(λUO

− λEO
)

+
βY Y SY

TY
(λSY

− λEY
) +

βY Y VY

TY
(λVY

− λEY
)
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+
βY Y NY

TY
(λNY

− λEY
) +

βY Y UY

TY
(λUY

− λEY
)

+ γIλIY − 1
�� ��A.25

where λ̇ denotes ∂λ/∂t

• The transversality condition: Λ(T ) = 0 gives us a terminal condition for the system

of adjoint ODEs. This condition implies that the adjoint system should be solved

backwards [73] as opposed to the state system.

• The dynamics of the system are described by the system of state equations (A.2).

To ensure the existence of a solution to our optimisation problem, we need to examine

the sufficient conditions as stated in [48], as also used in [74]. The relevant conditions

and the corresponding existence proof for our model can be found in Appendix A.8.

Having obtained all the necessary optimality conditions and resulting equations, we

can iterate between solving the state equations forwards in time and solving the adjoint

equations backwards in time while updating the control functions after each iteration.

With each update of the control functions, the state vectors approach their optimal tra-

jectories, finally converging when the control functions converge to the optimal ones. We

choose a small positive number δ as a threshold for the error between two consecutive

solutions of the state system of ODEs. Algorithm 11 describes the steps that lead to the

computation of an optimal control trajectory.

Algorithm 11: Determining the optimal control

Result: Optimal control and trajectory U∗, X∗

Input: Initial state x0, Parameter values, Time horizon, Initial control,
Convergence threshold δ

1 Solve the system of state ODEs forwards in time to determine the state;
2 Solve the system of adjoint ODEs backwards in time;
3 Update the controls using (A.12) and (A.13) ;

4 Compute the error term
∥xk−xk−1∥1
∥xk−1∥1 ;

5 If the error term is smaller than some predetermined threshold δ then extract the
optimal control and optimal trajectory. Otherwise repeat the process until
convergence.

A.4 Simulation Setup and Results

We used our model to estimate the evolution of the virus in the Republic of Ireland,

starting from January 2021 using data provided by [64] regarding the population of the
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country, the number of exposed, infected and recovered people in both age groups. Ad-

ditionally, we applied the optimal control strategy on the same data to obtain the effect

that the vaccination would have on the evolution of the pandemic, were it adopted by the

state.

Table A.1 includes the initial values of the states EO, IO, RO, EY , IY , RY . The rest of

the states can be calculated with the use of this information and some of the parameter

values. The total susceptible people in each age group are the people not yet vaccinated

along with the people refusing or unable to receive the vaccine (S := S+U). This total of

susceptibles for each age group can be calculated by: S = T −(E+I+R). The separation

between not yet vaccinated (S) and unwilling to get vaccinated (U) can be expressed as

a percentage for each population, representing the refusal rate for the vaccine. Let rO

and rY be these percentages in the over 65 and under 65 populations respectively. Then

SY = (1− rY )S, UY = rY S, SO = (1− rO)S, UO = rOS.

State (Compartment) Number of people

Total y65 (TY ) 4000000
Total o65 (TO) 900000
Y65 exposed (EY ) 2000
O65 exposed (EO) 200
Y65 infected (IY ) 2000
O65 infected (IO) 200
Y65 recovered (RY ) 200000
O65 recovered (RO) 100000

Table A.1: Initial values for the model states

We produce two different simulations, to study the evolution of the pandemic, follow-

ing the steps described in Algorithm 11. In the first case we assume strict measures are

in place, meaning that the transmission rates of the virus among individuals is low. In

the second case we assume minimal restrictions are in place, hence the transmission rates

are much higher. The parameters used in both simulations are listed in Table A.2.

The three parameters tE , tI , tV , describe the mean holding times in each of the states

E, I and V. They are the inverses of the rates we have in our model (A.2), namely

γE , γI , γV . Also, particularly interesting are the four RO parameters, that are related to

how quickly the infection is transmitted between the members of the entire population.

More specifically, these parameters are directly related to the terms βij in our model

which describe the transmission rates, with the help of the three mean holding times:

βOO =
R0OO

tE + tI + tV
, βY O =

R0Y O

tE + tI + tV
,

βOY =
R0OY

tE + tI + tV
, βY Y =

R0Y Y

tE + tI + tV

�� ��A.26
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Parameter Description Symbol Case 1 Case 2 Unit

Mean no of o65 infected by an o65 R0OO 1.2 8 No of people
Mean no of y65 infected by a y65 R0Y Y 1.2 8 No of people
Mean no of y65 infected by an o65 R0OY 0.9 4 No of people
Mean no of o65 infected by a y65 R0Y O 0.9 3 No of people

Mean holding time exposed in days tE 6.6 Days
Mean holding time infected in days tI 7.4 Days
Mean holding time vaccinated in days tV 14 Days
Vaccine effectiveness αV 0.9 Percentage
Upper bound for control function b 0.3 Percentage
Refusal rate for o65 rO 0.07 Percentage
Refusal rate for y65 rY 0.21 Percentage
Weight constant relating to o65 group WO 1011 Unitless
Weight constant relating to y65 group WY 1011 Unitless
Error threshold for convergence δ 0.0005 Unitless

Table A.2: Parameter values for both simulations. The mean numbers of infections from
each infected person within each age group and between age groups vary for the two
simulations, while for the rest of the parameters we used the same values. Case 1 is
representative of a situation where strict measures are in place and the results of the
simulation can be found in subsection A.4.1. Case 2 is an example of a situation with
minimal restrictions and is explored in subsection A.4.2.

Two different sets of R0 numbers are used to produce our two simulations and give an

insight to the evolution of the pandemic under different levels of restrictions.

The values we use for the parameters are estimates specific to COVID-19 (mean

holding times) [75], or based on estimates used in similar studies of other infectious

diseases such as (weight constants) [44]. Parameter values specific to Ireland (such as

transmission rates during and after lockdown), were chosen according to the work done

in [65]. The upper bound for the control function (b) is chosen arbitrarily, however it is

not a value that is ever obtained for either control function, thanks to the high weight

constants used in the objective functional that model the cost of the vaccination and the

severity of the constraints. An alternative approach would be for b to bound the sum

of the control functions as opposed to each of them individually. The weight constants

WO,WY are chosen to be equal because we assume no difference in the cost of providing

the vaccination to people in different age groups. However, the two groups can be weighed

differently, explaining the cost of bringing the vaccination to remote locations, nursing

homes etc. The refusal percentages for both age groups (rO, rY ) we used are based on a

survey [76], the results of which suggest that 77% of the overall population of Ireland are

willing to receive the vaccine and the the willingness is stronger in the over 65 population,

with 93% of the group intending to get vaccinated. We included the percentage of people

unsure about the vaccination (15% overall) in the refusal percentage (6%) along with
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the people who claimed to already be against receiving the vaccination. Finally, as we

mentioned in section A.3, it is possible for one more set of parameters to be included

in our model and more specifically the optimisation function, weighing the number of

infectious individuals by the mortality rate for each age group.

A.4.1 Evolution of pandemic under tight restrictions

We simulate the evolution of the pandemic using the initial state values given in Table

A.1 and the parameter values given in Table A.2. Specifically, the R0 numbers we use are

given in the column named Case 1 and are an example of the way the virus is evolving

under a strict restriction policy. In that case, the average number of infections within

each age group is 1.2 and between age groups 0.9.
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Figure A.2: Evolution of the pandemic with and without vaccination under strict mea-
sures. In the case where no vaccination policy is in place, there is an early peak for the
infectious individuals in both age groups (red and turquoise curves). In the second graph
the peaks are almost indistinguishable. This is due to the vaccination reducing both the
total and the maximum number of infections that take place, hence flattening the curve.
The number of susceptible people (pink and blue curves) in both age groups declines fast
in the first graph, due to most of them getting infected, while in the second case the
decline is much slower, as many individuals are getting vaccinated and thus protected
from infection.

Figure A.2 shows the difference between the evolution of the pandemic when there is

no control in place and when the optimal control is applied. Due to the transmission rates

being quite low, the increase in the number of infectious individuals will not be particularly

evident, especially when the vaccination is applied. For that reason we represented the

same information also on the log scale in Figure A.3 to give a clearer picture of the

difference an optimal vaccination strategy makes to the evolution of the pandemic. In the

case where no control is applied there is a peak in the number of infectious individuals

in both age groups and as a result, the number of susceptible people drops fast with the

pandemic ending in a very short period of time, namely less than 250 days, with the
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Figure A.3: Evolution of the pandemic with and without vaccination under strict mea-
sures. The graphs are produced in vertical log scale to give a clearer view of the peaks.
In the first graph there are clear peaks in the number of infectious individuals in both age
groups while in the second, the curves are clearly flattened thanks to the vaccination.

greatest part of the population having been infected. Specifically, 80% of the population

over 65 (720,249) and 79% of the population under 65 (3,159,510) gets infected by the

virus until the end of the pandemic. That means that around 79% of the total population

of the country (3,879,759) will get infected by the virus when no vaccination strategy is

in place.

On the other hand, when the optimal vaccination strategy is applied, the infectious

curve is flattened to the point where it becomes nearly indistinguishable from the hor-

izontal axis. This means that the number of people to become infected by the virus is

substantially reduced as a result of the protection provided by the vaccine. In particular,

only 11.3% (101,764) and 5.38% (215,132) of the over and under 65 years old groups

respectively will get infected by the virus, resulting in a total 6.47% of the population

(316,896). This is achieved thanks to the 70.58% (635,187) and 17.08% (683,044) of the

over 65 and under 65 populations respectively receiving the vaccine and being successfully

protected by it. In total, that is 26.9% of the population (1,318,231) being successfully

vaccinated.

The difference that the control function makes to the number of infectious individuals

(in the log scale) can be more clearly seen in Figure A.4. For both age groups, the curve

is substantially flattened as a result of the vaccination. This is a visual representation

of the reduction in the total number of infections and also showcases the fact that less

people will be infected at the same time, causing less stress on the healthcare system.

The optimal vaccination strategy for each age group, i.e., the control functions that

resulted from the optimisation technique described in section A.3 can be seen in Figure

A.5. As expected, close to the start of our simulations, a high percentage of the sus-

ceptible population gets vaccinated to quickly get the pandemic under control, and then

that percentage continuously declines. It is interesting to note how the o65 population
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Figure A.4: Comparison of baseline curves (without vaccine) with optimal vaccination
strategy curves for the infectious populations in both age groups under strict measures.
The vertical scale is in log units. The vaccination successfully flattens the curve in both
cases, resulting in fewer infections overall as well as fewer simultaneous infections.
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Figure A.5: Optimal control functions for both age groups. A.5a presents both control
functions on a vertical log scale. The o65 group gets vaccinated faster and in higher
percentages, while the vaccination of the y65 group commences but proceeds slower and
continues after the pandemic is under control.

gets vaccinated earlier and with higher percentages while the vaccination of the younger

population is happening slower, with smaller percentages every day, and goes on after the

pandemic is over as can be seen in Figure A.5. This is also evident in the percentages

of the people in each age group that get vaccinated by the end of the simulation, with

70.58% and 17.08% for the over and under 65 groups respectively, as described earlier.

It is worth noting that the parameter setup used for this simulation is indicative of a

national lockdown situation, which is an unrealistic scenario for this length of time. For

this reason, we looked into a second parameter setup, discussed in the next section.

A.4.2 Evolution of pandemic under loose restrictions

We now simulate the evolution of the pandemic in Ireland, using the same initial con-

ditions for the states as defined in Table A.1. We are interested in investigating the

effect a different choice of parameters, specifically different R0 numbers, would have on
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our results. We are looking into values that are indicative of an extreme scenario where

the measures in place are not strict or even non existent and each infected individual

can infect multiple individuals before recovering. The column titled Case 2 in Table A.2

consists of values chosen for the parameters, while the rest of the parameters remain the

same as in subsection A.4.1.

When no vaccination policy is in place, the curves of infectious individuals in both

age groups present a very high peak due to the high transmission rates as can be seen

in Figures A.6 and A.7. This peak is indicative of a period of time where a very large

number of people are infected at the same time, a situation that would cause a huge

strain on the country’s healthcare system. The percentages of people that get infected in

the over and under 65 group respectively are 99.995% (899,954) and 99.993% (3,999,713),

resulting in a total 99.993% (4,899,667) of the population. This means that nearly every

single resident of the country will get infected by the virus in a very short period of time,

while at the same time paralysing the healthcare system.

That curve gets flattened, with a lower peak and greater spread, thanks to the optimal

control functions, i.e. the optimal vaccination strategy. This would offer some relief to the

healthcare system, as not all infections will be active at the same time. The percentages of

people that get infected in the over and under 65 group respectively are 85.29% (767,614)

and 99.1% (3,965,963), resulting in a total 96.6% of the population (4,733,577). These

percentages, though reduced, are still very high and that is due to the fact that the chosen

transmission rates are so high. For the same reason the percentages of the people that get

successfully protected from the vaccine are relatively low, namely 14.2% (127,871) and

0.1% (3,861) for the over 65 and under 65 groups respectively, meaning a total 2.7% of

the population (131,732) will be successfully vaccinated. There is an additional reason to

why these percentages are so low. From the moment an individual receives the vaccine,

there is a period equal to the mean holding time vaccinated (tV ) during which the person

may still get infected. Due to the high transmission rates, a lot of vaccinated individuals

will get infected, hence not making it to the protected state.

A side by side presentation of the evolution of the pandemic with and without vacci-

nation is given in Figure A.6 and a comparison of the optimised with the baseline curves

for the infectious populations in each age group are given in Figure A.7.

Figure A.8 shows the optimal control functions that can be obtained as the solution

to our optimisation problem. Similar to the previous simulations, the control function

curves present a peak at first, indicating a high percentage of the population being chosen

for vaccination early on and that percentage getting reduced as time progresses.

It is interesting to note that in both cases above, the upper bound for the control

functions is never reached. This is due to the high weights WO,WY associated with

uO and uY in the objective functional A.4. The weights represent the cost of acquiring
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Figure A.6: Evolution of the pandemic with an without vaccination under loose measures.
Without a vaccination policy in place, the curve of infectious individuals presents an
earlier and higher peak as opposed to the case where the vaccination strategy is applied
and the curve is flattened.
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Figure A.7: Comparison of baseline curves (without vaccine) with optimal vaccination
strategy curves for the infectious populations in both age groups under loose restrictions.

and distributing the vaccines, which was particularly high when they were first becoming

available. We explored the option of choosing lower weights, namely 108 and 105 and ran

the simulations for the case of loose restrictions, with all other parameters kept the same.

In both cases, the function uO(t) was obtained to be constant and equal to the upper

bound b = 0.6 for all t. When choosing WO = WY = 105, the function uY (t) is also found

to be equal to b for all time points, while when WO = WY = 108 looks similar to A.8c but

the peak is taller, reaching about 0.04, and narrower. As expected, the curve of infection

gets reduced and flattened more, the lower the weights get.

A.5 Comparative Study

We now look at the effect that the optimal control obtained from our model would have

on the evolution of the pandemic in Ireland by comparing our approach to the real infec-

tion numbers, given the vaccination strategy taken by the Irish government. In order for
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Figure A.8: Optimal control functions for both age groups. A.8a presents both control
functions in log scale.

the comparison to be sensible, we limit our simulations to a time frame of 100 days, thus

ensuring that the transmission rates remain somewhat constant. This is needed because

our model does not account for varying R0 numbers, while in reality these numbers can

fluctuate depending on the restrictive measures in place (e.g. lockdowns) and the preven-

tative measures taken, namely vaccinations. We obtained our data from [64], specifically

the daily infection and vaccination numbers starting from January 1st 2021. These values

are shown in FigureA.9.

0

2000

4000

6000

0 25 50 75 100
time (days)

nu
mb

er 
of 

inf
ec

tio
ns

Age group

Over 65

Under 65

(a) Infectious individuals

0

5000

10000

15000

20000

0 25 50 75 100
time (days)

nu
mb

er 
of 

vac
ciin

atio
ns

(b) Vaccines administered

Figure A.9: Infection and vaccination numbers for the Republic of Ireland starting from
January 1st 2021

It is evident that there is a substantial peak in the infection numbers during the first

few days which can be attributed to the looser measures in place before the Christmas

holidays of 2020. Considering this, we produce a second set of comparative plots, starting

the simulation just after the peak in infections, namely on January 18th instead of the

1st. The daily infection and vaccination numbers for a period of 100 days starting from

January 18th can be seen in FigureA.10.

Our model requires a specific upper bound for the control functions in order for the

optimisation objective to be defined, as seen in Equation A.5. One choice for that upper

bound could be the average of the daily vaccinations over the time period we are studying.
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Figure A.10: Infection and vaccination numbers for the Republic of Ireland starting from
January 18th 2021

However, it is evident from Figures A.9b and A.10b that there is a great fluctuation in

the number of vaccines that were administered which can be attributed to the limited

availability of vaccines at the start of 2021. This leads us to assume that the number

of vaccines administered each day was the maximum of available vaccines for that day.

With that in mind, we designed a time varying upper bound, using each daily vaccination

number as the upper bound for the control function for that day. Additionally, while the

data provides the total number of vaccines to be administered to the population each day,

our model accounts for two age groups, each of them requiring a separate upper bound. To

address this issue, we apply complimentary percentages of the daily vaccination numbers

as upper bounds to each control function. Specifically, and in agreement with the policy

taken by the Irish government, we consider a higher percentage of the vaccines to be made

a available to the over 65 group. We choose 80% of the available vaccinations to be used

for the over-65 group and let VNo(t) be the number of vaccines administered at time (day)

t. Then, for time t, the control functions are bounded as follows:

uO(t)SO(t) < 0.8 · VNo(t) and uY (t)SY (t) < 0.2 · VNo(t)
�� ��A.27

where each control function is multiplied by the corresponding susceptible population.

We next set the mean number of people infected by an infectious person, namely the R0

number. Our model includes 4 age-specific R0 numbers associated with the β parameters

in our model, according to Equation (A.26). In reality, the R0 number greatly fluctuates

depending on individual behaviours and government restrictions. For that reason, we

explore three different choices for the set of age-specific R0 numbers. These choices are

listed in Table A.3 along with references to the respective plots.

From Figures A.11 to A.14 it is evident that the optimal vaccination strategy obtained

from our model is successful in quickly reducing the number of infections even in the case

of an average R0 number of 1.9. This value for R0 is unrealistic, especially for January
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R0OO R0Y Y R0OY R0Y O Average R0 Plot before peak Plot after peak

1 1 0.3 0.3 1.3 Figure A.11 Figure A.12
1 1 0.9 0.9 1.9 Figure A.15 Figure A.16
1.2 1.2 0.3 0.3 1.5 Figure A.13 Figure A.14

Table A.3: Chosen values for the R0 numbers (first four columns). The fifth column
corresponds to the weighted average of the age-specific R0 numbers. The sixth and
seventh column refer to the corresponding plots with the comparative simulation results,
using Irish data before and after the peak in the number of infections respectively.
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Figure A.11: Comparison of the infection and vaccination numbers for the Republic of
Ireland starting from January 1st 2021. The R0 numbers used are equal to 1 within each
age group and 0.3 between age groups.
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Figure A.12: Comparison of the infection and vaccination numbers for the Republic of
Ireland starting from January 18th 2021.The R0 numbers used are equal to 1 within each
age group and 0.3 between age groups.

2021, when Ireland was under strict lockdown measures. However, in this extreme case,

while the total number of infections is high compared to the real numbers, as expected,

the decline of the infection curve is steep, as can be seen in Figure A.16. This implies

that even if the country was not under total lockdown during these days, the optimal

vaccination strategy would be able to bring the infections under control within a short

amount of time.
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Figure A.13: Comparison of the infection and vaccination numbers for the Republic of
Ireland starting from January 1st 2021. The R0 numbers used are equal to 1.2 within
each age group and 0.3 between age groups.
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Figure A.14: Comparison of the infection and vaccination numbers for the Republic of
Ireland starting from January 18th 2021.The R0 numbers used are equal to 1.2 within
each age group and 0.3 between age groups.
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Figure A.15: Comparison of the infection and vaccination numbers for the Republic of
Ireland starting from January 1st 2021. The R0 numbers used are equal to 1 within each
age group and 0.9 between age groups.

The successful control of infections for all choices of the R0 numbers can be attributed

to the distribution of the vaccines to both age groups. The policy adopted by the Irish

121



A.6. DISCUSSION

0

500

1000

1500

2000

0 25 50 75 100
time (days)

nu
mb

er 
of 

ind
ivid

ua
ls

Compartment

Over 65 Real

Over 65 Simulated

Under 65 Real

Under 65 Simulated

(a) Infected individuals

0

10000

20000

30000

0 25 50 75 100
time (days)

nu
mb

er 
of 

ind
ivid

ua
ls

Compartment

Over 65 Vaccinated

Real Vaccinations

Under 65 Vaccinated

(b) Vaccines administered

Figure A.16: Comparison of the infection and vaccination numbers for the Republic of
Ireland starting from January 18th 2021.The R0 numbers used are equal to 1 within each
age group and 0.9 between age groups.

government mainly entailed administering vaccines to the over 65 population as are the

higher risk group. However, it is evident from our simulation that a policy where a

portion of the vaccines are additionally made available to the under 65 group can be more

beneficial.

It is interesting to note that in every simulation, the total number of daily vaccinations

resulting from the optimisation are often less than the real vaccination numbers, i.e. the

daily maximum number of available vaccines. This is a very encouraging observation,

considering the implication that less vaccines can be used to achieve comparable or even

better results. It is a particularly significant result if the optimisation is targeted towards

countries that have gained limited access to vaccines.

A.6 Discussion

Since the end of February 2020, the Republic of Ireland has been affected by the COVID-19

pandemic, like most countries in the world. For the greater part of the year no effective

treatment or vaccine was present, leaving the government with one tool to attempt to

flatten the curve of infection: the application of various levels of restrictions, depending

on the occurrence of new daily cases. In light of the vaccines that became available near

the end of 2020, a need arose for efficient vaccination plans based on the availability of

the vaccines and the risk levels of different groups of the population.

In this work, we introduced a novel compartmental model which more adequately

describes the dynamics of the virus compared to the approaches taken thus far in the

literature. We added compartments representing the stages of infection and vaccination,

and assumed two different age groups sharing the same model structure. Using this model

as a baseline to describe the evolution of the pandemic in the Republic of Ireland, we ap-

plied Optimal Control methods to obtain a suggested vaccination strategy that minimises
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the number of infections under certain restrictions such as the available vaccines. We

simulated the evolution of the pandemic with and without the vaccination strategy in

place for two different scenarios, indicative of strict and loose restrictions respectively.

The main conclusions we drew were:

(1) The optimal control strategy in both scenarios successfully flattens the curve of in-

fectious individuals, ensuring that less people will get infected by the virus due to

protection from the vaccine and, most importantly, that less people will be simul-

taneously infected thus avoiding exhausting the national healthcare system.

(2) In the case of low transmission rates, the vaccination not only flattens the curve

but also significantly reduces the total number of infections, specifically from 80%

to 11.3% for the over 65 group and from 79% to 5.38% for the under 65 group.

However, the pandemic lasts a long time, meaning that a big part of the population

remains in the susceptible compartment, not yet vaccinated but also not infected

due to the low transmission rates, as opposed to being moved to the protected or

recovered compartments.

(3) When the transmission rates are high however, the vaccination reduces the number

of infections by a much smaller percentage, namely from 99.995% to 85.29% for

the over 65 group and from 99.993% to 99.1% for the under 65 group. However

it still succeeds in flattening the curve and ensuring less simultaneous infections,

hence preventing a healthcare crisis. The pandemic in this case ends in a very short

period of time with the biggest part of the population having been infected and

eventually recovered.

(4) For both scenarios, the optimal strategy suggests focusing on vaccinating the older

population in higher percentages first, while simultaneously vaccinating part of the

younger population. This is a different approach to the one taken by many states,

including Ireland, where the older population gets exclusively vaccinated first.

All of the above lead us to conclude that an approach involving a combination of strict

and loose measures would be ideal, while the vaccination program is taking place. That

would ensure that the infection doesn’t spread to such a high percentage of the population

while the restrictions are not as severe so as to make the situation unbearable for a certain

length of time.

To verify our findings, we compared the results of our simulations to the real infection

numbers that occurred during the beginning of 2021 in Ireland, when the vaccination

process was starting across the country. We used three different sets of transmission

numbers, each of them representative of different levels of restrictions. Our method
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was successful in bringing the infection numbers under control within a short amount of

time and with a need for less resources than what was used. This result is particularly

important as it stresses the importance of correct allocation of the available resources

over the quantity of those resources. This means that even countries with limited access

to vaccines are able to effectively reduce the number of infections.

When working with a compartmental model, an important question that may arise

is in regards to the model’s identifiability. This topic has been studied in recent litera-

ture [77, 78] and the results suggest that different model structures have different levels

of identifiability. Specifically, parameters associated with non-observable compartments

seem to be the most difficult to identify. This difficulty does not take away from the

merit of our approach, since compartmental models allow for a deeper and more intuitive

analysis of the dynamics of infectious diseases, especially one as novel as COVID-19.

While our approach led us to a lot of interesting conclusions, there are certain draw-

backs. Our model assumes that all of the parameters remain constant for the duration

of the simulations which is not a realistic assumption. For example the transmission

rates, which were the source of the vastly different results in our two simulations, do

not remain constant for long periods of time. The dynamics of infectious diseases are

highly sensitive to transmission rates. While we explored two relatively extreme cases,

we haven’t explored the case where the transmission rates are variable, which would be a

very interesting extension. Furthermore, our model is a deterministic model which means

that there is no accounting for any uncertainty. However, it would be relatively simple

to propagate uncertainty through the model by repeatedly running it with parameter

values sourced from an appropriate probability distribution. In addition, we made the

assumption that the available vaccines are bounded per age group instead of them being

bounded as a total. However, it seems that bounding the available vaccines in their to-

tality is closer to what occurred in reality. That would result in a different search space

for the minimisation, or in other words, different constraints for the objective functional,

which would translate to an extra term in the Hamiltonian function and consequently one

additional adjoint equation.

In order to avoid the drawbacks described above, a stochastic model would have to

be introduced or a model with variable parameters. A study on a time-varying stochastic

SEIR model for the control of the Ebola virus can be found in [79]. Exploring different

transmission rates and their influence on the system dynamics is an important extension to

our work. This can be done either through sensitivity analysis, by producing simulations

with a wide range of transmission rates, or introducing time-varying transmission rates.

In addition, as we mentioned earlier, it is interesting to explore alternative expressions for

the objective functional to be minimised. For example, different weights to the control

functions for each age group can be introduced, modelling the cost of bringing the vaccine
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to different populations, or weight factors relating to the mortality rates of each group, to

the numbers of infectious individuals. Moreover, the introduction of more compartments

could enrich the model further, for instance a compartment for the hospitalised individuals

or one for the deceased. In the last case, it is possible to define the objective functional

so as to minimise the deaths as opposed to the infections. In our work, we focused

on minimising infections so as to not cause a strain on the healthcare system, however,

minimising deaths is an objective very crucial for life and is certainly important and worth

exploring. Finally, notable extensions would be the introduction of more age groups and

high risk groups, as well as multiple vaccines and their effectiveness. We leave these topics

as future research topics which we pursue elsewhere.
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A.7 Table of notations

Model states Symbol

Susceptible not yet vaccinated (o65 and y65) SO, SY

Received vaccine, waiting for it to take effect (o65 and y65) VO, VY

Received vaccine but was not effective (o65 and y65) NO, NY

Susceptible, refusing or unable to receive vaccine (o65 and y65) UO, UY

Exposed (o65 and y65) EO, EY

Infectious (o65 and y65) IO, IY

Recovered (o65 and y65) RO, RY

Protected from vaccine (o65 and y65) PO, PY

Total number of people in age group (o65 and y65) TO, TY

Model Parameters Symbol

Rate at which an o65 person infects an o65 person βOO

Average number of o65 people infected by an o65 person R0OO

Rate at which a y65 person infects an o65 person βY O

Average number of o65 people infected by a y65 person R0Y O

Rate at which an o65 person infects a y65 person βOY

Average number of y65 people infected by an o65 person R0OY

Rate at which a y65 person infects a y65 person βY Y

Average number of y65 people infected by a y65 person R0Y Y

Rate at which exposed becomes infected γE

Rate at which infected becomes recovered γI

Rate at which vaccinated becomes protected γV

Vaccine effectiveness αV

Percentage of over 65s refusing the vaccine rO

Percentage of under 65s refusing the vaccine rY

Control functions Symbol

Percentage of over 65s to get vaccinated at time t uO(t)

Percentage of under 65s to get vaccinated at time t uY (t)

Optimisation Functions and Parameters Symbol

Hamiltonian function H

Cost function F
Age specific weight constants WO,WY
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A.8 Existence of an optimal solution

The state equations
�� ��A.2 can be written in compact form as

g(t, x, u) :=
dx(t)

dt

�� ��A.28

where x denotes the variable vector x = ( SO, VO, NO, UO, EO, IO, RO, PO, SY , VY , NY , UY ,

EY , IY , RY , PY ). Firstly, we assume g satisfies the following:

(a) |g(t, x, u)| ≤ C1(1 + |x|+ |u|)

(b) |g(t, x, u)− g(t, x′, u)| ≤ C2|x− x′|(1 + |u|)

for some positive constants C1, C2 and for all t, x, x′ and u ∈ Ω. As stated in [48], when

g is of the class C1, meaning that it is differentiable with continuous first order partial

derivatives, then the above conditions are satisfied by applying suitable bounds on the

partial derivatives of g. It is possible to show that such bounds can be applied in the case

of our epidemic model, from the boundedness of the control and state variables ensuring

that Assumptions (a)-(b) are true.

Consider a performance index of the form:

F(u(t)) =
∫ T

0
f(t, x(t), u(t))dt

�� ��A.29

The following theorem, provides the sufficient conditions for the existence of a solution

to the optimal control problem.

Theorem 3 [48] Suppose that assumptions a-b hold, that f is continuous and moreover

that:

(1) The set of solutions to the system equations (A.2) with corresponding control func-

tions in Ω is nonempty.

(2) Ω is convex.

(3) f is convex on Ω and g can be written as g(t, x, u) = a(t, x) + b(t, x)u.

Then there exists an optimal control u∗(t) with corresponding optimal trajectory x∗(t)

minimizing F(u(t)).

We now prove the conditions of the theorem are satisfied for our model. As noted earlier,

conditions (a)-(b) are satisfied. The performance index integrand is

f(t, x(t), u(t)) = IO(t) + IY (t) +
WO

2
u2O(t) +

WY

2
u2Y (t)

�� ��A.30
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which is continuous, and Ω =
{
u(t) ∈ L2(O, T )2∥a ≤ uO(t), uY (t) ≤ b, t ∈ [0, T ]

}
. We

now examine conditions 1-3.

(1) From the Picard-Lindelöf theorem [80], if the system equations are continuous and

Lipschitz and the solutions to the system equations are bounded, then there is

a unique solution corresponding to every admissible control in Ω. It is trivial to

verify the continuity of the state equations
�� ��A.2 . Additionally, every element of the

variable vector x(t) is bounded by the corresponding age-group totals TO, TY . In

other words, x(t) ∈ [O,max{TO, TY }]16 which is a compact and convex set. Finally,

the Lipschitz property can be verified with the use of the following lemma from [81].

Lemma 2 If the vector function X(x, t) is of class C1 in a compact convex domain

D, then it satisfies the Lipschitz condition there.

(2) From the Heine-Borel theorem, it follows that Ω is convex because as a closed and

bounded set in R2 [82].

(3) The state equations are linearly dependent on the control functions uO(t) and uY (t)

so they can be written in the form g(t, x, u) = a(t, x) + b(t, x)u. The convexity of

the integrand f in the objective functional, follows from the fact that it is quadratic

in the control functions.
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A.9 Summary of Simulation Code

The R code associated with this work can be found in on Github: https://github.com/

elenizavrakli/Optimal-Age-Specific-Vaccination-Control. We provide two scripts

in order to simulate the evolution of the pandemic with and without intervention through

vaccination. In both scripts, we use two packages: deSolve, which provides methods

for solving differential equations, and tidyverse which offers an array of tools for data

manipulation, visualisation etc.

A.9.1 Baseline situation without vaccination

The script is organised in 6 blocks as follows:

(1) Initialise system states and parameters. Set initial values for the susceptible,

exposed, infectious and recovered population in each age group. Additionally, intro-

duce the refusal rates for the vaccine, the mean holding times for the exposed and

infectious states and the R0 numbers which represent the dynamics of transmission

amongst age groups. Finally, we set the time frame for the experiment.

(2) Creating state and parameter vectors. Bring all states together in a named

vector using the initial values defined previously, while setting the initial values for

all compartments associated with the vaccination equal to 0. Similarly, we define the

parameter values used in the model according to the initialisation in the previous

step.

(3) Time sequence and control. Define the time sequence for which to solve the

system of ODEs and initialise the control functions to 0. In this case, they will never

get updated, since we are exploring the baseline situation where no vaccination is

applied.

(4) Define the system of ODEs. Create a function containing the system of ODEs,

as defined in section A.2.

(5) Solve the system of ODEs. Use the ODE solver provided by the deSolve package

to obtain the state trajectories. We also obtain the percentage of recovered people

for each age group as well as the total percentage of the population that got infected.

(6) Plotting the trajectories. Plot the trajectories of the susceptible, infected and

recovered compartments for both age groups. We also save some of the state vectors

to produce comparisons with the case where the optimal vaccination strategy is

implemented.
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A.9.2 Case where optimal vaccination strategy in place

The script is organised similarly to the previous case. It is organised in 9 blocks as follows:

(1) Initialise system states and parameters. Same as before, set initial values

states, parameters and the time frame for the experiment. There are some additional

parameters associated with the vaccination, namely the vaccine effectiveness and

mean holding time for the vaccine. Additionally, we define the upper bound for the

control functions and the error threshold for the optimisation convergence.

(2) Creating state and parameter vectors. Same as the previous case. The states

associated with the vaccine are again initialised to 0, because we assume the vacci-

nation is only getting started now.

(3) Time sequence and control. Same as the baseline case. We need two time

sequence, one increasing and one decreasing, indicating the solution of the state

system forwards in time and the solution of the adjoint system backwards in time

respectively. The control functions will get updated after every solution of the state

and adjoint systems.

(4) Define the state ODEs.

(5) Solve the state ODEs forwards in time.

(6) Define the adjoint ODEs. Create a function containing the system of adjoint

ODEs as obtained through optimal control in section A.3.

(7) Solve the adjoint ODEs backwards in time.

(8) Repeat process until convergence. Design a while loop which includes the up-

dates of the control function after each solution of the state and adjoint system. The

loop is exited when two consecutive state trajectories are obtained to be closer than

the predetermined error threshold. We obtain the percentage of recovered people

for each age group as well, the total percentage of the population that got infected,

the percentage of vaccinated people for each age group and the total percentage of

the population protected from the vaccine.

(9) Plotting the trajectories. Plot the trajectories of the susceptible, infected and

recovered compartments for both age groups. We also plot the control function for

each age group and then provide comparison plots for the infectious individuals with

and without the optimal vaccination strategy in place, for both age groups.
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Our code is designed to simulate the situation in the Republic of Ireland, meaning

that we used initial values for the states and parameters, according to estimates of these

numbers found in [64] and [65]. The code is written so that any values can be used, in

order to study the effect that they have on the infection dynamics. The versatility of our

code allows us to apply this approach to any country by making changes in the two first

blocks in both of our R scripts. We can change the values associated with the population,

the transmission rates, mean holding times, refusal rate etc.
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