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Thesis Abstract 

Spatial navigation is an essential skill for animals and humans alike. It helps us get to a desired 

place and remember how to get back there in the future. Despite the fact that this process in 

humans has been well researched, there is still little known about the neural activity underlying 

spatial navigation processes in humans. Therefore, we aimed to contribute to the current human 

navigation literature by exploring a number of cognitive factors known to be involved, namely 

learning and memory. This thesis aims to address gaps in the literature by exploring spatial 

learning as a dynamic and flexible behavioural process, as well as spatial memory retrieval 

following recent (24-hours) and remote (1 month) retention intervals. Furthermore, we 

examined age-related changes in these behavioural and neural underpinnings. Spatial 

navigation ability was assessed using a virtual water maze task: NavWell (Commins et al., 

2020). We also examined brain oscillations, which are rhythmic patterns of neural activity 

proposed to reflect cognition. We investigated these rhythms at different frequencies using 

electroencephalography (EEG) in healthy younger and older adults whilst they navigated. Our 

results suggest that successful spatial learning coincides with the reduction of theta (4-8 Hz) 

and alpha (8-12 Hz) oscillations. Successful spatial memory retrieval promotes delta (2-4 Hz) 

and theta (5-7 Hz) increases. When navigation strategies are unsuccessful, these oscillations at 

frontal areas become enhanced. Recent and remote spatial memory retrieval requires 

recruitment of the same frequency bands, but greater oscillatory power. However, older adults 

show reduced power throughout all frequency bands compared to younger adults. They further 

demonstrated beta (15-29 Hz) and gamma (30-40 Hz) decreases during recent memory 

retrieval, with delta increases and theta decreases during remote retrieval. Our findings support 

theories of low-frequency oscillations possessing a mnemonic role, and further contribute to 

theoretical debates regarding memory consolidation and ageing from the unique perspective of 

human spatial cognition.
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Chapter 1 

 

General Introduction 

 

Publications arising from this chapter: 

Most content from this literature review has been published as: 

 

Thornberry, C., Cimadevilla, J. M., & Commins, S. (2021). Virtual Morris water maze: 

opportunities and challenges. Reviews in the Neurosciences, 32(8), 887-903. 
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Where are we and how did we get here? Spatial navigation is the ability to learn, remember 

and travel to a location in space. This relies on several complex cognitive and neural 

mechanisms. Spatial memories are formulated and stored to help us recall spatial locations in 

our environment. This form of memory is closely linked with our ability to navigate. Visual 

landmarks assist in successful navigation towards a goal. They can help with remembering, 

especially when distance, direction and appearance of a landmark or goal remain constant 

(Biegler & Morris, 1996). The spatial relationships between landmarks, goals and place help 

us recollect spatial memories and in turn, navigate successfully. The recall of these memories 

relies heavily on the hippocampal brain region (Ekstrom et al., 2005). The hippocampus is 

thought to communicate with the rest of the brain through rhythmic patterns of neural activity 

known as oscillations. These waves of electrical activity can occur at multiple frequencies and 

are thought to reflect the cognition underlying the spatial navigation process. (Buzsáki, 2002, 

2005; Buzsáki & Moser, 2013). Humans have a unique history of highly skilled navigation 

using a combination of the aforementioned cognitive and neural mechanisms (Ekstrom et al., 

2018). Therefore, understanding the neural mechanisms underlying human spatial navigation 

could help explain everyday memory-related navigation errors such as getting lost. Uncovering 

a systematic understanding of these phenomena, will help us understand why symptoms of 

dementias and stroke typically include disorientation and navigation difficulties. 

 

1.1 Theories of Spatial Learning & Memory 

1.1.1 Cognitive Mapping Theory 

One of the most prominent theoretical accounts of spatial learning and memory is the cognitive 

map theory (O'Keefe & Nadel, 1978; Tolman, 1948). The concept was first described by 

Tolman in 1948 as a representation of the environment, including routes and environmental 
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relationships used to make decisions about where to move. This framework was originally 

adapted to explain the shortcutting behaviour of rats in Tolman’s previous experiments (Tolman 

et al., 1946). Rats navigated the same environment repeatedly to a goal, before being presented 

with an altered version of the environment containing multiple alternative routes. During this 

test phase, rats predominantly chose to use a novel route that led directly to where the reward 

had previously been experienced. The ability to create short-cuts, which derive from 

automatically formed cartographic knowledge of the environment, has been cited continuously 

as evidence in support of cognitive mapping theory. Short-cutting behaviour had also been 

replicated in hamsters  and honeybees (Chapuis et al., 1987; Gould, 1986; Menzel et al., 2005).  

The discovery of neurons that fire when an animal occupies a specific location in its 

environment, termed place cells (O’Keefe & Dostrovsky, 1971; see section 1.3.2) and other 

spatially tuned neuronal populations in the hippocampus led to the influential 'cognitive 

mapping' theory, described originally in the book: ‘The Hippocampus as a Cognitive Map’ 

(O'Keefe & Nadel, 1978). They proposed that navigation behaviours have two systems. The 

first, a simple stimulus response strategy, allowing us respond to landmarks when following a 

learned route was known as the ‘taxon’ system. The second, is the ‘locale’ system, in which we 

construct a mental representation of the relationships among landmarks and the environment. 

This theory posits that spatial exploration (encoding) enables the hippocampus to construct 

mental representations of environmental layouts resembling cartographic maps (see section 

1.3.1 for further discussion). These have recently been proposed (Stoewer et al., 2023; Tse et 

al., 2007) to become integrated with current knowledge to help formulate spatial schemas of 

our environment. These are generalisable spatial representations of an environment, formed by 

integrating familiar neural representations that are not specific to any particular location, but 

allow us to predict what may lie ahead (Farzanfar et al., 2023). 
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Support for cognitive mapping theory derives from research showing lesions to the 

hippocampus produce spatial memory deficits across species (Astur et al., 2002; Cave & 

Squire, 1991; Clark et al., 2005b; Goodrich‐Hunsaker et al., 2010; Maguire et al., 2006; Morris 

et al., 1982; Spiers et al., 2001; Stark & Squire, 2003). Advancement in cellular and behavioural 

experiments (discussed in section 1.3.2) provided further support for the concept of a cognitive 

map (O'Keefe & Nadel, 1978). However, the shortcutting evidence remains controversial, with 

failures to replicate emphasising alternative strategies of view-matching and associative recall 

(Dhein, 2023; Dyer, 1991; Pearce, 2009; Whishaw, 1991). Recent human research using virtual 

environments also show goal-proximal landmarks strongly influence shortcutting behaviour 

and can be explained by associative theories (Wilson & Wilson, 2018). The concept of 

cognitive mapping theory is promising and fits well with connected neural mechanisms, but it 

struggles to successfully predict the behavioural flexibility of navigation. 

 

1.1.2 Associative Learning Theory 

A second prominent account of spatial learning and memory is – associative learning theory – 

which proposes that animals learn to associate environmental stimuli with motivationally 

relevant events such as goal locations or rewards. These associative representations are formed 

through basic conditioning paradigms that operate via cue competition and determine 

predictive strength based on reliability (Duval, 2019; McLaren & Mackintosh, 2002; Wagner 

& Rescorla, 1972). The principles governing the acquisition of navigational cue-goal 

relationships follow similar rules as classical and operant conditioning paradigms (Pearce, 

2009; Jeffrey 2010). Within associative spatial learning frameworks, two primary learning 

strategies exist. Elemental learning strategies involve a direct association between a 

cue/landmark and the goal (Rudy, 1991). The navigational aid is derived via recognition, which 
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promotes retrieval of the formulated spatial relationship, and in turn, the goal location to which 

it is associated (Sutherland et al., 1988; Pearce, 2002; Farina et al., 2015).  

Configural strategies in spatial navigation rely on associations between combinations 

of multiple environmental cues, bound together into integrated representations (see Figure 1.1 

for differences). These configural cue representations form distinct "emergent features" 

consisting of the combination of individual elements. However, the configural representation 

itself is treated as separate and independent from any of its constituent parts. In other words, a 

configural association encoding the co-occurrence of cues A+B forms a novel, singular cue 

representation that functions independently from the singular elements A or B. This allows 

locations to be specified through unique arrangements of features in relation to one another, 

rather than single landmark identities. Hence, associative learning theory can explain the short-

cutting behaviour used to support the concept of a cognitive map. However, supporting 

neuroscientific research has been weaker compared to support for cognitive mapping 

(Eichenbaum et al., 1999; Muessig et al., 2016; Pfeiffer & Foster, 2013; Rolls et al., 2006). 

Therefore, associative theory can explain the production of a cognitive map rather than being 

the sole explanation for successful navigation. 
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Figure 1.1: Conceptual design of two associative learning methods thought to be used during 

spatial navigation to promote learning and subsequent recall. Elemental learning uses 

individual cues or landmarks and associates those with a goal location (Left), whereas 

configural combines two cues or landmarks into a single combined concept which becomes 

associated with the goal (Right). 

 

1.1.3 Multiple Trace Theory & Systems Consolidation 

Much evidence around spatial memory, points to the significant role of the hippocampus in the 

encoding of new declarative memories (Squire, 2009; also discussed in section 1.2). Both 

theoretical models of spatial learning described above prescribe their function to the 

hippocampus and its unique cellular network. However, the mechanisms for the retrieval of 

spatial memories are still subject to healthy debate within the literature. Proposed by Nadel and 

Moscovitch (1997), the Multiple Trace Theory (MTT) of spatial memory recall proposed that 

both recent (recognition and contextual retrieval) and remote (long-term retrieval) require 

involvement of the hippocampus. Hippocampal networks are proposed to encode memories, 

with reactivations producing hippocampal-dependent memory traces containing detailed 

spatial context, whilst cortex-dependent traces of the memory are context-free (Nadel et al., 

2000). Therefore, retrieval of remote semantic memories does not require the hippocampus, 

but retrieval of spatial memories is hippocampal dependent, regardless of memory age. 
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Alternatively, Systems Consolidation Theory (SC) proposes that the hippocampus (as well as 

the cortex) is vital for encoding the memory at its early stage, particularly during the learning 

process. The cortex is initially unable to support the memory, but with repeated replay and 

retrieval allowing sufficient memory consolidation (e.g., through sleep – see Ji and Wilson 

(2007)) the cortical memory trace becomes strong enough to no longer require the hippocampus 

for retrieval. Hence, remote memories should not require the hippocampus, whereas recent 

memories should as they have not had time to consolidate. In humans, there is some evidence 

that following damage to the hippocampus both recent and remote memories become impaired 

(Barry & Maguire, 2019; Spiers et al., 2001). However, in terms of spatial memory, Maguire 

et al. (2006) demonstrated deficits in detailed remote spatial memories for familiar routes 

learned long-ago in a taxi-driver with bilateral hippocampal lesions. Based on our knowledge 

that the hippocampus is involved in storage and retrieval of spatial memory from the study of 

London taxi drivers (Maguire et al., 2000; Maguire et al., 2003; Weisberg et al., 2019) – we 

would expect hippocampal involvement regardless, with a deficit in the finer detail of spatial 

representation. However, the patient in the 2006 study could navigate reasonably well when 

using main roads – but poorly when using back or side roads. Maguire et al (2006) propose that 

the representation of the main roads may, over time and with replay, have become 

“semanticised” (released from the episodic memory requirements of the hippocampus – see 

section 1.3.2).  

Therefore, MTT would explain why these memories had been protected from 

hippocampal damage. However, imagining spatial scenes (Hassabis et al., 2007; Hassabis & 

Maguire, 2009) and imagined spatial navigation (Horner et al., 2016) show hippocampal 

formation activation using functional magnetic resonance imaging (fMRI). Therefore, it is 

entirely possible that hippocampal involvement in remote spatial memory (and any spatial 

memory at that) is scene construction rather than reactivation of memory traces, as argued by 



8 

 

Barry and Maguire (2019) and by Sutherland et al. (2020). Most importantly, both theories do 

suggest hippocampal involvement in the recall of recently formed spatial memories. 

Hippocampal activity has been found during retrieval of both recent (Rekkas & Constable, 

2005; Takehara-Nishiuchi, 2020) and remote (Miller et al., 2020; Schlesiger et al., 2013) 

memories. It is possible that neurophysiological recordings from the cortex rather than the 

hippocampus itself may provide the answers to the spatial memory retrieval process. 

 

1.1.4 Overview of Theoretical Frameworks 

In summary, we have addressed the two main theoretical debates concerning spatial learning 

(cognitive mapping theory/associative theory) and spatial memory (multiple trace 

theory/standard consolidation theory). Cognitive mapping theory proposes that we learn about 

and form an integrated, map-like representation of our environment, allowing us to navigate 

flexibly (O'Keefe & Nadel, 1978). However, associative theory suggests that we learn specific 

stimulus-response associations or route-based strategies, without forming an integrated map of 

the environment (Pearce, 2009). The evidence discussed above suggests that both cognitive 

mapping and associative learning processes contribute to spatial learning, but their relative 

contributions and the conditions under which each dominates are still debated. We hope to 

address this by providing insights into the neural mechanisms underlying these learning 

approaches, as specific neural oscillatory dynamics (see section 1.4) have been linked to 

cognitive mapping (Babiloni et al., 2011; Lithfous et al., 2015; Musaeus et al., 2018) and 

associative learning processes (Crespo-Garcia et al., 2012; Crespo-García et al., 2016; 

Greenberg et al., 2015). 

In terms of memory systems, Multiple Trace Theory (Nadel et al., 2000) proposes that 

recent (recognition and contextual retrieval) and remote spatial memories (long-term retrieval) 
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require the hippocampus. Standard Consolidation Theory (Squire, 1992; Squire et al., 2015) 

suggests that all remote memories, including spatial memories become independent of the 

hippocampus through a gradual consolidation process. Some evidence suggests that spatial 

memories may involve both hippocampus-dependent and hippocampus-independent 

components, but not much is known about the precise roles and interactions of these systems. 

We hope that this thesis may reveal some insight into the involvement of specific brain regions 

(section 1.3) or neural oscillations (see section 1.4) by recording neural activity during spatial 

memory retrieval at different time points (e.g., recent vs. remote memories). The involvement 

of particular frequency bands (see section 1.4) during different recall intervals has been shown 

to be related to the type of consolidation process involved prior to memory retrieval (Barry & 

Maguire, 2019; Jacobs et al., 2006; Nicolás et al., 2021; Schlesiger et al., 2013). 

 

1.2 Assessment of Spatial Navigation in Animals & Humans 

1.2.1 The Rat Race: Mazes and Spatial Learning 

The assessment of spatial navigation and memory in animal research has a rich tradition. 

Willard Small was one of the first to develop a maze for rodent learning over 100 years ago 

(Commins, 2018a; Small, 1901). Edward Tolman (1886-1959) continued this tradition and 

developed a variety of mazes including the starburst maze, which he used to demonstrate the 

idea of the cognitive map in rodents (Tolman, 1948). Towards the end of the twentieth century, 

more sophisticated mazes were developed that allowed for the separation of spatial strategies 

and their neural substrates including the Radial Maze (Olton & Samuelson, 1976) and the T-

Maze (Olton, 1979). The Radial Maze typically has the formation of a centre arena with tunnels 

or “arms” radiating outwards (see Figure 1.2a). The terminus of these tunnels typically contains 

a well in which a reward (such as food) can be placed. The ability of an animal to recall which 
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identical arm contains the reward, relies heavily on spatial learning and memory (Bolhuis et 

al., 1986; Crusio et al., 1987; Vorhees & Williams, 2014b). The T-Maze generally takes the 

formation of a long-stretch of maze with two, hidden turning points at the terminus (see Figure 

1.2b). Rodents are generally tested for their cognitive ability to recall cue-goal relationships, 

as each turn has an associated landmark, with only one turn containing a reward. Even when 

the hippocampus is removed or damaged, rats can still solve simple conditional or alternation 

reference tasks in the T-Maze (Deacon et al., 2002; Deacon & Rawlins, 2006; Pimentel et al., 

2022). However, there is difficulty to use or perceive spatial components and cues to locate the 

goal, but ability may also depend on the location of the damage (Gammeri et al., 2022; Trivedi 

& Coover, 2004). 

Circular open environments were also developed, allowing more freedom to explore 

space. Initially designed to examine cognitive mapping theory (O'Keefe et al., 1975), these 

mazes were soon adapted to different neurophysiological and behavioural studies (Barnes, 

1979; Cimadevilla et al., 2000). Thus, the neurobiological substrates of place learning and 

idiothetic (use of internal sensory cues) and allothetic (use of external physical cues) orientation 

were extensively studied in circular arenas, under different environmental conditions (Bures & 

Fenton, 2000; Muela et al., 2022). Though these designs have been incredibly influential in 

exploring animal learning and spatial memory, the “Gold Standard” of these navigational maze 

tests is the Morris Water Maze designed by Richard Morris (MWM; Morris, 1984, see Figure 

1.2c). The general layout of the maze involves a circular pool filled approximately half-way 

with water. The animal is tasked with locating and recalling the position of an “escape 

platform”, which is submerged below the water surface in a fixed location. The platform is 

generally camouflaged by colouring the water or making the platform from transparent 

materials. This facilitates the platform to have a low, if any, visual presence in the pool, 

meaning the location of the platform must be found and recalled (Vorhees & Williams, 2006; 
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Vorhees & Williams, 2014a, 2014b). The animal can be trained with distal (away from goal) 

landmarks, proximal (close to goal) landmarks or with their trajectory alone (see Nunez (2008) 

for an outline of the procedure).  

 

1.2.2 MWM and Navigation Strategy Assessment 

The MWM provides a highly controlled environment for landmark manipulation, 

behavioural observation and lesion studies. The strategy and style of navigation carried out in 

the water maze can differ depending on the situation. These navigation strategies can be 

egocentric or allocentric (as mentioned above). Egocentric navigation involves a relationship 

between the individual and objects or locations. It is typically considered as simple stimulus-

response pattern learning, whether it is following a fixed-route or responding to single 

landmark (Barry & Commins, 2019; Committeri et al., 2020; Ekstrom et al., 2017; Morris et 

al., 1982; Morris, 1984; Morris, 1981; Sanders et al., 2008). Allocentric navigation refers to 

mnemonic representations of viewpoint-invariant relations among objects (Harvey et al., 2009; 

Vorhees & Williams, 2014a), as well as fixed relations between objects or locations 

independent of the individual. These spatial representations are thought to be stored in memory 

like a cartographic map (Tolman, 1948; O’Keefe & Nadel, 1978). The recall of large-scale 

allocentric representations has been shown to be necessary when egocentric information is not 

readily available (Woollett & Maguire, 2010). Sex differences exist in navigational strategy 

choice.  

In humans navigating a virtual environment, men were more likely to use an allocentric 

strategy, while women more often used a response-based (egocentric) strategy (Boone et al., 

2018; Hegarty et al., 2023; Yu et al., 2021) Ageing also affects navigational strategy. For 

example in humans, older adults tend to rely on an egocentric strategy or response-based) while 
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younger adults show no real preference (Zhong et al., 2017). However, the choice of strategy 

may depend on the environment and availability of information (Hegarty et al., 2023). These 

different wayfinding strategies are thought to rely on different brain areas (see section 1.3.2) 

and are an important consideration when using the water maze to examine spatial learning and 

memory. 

A highly replicated finding using the MWM, is that damage to the hippocampus results 

in impaired allocentric (landmark) navigation (Lissner et al., 2021; Sutherland & Rudy, 1989). 

However, trajectory learning, or non-landmark dependant (egocentric) search strategies remain 

preserved (Eichenbaum et al., 1999; Eichenbaum et al., 1990; Lissner et al., 2021). Therefore, 

the flexibility of protocols and procedures provided by the MWM has led to it becoming one 

of the most popular tests for spatial navigation (also see section 1.2.3). The assessment of 

spatial navigation in humans has been more challenging. As a maze-type environment was seen 

as the most appropriate controllable environment for animals, performing similar tasks with 

humans on a larger scale has proved difficult. One of the first studies was that by Thorndyke 

and Hayes-Roth (1982) who examined spatial recall by asking participants to learn a buildings 

layout from a map or by active navigation around the building. Similar real-world navigation 

experiments have since proved useful to understand factors underlying human spatial learning 

and memory such as distance estimation (Commins et al., 2013), environmental orientation 

(Kimura et al., 2017) and spatial working memory (Nori et al., 2009). However, such large-

scale real-world navigation tasks are often difficult to standardise and manipulate (Park et al., 

2018). Natural environments are not fully controllable and experiments on this scale can be 

difficult to organise, resulting in a variation of navigation strategy choice amongst participants 

as well as numerous confounding variables. 
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Figure 1.2: (a) Diagram (Left) and photograph (Right) of a typical 8-arm radial maze. (b) Diagram 

(Left) and photograph image (Right) of a typical T-Maze design. (c) Diagram (Left) and photograph 

(Right) of a typical Morris water maze design, with a lightbulb depicting typical cue/landmark 

representation. Adapted from Vann (2024) and Bromley-Brits et al. (2011) with permission. 

a 

b 

c 
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1.2.3 Virtual Reality in Spatial Navigation Research 

With the growing popularity of Virtual Reality (VR) in scientific research in the last few 

decades, behavioural neuroscientists have made use of VR systems to assess spatial memory 

and navigation in a controlled environment (Maguire et al., 1997; Spiers & Maguire, 2007). 

The translatability of the animal literature using virtual navigation in humans has shown 

positive results. For example, navigation performance on a simplistic 2D desktop programme 

has strongly correlated with real-world navigation performance (Cogné et al., 2017; Santos et 

al., 2008). 

 Virtual “mazes” with various designs (see Figure 1.3) have become very successful 

tools for researching spatial navigation and also helping clinical populations (Thornberry et al., 

2021). For example, VR mazes involving navigational and non-navigational skillsets in brain 

injury patients have shown to be useful for assessments of deficit severity, rehabilitation and 

also improving community living skills (Aida et al., 2018; Tucker et al., 2018). Impaired spatial 

navigation has been detected in anxious patients using virtual reality platforms (Cornwell et 

al., 2012). Additionally, VR applications have aided the detection of cognitive deficits in 

individuals with mild cognitive impairment (MCI) and aided the assessment of symptomology 

in psychotic conditions (Kim et al., 2019; Lambe et al., 2020). The use of VR has also 

facilitated our understanding of the neural correlates of spatial navigation by combining a VR 

application with a form of neurological measure (such as fMRI or electrophysiological 

recording of individual cells). The use of VR has provided support for the presence of similar 

neural mechanisms underlying navigation in humans that were discovered in animals (see 

section 1.3 below). 
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Figure 1.3: Examples of virtual mazes from the literature, such as the virtual island ‘memory 

island’ (A, from Piper et al. 2010); a virtual town (B, from Newman et al. 2007); an original 

virtual water maze (C, from Astur et al. 2004) and the virtual taxi simulator based in London 

(D, from Spiers and Maguire 2008). Full figure adapted from Thornberry et al. (2021). 

 

 

1.2.4 Virtual Morris Water Maze 

Although the MWM is considered the “gold-standard” test for animal navigation, there also 

exists the need for a standardised testing procedure for human spatial memory and navigation. 

To examine whether animal models of navigation translate to human subjects, researchers have 

developed a virtual analogue of the water maze (Virtual Water Maze; VWM). Thornberry et al. 

(2021) found that by far the most popular task used to test human spatial learning and memory 

was the virtual water maze task, originally developed by Astur et al. (1998) and modelled on 
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the traditional Morris water maze. The tool has become an incredibly successful method of 

examining spatial navigation in humans; whilst retaining a similar amount of experimental 

control and reliability as its rodent counterpart (Astur et al., 1998; Astur et al., 2002; Astur et 

al., 2004).  

 Most of the results using VWMs have shown good consistency with the rodent version 

of the task (Schoenfeld et al., 2014; Schoenfeld et al., 2017). For example, males spend longer 

in the target zone than females during an invisible platform recall trial (Astur et al., 2004) and 

during initial trajectory of learning trials (Woolley et al., 2010). Furthermore, the task has been 

an incredibly popular choice for examining the effect of age on spatial memory and navigation 

skills; proving effective and consistent for longitudinal and neural measurement studies 

(Daugherty & Raz, 2017; Daugherty et al., 2015). The VWM has also been a popular choice 

for spatial memory assessment with clinical samples; demonstrating correlations between 

performance on a VWM and lower scores on the Montreal Cognitive Assessment (Konishi et 

al., 2017). 

 Furthermore, the VWM is capable of investigating both allocentric and egocentric 

strategies in humans, much like its animal counterpart (Astur et al., 1998; Hölscher, 1999; 

Morris, 1984; Thornberry et al., 2021). Allocentric strategies are typically examined based on 

the participants ability to navigate and locate a hidden goal using only the spatial relationships 

between the goal location and environmental cues. As the number of cues and starting positions 

can be easily manipulated in the standard water maze protocol (Vorhees & Williams, 2014b); 

the use of this strategy is further supported following successful navigation to the goal from 

different starting positions (Ferguson et al., 2019; Mueller et al., 2008). Failure to navigate after 

alternating the starting positions or rotating the environmental cues supports the use of an 

egocentric strategy in humans and animals (Grech et al., 2018; Van Gerven et al., 2016). This 

is because vestibular cues, specific learned routes or a landmark used for initial orientation are 
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disrupted by these environmental changes (Chamizo et al., 2006; Chamizo et al., 2012; Civile 

et al., 2014; Lugo et al., 2018). The VWM allows researchers to observe and quantify various 

measures related to these concepts, such as latency to find the platform, path length. These data 

provide unique insights into the contributions of allocentric and egocentric strategies during 

spatial learning and memory. 

 The basic procedure and look of a VWM generally follows that of the original, with a 

hidden platform, pool walls and landmarks. Nonetheless, several key factors that influence 

navigation in the rodent version of the task are removed when made virtual, such as motivation 

and physical locomotion. Furthermore, there is a lack of consistency both in the environmental 

design and procedure with the VWM compared to the MWM. For example, many researchers 

and companies design novel versions of the water maze to make them more ‘immersive’ or 

realistic (see Figure 1.4). Some incorporate landmarks from everyday life such as furniture 

(Thornberry et al., 2021), whilst in others, the original pool of the water maze is instead a 

circular desert island, in which participants must search for hidden treasure (Piper et al., 2010; 

Thornberry et al., 2021). In addition, the procedures often differ between labs, including the 

size of the arena, number of trials and trial length (see Thornberry et al., 2021 for full discussion 

and Table 1 for an example of this variation). The lack of consistency across designs and 

protocols poses a problem when attempting to compare research across labs, making replicating 

experiments difficult. Nevertheless, the VWM remains a popular test and has proven robust for 

both basic research and clinical work. 
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Figure 1.4: Examples of virtual water maze layouts from the current literature, such as an 

outdoor one with forest and mountain landmarks (A, from Machado et al. 2019); an indoor 

water maze with a window (B, from Livingstone-Lee et al. 2011); a water maze in a room with 

furniture (C, from Newhouse et al. 2007) and our own open-access maze, ‘NavWell’ (D, see 

Commins et al. 2020). Full figure adapted from Thornberry et al. (2021). 
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Table 1: Small sample from the full table in Thornberry et al. (2021) of the variety of different 

maze designs throughout highly cited literature.  

Paper Year Arena Indoor/Outdoor 
Platform 

Size/Shape 
Arena Size 

Astur et al. 2002 “Pool” 
Indoor (Pool in a 

room) 

No Details 

Provided 

No Details 

Provided 

Daugherty et 

al. 
2015 “Pool” 

Indoor (Pool in a 

room) 

Approx. 12% of 

arena size 

No Details 

Provided 

Hamilton & 

Sutherland 
1999 Circular 

Indoor (square room; 

pool wall 15% of 

room height) 

Square (Approx. 

1.75% of the pool 

surface area) 

Traversal 4s 

Full rotation 

2.5s 

Hamilton et 

al. 
2009 Circular Indoor 

0.66Vu x 0.66Vu 

(Approx. 20%) 

16Vu x 

16Vu x 3Vu 

      

NOTE: Vu represents “virtual units” relative to the paper from which it was retrieved. 
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1.3  The Neural Basis of Spatial Navigation 

1.3.1 Brain Regions Involved in Spatial Navigation 

Both humans and non-human animals rely extensively on the sea-horse shaped structure known 

as the hippocampus for spatial navigation (Commins, 2018a; Ekstrom et al., 2018). The 

hippocampus is located deep within the medial temporal lobe (MTL; Figure 1.5a and 1.5c) and 

is strongly connected to structures such as the parahippocampal and retrosplenial cortices (see 

Figure 1.5b and 1.5d). The hippocampus and surrounding structures encode many spatial 

attributes such as distance, direction and location relative to landmarks (Eichenbaum et al., 

1999; Ekstrom et al., 2017; Ekstrom & Ranganath, 2018; O'Keefe, 1993; O'Keefe & Nadel, 

1978; Smith & Mizumori, 2006; Stachenfeld et al., 2017). Additionally, humans employ both 

the parietal and frontal cortical areas to support the integration of sensorimotor information and 

decision-making respectively (Andersen & Cui, 2009).  

Numerous studies in non-human animals report impairments in spatial memory 

following hippocampal damage (Clark et al., 2005a, 2005b; Morris et al., 1982; Vorhees & 

Williams, 2024). Morris et al. (1982) demonstrated that hippocampal lesions in rats impaired 

spatial memory performance in the water maze. Since then, numerous support from 

neuroimaging studies in humans have reported that damage to the human hippocampus 

produces retrograde amnesia, in which remote memory is typically spared relative to recent 

memories (Barry & Maguire, 2019; Rosenbaum et al., 2000; Teng & Squire, 1999) but not 

necessarily for spatial memories (Broadbent et al., 2006; Clark et al., 2005b). However, Astur 

et al. (2002) replicated the original findings by Morris et al. (1982) showing that humans with 

unilateral hippocampal damage were impaired on a virtual spatial navigation task. Bohbot et 

al. (1998) had previously reported that patients with lesions either to the right or to the left 

hippocampus were not impaired on spatial memory tasks. Patients with lesions only to the right 
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parahippocampal cortex showed impairment following a delay between spatial learning and 

recall. Nevertheless, the finding of spatial impairments due to hippocampal damage has been 

replicated numerous times since in humans using a virtual water maze (Goodrich‐Hunsaker et 

al., 2010; Kolarik et al., 2016) and other tasks (Maguire et al., 2006; McCormick et al., 2018; 

McCormick et al., 2017; Miller et al., 2020; Spiers et al., 2001). Although not solely 

responsible, the hippocampus is the most important structure for spatial navigation in humans. 

 

 

 

Figure 1.5: Coronal T2-weighted MRI images showing normal hippocampal anatomy, unlabelled (A) 

and labelled (B).The dentate gyrus is shown in pink. The hippocampus is shown in red, which includes 

the CA1, CA2, CA3, and CA4 subfields and the dentate gyrus. The subiculum is shown in green. A 

diagram of the brain (C) and isolated sub-cortical structures (D) shows the medial temporal lobe, the 

hippocampal formation, parahippocampal gyrus, entorhinal and perirhinal cortices, parahippocampal 

cortex and amygdala. Adapted from Raslau et al. (2015) & Lang et al. (2024). 

(C) (D) 
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1.3.2 Cellular Networks of Spatial Navigation 

The role of the hippocampus in spatial memory and navigation was further supported by 

discoveries from the neural networks incorporated within and surrounding the structure. Using 

single-cell recordings from the surface of subregion CA1 (Cornu Ammonis) in the rat 

hippocampus, O'Keefe and Dostrovsky (1971) recorded extracellular activity during active 

navigation (see Figure 1.6a and 1.6b). They observed cells that would increase their firing rate 

from low to high, conditional on the rats’ position in the environment, named place cells. These 

are neurons that activate in response to an animal entering a particular location in its 

environment. Different place cells, were found to have different firing locations, known as 

place fields (Moser et al., 2008; Moser et al., 2017). These combinations of cells were unique 

in each different environment, despite their location in the hippocampus – meaning cells nearby 

were no more related than cells further apart (Moser et al., 2017). The discovery of these cells 

suggested that the hippocampus may play an important role in co-ordinating, representing and 

interpreting space. However, more recently it has been suggested that they represent past and 

future environments as well (Grieves & Jeffery, 2017; Ormond & O’Keefe, 2022; Robinson et 

al., 2020; Umbach et al., 2020). Place cell maps or firing fields are known to evolve and grow 

with active exploration and experience of the environment (O'Keefe, 1993; Ormond & 

O’Keefe, 2022; Pfeiffer & Foster, 2013). It is possible that these cells code for an initial gist-

like map of a new environment using predetermined and stable firing fields (as demonstrated 

by Frank et al. (2004)). This may explain how they become more finely tuned with experience 

(Bostock et al., 1991; Quirk et al., 1990).  

Furthermore, place cells have been found to “replay” their firing pattern during sleep 

(Wilson & McNaughton, 1994) and upon moments of spatial recall and decision-making (Jai 

& Frank, 2015; Joo & Frank, 2018; Wu et al., 2017). Replay is a common feature of 

consolidated memory retrieval and occurs in numerous brain regions, including the 
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hippocampus, medial temporal lobe and visual cortex (Carr et al., 2011; Klinzing et al., 2019). 

This suggests a role of place and grid cell system in the memory of place. Single-cell recordings 

from the hippocampus of human patients by Ekstrom et al. (2003) has shown neurons 

comparable to the place cells found in rodents (see Figure 1.6c). Moreover, recordings from 

the MTL of patients performing a navigation task demonstrated place cell replay (see Figure 

1.6d), with firing corresponding to the location of an item during memory recall (Miller et al., 

2013). Recently, Kunz et al. (2021) recorded cells that encode self-centred distances to spatial 

reference points, alongside “place-like” cells that are involved in episodic memory formation. 

 
 

 

 

Figure 1.6: (A) Experimental setup for recording single neurons from freely exploring rats implanted 

electrodes. (B) Data from a single hippocampal place cell in a single trial. The left plot shows action 

potentials (red squares) superimposed on the path of the rat. A spatial map of the cell’s firing rate as a 

function of spatial location, known as a place field, is displayed on the right. (C) Place firing found 

during virtual navigation in the human hippocampus by Ekstrom et al. (2003). (D) Place cell firing 

during a virtual task recorded from the MTL in humans by Miller et al. (2013). A & B reused with 

permission from Grieves & Jeffrey (2017) and C & D adapted from Herweg & Kahana (2018). 

C  Ekstrom et al. (2003) D  Miller et al. (2013) 
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In the late 1980’s and early 1990’s, extracellular recordings from the postsubiculum (PoS) 

revealed a set of neurons termed head direction cells (see Figure 1.7a and 1.7b). These cells 

have been found throughout the brain in the retrosplenial cortex (RSC) and some 

parahippocampal regions (Figure 1.7a). Head direction cells fired when a freely moving rat 

was facing in a particular direction (Taube, 2007; Taube et al., 1990) and are reliant on stable 

and landmark rich environments (Muller et al., 1987; Page & Jeffery, 2018). Several human 

neuroimaging studies have found 2D head-direction information coding from spatial-relevant 

structures such as the RSC (Shine et al., 2016). Kim and Maguire (2019) recently discovered 

the 2D head-direction system codes vertical and horizontal heading in 3D space in the human 

thalamus, subiculum and RSC. Recordings from the rodent Medial Entorhinal Cortex (MEC) 

in 2005 (Moser et al., 2017) revealed more spatially-tuned neurons that fired at multiple 

locations that were arranged in a periodic triangular or hexagonal grid layout (Figure 1.7a & 

1.7c), with consistent spatial fields spanning across an entire environment (Hafting et al., 2005; 

Moser et al., 2008). The grid-like firing pattern provides a coordinate system for encoding 

spatial information. These grid cells form part of a broader cellular network for successful 

spatial navigation near and within the hippocampus. Grid-like spiking patterns have also been 

discovered in humans during a virtual navigation task (Jacobs et al., 2013).  

 Grid and Head-direction cells work in conjunction with several other unique cells such 

as boundary vector cells (Figure 1.8a), which are neurons that fire at environmental boundaries 

and perimeters, found in the rat and more recently the human entorhinal cortex and subiculum 

(Barry et al., 2006; Bjerknes et al., 2014; Lever et al., 2009; Shine et al., 2019; Solstad et al., 

2008). The hippocampus is known to be involved in processes beyond purely spatial navigation 

including the processing and memory of non-spatial cues such as objects (Cohen et al., 2013). 

However, there are some cells here that can be spatially tuned to encode the spatial location of 

an object (Jankowski & O’Mara, 2015). These object cells (Figure 1.8b) are modulated 
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similarly to place cells and fire regardless of the visual availability or appearance of an object 

(Jankowski & O’Mara, 2015; Nagelhus et al., 2023). 

 

 

 

Figure 1.7: (A) shows the previously mentioned navigation-related cells and their location 

within the hippocampus and entorhinal cortex. (B) Shows typical polar plot to track firing 

patterns of head-direction cells. (C) An example firing rate map of a grid cell produced using 

the same method as for the place cell in Figure 1.7b. Adapted with from Grieves et al. (2017). 

A 

B C 
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Figure 1.8: (A) Border/boundary vector cell firing patterns either firing along the edge of the 

environment or at a distance from the boundary or border with fewer of these types of cells 

recorded in the MEC. (B) Firing patterns of cells related to objects in the environment, they 

fire near a specific object in the Lateral entorhinal cortex. The same object cells recorded by 

Jankowski & O’Mara (2015) showing place properties until an object is positioned within the 

place field; in which its firing behaviour switches to object specific. Adapted from Grieves et 

al. (2017).  

B 

A 
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The beauty of this cellular network is that it facilitates the generation of memory or navigation-

related hypotheses rather elegantly. For example, it has recently been found that place and 

boundary cells fail to code for environmental connectivity (i.e., doorways or gaps in borders) 

but instead code for global spatial locations (Duvelle et al., 2021). Perchance, there are cells 

that are responsible for coding for these connected-spaces, or the functions of boundary-vector 

cells may differ than once originally thought. Furthermore, the human hippocampus and 

entorhinal cortex contain time cells, which activate at specific moments during an experience 

(Eichenbaum, 2014; Pastalkova et al., 2008; Umbach et al., 2020). They exhibit the same theta-

phase firing precession as place cells (Pastalkova et al., 2008), indicating their possible role of 

temporally ordering spatial memories at the time of retrieval. 

 

1.3.3 Brain Oscillations & Spatial Navigation 

The main disadvantage of single neuron recording is that one can only capture a microscopic 

snapshot of the brains’ activity. There are thousands of neurons firing in synchrony during any 

cognitive task or event. Prior to the discovery of place cells, early electrophysiological 

recordings from the rabbit hippocampus in 1938 (Jung & Kornmüller, 1938) followed shortly 

by the rodent hippocampus in the late 60’s (Vanderwolf, 1969) demonstrated a low-frequency 

signal with different properties to the classic spike activity expected from single neurons. The 

recording technique is known as Electroencephalography (EEG). This method facilitates the 

recording of electrical potentials generated by neuronal activity using electrodes placed on the 

scalp (scalp EEG), the cortex (known as electrocorticography: ECoG) or intracranially, within 

the brain (iEEG). Vanderwolf (1969) termed the low-frequency activity from the hippocampus 

occurring at 4-8 Hz as hippocampal theta oscillations (see Figure 1.9a and 1.9b). Many early 

studies focused on theta’s role in movement, with later studies demonstrating its role in 
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modulating synaptic plasticity (Kahana et al., 2001). Specifically, the discovery that theta can 

regulate the excitability of place cells during navigation (O'Keefe & Recce, 1993) suggested 

that theta may be involved in the ordering and instructing of place cell firing based on theta 

phase precession (Burgess & O’Keefe, 2011; Buzsáki, 2002; O'Keefe, 1993). Task-dependent 

theta oscillations were later found in the human hippocampus during virtual navigation tasks 

using iEEG (Ekstrom et al., 2005; Kahana et al., 1999). However, they were of lower 

frequencies than found in the rodent (Kahana et al., 1999; Watrous et al., 2013) and were not 

as continuous throughout virtual navigation (Caplan et al., 2003). Recently, it has been found 

that they occur at similar frequencies to rodents during real-world navigation, but match the 

dynamics of virtual navigation oscillations (Bohbot et al., 2017). Theta oscillations recorded 

both intracranially and from the scalp have since demonstrated an important role in movement 

during spatial navigation (Bush et al., 2017; Kaplan et al., 2012; Pereira et al., 2017) but also 

spatial/episodic memory (Buzsáki, 2005; Buzsáki & Moser, 2013; Greenberg et al., 2015; 

Herweg, Sharan, et al., 2020; Klimesch, 1999). However, a recent review by Herweg, Solomon, 

et al. (2020) has demonstrated that we are truly unaware of the dynamics of these rhythms, 

their role in encoding and/or retrieval of spatial memory and their functional relationship to 

other rhythms in the brain – regardless of whether they are recorded from the scalp or directly 

from the hippocampus. 
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Figure 1.9: (A) Theta oscillation recorded from the human hippocampus and the rat 

hippocampus; adapted with permission from Jacobs (2014). (B) Representation of different 

electrophysiological recording signals, frequencies and locations of equipment on the human 

head: adapted with permission from Lago et al. (2017). EEG: Electroencephalography. ECoG: 

Electrocorticography. iEEG: intracranial Electroencephalography.  

 

1.4 Oscillations & Human Spatial Navigation 

1.4.1 Current Understanding of Oscillatory Activity in Human Navigation 

Oscillations at particular frequencies are responsible for brain-wide cognitive networks related 

to spatial cognition. For example, theta oscillations allow cell assemblies in the hippocampus 

to induce and inhibit the firing of cells (Burgess & O’Keefe, 2011) and have been reported to 

allow cortical regions to communicate with the hippocampus during spatial memory tasks 

(Jones & Wilson, 2005). Considering the clear theoretical (O'Keefe, 1993; Ormond & O’Keefe, 

2022) and neural (Buzsaki, 2006; Buzsáki, 2002; Buzsáki & Moser, 2013) contributions that 

brain-wide frequency oscillations possess during human spatial navigation, alongside the 

invention of high-density EEG methodologies (see Chapter 2), much of the literature has only 

started to focus on investigating these in real-world (Wunderlich & Gramann, 2021), virtual 

(Du et al., 2023) and integrated environments (Delaux et al., 2021; Jabès et al., 2021). 

iEEG 

B A 
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Therefore, characterising frequency dynamics of oscillatory activity in the brain facilitates our 

understanding of their contribution during naturalistic behaviour. Oscillations are variations in 

the excitability of neuronal populations (Buzsáki, 2006). Categorising these different rhythms 

that simultaneously compose the EEG signal into a spectrum of frequencies allows researchers 

to characterise the dynamics of individual frequencies. Brain oscillations have been grouped 

into frequency bands ranging from delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-29 

Hz), gamma (30-150 Hz) omega (150+ Hz). Typically, researchers examine the amplitude of 

the oscillation. This is essentially the amount of energy  present in a frequency band and is 

typically converted to power (squared amplitude). Cognitive processes have been mostly 

associated with frequency bands ranging from delta to gamma activity. However, as opposed 

to the functions originally theorised by Berger in 1929, individual frequencies are not bound to 

specific cognitive functions, there can be coupling between frequencies, such as theta and 

gamma during spatial memory retrieval (Vivekananda et al., 2021) or different dynamics 

operating at specific frequencies within band, such as the Mu rhythm at approx. 10 Hz in alpha 

– related to sensorimotor processing (Pfurtscheller et al., 1997). This is imperative to 

remember, as a brief overview of frequency bands and their contributions to spatial navigation 

is provided below. 

 

1.4.2 Low-Frequency Oscillations (Delta & Theta) 

 Low frequency oscillations such as delta (1-4 Hz) are believed to contribute to 

successful communication between the cortex and the hippocampus in humans during spatial 

learning and environmental encoding. Delta recorded from the human hippocampus during 

virtual navigation by Park et al. (2014) revealed delta oscillations were associated with the 

encoding of environmental novelty, with delta power increasing as the task and environment 
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became familiar. This built on the findings by Watrous et al. (2011) showing increased delta 

power in the human hippocampus when participants viewed virtual landmarks – though it also 

increased with increased movement (matching their role in the rodent). However, more 

electrodes demonstrated this dynamic during viewing than did for movement. Miller et al. 

(2018) reported hippocampal delta increases were left lateralised for viewing object-location 

pairs (supporting evidence of left-lateralisation for spatial information – see Morgan et al. 

(2011)), with increases during navigation lateralised to the right hippocampus (Jacobs et al., 

2010). However, since rodent hippocampal theta have been suggested to operate at higher 

frequencies compared to humans (e.g., Jacobs (2014) suggest 1-8 Hz for humans and 1-12 Hz 

for rodents) – authors have recently argued that delta rhythm recorded on the cortex could 

reflect sub-cortical hippocampal theta activity (De Stefano et al., 2022; Herweg, Solomon, et 

al., 2020). These range and band suggestions are arbitrary, with theta typically incorporating 

both delta and alpha bands. With no definitive division of the human EEG frequency range in 

the literature, there are uncertainties regarding the specific operating frequencies of human and 

rodent bands (Bazanova & Vernon, 2014). Nevertheless, studies of scalp delta activity (along 

with theta) during human navigation report sustained increases during the starting phase of a 

trial in a learning condition, regardless of movement speed – reported by Kline et al. (2014) 

and again by Delaux et al. (2021). Therefore, it is hypothesised that delta activity is responsible 

for spatial memory and route-planning through the use of familiarity and landmark recall 

(Caplan et al., 2003; Lin et al., 2022) and that the rhythm works closely with theta (4-8 Hz).  

 Theta (4-8 Hz) has been subject to much human navigation research since it was first 

noted in rodent studies and proposed as an essential neural mechanism for spatial memory and 

place cell firing (Burgess & Gruzelier, 1997; Buzsáki, 2002, 2005; O'Keefe, 1993; O'Keefe & 

Recce, 1993). Furthermore, it is consistently reported during human spatial navigation in the 

hippocampus and on the scalp (Chrastil et al., 2022; Cornwell et al., 2012; Ekstrom et al., 2005; 
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Lega et al., 2012; Thornberry et al., 2023). Considering the significant amount of research, the 

general role of theta oscillations during navigation is still relatively unspecified. There are 

currently two opposing theoretical accounts for theta’s role in spatial navigation (Ekstrom & 

Watrous, 2014). The first is one that theta (4-8 Hz) possesses a potential role in segregating and 

facilitating spatial encoding and retrieval phases of navigation (Herweg, Solomon, et al., 2020). 

For example, Chrastil et al. (2022) reported increased scalp theta power during successful 

spatial decision making in a navigation task, compared to incorrect trials. Recent findings 

report theta power increases at early parts of trials during which spatial encoding takes place 

(Chrastil et al., 2022; Du et al., 2023; Liang et al., 2018; Liang et al., 2021; Lin et al., 2022). 

Specifically, these findings map on to Cornwell et al. (2008), who reported correlations 

between spatial learning performance in a VWM and theta power in the posterior hippocampus 

– even when controlling for sensorimotor activity. Enhancement of theta frequency using 

stimulatory techniques resulted in more accurate encoding and episodic memory retrieval 

(Roberts et al., 2018).  

However, these dynamics of memory-related theta are even disputed. For example, 

some studies demonstrate increases in theta rhythm during navigation related to successful 

spatial recognition, retrieval of object-place locations and associative memory (Addante et al., 

2011; Alekseichuk et al., 2016; Düzel et al., 2005; Khader et al., 2010; Kota et al., 2020; 

Miyakoshi et al., 2021; Vivekananda et al., 2021), with findings from a virtual water maze 

probe trial reflecting similar results (Bauer et al., 2021) - supporting a functional role of theta 

in memory retrieval. Alternatively, some studies report decreases in theta rhythms during 

successful encoding of object-place context (Crespo-García et al., 2016; Herweg, Sharan, et 

al., 2020), successful place retrieval during spatial tasks (Fellner et al., 2016; Hanslmayr et al., 

2009; Lithfous et al., 2015) and associative memory formation (Michelmann et al., 2018). 

These decreases were typically characterised by localised decreases over the posterior scalp 
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and hippocampal regions accompanied by increases at the frontal cortex during successful 

retrieval (Greenberg et al., 2015). However, frontal theta power decreases have recently been 

demonstrated when episodic memories were tested after 1 and 2 weeks but not after 6–14 

months from encoding (Nicolás et al., 2021). This would suggest theta instead plays a role in 

processing and storing information for consolidation, allowing more information to be encoded 

through reduction of neural synchrony across the cortex (Greenberg et al., 2015).  

 The second alternative hypothesis for theta oscillations in navigation, is that they are 

involved in sensorimotor integration including speed modulation and motor movements. Motor 

planning has been correlated with hippocampal theta during spatial navigation tasks (Caplan et 

al., 2003; Kaplan et al., 2012). Theta has also been shown to be modulated by movement speed 

in humans navigating in virtual and real environments (Bush et al., 2017; Lin et al., 2022). 

Some researchers argue that they are modulated by acceleration rather than actual movement 

speed based on observations in rodents (Kropff et al., 2021). Furthermore, theta increases were 

reported in the medial temporal lobe during real-world walking (Aghajan et al., 2017) with 

theta in the entorhinal cortex responsible for carrying grid-cell related orientation information 

(Chen et al., 2018). However, it seems that mainly iEEG studies report movement-based theta, 

possibly suggesting that mnemonic theta oscillations are more prominent at a cortical level, 

with a movement, distance and direction role subcortically. There is suggestion that these two 

theoretical frameworks overlap at different frequencies within the theta rhythm, with different 

roles at different times (Buzsáki & Moser, 2013; Ekstrom & Watrous, 2014). Overall, the theta 

rhythm is one of the most studied and reported rhythms during human navigation. Nevertheless, 

the frequency dynamics and cortical localisation of the rhythm, alongside its true role in human 

navigation are still unspecified. 

 



34 

 

1.4.3 Alpha Oscillations 

Oscillations at the 8-12 Hz range seemingly overlap with some human definitions of high theta 

(Newson & Thiagarajan, 2019) and also fall within the typical range of rodent hippocampal 

theta (Watrous et al., 2013). Furthermore, researchers in the fields outside of spatial cognition, 

have illustrated essential roles of alpha in attentional processes and access to stored information 

(Foxe & Snyder, 2011; Hanslmayr et al., 2009; Klimesch, 1999, 2012; Klimesch et al., 1998; 

Sauseng, Klimesch, Stadler, et al., 2005). Attention is an important part of successful encoding 

and subsequent retrieval of information. We cannot learn about something without properly 

attending, but we can also not recall something if we don’t attend to mnemonic cues that may 

aid with recognition. Spatial navigation for example, is a complex task that requires focus and 

on-demand encoding and retrieval of information (Ekstrom et al., 2018). Alpha power has been 

demonstrated to increase in power during active but not guided navigation, as active navigation 

would require greater attention (Chrastil et al., 2022). On the contrary, Ehinger et al. (2014) 

reported vestibular (alpha suppression) and kinaesthetic (alpha increases) information 

modulated alpha power, also reported by Gramann et al. (2010) but in terms of egocentric to 

allocentric positional information.  

In terms of spatial information retrieval, increases in alpha power have been found over 

cortical areas processing irrelevant stimuli during spatial working memory but also virtual 

navigation tasks (Du et al., 2023; Haegens et al., 2012; Händel et al., 2011; Jensen et al., 2012). 

Posterior (occipital and parietal) alpha is typically observed during navigation and particularly 

in conjunction with frontal theta prior to spatial decision-making (Chrastil et al., 2022; Du et 

al., 2023; Li et al., 2021). However, alpha decreases have been shown in the retrosplenial cortex 

during spatial learning (Chiu et al., 2012; Lin et al., 2015) and orientation (Do et al., 2021; 

Gramann et al., 2010). It is thought to support the transformation of spatial information from 

allocentric to egocentric reference frame. Furthermore, Liang et al. (2018) demonstrate how 
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posterior alpha becomes suppressed by movement during a navigation task (possibly “cortical 

idling” during movement via the mu rhythm – see Pfurtscheller et al. (1996)). Therefore, 

alpha’s role may be explained by a form of the inhibition-timing hypothesis – the idea that 

alpha inhibits processing of irrelevant stimuli, to facilitate efficient information retrieval (Foxe 

& Snyder, 2011). However, evidence for the core concepts of the inhibition-timing hypothesis 

have been relatively weak (Morrow et al., 2023). Further work is required to understand the 

role and dynamics of alpha during spatial navigation and whether it is complementary to 

mnemonic roles of low-frequency oscillation, or whether it is involved in attention or even 

movement-related contributions to successful navigation. 

 

1.4.4 High-Frequency Oscillations (Beta & Gamma) 

We have decided to incorporate beta (15-29 Hz) and gamma (>30 Hz) oscillations here due to 

the reduced literature on beta oscillations in navigation, and the overabundance of research on 

gamma oscillations mainly derived from iEEG experiments – with varying definitions of the 

gamma band. Henceforth, we define Gamma as any frequency range >30 Hz. Firstly, Beta 

oscillations (∼12–29 Hz) have been mostly found to support sensorimotor processing. Beta is 

typically decreased below baseline during “active” states, such as movement. Decreases are 

typically seen in beta oscillations across sensorimotor areas before or after movement 

execution (Barone & Rossiter, 2021). Increases (or in some cases a return to a baseline-like 

state) have typically been reported during rest periods (Jensen et al., 2005) or following 

movement cessation (Barone & Rossiter, 2021; Engel & Fries, 2010; Kilavik et al., 2013). 

Beyond its well-established role in sensorimotor preparation and integration (Barone & 

Rossiter, 2021), beta is known to reflect activity in alpha oscillations – particularly during 

spatial tasks (Bauer et al., 2006). For example, in a spatial attention task which cued 
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participants to orientate themselves in order to interact with a tactile stimulus, suppression of 

beta occurred in preparation for attention-orientation (Van Ede et al., 2011). Beta activity 

suppression predicted better performance, with this phenomenon replicated numerous times in 

studies of decision-making & response inhibition (Enz et al., 2021; Wessel, 2020). In a spatial 

working memory task, alpha and low-beta suppressions were found to support sustained 

visuospatial attention, with beta responsible for the active maintenance of spatial location 

representations (Proskovec et al., 2018). Sutterer et al. (2019) also reported beta (15-20 Hz) 

increases associated with retrieval of spatial locations from long-term memory, reflecting the 

same patterns of activation seen during encoding (but see Hanslmayr et al. (2009)). In active 

virtual navigation studies, beta desynchronisation is typically sustained during straightforward 

or passive phases of navigation (Delaux et al., 2021; Do et al., 2021; Lin et al., 2015), with 

successful retrieval of spatial information during active navigation demonstrating beta 

increases (Chrastil et al., 2022; Sutterer et al., 2019). Hence, it is hypothesised that beta 

oscillations may also play a role in top-down control and maintenance of spatial information 

(Engel & Fries, 2010; Spitzer & Haegens, 2017). Furthermore, this period of maintenance can 

be activated, to facilitate memory retrieval (Hanslmayr et al., 2016; Sederberg et al., 2006). It 

is thought that it is more likely that beta opens the network (Palmigiano et al., 2017) - 

facilitating communication between sub-cortical and cortical regions through other 

oscillations. 

 Gamma oscillations (>30 Hz) have a detailed research background, with much of the 

spatial literature demonstrating their complementary role with theta oscillations (Aguilera et 

al., 2022; Goyal et al., 2020; Seger et al., 2023). They have been linked with numerous high-

level cognitive functions such as memory, as well as the proposal that they are responsible for 

long-range communication between assemblies of neurons. Gamma oscillations exist within a 

large range with a central frequency between 30-80 Hz, which is incredibly broad and can lead 
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to many issues with signal-processing – particularly relative power spectrum and baseline 

contribution (Ray & Maunsell, 2015). It is likely that they have no fixed or specific role (see 

Ray et al. 2015 for this argument). In spatial navigation research, one of the most frequent 

findings is the observation of theta-gamma coupling or synchronisation between oscillations, 

thought to organise the processing of spatial information and memories (Buzsáki & Moser, 

2013; Buzsáki & Vanderwolf, 1983). Further research indicated a detailed role of gamma in 

the hippocampus, reporting that gamma oscillations from CA1 couple inputs from the medial 

entorhinal cortex (updates information about current position), and area CA3 (stores spatial 

information) – both gamma phases involved here couple with different theta cycles (Colgin et 

al., 2009). Further research has hypothesised that the coupling between theta and gamma 

facilitates the temporal component of information encoding and retrieval (demonstrated in area 

CA3 by Jenson & Lisman in 1996), and hence co-ordinates the sequence of place cell activation 

(Burgess & O’Keefe, 2011). There are few human navigation papers that report a specific role 

of gamma. However, Jacobs et al. (2010) found posterior gamma oscillations during virtual 

reality navigation using iEEG – with a follow up study by White et al. (2012) confirming 

posterior gamma oscillations during visuospatial processing in a virtual town using scalp EEG. 

Gamma oscillations were found in the left hippocampus during an encoding phase of a 

virtual navigation task – alongside theta oscillations, with gradually decreasing gamma in 

higher performing individuals (Park et al., 2014). These results align with non-spatial 

experimental observations of gamma oscillations relating to successful consolidation of 

working memory (Mainy et al., 2007) and retrieval of declarative memory (Osipova et al., 

2006). Using a virtual Morris water maze task, Pu et al. (2018) found hippocampal gamma 

oscillations at rest predicted successful consolidation of encoded spatial information. 

Furthermore, the authors reported hippocampal reactivation accompanied by gamma 

oscillations immediately after learning, indicating a plausible role in consolidation. Yang et al. 



38 

 

(2021) reported egocentric and allocentric active navigation during a virtual-reality walking 

task increased scalp gamma oscillations at occipital regions accompanying synchronisations of 

frontal theta. Therefore, it is highly likely that gamma is involved in successful spatial 

navigation. Nevertheless, we are uncertain whether the true role of gamma oscillations are for 

communication between brain regions or sequencing processes. Furthermore, we do not know 

whether this is navigation-specific or more a general function and whether or not encoding and 

retrieval have any connection to gamma oscillations. 

 In short, oscillations are one of the most prominent and important neural correlates of 

cognitive function. All brain rhythms, delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-

29 Hz) & gamma (>30 Hz) maintain distinct but complementary roles in spatial navigation, 

including spatial learning, information processing, sensorimotor integration, attention and 

memory. Understanding these oscillations in humans will better shed light on their individual 

functional roles and help us understand brain function during spatial cognition in health and 

disease. 

 

1.5 Brief Overview of Factors Influencing Brain Activity During Navigation 

1.5.1 Sex/Gender 

Successful spatial navigation is not the only factor known to influence navigation-related brain 

oscillations. Behaviourally, there is much evidence of a male advantage in the animal literature 

(Gaillard et al., 2021; Kolb & Cioe, 1996; Perrot-Sinal et al., 1996; Schoenfeld et al., 2010), 

which seems to translate well over to virtual water maze paradigms in humans (Astur et al., 

1998; Astur et al., 2004; Buckley & Bast, 2018; Newhouse et al., 2007). Nevertheless, there 

are some studies in humans and non-human animals that demonstrate no sex/gender differences 

(Commins et al., 2020; Gagnon et al., 2018; Gaillard et al., 2021; Keay et al., 2018; Padilla et 
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al., 2017). Using a large-scale, widely available mobile app to examine navigation (Sea Hero; 

Coughlan et al. (2018)) researchers report that any gender difference reported in the global 

sample of more than 2.5 million people could be explained by the gender inequality of the 

country from which the population was sampled (Coutrot et al., 2019). Furthermore, Cheng et 

al. (2022) show that machine learning algorithms exploiting this dataset indicated that men 

tended to evaluate themselves as better navigators. Therefore, the debate regarding sex/gender 

differences is still active – though much human literature indicates it can be explained by other 

factors. 

 With a focus on neural oscillations during navigation and sex/gender differences, 

similar issues and debates exist. In a virtual maze task, women displayed more theta power 

increases compared to males (Kober & Neuper, 2011). Since females and males tend to prefer 

different strategies and landmark-use (Sandstrom et al., 1998) – it has been argued that it may 

be based on navigation strategy, though no behavioural differences were found. Training spatial 

skills improves navigation in a virtual task equally, but females showed greater theta power in 

frontal and parietal regions compared to males prior to training (Ramos-Loyo & Sanchez-Loyo, 

2011). Post-training, theta power and coherence was similar in both groups – but promoted 

previous connection between frontal and parietal cortices, just in different hemispheres (left for 

males, right for females). Female hippocampal theta does not decrease in familiar or learned 

environments as it does for males (Pu et al., 2020) – but this could be explained by behavioural 

differences again.  

Further research has supported the idea of a verbal strategy in women and a more spatial 

strategy in men based on hemispheric differences in both scalp EEG (Ramos-Loyo & Sanchez-

Loyo, 2011) and a recent MRI study using virtual navigation tasks (Noachtar et al., 2022). This 

is all further supported through studies using a virtual water maze in humans such as Piber et 

al. (2018), demonstrating male advantages in learning phases of the task (which require 
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learning strategies) but equal performance during retrieval. However, even at rest there are 

known sex/gender differences in oscillatory activity, which are complex and demonstrate 

different components within the default network (Jaušovec & Jaušovec, 2010; Kimura, 1996). 

Therefore, whilst navigation behavioural performance is likely to be similar, it is important to 

examine and include gender in analyses, which can be done (Jaušovec & Jaušovec, 2010) by 

including baseline-correction techniques and comparisons from resting state data. 

 

1.5.2 Ageing 

Age-related decline in navigation abilities begins as early as the mid 20’s, with individual 

variability shown to be greatest in our early 60’s (Coutrot et al., 2019; Klencklen et al., 2012). 

Furthermore, spatial navigation ability is considered to be one of the first cognitive functions 

to decline with age, and some of the first early pre-clinical signs of mild cognitive impairment 

and Alzheimer’s disease (Coughlan et al., 2018; Coughlan et al., 2020). The interest in age-

related decline in spatial cognition is only beginning to gather interest in human neuroscience. 

Recently a systematic review by van der Ham and Claessen (2020) of age-related navigation 

research has demonstrated that there are functional differences, with greater decline in path 

knowledge, compared to landmark and self-centred location knowledge.  

 There are also changes in our brain activity and function as we age. There are general 

slowing of oscillatory activity alongside less phase-coupling between rhythms such as theta 

and gamma. Interestingly, non-human animal work has demonstrated gamma oscillations 

typically reduce in speed and intensity within the medial frontal cortex (Insel et al., 2012), 

suggesting a slowing of overall neuronal communication. There are some general key findings 

regarding oscillatory activity in older adults: reduction in alpha activity at rest, and a general 

increase in delta and theta power (Ishii et al., 2018). Reduced amplitude of alpha has been 
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mainly reported at the posterior part of the scalp of healthy older adults, which sees decline in 

attention and concentration and can be predictive of conversion to MCI and later Alzheimer’s 

disease (Babiloni et al., 2006; Babiloni et al., 2016; Rempe et al., 2023; Scally et al., 2018). 

Increases in theta power and theta-gamma synchronisation are correlated with associative 

memory errors (Crespo-Garcia et al., 2012) and contextual memory impairments during 

retrieval in older adults (Strunk et al., 2017). Greater theta power at rest is associated with 

healthy ageing and better cognitive function (Finnigan & Robertson, 2011; Fleck et al., 2017), 

suggesting that the resting theta rhythm is a sign of healthy cognitive ageing – with older adults 

with greater cognitive reserve, showing greater theta coherence than those with low cognitive 

reserve (Fleck et al., 2017). Healthy older adults have greater alpha and theta at rest, compared 

to those with MCI, Alzheimer’s and Vascular Dementia (Moretti et al., 2004). Therefore, ageing 

research on oscillations has helped us understand the dominant frequencies of general daily 

cognition, and those that may be related to decline. 

 Considering spatial navigation skills are one of the first cognitive processes to decline 

with age-related pathology – understanding the connection between these oscillations and 

spatial navigation, learning and memory is essential. Decreased theta and gamma oscillations 

have been observed in older adults during retrieval of spatial (Rondina Ii et al., 2019), with 

typical spatial learning and retrieval in older adults in virtual and real environments being 

different or slower to younger adults (Bécu et al., 2020; Moffat et al., 2001). Jabès et al. (2021) 

reported overall greater power, lower theta & alpha and greater beta & gamma power at rest in 

older adults. The authors also reported that theta, alpha & beta are associated with spatial 

working memory in a navigation task. Poor cognitive map formation in older adults, and 

decreased theta and alpha power have been reported in the older adults compared to young 

adults at encoding in a virtual maze task (Lithfous et al., 2015), with the main differences being 

located in frontal regions – known to be associated with spatial memory decline (Lithfous et 
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al., 2015; Missonnier et al., 2011). This was replicated in theta during a navigation task 

recorded from the hippocampus, but only in poor elderly performers (Lithfous et al., 2018). 

This suggests that theta is somehow related to healthy cognitive ageing as suggested above, 

including spatial cognition. Nonetheless, there is very little research exploring the impact of 

age on the underlying impacts of neural oscillations related to successful spatial navigation and 

memory retrieval. Further research is necessary, but incorporating and controlling for age as a 

factor in all navigation studies with humans is a certain requirement. 

 

1.6 Thesis Objectives 

The general aim of this thesis was to further investigate the neural oscillations underlying 

human spatial navigation using a VWM task. More specifically, we aimed to explore key 

components of spatial navigation - learning (encoding) and memory (retrieval), examining how 

spatial ability and neural oscillations change during these processes with factors such as age 

and consolidation time. This paradigm should allow us to examine the discussed theoretical 

frameworks as well as perform some exploratory investigations using a novel protocol. The 

current chapter aimed to provide an overview and background to our current understanding of 

human spatial navigation and neural oscillations. Chapter 2 outlined the methods, analyses and 

signal processing approaches used throughout the thesis. We then examined spatial encoding 

during navigation in Chapter 3 in younger adults, using a hypothesis-driven approach to 

investigate theta and alpha activity during spatial learning, compared to a non-learning control 

group. The aim of Chapter 4 was to perform an exploratory analysis of all oscillatory bands 

during immediate spatial memory retrieval using the aforementioned learning & non-learning 

groups. Subsequently, Chapter 5 aimed to examine the impact of memory consolidation time 

(recent or remote), if any, on spatial memory retrieval and neural oscillations following 

successful spatial learning in new sample of healthy younger adults. Finally, Chapter 6 aimed 
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to investigate the differences between older and younger adults during rest, as well as 

immediate, recent and remote spatial memory retrieval following spatial learning. The impact 

of this work and its contribution to the current behavioural and neural theoretical frameworks 

of human spatial learning and memory during navigation are discussed in Chapter 7. 
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Chapter 2 

General Methodology 

 

Publications arising from this chapter: 

The behavioural paradigm and NavWell task have been published as: 

 

Commins, S., Duffin, J., Chaves, K., Leahy, D., Corcoran, K., Caffrey, M., ... & Thornberry, 

C. (2020). NavWell: A simplified virtual-reality platform for spatial navigation and 

memory experiments. Behavior research methods, 52(3), 1189-1207. 
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Brief Overview 

Many of the methodologies discussed throughout this thesis are used repeatedly over the course 

of the main experimental paradigms. These methodologies can be broken down into cognitive 

control measures, spatial navigation task, EEG data collection, signal processing and statistical 

analyses. The aim of this chapter is to outline each of these procedures and why they were 

chosen for use in particular paradigms.  

 

2.1 Neuropsychological Assessments 

A number of standard cognitive tests were given to participants including the National Adult 

Reading Test (NART), the Trail Making Test (TMT) and the Montreal Cognitive Assessment 

(MoCA). These were provided to ensure that the various groups tested were matched in their 

general cognitive abilities. The tasks were generally given between the learning and recall 

phase, to ensure a sufficient break was given. In addition, as the MoCA is often used to examine 

Mild Cognitive Impairment (MCI), we wanted to ensure that our older adults all scored within 

the normal range. 

 

2.1.1 National Adult Reading Test (NART) 

The National Adult Reading Test (NART) is a psychological test used to examine premorbid 

intelligence in adults who are potentially experiencing cognitive or intellectual decline (Nelson 

& Willison, 1991). The NART is a single word reading test consisting of 50 items, with 

increasing difficulty. All words on the list violate grapheme-phoneme correspondence rules of 

typical language comprehension. Participants are requested to read the list aloud, whilst the 

administrator records any errors in pronunciation. The number of errors is recorded for each 
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participant and is then used to estimate verbal IQ, performance IQ and full-scale IQ. The NART 

allows for a good estimation of general intelligence. Reading ability is highly correlated with 

verbal and overall IQ as it disregards numerical, spatial and logical components (Bright et al., 

2002). NART scores also correlate strongly with scores on the WAIS-IQ, suggesting in a 

neurotypical population, it is a good estimate of a person’s general intelligence. A number of 

papers have demonstrated the usefulness of this task as a control measure in studies of human 

spatial navigation and cognition (Burgess et al., 2006; Howett et al., 2019; Maguire et al., 

2003). 

 

2.1.2 Trail Making Test (TMT) 

The Trail Making Test (TMT) is a pen and paper cognitive test that was initially included in 

the Individual Army Test Battery (U.S. Army Individual Test Battery, 1944) and was retained 

due to its excellent ability to measure cognitive flexibility, visuo-spatial attention, and 

inhibition (Reitan & Wolfson, 1995). The widely used and validated TMT contains two 

sections. The TMT-A contains a page displaying twenty-five circled numbers and requires 

individuals to connect these series of circles in numerical order without lifting the pen/pencil. 

The TMT-B contains twenty-five circled numbers and letters, requiring participants to alternate 

between number and letter as they match them consecutively. Participants’ time-to-complete 

each section is recorded and is a commonly used measure of executive function and cognitive 

flexibility. Part A of the TMT mainly captures visual processing and motor speed skills, while 

part B measures task-switching ability and working memory, as well as inhibition (Reitan & 

Wolfson, 1995). The TMTs provide an excellent measure of overall cognitive performance, 

suggesting it is a logical choice to ensure healthy neurotypical participants are cognitively 

matched (see Tombaugh, 2004 for a review). The task has been shown to be capable of 
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accurately detecting neurological impairment and brain injury (Woods et al., 2015). The tasks 

scoring system controls for education level and age (Tombaugh, 2004). Therefore, we have 

chosen this task as it is a freely available, easy-to-administer assessment for general cognitive 

functioning. Particularly due to navigation performance being highly correlated with 

performance on the TMT (Committeri et al., 2020) and similar tasks in healthy older adults 

(Sanders et al., 2008), it offers a good test for our experimental design. 

 

2.1.3 Montreal Cognitive Assessment (MoCA) 

The MoCA was developed as a screen tool for Mild Cognitive Impairment (MCI). The task has 

shown excellent validity and performance across the world and in different languages 

(Nasreddine et al., 2005). The MoCA comprises a single-page test of approximately thirty items 

that can be administered in ten minutes. Cognitive impairments are detected via a cut-off score 

of twenty-six. Among the thirty items included within the MoCA are tests of executive 

functioning, memory, and attention (Julayanont & Nasreddine, 2017). The MoCA has been 

shown to suffer from a “ceiling effect”, causing a lot of scores to cluster towards the higher end 

of the scoring system (Zadikoff et al., 2008). The MoCA also possesses good cognitive 

heterogeneity, with several cognitive domains examined in a short task. This makes the MoCA 

a more favourable measure than other tests, such as the Mini-Mental State Examination 

(MMSE; Cockrell and Folstein (2002)). However, it has been reported that MCI prevalence is 

higher on the MoCA than the MMSE (Jia et al., 2021). Interestingly, scores on the MoCA are 

correlated with performance in virtual navigation tasks (more specifically a virtual water maze) 

in those with amnestic MCI (aMCI), a pre-dementia stage of Alzheimer’s Disease (AD). 

Nevertheless, researchers do suggest different scoring methods (such as 23.5 as a cut-off 

instead; see Ilardi et al. (2023)) or the removal of the 1-point correction for education 
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experience (Carson et al., 2018)). Despite its criticisms, the MoCA tends to contain more 

frontal tasks than the MMSE, with the MoCA more sensitive to detecting non-AD dementias 

such as vascular dementia. A relatively recent review demonstrated that in studies examining 

the impact of age on spatial cognition, the MoCA was one of the most used screening tools for 

dementia or MCI (van der Ham & Claessen, 2020). The authors recommend screening both 

younger and older adults using these tools, to control for individual variation in spatial 

navigation performance. Therefore, we utilise the MoCA throughout Chapter 5 to test for 

cognitive function in older and younger adults for research participation exclusion purposes 

and general comparisons. Given that our intention is to examine healthy older and younger 

adults, we found the MoCA to be the most useful for this purpose.  
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2.2 Spatial Navigation Task 

2.2.1 Virtual Morris Water Maze 

The ability to learn and accurately recall locations in our environment relies on multiple 

cognitive mechanisms and is essential for everyday life. The experiments in this thesis were 

carried out on a computer-based program known as NavWell, created in collaboration with 

Maynooth University Department of Computer Science. The NavWell software can design 

virtual environments comparable to the Morris Water Maze (MWM; Morris, 1984) in which 

humans can navigate. The software is based on the standard MWM protocols, with various 

arena sizes, cues and procedures that can be designed and manipulated by researchers (see 

Commins et al., 2020).  

The original “water maze” developed by Richard Morris in 1981 has been to the 

forefront of learning and memory research for many years (Alcalá et al., 2020; Morris et al., 

1982; Morris, 1984; Morris, 1981; Vorhees & Williams, 2014a, 2014b). The general layout of 

the maze involves a circular pool filled approximately half-way with water. The animal is 

tasked with locating and recalling the position of a hidden “platform”, which is submerged 

below the water surface in a fixed location. The platform is generally camouflaged by colouring 

the water. This facilitates the platform having minimal visual presence in the pool, meaning 

the location of the platform must be found and recalled from memory. The animal can be 

trained with distal or proximal landmarks or with their trajectory alone (see Nunez, 2008 for 

an outline of the procedure). The maze provides a highly controlled environment for 

behavioural, electrophysiological and lesion studies. 

The task is a simple, effective and a relatively cheap test that is primarily used to 

examine spatial learning and recall in rodents (D’Hooge & De Deyn, 2001). The popularity of 

the task was cemented when it was shown to be hippocampal-dependent (Morris et al., 1982). 

Furthermore, it is sensitive to age as well as environmental (Cao et al., 2008; Farina et al., 
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2015), behavioural (Fenton et al., 1994; Hölscher, 1999), neural (Broadbent et al., 2006; 

Packard & McGaugh, 1992) immediate early gene (Farina & Commins, 2020; Shires & 

Aggleton, 2008) and pharmacological (Morris et al., 1982; Skarsfeldt, 1996) manipulations. In 

addition, its use across species and with models of different diseases and disorders such as 

Alzheimer’s Disease (Bromley-Brits et al., 2011; Commins & Kirby, 2019); Parkinson’s 

Disease (Pothakos et al., 2009) and Epilepsy (Inostroza et al., 2011) has made it the ‘gold 

standard’ tool for animal learning, memory and navigation research over the last 40 years.     

Virtual reality and gamified navigation tasks have repeatedly shown to reflect spatial 

navigation performance in real-world settings (Coutrot et al., 2019; Santos et al., 2008) despite 

the lack of idiothetic, vestibular and kinaesthetic feedback (Ladouce et al., 2017). These virtual 

navigation tasks can be used with cognitively healthy and clinical populations, reporting 

success with depressed patients (Cornwell et al., 2010), Alzheimer's Disease patients (Tu et al., 

2015), and can be used to detect and monitor progression in Dementia (Cogné et al., 2017). 

The NavWell task itself has been validated using several experiments, such as verifying that 

there are no differences between 2D (desktop) and 3D (head mounted display via Oculus) 

versions of the maze (Commins et al., 2020, Experiment 1). Further experiments found 

replication of typical animal behaviours reported in the literature such as successful spatial 

memory using proximal landmarks (Commins et al., 2020, Experiment 2) and poorer age-

related task-performance in older adults (Commins et al., 2020, Experiment 4). The NavWell 

task also irradicates sex-gender effects typically reported in other VWM’s (Astur et al., 1998; 

Boone et al., 2018; Commins et al., 2020; Weiss et al., 2003). Younger and older adults reported 

that the task was “not difficult” to use (see Commins et al., 2020). This task was a robust choice 

for this current thesis. It has been repeatedly validated for use with several populations, 

provides a more ecologically valid examination of spatial learning and memory whilst 

remaining incredibly translatable to the animal literature. Virtual water maze tasks such as 
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NavWell have been reported to be the most used spatial task within the human literature 

(Thornberry et al., 2021) and have shown promising results in combination with multiple forms 

of brain imaging (e.g., EEG, iEEG, fMRI; Chrastil et al., 2022; Ekstrom et al., 2003; Maguire 

et al., 2006). Therefore, the use of VWM can aid in human spatial navigation research but using 

a peer-reviewed software with a published recommended method and set of procedures, such 

as NavWell, is essential for translatability and validity. The specific details of the environment 

and protocols used in this thesis’ experimental paradigm are described below.  

 

2.2.2 Setup procedure and environment design 

Participants were seated 50 cm from the LCD computer screen on their own in a darkened, 

electrically shielded and sound-attenuated testing cubicle (150 cm × 180 cm) with access to a 

joystick for navigating. The same arena design was used for all experiments in this thesis. The 

reason for this choice is because it is the arena design that elicited the best learning from 

participants across numerous variations of arenas tested in our lab (Deery & Commins, 2023; 

Thornberry, 2019). The virtual maze consisted of a medium circular environment (taking 

15.75s to traverse, calculated at 75 virtual metres [Vm]). Two cues were used and were located 

on the wall of the arena: a yellow square (northeast quadrant wall) and a light of 50% luminance 

(northwest quadrant wall) and can be viewed from a participants perspective in Figure 2.1a. 

Viewing angle was fixed, participants could only look left and right. This was to prevent the 

use of extramaze features to navigate and to ensure joystick controls were as straightforward 

as possible. A square goal was hidden in the middle of the northeast quadrant and was 15% of 

the total arena size and consisted of a bright blue square that only became visible when the 

participant crossed it (northwest quadrant wall, see Figure 2.1b). An overall schematic that 

incorporates task-specific elements from both behavioural phases is available in Figure 2.3. 
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Figure 2.1: Screenshot of the NavWell environment used in this experiment from the 

perspective of a participant. The light & square cues on the wall of the environment can be seen 

from the South starting point. Figure 2.1b: The goal location becomes illuminated when a 

participant walks over it, “congratulations, you reached the goal platform!” message displayed 

prior to the start of the ITI. 

  

a. 

b. 
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2.2.1.1 Learning Phase 

The task was programmed so that participants would start from pseudorandom starting 

positions around the cardinal points of the arena (North, South, East & West). The maximum 

trial length was set to 60 seconds/trial to locate the goal for all experimental paradigms. 

Participants were transported to the location of the goal if they failed to locate it. There was a 

10s inter-trial interval between each trial. The goal remained in the same location throughout 

(centre of NE quadrant). Latency (time taken to locate target or complete trial; measured in 

seconds), path length (distance travelled in virtual metres [Vm]) and percentage time spent in 

goal quadrant are typical measures of water maze performance (see (Thornberry et al., 2021); 

Vorhees and Williams (2014a)). These were recorded for each participant during each trial by 

NavWell (see also Commins et al., 2020).  

As previously discussed, the goal of the standard MWM is to locate an invisible 

platform in a circular pool and to recall its location, examining an animal’s spatial navigation 

and memory (see Morris, 1984; Voorhees & Williams, 2006). NavWell requires participants 

to locate and recall the location of an invisible platform in a virtual translation of a typical water 

maze pool. The NavWell environment was also split into four quadrants for the purpose of 

analysis (see Figure 2.3). Upon traversing the target, it would illuminate blue and present the 

message: “Congratulations, you have located the goal platform!”. This would disable 

movement for the participant, but still permitted them to look around using the joystick (see 

Figure 2.2). The task data were stored on an administrator cloud system and could be 

downloaded as a .csv file upon completion of the experiment. NavWell also produced a tracked 

heatmap and path sketch for each trial, as well as a time percentage spent in each of the four 

quadrants of the arena. When the environment and experiment was designed, participants were 

assigned a participant code number for the experiment and randomly assigned to an 

experimental group for all experiments. Participants data were then anonymised. 
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Upon starting the experiment, participants were presented with the following message: 

“Welcome Participant. Your experiment is about to start. Your goal is to find the platform 

within the pool. Use the cues in the environment in order to locate yourself. The experiment 

consists of 12 total trials”. The first trial began after 10 seconds and presented the following 

message on screen: “Your trial #1 is about to start. You will have 60 seconds to find the goal.” 

Participants were then instructed that their sixty seconds will begin when this message 

disappears. There was a 10 second Inter Trial Interval (ITI), which facilitated participants to 

look around and attempt to remember the targets location. When the target was located and 

illuminated blue, the following message appeared: “Congratulations. You reached the goal 

platform!” followed by “You can rest for 10 seconds. Look around the environment to learn 

this location.” (Figure 2.1b). 

If participants were unsuccessful in locating the target on any of the trials, the trial 

would end with the presentation of “Trial Ended” on-screen message. NavWell would then 

relocate them to the platform position during the same duration ITI. They were then prompted 

to learn the current location and the surrounding environment by presenting the message: “You 

have been moved to the platform location. You can rest for 10 seconds. Look around the 

environment to learn this location.” (Figure 2.2 “Incorrect Trial”). When all twelve learning 

trials were completed, there was a minimum duration of 10 minutes between this phase and the 

recall phase (see below). Performance of correct trials produced short latencies and path 

lengths. However, incorrect trials produced 60-s latency scores, as well as prompting the 

NavWell software to perform the above procedure during the ITI. For a clear understanding of 

the two possible trials and the NavWell protocol, see Figure 2.2 below. 
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Possible Participant Trials and the Respective Protocol in NavWell 

 

 

Figure 2.2: A breakdown of the two possible trial outputs (Correct Trial and Incorrect Trial) 

containing different participant behaviour, and the relevant NavWell protocol elicited during 

each stage.  
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2.2.1.2 Recall Phase 

A single recall trial was given some time following completion of the training trials and the 

neuropsychological assessments. In the standard Morris Water Maze procedure, a “retention” 

or “probe” trial is carried out following the learning trials to verify learning and examine spatial 

recall (Morris, 1984; Voorhees & Williams, 2006; Nunez, 2008). The platform is removed from 

the pool and the search strategy of the animal is examined. Typically, this test can be used to 

examine hippocampal-dependent spatial memory (Morris et al., 1982; Ekstrom et al., 2003, 

Barnhart et al., 2015). Lesions to the hippocampus impair recall during animal probe trials 

(Barkas et al., 2010; Broadbent et al., 2006; de Bruin et al., 1994; Farina & Commins, 2016; 

Inostroza et al., 2011; Morris et al., 1982; O'Keefe, 1993). A single recall trial is typically used 

as a measure of spatial memory; the platform is removed from the pool and the percentage of 

time spent searching in the correct quadrant is measured (Barnhart et al., 2015; Maei et al., 

2009; Vorhees & Williams, 2006; Vorhees & Williams, 2014a). For this project, our 

participants also had to recall the targets’ location during a single retention trial to examine 

hippocampal-dependent memory, however, the target did not illuminate blue if it was traversed 

(i.e., remained invisible). In Chapter 3, a recall trial was given to participants approximately 

10 minutes after completion of their learning phase, which we termed an “immediate recall” 

(analysed in Chapter 4). To examine recent and remote spatial memory in our subsequent 

chapters (Chapter 5 & 6) we gave participants an immediate recall trial on the day of the 

learning phase but were also asked to return 24 hours later (i.e., recent spatial memory – 

Eichenbaum et al., 1999; Clark et al., 2005) or 1 month later (i.e., remote spatial memory – 

Clark et al., 2005; Cimadevilla et al., 2000) for a further recall trial. The paradigm of the recall 

phase is in Figure 2.4. 

The recall trial was set to a duration of 60 seconds. All participants started from the 

Southwest (SW) position, which was a novel starting point not used during the learning phase 
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(see Figure 2.3). Participants received no feedback during this trial. However, participants were 

not made aware of this, receiving on-screen instructions to locate the platform as normal. They 

received further verification of this from the researcher and were debriefed after. Percentage 

time (of a total 60 seconds) spent in each quadrant including the target (NE) was recorded to 

measure memory recall. This is standard practice in the animal version of the task and has been 

used to previously validate the software in Commins et al. (2020). Participants were finally 

debriefed following the completion of the recall trial and thanked for their participation. 

 

 

Figure 2.3: Schematic of the NavWell Arena including landmark position, goal position, 

quadrant labels and starting positions for learning trial (green stars) and starting position for 

the recall phase (red star). The grey circle depicts the light from the previous figures, and the 

square is depicted as a yellow square. 
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2.2.1.3 Practice Phase (Older Adults)  

Older adult participants were to complete a series of four training trials before commencing 

their twelve experimental trials (Figure 2.4). This is common practice in the virtual water maze 

literature (Daugherty & Raz, 2017; Daugherty et al., 2015; Dobbels et al., 2020) as it helps 

older adults familiarise themselves with the controls, the nature of the task and allowed them 

to get comfortable with the EEG equipment’s presence during their navigation. All younger 

adults in this study were offered four training trials for the same above reasons. No younger 

adult participant accepted this offer. During these practice trials, the goal remained visible (blue 

square), and participants simply had to move towards it. The goal did not move location for 

each of the 4 trials (SE quadrant). The practice trials were also used to control for potential 

motor, visual or motivational issues. The training maze contained no landmarks, and the 

participants started each trial from the north, south, east and west positions respectively. The 

arena was a medium circular pool, as explained above. Each trial was 60 seconds in length or 

ended when the goal had been reached. This is also discussed in Chapter 6. 

 

Figure 2.4: A breakdown of the recall phase trial paradigms and overall experimental paradigm.
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2.3 Electroencephalography 

Electroencephalography (EEG) is one of the most effective and commonly used techniques for 

noninvasively investigating the electrophysiological dynamics of cortical neural activity 

(Cohen, 2014). The discovery of low-level cortical brain activity by Hans Berger in 1924 was 

revolutionary for neuroscience and neurosurgery. EEG is commonly recorded by placing 

electrodes on the scalp that are capable of reading voltage fluctuations of the cortex, which are 

then typically amplified and digitised (Cohen, 2014; Kumar & Bhuvaneswari, 2012). EEG 

electrodes capture the extracellular activity that derives from excitatory and inhibitory post-

synaptic potentials in populations of pyramidal neurons that lie parallel to each other, due to 

the structure of the cortex (Cohen, 2017). EEG sensors measure the perpendicular electric field 

that passes through the space between the source of activity and the sensors location. 

Additionally, EEG sensors capture electrical currents propagated in the conductive medium of 

the human head due to volume conduction (Cohen, 2017). EEG provides high temporal 

resolution but has historically possessed poor spatial resolution. However, recent advancements 

in source localisation techniques and the combination of EEG (Light et al., 2010; Michel & 

Brunet, 2019) with MRI data (Logothetis, 2008) have improved the overall resolution of neural 

signal, producing a low-cost technique to examine brain activity. 

Synchronized neural activity across substantial groups of cortical neurons can generate 

ionic currents that are substantial enough to be measured at the scalp via EEG. The firing of 

cortical pyramidal neurons is triggered by neurotransmitters binding to post-synaptic receptors, 

which opens ion channels and allows the flow of ions (e.g., sodium) into or out of the cell. This 

leads to either depolarization or hyperpolarization of the neuron. At the local level, 

synchronised dendritic activity from neighbouring cortical pyramidal neurons can summate to 

produce detectable extracellular current flows known as local field potentials (LFPs). Localised 

firing that generates LFPs can result in synchronized rhythmic patterns across neural 



60 

 

populations in small sections of brain tissue (Cohen, 2017). The presence of these brain 

rhythms and their amplitude, commonly termed neural oscillations can be observed in bands 

of frequency such as theta (4-8 Hz) and alpha (8-12 Hz) and recorded from the scalp. The scalp 

EEG, recorded by a single electrode, is a spatiotemporally smoothed version of the LFP. It has 

no real relationship with the firing patterns of the contributing individual neurons. This is 

largely due to the attenuating effects of the brain tissue, skull, and scalp present between the 

current source and the electrode (Buzsáki et al., 2012; Cohen, 2017). For further information 

see Chapter 1. 

  

2.3.1 An overview of measuring EEG 

EEG produces waveform data that can be analysed in terms of changes in amplitude across 

(measured in µV) and/or frequency (measured in Hertz: Hz) across time. The power of the 

signal (i.e., the amount of activity within a frequency or frequency band) is typically measured 

in µV2 within the frequency domain. Analysis of these signals involves digitization and 

examination of their characteristics in both the time and frequency domains. Time domain 

analysis focuses on how brain activity changes over time, such as identifying the timing of 

neural activity peaks (i.e., changes in amplitude) during cognitive or motor tasks (see Figure 

2.5a). Frequency domain analysis employs Fourier transformation to break down the 

recordings into a combination of waves with different frequencies. These wave patterns 

typically occur at the same time and can be isolated by breaking down these complex signals 

into distinct frequency bands (2.5b). The power within these frequencies can also change across 

time and can be analysed using time-frequency methods (Figure 2.5c). 

These bands traditionally include delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta 

(12-30 Hz), lower gamma (30-80 Hz), upper gamma (80-150 Hz), and omega (150+ Hz) waves. 
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Neural oscillations are the most prominent feature of EEG, linked to multiple spatial locations, 

time scales and across several species (Cohen, 2017). Cognitive processes are typically known 

to operate in the oscillatory range of delta to gamma activity (Alekseichuk et al., 2016; Buzsaki, 

2006; Fellous & Sejnowski, 2000; Goodman et al., 2018; Lundqvist et al., 2016). However, a 

single frequency band and such oscillations contained within, in isolation, cannot be 

responsible for one specific cognitive process (Buzsaki, 2006; Buzsáki & Moser, 2013). 

Furthermore, it is possible for the function of several frequency bands to overlap, such as theta 

and gamma oscillations during spatial memory retrieval (Lisman & Jensen, 2013). Therefore, 

there is no real agreement in the literature on the exact range of these frequency bands. 

 

 

Figure 2.5: An image of raw and unfiltered EEG amplitudes recorded from the scalp with the electrode site typically displayed 

on the y-axis and time displayed on the x-axis (a). A typical diagram of the frequency power spectrum, with the amount of 

activity (power) on the y-axis and the frequency (in Hertz) on the x-axis (b). A time-frequency plot that uses a time-frequency 

decomposition method to plot changing power in frequency on the y-axis across time on the x-axis. Scalp topography can 

show the distribution of this power at particular times (c). This figure has been adapted from Cohen, 2017 with permission. 

a. 

b. c. 
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2.3.2 Current Approaches for Studying EEG in Human Spatial Navigation 

As previously discussed in Chapter 1, much of our current knowledge derives from the study 

of non-human animals and the hippocampus. Some studies have focused on the human 

hippocampus (Ekstrom et al., 2005). However, what both domains have in common is the 

presence of oscillatory activity during spatial cognition. One of the easiest and most non-

invasive ways of studying cortical activity in humans during navigation is by using high-

density scalp EEG combined with VR (see Figure 2.6a & 2.6b). Though, this does not truly 

reflect the type of spatial accuracy available in iEEG navigation studies (Luck & Gaspelin, 

2017) –iEEG is next to impossible to implement on healthy cohorts of participants, typically 

requiring surgical patients.  

 Nevertheless, advanced signal processing after a real-world navigation experiment with 

a mobile EEG system (Jungnickel et al., 2019) or a stationary high-density EEG recording from 

a virtual navigation experiment (Delaux et al., 2021) requires large amounts of data from time-

locked cognitive events, which are not as clear-cut in a fluid ever-changing behaviour such as 

navigation (see Nyberg et al. (2022) and Erkan (2018)). Participants are typically required to 

complete many trials while EEG is recorded. Each trial typically consists of a stimulus 

presentation or the recording of a participant response. Signals of interest (typically 

timestamped by an event marker) are extracted and the data from multiple trials are averaged 

together (see Figure 2.6e for an example). Though this is one of the most widely used and 

significantly supported non-invasive, inexpensive neuroimaging techniques in the literature – 

it may be impractical (as well as not ecologically valid) to record multiple repetitions of a 

specific spatial learning or memory event during naturalistic navigation behaviour (see Figure 

2.6c and 2.6d for low trial number frequency analysis of navigation data). Acquisition of 

precisely timed events during a naturalistic learning behaviour, such as spatial encoding and 

retrieval is incredibly difficult. Recently, there have been statistical methodologies developed 
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to counteract this (such as independent component extraction, see Figure 2.6d middle). For 

example, Di Liberto et al. (2021) utilised linear regression-based decoding models to locate the 

event of steering actions within EEG signal, to investigate continuous action planning within 

the data. Though this is a useful method, the authors used a driving simulator with a specific 

set of turns and bends on a predefined driving track. This is very different to the dynamic and 

fluid nature of active natural spatial navigation. Another approach to EEG data analysis is the 

extraction of changes in the frequency domain. Using similarly advanced signal processing 

methods, researchers can extract the contribution of frequencies to recorded but stationary data 

(Cohen, 2014; Morales & Bowers, 2022; Sanei & Chambers, 2013). Our task and protocol does 

not map on to any specific EEG literature involving virtual mazes or mobile-EEG tasks – as it 

involves the continuous recording of spatial navigation using a joystick-controlled virtual water 

maze task. Therefore, a combination of these processes will be used to best suit our chosen 

experimental paradigm.  
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Figure 2.6: (A). Photograph of participant's equipment in Delaux et al. (2021) using a combination of 

VR, EEG and real-world movement. (B) Another example of equipment in VR-EEG experiments from 

Miyakoshi et al. (2021). (C) Example of time-frequency plots from active navigation experiment from 

Miyakoshi et al. (2021), in which time 0 represents trial/navigation onset with significant effects circled 

in black. (D) Examples of analysis of low-trial navigation experiments including theta power 

comparisons (left), independent component extraction (middle) and source reconstruction (right). (E) 

An example of ERPs that can be extracted during stationary non-active navigation/spatial tasks – 

presented in amplitude and time as opposed to power, frequency and time.  

A B 

C 

D 

E 
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2.3.3 Hardware and software  

EEG was recorded using a BioSemi ActiveTwo system with a 32-electrode cap using a 10-20 

layout (see Figure 2.7a, 2.7b & 2.7c). Thirty-two active sintered Ag-AgCl electrodes (Figure 

3c) contacted the scalp through an electrolyte gel link (Signa Gel, Parker Laboratories Inc., NJ, 

USA) which formed a connection between the scalp and the cap in which electrodes were 

inserted. Use of this electrode material amplifies EEG at the scalp, thus ensuring minimal 

interference from external noise and a performance preferable to that of passive electrodes at 

most impedances (Laszlo et al., 2014). Wet electrodes aid in further noise reduction and are 

considered more comfortable for participants compared to dry electrodes (Mathewson et al., 

2017; Oliveira et al., 2016). Vertical eye movements were recorded using electrooculogram 

(EOG) electrodes (EX1 – EX4) placed above & below the eye and at the lateral canthus of both 

eyes to record horizontal eye movements (see Figure 2.7d).  

Data were recorded continuously throughout the task in a room enclosed by a Faraday 

cage using a battery-powered amplifier so as to reduce the impact of electrical mains noise on 

the signal (see Figure 2.6e). Data were relayed to computers in an adjoining room. EEG signals 

were observed and recorded on a Dell machine with a Windows 7 operating system. A second 

Dell machine with a Windows 10 operating system was used to administer NavWell to the 

Faraday cage. Only the computer monitor, and the joystick were present within the Faraday 

cage; the computer hard drive was situated in the adjacent room. EEG data were sampled at a 

rate of 1024 Hz and down sampled offline to 512 Hz. The entire experimental setup is available 

in Figure 2.7f. Data were monitored during collection and saved using ActiView software 

(BioSemi B.V., Amsterdam, The Netherlands). BioSemi electrode offset tolerance was set to a 

strict < 20Ω to ensure noise-free signal. 
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Figure 2.7: (a-b) The BioSemi 32-channel caps and electrodes used in the experiment. (c) 

BioSemi 32 electrode cap using a 10-20 layout system. Adapted from the BioSemi website: 

http://www.biosemi.com/pics/cap_32_layout_medium.jpg. (d) Positioning of the four EXG 

electrodes on the face. (e) The BioSemi ActiveTwo System A/D box used to record the EEG 

data. (f) The setup and design of each EEG testing booth in the EEG laboratory including the 

control booth (i.e. for the researcher) and the experimental booth (i.e. for the participant). 

a. b. 

d. e. 

f. 

c. 

http://www.biosemi.com/pics/cap_32_layout_medium.jpg
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2.3.4 Procedure  

EEG data were collected during all experimental sessions. See Appendix A for amended 

standard operating procedures (SOP). Participants were seated in a comfortable chair outside 

of the Faraday cage in a dimly lit EEG testing room. The circumference of the participant’s 

head was measured just above the eyebrows and over the inion at the back of the head. This 

circumference was used to guide selection of an appropriate cap size. The distance from the 

nasion to the inion was then measured in centimetres and divided by two to determine the 

proper location of the Vertex electrode (Cz). The cap was carefully placed on the participant’s 

head. The chin strap was then fitted to ensure that the cap remained in a secure position. After 

each electrode holder was filled with gel the electrodes were attached. The participant was then 

moved to the Faraday cage and the electrodes were connected to the A/D box. The hardware 

and software mentioned previous was now setup for use. Using the ActiView software the trace 

for each electrode was examined to check for impedance (< 20 Ω). Once any problems with 

high offset or excessive noise where rectified testing began. Participants were made aware of 

artefact-related problems induced by blinks, other facial movements, head, and neck 

movements and the importance of keeping their feet rested flat on the floor. They were asked 

to keep such movements to a minimum and could request a break at any point. 

 

2.3.4.1 COVID-19 precautions 

The SARS-Cov2 virus was first detected in Republic of Ireland in February 2020. In March 

2020 the Irish government announced the closure of all education facilities. Further restrictions 

included the temporary closure of all non‐essential services (Thornberry et al., 2022). 

Additional physical distancing measures were also later introduced, including a stay-at-home 

order (people were not to leave their homes except under necessary or exceptional 
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circumstances), and a travel restriction (exercise only, within 5 km of your home). These 

periods of ‘hard’ lockdown occurred between March and October 2020, January and July 2021, 

& October – December 2021). During this entire period, no experimental work could take 

place. 

Some initial data were collected amid the backdrop of the COVID-19 pandemic 

(Chapter 3). Even when restrictions were lifted at the end of January 2022, a series of 

precautionary protocols were introduced to mitigate potential risks for both participants and 

the researcher. Upon entry and exit, participants were instructed to scan a QR code. This action 

directed them to a brief form where they provided contact information and noted their entry 

and exit times. This form was for the purpose of contact tracing. Throughout the study, 

participants and researchers were required to wear face coverings. Additionally, researchers 

wore gloves when handling equipment. Used EEG caps were cleaned and isolated for a 

minimum of three days before potential reuse. All EEG equipment, computers, and shared areas 

underwent thorough cleaning and disinfection after each use. Interaction between participants 

and researchers was limited. Researchers only came into direct contact with participants during 

EEG setup. To view the COVID-19 Standard Operating Procedure (SOP) for EEG during the 

pandemic used by the lab, see Appendix A. 

 

2.3.5 EEG Analysis 

All data were pre-processed and analysed using the methods discussed below. Any change to 

these methods was based on experimental design and was mentioned in the subsequent methods 

section within each chapter. 
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2.3.5.1 EEG Preprocessing Pipeline 

Continuously recorded EEG data were analysed offline in MATLAB R2021B using the 

Brainstorm package (Tadel et al., 2011) and custom scripts when necessary. Our plan was to 

implement spectral analysis in the time and frequency domain, as this was the most appropriate 

method for the research question and experimental design. The data were first down sampled 

to 512 Hz. Following this, a band-pass filter containing a 1 Hz high-pass filter and a 40 Hz 

low-pass filter was applied. Data were visually inspected for bad segments, which were then 

removed if necessary. Independent Component Analysis (ICA) was performed to remove and 

correct artifacts, namely eye movements, blinks, and muscle artifacts. We used the EEGLAB 

infomax algorithm callable via brainstorm using the runica function. Within this function we 

correlated the ordering of individual components with patterns within the EOG signals. 

Components were removed based on visual inspection of topography and/or time-series and 

the components correlation with EOG electrodes. Bad electrodes that originated from pre-

defined regions of interest were interpolated, if possible, using Brainstorm after ICA. Since we 

did not possess a reference electrode, we re-referenced our signal to the average of the 

electrodes. This is one of the better re-referencing methods, particularly when applied after 

ICA (de Cheveigné & Nelken, 2019; Delorme, 2023). However, in further chapters we added 

two mastoid electrodes to provide two possible re-referencing solutions if needed (Delorme, 

2023). A more detailed rationale for certain aspects of this general pipeline (Figure 2.8) is 

available in the below sections. 
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Preprocessing Pipeline 

 

Figure 2.8: Flowchart diagram of EEG preprocessing steps performed on data. 

 

2.3.5.2 Band-Pass Filter Selection 

Frequency filtering is one of the most essential preprocessing steps in EEG data analysis 

(Cohen, 2014; McFarland et al., 1997). Filtering data can remove both high-frequency noise 

(e.g., above 40 Hz) or can remove slow frequency drifts (e.g., 0 Hz “DC” component). This is 

done through the application of either a low-pass filter for high-frequency filtering and a high-

pass filter for low-frequency filtering. Based on recent research, depending on the complexity 

of the task different filters can have different effects, but all filters greater than 0.1 Hz and up 

to 1 Hz lead to a significant increase in the amount of clean and usable data (Delorme, 2023). 

The choice of filter should be directly related to the underlying hypothesis, paradigm 

constraints, the amount of expected noise and the frequency-bands of interest (Cohen, 2014). 

Task-related EEG Epoched with ICA projectors applied.

Each participants data re-referenced to average of 32 electrodes.

Independent Component Analysis performed. 

Artifacts removed following manual inspection of topography, time-series and contribution to variance in signal.

Transient band-pass filter (1Hz-40Hz) applied to data

Data imported and downsampled

Data inspected for bad segments/electrodes
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Furthermore, line-noise from the typical electrical mains currents (~50 Hz in Europe) can 

require a notch filter to fix. However, applying a notch filter is not necessary with the BioSemi 

system. This is because of the combination of active electrodes, battery power and optic fibre 

data transfer. Furthermore, all experiments were run in an electrically shielded Faraday cage, 

meaning that there was no possible interference from the mains current and a notch filer was 

not necessary. 

 Another fundamental aspect to consider when filtering data is how they will impact the 

data in the time domain. Epoched data typically consist of short fragments (e.g., two second 

time windows) of continuously recorded EEG. These shorter epochs are incredibly susceptible 

to edge artifacts introduced by low-pass filters (e.g., a 0.1Hz high-pass filter can distort up to 

10 seconds of data at the start of an epoch). Considering our methodology and the constraints 

of our task, this was an important factor to evaluate during filter design. Applying filters early 

on prior to epoching can help alleviate these issues (see de Cheveigné, 2019). Therefore, we 

implemented this in our filter design also. However, considering the continuous recording and 

in some instances, a lack of accurate temporal information, we concluded that a 1 Hz high-pass 

filter should be sufficient. This is what is typically used in the literature for EEG combined 

with navigation tasks (Delaux et al, 2021; Thornberry et al., 2023). Furthermore, considering 

we were trying to base our methodology on navigation/EEG papers available at the time of this 

protocol design (namely Delaux et al., 2021), we chose a 40 Hz low-pass filter, which matches 

with much of the literature and is useful in removing the influence of high-frequency peaks. 

Nevertheless, researchers face a constant battle in the design of filter definitions, with the topic 

seldom discussed in the rationale for most experiments.  
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2.3.5.3 Bad Channel Removal and Interpolation 

The loss of individual channel data from isolated or sometimes multiple electrodes is a common 

occurrence in EEG research (e.g., damage to wires, insufficient gel application, poor quality 

contact). Bad channel removal can lead to invalid dimensions between subjects and non-strict 

group level analysis. Channel interpolation is a method of channel data reconstruction based 

on the surrounding channels, which possess very similar signals due to spatial volume 

conduction (Yao et al., 2019). Unfortunately, the success of interpolation algorithms is a direct 

function of the availability and proximity of surrounding electrodes. Interpolation will perform 

better and be more reliable from a 256-channel system compared to a 32-channel system, as 

the 256-channel system electrodes have an inherently proximal and abundant spatial layout.  

Considering our low-density EEG recordings are not suited to the precision and data 

quantity requirements of interpolation algorithms (Dong et al., 2021), we tried not to use 

interpolation as a channel correction method throughout this thesis unless necessary. We only 

used interpolation if the channel derived from one of our pre-defined regions of interest. 

Otherwise, bad channels/segments were removed following visual inspection of the continuous 

data. When data were epoched, we ran an automatic detection tool within Brainstorm to detect 

and remove epochs containing bad data not identified in the continuous inspection. Bad epochs 

were identified using the automatic detection of voltage steps above 100 µV or peak-to-peak 

signal deflections exceeding 200 µV. These bad epochs were inspected visually by the 

researcher before confirming their removal. 

 

2.4.3 Independent Component Analysis 

Independent component analysis (ICA) is a model-based methodology that decomposes 

patterns of activity within a signal based on maximal differences in terms of time, spectral 
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activity and topography (Onton et al., 2006). ICA decomposes the signal into the individual 

sources that comprise the recorded data. Through this decomposition, the algorithm allows for 

the isolation and identification of noise contributing sources known as independent 

components (IC), as well as the IC’s contribution to the overall signal. It has been shown to be 

incredibly useful in parsing non-brain related activity from signal and removing prominent 

non-brain artefacts that contribute to much of the noise in EEG data (Onton et al., 2006). One 

such typical non-brain artefact is eye-blinks (see Figure 2.9 for an example of this IC). If the 

quality of the data is good, heavy component removal is sometimes not necessary, and 

contributes very little to the overall final signal data (Delorme, 2023).  

 Considering our experimental design contains large amounts of joystick interaction, 

muscle movement is a likely prominent artifact in much of our recorded data. Furthermore, the 

continuous nature of our task would also produce more frequent blinks. We would also expect 

very minimal horizontal eye-movements due to the nature of the task being first-person, with 

head direction changed via joystick control. Though ICA can be used to divide signal into brain 

components that may be relevant to a task, the main aim of ICA in this thesis was to isolate and 

remove noise from our signal. This is a powerful method for data cleaning, but it should be 

noted that the manual selection and rejection of ICs can result in error. We chose the algorithm 

infomax ICA (Bell & Sejnowski, 1995) which was available in Brainstorm, had the most 

frequent use in the community, and most importantly has shown the best results at increasing 

signal-to-noise ratio in EEG setups with few channels (Rejer & Górski, 2015). 
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2.3.5.4 EEG Frequency Band Analysis 

Artefact-free data were epoched for the selected time period around each analogue trigger for 

all trials for all participants. We chose epoch times that were sufficient to perform a good 

estimation of the overall power spectrum and avoid edge-effect estimation contaminations (see 

Gyurhovics et al., 2021 for the importance of doing this) near important behaviours (see 

relevant chapters for details).  

 For time frequency analysis (Chapter 3), we used a Morlet wavelet time-frequency 

analysis, with a central frequency of 1Hz & a full width half maximum time resolution of 3 

seconds alongside a linear frequency definition from 1 to 30 Hz (1:1:30). A 1/f normalisation 

was not applied here. Instead, power was then standardised via baseline normalisation (see 

Chapter 3 for details) and converted to decibels (dB) for each individual participant. This 

Continuous EEG Data 

Independent Component 

IC Topography 

Figure 2.9: Independent Component Analysis decomposition of eye blinks related artifacts. 

The IC can be viewed in the continous data at frontal channels. The spatial (topography) and 

temporal (Independent Component) occurance of the IC contained within the continous signal 

has been decomposed into a single signal component. This data and IC have been extracted 

from a single-subject from Chapter 4. 
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normalisation is done independently for each participant and electrode site. For statistical 

analysis outside of brainstorm, we averaged the power within each frequency band across time 

(we used the underlying MATLAB Fast Fourier Transform defaults available via our linear 

frequency definition if analysing time-frequencies). We then extracted these data for our pre-

defined regions of interest (ROIs) for each individual participant.  

In Chapter 3 we examined the power at our ROIs, the frontal midline (Fz, F3, F4) and 

the parietal midline (Pz, P3, P4) to capture activity from both the anterior and posterior parts 

of the scalp. Based on exploratory analysis from Chapter 4, we included the central midline 

(C3, Cz, C4) and the occipital midline (O1, Oz, O2), capturing activity from a broader array of 

scalp areas. Mean frequency band power for each participant was calculated by averaging the 

channels across time from each ROI, for each subject in each group. This procedure has been 

published (Thornberry et al., 2023) and is based on the restrictions placed on us by the 

experimental paradigm, and adapted versions of other researchers attempts to analyse 

behaviour-specific EEG during navigation (Nishiyama et al., 2002; Delaux et al., 2021; Jabès 

et al., 2021; Lin et al., 2022; Chrastil et al., 2022). 

For analysis in Chater 4-6, we calculated the power of the frequency spectrum during 

recall trials using Welch’s method to calculate Power Spectrum Densities (PSD). Unless 

otherwise stated, we chose a 2 second Hanning window with a 50% overlap between segments. 

This resulted in a frequency resolution of 0.5 Hz, calculated using the default MATLAB Fast 

Fourier Transform frequency definition. We utilised relative power as we are interested in the 

distribution of power within the frequency bands and the relationship between frequency bands, 

between the groups. Additionally, this calculation generated better between-group comparable 

data that is standardised and accounted for slow-drifts, artifacts and noise that may influence 

between-group analysis. The two groups may also have differing overall levels of absolute 

power and therefore relative power provides a correction for this (see Jabes et al., 2021, for 
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further information). Absolute power calculations also may give rise to inconsistencies across 

experiments compared to relative power calculations (Wang et al., 2013). Given the extremely 

large quantity of analysis expected, it was decided that relative power would be used 

throughout the thesis. Limitations that are caused by the implementation of this are discussed 

in Chapter 7.  For the calculation of relative power (e.g., Chapter 4-6) we divided PSD output 

by the sum PSD from all bins for each frequency band within 0 and 40 Hz at each electrode 

(using the spectrum correction function within brainstorm). We were careful to define 

frequency bands at a frequency distribution to prevent overlap in our relativity calculation.  

 

2.3.5 Statistical Analysis  

Statistical analyses & visualisation of the behavioural data were performed using a combination 

of JASP (version 0.15) and R software version 4.0.2 with the tidyverse and ggplot2 package 

(R Core Team, 2013). Statistical exploration of the EEG data was initially run using Brainstorm 

in MATLAB 2021b, comprising of two-tailed independent or paired parametric t-tests with a 

p-threshold of 0.05. We corrected for multiple comparisons in EEG data using an FDR 

correction. This was chosen as it is more detrimental to report an effect that is not there (type I 

error), as opposed to missing one that is (type II error; see Jabès et al. (2021) for similar EEG 

study with the similar statistical power to our experiments). However, statistics were typically 

performed again on mean power of oscillatory bands across time in JASP. The power of the 

time-frequency calculations was used (measured in μV2). This amplitude (the real part of the 

complex values produced by EEG signals) is squared to convert magnitude into power and 

normalised using a dB (decibel) standardisation: 

ⅆ𝐵𝑓 = 10 × log10 ( 
 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟𝑓

 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟𝑓
) 
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Power values from the frequency ( f ) are then converted into decibels (dB) relative to baseline 

activity for visualizations purposes. Topographies and time-frequency plots are displayed as 

change of dB converted magnitude (or amplitude: √power) or for PSD/FFT work; as magnitude 

and relative power (% of overall spectrum). We use this throughout to provide clarity & more 

interpretable plots when using statistical comparisons, as has been encouraged by other 

researchers (Burgess, 2019). Unless otherwise stated, all data were combined for EEG analysis. 

When comparing data with post-hoc tests in JASP, Bonferroni is preferred for main effects to 

strictly control family-wise error when making all possible pairwise comparisons between 

marginal means. But Bonferroni can be overly conservative and increases the chances of false 

negatives for within-subjects factors with multiple levels. Therefore, for interactions, we use a 

Tukey correction, as we are making focused comparisons between subsets of means and want 

to balance type I and type II errors. Tukey corrected p-values are not appropriate for repeated 

measures post-hoc tests (Field, 2013). In most circumstances for descriptive statistics, we 

reported Mean Difference (MD), Mean (M) and Standard Error of the Mean (SEM).  

 

2.3.6 Ethical Approval & Participant Recruitment 

Ethical approval was sought from the Maynooth University Biomedical & Life Sciences 

Research Ethics Subcommittee (BSRESC) which covers all aspects of biomedical/animal/life 

sciences research. The first phase of the project was approved under BSRESC-2020-2392604 

(younger adults only). This was then subsequently updated due to the COVID-19 pandemic 

under the same approval: BSRESC-2020-2392604 with an additional approval under: SRESC-

2020-2409892. This was to implement the COVID-19 pandemic standard operating procedures 

and risk assessment for data collection during reduced restrictions (see Appendix A). Finally, 

the two latter parts of the project (younger & older adults) was approved under: BSRESC-

2021-2453422 which covered this research until 2024 (see individual chapters for details). 
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 Participants outlined in this thesis were recruited from Maynooth University, the 

Greater Dublin Area and Kildare. Participants responded to posts on social media, through 

email or advertisements posted around Maynooth University campus. Some participants were 

recruited via the Department of Psychology Participant Pool (Module Codes: PS256, PS260, 

PS648, PS656). Participants were given course credit for participation, participants who did 

not complete participation or were not eligible to participate could submit a written assignment 

in lieu of participation. 

 For all experiments, participants were briefed on the nature of the experiment. They 

were told we were examining the brains electrical activity underlying learning and recall in 

humans using a task that depends on navigation and recall of a learned environment. They were 

given a full brief about the nature of EEG data collection (e.g., gel, washing facilities, non-

invasive methodology) as well as instructions on the controls of NavWell. They were given an 

information sheet (see Appendix B) with more precise detail about the experimental paradigm. 

All participants were over the age of 18 and provided informed consent prior to participation. 

Participants were also informed that they could withdraw from the study at any time up to the 

point of data anonymisation. Any expression of concern about their performance of any 

behavioural tests or questionnaires, participants were advised to contact their general 

practitioner, or another medical professional. Participants were informed that none of the 

measures employed in this thesis were used for diagnostic purposes. Participants were fully 

debriefed following participation, and any questions were answered by the researcher. Further 

details are provided in each individual chapter. 
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Chapter 3 

 

An investigation of theta & alpha dynamics underlying human 

spatial learning during navigation 

 

 

Publications Arising from this Chapter: 

The majority of the work described in this chapter has been published as:  

 

Thornberry, C., Caffrey, M., & Commins, S. (2023). Theta oscillatory power decreases in 

humans are associated with spatial learning in a Virtual Water Maze task. European 

Journal of Neuroscience. 58 (8). 
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Abstract 

Theta (4–8 Hz) & Alpha (8–12 Hz) oscillations in humans play a role in navigation processes, 

including spatial encoding, retrieval, and sensorimotor integration. Increased power, 

particularly theta, at frontal and parietal midline regions is known to contribute to successful 

navigation. However, the dynamics of cortical theta & alpha and its role in spatial learning are 

not fully understood. This chapter aimed to investigate theta & alpha oscillations via EEG 

during spatial learning in a virtual water maze. Participants were separated into a learning group 

(n = 25) who learned the location of a hidden goal across twelve trials, or a time-matched non-

learning group (n = 25) who were required to simply navigate the same arena, but without a 

goal. We compared both groups across all trials, at two phases of learning, the trial start, and 

the goal approach. We also compared the first six trials to the last six trials within-groups. The 

learning group showed reduced theta power at the parietal midline during the start phase, and 

greater reduced alpha, combined with a short but evident increase in theta at both midlines 

during the goal-approach phase. These patterns were not found in the non-learning group, who 

instead displayed greater theta & alpha power at both regions during the trial start, and at the 

parietal region during goal approach. We suggest our findings provide novel evidence for a 

link between efficient learning and theta/alpha oscillations in humans. Our theta results support 

the theory that this rhythm plays a crucial role in spatial encoding during exploration, as 

opposed to sensorimotor integration. Results found in alpha are discussed in terms of their 

contribution to spatial attention & sensorimotor planning during exploratory navigation. 
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3.1 Introduction 

Navigation is an essential everyday skill that allows us to get to and from important locations. 

Spatial cognition involves combining acquired knowledge of our environment and its features, 

to help us plan and move through space with both ease and efficiency (Ekstrom et al., 2003; 

Epstein, 2008; Epstein et al., 2017). From our review in Chapter 1, theta oscillations (4-8 Hz) 

support successful spatial exploration but have also been argued to support sensorimotor 

integration during navigation (Burgess & O’Keefe, 2011; Colgin, 2020). For example, speed 

of travel and path distance have been shown to be related to increased theta power in both 

animals and humans (Bush et al., 2017; Kennedy et al., 2022; Yassa, 2018). Furthermore, bursts 

in theta power have been observed during navigational direction-changes (Do et al., 2021). 

According to Ekstrom et al. (2005) theta power changes observed in the human hippocampus 

are related to movement and not to learning. Theta oscillations have also been shown to have 

an important role in learning, particularly in spatial or episodic memory encoding and retrieval. 

This link has been found in several intracranial electroencephalogram (iEEG) and scalp 

electroencephalogram (EEG) studies with humans discussed in Chapter 1 (Bohbot et al., 2017; 

Buzsáki, 2005; Chrastil et al., 2022; Ekstrom et al., 2005; Kahana et al., 1999; Lega et al., 

2012; Lin et al., 2017; Pastötter & Bäuml, 2014). For example, Kerrén et al. (2018); Lega et 

al. (2012); Vivekananda et al. (2021) all report increases in low-frequency theta power that are 

related to successful spatial memory encoding (but see Bohbot et al., 2017). Most recently, 

Chrastil et al. (2022) found theta power increases relate to encoding, specifically during a 

decision-making phase of active exploration.  

In a recent review, Herweg, Solomon, et al. (2020) explored the dynamics of these theta 

changes, with iEEG studies reporting theta power reductions related to successful memory 

encoding, whereas scalp EEG studies demonstrated increases in theta power. EEG studies 

focusing on navigation have also reported increased theta power oscillations during active 
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learning, recall, and decision-making (Chrastil et al., 2022; Lin et al., 2022; Vivekananda et 

al., 2021). However, decreases in theta power have also been noted during associative learning 

and episodic recall (Greenberg et al., 2015). For example, decreases in human hippocampal 

theta power have been shown to be related to improved navigation performance and successful 

spatial encoding (Cornwell et al., 2012; Crespo-García et al., 2016). Spatial memory formation 

during real-world navigation has also recently been linked to theta power decreases in humans 

(Griffiths et al., 2016). As concluded from Chapter 1, the dynamics of these theta oscillations 

during navigation are highly debated (see section 1.4.2). 

Connectivity models suggest that low-frequency oscillations from the hippocampus, 

retrosplenial cortex and posterior parietal cortex contribute to spatial navigation and may be 

reflected by cortical theta (Ekstrom et al., 2017; Ekstrom et al., 2003). Therefore, studies have 

generally focused on theta changes in two key cortical regions, the frontal and parietal midline 

(Chrastil et al., 2022; Kane et al., 2019; Kaplan et al., 2014; Lin et al., 2022; Meltzer et al., 

2009). These areas are known to display synchrony during encoding and retrieval of 

information (Fell & Axmacher, 2011). There is also supporting evidence for communication 

between the two regions for spatial working memory and goal directed attention via the 

frontoparietal network (Fellrath et al., 2016; Sauseng, Klimesch, Schabus, et al., 2005). Frontal 

theta increases have also been observed during recall of successful spatial information (Kaplan 

et al., 2014; Roberts et al., 2013) and on approach to decision-points during active exploration 

at the frontal midline (Chrastil et al., 2022). Chrastil et al. also found increases at the parietal 

midline during spatial decision-making.  

From our review in Chapter 1, navigation is dynamic and trying to capture sub-second 

neural changes during environment exploration and encoding is extremely difficult using 

classic EEG methodologies (also see section 2.3.2). As such, it is important to break navigation 

into its component parts and investigate each separately. One good place to start is the review 
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by Nyberg et al. (2022) which suggests evidence for three essential phases of navigation 

behaviour, (1) planning and route initiation, (2) travel and (3) goal approach. Importantly, each 

phase has evidence of related neural networks as well as behaviours which are relatively easy 

to identify. Using this approach, we focused on two phases, route initiation and goal approach, 

in an attempt to understand the role of frontal and parietal theta oscillations (specifically 4-8 

Hz) in spatial learning (De Araújo et al., 2002; Kunz et al., 2019; Sosa & Giocomo, 2021) using 

a virtual navigation task. As noted in Chapter 1, there is evidence of theta changes in both 

encoding (e.g., associative learning, episodic memory retrieval) and searching behaviours (e.g., 

speed, sensorimotor integration) during navigation. 

In an attempt to resolve the issues highlighted in our literature review in Chapter 1, we 

examined whether theta changes (across frontal and parietal sites) are specifically related to 

learning, by comparing the difference in theta between a group that was required to learn a 

specific target location to a non-learning control group. The control group was time-matched 

to each trial but simply had to navigate an arena without a goal present, i.e., this group was 

exposed to the same environment for the same number of trials and time but did not learn a 

specific location. Furthermore, we controlled for speed of movement in both learning and non-

learning groups. In addition, both groups started in the same location of the arena for each trial 

in an attempt to control for directionality. As a second measure of learning, we did a within-

group comparison and compared the first six trials to the last six of both groups – differences 

in the learning group should reflect learning changes, whereas any differences seen in the 

control group should reflect non-learning changes, such as exploratory behaviour or attentive 

searching.  

Therefore, we hypothesised that if the contribution of theta power is related to learning 

during exploration, we should demonstrate theta power differences between the non-learning 

and learning groups following completion of the task. However, if it is related to active 
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sensorimotor integration, we should show no differences between the groups. Furthermore, we 

hypothesised that theta power would increase in the learning group and not in the non-learning 

group at both regions of interest (ROI), based on previous findings. We hypothesised this 

would also occur within-groups, as the task is eventually learned. Additionally, we decided to 

run this analysis focusing on the exact same ROIs within the Alpha band (8-12 Hz). Multiple 

studies discussed in Chapter 1 reported that much alpha activity relates to communication with 

the sensorimotor cortex (Babiloni et al., 2014; Hori et al., 2013; Vecchiato et al., 2015). Since 

the integration of information in this region plays a role in our hypothesis and alpha was another 

heavily debated rhythm found during human navigation (see section 1.4.3), we felt that some 

focus should be given towards it. As highlighted in Chapter 1, definition of the theta band can 

sometimes vary in animal and human studies with a large range between 1 – 12 Hz (Buzsáki, 

2002; Buzsáki & Moser, 2013; Jacobs, 2014; Mao, 2023; O'Keefe & Recce, 1993; Yassa, 

2018). We hope that including alpha will enhance broader translational value, enabling the 

application of our findings across both domains. Considering we did not control for motivation 

and frustration, we decided to include alpha for this reason also. We would expect to find 

increased alpha power in the learning group during active navigation. This prediction is based 

on the results and similarity to our protocol from Chrastil et al., 2022 – who recently reported 

strong evidence of increased alpha in active navigators during a virtual navigation task, with 

groups of active and passive navigators.   
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3.2 Methods 

3.2.1 Participants 

Fifty young adults (34 females, 16 males) aged between 18 and 45 (M = 21.7, SEM = +/- 0.637) 

were recruited via Maynooth University Department of Psychology and externally using 

personal connections, flyers, and social media. The required sample size was estimated using 

the ‘pwr’ package available in R (R Core Team, 2013). Based on typical sample sizes in similar 

EEG studies (Chrastil et al., 2022; Do et al., 2021) and general guidelines (Larson & Carbine, 

2017), we calculated the minimum number of participants required with a Cohen’s d of 0.8 and 

a power of 80% at an alpha level of 0.05. The sample size estimated for the non-learning and 

learning groups was 25.5/group (see Figure 3.1 below). All participants gave informed consent 

prior to starting the project and were given a full briefing of the experiment, along with the 

exclusion criteria. Some participants from Maynooth University received course credit. 

 

 

Figure 3.1: A priori power contour plot shows how the sensitivity of the test changes with the 

hypothetical effect size and the sample sizes in this design. As we increase the sample sizes, 

smaller effect sizes become reliably detectable (Left). A power curve displaying the sensitivity 

of the test, obtaining sample sizes of 26 in each group would be sufficiently sensitive (power 

>0.8) to effect sizes of |δ|>0.792 (Right). 
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Due to technical failure (2) or low recording quality resulting in excessive noise (1), 

the EEG epochs of 3 participants (learning group) were excluded from the associated analyses. 

This project and the use of human subjects with EEG was approved by the Maynooth 

University ethics committee (BSRESC-2021-2453422). A sample of participants (n = 32) were 

tested using several neuropsychological assessments to ensure that both learning (n = 7) and 

non-learning (n = 25) groups were cognitively matched (see section 2.1). Note the lower sample 

number in the learning group was due to Covid-19 restrictions at the time. Some learning 

participants had been tested in early 2020, from which neuropsychological assessment data was 

ascertained. Following the return of restricted testing, the urgent requirements to collect data, 

and the shorter exposure time to participants in the lab during early days, we could not facilitate 

these assessments for all participants. Non-learners were collected after the learning group 

during reduced periods of COVID restrictions. The tasks consisted of the National Adults 

Reading Test (NART; Nelson and Willison (1991); the Trail Making Test (TMT; Army 

Individual Test Battery, (1944); Reitan & Wolfson (1992) and The Montreal Cognitive 

Assessment (MoCA) to examine executive functioning, memory, and attention in one short 

sitting (see Chapter 2, section 2.1 for specific details).  

 

3.2.2 Spatial Navigation Task 

After the electrophysiological preparation (see Chapter 2, section 2.3.4 for specific details), 

participants were seated 50 cm from the LCD computer screen on their own in a darkened, 

electrically shielded and sound-attenuated testing cubicle (150 cm × 180 cm) with access to a 

joystick for navigating. The spatial navigation task used was NavWell (see Commins et al. 

(2020) and Chapter 2, section 2.2 for in-depth details). In brief, the virtual maze consisted of a 

medium circular environment (taking 15.75s to traverse the arena, calculated at 22.05Vm). 

Two cues were used and were located on the wall of the arena: a yellow square (northeast 
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quadrant wall) and a light of 50% luminance (Figure 3.3a). A square goal was hidden in the 

middle of the northeast quadrant and was 15% of the total arena size and consisted of a bright 

blue square that only became visible when the participant crossed it (northwest quadrant wall, 

see Figure 3.3b). 

All participants underwent 12 trials from pseudorandom starting positions around the 

arena (N, S, E & W), with a maximum of 60 seconds/trial to locate the goal. Participants were 

transported to the location of the goal if they failed to locate it. There was a 10s inter-trial 

interval between each trial. The goal remained in the same location throughout (centre of NE 

quadrant). Participants were randomly assigned to either a learning group (who were required 

to learn the location of a hidden target across 12 trials, n = 25), or a non-learning group (who 

were required to navigate around the same arena for 12 trials, but without the presence of a 

goal; each trial was time-matched to the group-mean latency of each trial reported by the 

learning group, n = 25). This meant that the learning group data were collected first and non-

learning group trials ended after a set time, rather than 60 seconds. Latency (time taken to 

locate target or complete trial; measured in seconds), path length (distance travelled in virtual 

metres [Vm]) and percentage time spent in goal quadrant are typical measures of water maze 

performance (see Vorhees and Williams (2014a)). These were recorded for each participant 

during each trial by NavWell (see also Commins et al., 2020; Chapter 2). 

 

3.2.3 EEG Recording 

EEG data was acquired using a BioSemi ActiveTwo system (BioSemi B.V., Amsterdam, 

Netherlands) providing 32 Ag/AgCl electrodes positioned according to the 10/20 system 

during NavWell. Analogue event signals were sent during three time-points of each trial: (1) 

when participants began their trial, (2) when they reached the goal and (3) when their ITI (Inter 

Trial Interval) ended. BioSemi designed caps using the 32-electrode international 10-20 layout 
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were also used. The recording system was stored in the same room, and participants were seated 

during navigation and data were recorded continuously. A PC running the ActiView software 

(version 7.05) was positioned in the room adjacent to the experimental cubicle, for constant 

monitoring of the EEG recording. Participants were instructed to relax and move as little as 

possible. Four electrodes (EXG1 - EXG4) were positioned on the face to monitor eye 

movements and blinks. Raw EEG data were sampled at 1024Hz but were down-sampled offline 

to 512 Hz.  

 

3.2.4 EEG Pre-Processing 

Continuously recorded EEG data were analysed offline in MATLAB R2021B using scripts 

within the Brainstorm package (Tadel et al., 2011). A 1 Hz high-pass filter and a 40 Hz low-

pass filter was applied. Data were visually inspected for bad segments and bad electrodes, 

which were then removed. Independent Component Analysis (ICA) was performed to remove 

and correct artifacts, namely eye movements, blinks, and muscle artifacts. We used the 

EEGLAB infomax algorithm callable via brainstorm using the runica function. Bad electrodes 

that originated from pre-defined regions of interest were interpolated (1), if possible, using 

Brainstorm after ICA. EEG data were then referenced to the average of the 32 electrodes. For 

further information on EEG pre-processing see Chapter 2 section 2.3.4 for specific details. 

 

3.2.5 EEG Frequency Band Analysis 

We investigated two frequency bands of interest: theta (defined as 4-8 Hz) and alpha (defined 

as 8-12 Hz). The frequency band definitions are based on previously discussed literature in the 

introduction and the rationale described in Chapter 2. Artefact-free data were then epoched 

around each analogue trigger for all 12 trials for all fifty participants. For analysis of the trial 
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start, we used -500ms and +2000ms. We then used -2000ms before and +500ms marker for the 

goal trigger. We chose these epoch times as we believe it was sufficient to perform a good 

estimation of the overall power spectrum and avoid edge-effect estimation contaminations near 

important behaviours. Additionally, we also used -1000ms to -500ms before the start of the 

trial as a baseline. During this time, all participants were sitting still waiting to start their next 

trial, irrespective of their group. To not contaminate our baseline with edge-effects, the full 

time epoched at the trial start was -1500ms to +2000ms. The initial 500ms was to adjust for 

edge-effect contamination (see Gyurkovics et al. (2021) for the importance of doing this), the 

baseline was then calculated for the following 500ms, then we examined the remaining -500ms 

before the trigger, which was included in the analysis to allow for some error/time-lag in the 

temporal accuracy for behaviours. This was a precautionary approach due to the relatively 

manual assignment of the event triggers for this experimental procedure. These data were 

included in the analysis to ensure possible behaviours of interest were not missed due to a delay 

in sending the tigger to the BioSemi system. The same baseline was used to standardise each 

participant’s goal-approach epoch as well (see Figure 3.2).  

Each participant’s start epoch and goal approach epoch were extracted from all 12 trials 

in each condition. This provided a total of near 600 epochs per condition, 300 per phase. We 

used a Morlet wavelet time-frequency analysis, with a central frequency of 1 Hz & a full width 

half maximum time resolution of 3 seconds alongside a linear frequency definition from 1 to 

30 Hz (1:1:30). A 1/f normalisation was not applied here. Instead, power was then standardised 

via baseline normalisation and converted to dB for each individual participant. This 

normalisation is done independently for each participant and electrode site. For statistical 

analysis outside of brainstorm, we averaged the power within each frequency band across time 

(using the underlying MATLAB Fast Fourier Transform defaults available via our linear 

frequency definition), then extracted these data for our regions of interest (ROIs) for each 
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individual participant. We examined the power at our ROIs, the frontal midline (Fz, F3, F4) 

and the parietal midline (Pz, P3, P4) to capture activity from both the anterior and posterior 

parts of the scalp. Mean theta & alpha power for each participant were calculated by averaging 

the channels across this time from each ROI, for each subject, in each group.  

 

3.2.6 Statistical Analysis 

Statistical analyses & visualisation of the behavioural data were performed using a combination 

of JASP (version 0.15) and R software version 4.0.2 with the tidyverse and ggplot2 package. 

Statistical exploration of the EEG data was initially run using Brainstorm in MATLAB 2021b, 

comprising of two-tailed independent or paired parametric t-tests with a p-threshold of 0.05. 

We corrected for multiple comparisons in EEG data using an FDR correction. This was chosen 

as it is more detrimental to report an effect that is not there (type I error), as opposed to missing 

one that is (type II error; see Jabès et al. (2021) for similar EEG study with the same statistical 

power). However, statistics were then performed again on mean power of the oscillatory bands 

across time in JASP. For statistical analysis in JASP, the power of the time-frequency 

calculations was used (µV2) and normalised using a dB (decibel) standardisation (10 * log10(x 

/ µ). Topographies and time-frequency plots are displayed as change of dB converted 

magnitude (or amplitude: √power) in this chapter to provide clarity & more interpretable plots 

when using statistical comparisons (see Chapter 2). All data were combined for EEG analysis. 
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Figure 3.2: Diagram displaying the EEG data analysis and baseline normalisation process for 

each participant. The baseline was extracted from the start of the trial and normalised to the 

route-initiation phase data. This extraction was then used on the data at the end of a trial, to 

normalise the goal-approach phase data. Green is used to denote the analysed data, red is used 

to denote discarded data for edge-effect compensation, and blue is used to illustrate the 

baseline. 
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3.3. Results 

3.3.1 Behavioural Results 

Initially, we compared both groups’ scores on a variety of cognitive tests to ensure that both 

groups were generally cognitively matched. There were no significant differences between the 

two groups on the number of NART errors (t(30) = 0.36, p = 0.721), total time taken to complete 

the TMT (t(30) = 0.448, p = 0.657) and scores on the MOCA (t(30) = -0.445, p = 0.659). In 

addition both groups were well matched for age (t(48) = -0.845, p = 0.402). Gender differences 

were not the focus of this study, but there are some known gender differences in both navigation 

performance and theta power (Astur et al., 1998; Pu et al., 2020). Although the NavWell 

software seems to eliminate this effect (see Commins et al., 2020). However, just to confirm 

this, gender was included in the analysis of latency and EEG below. 

We next analysed performance of the learning group on the virtual water maze task. 

The task latency of participants during the acquisition phase was analysed using a 2 (Gender) 

X 12 (Trials) mixed-factorial ANOVA. Mauchly's test of sphericity indicated that the 

assumption of sphericity was violated (p < 0.05) and a Greenhouse-Geisser sphericity 

correction was applied to the model. This was applied throughout this section where 

assumptions were violated. Latency was defined by the amount of time it takes a participant to 

find the target (with a maximum of sixty seconds). There was an overall significant decrease 

in latency across all participants for the 12 trials (F(4.15, 48) = 14.933, p < 0.001, ƞ2 = 0.338). 

Tukey-corrected t-tests revealed that participants were significantly (p < 0.001) faster at 

locating the target on Trial 12 (M = 7.44s, SEM = +/- 0.96s) compared to Trial 1 (M = 36.88s, 

SEM = +/- 3.95s) and Trial 2 (M = 27.32s, SEM = +/- 4.22s). All participants in the learning 

group successfully learned the task, reducing their times across trials (see Figure 3.3c). There 

was no difference in latency between Gender (F(1, 23) = 1.78, p = 0.195, ƞ2 = 0.007). Likewise, 

no Trial X Gender interaction effect (F(4.15, 95.46) = 1.98, p = 0.101, ƞ2 = 0.045) was reported. 
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Latency was not analysed for the non-learning group, as they were time matched to the learning 

group in order to have comparable EEG trial lengths.  

The percentage of time spent in the goal quadrant was used as a measure of spatial 

learning (Barnhart et al., 2015; Vorhees & Williams, 2006). We investigated differences from 

trial 1 to trial 12 across groups. Trial 1 should capture searching in both groups, and Trial 12 

should capture goal-directed searching in our learning group. We ran a 2 (Group) X 2 (Trial) 

mixed-factorial ANOVA to investigate this. We report a main effect of Trial (F(1, 48) = 58.212, 

p < 0.001, ƞ2 = 0.272). We report a significant between-groups difference in percentage time 

(F(1, 48) = 11.098, p < 0.002, ƞ2 = 0.062). We also reported an interaction effect for Trial X Group 

(F(1, 48) = 36.933, p < 0.001, ƞ2 = 0.173). Independent samples t-tests revealed that the learning 

group display significantly (t(48) = 4.95, p < 0.001) higher percentage time searching in the 

goal quadrant on Trial 12 (M = 79.2%, SEM +/- 0.31%) compared to the non-learning group 

(M = 38.1%, SEM +/- 0.77%, Figure 3.3d). 

Although the non-learning group was matched to the learning group in terms of the 

number of trials and duration of each trial, path length may have differed between the two 

groups. Path length during learning was analysed using a 2 (Group) X 12 (Trials) mixed-

factorial ANOVA. There was significant main effect for path length across all participants for 

the twelve trials (F(3.3, 161.7) = 86.33, p < 0.001, ƞ2 = 0.536), with shorter path lengths on trial 12 

compared to trial 1 (p < 0.05, Figure 3.3d). We also reported a significant difference between 

the two groups on path length (F(1, 48) = 86.932, p < 0.001, ƞ2 = 0.096). Additionally, we reported 

a significant Trial X Group interaction effect (F(3.3, 161.7) = 86.33, p < 0.04, ƞ2 = 0.017). Tukey-

corrected t-tests reveal that the groups did not differ in path length at Trial 1 (t = -1.769, p = 

0.983) but differed in later trials, e.g., Trial 6, Trial 9 & Trial 11 (all p < 0.001; MD = -54.329 

Vm, -54.904 Vm & -54.848 Vm respectively). The non-learning group demonstrate longer path 

lengths than the learning group, possibly related to random searching behaviour. 
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Figure 3.3a: Screenshot of the NavWell environment used in this experiment, with light & square cues on 

the wall of the environment. Figure 3.3b: NavWell goal becomes illuminated when a participant walks 

over it, “congratulations, you reached the goal platform!” message displayed. Figure 3.3c: Plot of task 

latencies (in seconds) across the twelve trials for learning group, split by gender. The mean time for each 

trial is denoted by the line along with standard error denoted by the shaded region around the line. Figure 

3.3d: Box plots and individual data points for each groups participants percentage time spent searching in 

the target quadrant for trial 1 and trial 12. Diagrams of the water maze arena on the right side demonstrate 

heat maps of where learning participants spend most of their search time, during trial 1 and trial 12. 
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3.3.2 EEG Results 

3.3.2.1 Trial Start/Route Initiation Phase 

We hypothesized that any changes in power related to spatial learning and our navigation task 

would occur at our ROIs, the frontal midline and parietal midline. However, we first carried 

out an exploratory analysis. We isolated our two frequency bands of interest, Theta (4-8 Hz) 

and Alpha (8-12 Hz). We investigated these frequency bands in each participant’s trial epochs, 

one from each of the trial phases (as previously defined by Nyberg et al. 2022 – route 

initiation/trial start and goal approach/trail end). This resulted in twelve start epochs and twelve 

end epochs per participant which were averaged at the group-level for each phase. We then ran 

a parametric independent t-test between conditions (Learning/Non-Learning) with an alpha 

level of 0.05. We then corrected for multiple comparisons using an FDR correction across 

signals. Below, we see that the learning group show significantly less theta power at the Pz site 

during the task compared to the non-learning group. Additionally, the learning group 

demonstrate significantly reduced alpha power throughout the task at electrode sites PO3, PO4, 

O1, O2, Oz & AF4 (see Figure 3.4 below). Interestingly, it suggests that lower theta power at 

the parietal region (Pz) and lower alpha power at posterior parts of the scalp may be markers 

of spatial learning. However, the dynamics of these frequency bands are unclear. Additional 

analyses were required to investigate this further. 
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Figure 3.4: Topographical plots of activity from an FDR-corrected independent sample t-tests 

comparing the two conditions/groups Learning to the Non-Learning group. All significant 

electrodes at p < 0.05 are highlighted in red. The scale is presented in t-values.  

 

Focusing on our two ROIs and mean theta power at each trial, we employed a 2 (Group) X 2 

(Gender) X 12 (Trial) mixed-factorial ANOVA to compare theta between groups (Non-

Learning and Learning) across the full epoch (-500ms before and 2000ms after participants 

started the trial) for each ROI. The data did not violate the assumptions of homogeneity, nor 

did they violate sphericity assumptions, therefore no correction was applied.  

At the frontal midline, for theta power, there was no main effect for Trial (F(11, 484) = 

1.005, p = 0.170, ƞ2 = 0.017). There were no significant between-subjects effects for group or 

gender (F(1, 44) = 0.185, p = 0.669, F(1, 44) = 0.612, p = 0.438 respectively). However, there was 

a significant Trial X Group interaction effect (F(11, 484) = 2.086, p = 0.020, ƞ2 = 0.025). Tukey 

corrected t-tests however revealed no group differences at any of the trials. There was also a 

significant Trial X Gender interaction effect (F(11, 484) = 2.636, p = 0.003, ƞ2 = 0.032). Corrected 

t-tests did reveal that Males had significantly reduced theta power on Trial 12 compared to Trial 

1 (t = -2.001, p = 0.015, MD = -0.056). For alpha, the data violated sphericity assumptions. 

Therefore, a Greenhouse-Geisser correction was applied to the model. We revealed no 

significant main effect of Trial (F(7.4, 327.5) = 1.041, p = 0.403) nor any differences between 

Theta (4-8 Hz) Alpha (8-12 Hz) 

t 
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Genders or Groups (F(1, 44) = 0.134, p = 0.716 & F(1, 44) = 0.559, p = 0.459 respectively). We 

also reported no significant interaction effects (F(7.4, 327.5) = 1.157, p = 0.326 & F(7.4, 327.5) = 

1.143, p = 0.335 respectively). 

For parietal midline theta, there was no significant main effect of Trial (F(11, 484) = 

0.998, p = 0.447). There was also no significant difference in parietal midline theta between 

Genders (F(1, 44) = 3.890, p = 0.055) nor Groups (F(1, 44) = 2.258, p = 0.140). Additionally, there 

was no significant interaction effect for Trial X Group (p = 0.457) nor Trial X Gender (p = 

0.189). For alpha, there was a significant main effect of Trial (F(11, 484) = 2.256, p = 0.011, ƞ2 = 

0.023). Tukey-corrected post-hoc t-tests revealed that there was a significant increase in alpha 

power across participants from Trial 1 & Trial 3 (M = 0.134, SEM = 0.009; M = 0.133, SEM 

= 0.011) to Trial 12 (M = 0.16, SEM = 0.011; p = 0.013). There were also no significant 

interaction effects for Trial X Gender (F(11, 484) = 1.373, p = 0.182) nor Trial X Group (F(11, 484) 

= 0.626, p = 0.807). There were also no significant differences between Genders (F(1, 44) = 

0.385, p = 0.538) or Groups (F(1, 44) = 1.603, p = 0.212).  

Further informed observations based on our time-frequency maps (Figure 3.5) and 

averaged frequency bands (Figure 3.6) to investigate the specificity of theta power, suggest that 

frontal midline theta decreases appear greater in the non-learning group than in the learning 

group, particularly at the lower frequencies (Figure 3.5, upper). The observed burst in theta 

power around the trial start (0ms – see Figure 3.6a & 3.6b) appears weaker in the learning 

compared to the non-learning group. A decrease can also be observed in parietal midline theta 

in the learning group compared to the non-learning group throughout this phase. This would 

be expected, as decreased theta reached statistical significance at the Pz site. We typically 

observe a reduction in theta at the parietal midline during spatial learning, with lesser 

reductions at the frontal midline. 
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Very little variation can be observed between the groups in the alpha frequency range 

at the frontal midline (Figure 3.5 lower). However, it is clear that the learning group have 

decreased alpha power at the parietal midline around the trial start (0ms – see Figure 3.6c). 

These observations are expected based on alpha differences reaching statistical significance at 

the Pz site. Interestingly, much of the posterior part of the scalp displays significantly decreased 

alpha power (see Figure 3.4). It is possible that further neural dynamics at play in the alpha 

band, perhaps not captured at the parietal midline. 
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Figure 3.5: Time-frequency plots showing oscillatory power (1-30 Hz) differences between each group at each ROI. Displayed as baseline-

normalized dB change. The line at 0ms marks when the trial started. The grey area after 1.5s is removed due to edge-effect contamination. 
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Figure 3.6: Time series plots of each epoch displaying normalized magnitude (dB) for both 

the learning and non-learning groups. Panels a and b represent average theta power changes 

across time, whereas panels c and d represent average alpha power across time. Topography 

maps (left: Learning, right: Non-Learning) display mean theta and alpha across the averaged 

time of the epoch and are scaled to the accompanying time-series. Both frontal and parietal 

midline ROIs are represented on these topographies and are highlighted in red. 
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3.3.2.2 Trial End/Goal Approach Phase 

We next investigated the parietal and frontal midlines again, but when participants approached 

the goal (learning group) and the equivalent trial end (for the non-learning group). We again 

ran an exploratory analysis using the same procedure as above, isolating our frequency bands 

of interest, Theta (4-8 Hz) and Alpha (8-12 Hz). We averaged across the mean epoch time and 

ran a parametric FDR-corrected independent t-test between conditions (Learning/Non-

Learning) with an alpha level of 0.05. Below, we see that the learning group and non-learning 

group demonstrate no significant differences in theta power during the goal-approach phase at 

any point on the scalp. However, we see the same posterior signals as before showing 

significant differences in alpha between the two groups. The learning group display reduced 

alpha at posterior sites (PO3, PO4, O1, Oz, O2), but also at left-frontal (AF3, F3) sites upon 

approach to the goal location, compared to the non-learning group at the trial end (Figure 3.7). 

Therefore, it seems that theta may not be on average, involved in the learning process during 

goal-approach. However, lower alpha power at posterior parts of the scalp and left-frontal sites 

may be essential for recall and memory processing as participants navigated towards the goal. 

 

 

 

Figure 3.7: Topographical plots of activity from an FDR-corrected independent sample t-tests 

comparing the two conditions/groups Learning to the Non-Learning group. All significant electrodes at 

p < 0.05 are highlighted in red. The scale is presented in t-values.  
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Statistical analyses were run on our hypothesised ROIs, the frontal and parietal midline. A 2 X 

2 X 12 mixed-factorial ANOVA was used to compare learning between groups (Non-Learning 

and Learning) across the full epoch (2000ms before and 500ms after participants reached the 

goal). The data did not violate the assumptions of homogeneity nor sphericity assumptions; 

therefore, no corrections were applied. Again, at the frontal midline for theta, there was no 

main effect of Trial (F(11, 484) = 1.162, p = 0.311). There were no significant between-subjects 

differences reported for Gender (F(1, 44) = 0.001, p = 0.97) nor Group (F(1, 44) = 0.019, p = 0.891). 

There was also no significant interaction between Trial X Group (F(11, 484) = 0.404, p = 0.954) 

nor Trial X Gender (F(11, 484) = 0.915, p = 0.525). Nonetheless, there was a significant Trial X 

Group X Gender interaction effect (F(11, 484) = 2.214, p = 0.013, ƞ2 = 0.031). However, post-hoc 

Tukey corrected t-tests revealed no significant differences at any measure (all p > 0.9). For 

alpha, we report no main effect for Trial (F(8.4, 370.5) = 0.986, p = 0.458) nor any between-

subjects effects for Gender (F(1, 44) = 0.263, p = 0.611) nor Group (F(1, 44) = 0.011, p = 0.917). 

There was also no significant interaction effect between Trial X Group (F(8.4, 370.5) = 0.588, p = 

0.839) nor Trial X Gender (F(8.4, 370.5) = 1.285, p = 0.238).  

At the parietal midline ROI, for theta, there was no main effect of Trial (F(11, 484) = 

1.794, p = 0.052, ƞ2 = 0.025). There were no significant between-subjects differences reported 

for Gender (F(1, 44) = 1.912, p = 0.174) or Group (F(1, 44) = 0.974, p = 0.329). Additionally, there 

was no Trial X Group (F(11, 484) = 1.101, p = 0.358) nor Trial X Gender (F(11, 484) = 0.995, p = 

0.449) interaction effects. For alpha, we report no significant main effects for Trial (F(8.3, 364)  = 

0.675, p = 0.762). We also reported no significant differences between Genders (F(1, 44) = 0.009, 

p = 0.926) or Groups (F(1, 44) = 0.247, p = 0.622). There were no reported significant interaction 

effects for Trial X Group (F(8.3, 364) = 1.152, p = 0.319) nor Trial X Gender (F(8.3, 364) = 0.647, p 

= 0.788). However, from our previous exploratory analysis, these results are not surprising, as 

much of the significant activity is not captured at sites belonging to our ROIs. Nevertheless, 
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further informed observation using our time-frequency maps (Figure 3.8) and averaged 

frequency bands across time (Figure 3.9) would suggest sustained decreases in both frontal and 

parietal midline theta as participants approached the goal location. This is followed by a burst 

of theta activity at the goal across a range of frequencies, especially at lower frequencies (4 

Hz). 
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Figure 3.8: Time-frequency plots showing oscillatory power (1-30 Hz) differences between each group at each ROI. Displayed 

as baseline-normalized dB change. The line at 0ms marks when the trial ended, or the goal was found. The grey area before 

approx. -1.5s is removed due to edge-effect contamination. 
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Figure 3.9: Time series plots of each epoch displaying normalized magnitude (dB) for both 

the learning and non-learning groups. Panels a and b represent average theta power changes 

across time, whereas panels c and d represent average alpha power across time. Topography 

maps (left: Learning, right: Non-Learning) display mean theta and alpha across the averaged 

time of the epoch and are scaled to the accompanying time-series. Both frontal and parietal 

midline ROIs are represented on these topographies and are highlighted in red. 
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3.3.2.3 Exploratory within-groups learning dynamics 

Learning is a demanding and dynamic process; everyone does not learn at the same rate, this 

is particularly true for spatial cognition and navigation tasks (Commins et al., 2022). A second 

method was used, to capture learning, where we examined the within-groups differences [(T7-

12) – (T1-6)] from the first 6 and last 6 trials. Frequency estimation variance across time stabilises 

after approximately five trials on a memory task (Hanslmayr et al., 2009). This is also half-way 

through our task, in which almost all of those in the learning group, will have successfully 

learned and subsequently recalled the goal location, albeit at different rates (see Figure 3.3c). 

This analysis should provide further insight into the contributions of theta & alpha oscillations 

throughout the process of spatial learning. We examined the start (route initiation) and end 

(goal approach) phases again, averaging over the full epoch times, across 4 – 8 Hz & 8 – 12 

Hz (see above). This equates to an approximate total of 598 trials, with approx. 150 per group, 

in each navigation phase. We used an FDR-corrected paired parametric t-test to evaluate the 

difference within each group. With the assumption that these changes occur after learning, and 

that our analysis is now performed within-groups, we anticipate a slight difference in the 

observed oscillatory dynamics from the between-conditions approach.  
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Figure 3.10a: Topography plots displaying within-group differences between the last and first 6 

trials at the route initiation/trial start phase. Differences were calculated using a paired t-test for 

each group [(T7-12) – (T1-6)]. Changes are displayed as t-values, averaged across time with an 

alpha level of 0.05, FDR-corrected across signal and frequency dimensions. Electrode sites with 

significant changes are denoted by a yellow star. Figure 3.10b: Topography plots displaying 

within-group differences between the last and first 6 trials at the goal approach/trial end phase. 

Differences were calculated using a paired t-test for each group [(T7-12) – (T1-6)]. Changes are 

displayed as t-values, averaged across time with an alpha level of 0.05, FDR-corrected across 

signal and frequency dimensions. 
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3.3.2.3.1 Theta Oscillations 

During route initiation, we demonstrate no significant changes within either group in the theta 

band (Figure 3.10a). Nevertheless, it is clear that there may be some learning-related changes; 

with the learning group showing low and stabilised theta in posterior parts of the scalp 

(reflecting our reported between-group changes; see Figure 3.5 and 3.6). However, these 

dynamics are not reflected in our non-learning group, who display increases at anterior and 

posterior parts of the scalp (possibly reflecting our between-group interaction effect reported 

at the frontal midline, and observations from Figure 3.5 and the group-differences displayed in 

Figure 3.6 upper). Though no site reaches significance, we do provide a general overview of 

how theta dynamics change as participants begin to navigate through the trials of the spatial 

task. 

 Interestingly, during the goal approach phase of navigation we demonstrate cross-scalp 

decreases (Figure 3.10b) in theta in our learning group (which we can see reflected in Figure 

3.8a & 3.8b, as well as in Figure 3.7 upper). However, decreases in the learning group only 

reach statistical significance at site CP2. Whereas only site CP5 & P7 reach significance in the 

non-learning group, but as an increase in power. The similarity between the groups is reflected 

in the overall exploratory analysis conducted in Figure 3.7 and may explain why no statistical 

test on midline theta reported significance. However, it is clear that the learning group display 

more decreases with learning as they approach the goal, compared to the non-learning group 

who are still searching, but perhaps not encoding. We discuss this observation in-depth in the 

discussion. 
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3.3.2.3.2 Alpha Oscillations 

During route initiation, we reported stabilised alpha power within the learning group and the 

non-learning group (Figure 3.10a). However, we also observed posterior increases in alpha 

power in the non-learning group (not significant at any site). These are interesting findings as 

they provide some interesting insights into the task-related dynamics of alpha oscillations. The 

learning group demonstrates lower alpha power compared to the non-learning group overall at 

parietal regions (see Figure 3.4 & 3.6). However, as the task progresses, some observed 

increases in alpha power within both groups may reflect mu oscillations (8 – 13 Hz) as both 

groups plan their actions or orientate themselves in relation to the goal location at the start of 

each trial. 

 At the goal approach phase, we report similar within-group alpha dynamics (also see 

Figure 3.9b). The learning group demonstrate that although overall alpha power is lower than 

the non-learning group, alpha during this phase increases with learning. On the other hand, 

alpha power in the non-learning group remains higher than the learning group but reduces as 

the task progresses. These reductions do not reach significance. Though we do not have 

sufficient spatial resolution with our EEG setup, these findings provide some good insights into 

alpha dynamics related to learning. Alpha power increases with learning as a function of trial 

progression across the scalp when the goal location is approached and may very well relate to 

the burst demonstrated in Figure 3.8 (upper). Some observed alpha suppression demonstrated 

in the non-learning group may be due to allocated spatial attention (particularly left frontal 

area) in order to improve search strategies for the goal. The lesser alpha power overall in the 

learning group may relate to fewer alpha-related neural resources being utilised to solve the 

task. This is discussed further below. 
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3.4 Discussion 

3.4.1. Hypothesis-driven theta band analysis 

This study aimed to examine the changes in the brain's electrical activity during spatial learning 

in a virtual environment. We focused on two stages of learning: the route initiation phase and 

the goal-approaching phase. Firstly, we hypothesised that if theta power was related to learning, 

we should see theta power differences between the non-learning and learning groups following 

completion of the task. However, if theta power was related to active sensorimotor integration, 

we would find no differences between the groups. Having controlled for trial time, starting 

position, path length and speed, we observed changes in theta for our learning group at both 

start and goal phases that were different to the non-learning group, suggesting that theta is 

related to spatial learning rather than sensorimotor integration. The key difference between the 

two groups was that one group had learnt a specific goal location, while the other continued to 

navigate the environment. 

Contrary to our hypothesis however, the learning group displayed significant decreases 

in oscillatory power overall. Reduced theta power was found at parietal electrodes (Pz) during 

route initiation compared to the non-learning group. Such decreases may indicate a more 

efficient use of neural resources. Once a task has been learned and the location is known, there 

may be little need for further exploration or encoding of the environment. As such, there may 

be no need to expend further neural energy on the task – both behaviour and neural activity 

have become efficient (see Commins, 2018b). Alternatively, low-frequency decreases have 

been associated with directed attention in both spatial memory and non-memory related tasks 

(Harris et al., 2017; Park et al., 2019). Decreases in theta power are also suggested to be 

responsible for the communication between areas involved in the successful formation of 

memories for spatial locations (Griffiths et al., 2016). As participants in the learning group 



111 

 

would have directed all attention to the goal location and/or an associated stimulus before 

setting off (e.g., landmarks – see Delaux et al. (2021)), theta decreases may be explained by a 

shift to a more efficient and direct spatial attention and memory formation process. 

Furthermore, these posterior decreases are also reflected in our within-groups analysis of the 

route initiation phase (Figure 3.10a), as the participants learn the task their theta power 

decreases, providing further support that these decreases are related to the task requiring less 

neural energy, successful spatial memory formation and by extension, spatial learning. 

The non-learning group, which did not have a specific goal, showed greater theta 

during route initiation. Parietal theta power also seems to increase with progression of the task 

(see Figure 3.10a, though not significant) compared to the learning group. This is consistent 

with previous research indicating that the parietal cortex, which covers the parahippocampal 

and retrosplenial regions, is involved in the encoding of spatial information (Heimrath et al., 

2012; Rodriguez, 2010; Sestieri et al., 2017). Greater theta power overall and the significant 

within-group increases may indicate that the non-learning group were attempting to encode 

their environment or recalling and combining features and/or previously explored places in 

order to develop new search strategies; which may place greater demand on theta rhythms 

(Caplan & Glaholt, 2007; Chrastil et al., 2022; Kahana et al., 1999; Kaplan et al., 2012). These 

findings align with previous research in the field that has linked theta increases to exploratory 

behaviour and suggests that theta may play a larger role in the encoding of spatial information, 

rather than movement speed or integration of sensory information, which we controlled for 

here (Buzsáki, 2005; Buzsáki & Moser, 2013; Goyal et al., 2020; Lega et al., 2012; Lin et al., 

2017; Lin et al., 2022).  

Another key finding was the similarity in theta dynamics between the groups during 

the goal approach phase of the task. Several studies have shown decreased theta oscillations 

relate to successful episodic (Guderian et al., 2009; Solomon et al., 2019) and associative 
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(Fellner et al., 2016; Michelmann et al., 2018) memory formation. These findings fit with the 

concept proposed by Herweg et al. (2020) in that decreased theta oscillations facilitate task-

directed attention allowing neural representation of higher information content (perhaps a 

cognitive map). Overall, reduced theta power, and decreases related to the task may merely be 

a biomarker of the mechanisms required for task-engagement, one of which we isolate here: 

spatial learning. Importantly, differences in theta observed at the start of the task, but not at the 

goal suggest that these stages of navigation are different, and warrants analysing them 

separately based on Nyberg et al. (2022). 

 

3.4.2 Limitations of our theta hypothesis 

Firstly, It is important to note that we did not control for frustration or motivation in the 

non-learning group, which could be responsible for some of the EEG dynamics during the task. 

Therefore, the non-learning group may well have been engaged, as increased theta power has 

been shown to be related to increased cognitive load and attention (Chattopadhyay et al., 2021; 

Klimesch, 1999; Mussel et al., 2016). This needs to be further explored, perhaps using more 

electrode sites and/or frequency bands. Theta is the most important frequency band in the 

navigation literature, particularly due its relationship with the hippocampus and the firing of 

place cells (Bohbot et al., 2017; Buzsáki, 2002, 2005; Morris et al., 1982; O'Keefe, 1993; 

O'Keefe & Recce, 1993). Therefore, from a review of the literature we discovered that most 

activity reported is found near frontal and parietal midlines specifically, which is why we 

proposed these two regions of interest. Had we done an entirely exploratory analysis we may 

have found more significance across time-frequencies. 

Besides, using 32-channel scalp EEG does place limits on the types of analysis we can 

run. Midlines are often different depending on the cap layout and number of electrodes 

available (For example, Liang et al. (2018) define the midline as AFz, AF3, AF4, F3, F1, F2, 
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F4, FC3, FC4, FC1, and FC2). We could also not perform accurate source analysis and 

reconstruction to explore possible communication or synchrony between the parietal cortex, 

hippocampus, retrosplenial cortex and frontal regions (Ekstrom et al., 2017). Most studies with 

humans use iEEG when examining virtual navigation, with some demonstrating sensorimotor-

related increases in theta (Bohbot et al., 2017; Bush et al., 2017; Cornwell et al., 2012; Ekstrom 

et al., 2005; Epstein, 2008; Kunz et al., 2019; Lega et al., 2012; Miller et al., 2018). Virtual 

tasks, including NavWell, do not involve any physical traversal during navigation. The addition 

of this, alongside scalp EEG, may facilitate more accurate or ecologically valid sensorimotor 

integration, and should be considered in future research investigating theta dynamics (see 

Bohbot et al. (2017) but also see Griffiths et al. (2016)).  

Focusing on only two of three phases of navigation suggested by Nyberg et al. (2022) 

may have limited our understanding of the complete dynamics of theta. However, there is a 

good reason for our selection, as the start and the end phases allowed us to have a standardised 

time epoch that was shared by all participants. Latencies would vary between individuals 

during travel, but every participant started and ended the task. This also provided confidence 

in the timestamp of events within out data whilst acknowledging some error (see Figure 3.2), 

as entirely automatic timestamping was not possible. Additionally, using the average trial time 

to time-match our non-learning group was perhaps not the most effective method. Instead, 

matching participants on an individual level as opposed to a group level, may have resulted in 

more accurate understanding of the non-learning groups searching behaviour (see Commins et 

al. (2022) for the advantages of this). 

Furthermore, we did not accurately address individual differences in prior experience 

of virtual navigation/gaming, which has been shown to play an important role in learning 

accuracy of tasks such as NavWell (Murias et al., 2016; Yavuz et al., 2024). However, we did 

offer all participants practice trials to become familiar with the task controls (see Chapter 2). 
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We also verbally asked participants whether they were confident using the joystick or not for a 

task such as this. Upon reflection, it may have been more appropriate to assess the number of 

hours and categories of video games played or use a validated video-game-experience 

questionnaire (Unsworth et al., 2015). 

 

3.4.3 Exploratory analysis of the alpha band 

Our main hypotheses focused on the involvement of theta dynamics in spatial learning. The 

alpha band (8-12 Hz) rests very close to the theta band on the frequency spectrum. Due to the 

underlying assumptions of calculating Morlet wavelets, it was very possible that some of 

theta’s dynamics may have been reflected in the alpha band. Additionally, we wanted to be able 

to display the specificity of theta across the entire spectrum. Though not the primary focus of 

our study, it is known that alpha oscillations are heavily involved in attention, goal-directed 

movement and by extension, sensorimotor integration during spatial tasks (Ehinger et al., 2014; 

Hanslmayr et al., 2009; Harris et al., 2017; Liang et al., 2018; Liang et al., 2021). Therefore, 

we chose to explore this frequency band in addition to theta, but independent to our original 

hypotheses. 

 To our surprise, the dynamics within the alpha band generally reflected those seen in 

the theta band, with the learning group displaying less alpha power overall compared to the 

non-learning group, significantly at parieto-occipital sites (but generally reflected in the 

midline TF plots; see Figures 3.5 & 3.8). Therefore, we would propose that less alpha power is 

engaged overall when a task is learned, relating to “efficient” learning and the preservation of 

neural resources (Commins, 2018b). The opposite is seen within the non-learning group, who 

display higher alpha power than the learning group. 

 Alternatively, we propose that reduced alpha power in our learning group at route 

initiation relates to goal-directed orientation and motor-preparation towards the learned 
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location. Suppression within this range in goal-directed tasks tend to relate to mu oscillations, 

which are responsible for goal-directed motor movements (Pereira et al., 2017; Pineda, 2005). 

Interestingly, we see significantly lower alpha at right-frontal and parieto-occipital sites in the 

learning group during both phases. Suppression (desynchronisation) of alpha oscillations is 

typically related to goal-directed movement, with positive (synchronised) power relating to 

non-goal directed movements (this would explain the synchronisation observed at the trial end 

in the non-learning group in Figure 3.8). As all behaviour is non-goal directed in our non-

learning group, this could explain the greater alpha power overall (Kock et al., 2023). It is also 

possible that these greater desynchronizations reflect learning participants monitoring their 

own actions for error, which has been demonstrated previously (van Schie et al., 2004). 

Additionally, at the trial start, significantly reduced alpha occurs at the side ipsilateral to the 

side of the body motor activity occurs on. Whereas at goal approach, it occurs contralaterally. 

Perhaps at the trial start, heading-error is assessed using these oscillations, whilst upon goal 

approach, these oscillations take on the role of goal-directed movements. 

Secondly, based on our within-groups analysis, the gradual increases in alpha power 

could reflect attentional disengagement with the task (Ehinger et al., 2014; Klimesch, 2012; 

Peylo et al., 2021; Sauseng, Klimesch, Schabus, et al., 2005). Increases in alpha at parietal 

regions are also known to be related to decreased attention (Benedek et al., 2014; Foxe & 

Snyder, 2011). Our results are inconsistent with this explanation, demonstrating increases in 

alpha as a function of trial, particularly at goal approach (also reported by Chrastil et al. (2022) 

in a guided-navigation group). We further support the interpretation by Chrastil et al. (2022) of 

increased alpha activity in the parietal midline as trials progress in all participants. However, 

these within-subjects alpha increases as the task goes on, are most likely unrelated to learning. 

As previously observed, mental fatigue may cause alpha power to increase as a function of the 

duration of the experiment (Li et al., 2021). Occipital-only significant alpha reductions found 
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in the non-learning group may suggest increased visual-attention for searching (Li et al., 2021; 

Peylo et al., 2021); whilst in our learning group, encoding of spatial relationships may have 

disengaged attentional areas. 

In summary, analysis of alpha has added additional support to our overall interpretation 

of efficient learning, in which the neural oscillatory energy required to complete a spatial task 

reduces with competent learning. However, the findings of increased alpha may relate to 

memory load or the engagement of internal rather than externally directed attention from our 

learning group (Cooper et al., 2003; Sauseng, Klimesch, Stadler, et al., 2005). Nonetheless, 

increasing alpha power may instead suggest fatigue or disengagement as the task progresses in 

both groups. Overall, our exploratory analysis of alpha supports the interpretation that our theta 

results likely reflect mnemonic processes specifically, rather than general attention or arousal. 

Therefore, future experiments should hypothesise the role of both theta and alpha involvement 

in spatial learning based on the above findings. 

 

3.4.4 Conclusions 

Therefore, this chapter has uncovered that human theta (4-8 Hz), and alpha (8-12 Hz) 

oscillations are involved in spatial learning in a virtual environment. The non-learning group, 

who navigated without a goal, showed greater theta power in the route-initiation/start phase, 

indicating that increased theta oscillations play a larger role in exploratory behaviours. The 

learning group, who learned to navigate to a goal location, showed reduced theta power in the 

same phase. This suggests that as the spatial task is learned, the use of neural resources 

(particularly theta) becomes more efficient. Distinctly, reductions in parietal theta power (near 

the midline) may be a fundamental marker of spatial learning. Our findings also provide 

preliminary evidence of a human tendency towards learning efficiency, where the reduction in 

neural resources or shift in theta activity from an exploratory role to a more direct-attention 
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role occurs when efficient learning has taken place. This is particularly important during route-

initiation, where we see greater theta power required if the route is exploratory in nature. 

Additionally, we have demonstrated that with spatial learning, comes lower overall alpha 

power. We suggest that route-planning and anticipatory goal-related motor responses at the trial 

start results in greater suppression of alpha oscillations. Whilst gradual increases in alpha power 

as a function of navigation relate to increased volitional attention. However, repeated 

exploration of the same environment results in some suppression of alpha oscillations in the 

visual areas, possibly related to the disengagement of visual spatial attention mechanisms. 

Overall, efficient spatial learning results in a reduction of overall oscillatory power, and by 

extension, the preservation of neural resources. 

 

Chapter 4 

 

An exploratory analysis of neural oscillations during immediate 

spatial recall. 
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Abstract 

Various brain oscillations in humans play a role in a never-ending list of cognitive processes, 

including learning and memory. The oscillatory dynamics in humans contributing to successful 

spatial memory recall are not well understood. To investigate the involvement of particular 

oscillatory frequency bands in the recall process during navigation, we recorded the 

electroencephalographic (EEG) activity during an immediate recall trial in healthy young 

adults (n = 15) following the learning of a goal location in a Virtual Water Maze task. We 

compared this to the activity during the same trial length, in a group of participants who did 

not learn a target location and navigated freely but were time-matched to the learning group 

(non-learning, n = 15). We computed and compared relative power in all bands Delta (2-4 Hz), 

Theta (5-7 Hz), Alpha (8-12 Hz), Beta (15-29 Hz) & Gamma (30-40 Hz) across the scalp. We 

focused statistical analysis on regions of interest found to be important in our previous work, 

the frontal and parietal midline as well as the remaining midlines, central (C3, Cz, C4) and 

occipital (O1, Oz, O2). We found that delta and theta activity were greater during recall in our 

learning group, as opposed to our non-learning group. We also demonstrate clear suppression 

in the alpha band at posterior sites during memory-guided navigation compared to our non-

learning group. We also reported that when goal-directed navigation (explicit navigation 

towards a previously learned goal) switches to focused searching behaviour (searching near a 

previously learned goal location), power becomes greater at the frontal midline; with increases 

in the delta and theta bands reflecting this strategy change. As the task progresses in our non-

learning group, we report a significant increase in alpha power, significant at specific electrode 

sites. There is greater beta and gamma activity at posterior sites in our learning group, but 

overall, these two rhythms are suppressed in both groups during the recall trial. We discuss the 

results further in terms of the possible roles and functions of these oscillations and allow this 

exploratory analysis to guide our future work.   
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4.1 Introduction 

Spatial memory is an important yet complex type of memory. Locations in space are encoded 

and stored in our different memory systems, much like other memories. Spatial memories not 

only prevent us from getting lost but can also provide context to autobiographical events. They 

may be complementary to episodic memory or may be an isolated semantic representation of 

an objects location in the environment. Though a large body of work has indicated the 

importance of slow-wave oscillations such as theta (4-8 Hz) to spatial encoding and retrieval 

in rodents and humans (see also Chapter 3). These cellular (Colgin, 2020; Eichenbaum et al., 

1999; Moser et al., 2008; Ormond & O’Keefe, 2022) and oscillatory (Burgess & Gruzelier, 

1997; Burgess & O’Keefe, 2011; Buzsáki, 2002, 2005; Buzsáki & Moser, 2013; O'Keefe & 

Recce, 1993) findings, typically derive from intracranial recordings with rodents. The cortical 

neurophysiology of spatial recall, including varying recall-based behaviours (such as directed, 

focused and exploratory navigation) in humans, has not been readily examined in the literature.  

However, evidence relating to the function of these oscillations during spatial memory 

recall remains controversial. In a study by Watrous et al. (2013), researchers recorded low 

frequency oscillations in both rats and humans as they completed a Barnes maze and a virtual 

navigation task, respectively. They reported that human hippocampal rhythm centred around 

~3 Hz, whilst the central frequency of the rats was centred around ~8 Hz. This suggests that 

low frequency oscillations from 1 Hz to 12 Hz may be important for memory-guided navigation 

(see Watrous et al., 2011). However, this is a very wide spectral range containing three of the 

traditional bands (Delta (1-4 Hz), Theta (4-8 Hz) and Alpha (8-12 Hz)), which have been linked 

to multiple other cognitive processes including episodic retrieval (Herweg, Sharan, et al., 2020; 

Vivekananda et al., 2021) and successful spatial working memory (Alekseichuk et al., 2016). 

Furthermore, the difference between humans and non-human animals questions the 

translatability of the role of specific frequency bands to spatial navigation and recall. 
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Despite this, there is good evidence that oscillations in the 1-12 Hz frequency range are 

involved in both navigation and the recall of spatial locations. For example, Bohbot et al. 

(2017) found hippocampal oscillations between 4-12 Hz during both searching and recall 

during real-world navigation, as well as 1-8 Hz oscillations during virtual navigation. It has 

been further suggested that the lack of physical locomotion and vestibular feedback in virtual 

navigation is responsible (Lin et al., 2022). Similarly, it has been shown that low-frequency 

delta-theta oscillations in the hippocampus are responsible for recall of distance information 

(Vass et al., 2016).  

Therefore, it is essential to address the uncertainty of the role of oscillations in spatial 

memory and memory-driven navigation. Much of the literature reports scalp EEG recordings 

show prominent 1-12 Hz oscillations during spatial memory retrieval. For example, Jaiswal et 

al. (2010) showed theta oscillations lateralised to the right hemisphere during a virtual 

navigation task. Other researchers report oscillations around ~8 Hz being most prominent at 

the frontal and central midlines during spatial memory retrieval (Du et al., 2023; Liang et al., 

2018). Moreover, Du et al. (2023) recently found that frontal midline theta (4-8 Hz) increases 

accompanied by posterior (occipital and parietal midline) alpha (8-12 Hz) suppression are 

involved in encoding early in learning and are related to memory performance during virtual 

navigation. Du et al. (2023) argued that multiple representations of the environment, essential 

to learning a path to the goal, compete until recall is required. In contrast, increased alpha prior 

to recall was also observed by Du et al. (2023), who suggest that this may reflect increased 

attention prior to deciding about a route or the presence of competing information during route 

learning.  

Similarly, Chrastil et al. (2022) revealed increased alpha in active virtual navigation 

(where a decision about their next direction could be made at each maze intersection) but 

suppressed alpha at posterior sites during guided navigation (where participants are shown the 
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correct direction to choose at each decision point). It is possible that this may reflect increased 

attention related to active recall and decision-making. Alpha suppression may then reflect 

‘passive’ navigation without active recall or decision-making (as suggested by Du et al., 2023 

and Foxe & Snyder, 2011). Attentional demands during spatial memory recall have also been 

commonly characterised by the suppression of alpha-band at posterior parts of the scalp (Foxe 

& Snyder, 2011; Klimesch, 1999). Further research is required to fully understand this 

frequency bands contribution during memory-driven navigation.  

Finally, Chrastil et al. (2022) reported that beta (12-20 Hz) & gamma (> 20 Hz) power 

was greater for correctly recalled decision-making and located at right frontal and left parietal 

channels. Furthermore, increases in beta and gamma (>30 Hz) power have been reported in 

those with high levels of unsuccessful recall in a memory task, located near the medial temporal 

lobe and parietal areas (Hanslmayr et al., 2016; Waldhauser et al., 2015; Waldhauser et al., 

2012). Smyrnis et al. (2014) reported greater gamma oscillations during movement planning. 

However, beta power modulations were observed in sensorimotor areas during walking 

behaviour (Cevallos et al., 2015), with increased oscillations from 12 Hz to 30 Hz during 

movement adaptation (Seeber et al., 2014). These findings may also be relevant to our task 

despite constant movement speed (see Chapter 2 & 3). Nevertheless, it seems that increased 

high frequency oscillations are an indication of successful spatial memory formation. 

In summary, frontal delta-theta (range from ~2-8 Hz) is involved in successful memory 

retrieval and execution of spatial recall. Parietal and occipital alpha suppression (ranging from 

~8-12 Hz) may be vital for visual and memory attentional processing. Furthermore, high-

frequency oscillatory decreases in the beta and gamma range (> 15 Hz) are involved with 

spatial memory retrieval but increases have been reported during successful spatial decision-

making and working memory. Based on the above, we have performed an exploratory analysis 

of the oscillatory activity underlying immediate spatial memory during a recall trial in a virtual 
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water maze task. We will examine activity in Delta, Theta, Alpha, Beta & Gamma in 

participants who have successfully learned the task and are recalling the location of a goal in 

the environment following a short interval. We compared activity in these frequency bands to 

participants who did not learn a goal location (and therefore should not be using memory-

driven navigation). This group freely navigated the arena for sixty seconds (see Chapter 3). We 

also compared this across four regions that have repeatedly found to be important in our 

previous work and the work discussed above: the frontal midline (F3, Fz, F4), parietal midline 

(P3, Pz, P4), central midline (C3, Cz, C4) and occipital midline (O1, Oz, O2). We predict 

greater delta-theta activity in our learning group compared to our non-learning group, reflecting 

successful spatial memory retrieval (Watrous et al., 2013; Jacobs, 2014). We also predict less 

alpha activity, allowing greater attention and prioritised processing of spatial information (Foxe 

& Snyder, 2011). Additionally, we expect to observe increased beta and gamma activity for 

successful binding spatial representations during recall for successful decision-making as 

suggested by Chrastil et al. (2022). 

 

4.2 Methods 

4.2.1 Participants 

The same fifty young adults (34 females, 16 males) aged between 18 and 45 (M = 21.7, SEM 

= +/- 0.637) from Chapter 3 were used for this chapter. All participants were right-handed. All 

participants were recruited via Maynooth University Department of Psychology and externally 

using personal connections, flyers, and social media (see section 3.2.1 in Chapter 3 for more 

details). However, due to the COVID-19 pandemic, only 30 of the original 50 participants 

completed a recall trial. These were then analysed and included a total of 30 young adults (19 

females, 11 males) aged between 18 and 45 (M = 23.03, SEM = +/- 1.014). The recall phase of 



123 

 

this project and the use of human subjects with EEG was approved by the Maynooth University 

ethics committee (BSRESC-2021-2453422). 

 

4.2.2 Spatial Navigation Task 

After the electrophysiological preparation (see Chapter 2 for details) and the completion of the 

learning phase (see Chapter 3), participants were seated 50 cm from the LCD computer screen 

on their own in a darkened, electrically shielded and sound-attenuated testing cubicle (150 cm 

× 180 cm) with access to a joystick for navigating. The spatial navigation task used was 

NavWell (see Commins et al. (2020) for in-depth details). The same virtual maze setup was 

used, which consisted of a medium circular environment (taking 15.75s to traverse the arena, 

calculated at 75 Vm). Two cues were used and were located on the wall of the arena (see section 

3.2.2 for more details). A square goal was learned in the middle of the northeast quadrant and 

was 15% of the total arena size and consisted of a bright blue square that only became visible 

when the participant crossed it. Once the learning phase was completed (see Chapter 3) all 

participants took a 10–15-minute break. Following this, participants were given a single 60-

second recall trial. Participants in the learning group (n = 15) were required to re-locate the 

target. However, for this trial, the target was removed from its location in the NE quadrant and 

did not illuminate blue nor display a message when walked on. During the recall trial all 

participants were presented with the same instructions that they were given during the learning 

trials, to locate the hidden goal (see Chapter 2 for details). The trial ended after 60 seconds. All 

participants started from the same novel south-west (SW) location. Those in the non-learning 

group (n = 15) had not learned about the target (see Chapter 2 for details).  

To breakdown and analyse different elements of behaviour during the recall phase, we 

exported the x-y co-ordinates across time for each participant from NavWell. The x-y co-

ordinates are recorded and stored in a JSON file for every 0.25s on average, as a participant 
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traverses the arena. Therefore, we first plotted the x-y co-ordinates in a plane that displayed the 

entire path trajectory. Based on these trajectories we derived a clear discrimination of 

behaviour, based on each quadrant and participants starting position. We plotted the x-y co-

ordinates for each individual participant onto the same graph. 

 

4.2.3 EEG Recording 

EEG data was acquired using a BioSemi ActiveTwo system (BioSemi B.V., Amsterdam, 

Netherlands) providing 32 Ag/AgCl electrodes positioned according to the 10/20 system that 

was used during the learning phase (see section 3.2.3 “EEG Recording”). Participants did not 

remove any equipment during the rest period. Electrode impedance was checked and adjusted 

to be below < 20Ω before recording began again. Analogue event signals were sent only once 

when participants began their trial. This was because all participant trial times were 

standardised. The recording system was stored in the same room, participants were seated, and 

data were recorded continuously. The four electrodes (EXG1 - EXG4) positioned on the face 

were checked and readjusted if necessary. Raw EEG data were again sampled at 1024Hz but 

down-sampled offline to 512 Hz (see Chapter 2 & 3 for details). 

 

4.2.4 EEG Preprocessing 

Continuously recorded EEG data were analysed offline in MATLAB R2021B using scripts in 

combination with the Brainstorm package (Tadel et al., 2011). A 1 Hz high-pass filter and a 40 

Hz low-pass filter were applied. Independent Component Analysis (ICA) was performed to 

remove and correct artifacts, namely eye movements, blinks, and muscle artifacts. We used the 

EEGLAB infomax algorithm callable via brainstorm using the runica function. For this 

analysis, the entire continuous recording was then epoched into 2-second epochs, producing 30 
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epochs per participant. These data were visually inspected for bad segments and bad electrodes, 

which were then removed. Bad electrodes that originated from pre-defined regions of interest 

were interpolated (n = 2), if possible, using Brainstorm after ICA. Epochs with voltage steps 

above 100 µV or peak-to-peak signal deflections exceeding 200 µV within 2-s intervals were 

automatically rejected. We had a rejection rate of approximately 8% of the total epochs 

produced. EEG data were then re-referenced to the average of the 32 electrodes. For further 

information on EEG pre-processing see Chapter 2. 

 

 

4.2.5 EEG Spectral Analysis 

As this was an exploratory analysis, we investigated five frequency bands: delta (2-4 Hz), theta 

(5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz) & gamma (30-40 Hz). The bands were defined using 

the default Brainstorm settings for the band for this chapter. This was to prevent adding 

overlapping frequency definitions into the relativity calculation twice. Power spectra were 

computed on artefact-free epochs for each participant. We used Hanning windows of 2-s with 

a 50% overlap using Welch’s method for all electrodes. This resulted in a spectrum with 

frequency resolution of 0.5 Hz, and the power was computed using the underlying short Fast 

Fourier Transform (sFFT) with a linear frequency distribution of 1:1:40. This was then grouped 

into the previously defined bands using the Frequency > Group in time or frequency bands 

process. Relative power within these bands was then computed to reduce inter-subject 

variability in the power calculations. 

We use relative power only for all group analyses. All raw Power Spectral Density 

(PSD) plots display the magnitude of power based on recommendations in the literature. We 

again focused our analysis on our pre-defined regions of interest, extracting these data for each 

individual participant. We examined the relative power at the frontal midline (Fz, F3, F4) and 
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the parietal midline (Pz, P3, P4) once again capturing activity from both the anterior and 

posterior parts of the scalp. As this analysis was exploratory, we investigated more regions that 

may be of interest, including the central midline (C3, Cz, C4) and the occipital midline (O1, 

Oz, O2). All epochs in each group and phase, were averaged together following computations.  

For the behaviour-based EEG analysis, we split our EEG recording into relevant 

timestamps to examine EEG activity during these different navigational behaviours. We then 

divided artifact free 2-s epochs up into behavioural “phases” based on time from event trigger 

sent to the BioSemi system when participants started the trial. More detail is available in the 

relevant section (section 4.3.2.3). 

4.2.6 Statistical Analysis 

Statistical analyses & visualisation of the behavioural data were performed using a combination 

of JASP (version 0.15) and R software version 4.0.2 with the tidyverse and ggplot2 package. 

Firstly, statistics were performed using extracted values from the power spectra via the extract 

> values process in Brainstorm. We extracted data from our ROIs and for differing time periods 

(see section 4.3.2.3 “Behaviour-matched EEG dynamics”). Statistical exploration of the EEG 

data across the scalp was performed using Brainstorm in MATLAB 2021b, comprising of two-

tailed non-parametric independent or paired t-tests with 5000 permutations and a p-threshold 

of 0.05. We corrected for multiple comparisons in EEG data using an FDR (False Discovery 

Rate) correction. All data were combined for behaviour-matched EEG analysis, but gender was 

included as a factor in the overall behavioural analysis (based on its inclusion in Chapter 3 and 

Thornberry et al., 2023). Mixed-factorial ANOVAs were computed on the behavioural data 

comparing the two groups on time spent in each quadrant of the arena. Further mixed factorials 

were done for each frequency band, comparing the groups across the various ROIs. Bonferroni 

corrected t-tests were used to follow up within analysis, and independent sample t-tests were 

used to follow up group differences. 
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4.3 Results 

4.3.1 Behavioural Results 

Firstly, we compared the learning group (n=15, 10 females) to the non-learning group (n=15, 

9 females) on age to confirm the groups were matched for this variable (M = 23.6, SEM +/- 

1.656 and M = 22.467, SEM +/- 1.214). We report no significant difference between the groups 

(t(28) =0.552, p = 0.585, Cohen’s d = 0.202). As previously mentioned, the NavWell software 

tends to eliminate gender effects in spatial navigation abilities (see Commins et al., 2020 & 

Thornberry et al., 2023). However, it was included in the analyses where possible (similar to 

Chapter 3). For all participants, percentage time spent searching in each quadrant of the pool 

(including the one containing the target, i.e., NE) were recorded. The data were analysed using 

a 2 (Group) X 2 (Gender) X 4 (Quadrant) repeated measures ANOVA. The data violated the 

assumption of sphericity, so therefore a Greenhouse-Geisser correction was applied to the 

model. We reported a significant main effect of Quadrant (F(1.2, 30.2) = 12.205, p < 0.001, η² = 

0.193). However, we reported no significant between subjects effects for neither Group (F(1, 26) 

= 1.500, p = 0.232) or Gender (F(1, 26) = 1.501, p = 0.232). We revealed a significant interaction 

effect for Quadrant X Group (F(1.2, 30.2) = 13.696, p < 0.001, η² = 0.216) but found no significant 

interaction effect for Quadrant X Gender (F(1.2, 30.2) = 1.235, p = 0.283) nor a significant three-

way interaction effect (p = 0.263).  

Focusing on the goal quadrant, we ran Tukey-corrected t-tests to investigate the 

reported interaction effects. The learning group’s percentage of time spent in NE (M = 78.12%, 

SEM +/- 2.3%) was significantly greater (MD = 51.72%, t = 4.837, Cohen’s d = 1.838, p < 

0.001) compared to the time spent searching there by the non-learning group (M = 26.9%, SEM 

+/- 2.1%). Additionally, the learning group spent significantly more time searching in the goal 

quadrant (NE) than all other quadrants; NW (M = 7.97%, SEM +/- 1.8 %, p < 0.001), SW (M 

= 12.59%, SEM +/- 0.89%, p < 0.001) and SE (M = 1.32%, SEM +/- 1.14%, p < 0.001). 
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Importantly, time spent searching in the goal quadrant (NE) in the non-learning group, did not 

differ from any of the other quadrants: NW (M = 24.22%, SEM +/- 2.18%, p < 0.999), SW (M 

= 29.2%, SEM +/- 2.16%, p < 0.999), nor SE (M = 19.64%, SEM +/- 2.37%, p < 0.758). 

Therefore, all quadrants for the non-learning group were at near chance levels (25%) and did 

not differ from each other, compared to the directed searching displayed in the learning group 

(Figure 4.2), who spent a statistically significant amount of time searching there compared to 

other quadrants, and compared to the non-learning group. 

Another interesting finding is that the learning group spend significantly less time 

searching in the quadrant containing the starting position (SW; MD = -36.47%, t = -3.502, 

Cohen’s d = -1.279, p = 0.015). Additionally, we examined any differences in average path 

lengths during the recall trial between the groups using an independent t-test. A significant 

difference in path length between the groups during recall (t(28) = -4.296, p < 0.001, Cohen’s 

d = -1.559) was noted, with the learning group having shorter search paths (M = 235.02 Vm, 

SEM +/- 12.378 Vm) compared to the non-learning group (M = 291.03 Vm, SEM +/- 4.35 

Vm). The reduced time in the starting quadrant, along with shorter search paths would indicate 

goal directed-searching in the learning group, with longer and exploratory searching behaviour 

(see below Figure 4.1b) in the non-learning group.  
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Figure 4.2: Boxplots with individual data points displaying mean search percentage times for 

each quadrant; Northwest, Northeast (goal quadrant in learning group), Southwest and 

Southeast. Black horizontal bar represents the mean. 

a. b. 

 Figure 4.1: Maps of all four quadrants displaying sample paths and searching heatmaps from 

sample participants: a learning group participant (a) and a non-learning group participant (b). 

It is clear that 4.1a displays directed and persistent search patterns. Participant 4.1b displays 

random searching activity with no ‘hot-spot’. 
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4.3.2 EEG Results 

4.3.2.1 Relative Frequency Band Power 

Power Spectral Density (PSD) using a Welch window (medium window length of 2s with an 

overlap ratio of 50%) was used to compute the power spectra (µV2/Hz) based on a typical Fast-

Fourier Transform (FFT) default frequency definition. Power spectra were computed for five 

bands: Delta (2-4 Hz), Theta (5-7 Hz), Alpha (8-12 Hz), Beta (15-29 Hz) & Gamma (30-40 

Hz). The bands were defined as such for this chapter, to prevent adding overlapping frequency 

definitions into the relativity calculation twice (1 Hz was not included as it is too close to the 

band-pass filter limit). We then performed a spectrum normalisation to calculate relative power, 

for our four ROIs, the frontal (F3, Fz, F4), central (C3, Cz, C4), parietal (P3, Pz, P4) and 

occipital (O1, Oz, O2) midlines.  

Figure 4.3 shows isolated PSDs with a linear frequency definition of 1:1:40 for the full 

scalp and our ROIs. This will allow us to see the specificity of dynamics within the bands. We 

report clear differences in alpha power (~ 10/11 Hz) at all sites (Figure 4.3b-e) and across the 

scalp (Figure 4.3a). We also report clear differences in delta power at the central region (Figure 

4.3c), with the learning group having much greater power than the non-learning, particularly 

around ~2 Hz. Beta & gamma frequencies clearly differ between groups in the occipital area 

based on Figure 4.3e. 
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Figure 4.3: Power Spectral Density (PSD) plots calculated using underlying sFFT at a frequency resolution of 0.5Hz and a linear frequency 

definition of 1:1:40. We display mean power magnitude of each ROI (a=scalp, b=frontal midline, c=central midline, d=parietal midline and 

e=occipital midline) for both the learning and non-learning group. Some scales differ due the overall average power distribution.  

Full scalp analysis 
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 Following the analysis approach of Du et al. (2023), power data were analysed using a 

2 (Group) X 4 (ROI) mixed repeated measures ANOVA. The relative power data violated the 

assumption of sphericity in parts, so therefore a Greenhouse-Geisser correction was applied to 

the model where appropriate. All post-hoc analysis use Bonferroni corrected t-tests to examine 

a reported main within effect, and a Tukey correction to examine interaction effects (see 

Chapter 2 for rationale). For Delta (Figure 4.4a), we reported a significant main effect of region 

(F(3, 84) = 8.652, p < 0.001, η² = 0.097). We reported no significant between-subjects effects for 

group (F(1, 28) = 0.736, p = 0.398). However, we reported a significant interaction effect for 

Region X Group (F(3, 84) = 4.447, p = 0.006, η² = 0.05). Using post-hoc t-tests we examined our 

main effect, revealing delta at the frontal midline was greater than at the central midline across 

the groups (t = 3.236, p = 0.010). Furthermore, delta power was greater at the parietal midline 

compared to the central (t = 4.817, p < 0.001) and occipital (t = 3.240, p = 0.010) but did not 

differ compared to the frontal midline (t = 1.581, p = 0.706). This illustrates that delta power 

is greater at the frontal and parietal regions of the scalp. Examining our interaction effects, 

corrected t-tests revealed that neither group had significant differences in delta at any midline 

(all p > 0.23). In the non-learning group, frontal, parietal & occipital midline delta was greater 

than central midline delta (t = 3.185, p = 0.041; t = 5.090, p < 0.001 and t = 3.574, p = 0.013). 

We reported no within-group differences for the learning group (all p > 0.056). 

 For Theta (Figure 4.4b), we reported a significant main effect of region (F(3, 84) = 

10.857, p < 0.001, η² = 0.066). We reported no significant between-subjects effect (F(1, 28) = 

0.354, p = 0.556). Furthermore, we reported no significant Region X Group interaction effect 

(F(3, 84) = 0.819, p = 0.487). Interestingly, we reported that power at the frontal midline in both 

groups is significantly greater than at the parietal midline (t = 3.300, p = 0.009) and the occipital 

midline (t = 5.653, p < 0.001) and the central midline, though not significant (t = 2.522, p = 
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0.081). This may indicate that frontal midline theta is related to the navigation process itself 

during this phase.  

For Alpha (Figure 4.4c), we reported a significant main effect for region (F(1.87, 52.44) = 

6.183, p = 0.005). However, we did not report a significant between-subjects effect for group 

(F(1, 28) = 1.351, p = 0.255). Additionally, we reported no significant interaction effect between 

Region X Group (F(1.87, 52.44) = 0.637, p = 0.523). Post-hoc tests of our main effect reveals that 

power is greater at the parietal midline (t = 2.769, p = 0.041) and the central midline (t = 4.048, 

p < 0.001), compared to the frontal midline across both groups. For Beta (Figure 4.4d), we 

reported a significant main effect of region (F(3, 84) = 7.034, p < 0.001, η² = 0.058) but no 

significant difference between the groups (F(1, 28) < 0.001, p = 0.984). Furthermore, we reported 

a significant interaction effect between Region X Group (F(3, 84) = 3.324, p = 0.033, η² = 0.027). 

Using post-hoc Bonferroni corrected t-tests we revealed that across both groups, the power at 

the occipital area was significantly greater compared to the parietal midline (t = 4.359, p < 

0.001), the central midline (t = 3.133, p = 0.014) and approaches significance for the frontal 

midline (t = 2.633, p = 0.06). We then ran post-hoc Tukey corrected t-tests to examine our 

interaction effect. We reported that for the learning group, power at the occipital midline was 

greater than at the parietal and frontal midlines (t = 3.474, p = 0.018 and t = 3.595, p = 0.012 

respectively). These effects were not found in the non-learning group (p > 0.14). The groups 

did not significantly differ between each other at any specific region of interest (all p > 0.98).  

Finally, for Gamma (Figure 4.4e), we reported a significant main effect of region (F(3, 

84) = 14.506, p < 0.001, η² = 0.095), but no significant difference between the groups (F(1, 28) < 

0.001, p = 0.995). We reported a significant interaction effect for Region X Group (F(3, 84) = 

3.898, p = 0.012, η² = 0.025). Our post-hoc Bonferroni corrected t-tests demonstrated a similar 

main effect to Beta. The occipital midline had greater power compared to the parietal midline 

(t = 6.309, p < 0.001) and frontal midline (t = 4.175, p < 0.001) across the groups but not the 
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central midline (t = 2.248, p = 0.163). Examining our interaction effect using Tukey corrected 

t-tests revealed that the groups do not differ at any region (all p > 0.84). Nevertheless, we found 

that in the learning group, occipital area gamma was greater than gamma power at the frontal 

midline (t = 5.036, p < 0.001), the parietal midline (t = 5.719, p < 0.001) and central midline (t 

= 3.684, p = 0.009). We reported no differences within the non-learning group (all p > 0.19). 

This may indicate that high-frequency oscillations, i.e., beta and gamma, may be involved in 

the navigation process primarily at the occipital area, but also primarily in the learning group.  

However, calculating power in each band as a percentage of the summed power across 

all frequencies (i.e., relative power) indexes the distribution of power across bands, which 

inherently differs between frequency ranges across the spectrum. Investigating any cognitive 

event (such as a navigation phase for that matter) using relative averages from grouped ROIs, 

may be too coarse to reveal group-differences statistically (see Du et al., 2023). For this reason, 

we ran FDR-corrected permutation t-tests to reveal significant group level differences at all 

electrode sites and frequency bands (at an alpha level of 0.05 with 5000 permutations). In this 

randomisation procedure the 2 conditions are interchanged randomly for each subject in each 

run. The swapping of the conditions is done consistently across electrodes. This provides 

compensation for smaller sample sizes (Frossard & Renaud, 2021) and alleviates the impact of 

high signal to noise ratio (Mamashli et al., 2019). It is also recommended by the Brainstorm 

team (Pantazis et al., 2005) and has been used in the EEG/spatial navigation literature (Gehrke 

& Gramann, 2021). 
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Figure 4.4: Boxplots displaying means as well as jittered data points of individuals from each group, and relative power for each frequency band 

at our four ROIs as well as the global scalp relative power. Each frequency band is represented by a different plot in different colours to help 

with visualisation. Any line demonstrating significance that goes from one group to the other demonstrates across-group effects. Any line going 

from one group to the same group implies a within difference. We reported no region-specific group differences so they are not displayed here.  

NOTE: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Examining the difference between the groups (i.e., Learning – Non-Learning), we reported that 

topographical distribution of power was significantly greater in the learning group in the delta 

band (2-4 Hz) at frontal and central sites including CP5, CP1, Cz, F8 and FC6 (Figure 4.5a). 

Similar significant increases in theta (5-7 Hz) are found at frontal and central sites for the 

learning group, with CP5 and FP2 as significant (see Figure 4.5b). Within the alpha range (8-

12 Hz) we report no significant differences at any electrode site, but a large widespread 

activation over central and parietal sites are observed for the non-learning group in Figure 4.5c. 

This is also observed in the overall PSD (Figure 4.3d) and appears at 11 Hz, with most of the 

activation near the right motor areas (site C4) ipsilateral to the hand used for moving the 

joystick. Whilst a small activation is also seen in the learning group, it is not as prominent as 

the non-learning group. In beta (15-29 Hz) we demonstrate significantly greater power in the 

learning group compared to the non-learning group at occipital sites, with significance at sites 

PO3 and PO4 (Figure 4.5d), whilst reporting significantly isolated, but lower power at sites 

CP5 and F8. Finally, for gamma (30-40 Hz) we report very similar findings to beta, but not as 

marked, losing significance at sites PO3 & PO4, but retaining significance for CP5 & F8 

(Figure 4.5e). Clearly there are some distinctive differences across all bands, that are not 

detected at our predefined ROIs, and our statistical analysis of mean relative power. 

Nevertheless, relative power provides us an insight into the typical dynamics of power 

distributions during spatial navigation and recall.  
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Figure 4.5: Topographical plots displaying each groups relative power distribution across the 

scalp at each frequency-band (a - e). Significant electrodes are displayed with yellow stars. The 

scale in relative power (%), whilst the scale for the differences is displayed in t-values. 
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4.3.2.3 Behaviour-matched EEG dynamics 

Typically, in the classic MWM paradigm, during the probe trial of animals who have 

successfully learned the task, there is an initial goal-directed searching behaviour followed by 

focused searching behaviour within the same quadrant of the maze that contains the previously 

learned goal (Harvey et al., 2009; Nyberg et al., 2022; Rogers et al., 2017). We expected to see 

evidence of these two searching behaviours during our probe trial in our learning group: goal-

directed navigation, followed by focused-searching. Furthermore, we would expect to see 

purely random searching behaviour in our non-learning group throughout the trial. Evidence 

of this can be seen in Figure 4.1. However, to capture the true dynamics of the search path 

across time, we exported the x-y coordinates from the NavWell system for each participant (see 

Figure 4.6 below). 

 

 

             

Figure 4.6: Full recall trial path trajectories plotted using x-y co-ordinate data for all 

participants in each group within the arena. They are scaled to fit a square (1,1) plane, with the 

centre point of the cross represented by (0,0). 
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Following this, based on the analysis of screen-recorded probe trials from participants, and the 

short latencies from the learning phase within the learning group, we split our trajectories into 

the first 10-seconds (which captured most of the goal-directed navigation, Figure 4.7 - green) 

and the final 50-seconds (which captured most of the focused searching behaviour in the NE 

quadrant, Figure 4.8 - green) for the learning group. For the non-learning group, the first 10-

seconds showed that participants headed off in random directions (Figure 4.7 - blue) and then 

continued to move around the entire arena for the rest of the trial (Figure 4.8 - blue) in a random 

fashion. 

 

4.3.2.3.1 Goal-Directed vs Random Behaviour 

To examine difference between groups, we utilised a standard Welch’s PSD with an underlying 

FFT linear function of 1:1:40. We present full-scalp power differences between the groups in 

Figure 4.7 (initial 10s) & Figure 4.8 (final 50s) below. For this phase, we compared relative 

frequency power differences between groups using an independent permutation t-test with 

5000 permutations as implemented previously. We utilised relative power as we are interested 

in the distribution of power within the frequency bands between the groups. Additionally, this 

calculation generated better between-group comparable data that is standardised and accounted 

for slow-drifts, artifacts and noise that may influence between-group analysis. The two groups 

may also have differing overall levels of absolute power and therefore relative power provides 

a correction for this (see Jabes et al., 2021, for further information). Figure 4.7 shows that 

participants headed directly towards the goal (learning group), with increased delta and theta 

power, with significant increases in theta at the CP5 electrode, when compared to participants 

headed in a random direction. We reported less alpha power across central sites, but none 

reaching significance. We further reported greater beta and gamma power at anterior and 
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posterior sites, but significantly less power at sites CP5 and F8 for beta only. Figure 4.8 shows 

that participants that had searched with a focus on the NE quadrant showed even greater delta 

and theta power, with significant central (CP5, Cz, CP6) and frontal (FC6, F8) delta compared 

to the non-learning group. In addition, similar to reported above, this group showed higher 

frequency activity in the beta and gamma bands within the parietal and occipital regions 

(significant at PO3 and PO4 for beta only), compared to the non-learning group that moved 

randomly throughout the entire arena. We also reported significantly less beta in our learning 

group at sites CP5 and F8 again, with CP5 only becoming significant in the gamma band. 

Finally, the non-learning group showed greater alpha power (~11 Hz) during random 

movement, which was not observed in the learning group (see Figure 4.8). 
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Figure 4.7: Learning & Non-Learning group paths generated via x-y co-ordinates from the first 10s of the recall 

trial are displayed above. Below these plots, we display the PSD spectrum from the comparison between the two 

groups in magnitude with a frequency resolution of 0.5 Hz during the first 10s of the recall trial. We then display 

corresponding topographies reflecting our frequency band definitions, which display the results of our between-

subjects permutation t-tests. Yellow stars indicate electrode sites that have a significance level of 0.05 or less, 

following FDR-correction. Topographies are displayed in relative power differences, but PSD is plotted in 

magnitude based on guidelines from the literature.  
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Figure 4.8: Learning & Non-Learning group paths generated via x-y co-ordinates from the last 50s of the recall 

trial are displayed above. Below these plots, we display the PSD spectrum from the comparison between the two 

groups in magnitude with a frequency resolution of 0.5 Hz during the last 50s of the recall trial. We then display 

corresponding topographies reflecting our frequency band definitions, which display the results of our between-

subjects permutation t-tests. Yellow stars indicate electrode sites that have a significance level of 0.05 or less, 

following FDR-correction. Topographies are displayed in relative power differences, but PSD is plotted in 

magnitude based on guidelines from the literature. 
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4.3.2.3.2 Switching Behaviour (Learning group) 

As mentioned previously, the learning group switched from goal-directed navigation to focused 

searching. This switch does not occur in the non-learning group, who searched randomly 

throughout the trial, as they had no location to learn. Therefore, we are interested to see if there 

is a difference in distribution of power within the two groups when this searching behaviour 

changes. Therefore, we examined relative power differences between the two phases [First 10s 

vs Last 50s] for each group using a paired permutation t-test with 5000 permutations, with an 

FDR-correction applied to the results. Here, we examined relative power as we are interested 

in the overall power increases/decreases that occur across frequency bands in response to the 

two observed changes in behaviour. We might expect that the searching would become more 

effortful during focused searching, as participants repeatedly attempted to recall the goal 

location. We would expect to find the opposite effect in the non-learning group, as continuously 

engaging in memory-driven recall is more challenging than free-navigation. 

Figure 4.9 (top) shows that there is an increase in delta power across the frontal and 

central sites as the learning group focused their searching, but no electrode sites showed a 

significant change. Significant decreases were found primarily in the frontal (AF3, F3, FC1 

and F8) and parietal (Pz and P4) sites in beta power. Similar decreases were found in gamma 

power, but to a lesser extent (significant at FC1 only). Figure 4.9 (bottom) shows that as the 

non-learning group progressed through the trial randomly, moving around the arena, there was 

a significant increase in alpha (primarily left hemisphere sites: AF3, F3 and P7). There was a 

notable difference at 11 Hz. In contrast to the learning group, there were significant widespread 

decreases in gamma (significant at sites FC1, FC2, Cz, CP1, CP5, P3, PO4). There was a 

similar decrease in beta but to a lesser extent (significant at FC1 only).  
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Figure 4.9: PSD plots for both groups display the within-group differences in power magnitude 

between the two phases of navigation behaviour. The solid line represents the first 10s of the 

recall trial and participants’ start trajectory, and the dotted line represents the latter 50s of the 

recall trial and its relevant searching behaviour. Both PSDs are plotted on the same scale. 

Topographies display the results of the paired t-test within-groups on power changes within 

frequency bands. Topography is displayed in t-values and a small yellow star on an electrode 
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site represents significance at an alpha level of 0.05. T-test is permutation based with 5000 

iterations and results are corrected for multiple comparisons using FDR-correction. 
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4.4 Discussion 

The current chapter set out to perform an exploratory analysis of the oscillatory activity 

involved in immediate spatial recall of a goal location. We did not have any specific hypothesis 

for this chapter, though there were a couple of proposed events we expected to be observed, 

based on the human and animal literature. Firstly, we expected low-frequency oscillations (2-

8 Hz) to play an important role in the recall process. Additionally, we expected alpha 

oscillations to be suppressed in the learning group, but not in the non-learning group. 

Furthermore, we expected to demonstrate some high frequency (> 15 Hz) differences between 

the groups. We discuss our findings based on different frequency bands. 

 

4.4.1 Delta-Theta Oscillations 

We reported greater delta (2-4 Hz) and theta (5-7 Hz) power in our learning group compared 

to our non-learning group during the recall trial. Greater power was topographically located at 

frontal and central sites, though appears prevalent across the scalp. Though only select 

electrode sites show significance and not our frontal midline ROI, we suspect integrating more 

electrodes into our ROI as has been done previously (see Du et al., 2023) would reveal a 

significant interaction between group and region. Nevertheless, our results support the 

suggestion that low-frequency oscillations in humans (2-8 Hz) are involved in successful 

memory-guided navigation (Alekseichuk et al., 2016; Bohbot et al., 2017; Crespo-García et al., 

2016; Greenberg et al., 2015; Liang et al., 2021; Vivekananda et al., 2021). The widespread 

activation of delta and theta in our learning group is contrasted with isolated or concentrated 

delta and theta activity in our non-learning group (see Figure 4.5). This idea is further supported 

by performing a behaviour-based analysis on our low-frequency oscillations. During goal-

directed navigation at the start of the trial, we reported greater theta power across the scalp, 
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and greater delta power at central regions compared to our non-learning group’s random 

starting trajectory. However, as participants switched to focused searching after realising that 

they had not successfully located the goal, we reported significantly greater frontal and central 

widespread delta power compared to the random searching of the non-learning group. Many of 

our significant electrodes were in the frontal right hemisphere of the scalp. Our results align 

with the previously discussed findings of the involvement of low-frequency oscillations within 

the range of 2-8 Hz being involved in successful spatial memory during navigation 

(Alekseichuk et al., 2016; Bohbot et al., 2017; Buzsáki & Moser, 2013; Chrastil et al., 2022; 

Delaux et al., 2021; Du et al., 2023; Greenberg et al., 2015; Liang et al., 2021; Lin et al., 2022; 

Miyakoshi et al., 2021; Watrous et al., 2013). Furthermore, our evidence suggests that theta 

supports the overall initial goal-directed retrieval and navigation, whereas delta (or lower 

frequency oscillations) become involved in subsequent focused searching, or when greater 

cognitive demand is placed on spatial memory systems.  

These findings and interpretation map onto previously discussed intracranial data from 

humans, that illustrate successful associative retrieval results in increased low frequency 

oscillations (< 5 Hz), whereas low-frequency oscillations between 5-9 Hz seem to be increased 

during encoding (Bohbot et al., 2017; Kota et al., 2020; Lega et al., 2012). It could be argued 

here that the initial phase of goal-directed navigation does not require the recollection of 

learned associations (i.e., cue and goal) but instead incorporates retrieval of a place, using theta 

oscillations engaged during learning as found in our previous work (Thornberry et al., 2023). 

This information is retrieved from a cognitive map or a developed environmental schema (see 

General Introduction & General Discussion). When this retrieval strategy fails, low-frequency 

oscillations are further recruited to retrieve learned associations between the goal and other 

environmental stimuli (e.g., landmarks), to perform memory-dependent focused searching. 

Moreover, the involvement of the frontal midline during a virtual navigation task supports the 
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involvement of this region in active spatial navigation, reported by multiple other studies 

(Chrastil et al., 2022; Du et al., 2023; Liang et al., 2018; Liang et al., 2021; Lin et al., 2022; 

Mitchell et al., 2008). Nonetheless, it is difficult for us to report a specific role of increased 

frontal delta and theta in memory retrieval. However, it is clearly involved to a greater extent 

when a task has been learned, and delta in particular increases when applying memory based 

as opposed to random spatial search strategies. 

 

4.4.2 Alpha Oscillations 

We reported a non-significant numerical trend toward less alpha (8-12 Hz) power in our 

learning group compared to our non-learning group across the entire duration of the recall trial. 

However no electrode site reached significance following correction of multiple comparisons. 

The non-learning group show distinctly heightened alpha (see Figure 4.5c) across the right 

hemisphere, with some concentration on central electrodes (C4 in particular, a sensorimotor 

electrode ipsilateral to the hand moving the joystick – all participants were right-handed). Some 

right-posterior electrodes also possess heightened alpha, with the learning group showing C4 

activation, but not to the same extent. Furthermore, the non-learning group showed a non-

significant trend increased alpha (centralised at ~11 Hz) during random searching, particularly 

as the trial progressed. 

 Our findings contradict the role proposed in Chapter 3 for the alpha rhythm (8-12 Hz). 

These are its involvement in attention, which is a robust finding reported throughout the 

literature (Foxe & Snyder, 2011; Händel et al., 2011; Harris et al., 2017; Klimesch, 2012; 

Klimesch et al., 1998). Firstly, the role of alpha in attention has been well documented. 

Decreases typically reflect an idle or focused state. Increases in this rhythm have been linked 

to difficulty focusing due to external, irrelevant or competing stimuli (Foxe & Snyder, 2011). 
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Our reported high-relative power in our non-learning group may indicate a lack of focus or 

attention during random exploration. As the trial progresses, this lack of focused or effortful 

attention increases. Alpha desynchronisation is typically associated with focused and 

controlled information processing (Klimesch, 2012). Our results from the learning group 

suggests that alpha may be supressed to a greater extent, and may index engaged memory-

guided attentional mechanisms, facilitating focus and access to the memory of the goal. Lower 

alpha power has been reported during spatial attention tasks (Capotosto et al., 2009; Li et al., 

2021; Thut et al., 2006). However, even with distractions, alpha power has recently been 

reported to decrease (Fodor et al., 2020). Nevertheless, we would argue that using memory-

guided attention to navigate, suggests that this group have less effortful and more fixated 

attention – as their search strategy is memory-guided and place focused. Therefore, this 

interpretation would support the concept proposed by Du et al. (2023), that increased alpha 

reflects competing spatial cues. The non-learning group had more conflicting information 

processing and/or a lack of focused attention. It is possible that our results from Chapter 3 and 

those reported by Chrastil et al. (2022), could be explained by a disengagement of attention 

mechanisms following successful learning. However, we reported no significant electrodes 

sites within the learning group here. Further specific research on this topic is required. 

Secondly, these alpha dynamics could also be explained by a dominant presence of the 

Mu rhythm (~ 10-12 Hz) within our alpha band. Mu is commonly found at the precentral motor 

cortex (C3, Cz, C4 electrodes: Garcia-Rill (2015)). Though it has been argued to be an idle 

rhythm, decreases in this rhythm can reflect goal-directed (Babiloni et al., 2014; Montirosso et 

al., 2019; Pineda, 2005) or cue-directed (Schneider et al., 2017) motor planning and execution. 

The significant increases (i.e., less suppression) in alpha (centred around 11 Hz) from the non-

learning groups random start to random searching may reflect a lack of intentional sensorimotor 

engagement, hyperactivity or exploratory behaviour (Schneider et al., 2017). The mu 
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suppression in our learning group may then reflect memory-guided or cue-guided motor 

execution. Further research, with a focus on spatial attention would be required to confirm this. 

Therefore, considering our movement control and speed are kept constant between groups, we 

lean towards a spatial attention-related explanation of alpha activity. This would correspond to 

findings in Chapter 3, in which we reported less alpha in our learning group overall during 

learning (also see Thornberry et al., 2023) but gradually increasing alpha in both groups 

perhaps related to increased mind-wandering (Compton et al., 2019; Kam et al., 2022) or a 

reduction of focused-attention and motivation. 

 

4.4.3 Beta-Gamma Oscillations 

We reported significantly elevated posterior beta (15-29 Hz) power in our learning group 

compared to our non-learning group across the entire trial at PO3 and PO4 electrodes, which 

are located around the occipital lobe. We reported similar trends for gamma (30-40 Hz) though 

no significant electrode sites were present at the posterior part of the scalp, though significant 

decreases were found at right frontal and left parietal sites as were found in beta. Significantly 

stronger posterior beta at the occipital regions in our learning group, was only found during the 

focused searching and not during the initial start trajectory. This may indicate that beta plays a 

role in  more intense or directed visual scanning, as opposed to direct route following. Several 

studies also report enhanced beta and gamma power during visual and spatial working memory 

retention and maintenance (Park et al., 2011; Proskovec et al., 2018; Roux et al., 2012) 

particularly located at posterior parts of the scalp (Honkanen et al., 2015; Medendorp et al., 

2007). Beta power at parieto-occipital regions has previously been reported to increase with  

memory load (Tuladhar et al., 2007). Roberts et al. (2013) found using scalp EEG that beta and 

gamma activity increased during the maintenance of spatial, but not temporal working memory. 
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Therefore, we suggest that greater beta power in our learning group at parieto-occipital sites 

may be related to memory maintenance or memory load, and possible memory-guided visual 

search – which is not used in the non-learning group. 

 Interestingly, we see significant suppression of beta in left frontal and right parietal 

regions as the learning group switch behaviour but report significant suppression of gamma at 

left-lateralised central regions in our non-learning group with time. Engel and Fries (2010) 

suggest that beta oscillations become suppressed when a novel or unexpected event occurs, 

forcing a change in the cognitive or perceptual status quo.  Considering we see some significant  

suppression of beta within the learning group following a switch to focused searching, our 

results support this idea. Furthermore, considering they occur in frontal and parietal regions – 

we suggest this suppression is a cognitive or memory-related change rather than visual. 

Therefore, the gamma related suppression observed within our non-learning group, could be 

linked to increased alpha power, modulating visual attention processing of stimuli (Delaux et 

al., 2021), which is reported function of alpha–gamma networks, suggested to occur 

predominantly in the prefrontal cortex and parietal cortex (Roux & Uhlhaas, 2014).  Bonnefond 

and Jensen (2012) reported weaker gamma activity during the processing of distractor stimuli 

compared to the processing of memory-related stimuli, suggesting lower gamma when 

presented stimuli are ignored. Considering there are no goal-related stimuli for this group, and 

that gamma power is greater in a group containing memory-related stimuli (e.g., learned place, 

landmarks or environmental features) our results may support this interpretation.  

 Nevertheless, we cannot conclude any clear role for these oscillations together and 

suggest that their suppression and greater powers are related to coupling with low-frequency 

oscillations between 2-8 Hz. Beta and gamma are incredibly broad bands and reflect multiple 

cognitive processes (see Herrmann et al. (2016)). As well as this, the actual functional roles of 

high frequency oscillations are still actively debated (Barone & Rossiter, 2021; Bragin et al., 
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1995; Buzsáki & Wang, 2012; Engel & Fries, 2010). We did not measure eye movements, so 

cannot conclusively link occipital high frequencies to visual attentional processes. Yet, we 

believe the link between these high-frequency rhythms and activity at low-frequency are 

memory and attention related; and considering the constraints (but ecological validity) of our 

paradigm and the variables we control for (e.g., movement speed, time, landmarks etc.) more 

precise memory-focused experiments could help reveal the functions of these high-frequency 

oscillations. 

 

4.4.4 Limitations and Future Directions 

We reported our findings in the context of relevant literature, and the current exploratory 

analysis is a follow-up from Chapter 3. The primary limitation is the use of a single recall trial. 

However, the design of the current study restricts direct comparison of findings between the 

two chapters. The analysis of the previous chapter differed greatly from the analysis approach 

of the current study. As we wanted to examine learning, we made use of the multiple trials 

carried out by participants, applying a Morlet wavelet analysis, and breaking down behaviour 

based on specific intra-trial events. Considering we are using the standard paradigm for the 

Morris water maze (Vorhees & Williams, 2006; Vorhees & Williams, 2014a) and the virtual 

water maze (Thornberry et al., 2021) we could only give participants a probe/recall trial once, 

as the goal location is removed. Since this is a novel environment again, giving any more trials 

would not actually examine memory. Furthermore, the nature of the VWM tasks means that 

memory-guided searching behaviour is elicited continuously. As a result, once a participant 

was engaged on their chosen path, there was no time window in between segments to serve as 

individual baselines to which the data could be normalized in the same way as in the previous 

chapter. As the data is continuously collected for the 60 second trial, statistical and oscillatory 

data only allowed for interpretations about the relative changes observed between the two 
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groups and behavioural conditions. The inclusion of individual baseline periods would have 

been required to compare effects within the spatial memory condition to the non-spatial 

memory condition individually, as opposed to each other. Future research should include a 

baseline data collection to facilitate changes from idle cognitive states to spatial memory 

“recall” states. We would recommend, and plan to implement a resting-state data collection for 

future chapters. 

It should be noted that there are other limitations present in the current chapter. The 

sample of participants is much less than the previous chapter. At the time, participants could 

not stay for longer than one hour in the lab due to COVID-19 restrictions in place at the time. 

This meant that some participants could not perform their recall trial after learning the task. 

Data collection stopped entirely from 2020 to 2021 and eased back with looser restrictions then 

through 2022 in which participants from the learning phase, could participate in an immediate 

recall phase also. Therefore, the sample is smaller, and predominantly female; we did not 

include gender here due to the fact it had no influence on behaviour, no influence on any EEG 

learning measure (see Chapter 3) and due to the small sample size. Future studies should try to 

balance for gender, as some literature has illustrated behavioural and electrophysiological sex 

differences during spatial tasks (Astur et al., 1998; Astur et al., 2004; Kober & Neuper, 2011) 

and specifically during a virtual water maze task (Buckley & Bast, 2018). Previously discussed 

limitations are applicable here, such as low electrode numbers (32-channel cap), such low 

resolution prevents source analysis as it can lead to severe localisation errors (Michel & Brunet, 

2019). Though more ecologically valid, our task does lack vestibular and sensorimotor 

feedback during the 2D navigation. 

Though the use of the average reference is generally considered acceptable for 

continuous data (Li et al., 2020), this method of re-referencing should still be interpreted with 

caution. We plan to include mastoid electrodes in future chapters and assess if there are any 
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differences between average re-referencing and re-referencing to the mastoids. Furthermore, 

the assessment of navigation behaviour changes could be more precise, though we are limited 

by our software. We manually watched recordings of participants and analysed the x-y co-

ordinates to assess the greatest angular shift visually and validated this across participants. We 

also considered the time-point based on the average latency in our learning group. However, 

though very much outside the scope of this thesis, machine learning algorithms or generalised 

mixed models could accurately extract significant angular shifts in traversed paths – which we 

have shown to be possible with NavWell (Commins et al., 2023; Palma et al., 2023). 

 

4.4.5 Conclusion 

The current exploratory study provides support for particular oscillatory dynamics involved in 

spatial memory retrieval and memory-informed navigation behaviour. We have shown that 

these can be explored and evaluated using a virtual water maze task with non-invasive 

electrophysiological recording. In line with previous research, frontal and central cortical 

activity at lower frequencies such as delta (2-4 Hz) and theta (5-7 Hz) was associated with 

spatial memory retrieval, but particularly memory-informed focused searching. Theta power 

seems to support initial retrieval, whilst focused searching incorporates lower frequency 

oscillations. The power in these oscillatory bands was greater in our learning group, than the 

non-learning group. Our results suggest that lower alpha (8-12 Hz) power facilitates memory-

guided attention, whereas greater power reflects a lack of focused attention. However, there are 

potential confounds of sensorimotor-related mu rhythms within this band. We suggest greater 

Beta (15-29 Hz) power at occipital sites may be involved in increased visual scanning during 

memory-guided searching or spatial memory maintenance during focused search behaviours. 

With a possible similar role for Gamma (30-40 Hz). Nevertheless, greater anterior low-
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frequency oscillations and suppressed posterior alpha oscillations are associated with 

successful spatial memory retrieval and memory-guided navigation behaviour. This 

exploratory work is an essential step towards understanding the role and function of oscillation 

patterns in active virtual navigation. 
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Chapter 5 

 

An investigation of oscillatory dynamics during recent and remote 

spatial memory 
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Abstract 

 

Brain oscillations are vital for several types of successful memory retrieval. Nevertheless, we 

typically allow a memory to consolidate prior to the need for recall. The dynamics of oscillatory 

activity in humans during successful spatial navigation following memory consolidation have 

not been addressed. Here, we recruited healthy young adults (n = 31). We recorded their 

electroencephalographic (EEG) activity during an immediate recall trial after they learned the 

location of a goal in a Virtual Water Maze task. Participants were then retested following a 

consolidation period of 24-hours or 1-month, producing either a recent (n = 16) or remote (n = 

14) spatial memory. We computed and compared normalised power in all bands Delta (2-4 Hz), 

Theta (5-7 Hz), Alpha (8-12 Hz), Beta (15-29 Hz) & Gamma (30-40 Hz) across the scalp. We 

focused statistical analysis on regions of interest from Chapter 4, the frontal, parietal, central 

and occipital midlines. No performance differences were found behaviourally between the 

recall of spatial memories encoded 24-hours ago versus 1-month ago. However, we reported 

increased power in lower frequency bands delta (2-4 Hz) and theta (5-7 Hz) over frontal 

regions, during the consolidated recall trial compared to immediate recall. Additionally, frontal 

gamma increases were unique to remote retrieval. Delta/theta-gamma activity mirrors previous 

intracranial findings and provides further evidence that high-frequency oscillations support 

retrieval of cortically integrated remote memories. Overall, our results likely reflect greater 

cognitive demand and the requirement of a more controlled retrieval processes for consolidated 

memories.   
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5.1 Introduction 

Spatial memory supports the encoding and retrieval of locations and objects in our 

environment, which are essential to understanding where we are and where we have been 

(Ekstrom et al., 2018). The memory for space is just one component of overall spatial cognition, 

which facilitates orientation, mental rotation, associative learning, path integration and 

cognitive mapping (see Chapter 1). Spatial memory, much like learning, is essential for 

navigating our environment, but also for adding context to our episodic memories (Ekstrom & 

Ranganath, 2018; Smith & Mizumori, 2006). The involvement of the medial temporal lobe, 

and in particular the hippocampus in spatial memories has been well supported (Maguire et al., 

2003; O'Keefe & Dostrovsky, 1971; O'Keefe & Nadel, 1978; Schapiro et al., 2019; Spiers & 

Maguire, 2008; Stachenfeld et al., 2017). As previously discussed, research with rodents using 

the Morris water maze revealed that lesions to the hippocampus impair recall during probe 

trials (Barkas et al., 2010; Broadbent et al., 2006; de Bruin et al., 1994; Farina & Commins, 

2016; Inostroza et al., 2011; Morris et al., 1982; O'Keefe, 1993). A single recall trial (see 

Chapter 2, section 2.2.1.2) is typically used as a measure of spatial memory; the platform is 

removed from the pool for the trial and the percentage of time spent searching in the correct 

quadrant of the environment where the goal once was is measured (Barnhart et al., 2015; Maei 

et al., 2009; Vorhees & Williams, 2006; Vorhees & Williams, 2014a).  

 Memories can have time-dependent differences in how they are retrieved. Recent 

spatial memories, formed within the last 24-hours for example, usually contain detailed and 

contextual episodic events – as they are thought to be dependent on the hippocampus (Ekstrom 

& Ranganath, 2018; Ekstrom et al., 2018; Nadel et al., 2000; Winocur et al., 2010). Remote 

spatial memories, formed longer ago can often be less detailed and more schematic in nature 

as they become hippocampus independent (Bolding & Rudy, 2006; Inostroza et al., 2011; 

Lifanov et al., 2021; Tse et al., 2007). However, human patients with hippocampal damage can 
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recall significant details about environments encoded remotely, such as the distance between 

landmarks (Daugherty & Raz, 2017; Luna & Martínez, 2015), but can struggle when locating 

a learned goal (Astur et al., 2002; Kim et al., 2013). Standard Consolidation Theory (Broadbent 

et al., 2006; Squire et al., 2015) suggests the hippocampus is responsible for the encoding and 

consolidation of memories. The memory trace is present in both the hippocampus and the 

cortex, with the cortex trained to hold all details of the memory following replay (Frankland & 

Bontempi, 2005; Marr et al., 1991). The theory predicts that the hippocampus is not required 

for the retrieval of remote memories, only recent ones that have not yet been fully consolidated 

(Squire et al., 2015). However, Multiple Trace Theory suggests that the hippocampus plays a 

role in episodic memory retrieval regardless of being recent or remote (Moscovitch et al., 2006; 

Nadel et al., 2000). Traces of the memory in the hippocampus are contextual and detailed in 

spatial information, whilst those traces in the cortex are mainly sematic (Moscovitch et al., 

2006; Sutherland et al., 2020). The debate has multiple conflicting findings, and recently it is 

thought that cortical oscillations may instead reveal greater information about how spatial 

memories are stored and retrieved. 

However, it is evident in humans that there exists a temporal gradient for spatial 

memory. Retrieval of spatial memory in a virtual navigation task is better for locations learned 

recently, as opposed to locations learned further in the past (Ekstrom & Bookheimer, 2007; 

Hirshhorn et al., 2012). Increased low-frequency power (1-8 Hz) during retrieval, has been 

demonstrated during episodic retrieval of remote memories (Nicolás et al., 2021). During 

spatial retrieval, numerous studies have reported increases in frontal midline delta and theta 

power (1-8 Hz). For example, Liu et al. (2022) reported increased frontal midline delta and 

theta (< 8 Hz) during a difficult variation of a wayfinding task compared to an assisted version. 

These increases may relate to increased memory load (Jensen & Tesche, 2002; Li et al., 2021), 

as alpha (8-12 Hz) suppression was greater during this phase at the parietal midline, possibly 
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related to heightened information processing or attentional demand (Benedek et al., 2014; 

Fodor et al., 2020; Foxe & Snyder, 2011; Li et al., 2021; Mitchell et al., 2008). However, most 

studies have linked increased delta and theta to decision-making points during navigation 

(Chrastil et al., 2022; Du et al., 2023; Lin et al., 2022). Frontal theta has been shown to be 

linked to hippocampal activation during spatial memory tasks (Epstein, 2008; Herweg, Sharan, 

et al., 2020; Herweg, Solomon, et al., 2020). Successful memory retrieval has also shown the 

involvement of beta and gamma oscillations, particularly at posterior parts of the scalp 

(Lundqvist et al., 2016).  

Gamma oscillations (>30 Hz) have also shown increases during cued spatial retrieval 

tasks at the medial parietal cortex (Kaplan et al., 2014; Kaplan et al., 2012). The coupling 

between low-frequency theta and high-frequency gamma oscillations has been shown to be 

related to performance on a spatial delayed match-to-sample task (Park et al., 2011) and 

pictorial recognition task (Köster et al., 2014; Vivekananda et al., 2021). However, alpha (8-12 

Hz) activity has previously been shown to decrease with the retrieval of spatial locations from 

working memory (Sutterer et al., 2019; Wolff et al., 2017). Hanslmayr et al. (2012) also claims 

that alpha (8-12 Hz) decreases were associated with retrieval of spatial locations from long-

term memory, and accurately reflects the same patterns of activation seen during encoding 

(Griffiths et al., 2021). 

However, in humans most work currently focuses on retrieval success and failure 

(Greenberg et al., 2015; Guderian et al., 2009; Herweg, Solomon, et al., 2020; Kota et al., 2020; 

Miyakoshi et al., 2021). There appears to be a gap in the EEG literature on spatial memory and 

oscillatory differences between recent and remote recall. Therefore, it is still an open question 

whether delta, theta, alpha, beta or gamma oscillations differ across consolidation time for 

spatial memories. Neural oscillations may hold the key to understanding and developing 

consolidation theories, and in particular, their relationship with the cognitive mapping theory. 
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Therefore, we have examined differences in oscillatory activity underlying recent (24 hours) 

and remote (1-month) spatial memory during a recall probe trial in a virtual water maze task. 

We will examine activity in delta, theta, alpha, beta & gamma in participants who have 

successfully learned the task and are recalling the location of a goal in the environment 

following their assigned interval. We compared activity in these frequency bands to each 

groups immediate probe trial, performed after their learning phase (e.g., Chapter 4) and then 

compared the differences between groups during their recent and remote probe trials. We 

compared this across four regions that were used in previous chapters: the frontal midline (F3, 

Fz, F4), parietal midline (P3, Pz, P4), central midline (C3, Cz, C4) and occipital midline (O1, 

Oz, O2).  

We would hypothesise greater delta-theta activity in our remote group, possibly related 

to the retrieval of older, more semanticised spatial memories from the cortex (Frankland & 

Bontempi, 2005) which may require greater neural resources (Jaiswal et al., 2010). We also 

predict reduced alpha activity in our remote group compared to our recent group, as detailed 

spatial representations become more schema-like over time they may rely more on attention to 

the environment (Engel & Fries, 2010; Lundqvist et al., 2016; Robin & Moscovitch, 2017). 

Finally, we expect to see greater high frequency power in beta and gamma power at posterior 

sites in our remote group, related to the more effortful retrieval of complex visual and spatial 

information from long-term memory storage, as suggested by Crespo-Garcia et al. (2012) and 

Stutterer et al. (2019). 
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5.2 Methods 

5.2.1 Participants 

Thirty-one new young adults (21 females, 10 males) aged between 18 and 40 (M = 21.7, SEM 

+/- 0.708) were recruited for this chapter. All participants were right-handed. All participants 

were recruited via Maynooth University Department of Psychology and externally using 

personal connections, flyers, and social media (see Chapter 2 for more details). This project 

and the use of human subjects with EEG was approved by the Maynooth University ethics 

committee (BSRESC-2021-2453422 & SRESC-2021-2453422).  

 

5.2.2 Resting State Task 

Considering the lack of a standardised, non-task related baseline, we decided to implement the 

recording of resting state activity before running the spatial navigation task. The task was 

constructed using E-Prime Psychology Software Tools, version 3.0 (2022). The task was 

presented to participants seated 50 cm from a 15-inch standard 4:3 ratio computer screen, on 

their own in a darkened, electrically shielded and sound-attenuated testing cubicle (150 cm × 

180 cm). The trial began with a fixation cross presented in the centre of the screen for the 

duration of three minutes (see Figure 5.1). The fixation-cross was displayed in black Courier 

New size 32 font on a silver background. Participants were asked to focus on the fixation cross 

with their eyes-open for the entire three minutes, which has been shown to be a useful 

timeframe acting well as a baseline for task-related activity (Chen et al., 2008; Chen et al., 

2013; Huang, 2019). When the pre-test screen disappeared, and the fixation cross appeared on 

the screen (see Figure 5.1) an event trace, i.e., trigger, was automatically sent to the BioSemi 

system event (with < 10ms resolution). The eyes-open resting state lasted three minutes and 

participants were offered a rest period before they began the spatial navigation task. 
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Figure 5.1: Example of resting state data collection trial. Participants were presented with the 

text “Your task is about to begin…” as they were seated in the experimental cubicle and 

electrodes were adjusted. The door was then closed and subsequently participants were asked 

if they were comfortable and ready to begin. Upon confirmation, the experimenter would start 

the task. A fixation cross would appear on the screen for 180 seconds. The screen would turn 

dark and display no text when the resting state trial was over. 

 

 

5.2.3 Spatial Navigation Task 

After the electrophysiological preparation (see Chapter 2 for details), collection of resting state 

data and the completion of the learning phase (similar to that reported in Chapter 3), 

participants were seated as described previously with access to a joystick for navigating. The 

spatial navigation task used was NavWell (see Commins et al. (2020) for details). The same 

virtual maze setup used in the previous chapter was employed (see Chapter 2 for more details). 

A square goal was placed in the middle of the northeast quadrant and was 15% of the total 
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arena size and consisted of a bright blue square that only became visible when the participant 

crossed it. Once the learning phase was completed, all participants took a 10–15-minute break. 

During the break, participants completed a small battery of cognitive tasks as outlined in 

Chapter 2. Following this, participants were given a single 60-second recall trial, in which they 

were required to re-locate the target. However, for this trial, the target was removed from its 

location in the NE quadrant. All participants started from the same novel south-west (SW) 

location. Participants were then randomly allocated to either a recent condition (n = 16, 11 

females) or remote condition (n = 15, 11 females). Following the immediate recall trial, 

participants in the recent condition were asked to come back 24-hours later, to perform another 

recall/probe trial as described above. Alternatively, those allocated to the remote group were 

asked to return in 1-month, to also perform another recall/probe trial. 

 

5.2.4 EEG Recording 

EEG data was acquired using a BioSemi ActiveTwo system (BioSemi B.V., Amsterdam, 

Netherlands) providing 32 Ag/AgCl electrodes positioned according to the 10/20 system that 

was used during the learning phase (see section 3.2.3 “EEG Recording” or Chapter 2). 

Participants did not remove any equipment during the rest period. Electrode impedance was 

checked and adjusted to be below < 20Ω before recording began again. Analogue event signals 

were sent only once when participants began a trial recall. All participant trial times were 60 

seconds in length. The recording system was stored in the same room, participants were seated, 

and data were recorded continuously. A PC running the ActiView software (version 7.05) was 

positioned in the room adjacent to the experimental cubicle, for constant monitoring of the 

EEG recording. Participants were asked to relax and move as little as possible. Six external 

electrodes (EXG1 – EXG6) were positioned on the face and under the ear. They were checked 
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and readjusted if necessary. Raw EEG data were again sampled at 1024Hz but down-sampled 

offline to 512 Hz (see Chapter 2 & 3 for details). 

 

5.2.5 EEG Preprocessing 

Continuously recorded EEG data were analysed offline in MATLAB R2021B using scripts in 

combination with the Brainstorm package (Tadel et al., 2011). All previously used 

preprocessing steps remain the same as Chapter 4 (band-pass, ICA etc.). For the analysis of 

both recall trials, the entire continuous recording was then epoched into 2-second epochs, 

producing 30 epochs per participant for each probe trial, and 90 trials per participant for resting 

state. All of these data were visually inspected for bad segments and bad electrodes, which 

were then removed. Bad electrodes that originated from pre-defined regions of interest were 

interpolated (n = 1), if possible, using Brainstorm after ICA. Epochs with voltage steps above 

100 µV or peak-to-peak signal deflections exceeding 200 µV within 2-s intervals were 

automatically rejected. We had a very low rejection rate of approximately 3% of the total 

epochs produced. EEG data were then re-referenced to two mastoid electrodes (EXG5 & 

EXG6) positioned behind the ears of the participant. For further information on EEG pre-

processing see Chapter 2. 

 

5.2.6 EEG Spectral Analysis 

Based on the protocol and our proposed research question, we investigated five frequency 

bands: delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz) & gamma (30-40 Hz). 

The bands were defined using the default Brainstorm settings for the band for this chapter. 

Power spectra were computed on artefact-free epochs for each participant on both recall trials 

and resting state data. We used Hanning windows of 2-s with a 50% overlap using Welch’s 
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method for all electrodes. This resulted in an averaged PSD spectrum with frequency resolution 

of 0.5 Hz, and the power was computed using the underlying short Fast Fourier Transform 

(sFFT) with a linear frequency distribution of 1:1:40. This was then grouped into the previously 

defined bands using the Frequency > Group in time or frequency bands process. 

 We then normalised the task-related PSD using a baseline correction method. Taking 

the non-task related resting state PSD, we baseline corrected each individual participants task-

related data (i.e., immediate recall and recent/remote recall) using a decibel (dB) conversion: 

 

ⅆ𝐵𝑓 = 10 × log10 ( 
 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟𝑓

 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟𝑓
) 

 

When we refer to relative power in this chapter, it is related to power (dB) with respect to the 

baseline. We did this by using the process: Standardize > Baseline normalization (A=Baseline) 

> Scale with the mean (dB). We again focused our analysis on our pre-defined regions of 

interest, extracting these data for each individual participant. We examined the power relative 

to baseline at the frontal midline (Fz, F3, F4) and the parietal midline (Pz, P3, P4) once again 

capturing activity from both the anterior and posterior parts of the scalp. As this analysis was 

exploratory, we investigated more regions that may be of interest, including the central midline 

(C3, Cz, C4) and the occipital midline (O1, Oz, O2). All epochs in each group and phase, were 

averaged together following computations. 

 

5.2.7 Statistical Analysis 

Statistical analyses & visualisation of the behavioural and EEG data were performed using a 

combination of JASP (version 0.15), MATLAB and R software version 4.0.2 with the tidyverse 

and ggplot2 package. First, statistics were performed using extracted values from the power 
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spectra via the extract > values process in Brainstorm. We then extracted mean power relative 

to baseline data from our ROIs. Statistical exploration of the EEG data across the scalp was 

performed using Brainstorm in MATLAB 2021b, comprising of two-tailed non-parametric 

independent or paired t-tests with 5000 permutations and a p-threshold of 0.05. We corrected 

for multiple comparisons in EEG data using an FDR (False Discovery Rate) correction. All 

data were combined for EEG analysis, but gender was included as a factor in the overall 

behavioural analysis (based on its inclusion in Chapter 3 and Thornberry et al. (2023)). Mixed-

factorial ANOVAs were computed on the behavioural data comparing the two groups on time 

spent in each quadrant of the arena. Further mixed factorials were done for each frequency 

band, comparing the groups across the various ROIs. Bonferroni corrected t-tests were used to 

follow up within analysis, and independent sample t-tests were used to follow up any group 

differences. 
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5.3 Results 

5.3.1 Behavioural Results 

Initially, we compared scores from both conditions on a variety of cognitive tests to ensure that 

both groups were generally cognitively matched. There were no significant differences 

between the two conditions on the number of NART errors (t(29) = 1.214, p = 0.234), total 

time to complete the TMTB - time to complete TMTA (t(29) = 1.617, p = 0.117) and scores on 

the MOCA (t(29) = -0.182, p = 0.857). In addition, both conditions were well matched for 

mean age (t(29) = 1.086, p = 0.287). 

 

5.3.1.1 Learning Phase 

We first analysed the learning performance of participants in both conditions a priori: recent 

(24-hours, n=16, 11 female) or remote (1-month, n=15, 10 female) to check that both groups 

had learned the task equally. One participant from the recent memory group had data 

synchronisation issues due to the network connection during the learning phase. However, their 

retention data synchronised successfully, so they were included in all analyses for which they 

had data. In order to remain consistent with Chapter 3, we ran a 2 (condition) X 2 (gender) X 

12 (trial) repeated measures mixed factorial ANOVA to examine latency and path length across 

the trials.  

For latency, we reported a main effect of trial (F(4, 103.3) = 27.323, p < 0.001, ƞ2 = 0.430). 

But we reported no significant difference between the conditions (F(1, 26) = 0.023, p = 0.881) 

nor gender (F(1, 26) = 0.012, p = 0.913). We reported no significant interaction effect between 

trial X condition (F(4, 103.3) = 1.822, p = 0.131) nor for trial X gender (F(4, 103.3) = 1.820, p = 

0.131) with no significant three-way interaction effect reported (F(4, 103.3) = 0.655, p = 0.623). 

Using Bonferroni corrected t-tests we demonstrated that latency during Trial 12 was 
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significantly shorter than Trial 1 (MD = 34.79s, SEM +/- 2.47, p < 0.001, Cohen’s d = 3.758) 

& Trial 2 (MD = 11.55s, SEM +/- 2.47, p < 0.001, Cohen’s d = 1.248).  

For path length, we reported a main effect of trial (F(2.5, 65.9) = 36.424, p < 0.001, ƞ2 = 

0.504). But we reported no significant difference between the conditions (F(1, 26) = 0.336, p = 

0.567) or genders (F(1, 26) = 0.211, p = 0.649). We reported no significant interaction effect 

between trial X condition (F(2.5, 65.9) = 2.234, p = 0.102) nor for trial X gender (F(2.5, 65.9) = 1.735, 

p = 0.176) with no significant three-way interaction effect reported (F(2.5, 65.9) = 0.376, p = 

0.737). Using Bonferroni corrected t-tests we demonstrated that participants’ path lengths 

during Trial 12 were significantly shorter than Trial 1 (MD = 149.98 Vm, SEM +/- 9.57 Vm, 

p < 0.001, Cohen’s d = 4.213) & Trial 2 (MD = 70.28 Vm, SEM +/- 9.57, p < 0.001, Cohen’s 

d = 1.974). All participants clearly successfully learned the task, reducing times and path 

lengths across trials (see Figure 5.2). 
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Figure 5.2: Line charts displaying individual data points and mean latency (top) and path length 

(bottom) across all participants and divided by condition (1M: remote and 24H: recent). Heatmaps of a 

sample participants path and search behaviour are displayed for trial 1 and trial 12. 

Trial 12 

Trial 1 



171 

 

5.3.1.2 Recall 

Following the learning phase, all participants were given a probe trial (the target was removed 

from the arena) after a ten-minute interval. We termed this “immediate recall” as there is no 

real consolidation time, and it replicated the recall phase examined in Chapter 4. Since the 

probe trial for both groups are equivalent in length (60 seconds; see General Methods) we 

examined percentage time spent searching in the goal quadrant (Northeast), a typical measure 

in the animal and human versions of the water maze task (Vorhees & Williams, 2014; 

Thornberry et al., 2021). We again examined the two groups a priori on this trial as a check to 

make sure that the two groups could recall the location equally – and that any difference 

between the groups was due to the consolidation period rather than poor recall. For this we ran 

a 2 (condition) X 2 (gender) X 4 (quadrant) mixed factorial ANOVA.  

 For the immediate recall trial, we reported a main effect of quadrant (F(1.5, 39.8) = 

231.250, p < 0.001, ƞ2 = 0.882). We did not report any differences between the conditions (F(1, 

27) = 0.503, p = 0.484) nor genders (F(1, 27) = 0.484, p = 0.493). Additionally, we reported no 

significant interaction effect for condition X quadrant (F(1.5, 39.8) = 3.436, p = 0.055), nor for 

gender X quadrant (F(1.5, 39.8) = 0.432, p = 0.592) nor a three-way interaction effect (F(1.5, 39.8) = 

0.146, p = 0.799). Bonferroni-corrected t-tests revealed that (averaged over the levels of 

condition and gender), the percentage time spent searching in the NE (Goal) quadrant was 

significantly greater than all other quadrants, the NW (t = 20.257, p < 0.001, MD = 57.61% +/- 

2.84%, Cohen’s d = 6.356), SW (t = 19.519, p < 0.001, MD = 55.51% +/- 2.84%, Cohen’s d = 

6.125) and the SE (t = 23.773, p < 0.001, MD = 67.61 % +/- 2.84%, Cohen’s d = 7.460). 

Therefore, all participants recalled the goal location, spending significantly more time in the 

NE quadrant than any other regardless of their assigned condition. All other quadrant searching 

percentages are below chance levels (see Figure 5.3).  
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Figure 5.3: Boxplots with jittered individual datapoints showing the percentage time spent 

searching in each quadrant during the immediate probe trial, which was given approximately 

10 minutes following learning. The group condition is displayed to demonstrate similarities 

between the two groups during immediate recall. The dotted line at 25% represents chance 

levels. 

  

Recent Remote 
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5.3.1.3 Recent vs Remote Memory 

For the recent and remote conditions, we examined the corresponding follow-up probe trial for 

each group, given either 24-hours later or 1 month later. We ran the same 2 (condition) X 2 

(gender) X 4 (quadrant) repeated-measures ANOVA on these data also. We reported a 

significant main effect of quadrant (F(1.3, 34.9) = 603.882, p < 0.001, ƞ2 = 0.954). However, we 

reported no significant differences between the conditions (F(1, 27) = 0.175, p = 0.679) or 

genders (F(1, 27) = 0.0003, p = 0.986). Interestingly, we reported no significant interaction effects 

for condition X quadrant (F(1.3, 34.9) = 0.787, p = 0.412), gender X quadrant (F(1.3, 34.9) = 0.071, 

p = 0.852) nor a three-way interaction effect (F(1.3, 34.9) = 1.129, p = 0.312). Once again, 

Bonferroni corrected t-tests revealed that the percentage time spent in the NE was significantly 

greater than time spent in the NW (t = 34.691, p < 0.001, MD = 70.2% +/- 2.02%, Cohen’s d 

= 10.887), SW (t = 31.950, p < 0.001, MD = 64.65% +/- 2.02%, Cohen’s d = 10.027) and SE 

(t = 36.906, p < 0.001, MD = 74.68% +/- 2.02%, Cohen’s d = 11.582). Therefore, there was no 

difference between the conditions on recall ability. This suggests that even after a month, 

participants could recall the goal’s location. No differentiation in memory was noted (Figure 

5.4). Finally, to examine any changes between the immediate recall phase and participants’ 

recall at a subsequent phase (either 24 hours or 1 month later) a 2 (phase) X 2 (group) mixed 

factorial ANOVA was conducted using the percentage time spent searching in the goal 

quadrant. We reported a significant main effect of phase (F(1, 29) = 11.450, p = 0.002, ƞ2 = 

0.075) but reported no significant difference between conditions (F(1, 29) = 3.111, p = 0.088). 

But we reported a significant interaction effect between phase X condition (F(1, 29) = 4.315, p = 

0.047, ƞ2 = 0.028). Tukey-corrected t-tests revealed that the 1-month group seemed to improve 

their searching accuracy after 1-month (t = 3.801, p = 0.004, Cohen’s d = 0.940, MD = 10.76% 

+/- 2.83%), whereas the 24-hour group did not (t = 0.939, p = 0.784, Cohen’s d = 0.225, MD 

= 2.57% +/- 2.74%) improve on their immediate performance.  
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Figure 5.4: Boxplots with jittered individual datapoints showing the percentage time spent 

searching in each quadrant during the delayed probe trial, which was given either 24-hours (for 

the recent group) or 1 month (for the remote group) later. The dotted line at 25% represents 

chance levels. 

  

Recent Remote 
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5.3.2 EEG Results 

5.3.2.1 Replication of immediate recall findings 

Initially, we thought it would be valuable to investigate whether our previous exploratory 

findings on immediate recall from Chapter 4 (n = 15, 10 female) would replicate to a larger 

sample size used in the current chapter (n = 31, 21 female). A total of n = 3 had incomplete 

immediate recall data and were excluded from the EEG analysis. However, to avoid mass 

univariate testing and comparison of results under two different recording and preprocessing 

conditions, we compared the two experimental groups on mean relative power (uncorrected) 

at our four ROIs using standard independent t-tests. Additionally, we compared the 

topographical power distribution visually to investigate if we would see similar spatial patterns 

during immediate spatial memory recall. Here, we ran a 4 (ROI) X 2 (Group, i.e., Chapter 4 or 

Chapter 5) for each frequency band separately, to report differences between groups or 

between the groups at certain ROIs (i.e., interaction effects). Should our exploratory findings 

from Chapter 4 replicate, we expected to report no differences between either of the groups at 

any ROI, as both experimental conditions involved the same immediate recall of a goal 

location. 

 First, to ensure that our groups were well-matched for age and cognitive ability we ran 

independent t-tests. We reported that there were no significant differences between the group 

from this chapter nor the Chapter 4 group on age (t(44) = -1.214, p = 0.231, Cohen’s d = -0.382, 

M=21.7, SEM +/- 0.708 and M = 23.6, SEM +/- 1.656 respectively). We also reported no 

significant difference between groups for NART errors (t(36) = 0.561, p = 0.578, Cohen’s d = 

0.235), TMT B-A times (t(36) = 0.469, p = 0.642, Cohen’s d = 0.196) and scores on the MOCA 

(t(36) = 0.266, p = 0.792, Cohen’s d = 0.111). Therefore, both groups were well matched for 
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age and cognitive abilities. Furthermore, the gender distribution remained the same, with a 

double in the number of both males and females in the current chapters dataset. 

 For Delta, we reported a significant main effect of region (F(3, 123) = 3.223, p = 0.025, 

η² = 0.037). Importantly, we reported no significant between-subjects effects for group (F(1, 41) 

= 0.590, p = 0.447, MD = -0.019, Cohen’s d = -0.176) and no significant interaction effect for 

Region X Group (F(3, 123) = 0.008, p = 0.999). For Theta, we reported a main effect of region 

(F(3, 123) = 6.075, p < 0.001, η² = 0.065). But again, we reported no significant between-subjects 

effects for group (F(1, 41) = 0.0003, p = 0.995, MD = 0.0001, Cohen’s d = 0.001) and no 

significant interaction effect for Region X Group (F(3, 123) = 0.067, p = 0.997). For Alpha, we 

reported a main effect of region (F(3, 123) = 3.801, p = 0.012, η² = 0.035). No significant between-

subjects effects for group (F(1, 41) = 0.256, p = 0.616, MD = 0.01, Cohen’s d = 0.126) and no 

significant interaction effect for Region X Group (F(3, 123) = 0.770, p = 0.513) was found. For 

Beta, we reported a main effect of region (F(3, 123) = 11.189, p < 0.001, η² = 0.095). However, 

we reported no significant between-subjects effects for group (F(1, 41) = 0.904, p = 0.347, MD 

= 0.01, Cohen’s d = 0.237) and no significant interaction effect for Region X Group (F(3, 123) = 

0.658, p = 0.579). Finally, for Gamma, we reported a main effect of region (F(3, 123) = 14.208, 

p < 0.001, η² = 0.129). Again, we reported no significant between-subjects effects for group 

(F(1, 41) = 0.185, p = 0.669, MD = 0.005, Cohen’s d = 0.104) and no significant interaction effect 

for Region X Group (F(3, 123) = 0.103, p = 0.958). Considering the small mean differences (MD) 

between the groups (especially Theta) and the small effect sizes (Cohen’s d < 0.24), we can 

further suggest that the EEG dynamics during immediate recall for the groups from Chapter 5 

and Chapter 4 were similar. Visualisation of frequency band dynamics via topographies (Figure 

5.5) helped to support these results. 
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Figure 5.5: Topographical distribution of relative power (%) in each dataset group during 

immediate recall trial. Datasets are scaled to each other for meaningful visual comparison. 

Chapter 4 Dataset (n=15)  Chapter 5 Dataset (n=31) 
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From a visual inspection of the topographical distribution of relative power, it is clear that the 

two groups are very similar. Much of the delta and theta activity is focused on the anterior part 

of the scalp with some activity in the central and parietal regions, whilst there is a right-

lateralised focus, particularly around electrode C4 in the alpha rhythm. Higher frequency bands 

also seem to demonstrate similarities in the distribution of relative power, though these can be 

harder to compare visually.  

 

5.3.2.2 Task-related differences in recent and remote recall 

We calculated Power Spectral Density (PSD) using a Welch window (medium window length 

of 2s with an overlap ratio of 50%) to compute the power spectra (µV2/Hz) based on a typical 

Fast-Fourier Transform (FFT) default frequency definition. Power spectra were computed for 

five bands: Delta (2-4 Hz), Theta (5-7 Hz), Alpha (8-12 Hz), Beta (15-29 Hz) & Gamma (30-

40 Hz). The bands were defined as such for the same reasons outlined in Chapter 4. However, 

to examine task-related changes we utilised each participants resting state recording. We used 

the same PSD method on the epoched resting state data to produce a baseline spectrum for each 

participant. We then performed a baseline normalisation to calculate changes from baseline 

power (in decibels, dB). Each individual’s immediate and recent or remote trials were then 

normalised to their own resting state. We then calculated a group average for visualisation 

purposes, though statistical tests were run using individual data. Similar to Chapter 4, we then 

isolated and extracted the mean power relative to baseline (dB) from each of our four ROIs, 

the frontal (F3, Fz, F4), central (C3, Cz, C4), parietal (P3, Pz, P4) and occipital (O1, Oz, O2) 

midlines. We then ran mixed-factorial repeated measures ANOVAs to assess differences 

between conditions and groups at ROIs that may not be captured by our cross-scalp analysis 

due to the FDR-correction for multiple signals and frequency bands. 

 



179 

 

5.3.2.2.1 Immediate vs Recent Recall (24-Hour Group) 

We first incorporated the described epoch rejection criteria and visual inspection of participant 

data. Some participants did not have an immediate recall due to errors during the data collection 

phase (n = 1). For the recent recall group (24-hours) we compared two conditions, Immediate 

Recall (n = 15) and Recent Recall (n = 15) – a within-group comparison. These continuous 

recordings were then epoched and ran through our rejection criteria and visual inspection. This 

resulted in a total of approx. 1% of epochs being rejected. This left a total of 450 epochs in our 

immediate recall condition and 480 in our Recent Recall. Below, we compare the groups 

immediate and recent recall for each frequency band of interest. We first ran a 2 (Condition) X 

4 (ROI) repeated-measures ANOVA to examine if there were any ROI-focused difference 

between the conditions on task-related changes in power.  

For Delta, we reported no significant main effect of region (F(2.1, 59.5) = 0.979, p = 

0.384). We reported no significant effects for recall phase (F(1, 29) = 0.018, p = 0.447) and no 

significant interaction effect for Region X Recall phase (F(2.1, 59.5) = 0.071, p = 0.935). For 

Theta, we also reported no significant main effect of region (F(2.2, 64.8) = 0.996, p = 0.382). We 

reported no significant effects for recall phase (F(1, 29) = 0.064, p = 0.801) and no significant 

interaction effect for Region X Recall phase (F(2.2, 64.8) = 0.286, p = 0.776). However, for Alpha, 

we reported a significant main effect of region (F(2.4, 69.4) = 5.123, p = 0.005, η² = 0.038). We 

reported no significant effects for recall phase (F(1, 29) = 0.133, p = 0.718) and no significant 

interaction effect for Region X Recall phase (F(2.4, 69.4) = 0.056, p = 0.966). Post-hoc corrected 

t-tests revealed that alpha power at the frontal midline was significantly greater than the central 

(t = 2.683, p = 0.035, Cohen’s d = 0.372) and parietal midlines (t = 3.066, p = 0.017, Cohen’s 

d = 0.425, but not the occipital midline (t = 0.242, p = 1, Cohen’s d = 0.034). Occipital alpha 

power was also shown to be greater than parietal alpha power (t = 2.824, p = 0.035, Cohen’s d 
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= 0.391). Nevertheless, this is regardless of recall phase, and we expect the differences may 

not be reflected in the entire midline.  

For Beta, we again reported a significant main effect of region (F(3, 87) = 2.774, p = 

0.046, η² = 0.030). However, we then reported no significant differences between recall phase 

(F(1, 29) = 0.451, p = 0.507) and no significant interaction effect for Region X Recall phase (F(3, 

87) = 1.393, p = 0.250). Using post-hoc corrected t-tests to investigate our main effect we find 

no significant differences between any region of interest (all p > 0.13). Finally, for Gamma, 

we reported another significant main effect of region (F(3, 87) = 3.555, p = 0.018, η² = 0.039). 

But then reported no significant effects for recall phase (F(1, 29) = 0.510, p = 0.481) and no 

significant interaction effect for Region X Recall phase (F(3, 87) = 1.387, p = 0.252). Post-hoc 

corrected t-tests revealed that gamma power at the central midline was significantly less than 

the gamma power at the parietal (t = -2.856, p = 0.032, Cohen’s d = -0.486) and occipital (t = 

-2.645, p = 0.49, Cohen’s d = -0.450). Again, this is averaged over both levels of recall phase 

but still reveals interesting dynamics.  

As we expected that some changes between the recall phases are not focused on our 

predefined regions, we next reported the scalp topography task-related relative power 

compared to baseline (Resting State: n = 16, in decibels: dB) for each condition in isolation. 

We then demonstrate the condition differences (Recent – immediate recall), presenting them as 

t-values. To compare the within-group differences we ran a within-groups non-parametric 

paired permutation t-test with 5000 permutations. We then corrected for multiple comparisons 

using FDR-correction (see Chapter 3 and Thornberry et al., 2023). Any electrode site that 

reached significance at an alpha level of 0.05, was marked by a yellow star. Figure 5.6 below 

demonstrates the topographical distribution of task-related dB changes relative to baseline 

(rest) for each frequency band of interest. 
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 Interestingly, power was generally greater (particularly gamma) during task 

performance compared to rest across bands (apart from alpha) and condition. However, we 

report no significant changes in any frequency band apart from Alpha (8-12 Hz). This showed 

significant increases at electrodes F3 and FC2. Furthermore, we can see from visual inspection 

that power increased across most bands following 24 hours and whatever pattern was observed 

during immediate recall, was slightly enhanced later. However, Beta (15-29 Hz) demonstrated 

a centralised decrease in power, but a right parietal-focused increase in power. Otherwise, there 

were very little changes across frequency dynamics from immediate to recent recall as might 

be expected. The greater alpha power at the frontal midline ROI (see above) compared to the 

central and parietal midlines, is well captured in Figure 5.6.  
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Figure 5.6: Topographical distribution of power during immediate and recent recall phases within the 

24-hours group. Power in each frequency band is displayed as power relative to baseline (in decibels: 

dB, all positive). Both conditions are displayed on the same scale. Differences are displayed in t-values 

within their own local scale. Significant electrode sites (p < 0.05) are marked with a yellow star.  
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5.3.2.2.2 Immediate vs Remote Recall (1-Month Group) 

Similar to the above group, we incorporated our described epoch rejection criteria and visual 

inspection of participant data. Participants were excluded due to incomplete recording data (n 

= 1) and insufficient event triggers (n = 2). For the remote recall group (1-month) we had two 

conditions, Immediate Recall (n = 13) and 1-Month Recall (n = 13). These continuous 

recordings were epoched and ran through our rejection criteria and further visual inspection. 

This resulted in a total of approx. 1.4% of epochs being rejected. This left a total of 389 epochs 

in our immediate recall condition and 390 in our 1-Month recall. Below, we compare the groups 

immediate and remote recall for each frequency band of interest. We first ran a 2 (Condition) 

X 4 (ROI) repeated-measures ANOVA to examine if there were any ROI-focused differences 

between the conditions on task-related changes in power. 

Focusing on Delta, we reported no significant main effect of region (F(3, 75) = 0.929, p 

= 0.431). Additionally, we reported no significant effects for recall phase (F(1, 25) = 0.705, p = 

0.409) and no significant interaction effect for Region X Recall phase (F(3, 75) = 0.333, p = 

0.801). For Theta, we reported a significant main effect of region (F(3, 75) = 2.986, p = 0.036, 

ƞ2 = 0.048). We reported no significant effects for recall phase (F(1, 25) = 0.0005, p = 0.982) as 

well as no significant interaction effect between Region X Recall phase (F(3, 75) = 1.004, p = 

0.396). However, we reported no significant differences between any region of interest using 

our post-hoc corrected t-tests (all p > 0.08). Interestingly, within the Alpha band, we reported 

a significant main effect of region (F(2.2, 52.9) = 5.627, p = 0.005, η² = 0.066). We reported no 

significant effects for recall phase (F(1, 25) = 0.133, p = 0.718) and no significant interaction 

effect for Region X Recall phase (F(2.2, 52.9) = 0.587, p = 0.569). Post-hoc corrected t-tests 

revealed that alpha power at the occipital midline was significantly greater than the parietal 

and central midlines (t = 2.587, p = 0.001, Cohen’s d = 0.693 and t = 2947, p = 0.026, Cohen’s 

d = 0.520 respectively) but not the frontal midline (t = 1.988, p = 0.302, Cohen’s d = 0.351). 
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Nevertheless, examining the descriptives, we see the largest difference in mean relative power 

is at the frontal midline (MD = 1.272 dB, +/- 1.44 dB). Considering we find no interaction 

effect here; we expect that the frontal differences are not contained entirely within the frontal 

midline. 

For Beta, we again reported a significant main effect of region (F(3, 75) = 9.249, p < 

0.001, η² = 0.121). However, we reported no significant effects for recall phase (F(1, 25) = 0.544, 

p = 0.468) and no significant interaction effect for Region X Recall phase (F(3, 75) = 0.100, p = 

0.960). Using post-hoc corrected t-tests to investigate our main effect we reported that power 

relative to baseline at the occipital midline was significantly greater than all other regions of 

interest (all p < 0.001): frontal (t = 3.991, Cohen’s d = 0.771), parietal (t = 4.264, Cohen’s d = 

0.823) and central (t = 4.570, Cohen’s d = 0.882). Though this is averaged across the recall 

phases, examining descriptives reveals that frontal beta power shows the largest increase from 

immediate to remote recall phases (MD = 0.833 dB, SEM = 0.914 dB). Finally, for Gamma, 

we reported another significant main effect of region (F(3, 75) = 11.306, p < 0.001, η² = 0.129). 

But then reported no significant effects for recall phase (F(1, 25) = 0.164, p = 0.689) and no 

significant interaction effect for Region X Recall phase (F(3, 75) = 0.367, p = 0.777). Post-hoc 

corrected t-tests revealed that gamma power at the occipital midline was significantly greater 

than the gamma power at the parietal (t = 4.885, p < 0.001, Cohen’s d = 0.885) and central (t = 

5.076, p < 0.001, Cohen’s d = 0.920) but not at the frontal midline (t = 2.586, Cohen’s d = 

0.468, p = 0.07).  

Following our ROI analysis, we (as above) also reported the scalp topography task-

related relative power compared to baseline (Resting State: n = 15, in decibels: dB) for each 

condition in isolation. We then demonstrate the condition differences, presenting them as t-

values. To compare the within-group differences we ran a within-groups non-parametric paired 

permutation t-test with 5000 permutations. We then corrected for multiple comparisons using 
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FDR-correction (see Chapter 3 and Thornberry et al., 2023). As before, any electrode site that 

reached significance at an alpha level of 0.05, was marked by a yellow star. Figure 5.7 below 

demonstrates the topographical distribution of task-related dB changes relative to baseline 

(rest) for each frequency band of interest. 

 Once again, power was generally greater during task performance (especially for delta 

and gamma bands) than at rest with the exception of alpha. Specifically, we reported greater 

relative delta power at the frontal midline during the 1-month recall compared to the immediate 

recall (significant at sites F4 and FC2) and some minor increases at posterior sites. We also 

reported seemingly stabilised relative theta power, but with significantly decreased power at 

sites CP1 and FC6 from immediate to remote recall. Alpha power remains relatively low 

compared to other frequencies across the scalp in both recall trials. However, we report a clear 

and significant (at right-frontal midline site F4) attenuation in frontal alpha power from 

immediate to remote recall. This may explain our statistical reports above not showing 

interaction between region and recall phase, as significant increases appear to be right-

lateralised. 

In the Beta band (15-29 Hz) we demonstrate a stable level in power, but a seemingly 

cross-scalp increase in power (with a significant increase at P3). Interestingly, with Gamma 

(30-40 Hz) we can observe right-lateralised increases in power from immediate to remote 

recall, with increases in frontal and occipital sites (significant at AF4). Nevertheless, the clear 

lateralisation of power increases may explain the lack of reported significance between recall 

phases at the midlines above. Hence, there is clear recruitment of greater neural power for 

remote recall compared to immediate – apart from Theta, which tends to decrease or stay stable. 

Though, it is important to mention that multiple comparisons across signals and frequency 

bands within the same statistical comparison could lead to missed effects –it is better to control 

for this rather than report an effect that is not present (Jabes et al., 2021). Interestingly, alpha 
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power increases in this group also and is greater at the front of the cortex in the remote recall 

phase compared to the immediate – a finding we also reported in our recent recall group. 

Though not suppressed compared to baseline, alpha power in general is quite low compared to 

other frequencies – mapping on to a relative frequency suppression in relation to other bands 

(i.e., as found in Chapter 4).  
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Figure 5.7: Topographical distribution of power during immediate and remote recall phases within the 

1-month group. Power in each frequency band is displayed as power relative to baseline (in decibels: 

dB, all positive). Both conditions are displayed on the same scale. Differences are displayed in t-values 

within their own local scale. Significant electrode sites (p < 0.05) are marked with a yellow star.  



188 

 

5.3.2.2.3 Recent vs. Remote memory  

Finally, we compare the power change from baseline (dB) between our two recall conditions: 

recent (n = 16) and remote (n = 14) at each ROI using a 4 (region) X 2 (condition) mixed 

factorial repeated-measures ANOVA. For Delta, we reported no significant main effect of 

region (F(3, 84) = 1.217, p = 0.309). Additionally, we reported no significant effects between 

condition (F(1, 28) = 0.702, p = 0.409) and no significant interaction effect for region X condition 

(F(3, 84) = 0.650, p = 0.585). However, we did report greater relative power at the frontal and 

occipital midlines in the remote group, though not significant (see Figure 5.8). For Theta, we 

once again reported no significant main effect of region (F(3, 84) = 1.639, p = 0.186). 

Additionally, we reported no significant differences for condition (F(1, 28) = 1.070, p = 0.310) 

and no significant interaction effect for region X condition (F(3, 84) = 1.844, p = 0.145). Once 

again, we observed higher means at the frontal and occipital regions for the remote in Figure 

5.8, but none reached significance.  

For Alpha, we instead reported a significant main effect of region (F(3, 84) = 5.732, p = 

0.001, ƞ2 = 0.035). However, we reported no significant effects for condition (F(1, 28) = 0.983, 

p = 0.330) and no significant interaction effect for region X condition (F(3, 84) = 1.172, p = 

0.326). Corrected t-tests reveal that there was greater relative power at the frontal midline 

compared to the parietal when averaged over the levels of our conditions (t = 3.424, Cohen’s d 

= 0.437, p = 0.006, MD = 1.905 dB, SEM +/- 0.57 dB) and the parietal midline relative power 

was significantly less than that at the occipital midline (t = -3.738, Cohen’s d = -0.477, p = 

0.002, MD = -2.079 dB, SEM +/- 0.57 dB). Though not significantly different, we observed 

much greater relative power at the parietal midline in our recent group, compared to our remote 

group (M = 2.01 dB, SEM +/- 1.2 dB; M = 0.434 dB, SEM +/- 1.01 dB respectively) which are 

reflected in Figure 5.8. For Beta, we again reported a significant main effect of region (F(3, 84) 

= 3.348, p = 0.023, ƞ2 = 0.047). However, we reported no significant effects for condition (F(1, 
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28) = 0.334, p = 0.568) and no significant interaction effect for region X condition (F(3, 84) = 

0.938, p = 0.426). Corrected t-tests revealed significant differences averaged across the levels 

of our conditions between the occipital and central regions (t = 2.839, Cohen’s d = 0.548, p = 

0.034, MD = 1.384 dB, SEM +/- 0.48 dB) with all other regions not reaching significance (all 

p > 0.09). Nevertheless, we see some non-significant differences between the recent and remote 

group in Figure 5.8.  

Finally, for Gamma, we also reported a significant main effect of region (F(3, 84) = 

7.238, p < 0.001, ƞ2 = 0.092). However, we reported no significant difference between 

conditions (F(1, 28) = 0.372, p = 0.547) and no significant interaction effect for region X 

condition (F(3, 84) = 1.226, p = 0.306). Once again, when averaged across levels of condition, 

corrected t-test revealed differences between relative power at the frontal and occipital midlines 

(t = -3.868, Cohen’s d = -0.733, p = 0.001, MD = -2.124 dB, SEM +/- 0.55 dB). However, all 

other regions were not significant (p > 0.1). Furthermore, we display greater, but not 

significantly greater, mean relative power at the occipital midline in our remote group 

compared to our recent group (M = 7.31 dB, SEM +/- 0.88 dB; M = 5.69 dB, SEM +/- 0.65 dB 

respectively) which is visible in Figure 5.8 and 5.9. Therefore, though we reported no 

interaction effects or difference in power across regions between groups, we predict that we 

should see some significant differences running a full-scalp permutation t-test to include all 

electrodes. It is possible that only some electrodes within predefined midlines are showing 

significance, and our permutation t-tests should capture these. We would also predict based on 

these results, that the electrodes appear within regions showing non-significant but large mean 

differences in power. 
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Figure 5.8: A boxplot displaying the mean relative power at each midline for each group across all five predefined 

frequency bands. The mean is depicted by the line in the boxplot, with individual datapoints jittered to help 

understand distribution. 

 

 

Figure 5.9: An FFT line graph displaying the non-normalised mean magnitude of power (μV²/Hz) across the scalp 

for each group during the recall trial following the relevant consolidation period. Power is displayed across the 1-

40 Hz frequency range, with a frequency definition of 0.5 Hz. These are the uncorrected power spectrums. 
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Finally, we reported the scalp topography task-related relative power compared to baseline (in 

decibels: dB) for each recall condition, recent (n = 16) and remote (n = 14). For this analysis 

we included all participants who had these trials available. We then examined the condition 

differences (remote – recent), presenting them as t-values. To compare the between-group 

differences we ran a between-groups non-parametric permutation t-test with 5000 

permutations. We then corrected for multiple comparisons using FDR-correction (see Chapter 

3 and Thornberry et al., 2023). As before, any electrode site that reached significance at an 

alpha level of 0.05, was marked by a yellow star. Figure 5.10 below demonstrates the 

topographical distribution of task-related dB changes relative to baseline (rest) for each 

frequency band of interest, alongside the difference between these relative power changes 

between the groups. 

 We reported that power relative to baseline was mostly greater in the remote group 

compared to the recent group across bands, apart from alpha. Interestingly, we reported greater 

frontal and posterior delta (2-4 Hz) power in the remote group (significant at sites FC3 and Oz) 

with some greater right-lateralised power at parietal sites (with no site reaching significance). 

We reported greater relative theta (5-7 Hz) power in our remote group at frontal sites and some 

parieto-occipital sites (with O1 and PO3 reaching significance). Alpha power indicates trending 

decreases in the remote recall group, but we reported no site reaching significance. This may 

explain our statistical reports above not showing any between-groups nor any interaction 

effects between region and recall condition – as our Alpha band covers 8-12 Hz. In the Beta 

band (15-29 Hz) we demonstrate similar frontal and occipital increases in power, with 

significance at sites AF3 and Oz. Furthermore, with Gamma (30-40 Hz) we show trends 

towards greater power in the remote group, but none of the sites reach statistical significance. 

Nevertheless, it is clear that isolated and lateralised sites of greater power may explain the lack 

of reported significance between recall groups at the midlines. Hence, there is clear recruitment 
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of greater neural power for remote recall compared to recent – this time, apart from alpha 

power, which shows a reduction in power. The same limitations regarding missed effects 

mentioned above - comparison and correction for multiple comparisons apply here. 

Interestingly, all frequency bands apart from alpha show increased power during remote recall 

compared to recent recall in frontal and occipital regions.  
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Figure 5.10: Topographical distribution of power during recent and remote recall phases compared 

between groups. Power in each frequency band is displayed as power relative to baseline (in decibels: 

dB, all positive). Both groups are displayed on the same scale. Differences are displayed in t-values 

within their own local scale. Significant electrode sites (p < 0.05) are marked with a yellow star.  
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5.4 Discussion 

5.4.1 Memory performance 

Contrary to our original hypothesis, we did not find a significant difference in delayed recall 

performance between the recent and remote groups. Both groups demonstrated similar levels 

of performance in the immediate and delayed recall trials (Barry et al., 2016), regardless of 

whether the delay between the learning phase and recall phase was recent (24-hours) or remote 

(1 month). Interestingly, we actually observed an improvement in recall from the immediate to 

the delayed test in our remote group. These results suggest that time between spatial learning 

and recall up to 1 month does not impact spatial memory retrieval. If anything, there is evidence 

that a longer temporal gap may have helped additional consolidation processes to take place, 

strengthening memory traces and improving performance. It also supports some theoretical 

accounts that spatial memories are more stable across time than others (Kentros et al., 2004).  

There are some potential explanations of the behavioural results from our task. Firstly, 

one could claim that the association formed between the landmarks and goal location has 

successfully strengthened following offline consolidation, with greater detail at remote recall, 

as opposed to recent (Alcalá et al., 2020; Shanks, Darby, et al., 1998). Considering the 

environment has not changed in any way, memory retrieval is helped by the matching context 

and environmental cues (Urcelay & Miller, 2014), which would explain the lack of differences 

between our two groups. Doeller and Burgess (2008) reported the importance of geometrical 

shapes in successful retrieval and contextual understanding during spatial learning. 

Considering the simplicity of the environment, and the saliency of one of our landmarks 

(Chamizo et al., 2006; Commins et al., 2020; Deery & Commins, 2023; Farina et al., 2015) 

recall should be relatively easy as the contextual aspects of the spatial memory can be easily 

retrieved and recalled – aided by the heavily geometric and minimalistic environment. Even 
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during remote recall, were the memory of the environment stored as a schema or a contextual 

“gist” – it can be retrieved with ease due to the minimalistic context and lack of complexity 

(Bestgen et al., 2017; Crespo-García et al., 2016; Herweg, Sharan, et al., 2020; Smith & 

Mizumori, 2006). Additionally, our learning phases facilitated active rather than passive 

navigation throughout, which has been shown to produce better spatial memory retrieval 

(Chrastil et al., 2022; Wallet et al., 2013). Nonetheless, based on our EEG results, we would 

argue that the way in which this information is retrieved by the brain is affected by the temporal 

delay between recall conditions, but not memory performance. 

 

5.4.2 Relative dynamics of spatial recall remain similar 

We opted to examine all individuals immediate probe trial EEG data, due to its similarity to the 

data collected and analysed exploratorily in Chapter 4. Here we used the same signal processing 

method and relative power calculation that was used in the previous chapter, combining all 

participants from this chapter together to replicate the effects found in our last chapter with 

greater numbers (n = 31). We reported no differences between the sample from chapter 4 and 

the sample from chapter 5. Though this is not conclusive that neural activity is the same, it is 

certainly not much different. Visual inspection revealed a replication of two important 

characteristics of frequency power dynamics that we uncovered in chapter 4. We demonstrate 

low-frequency oscillations that show dominance in the frontal region of the scalp alongside 

increased alpha power activity across sensorimotor regions with alpha power suppression at 

the frontal regions. 

 The replication of EEG data is a major issue in the current literature, with low effect 

sizes, post-analysis selection of regions & time windows and failure to report preprocessing 

pipelines, which have all been shown to impact the data and its interpretation (Luck & 
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Gaspelin, 2017; Pavlov et al., 2021; Robbins et al., 2020). Here we provided an attempt to 

illustrate that our previously collected neural patterns can be (at least partially) replicated in 

different samples of greater numbers. These findings do provide confidence in our previous 

results, and also our use of the immediate probe trial data in this chapter, to examine the impact 

of recent and remote recall. It also highlights the usefulness of a relative power correction 

without a useful baseline.  

 

5.4.3 Overall effort increases with retrieval demands 

In respect to our findings in Chapter 3 we reported inverse patterns to those demonstrated 

during learning, in which we see general decreases in power as the task becomes less effortful 

(Thornberry et al., 2023). In the current study, we reported clearly greater power in the delayed 

recall trial compared to the immediate recall trial within the two groups. Further examination 

reveals that in fact, the individual patterns within the groups are enhanced. For example, 

focusing on Theta (5-7 Hz) in Figure 5.6 demonstrates very unique patterns of power across 

the scalp, which become replicated but enhanced at the recent time-point. Similar patterns are 

revealed in Delta (2-4 Hz) in Figure 5.7 demonstrating enhancement of frontal and parietal 

power patterns on the scalp. We also reported greater power overall at certain electrodes sites 

when comparing recent recall to remote recall, though individual scalp patterns differ (see 

Figure 5.10). Increased low frequency (delta & theta) power has been reported mainly at frontal 

regions, as being related to the amount of cognitive processing required during a task, as well 

as memory retrieval and decision making (Jacobs et al., 2006; Jaiswal et al., 2010). For 

example, using a Sternberg Task, researchers have demonstrated that frontal theta power 

increased along with working memory capacity, but only in highly challenging versions of the 

task (Zakrzewska & Brzezicka, 2014). In more applied settings, theta power increased in chess 
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players during the game, but only when their opponents difficulty increased (Fuentes-García et 

al., 2020). In spatial navigation tasks, theta and alpha power have been correlated with memory 

performance, with increases in frontal theta related to active maintenance of information 

(Jensen & Tesche, 2002; Klimesch, 1999; Lithfous et al., 2015; Roberts et al., 2013), whereas 

alpha has been known to contribute indirectly by filtering irrelevant information from attention 

and predicting possible memory interference (Klimesch, 2012; Klimesch et al., 2007; Sauseng 

et al., 2009). Considering our results reflect within-group increases of overall power and 

topographical patterns in low-frequency oscillations, with resulting changes of alpha 

suppression within the two groups, we suggest it is related to overall effort required to retrieve 

spatial information.  

 

5.4.4. Frontal regions are related to spatial memory retrieval 

Secondly, an interesting and consistent observation is the involvement of the frontal region 

during retrieval at the delayed recall trials. We reported some significant electrode sites in delta, 

but overall greater power at frontal sites in delta and theta in the remote compared to the recent 

group. Numerous scalp EEG studies have reported greater or higher low-frequency oscillations 

(1-8 Hz) at the anterior parts of the scalp during successful spatial recall, context-dependent 

recall, correct versus incorrect memory responses and long-term recall of objects (Alekseichuk 

et al., 2016; Düzel et al., 2003; Gruber et al., 2008; Herweg, Sharan, et al., 2020; Staudigl & 

Hanslmayr, 2013). Furthermore, gamma power (>30 Hz) has been shown to reflect associative 

processes of retrieval (i.e., familiarity) rather than episodic recollection (Gruber et al., 2008). 

During navigation, frontal midline theta oscillations specifically (loosely defined as 2-8 Hz in 

most EEG studies, which incorporates the traditional band definitions of delta and theta as we 

reported here) have been shown to be related to retrieval of spatial information during active 
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navigation (Chrastil et al., 2022; Du et al., 2023; Liang et al., 2018; Liang et al., 2021). 

However, we do report greater occipital low-frequency oscillations in our remote group also, 

which were reported by Chrastil et al. (2022) in their free (active) navigation group during 

correct navigational decisions and longer paths travelled. We would suspect these occipital 

increases are reflected in our remote group as there may be more visual scanning leading to 

longer or more complex paths travelled as they attempt to recall the target location. This may 

also explain the greater suppression of posterior and parietal alpha rhythms compared to rest, 

which have been shown to be related to increased attention prior to spatial decision-making 

(Chrastil et al., 2022; Du et al., 2023; Klimesch, 1999; Klimesch et al., 1997). Our remote 

group require more focused attention and inhibition of irrelevant sensory input (Bonnefond & 

Jensen, 2012; Foxe & Snyder, 2011; Hanslmayr et al., 2009; Khader et al., 2010) which have 

been demonstrated to accompany increased frontal theta power in a kind of inverse 

relationship, allowing spatial memory access via delta-theta ranges and attention with sensory 

inhibition via the alpha range (Du et al., 2023; Khader et al., 2010; Liang et al., 2018; Liang et 

al., 2021).  

Additionally, we reported greater beta (15-29 Hz) power in the remote group in the 

same regions, with significance at AF3 and Oz. Chrastil et al. (2022) reported greater beta 

activity in an active virtual navigation group before they arrived at a familiar decision-making 

point, which coincided with theta during the decision-making process. Greater beta power has 

been linked to memory processing in controlled retrieval (Ketz et al., 2014) or even suppression 

of unwanted visual memories (Waldhauser et al., 2015; Waldhauser et al., 2012). Considering 

the topographical patterns and dynamics match that of our low-frequency oscillations which 

may be retrieving and utilising the spatial memory, beta oscillations could be controlling the 

retrieval process to allow successful recall. This may be required for remote memories as they 

are liable to interference (especially at 28 days, see Wichert et al. 2011) and are more likely to 
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contain misleading details (Wichert et al., 2011; Yassa & Reagh, 2013). Considering our recent 

memory group show different patterns with lesser beta power, and they had little likelihood of 

memory interference, we believe beta is responsible for a controlled spatial memory retrieval 

process for remote memories, which topographically mirrors delta and theta patterns. 

 

5.4.5. Delta-Theta & Gamma support memory replay during remote retrieval 

Recent evidence suggests that although low frequency oscillations in the delta-theta range are 

vital for spatial memory retrieval (Jacobs et al., 2006), successful memory retrieval requires 

the coupling of gamma oscillations during particular theta rhythm phases (Alekseichuk et al., 

2016; Greenberg et al., 2015; Lisman & Jensen, 2013). It is believed that these coupled 

oscillations support the exchange of mnemonic spatial information throughout the entorhinal–

hippocampal network (Buzsáki & Moser, 2013; O'Keefe, 1993). Interestingly, we report greater 

delta and theta power in our remote group compared to our recent group, with greater 

beta/gamma power also. From our regression, we see that total scalp gamma power is a 

significant predictor of spatial task performance, with another significant coefficient being the 

remote memory condition. Interestingly, we just miss significance levels with beta and theta – 

which are two rhythms whose dynamics are primarily isolated to frontal midline areas. 

Increased frontal theta and posterior gamma have been reported to play an essential role during 

long-term spatial memory retrieval (Vivekananda et al., 2021). We see similar dynamics in our 

data, and considering these patterns are usually reflected on the cortex as coming from the 

hippocampus and surrounding areas (see Herweg et al., 2020 for a summary) we could suggest 

that there is greater hippocampal involvement during remote memory recall compared to 

recent. However, we are again limited by the inability to perform source reconstruction on our 

data. 
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Theoretically then, we would argue that when a memory has become remote, it requires 

more neural effort to retrieve it compared to a recent memory. The remote memory could be 

stored across the cortex and relies on the hippocampus and other regions to accurately retrieve 

it. However, because the memory may have become schematic in nature, performance and 

recall becomes more accurate. We believe that the reason for this is because the retrieval of 

remote spatial memories requires replay, and reactivation of the neural pathways utilised during 

encoding as found by Dupret et al. (2010). If we examine our remote group data (using Figure 

5.7 and 5.9) we see very similar patterns reported in our sample for Chapter 3 (and see 

Thornberry et al., 2023). Reduced theta power from immediate to remote recall at posterior 

sites (near Pz) and some frontal sites along with suppression of alpha power at site Pz and 

parietal areas. These patterns are not reflected when our recent group perform the recall trial, 

but instead see an enhanced version of the neural dynamics of their immediate recall (see Figure 

5.6). We also see that gamma power mirrors the delta activation also in our remote group only, 

with greater increase in delta and gamma power from immediate to remote recall, whilst staying 

stable between immediate and recent recall. Therefore, based on this we would suggest that 

remote spatial memories require replay of neural dynamics utilised during encoding.  

We would further suggest that replay is required due to the fact that the remote memory 

has become more dispersed across the cortex. We are familiar with evidence that cortical and 

hippocampal replay allows for consolidation and retrieval of long-term spatial memories 

(Michelmann et al., 2018) with theta and alpha rhythms showing significant involvement 

during recall-related replay at hippocampal and prefrontal areas (Sutterer et al., 2019; Zielinski 

et al., 2020). These replay events are known to occur during active navigation (Ólafsdóttir et 

al., 2018) which is also evoked by our task paradigm. Therefore, we believe that this replay is 

reflected on the cortex during remote retrieval in a virtual water maze task in rhythms closely 

related to those found in the replay literature (Herweg, Sharan, et al., 2020; Köster et al., 2014; 
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Pu et al., 2020; Staudigl & Hanslmayr, 2013; Sutterer et al., 2019; Vivekananda et al., 2021) 

and also expected to derive from the parahippocampal cortex and hippocampus (delta-theta 

and gamma: see Lisman and Jensen (2013); Nyhus and Curran (2010)). This would support 

and be accounted for through Multiple Trace Theory (MTT) in which the hippocampus stores 

a distributed pattern of cortical activity related to the memory (Nadel et al., 2000). 

Hippocampal replay then facilitates retrieval of the memory traces, which leads to remote 

spatial memories being stored as gist-like representations. Our data supports this concept, but 

that replay is not required for recent memories, as the schematic of the environment has not 

been fully consolidated, and the required traces do not yet exist. Evidence that the disruption 

of awake hippocampal replay in rats does not affect recent (short-term) recall ability in a spatial 

task been shown for the first time by Deceuninck and Kloosterman (2022). However, it is 

entirely possible that our findings may relate to standard consolidation theory, and that replay 

for remote memories occurs at cortical level independent of the hippocampus. Nevertheless, 

without in-depth detailed source reconstruction we cannot verify these observations. Therefore, 

though there are some limitations of our work, we believe these aspects require further 

investigation in future work to demonstrate possible support for multiple trace theory. 

 

5.5 Conclusions 

In short, this study did not find any significant differences in spatial memory performance 

between recent and remote recall groups. However, our EEG data suggests that more neural 

effort is required to accurately retrieve remote spatial memories compared to more recent ones. 

We observed increased power in lower frequency bands delta (2-4 Hz) and theta (5-7 Hz), 

especially over frontal regions, during the delayed recall trial compared to immediate recall. 

This likely reflects greater cognitive demand and a more controlled retrieval process for 
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accessing consolidated remote memories. Additionally, the remote group showed stronger 

gamma power. We suggest that these rhythms could be related to cortical (or perhaps 

hippocampal) replay, which may be required for retrieval of remote spatial memories. In 

contrast, the recent group displayed an intensified version of their immediate recall’s neural 

dynamics during delayed recall, suggesting that consolidated schematic representations have 

not yet formed after 24 hours. Overall, these findings provide some novel evidence about the 

time course of consolidation for spatial memories. The results also provide an insight into how 

the nature of spatial memory retrieval for navigation may change after encoding. Further 

investigation into replay phenomena during remote spatial recall could provide more evidence 

for theoretical models of consolidation. 
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Chapter 6 

 

Age-related differences in resting-state and task-related EEG 

during recent & remote spatial recall 
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Abstract 

 

The concept of healthy ageing and its impact on spatial navigation and memory ability is well-

established in the literature. However, the neural basis of these age-related changes is not well 

understood. In particular, there is limited research that examines the impact of healthy ageing 

on the neural mechanisms underlying spatial memory retrieval for memories encoded recently 

(24-hours ago) compared to those encoded remotely (1-month ago). This study attempted to 

explore the neural basis of recent and remote spatial memory retrieval during navigation in 

older adults (n = 21) using EEG and a virtual water maze. Our results suggest that recent 

memories tend to be better preserved than remote memories for retrieval during navigation in 

older adults. Compared to younger adults (n = 31), our older adults showed differences in both 

resting state and task-related oscillatory activity. We reported reduced high-frequency 

oscillations in both conditions compared to younger adults. Older adults also demonstrated 

reduced high-frequency oscillations at recent recall, but increased delta with reduced theta 

during remote recall compared to their immediate recall. We suggest that these differences 

could relate to the storage of the memories and the regions required for retrieval. The results 

are discussed in terms of age-related compensation for spatial navigation skills in healthy 

ageing. 
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6.1 Introduction 

According to the World Health Organization, the number of people aged over 60 is set to rise 

to two billion by 2050. Age-related decline in cognition is widely reported to impact a variety 

of processes, including decision making (Cauffman et al., 2010; Harty et al., 2017; Peters et 

al., 2007), working memory (Jost et al., 2011; Salthouse & Babcock, 1991) and long-term 

memory (Caffrey & Commins, 2023; Smith, 2014; Werkle-Bergner et al., 2006). Spatial 

navigation ability is considered to be one of the first cognitive functions to decline with age, 

and some of the first early pre-clinical signs of mild cognitive impairment and Alzheimer’s 

disease (Coughlan et al., 2018; Coughlan et al., 2020). Spatial navigation is a combination of 

multiple different processes combined, mainly for learning a route to the goal, travelling it and 

then remembering both the route and the goal location.  

Older adults show impairment on virtual water maze tasks (Moffat, 2009; Moffat & 

Resnick, 2002; Moffat et al., 2001). Worsening performance has been reported across a two-

year longitudinal study (Daugherty & Raz, 2017), with repeated training required to improve 

cognitive mapping skills and episodic memory. In a review, Lester et al. (2017) explain that 

because navigation is such a complex behaviour, deficits can occur at any stage of the process, 

including spatial information processing (vestibular feedback, sensorimotor integration) or 

spatial learning and memory processes (episodic memory, associative learning). Focusing on 

the use of a virtual water maze, older adults are known to have slower reaction time and 

orientation during navigation (Moffat, 2009; Zhong et al., 2017). They are also known to make 

more errors in a VWM task (Moffat et al., 2001; Schoenfeld et al., 2014). Older adults tend to 

have more complex routes which impacts their performance (Daugherty et al., 2015). For 

example, Yu et al. (2021) reported older adults made fewer shortcuts compared to younger 

adults (see Chapter 1 for the importance of this). However, older adults lack of exposure to 

virtual reality and desktop navigation tasks could influence their performance (McGee et al., 
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2000). Recent work by Hill et al. (2023) described that older adults perform worse in a VWM 

desktop task, but age-differences significantly reduced when examined using an immersive 

virtual reality environment. In NavWell, we reported that older adults could recall the goal 

location well above chance levels during a recall trial but performed worse compared to 

younger adults (Commins et al., 2020). Additionally, remote spatial memory retrieval was 

better and less prone to the impairment in older adults compared to recent memories, but both 

were impaired compared to younger adults (Lopez et al., 2019). Therefore, age-related 

navigation decline is a complex phenomenon. General spatial navigation ability assessed across 

the world population by a virtual task does decline as a function of age with increased 

individual variability (Coughlan et al., 2018). However, the specific processes that are involved 

in this decline are still unknown, though many studies point to issues with memory.  

Ageing also impacts the neural systems involved in spatial cognition. For example, the 

spatial specificity of place cells has been shown to decline in ageing animals (Lithfous et al., 

2013). Older adults have shown a loss of grey matter in the medial temporal lobe (mainly at 

the amygdala, anterior hippocampus and entorhinal cortex) – but tend to display marginal 

alterations outside of the MTL (Chan et al., 2021; Zúñiga et al., 2023). It is thought that our 

underlying brain oscillations attempt to adjust to the age-related changes in physiology (Zúñiga 

et al., 2023). This results in decreased specialised processing and greater recruitment of 

multiple brain regions for compensation, particularly in high performing older adults (Cabeza 

et al., 2002; Stern et al., 2005). During rest, there is typically reduction in alpha activity in older 

adults, and a general increase in delta and theta power (Ishii et al., 2018). Greater theta power 

at rest is associated with healthy ageing and better cognitive function (Finnigan & Robertson, 

2011; Fleck et al., 2017). Recently, Jabès et al. (2021) reported reduced low frequency power 

(1-7 Hz), but equal levels of alpha (8-12 Hz) power in older compared to younger adults. Beta 

(15-29 Hz) and gamma (30-47 Hz) powers were found to be greater in older compared to 
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younger adults during rest. Following the resting state recording participants performed a 

virtual spatial navigation working memory task. Theta, alpha and beta were linked to spatial 

working memory performance in older adults (Jabès et al., 2021). Similarly, brain connectivity 

during rest recorded by fMRI facilitates predicted activation of the specific brain circuit 

engagement needed to perform a working memory task (Zou et al., 2013). Recent analysis of 

a large EEG dataset from older adults (n = 1703, mean age = 70) revealed that increased peak 

alpha frequency is associated with working memory performance. Typically reported age-

related decline in alpha power at rest is due to the activity at other frequencies, and mainly 

increased alpha at frontal regions was associated with slower processing speed (Cesnaite et al., 

2023). The authors proposed functional reorganisation of brain networks in older age with a 

reliance on frontal brain regions for complex cognition. This would further support the idea 

that neural oscillatory networks already exist, and become enhanced for cognition but altered 

with age and disease (Buzsaki, 2006). 

Fewer studies have examined oscillations during spatial navigation. Decreased theta 

oscillations have been observed in older adults during retrieval of spatial memories (Rondina 

Ii et al., 2019). Differences in age related to VWM performance in older adults have been 

typically reported in frontal regions, with decreased theta and alpha power (Lithfous et al., 

2018; Lithfous et al., 2015). Recent work by Durteste et al. (2023) revealed differences between 

age groups during scene-recognition phases of spatial navigation. They reported similar 

findings to others, with enhanced delta-theta power and reduced beta-gamma power in older 

adults using scalp EEG (Park et al., 2012). During a spatial memory task, younger adults show 

greater alpha desynchronisation compared to older adults (Marshall et al., 2018). The authors 

also reported increased alpha during memory maintenance and higher theta power was 

associated with better memory performance. However, to our knowledge there exists very little 

research based on age-related differences in oscillatory activity during spatial navigation. 
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Furthermore, to our knowledge there is no research examining oscillations during recent and 

remote aspects of spatial memory in relation to age, considering the dominant theories suggest 

that spatial memory in age leads to navigational decline. 

Therefore, this chapter will attempt to investigate age differences in healthy older and 

younger adults during a spatial recall phase of navigation in a virtual water maze task. Similar 

to Chapter 5, we examined age-differences in oscillatory activity underlying immediate (10 

minutes), recent (24 hours) and remote (1-month) spatial recall. We will examine activity in 

delta, theta, alpha, beta & gamma. Based on the above, we also decided to explore the resting 

state activity of older and younger adults. Therefore, behaviourally we would hypothesise that 

our healthy older adults should perform poorer than our younger adults but should not be 

impaired. For resting state oscillatory activity, we would anticipate to report similar findings to 

Jabès et al. (2021): increased delta-theta oscillations, decreased beta-gamma oscillations with 

similar alpha activity across age groups. We would then expect theta, alpha and/or beta to 

correlate with spatial memory performance. For task-related oscillatory activity, we would 

hypothesise to report differences between younger and older adults. We would expect 

differences in alpha power in older adults with enhanced delta-theta activity and reduced beta-

gamma activity. We should also report alternative differences between younger and older adults 

during immediate, recent and remote recall phases.  
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6.2 Methods 

6.2.1 Participants 

Twenty-two older adult participants (16 female, 6 male) aged between 60 and 76 (M = 64.7, 

SEM +/- 1.118) were recruited for this chapter. Originally, recruitment of twenty-four adults 

was anticipated. However, one older adult dropped out before experimentation, and another 

had no data recorded due to a power cut on the day. Older adults were recruited from Maynooth 

University and the wider Maynooth Community, as well as through personal or participant-

driven connections from the Greater Dublin Area (see Chapter 2). Thirty-one young adults (21 

female, 10 male) from Chapter 5 aged between 18 and 40 (M = 21.7, SEM +/- 0.708) were also 

used in the analysis for this chapter. This project, the use of human subjects with EEG and the 

recruitment of older adults was approved by the Maynooth University ethics committee 

(BSRESC-2021-2453422 & SRESC-2021-2453422). The below sections will focus only on 

our older adult sample and will refer to relevant sections of Chapter 5 where appropriate. 

 

6.2.2 Resting State Task 

Participants underwent electrophysiological preparation (see Chapter 2 for details) before 

starting any task. We then implemented the recording of resting state activity using the same 

task as Chapter 5 (section 5.2.2) before running the spatial navigation task. This was 

constructed in E-Prime version 3.0 (2022) and presented to participants seated 50 cm from a 

15-inch standard 4:3 ratio computer screen, on their own in a darkened, electrically shielded 

and sound-attenuated testing cubicle (150 cm × 180 cm). Participants were required to focus 

on a fixation cross in the centre of the screen for three minutes (see Chapter 5, Figure 5.1). The 

eyes-open resting state lasted three minutes and older participants were encouraged to take a 
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rest period before they began the spatial navigation task. Almost all older adults took a rest 

period before commencing. 

 

6.2.3 Spatial Navigation Task: Practice Trials 

Based on our work from Commins et al. (2020), we implemented a phase of practice trials for 

our older adult sample. The spatial navigation task was NavWell, described in Chapter 2 and 

used in all experimental chapters. Older adult participants completed a series of four training 

trials before commencing their experimental phases (Figure 6.1). This was to help them 

familiarise themselves with the controls, the nature of the task and allowed them to get 

comfortable with the EEG equipment. During these practice trials, the goal remained visible 

(blue square), and older participants simply had to move towards it. The goal moved location 

for each of the 4 trials. The practice trials were also used to control for potential motor, visual 

or motivational issues. The training maze contained no landmarks, and the participants started 

each trial from the north, south, east and west positions respectively. The arena was a medium 

circular pool, as explained above. Each trial was 60 seconds in length or ended when the goal 

had been reached. Older adults were supervised during this phase by the researcher. They 

typically explained the nature of the task and answered any questions about the task, equipment 

or the joystick controls. All older adults successfully carried out these practice trials. Data from 

these trials was not reported and EEG was not recorded during them, in order to facilitate 

researcher presence in the Faraday cage. Typical participant paths of the routes from each of 

the starting locations are displayed in Figure 6.1.  
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Figure 6.1: Screenshot of the NavWell software at the start of a practice trial in older adults. The blue 

square to the right of this is the visible target/goal. Path data is presented in the bottom left from a 

sample participant of typical paths taken during each practice trial by older adults (each trial is displayed 

in a separate colour and starts from each cardinal point). 

 

 

6.2.4 Spatial Navigation Task: Experimental Trials 

Older adults underwent the exact same experimental paradigm as our younger adults in Chapter 

5. Older adult participants underwent events in the following order: electrophysiological 

preparation, resting state data collection, practice phase, learning phase (described in previous 

chapters and Thornberry et al., 2023), cognitive assessment and immediate recall (see Chapter 

2 for specific details). Participants were seated 50 cm from a computer screen in a quiet, 

darkened testing cubicle with a joystick. They used the same circular virtual environment used 

previously (taking 15.75s to traverse the arena, calculated at 75 Vm), which had two cues on 

the walls and a hidden blue square goal in the northeast quadrant. After finishing the learning 

phase, participants took a 10–15-minute break. They were then given a 60-second recall trial, 
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in which they had to navigate back to the goal location, starting from a new southwest location. 

The goal was removed for this trial (see Chapter 2). Older adult participants were then 

randomly allocated to either a recent condition (n = 11, 9 females) or remote condition (n = 11, 

7 females). Following the immediate recall trial, participants in the recent condition were asked 

to come back 24-hours later, to perform another recall/probe trial as described above. 

Alternatively, those allocated to the remote group were asked to return in 1-month, to also 

perform another recall/probe trial. 

 

6.2.5 EEG Recording 

EEG data was acquired using a BioSemi ActiveTwo system (BioSemi B.V., Amsterdam, 

Netherlands) with 32 Ag/AgCl electrodes positioned according to the 10/20 system that had 

been used throughout this thesis (see section 3.2.3 “EEG Recording” or Chapter 2). Older adults 

were given a longer duration to undergo this stage compared to younger adults but underwent 

the same procedure (see Chapter 5 for details). 

 

6.2.6 EEG Preprocessing 

Continuously recorded EEG data were analysed offline in MATLAB R2021B using scripts in 

combination with the Brainstorm package (Tadel et al., 2011). The same preprocessing steps 

from Chapter 5 were used here. For the analysis of both recall trials, the entire continuous 

recording was then epoched into 2-second epochs, producing 30 epochs per participant for each 

probe trial, and 90 trials per participant for resting state. All of these data were visually 

inspected for bad segments and bad electrodes, which were then removed. No bad electrodes 

were found. Epochs with voltage steps above 100 µV or peak-to-peak signal deflections 

exceeding 200 µV within 2-s intervals were automatically rejected. We had an average rejection 
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rate in our older adults of approximately 4% of the total epochs produced. EEG data were then 

re-referenced to two mastoid electrodes (EXG5 & EXG6). For further information on EEG 

pre-processing see Chapter 2. 

 

6.2.7 EEG Spectral Analysis 

Once more, based on our task and experimental paradigm, we used spectral analysis to 

investigate five frequency bands: delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 

Hz) & gamma (30-40 Hz). Power spectra were computed on artefact-free epochs for each 

participant on both recall trials using the same procedure as Chapter 5. For analysis of the 

resting state data, we computed relative power in each group based on the processes used in 

Chapter 4. We then normalised the task-related power using a baseline correction method (see 

Chapter 5). Taking the non-task related resting state PSD, we baseline corrected each individual 

participants task-related data (i.e., immediate recall and recent/remote recall) using a decibel 

(dB) conversion. We did not focus on any particular region of interest for this chapter (see 

below). All epochs in each group and condition, were averaged together following 

computations. We chose to baseline correct and analyse relative power based on previously 

described rationale in Chapter 2, because we are interested in the distribution of power within 

the frequency bands and needed a more robust measure with low participant numbers that 

accounted for slow-drifts, artifacts and noise that may influence between-group analysis.  

 

6.2.8 Statistical Analysis 

Statistical analyses & visualisation of the behavioural and EEG data were performed using a 

combination of JASP (version 0.15), MATLAB and R software version 4.0.2 with the tidyverse 

and ggplot2 package. First, statistics were performed using extracted values from the power 
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spectra via the extract > values process in Brainstorm. We then extracted mean relative power 

(%) for resting state analyses and mean normalised power (dB) for experimental trial analyses. 

Mixed-factorial ANOVAs were computed on the behavioural data comparing the two groups 

on several behavioural and electrophysiological measures. Bonferroni corrected t-tests were 

used to follow up within analysis, and independent sample t-tests were used to follow up any 

group differences. Based on several null findings previously, we did not extract power at any 

region of interest. Instead, we extracted global scalp power in each frequency band. We 

facilitated site-specific effects to be explored by using Brainstorm in MATLAB 2021b. This 

comprised of two-tailed non-parametric independent or paired t-tests with 5000 permutations 

and a p-threshold of 0.05 across all 32 electrode sites. All statistical tests corrected for multiple 

comparisons in EEG data using an FDR (False Discovery Rate) correction across signals. All 

data were combined for EEG analysis, but gender was included as a factor in the overall 

behavioural analysis (Thornberry et al., 2023) and in non-resting state age-group EEG analyses 

as a control measure. 

 

 

6.3 Behavioural Results 

6.3.1 Cognitive Tasks 

All younger participants (n = 31) and older participants (n = 22) were given the TMT, NART, 

& MOCA after resting-state data were collected and the learning phase of the virtual navigation 

task was completed. This was to allow for a break in between spatial learning & recall phases, 

but also to allow for time between resting state data acquisition and the cognitive tasks. Here 

we reported no significant differences between the groups on NART errors (t(51) = -1.806, p = 

0.077, Cohen’s d = -0.503) nor on the TMT using the typically calculated overall score of 

TMTB-A (t(51) = 1.585, p = 0.119, Cohen’s d = 0.442). To further confirm this, we also 
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reported no difference between the groups on individual sections of the test, TMTA (p = 0.304) 

& TMTB (p = 0.062). However, we reported significant differences in performance on the 

MOCA (t(51) = -2.878, p = 0.006, Cohen’s d = -0.802) with older adults scoring significantly 

less (M = 25.41, SEM = +/- 0.491) compared to younger adults (M = 27.1, SEM = +/- 0.337).  

 

6.3.2 Young vs. Old: Learning Phase 

We first compared younger (n = 30) and older (n = 22) adults on their performance during the 

learning phase of the NavWell task. One younger adult had data synchronisation issues due to 

loss of network connection during testing. They were included in all analysis for which they 

possess data (see Chapter 5, section 5.3.1.1). We used a 2 (group) X 2 (gender) X 12 (trial) 

repeated measures mixed factorial ANOVA to examine differences between the groups on 

latency and path length across the trials. 

 For latency, we reported a main effect of trial (F(11, 528) = 8.833, p < 0.001, ƞ2 = 0.072). 

We also reported a significant difference between the groups (F(1, 48) = 98.482, p < 0.001, ƞ2 = 

0.323) but not for gender (F(1, 48) = 1.401, p = 0.213). We also reported a significant interaction 

effect between trial X group (F(11, 528) = 4.006, p < 0.001) but not for trial X gender (F(11, 528) = 

0.897, p = 0.543). Using Bonferroni corrected t-tests we reported that latency during Trial 12 

was significantly shorter than Trial 1 across all participants (MD = 17.8s, SEM +/- 2.94, t = 

6.051, p < 0.001, Cohen’s d = 1.174). However, using Tukey corrected t-test to examine our 

trial X group interaction effect, we reported that there were no significant differences in 

performance time between younger and older adults on Trial 1 (MD = 17.8s, SEM +/- 4.72, t 

= 0.812, p = 0.997, Cohen’s d = 0.253). However, younger adults were significantly quicker on 

Trial 12 compared to older adults (MD = 37.1s, SEM +/- 4.72, t = 7.857, p < 0.001, Cohen’s d 

= 2.447). Therefore, though both groups learned the task, the younger adults could perform it 

with greater speed and efficiency (Figure 6.2a and 6.2b). 
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 For path length, we reported a main effect of trial (F(11, 528) = 16.016, p < 0.001, ƞ2 = 

0.163). We also reported a significant difference between the groups (F(1, 48) = 44.481, p < 0.001, 

ƞ2 = 0.136), with older adults producing longer paths compared to younger adults (MD = 52.5 

Vm, SEM +/- 7.8 Vm, t = 6.696, p < 0.001, Cohen’s d = 0.999). No gender effect was reported 

(F(1, 48) = 0.349, p = 0.558). We again reported a significant interaction effect for trial X group 

(F(11, 528) = 4.830, p < 0.001, ƞ2 = 0.049) but no interaction for trial X gender (F(11, 528) = 1.190, 

p = 0.291) with no significant three-way or between-subjects interaction effects reported (all p 

> 0.7). Bonferroni corrected t-tests demonstrated that participants’ path lengths during Trial 12 

were significantly shorter than Trial 1 (MD = 102.327 Vm, SEM +/- 10.61 Vm, t = 9.644, p < 

0.001, Cohen’s d = 1.95) & Trial 2 (MD = 77.523 Vm, SEM +/- 10.61, t = 7.306, p < 0.001, 

Cohen’s d = 1.475). Interestingly, using Tukey-corrected test to examine our interaction effect, 

there was no difference between the younger and older adults on path length for Trial 1 (MD = 

45.25 Vm, SEM +/- 16.37, t = 2.765, p = 0.467, Cohen’s d = 0.861) nor on Trial 12 (MD = 47.5 

Vm, SEM +/- 16.37, t = 2.902, p = 0.365, Cohen’s d = 0.904). Therefore, the groups did not 

differ on path length on essential trials, but overall show a significant difference in path length 

– with older adults displaying slightly longer paths compared to younger adults overall (see 

Figure 6.2c and 6.2d). Therefore, older adults were not as efficient at locating the hidden target 

as the younger adults. 
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Figure 6.2: (a) Line graph and jittered individual data points for older and younger adult path length. 

Standard error is represented by the shaded outline. (b) Sample path from NavWell of an older adult 

participant Trial 1 with a complex undirected path. (c) Sample path of an older adult from NavWell of 

a participants Trial 12 with a more direct route. 

 

6.3.3 Older Adults: Learning Phase 

Based on our previous reports and the above findings, we incorporated a further measure for 

older adults. Older adults seem to be significantly slower at performing the task and locating 

the target, with slightly lengthier routes. Therefore, we have extracted and reported the 

percentage of time spent searching in the target quadrant during each trial to ensure our older 

adults learned the task. This measure is typically used during recall trials (see Chapter 4 & 

Chapter 5) but can give an indication of task performance during learning (Vorhees & Williams, 

2006; Vorhees & Williams, 2014a, 2014b). For quadrant percentage (see Figure 6.3a), we 

reported a significant main effect of Trial (F(11, 198) = 9.684, p < 0.001, ƞ2 = 0.280). We found 

no significant differences between conditions (F(1, 18) = 1.428, p = 0.248) nor genders (F(1, 18) = 

1.586, p = 0.224). We also reported no significant interaction effects for trial X condition (F(11, 

a 
b 

c 
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198) = 0.996, p = 0.451) nor trial X gender (F(11, 198) = 0.681, p = 0.755). Furthermore, we did 

not report any three-way interaction, nor a gender X condition interaction (all p > 0.27). Using 

Bonferroni-corrected t-tests we reported that percentage time spent searching the goal quadrant 

was significantly greater on Trial 12 compared to Trial 1 (MD = -42.1%, SEM +/- 9.23%, t = -

4.559, p < 0.001, Cohen’s d = -1.54) and Trial 2 (MD = -30.7%, SEM +/- 9.23%, t = -3.324, p 

= 0.46, Cohen’s d = -1.22). Therefore, though not quicker nor more efficient at locating the 

target – our older adults learned the location of the goal during their learning phase as they 

increased their searching behaviour above chance level (see Figure 6.3b-c).  

As with Chapter 5, we a priori analysed the learning performance of participants in 

both conditions: recent (24-hours, n = 11, 9 female) or remote (1-month, n = 11, 7 female) to 

check that both conditions for recall had learned the task equally. In order to remain consistent 

with Chapter 5, we ran a 2 (condition) X 2 (gender) X 12 (trial) repeated measures mixed 

factorial ANOVA to examine latency and path length across the trials within our older adults. 

For latency, we reported no significant main effect of trial (F(11, 198) = 1.105, p = 0.359, ƞ2 = 

0.034). Importantly, we reported no significant difference between recent and remote 

conditions (F(1, 18) = 3.373, p = 0.083) nor gender (F(1, 18) = 2.622, p = 0.123). We also reported 

no significant interaction effect between trial X condition (F(11, 198) = 0.709, p = 0.821) nor trial 

X gender (F(11, 198) = 0.608, p = 0.821). We did not report any three-way interaction, nor a 

gender X condition between-subjects interaction (all p > 0.3). For path length, we reported a 

significant main effect for Trial (F(6.1, 110.7) = 2.238, p = 0.043, ƞ2 = 0.075). However, we again 

reported no differences between conditions (F(1, 18) = 4.225, p = 0.053; see Figure 6.3d) nor 

genders (F(1, 18) = 0.043, p = 0.837). We again reported no significant interaction effect between 

trial X condition (F(6.1, 110.7) = 0.457, p = 0.843) nor trial X gender (F(6.1, 110.7) = 0.595, p = 

0.738). We did not report any three-way interaction, nor did we report a gender X condition 

between-subjects interaction (all p > 0.3). 
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Figure 6.3: (a) Line graph and jittered individual data points for older adult quadrant percentage 

search times across trials. Data is above the chance line (25%) from Trial 2 onwards. (b) Sample 

path from older adult participant with 85% goal quadrant search time but an unsuccessful trial. 

(c) Average learning heatmap from an older adult participant with several unsuccessful trials. 

(d) Older Adults path length for recent and remote conditions. 

a 

b 

c 

d 
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6.3.4 Young v Old: Immediate Recall Trial 

As per the protocol in Chapter 5, all participants were given a probe trial (the target was 

removed from the arena) after a ten-minute interval. We termed this “immediate recall” as there 

is no real consolidation time, and it replicates the recall phase examined in Chapter 4 & 5. We 

examined percentage time spent searching in the goal quadrant (Northeast). As in Chapter 5, 

as a check to make sure that the two groups could recall the location during this trial, and that 

difference between the groups may be due to age rather than poor task performance, we ran a 

2 (group) X 2 (gender) X 4 (quadrant) mixed factorial ANOVA.  

 We reported a main effect of quadrant (F(1.5, 72.3) = 191.9, p < 0.001, ƞ2 = 0.743). 

Interestingly, we did not report any differences between the groups (F(1, 49) = 0.084, p = 0.773) 

nor genders (F(1, 49) = 0.551, p = 0.461). However, we reported a significant interaction effect 

for quadrant X group (F(1.5, 72.3) = 10.858, p < 0.001, ƞ2 = 0.042). But we did not report an 

interaction for quadrant X gender (F(1.5, 72.3) = 0.525, p = 0.539), nor a three-way interaction 

effect or any between-subject interaction effects (all p > 0.17). Bonferroni-corrected t-tests 

revealed (averaged across group) that the percentage time spent searching in the NE (Goal) 

quadrant was significantly greater than all other quadrants, the NW (t = 17.474, p < 0.001, MD 

= 45.6% +/- 2.6%, Cohen’s d = 3.798), SW (t = 16.77, p < 0.001, MD = 43.8% +/- 2.6%, 

Cohen’s d = 3.817) and the SE (t = 22.502, p < 0.001, MD = 58.7 % +/- 2.6%, Cohen’s d = 

5.123). We used Tukey corrected t-tests to explore our quadrant X group interaction effect 

reporting that our older adults spent significantly less time in the NE (Goal) quadrant compared 

to our younger adults (t = -3.882, p = 0.004, MD = -14.18% +/- 3.65%, Cohen’s d = -1.191; 

see Figure 6.4). We reported no other differences between the groups at any other quadrant (all 

p > 0.6) but both groups demonstrated greater preference for the NE quadrant, searching 

significantly more here than any other quadrant. 
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Figure 6.4: Standard bar chart of quadrant search percentages (%) for each quadrant during 

immediate recall trials for older and younger adults. The chance line (25%) is displayed 

showing all other quadrants below this regardless of group. 

 

6.3.5 Recent & Remote Recall 

6.3.5.1 Older Adults 

After our older adults participants were randomly assigned their condition: recent/24-hours (n 

= 11, 9 female) or remote/1-month (n = 11, 7 female) they were then retested after the 

corresponding consolidation period. However, to ensure that the two groups could recall the 

location equally – and that any difference between the groups was due to the consolidation 

period rather than poor recall, we ran a 2 (condition – recent v remote) X 2 (gender) X 4 

(quadrant) mixed factorial ANOVA. Similar to Chapter 5, we reported a main effect of 

quadrant (F(2.1, 38.7) = 11.683, p < 0.001, ƞ2 = 0.363). Importantly, we did not report any 
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differences between the conditions (F(1, 18) = 0.024, p = 0.878) nor genders (F(1, 18) = 1.550, p = 

0.229). We reported no significant interaction effect for quadrant X condition (F(2.1, 38.7) = 1.181, 

p = 0.320) nor for quadrant X gender (F(2.1, 38.7) = 0.814, p = 0.458), nor a three-way interaction 

effect or any between-subject interaction effects (all p > 0.6). Using Bonferroni corrected t-

tests, we reported that regardless of condition, our older adults spent significantly more time in 

the NE (Goal) quadrant, compared to the NW (t = 4.095, p < 0.001, MD = 33.4% +/- 8.2%, 

Cohen’s d = 1.675), SW (t = 3.510, p = 0.005, MD = 28.7% +/- 8.2%, Cohen’s d = 1.436) and 

the SE quadrants (t = 5.742, p < 0.001, MD = 46.9% +/- 8.2%, Cohen’s d = 2.349). Therefore, 

regardless of consolidation time, both groups recalled the goal location particularly well (see 

Figure 6.5). 

 

6.3.5.2 Younger vs. Older Adults 

To investigate the differences between younger [n = 31; 24-hours/recent (n=16, 11 female) or 

1-month/remote (n=15, 10 female)] and older adults [n = 22; recent/24-hours (n = 11, 9 female) 

or remote/1-month (n = 11, 7 female)] at two different consolidation periods, we ran a 2 

(condition – recent v remote) X 2 (group – younger v older) X 4 (quadrant) mixed factorial 

ANOVA. We removed gender as it has had no reported impact throughout this chapter and did 

not contribute to any findings in our ANOVA models from Chapter 5 using our younger adults. 

We reported a main effect of quadrant (F(2.2, 105.4) = 143.795, p < 0.001, ƞ2 = 0.659). We also 

reported a significant difference between the groups (F(1, 49) = 9.310, p = 0.004) but not 

conditions (F(1, 49) = 0.465, p = 0.499). Furthermore, we reported a significant interaction effect 

for quadrant X group (F(2.2, 105.4) = 22.079, p < 0.001, ƞ2 = 0.101). We did not report a significant 

interaction for quadrant X condition (F(2.2, 105.4) = 1.948, p = 0.144), nor a three-way interaction 

effect or any between-subject interaction effects (all p > 0.2). Firstly, we investigated our main 
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effect using a Bonferroni corrected t-test. We revealed that our participants search in the NE 

(Goal) quadrant more than any other quadrant (all p < 0.001) as reported above and in Chapter 

5. Secondly, we used a Tukey corrected t-test to explore our quadrant X group interaction effect. 

We reported that regardless of condition, our younger group searched for a longer time in the 

NE (Goal) quadrant compared to our older group (t = 7.923, p < 0.001, MD = 29.5% +/- 3.7%, 

Cohen’s d = 2.209). We also reported that our older group spent significantly longer searching 

in the adjacent NW quadrant compared to our younger group (t = 3.933, p = 0.003, MD = 

14.6% +/- 3.7%, Cohen’s d = 1.097).  

To explore this further, we ran a 2 (group) X 2 (condition) ANOVA to investigate our 

between-subject group effect, focusing only on percentage time spent searching in the NE 

(Goal) quadrant. We reported no significant differences between conditions (F(1, 49) = 1.102, p 

= 0.299) but reported a significant difference between groups (F(1, 49) = 1.102, p < 0.001, ƞ2 = 

0.414). Notably, we reported no significant interaction effect for group X condition (F(1, 49) = 

0.349, p = 0.558). Therefore, averaged across conditions, our younger adults (M = 77.5%, SEM 

+/- 5.4%) spent significantly more time searching here compared to our older adults (M = 

47.97%, SEM +/- 1.69%). From an examination of the descriptive statistics, we reported 

greater time spent searching in the NE for the older adults recent group (M = 52.03%, SEM +/- 

6.2%) compared to the remote group (M = 43.9%, SEM +/- 8.89%), with contrasting results 

reported for the younger group in Chapter 5 (see Figure 6.5 also). 
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Figure 6.5: Standard bar chart of quadrant search percentages (%) for each quadrant during 

Recent and Remote recall trials for older and younger adults. The chance line (25%) is 

displayed showing most other quadrants below this regardless of group or recall phase. 

 

 

6.3.5.3 Performance Change in Older Adults 

In order to determine if performance declines from immediate to recent/remote, we ran a non-

parametric alternative to the paired t-test. Due to our small sample size, it is not possible to 

assume normality with the data. A Wilcoxon signed-rank test was conducted to evaluate 

whether there was a statistically significant change in percentage time spent searching the goal 

quadrant from immediate recall trial to the recent/24-hour recall trial in the older adult group. 

Results showed that time searching in the goal quadrant increased from immediate recall (M = 

45.45%, SEM +/- 6.9%) to 24-hour recall (M = 52.03%, SEM +/- 6.2%), but was not 
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statistically significant (Z = -1.156, p = 0.278; see Figure 6.6a). We also examined this change 

from immediate recall trial to the remote/1-month recall trial. We reported that time searching 

in the NE quadrant decreased from immediate (M = 60.9%, SEM +/- 5.84%) to remote recall 

(M = 43.9%, SEM +/- 8.9%). This decrease in performance was statistically significant (Z = 

2.134, p = 0.032, effect size = 0.727; see Figure 6.6b). These results reflect our observation in 

the descriptive data, but are contrasted to our findings from Chapter 5, in which our younger 

remote group actually significantly improved their performance. 

 

    

 

Figure 6.6: (a) Boxplot representing recent condition older adults’ percentage time in NE 

quadrant change from immediate to delayed (recent) trial. (b) Remote condition older adults 

percentage time in NE quadrant change from immediate to delayed (remote) trial. 
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6.4 EEG Results  

6.4.1 Age-Related Differences in Eyes-Open Resting State 

As discussed above, recent work by Jabès et al. (2021) revealed significant differences in 

resting state frequency power between younger and older adults, with their data containing a 

similar sample size to ours. Here, we calculated Power Spectral Density (PSD) using a Welch 

window (medium window length of 2s with an overlap ratio of 50%) to compute the power 

spectra (µV2/Hz) based on a typical Fast-Fourier Transform (FFT) default linear frequency 

definition (1:1:40). Power spectra were computed for five bands: Delta (2-4 Hz), Theta (5-7 

Hz), Alpha (8-12 Hz), Beta (15-29 Hz) & Gamma (30-40 Hz). The bands were defined based 

on previous chapters. The data was pre-processed and epoched as described.  

We incorporated the described epoch rejection criteria and visual inspection of 

participant data. These continuous recordings were then epoched and ran through our rejection 

criteria and visual inspection. This resulted in a total of approx. 5.6% of epochs being rejected. 

A participant from the younger adult group without sufficient data to facilitate analysis were 

excluded (n = 1). This left a total of 1870 epochs for older adults (n = 22) and a total of 2619 

epochs for younger adults (n = 30). We first extracted the mean relative resting state power for 

each frequency band at a global scalp level. Following this, we ran a 2 (group) X 2 (condition) 

X 5 (Frequency Band) mixed factorial ANOVA to investigate group differences in mean resting 

state data, and to ensure that there were no differences at rest between assigned memory 

conditions. We reported a main effect of frequency (F(4, 188) = 100.140, p < 0.001, ƞ2 = 0.667). 

However, we reported a significant difference between groups (F(1, 48) = 5.822, p = 0.020, ƞ2 = 

0.110) but not between conditions (F(1, 48) = 0.034, p = 0.854). We reported no interaction effects 

for frequency X group (F(4, 188) = 1.722, p = 0.147) nor frequency X condition (F(4, 188) = 0.455, 

p = 0.769). We also reported no three-way interaction effect, nor any between-subjects group 

X condition interaction (all p > 0.5). Therefore, across all frequency bands, our older adults 
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had significantly greater relative power compared to younger adults (MD = 0.1%, t = 2.413, p 

= 0.02, Cohen’s d = 0.019). However, we decided to investigate each frequency band 

individually using independent t-tests – considering the mean difference reported above is so 

low – and due to the fact that power relativity corrections induce a main effect between the 

frequencies (see Chapter 4 & 5). Therefore, we reported no significant difference between 

younger and older adults on relative delta (t(50) = -0.919, p = 0.363, Cohen’s d = -0.262), theta 

(t(50) = -1.024, p = 0.311, Cohen’s d = -0.291) nor alpha (t(50) = -0.556, p = 0.581, Cohen’s d 

= -0.158). However, for beta we reported that older adults (M = 0.134, SEM +/- 0.009) 

compared to younger adults (M = 0.087, SEM +/- 0.007) had significantly greater beta power 

(t(50) = 3.992, p < 0.001, Cohen’s d = 1.136). Furthermore, we also reported that older adults 

(M = 0.072, SEM +/- 0.007) compared to younger adults (M = 0.053, SEM +/- 0.007) had 

significantly greater gamma power at rest (t(50) = 2.007, p = 0.05, Cohen’s d = 0.571). These 

data are plotted in Figure 6.7a. Following this, we plotted isolated PSDs with a linear frequency 

definition of 1:1:40 for the full scalp providing a frequency resolution of 0.5 Hz. This allowed 

us to see the specificity (and magnitude) of the reported relative dynamics within the bands 

(Figure 6.7b) between younger and older adults. 

 To compare the group differences more accurately across individual sites, we ran a 

within-groups non-parametric permutation t-test with 5000 permutations. We then corrected 

for multiple comparisons using FDR-correction (see Chapter 3 and Thornberry et al., 2023). 

As in previous chapters, any electrode site that reached significance at an alpha level of 0.05, 

was marked by a yellow star. Figure 6.8a below demonstrates the topographical distribution of 

resting state relative power for each frequency band of interest in each group, with the results 

of permutation t-test below (Figure 6.8b). 
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Figure 6.7: (a) Relative power boxplot displaying each frequency and older and younger adult 

groups. Significance is denoted *p < 0.05 and ***p < 0.001. (b) An FFT line graph displaying 

the non-normalised mean magnitude of power (μV²/Hz) across the scalp for each group during 

resting state. Power is displayed across the 1-40 Hz frequency range, with a frequency 

definition of 0.5 Hz. 
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 For our FDR-corrected permutation t-tests, we reported some interesting differences in 

relative power between the groups (Figure 6.8). We first reported significantly greater frontal 

delta power in our younger participants compared to our older group, significant (p < 0.05) at 

sites F3 and AF3 (see Figure 6.8b). We also reported greater posterior theta power in our 

younger group, concentrated at the left-parietal area, significant (p < 0.05) at sites P3 and CP1 

(see Figure 6.8b). We reported no significant differences between our younger and older adults 

for alpha power, however, there is greater alpha power in our younger adults (which should be 

the case – see Tröndle et al. (2023)). This greater relative power is also better dispersed in our 

younger adults across the posterior scalp sites (see Figure 6.8a). For beta power, we reported a 

clear and significant difference (see Figure 6.8b) between our younger and older adults, with 

older adults having significantly greater beta power across the scalp, significant at sites F3, Fz, 

FC1, C3, Cz, C4, CP1, CP2, CP6 (p < 0.01) and also F4, AF3, AF4, CP5, CP6 & Pz (p < 0.05). 

Additionally, similar patterns were reported for gamma power (Figure 6.8b), with older adults 

having greater right-lateralised gamma power significant at sites AF4, F4, Cz, C4, CP2, CP6, 

P4, P8 (p < 0.05). These results are almost identical to Jabès et al. (2021), who reported lower 

theta and alpha power alongside greater beta and gamma power in older adults compared to 

younger adults, with a similar sample size.  
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b. Permutation t-test: Older - Younger Differences 

 

Delta (2-4 Hz) Theta (5-7 Hz) Alpha (8-12 Hz) 

Beta (15-29 Hz) Gamma (30-40 Hz) 

a. Younger & Older Adult Relative Resting State 

Power 

Figure 6.8: (a) Topographical plots of younger and older adult resting state topographies for each frequency 

band. Each are displayed on a local scale in relative power units (%). (b) Results from a permutation t-test 

examining differences between older and younger adults. Values are scaled at min/max globally in t-values. 

Stars mark significant electrode sites at p < 0.05. 
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6.4.2 Resting State Correlates of Spatial Navigation & Cognition 

We investigated whether the relative power of our chosen frequency bands during rest, related 

to any key measures of spatial learning as reported by Jabès et al. (2021). We also examined 

whether performance on cognitive tasks, which examine learning and memory abilities, are 

also related to the relative power in our frequency bands as reported by Finnigan and Robertson 

(2011). Not all measures from EEG, spatial learning and cognitive tasks were found to be 

normally distributed for both groups (via Q-Q plots & multivariate normality tests). Therefore, 

Spearman’s correlation co-efficient was used. Correlations were run on all participants and then 

for both groups independently to provide an entire overview. We included the following 

variables: MOCA scores, TMTB-A scores, NART errors, average path length (Vm) and 

average latency (seconds) during learning and time spent (%) in the target quadrant during 

immediate [Immediate NE (Goal)] and time spent (%) in the target quadrant during the delayed 

recall (24 hours or 1 month: [Recall NE (Goal)]). We then included mean relative power across 

the scalp for delta, theta, alpha, beta and gamma. 

 

6.4.2.1 All participants 

Initially, we will ignore correlations found between EEG bands. Some of these correlations 

would be expected, including any relationship between latency and path length, as both are 

measures of performance on the virtual water maze. Firstly, we reported no correlations with 

the TMTB-A scores (all p > 0.14) nor NART errors and any other variable (all p > 0.054). 

Interestingly, we reported a significant positive correlation between performance on the MOCA 

and percentage time spent searching in the NE (Goal) quadrant at both recall phases 

(Immediate: r(50) = 0.312, p = 0.023; see Figure 6.9a and Delayed: r(50) = 0.397, p = 0.003; 

not displayed). Furthermore, we reported a significant positive correlation between resting state 
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beta power and average latency (r(50) = 0.476, p < 0.001) and path length (r(50) = 0.474, p < 

0.001) during learning (see Figure 6.9b). We reported a similar but weaker significant positive 

correlation between resting state gamma power and average latency (r(50) = 0.288, p = 0.043; 

see Figure 6.9c) and path length (r(50) = 0.318, p = 0.025). We also reported a significant 

negative correlation between resting state beta power and performance during delayed recall 

(r(50) = -0.438, p = 0.001; Figure 6.9d). We reported no correlations between any other 

variables. All significant correlations are reported in Table 6.1. 

 

6.4.2.2 Group-specific Correlations 

For younger adults, we reported no significant correlations between mean relative power at any 

frequency and any cognitive task (all p  > 0.35) nor any spatial task performance measure (all 

p  > 0.06). Only relative gamma power and average path length (r(30) = 0.354, p = 0.060) & 

relative alpha power and average latency (r(30) = -0.351, p = 0.062) approached significance. 

For older adults, we also reported no significant correlations between mean relative power at 

any frequency and any cognitive task score (all p  > 0.11) nor any spatial task performance 

measure (all p  > 0.17). 

 

Table 6.1: Significant Spearman's correlations for all participants 

      Spearman's rho p 

Average Path  -  Immediate NE (Goal)  -0.291 * 0.036  

Average Path  -  Recall NE (Goal)  -0.459 *** < .001  

Average Path  -  beta  0.474 *** < .001  

Average Path  -  gamma  0.318 * 0.025  

Average Latency  -  Recall NE (Goal)  -0.421 ** 0.002  

Average Latency  -  beta  0.476 *** < .001  

Average Latency  -  gamma  0.288 * 0.043  

Immediate NE (Goal)  -  Recall NE (Goal)  0.614 *** < .001  

Recall NE (Goal)  -  beta  -0.438 ** 0.001  

MOCA scores  -  Immediate NE (Goal)  0.312 * 0.023  

MOCA scores  -  Recall NE (Goal)  0.397 ** 0.003  
 

* p < .05, ** p < .01, *** p < .001 
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Figure 6.9: Sample of Spearman’s rho correlation plots and respective confidence intervals for 

significant correlations reported in section 6.4.2 (A-D). Displayed plots are bolded in Table 6.1 

and were chosen based on typical reported measurements in the virtual water maze (Latency, 

Goal Quadrant %). 
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6.4.3 Immediate Recall: Young vs Old 

In order to examine any age differences in immediate recall (following an interval of 

approximately 10-15 minutes, see Chapter 2) we computed power spectra (µV2/Hz) for each 

frequency band for each group. We computed Power Spectral Density (PSD) using a Welch 

window (window length of 2s with an overlap ratio of 50%) based on a typical Fast-Fourier 

Transform (FFT) default frequency definition. Power spectra were computed for five bands: 

Delta (2-4 Hz), Theta (5-7 Hz), Alpha (8-12 Hz), Beta (15-29 Hz) & Gamma (30-40 Hz). 

Following this, we normalised the task-related PSD using a baseline correction method (see 

Chapter 2 & 5). Taking the resting state PSD, we baseline corrected each individual participants 

data using a decibel (dB) conversion: 

ⅆ𝐵𝑓 = 10 × log10 ( 
 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟𝑓

 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟𝑓
) 

 

Relative power is now relative to a corrected baseline and expressed in decibels (dB). We did 

this by using the same process used in Chapter 5: Standardize > Baseline normalization 

(A=Baseline) > Scale with the mean (dB). We decided not to focus our analysis on pre-defined 

regions of interest used in Chapter 4 & Chapter 5. Due to the large amount of processing 

required, as well as the last two studies reporting no significance at ROIs – we decided not to 

look at specific ROIs, but instead extract the scalp mean power (dB) for each participant. Our 

permutation t-tests examined differences at each individual electrode site, providing the same 

value whilst correcting for multiple comparisons. We excluded younger adults with incomplete 

immediate recall trial data (n = 3) and one older adult with no trigger in the data. Following 

our epoch rejection phase, this left us with 628 epochs in our older adults group (n = 21) and 

840 epochs in our younger adult group (n = 28). We first ran a 2 (group) X 2 (gender) X 5 

(frequency) mixed-factorial ANOVA to examine if there were any differences between the age 
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groups on mean global scalp power, and whether gender could have had an impact on these 

differences.  

Firstly, we reported a significant main effect for frequency (F(4, 180) = 12.240, p < 0.001, 

ƞ2 = 0.108). We did not report any significant differences between group (F(1, 45) = 0.033, p = 

0.856) nor gender (F(1, 45) = 2.750, p = 0.104). Furthermore, we did not report any significant 

interactions between frequency X group (F(4, 188) = 0.867, p = 0.485) nor frequency X gender 

(F(4, 188) = 1.846, p = 0.122). We also reported no significant between subjects interactions nor 

three-way interaction effects (all p > 0.23). To investigate our main frequency effect, we used 

Bonferroni corrected t-tests averaged over levels of group and gender. We reported that during 

immediate recall, delta (t = 3.755, p = 0.002, Cohen’s d = 0.658), theta (t = 3.898, p = 0.001, 

Cohen’s d = 0.683) and gamma powers (t = 4.866, p < 0.001, Cohen’s d = 0.853) showed 

significantly greater increases from baseline compared to alpha power (MD = 1.7 dB, SEM +/- 

0.45 dB; MD = 1.76 dB, SEM +/- 0.45 dB and MD = 2.2 dB, SEM +/- 0.45 dB respectively). 

This supports our previous findings, suggesting that delta-theta and gamma increases 

accompanying alpha suppression may support immediate spatial memory processing – 

seemingly regardless of age.  

To further examine the dynamics of these frequency bands between groups, we ran a 

non-parametric permutation t-test using (see Thornberry et al., 2023). We reported a baseline-

corrected scalp topography for each group, followed by group differences presented in t-values 

(Figure 6.10). From this analysis, we observed heightened power at posterior parts of the scalp, 

with less frontal and central power in our older adults compared to younger adults for delta, 

theta and alpha. No site reached significance. We reported less overall beta power in older 

adults with significance at the right centro-parietal electrode CP6. We reported significantly 

less right-posterior gamma (significant at sites Pz, P4, CP6, P8) but overall similar activation 

to our younger adults across the scalp. 
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Figure 6.10: Topographical distribution of power during immediate recall phase within the older and 

younger adult groups. Power in each frequency band is displayed as power relative to baseline (in 

decibels: dB, all positive). Both groups are displayed on the same scale. Differences are displayed in 

t-values within their own local scale. Significant electrode sites (p < 0.05) are marked with a yellow 

star. 



237 

 

6.4.5 Recent Memory (24-hours): Young vs Old 

We then chose to examine age-related differences in spatial memory recall during navigation 

after 24-hours, alternatively proposed as “recent” spatial memory. We computed PSDs for the 

relevant recall trials for younger adults (n = 16) and older adults (n = 11) using the methodology 

outlined previously. Our older adults had a very low epoch rejection rate (0.3%) leaving 329 

epochs for our older adult group and 480 epochs for our younger adult group. We then 

performed the previously discussed baseline correction for each individual participant. Firstly, 

we ran a 2 (group) X 2 (gender) X 5 (frequency) mixed-factorial ANOVA to examine if there 

were any differences during recent spatial memory recall between the age groups on mean 

global scalp power, and whether gender had any impact on these differences.  

 We reported no significant main effect of frequency (F(4, 92) = 2.283, p = 0.066), nor did 

we report any significant difference between groups (F(1, 23) = 1.031, p = 0.320) nor genders 

(F(1, 23) = 2.599, p = 0.121). We reported no significant interaction effect for frequency X group 

(F(4, 92) = 1.257, p = 0.292) nor any significant interaction for frequency X gender either (F(4, 

92) = 2.013, p = 0.099). We reported no significant three-way interaction effects nor any 

interaction effect between group X gender (all p > 0.8). Rather than exploring cross-scalp 

descriptives, we instead further investigated the group dynamics of these frequency bands using 

a non-parametric permutation t-test with the same criteria reported previously. We reported 

baseline-corrected scalp topography for each group below, followed by group differences 

presented in t-values (see Figure 6.11). It is important to note that group-level mean task-related 

activity for individual groups are displayed on a global scale, whilst group differences are 

displayed on frequency-specific t-scales from minimum to maximum t-value for the 

corresponding frequency. 
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Figure 6.11: Topographical distribution of power during recent (24-hour) recall phase within the older 

and younger adult groups. Power in each frequency band is displayed as power relative to baseline 

(in decibels: dB, all positive). Both groups are displayed on the same scale. Differences are displayed 

in t-values within their own local scale. Significant electrode sites (p < 0.05) are marked with a yellow 

star. 
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 The results of our permutation t-tests revealed significantly less right-lateralised frontal 

delta power in our older adults compared to our younger adults (significant at site FC6) with 

some generally similar synchronisation across the scalp. Our younger adults showed greater 

activation of the parietal area compared to older adults, but we did not report significance here. 

For theta power, we reported lesser left frontal and central activation compared to younger 

adults. However, older adults displayed greater theta activation at posterior areas, namely the 

parietal and central regions. Nevertheless, we reported no significance at any site. In alpha 

power, we reported much lesser activation across all areas of the scalp in our older adults. 

reduced alpha activation during spatial memory recall reflects greater alpha suppression in 

older adults. We reported significance at left frontal sites AF3 & F3 as well as at electrode C4. 

Interestingly, for beta power we report cross-scalp differences again between groups, with older 

adults showing lesser power compared to younger adults, demonstrating greater increases in 

beta activity. We report significantly less beta power at right-central and parietal sites C4, CP6 

& P4. Finally, for gamma we reported much greater increases in gamma power during recent 

memory retrieval in our younger adults compared to our older adults, significant at parietal 

midline sites Pz & P4. As might be expected, the activations for recent memory show a very 

similar pattern to those of immediate memory. Older adults show greater activation of theta 

posterior sites, activation of alpha central sites surrounded by general suppression of 

surrounding areas and a general suppression of beta and gamma, that tend to be posterior and 

right lateralised. The suppression of power is visible across the scalp average of non-normalised 

data presented in Figure 6.13.  
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6.4.6 Remote Memory (1-month): Young vs Old 

We then investigated age-related differences in spatial memory recall during navigation after 

1-month, i.e. remote spatial memory. We computed PSDs for the relevant recall trials for 

younger adults (n = 14) and older adults (n = 10) using the methodology outlined previously 

(1 older adult was removed from the analysis as they had too many missing epochs). Here, our 

older adults had no epochs rejected leaving 300 epochs for our older adult group and 417 

epochs for our younger adult group. We again performed the previously discussed baseline 

correction for each individual participant. Firstly, we ran a 2 (group) X 2 (gender) X 5 

(frequency) mixed-factorial ANOVA to examine if there were any differences in mean scalp 

power during remote spatial memory recall between the age groups, and whether gender had 

any impact on these differences.  

This time, we reported a significant main effect of frequency (F(4, 80) = 7.189, p < 0.001, 

ƞ2 = 0.123). Nonetheless, we reported no significant difference between the groups (F(1, 20) = 

0.996, p = 0.330) nor between the genders (F(1, 20) = 0.059, p = 0.811). We reported no 

significant interaction effect for frequency X group (F(4, 80) = 0.913, p = 0.460) nor any 

significant interaction for frequency X gender either (F(4, 80) = 0.380, p = 0.823). We also 

reported no significant three-way interaction effects nor any interaction effect between group 

X gender (all p > 0.54). Using Bonferroni corrected t-tests we explored our main effect, 

revealing that across both groups, delta (t = 4.503, p < 0.001, Cohen’s d = 1.022), theta (t = 

2.902, p = 0.048, Cohen’s d = 0.658) and gamma powers (t = 4.633, p < 0.001, Cohen’s d = 

1.051) were all significantly greater than alpha, reporting no significant difference between 

alpha and beta power (t = 2.265, p = 0.262, Cohen’s d = 0.514). Interestingly, this reflects our 

main effect reported during the immediate recall. We reported permutation t-test results on 

topographies for each group below, followed by group differences presented in t-values (Figure 

6.12). We note again that individual groups are plotted on a global scale (dB). 
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Figure 6.12: Topographical distribution of power during remote (1 month) recall phase within the 

older and younger adult groups. Power in each frequency band is displayed as power relative to 

baseline (in decibels: dB, all positive). Both groups are displayed on the same scale. Differences are 

displayed in t-values within their own local scale. Significant electrode sites (p < 0.05) are marked 

with a yellow star. 
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Figure 6.13: (a) An FFT line graph displaying the non-normalised mean magnitude of power 

(μV²/Hz) across the scalp for the older and younger adult groups during recent and remote. 

Power is displayed across the 1-40 Hz frequency range, with a frequency definition of 0.5 Hz. 

 

 

6.4.7 Recent vs. Remote Memory in Older Adults 

Finally, we wanted to examine the difference within the older adult group, between recent (n = 

11) and remote (n = 10) spatial recall. We extracted mean scalp power for each of our memory 

consolidation groups in each of the five frequency bands of interest. We then also ran a 

permutation t-test to compare activity across 32-sites between the groups in each frequency 

band using the aforementioned test criteria and correction method. Individual group 

topographies are not displayed here, as they are already available in Figure 6.11 and 6.12. 
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However, we also plotted a PSD graph the non-normalised mean magnitude of power (μV²/Hz) 

for each group (Older: recent/remote & Younger: recent/remote) with a frequency definition of 

0.5 Hz produced from a linear 1:1:40 FFT (brainstorm default). This provides an insight into 

the frequency dynamics across the full spectrum and away from baseline correction – which 

can also provide useful extra information. 

 Focusing on just our older adults (red lines in Figure 6.13), we ran a permutation t-test 

with the same parameters and corrections as before. We report group difference topographies 

(Remote – Recent) in Figure 6.14 below. We reported significantly increased delta power in 

our remote condition at right frontal and central sites (F4, FC6 & C4) as well as increased delta 

at posterior occipital site PO3. Overall delta power is enhanced in our remote memory 

condition (see Figure 6.13 and 6.14). Data trended towards reduced theta power in our remote 

condition, but we reported no significance at any specific electrode site. Interestingly, alpha 

power trended towards being greater in our remote memory compared to our recent memory 

condition, but no site reached statistical significance. We suspect that this is driven by an 

increase within alpha at a particular range within alpha (approx. 8 – 10 Hz, also shown with 

less enhancement in our younger group – see Figure 6.13). No other significant differences 

were noted. These are interesting findings as our early work illustrated the importance of delta 

power during remote memory recall (see Chapter 5 section 5.3.2.2). This may suggest a low-

frequency age-specific deficit, accompanied by an age-dependent reduction in theta power 

(reported in section 6.4.6).  
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Figure 6.14: Topographical difference plots showing results from a permutation t-test 

examining differences between older adult delayed recall conditions (Remote – Recent). Values 

are scaled at min/max globally in t-values. Stars mark significant electrode sites at p < 0.05. 

 

 

6.4.8 Within-group explorative analysis of age-specific performance change 

Previously, we reported a behavioural condition-specific within-group effect in our remote 

condition, with a reduction in time spent searching in the target quadrant significantly reduced 

from immediate to remote memory trials. We also reported a neural difference, with reduced 

theta power compared to our remote condition younger adults and a delta power increase 

compared to our recent older adults – accompanied by various shifts in alpha power. To explore 

this, we decided to perform an exploratory within-groups comparison, similar to the analyses 

completed in Chapter 5. However, we only reported the phase (immediate and recent/remote) 

differences rather than including isolated group topographies, to ensure we only report 

Delta (2-4 Hz) Theta (5-7 Hz) Alpha (8-12 Hz) 

Beta (15-29 Hz) Gamma (30-40 Hz) 
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corrected and statistically relevant information. We used a non-parametric permutation within-

subjects t-test. We performed two of these t-tests one for recent versus immediate (n = 11 per 

phase) and one for remote versus immediate (n = 10 per phase). Both topographies are 

displayed on a global scale (dB) comparing the delayed recall phase to the immediate recall 

phase, meaning positive t-values represent greater activity in the delayed phase compared to 

immediate, and vice-versa (Figure 6.15a). We also reported the non-normalised mean 

magnitude of power (μV²/Hz) as a PSD (with the same criteria as section 6.4.7 above) for each 

phase and condition – to further investigate differences across the full power spectrum (Figure 

6.15b). 

 We reported interesting remote and recent recall specific changes at different ends of 

the frequency spectrum. It is important to note that our t-tests are run with individually 

normalised signal (dB) which do not necessarily reflect the patterns seen in non-normalised 

signal. We revealed significant increases in frontal delta power (significant: Fz and FC1) from 

immediate to remote. We also reported cross-scalp decreases in theta power from immediate to 

remote (significant: FC6). Delta & theta power in our recent memory group appear stabilised 

reporting no significance at any site. For alpha, we reported decreases from immediate to 

delayed recall in both recent and remote condition but no significance at any site. Similar beta 

dynamics were reported, showing decreased central beta power from immediate to delayed 

recall in both conditions. These decreases are significant from immediate to recent recall (at 

sites FC1, FC2, and C3). Finally, we reported stabilised gamma from immediate to remote 

recall, with no significant changes. However, we showed significant fronto-central, central and 

parieto-central decreases in gamma power from immediate to recent (significant: FC2, Cz and 

CP1). The non-normalised PSD shows these patterns but are difficult to interpret across trials 

and within-groups with no correction to individual baselines.  
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a. Within-Group Paired Permutation t-test Results 

 

      

 

   

 

b. Non-normalised scalp PSD 

 

 
 

Figure 6.15: (a) Topographical difference plots showing results from a within-groups paired 

permutation t-test examining differences between older adults immediate and delayed recall conditions 

(Remote & Recent). Values are scaled at min/max globally in t-values. Stars mark significant electrode 

sites at p < 0.05. (b) An FFT line graph displaying the non-normalised mean magnitude of power 

(μV²/Hz) across the scalp for the older adult groups. Both the immediate and recent trial of the recent 

condition (Left) and immediate and remote trial of the remote condition (Right) are reported. Power is 

displayed in both across the 1-40 Hz frequency range, with a frequency definition of 0.5 Hz. 
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6.5 Discussion 

6.5.1 Behavioural Results 

Consistent with our hypothesis, we found that healthy older adults performed worse on a virtual 

water maze task in both learning and memory phases compared to younger adults. Our older 

adults had longer path lengths and were slower to locate the target during learning. During 

immediate, recent and remote recall, older adults also searched less in the target quadrant 

compared to younger adults. Older adults still successfully learned the task, as they reduced 

their path lengths from initial trials to later trials. This was further supported by an increase in 

target quadrant search time, above chance levels, from initial trials to later trials. Nonetheless, 

we reported a decrease in accuracy from immediate to remote recall in older adults which we 

did not report in our younger adults. However, they still searched well above chance regardless 

of consolidation time.  

This would suggest older adults have intact, but poorer spatial learning and memory 

abilities compared to younger adults. We do not believe that it is related to issues with 

technology or familiarity with the task. It may also suggest that recent spatial memories are 

better preserved than remote memories in older adults. Our behavioural findings would support 

most virtual water maze literature (Antonova et al., 2011; Daugherty et al., 2015; Moffat et al., 

2006; Reynolds et al., 2019) – which illustrate that older adults learn the task but execute 

behaviours slower and create more complex routes, with greater differences in memory 

performance. One explanation (Rodgers et al., 2012) is that older adults tend to prefer response 

strategies (e.g., learning a series of movements). This strategy does not require knowledge of 

the relationships between goals and landmarks which slows performance (Konishi et al., 2017). 

The water maze promotes the use of these strategies, which could explain why older adults 

perform slower and are less accurate than younger adults. Neuroimaging studies also show 
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support for this, with heavy reliance from older adults on the frontal cortex and 

extrahippocampal regions during successful navigation (Korthauer et al., 2016; Reynolds et al., 

2019). This may be compensation for deterioration of the MTL and anterior hippocampus due 

to ageing (Berron et al., 2018; Gallagher et al., 2006; Ward et al., 2015). 

 

6.5.2 Resting State Activity 

Once again, consistent with our proposed hypothesis we reported that healthy older adults 

showed differences in resting state EEG compared to younger adults. We replicated recent 

findings from Jabès et al. (2021) reporting lesser/suppressed low-frequency oscillations in 

frontal delta (2-4 Hz) and parietal theta (5-7 Hz) alongside greater centralised beta (15-29 Hz) 

and gamma (30-40 Hz) in older adults. Interestingly, we also found no difference in alpha 

power between younger and older adults. Though we observed more alpha power in younger 

adults replicating typically reported effects (Ishii et al., 2018) – they are not significant, which 

has been explained and reported using larger datasets (Cesnaite et al., 2023). Therefore, we 

were also satisfied that this resting state could act as a non-task related baseline for our data, 

as it matches typical dynamics reported in the literature. Uniquely, our study design allows us 

to report location-specific differences within our resting state. Reduced frontal low-frequency 

oscillations (1-7 Hz) have been associated with poorer executive function and spatial task 

performance in older adults (Mathewson et al., 2012; Vlahou et al., 2014). Excess activity in 

these oscillations during rest has been shown to predict onset of cognitive impairment (Prichep 

et al., 2006) – but increased low-frequency power has also been shown to result in improved 

performance on memory tasks (Finnigan & Robertson, 2011; Fleck et al., 2017). Posterior 

decreases in theta power are associated with poorer memory capacity and performance (Fleck 
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et al., 2017), reflected with corresponding reduced theta during memory tasks in older adults 

(Cummins & Finnigan, 2007). This may possibly be explained by deficits in MTL connectivity.  

 Additionally, increased high-frequency (beta and gamma) oscillations have also been 

reported in older adults at rest (Jabès et al., 2021; Vysata et al., 2014). Increased high-frequency 

power at rest is associated with better cognitive performance in older adults (Alexander et al., 

2006). Oscillatory slowing (reduced high-frequency oscillations) has been shown to be 

predictive of cognitive performance, and a relative biomarker for cognitive decline (Dauwels 

et al., 2010; Jeong, 2004; Knott et al., 2000; Laptinskaya et al., 2020). It is possible that older 

adults use high-frequency oscillations as a compensatory mechanism for reduced low-

frequency oscillatory networks (typically associated with hippocampal communication and 

spatial cognition). Considering we also reported (similarly reported by Jabès et al., 2021) a 

negative correlation between beta power and memory performance following consolidation – 

this may be a plausible explanation. Further research would be needed to confirm this. 

 

6.5.3 Age-related differences across memory phases 

During the immediate recall, we reported relatively similar delta power with decreased frontal 

theta power and greater parietal theta power in our older adult group. There was less frontal 

alpha power in our older adults with some central increases – but not significant. Interestingly, 

we reported decreased beta power in older adults, with the opposite in younger adults, who 

showed increased beta. We also reported significantly less gamma power in older adults during 

their immediate spatial recall trial. Though there are no behavioural differences, our results 

align with some literature relating to memory and reduced gamma oscillations. For example, 

gamma power was reduced during successful short-term memory recall in healthy older adults 

compared to patients with MCI (Park et al., 2012). As suggested previously (see Chapter 5) - 
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gamma oscillations are likely involved in the memory retrieval process, specifically the 

comparison of retrieved information to environmental information (Herrmann et al., 2004). 

Reduction of gamma power in our older adults may reflect the strategy used to learn the task 

having no contextual or spatial framework. In other words, associative spatial relationships nor 

a schematic of the environment were encoded by older adults – who instead encoded 

egocentrically-driven movement knowledge leading to difficulty facilitating recall (Boone et 

al., 2018; Moffat et al., 2001; Wiener et al., 2020). Furthermore, gamma-theta coupling has 

been shown to be more variable in the older adults, resulting in poorer associative memory 

performance (Karlsson et al., 2022; Reinhart & Nguyen, 2019). Considering we see reduced 

theta power at frontal areas, which are known to be involved with working memory (Owen et 

al., 1990; Prabhakaran et al., 2000) - it is possible our older adults show a deficit in associative 

or working memory during immediate recall required for efficient and successful spatial 

navigation. Interestingly, these findings reflect results from Chapter 5. We reported increased 

gamma power accompanied by greater delta (both at frontal regions). In older adults, we report 

the opposite but with theta and gamma power (which could be explained by the reported age-

related shifts in peak frequencies - Cesnaite et al. (2023)). Though these rhythms are clearly 

involved in spatial memory retrieval, we cannot determine whether it is strategy choice or 

decline in memory network efficiency that results in our older adults’ poorer performance. 

 During recent retrieval we reported that older adults had significantly less frontal delta 

and alpha along with significantly less beta and gamma activity at parietal sites. We also 

reported reduced alpha power in our younger adults during their recent memory phase of 

navigation (also see Chapter 5) – which we attributed to greater task-related attention and 

inhibition of irrelevant stimuli (Foxe & Snyder, 2011; Händel et al., 2011; Hanslmayr et al., 

2009; Waldhauser et al., 2012). Therefore, it is entirely likely to report largely and significantly 

more alpha suppression in older adults. Researchers suggest this is related to greater task-
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related attention (Nguyen et al., 2020) or perhaps greater demand on inhibitory networks due 

to inefficient cognitive mapping (Lithfous et al., 2015). Alternatively, as we suggested before 

it could also be related to inefficient strategy choice during encoding or non-spatial features 

available during retrieval, having greater impact on recall after 24 hours. However, Strunk et 

al. (2017) reported alpha and beta desynchronisation in older adults during a contextual-

retrieval task, suggesting it is linked to the fact that they require episodic reconstruction to 

successfully recall. The authors argue that this is a compensatory mechanism caused by poor 

recall of information, due to deficits at encoding (James et al., 2016). This may explain our 

findings and that they operate at higher frequencies, as we reported no behavioural difference 

between our younger and older recent memory groups, just slower performance. We were 

pleased to have reported similar patterns of activation between immediate and recent 

conditions. 

 During remote recall, we reported significant reductions in theta power at various sites 

across the scalp in older adults – a sign of healthy ageing (Cummins & Finnigan, 2007). 

However, we also reported centralised beta suppression compared to our younger adults who 

demonstrated beta increases (see Chapter 5). We further reported a reduction in parietal gamma 

power compared to recent recall. We would suggest that since the memory has become 

consolidated in long-term memory, recruitment of theta and gamma power is required to 

retrieve it. Recall in older adults, particularly for remote memories, may be subject to the 

anterior-posterior shift. This is an age-related reduction in posterior activity alongside increases 

in frontal activity (Zhang et al., 2017). Decreases in gamma have been reported during episodic 

memory encoding (Després et al., 2017) leading to issues at retrieval. Nevertheless, spatial 

memory retrieval in older adults results in significant reduction in high-frequency (beta and 

gamma) power, with frontal delta and theta increases. During remote memory retrieval, theta 

power is significantly less compared to younger adults – with other frequency bands displaying 
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the same characteristics. We believe that theta suppression is responsible for remote memory 

retrieval in older adults compared to younger adults – whereas greater alpha suppression is 

required for accurate recall of recent memories. Reduced beta and gamma power with age may 

be signatures of compensatory functions to facilitate spatial navigation. These networks are 

enhanced compared to younger adults at rest – should they need to be recruited. It would be 

interesting to focus on good and poor performing older adults to confirm this (see Chapter 7). 

Nevertheless, the lack of similar studies makes our results difficult to interpret with regards to 

the literature. 

 

6.5.4 Anterior-posterior shift evident within older-adult memory conditions 

Finally, we reported some interesting dynamics within our older adult groups, that are reflective 

of the aforementioned anterior-posterior hypothesis of ageing (Ansado et al., 2012; Zhang et 

al., 2017). We reported recruitment of low-frequency oscillations from immediate to remote 

memory, resulting in significantly increased frontal delta power and reduced theta power – with 

the standard decreased beta and gamma levels from immediate to remote. Furthermore, older 

adults performed worse in their remote trial compared to their immediate. Alternatively, we 

reported recruitment of higher-frequency oscillations from immediate to recent recall, resulting 

in significant decreases in beta and gamma activity – with no behavioural performance change. 

There is a decreased but stable level of alpha power in both groups from immediate to delayed. 

Taken together, these findings would suggest that high-frequency oscillations are required to 

recall recent memory, as beta and gamma suppression acts as a compensatory mechanism for 

higher level cognition – facilitating recent spatial memory retrieval. These differences are 

observed between ages at posterior sites but are found within older adults more centrally. 

During remote memory, older adults depend on low-frequency frontal oscillations, increasing 
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delta and suppressing theta power – with theta in older adults reflecting gamma behaviour via 

desynchronisation whereas in younger adults, theta and gamma increase in power.  
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Chapter 7 

 

General Discussion 
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7.1 Overview of thesis findings 

The main aim of this thesis has been to investigate the neural oscillations in humans in a virtual 

water maze task – through experimental paradigms that would examine learning and memory 

during spatial navigation. Very little is known about the cortical oscillations responsible for 

these two essential processes as humans navigate. Furthermore, the role and dynamics of 

different frequency bands throughout the navigation process are not well understood. Current 

theories surrounding the role and dynamics of oscillations derive from intracranial 

electrophysiology of the hippocampus (see Ekstrom et al., 2017 for a review), with some scalp 

studies not assessing navigation as a complex behaviour and instead recording cortical EEG at 

different processes throughout, such as decision-making (Chrastil et al., 2022; Lin et al., 2022) 

or scene-recognition (Durteste et al., 2023; Nicolás et al., 2021; Strunk et al., 2017). There are 

a small number of studies that address the impact of ageing on these oscillations during spatial 

cognition (Ekstrom & Hill, 2023). To our knowledge, no research has been carried out to date 

on these oscillations during recent and remote memory-driven spatial navigation.  

 Chapter 3 attempted to examine the learning or encoding process during spatial 

navigation in healthy younger adults using a virtual water maze task. Though this is an essential 

part of successful spatial navigation, it has only been studied at a behavioural level (Chrastil & 

Warren, 2013; Deery & Commins, 2023; Hamilton et al., 2002; Kelly & Gibson, 2007; 

Newhouse et al., 2007; Redhead & Hamilton, 2009; Schoenfeld et al., 2014; Schoenfeld et al., 

2010). Empirical examination of neural oscillations during spatial learning has been limited, 

with memory recall being the main focus of much human intracranial work (Aguilera et al., 

2022; Colgin et al., 2009; Goyal et al., 2020; Herweg, Sharan, et al., 2020; Kota et al., 2020; 

Nyhus & Curran, 2010; Vivekananda et al., 2021). In virtual navigation work, there are some 

papers that address the encoding process. For example, Bischof and Boulanger (2003) reported 

greater theta power in participants during virtual navigation when new spatial information was 
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being encoded, and when participants made a mistake and needed to revise their route. 

However, the authors suggest this increased theta is related to retrieval of stored views to aid 

their navigation. Chrastil et al. (2022) reported increased theta and alpha power in midfrontal 

and parietal channels respectively during learning in active navigation. They suggest a 

plausible link between these oscillations and memory encoding and retrieval (Hsieh & 

Ranganath, 2014). Participants undergoing guided navigation displayed suppressed parietal 

theta power. Considering the authors reported these dynamics before a decision-making point 

in their navigation task – we would argue that the flexibility of spatial behaviour is not 

considered. Therefore, our work in Chapter 3 aimed to control for all other aspects of behaviour 

during spatial navigation known to influence theta and alpha oscillations, including speed, 

orientation and movement (Babiloni et al., 2014; Bush et al., 2017; Caplan et al., 2003; Hori et 

al., 2013; Kaplan et al., 2012; Kropff et al., 2021; Yassa, 2018) and examine differences in 

these rhythms during important phases of natural navigation (Nyberg et al., 2022). To do so, 

we used a control (non-learning) and a learning group. Furthermore, we wanted to investigate 

the dynamics of these rhythms as there has been mixed reporting of increases and decreases 

within the literature (Herweg, Solomon, et al., 2020). 

 In Chapter 3 participants carried out twelve trials in our virtual water maze task 

NavWell (Commins et al., 2020; Thornberry et al., 2023) and were randomly assigned to either 

a learning group (who were required to learn the location of a hidden target across 12 trials) or 

a non-learning group (who were required to move around the same arena for 12 trials, but 

without the presence of a goal; each trial was time-matched to the average latency of the 

learning group). The results of our experiment revealed that theta power increased in an 

explorative condition (non-learning) but was decreased in our learning condition, with parietal 

midline theta a marker of successful spatial encoding. We also reported decreased alpha power 

with learning at frontal and parietal regions, with similar suppression in our non-learning group. 
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We initially hypothesised that if the contribution of theta and alpha power is related to learning, 

we should report differences between the groups. If it is related to active sensorimotor 

integration, we should report no group differences. We found support for the theory that theta 

plays a crucial role in spatial encoding during exploration, as opposed to sensorimotor 

integration (Alekseichuk et al., 2016; Buzsáki, 2005; Chrastil et al., 2022; Du et al., 2023; 

Greenberg et al., 2015; Herweg, Solomon, et al., 2020; Klimesch et al., 1997; Lithfous et al., 

2015; O'Keefe, 1993). Furthermore, we reported reduced theta related to successful encoding, 

typically found in associative learning tasks (Fellner et al., 2016; Greenberg et al., 2015; Kota 

et al., 2020; Michelmann et al., 2018). We interpreted our results as support for the neural 

efficiency hypothesis – which claims that greater neural effort is recruited when learning a task, 

compared to when a task has been learned – as task completion now relies on the retrieval of 

encoded information (Commins, 2018b; Jaiswal et al., 2010; Thornberry et al., 2023). With 

focus on studies that attempted to investigate spatial learning during navigation, we reported 

similar attention-modulation interpretations of decreased parietal alpha power, as reported by 

Gehrke and Gramann (2021).  

 Chapter 4 examined the oscillations underlying performance in the immediate recall 

trial of participants from Chapter 3. In the standard Morris Water Maze procedure, a “retention” 

or “probe” trial is carried out following the learning trials to verify learning and examine spatial 

recall (Morris, 1984; Morris, 1981; Nunez, 2008; Vorhees & Williams, 2014a). Typically, this 

test can be used to examine hippocampal-dependent spatial memory (Astur et al., 2002; 

Barnhart et al., 2015; Morris et al., 1982). Our participants had to recall the targets’ location 

during a single trial, however, the target was removed. Our learning group demonstrated greater 

delta and theta activity during memory recall, as well as alpha suppression at posterior sites. 

Delta and theta power also increased when searching behaviour shifted. Our non-learning 

group showed significant alpha power increases over time suggestive of attentional 
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disengagement. We suggest that our alpha findings relate to memory-guided attention with a 

lack of competing associations and an ability to inhibit attention to interfering or unwanted 

visual stimuli (Du et al., 2023; Foxe & Snyder, 2011; Händel et al., 2011; Klimesch, 2012; 

Klimesch et al., 1998; Sutterer et al., 2019; Waldhauser et al., 2012). Low-frequency 

oscillations are involved to greater extent during spatial retrieval, with delta & theta power 

increasing when applying memory based spatial search strategies. These results align with 

previous studies reporting low-frequency oscillation increases during spatial memory retrieval 

(Bohbot et al., 2017; Buzsáki, 2005; Chrastil et al., 2022; Du et al., 2023; Greenberg et al., 

2015; Liang et al., 2018; Lin et al., 2017; Nishiyama et al., 2002; Park et al., 2014). We found 

it difficult to align our high-frequency findings with the literature, though would suggest they 

are involved in memory and attention maintenance during navigation (Alekseichuk et al., 2016) 

– reflected in enhanced beta and gamma oscillations in our learning group. 

 Chapter 5 sought to build on some of the limitations from the previous chapter (such as 

a lack of baseline, COVID-19 precautions, etc.) and to examine the impact of consolidation 

time on spatial memory retrieval. This would also expand our oscillatory findings to address 

theoretical questions regarding memory consolidation. To our knowledge, this is the first 

attempt to study retrieval of recent (encoded 24-hours ago) and remote memories (encoded 1-

month ago) during human spatial navigation. We recruited thirty-one new healthy younger 

adults who underwent twelve learning trials, an immediate recall trial and then another delayed 

recall trial (either 24-hours or 1-month later). Here, we found that there was no difference in 

performance between our recent and remote recall participants. All participants learned and 

recalled the target location at a similar level. Interestingly, our remote condition actually 

improved performance from their immediate recall trial. Of most interest were our neural 

findings. We replicated relative power dynamics from Chapter 4 using a new set of participants. 

We also reported more support for an efficiency hypothesis, as low-frequency oscillations and 
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alpha suppression were greater from immediate to recent and from recent to remote retrieval. 

We suggest it is related to overall effort required to retrieve spatial information (Jaiswal et al., 

2010) which has been shown to produce greater (delta-theta) and less (alpha) power relative to 

task and cognitive demands (Grabner et al., 2004; Riečanský & Katina, 2010). For example, 

Maurer et al. (2015) reported that increased frontal theta power (5–7 Hz) was linked to 

variations in task difficulty and cognitive effort. Therefore, greater task demands may lead to 

greater delta-theta and suppression of alpha. 

 Additionally, we reported supporting roles of gamma oscillations (30-40 Hz) in 

retrieval of cortically distributed memories, i.e. remote (Alekseichuk et al., 2016; Colgin et al., 

2009; Herrmann et al., 2004; Honkanen et al., 2015; Lundqvist et al., 2016; Pu et al., 2018; 

Roux et al., 2012). We found that gamma power mirrors the delta activation in our remote 

condition only, with greater increases in delta-theta and gamma power from immediate to 

remote retrieval. Similar dynamics were also reported in the human hippocampus during long-

term memory retrieval in a virtual navigation task by Vivekananda et al. (2021). A possible 

explanation of these findings from consolidation theories is discussed later. 

 Finally, Chapter 6 aimed to explore age-differences related to spatial memory retrieval, 

as well as the impact of age on recent and remote spatial recall. We recruited twenty-one older 

adults and compared them to our younger adults from Chapter 5 using the same experimental 

procedure. As we had collected resting state data, we also attempted to examine the relationship 

between resting-state dynamics and spatial navigation performance (Cesnaite et al., 2023; 

Finnigan & Robertson, 2011; Fleck et al., 2017; Jabès et al., 2021; Laptinskaya et al., 2020; 

Scally et al., 2018; Vlahou et al., 2014; Zou et al., 2013). This would also support proposals by 

Buzsaki (2006) that oscillatory patterns are pre-established and become enhanced during 

engagement for cognition. We hypothesised that our older adults should perform worse than 

our younger adults. We also hypothesised that older adults performance would decline as a 
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function of consolidation time. Behaviourally we reported that healthy older adults had worse, 

but not impaired spatial learning and memory performance compared to younger adults 

(Commins et al., 2020). Our findings also suggest that recent spatial memories are better 

preserved than remote memories in older adults as we reported a significant decline in 

performance within the older adults from immediate to remote memory condition. Much of our 

behavioural findings align with the virtual water maze literature (Daugherty & Raz, 2017; 

Daugherty et al., 2015; Dobbels et al., 2020; Reynolds et al., 2019; Zhong et al., 2017). We 

also replicated resting state EEG age-differences reported by Jabès et al. (2021) – reporting a 

correlation between high-frequency oscillatory power in gamma and task performance. We also 

replicated a negative correlation between beta power and memory performance – but only after 

a consolidation period (i.e., delayed recall performance).  

Older adults show reduced frontal theta, beta and significantly reduced parietal gamma 

during immediate spatial recall. Frontal theta and gamma suppression may indicate 

impairments in working or associative memory abilities (Barr et al., 2014; Basu et al., 2021; 

Dimitrov et al., 1999; Hanninen et al., 1997). These impairments may be explained by encoding 

strategy choice during learning (Lithfous et al., 2015). For recent memory performance, older 

adults displayed greater alpha suppression with less delta, beta and gamma power compared to 

younger adults. Alpha may relate to enhanced cognitive effort or spatial attention (Cesnaite et 

al., 2023; Nguyen et al., 2020; Rondina Ii et al., 2019), whereas the reduced power in rhythms 

we have previously reported as important for successful retrieval may explain slower 

navigational performance (Després et al., 2017; Karlsson et al., 2022). In remote recall, older 

adults displayed significant theta power reductions, central beta suppression and less parietal 

gamma power compared to younger adults. We suggest that this may indicate compromised 

retrieval (linked to theta and gamma: (Kardos et al., 2014; van de Vijver et al., 2014)) and the 

need for compensation after long-term consolidation (previously reported for beta: Winterling 
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et al. (2019)). Within our older adults, results suggested reduction in posterior high-frequency 

oscillations during recent memory but increases in frontal delta and reduced theta oscillations 

during remote retrieval. We suspect that these differences could relate to the storage of the 

memory and the cortical regions required for retrieval.  

 

7.2 Potential implications and future directions 

Our findings from Chapter 3 have some important implications for our understanding of spatial 

learning during navigation (Thornberry et al., 2023). For example, our results provide 

supporting evidence for an associative encoding model of learning during human spatial 

navigation. Firstly, explorative navigation and the route initiation phase demonstrate increased 

theta power at frontal sites. It is possible this reflects the binding of various sensory cues (e.g., 

the light or the square) into associative representations within the hippocampal-entorhinal 

circuit (Horner & Burgess, 2013; Horner et al., 2012). Delaux et al. (2021) reported sustained 

theta increases prior to the start and towards the end of a mobile virtual navigation task. The 

authors suggest that increases may relate to decision-making (reported by Chrastil et al., 2022) 

and/or preparation to encode information (reported by Kline et al., 2014).  

These oscillations remain relatively heightened in our non-learning group, whilst we 

report typical decreases in power observed following successful encoding in our learning group 

(Crespo-García et al., 2016; Greenberg et al., 2015; Miyakoshi et al., 2021; Park et al., 2014). 

These theta decreases may represent efficient encoding and on-demand retrieval of goal-related 

stimuli. Furthermore, several spatial and non-spatial experiments report reduced theta 

following successful associative learning (Crespo-García et al., 2016; Fellner et al., 2016; 

Greenberg et al., 2015; Herweg, Solomon, et al., 2020; Karlsson et al., 2022; Lithfous et al., 

2015; Michelmann et al., 2018) as opposed to increases in theta during decision-making, 

exploration or memory retrieval (Chrastil et al., 2022; Delaux et al., 2021; Herweg, Sharan, et 
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al., 2020; Herweg, Solomon, et al., 2020; Jensen & Tesche, 2002; Khader et al., 2010; Liang et 

al., 2021). Furthermore, theta decreases alongside greater alpha suppression likely represent 

focused attention towards spatial features and goal associations – as well as controlled 

information encoding and retrieval (Foxe & Snyder, 2011; Klimesch, 2012). The dynamics of 

these bands most likely support an associative model of spatial learning, and the uptake of 

efficient, energy-saving associative retrieval strategies; which is strongly supported 

behaviourally (Commins & Fey, 2019; Pearce, 2009; Shanks, Charles, et al., 1998; Shanks, 

Darby, et al., 1998; Tse et al., 2007; Urcelay & Miller, 2014). Future studies should investigate 

if similar dynamics exist within theta and alpha bands during encoding using more precisely 

timed associative learning tasks such as the face-name pairs task (Caffrey & Commins, 2023). 

This would provide great insight into the contribution of neural oscillations and general 

associative learning to the development of spatial schemas (Tse et al., 2007) and cognitive maps 

(O'Keefe & Nadel, 1978; Tolman, 1948). 

Nevertheless, only using a 32-channel scalp EEG placed limits on the types of analysis 

we can run. We could not perform accurate source analysis and reconstruction to explore this 

proposed communication between the parietal and entorhinal cortex and the hippocampus 

(Ekstrom et al., 2017). Future studies should attempt source analysis during these navigation 

phases using higher-density EEG or Magnetoencephalography (MEG) systems to examine our 

proposed hippocampal associative integration hypothesis. The low number of trials used to 

estimate oscillatory activity may have reduced the quality of data used to draw some of the 

above suggestions. Human navigation is a fast and fluid process, but we did our best to control 

for these limitations as much as possible. We used averaged time-frequency plots for each 

participant to improve the signal-to-noise ratio and stability (Cohen, 2014) - fewer trials are 

required to produce reliable and less variable oscillatory estimates than would be for ERPs 

(Boudewyn et al., 2018; Morales & Bowers, 2022). This is not the first attempt to capture the 
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spatial learning and navigation process using few trials combined with EEG (e.g., 3 trials per 

environment in the Audiomaze: Miyakoshi et al., 2021). We also performed an a priori power 

calculation (rarely done in EEG studies; of 100 reviewed, not a single study reported a sample 

size calculation; see Larson & Carbine, 2017). Furthermore, we corrected for multiple 

comparisons using FDR correction, utilised non-parametric permutation t-tests and only 

reported findings we previously hypothesised (see Thornberry et al., 2023). Future studies will 

also need to address the travel phase of spatial navigation, during which sensorimotor and 

environmental information is integrated (Nyberg et al., 2022). We do not report this phase due 

to the complexity of the data and the differences between individuals learning rates (Commins 

et al., 2023) which results in timing differences between every trial for every participant. In a 

recent study, we have attempted to address these issues by applying Hidden Markov Models 

on full trial data to uncover discrete oscillatory ‘states’ rather than oscillatory timings (Palma 

et al., 2023). 

On the face of it, our studies from Chapter 4 and Chapter 5 seem to align better with 

the EEG literature surrounding spatial memory retrieval. However, many previous studies did 

not record oscillatory activity of spatial memory retrieval during active navigation – but instead 

using controlled experimental paradigms to assess one cognitive domain (Alekseichuk et al., 

2016; Foster et al., 2016; Jones & Wilson, 2005; Kaplan et al., 2012; Li et al., 2021; Proskovec 

et al., 2018; Pu et al., 2018; Sutterer et al., 2019). Though these studies are designed better to 

investigate spatial memory – it is difficult to apply the work to the complete process of 

navigation. Chapter 4 examined recall after a very short timeframe, almost immediately after 

the learning phase. Chapter 5 built on this in an attempt to replicate our findings from 

immediate recall and to examine delayed recall, after recent (24-hours) and remote (1-month) 

recall. We propose that successful retrieval of recently encoded spatial information relies on 

increased delta and theta oscillations (2-7 Hz). These replicate much of the literature on scalp 
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and intracranial EEG and memory retrieval (Addante et al., 2011; Alekseichuk et al., 2016; 

Burgess & Gruzelier, 1997; Buzsáki, 2005; Du et al., 2023; Herweg, Sharan, et al., 2020; Hsieh 

& Ranganath, 2014; Kaplan et al., 2014; Klimesch et al., 1997; Osipova et al., 2006; 

Vivekananda et al., 2021). Therefore, it is entirely possible that low-frequency oscillations on 

the scalp reflect frontal cortex communication with the MTL (Bohbot et al., 2017; Ekstrom et 

al., 2005; Herweg, Sharan, et al., 2020; Kaplan et al., 2014; Mitchell et al., 2008). Du et al. 

(2023) recently claimed that their observed frontal midline theta increases during virtual 

navigation most likely relates to decision-making (also see Chrastil et al., 2022) and mnemonic 

processes. In a virtual water maze, Cornwell et al. (2008) reported hippocampal theta was also 

associated with successful spatial memory retrieval, further replicated using MEG showing 

coupling between theta at the frontal cortex and the hippocampus for memory-based decision-

making (Backus et al., 2016; Soltani Zangbar et al., 2020). 

Considering in Chapter 4, we also reported further increased low-frequency oscillations 

when searching strategy required changing – we would suggest that this was an attempt to 

utilise more complex and more demanding (Jensen & Tesche, 2002) memory-based decision-

making. These networks are supported by suppressed alpha oscillations to facilitate focused 

attention and limited competing processing (Klimesch, 2012; Klimesch et al., 2007; Morrow 

et al., 2023; Roux & Uhlhaas, 2014; Waldhauser et al., 2012). Future work would again require 

higher-density EEG or MEG systems to examine if the proposed subcortical regions are the 

source of the signals during recall. Furthermore, connectivity analysis would facilitate whether 

the increased low-frequency oscillations are synchronised with our observed suppression of 

high-frequency beta and gamma (>15 Hz) as they may be controlling active retrieval from more 

detailed memory traces (such as visual memories – we reported beta increases at occipital 

areas) as has been suggested by some work (Aguilera et al., 2022; Herweg, Sharan, et al., 2020; 

Köster et al., 2014; Nyhus & Curran, 2010; Pu et al., 2018; Vivekananda et al., 2021).  
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In Section 7.1, we discussed the involvement of more neural effort possibly explained 

by a greater memory load retrieving remote compared to recent memories reported in Chapter 

5 (Jaiswal et al., 2010; Jensen & Tesche, 2002). However, aside from the similar low-frequency 

oscillations during retrieval increasing, we reported a remote-specific gamma dynamic, 

showing frontal gamma power increasing from immediate to remote retrieval. However, we do 

not report any difference between recent and remote recall phases. Therefore, fast rhythms such 

as gamma may coordinate recall of cortically consolidated remote memories in combination 

with delta-theta in frontal regions. This has been reported during remote memory retrieval 

(Steinvorth et al., 2010; Yaffe et al., 2017) and has been suggested to be used to recruit 

hippocampus-dependent contextual information (Hebscher et al., 2019; Nyhus & Curran, 

2010).  

Future studies should attempt to further investigate this effect, perhaps by changing the 

difficulty or contextual cueing of remote memories. For example, using a modified 

hippocampal-dependent Face-Name Pairs retrieval task in which only some facial features are 

presented (Commins et al., 2023), this could then be compared to NavWell or a navigational 

decision-making task (Chrastil & Warren, 2013) in which landmark positions and appearance 

are manipulated. Any modulation of gamma power using these manipulations may provide 

further support for its possible functional role in remote memory. Furthermore, recording 

longer periods of navigation would be useful here (Daugherty & Raz, 2017), as well as 

longitudinal connectivity models (Laptinskaya et al., 2020; Park et al., 2011) to facilitate 

whether the greater the remote period (e.g. 6 months), the weaker or stronger these gamma 

oscillations become. Connectivity models with higher-density EEG may link both gamma and 

delta-theta oscillations to the hippocampus (shown during VWM probe trials by Bauer et al. 

(2021). Nevertheless, the preserved accuracy but changing oscillatory activity with 
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consolidation suggests some type of network reorganisation to preserve (and perhaps improve) 

memory traces. 

Finally, in Chapter 6 we reported that ageing has an impact on spatial navigation ability 

as expected (Bécu et al., 2020; Daugherty & Raz, 2017; Hill et al., 2023; Moffat & Resnick, 

2002; Moffat et al., 2001). However, not on learning ability but mainly on performance, with 

deficits in spatial memory only evident over longer consolidation periods (i.e. after 1 month). 

We also reported typical age-dependent resting state differences between younger and older 

adults (Cesnaite et al., 2023; Finnigan & Robertson, 2011; Fleck et al., 2017; Jabès et al., 2021). 

Our correlation results suggest that performance issues may represent underlying high-

frequency network constraints (particularly beta oscillations). Future research should focus on 

high-frequency network changes during ageing. Some current, high-density EEG studies with 

a large dataset of older adults has reported a shift in beta burst sources from age 60 onwards 

(Power & Bardouille, 2021). Interestingly, task-related beta decreases in older adults were 

reported during selective motor memory retrieval task with distractors (Proskovec et al., 2018; 

Steiger et al., 2022; Tempel et al., 2020; Winterling et al., 2019). These and several other 

researchers (Kober et al., 2016; Sauseng et al., 2009; Steiger et al., 2022) suggest that beta in 

older adults is responsible for inhibitory mechanisms associated with memory retrieval. This 

would align with our suggestion that their strategy choice may be route-knowledge driven 

(Lithfous et al., 2015), as opposed to associative. Some future suggestions beyond the scope of 

this thesis would be to analyse the EEG of spatial learning trials with older adults and contrast 

it to their performance during an associative task (e.g. Face-Name Pairs) and younger adults 

(Thornberry et al., 2023). 

Furthermore, our observed decreases in beta and gamma oscillations during all recall 

phases fits very well with the well supported compensation hypothesis of neurocognitive 

ageing, which suggests that older adults engage additional or different brain mechanisms when 
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performing the same cognitive task as younger adults, to compensate for declining brain 

functions (Azami et al., 2023; Brookes et al., 2011; Cabeza et al., 2002; Cabeza et al., 2004; 

Proskovec et al., 2018). The compensation hypothesis is further supported by the fact that we 

observed no difference in behavioural performance, but a clear difference in neural dynamics 

between younger and older adults (Cabeza et al., 2018; Grady, 2012). Less beta and gamma 

power are evident at both recent and remote time-points but become suppressed from 

immediate to recent retrieval. However, when navigation performance declines at remote 

intervals, we see recruitment of lower frequency oscillations (delta: 2-4 Hz). Therefore, our 

data may also suggest that suppressed beta and gamma oscillations are required to facilitate 

accurate spatial memory and navigation performance in healthy ageing. Future research on 

ageing in spatial navigation should investigate compensatory neural networks that may be 

involved in better performing older adults. Researchers should also focus on the recruitment of 

low-frequency oscillations for retrieval of remote memories in older adults, using a less 

dynamic and more direct memory task to examine whether our observed shift to frontal delta 

oscillations are navigation-specific.  

 

7.3 Potential applications 

We hope that our research has provided a possible suggested methodology to examine 

continuous EEG during fluid and active cognitive tasks such as spatial navigation. It has built 

on similar proposed methods used during 3D virtual navigation with physical locomotion 

(Delaux et al., 2021; Jabès et al., 2021; Miyakoshi et al., 2021) in which frequency oscillations 

were recorded across a continuous period of navigation and then epoched to events and 

behaviours of interest. Although we acknowledge that this method has its limitations (see 

Section 7.4 and also Thornberry et al., 2023) it does facilitate the capture of complex and 

changing behaviour, even changes occurring within the behaviour itself (e.g., search strategy 
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changes in Chapter 4). The literature on spatial navigation and oscillatory dynamics is 

incredibly novel and still evolving with the development of mobile EEG systems and more 

immersive VR applications. Nevertheless, we hope that our methodology can be built upon and 

developed to further research in this area. 

 Secondly, regardless of methodological approaches, we believe that we have uncovered 

some interesting findings regarding the dynamics of oscillatory bands during human spatial 

navigation. From this, we propose a summary of our observations that should hopefully 

generate hypotheses for future navigation and oscillation studies (Tables 7.1, 7.2 and 7.3).  

 

 

Table 7.1: Younger Adults within-group frequency band dynamics 

Frequency Band Spatial Learning 
Recent compared 

to Immediate 
Remote compared 

to Immediate 
Remote compared 

to Recent 

Delta (2-4 Hz) 

    

Theta (5-7 Hz) 

    

Alpha (8-12 Hz) 

    

Beta (15-29 Hz) 

    

Gamma (30-40 Hz) 

    
Note: Arrow direction and colour represents increases (upwards and red) or decreases (downwards and blue). 

Equal signs in green represent no significant changes in activation. Short arrows represent only a single significant 

site. Longer arrow represents two or more significant sites. The differences refer to A ≷ B if the top columns are 

read in terms of “condition A compared to condition B”. 
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Table 7.2: Older Adult within-group differences in frequency dynamics at various recall phases 

Frequency Band 
Recent compared to 

Immediate 
Remote compared to 

Immediate 
Remote compared to 

Recent 

Delta (2-4 Hz) 

   

Theta (5-7 Hz) 

   

Alpha (8-12 Hz) 

   

Beta (15-29 Hz) 

   

Gamma (30-40 
Hz) 

   
Note: Arrow direction and colour represents increases (upwards and red) or decreases (downwards and blue). 

Equal signs in green represent no significant changes in activation. Short arrows represent only a single significant 

site. Longer arrow represents two or more significant sites. 

 

Table 7.3: Older-Younger differences in frequency dynamics at various recall phases 

Frequency Band 
Older compared 

to Younger 
Immediate 

Older compared 
to Younger 

Recent 

Older compared 
to Younger 

Remote 

Delta (2-4 Hz) 

   

Theta (5-7 Hz) 

   

Alpha (8-12 Hz) 

   

Beta (15-29 Hz) 

   

Gamma (30-40 Hz) 

   
Note: Arrow direction and colour represents increases (upwards and red) or decreases (downwards and blue). 

Equal signs in green represent no significant changes in activation. Short arrows represent only a single significant 

site. Longer arrow represents two or more significant sites. The differences refer to A ≷ B if the top columns are 

read in terms of “condition A compared to condition B”. 
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In the above summary, we only report significant dynamics, though overall dynamics that were 

not significant should be, and are acknowledged in their corresponding chapters. Furthermore, 

considering our EEG system is relatively low-resolution, we have excluded the location of 

these significant observations, as it is unlikely that we have a truly accurate and replicable 

source localisation for these using 32-channel cap (Yao & Dewald, 2005). 

 There are many potential applications of our findings from the current thesis. For 

example, our findings from Chapter 3 may be used to understand individual learning 

differences in spatial cognition. Though not examined for the current thesis, some participants 

are known to perform spatial navigation tasks more effectively than others, whilst some 

individuals may be slower or take longer to construct and apply a useful navigation strategy 

(Cheng et al., 2022; Commins et al., 2023; Coughlan et al., 2018; Coutrot et al., 2019; Hegarty 

et al., 2023). A reduction in parietal theta at the beginning of a spatial task may be a neural 

marker for learning and may be used to distinguish good from bad spatial learners. Using this, 

researchers could design interventions to train and improve spatial performance using applied 

rhythmic transcranial magnetic stimulation (TMS) in the theta rhythm. Previous TMS studies 

have shown to improve working memory performance through theta-burst stimulation (Hoy et 

al., 2016; Riddle et al., 2020). This may be useful for MCI or dementia patients suffering from 

early deficits in spatial cognition and may even act as a preventative or “decelerative” 

intervention – as the link between spatial deficits and these disorders has been reported 

numerous times (Coughlan et al., 2018; Coughlan et al., 2020).  

 Our findings from Chapter 4 and Chapter 5 may also have some interesting 

applications. For example, memory driven spatial navigation is an essential skill for successful 

cognition. If we can further standardise oscillatory dynamics during spatial navigation, 

researchers could produce standardised EEG-based assessments for deficits. Recently, 

disrupted theta rhythms were linked to poor spatial navigation in schizophrenic patients, with 
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theta thought to be responsible for deficits in grid cell firing patterns (Convertino et al., 2023). 

Furthermore, impairments in spatial cognition, mainly spatial memory in depressed and 

schizophrenic patients have been found to be modulated by theta and gamma oscillations 

(Adams et al., 2020; Cornwell et al., 2010; Lynn & Sponheim, 2016). A standardised 

assessment procedure (Thornberry et al., 2021) accompanied by a standardised EEG metric of 

successful spatial memory retrieval may facilitate easier diagnosis of deficits and 

symptomology. These, combined with newly developed at-home dry EEG wearables for 

electrophysiological monitoring and early detection of cognitive deficits (Barbey et al., 2022; 

Mathewson et al., 2017; Whelan et al., 2022) could prove vital for the monitoring and detection 

of deficits in spatial cognition across a wide range of disorders. 

 Additionally, our age-related oscillatory findings from Chater 6 replicated typical EEG 

resting state age differences reported in the literature. These differences fit well with findings 

from the Default Mode Network model of EEG activity. This is a resting state network, deemed 

essential for assessing and understanding age differences and brain responses during cognition 

(Scheeringa et al., 2008; Ward et al., 2015). Dysfunction in this network has consequences for 

cognitive performance and has been cited as an excellent baseline condition to evaluate changes 

due to task demands (Chen et al., 2008; Smallwood et al., 2021). For task-related EEG, we 

reported consistently less power at each of the memory retrieval phases. A decrease in beta and 

gamma power after 24-hours, but identical behavioural performance to our younger adults on 

the task suggests possible high-frequency compensatory mechanisms, which help to maintain 

behavioural performance. This could have many wide-ranging applications should it be 

investigated further. For example, gamma activity has been shown to vary with the memory 

ability of older adults (Park et al., 2012). Staufenbiel et al. (2014) demonstrated beta and 

gamma neurofeedback (NFB; continuous, real-time feedback of brain activity patterns to allow 

self-modulation of oscillations in a desired direction) enhances beta oscillations but with no 
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impact on cognitive ability. Nevertheless, some other studies reported success using beta and 

gamma NFB, with improved episodic memory performance in both healthy older adults and 

MCI-patients (Becerra et al., 2012; Keizer et al., 2010; Lin et al., 2023). Therefore, it is possible 

that the compensatory nature of high-frequency oscillations may just be a natural part of ageing 

(Staufenbiel et al., 2014) or that possibly reversing the decrease in these rhythms through NFB 

could improve short-term (recent) spatial memory in older adults. Furthermore, as the memory 

becomes consolidated in a more long-term situation (i.e., remote) different, low-frequency 

oscillations change during recall. Delta power increases with a decrease in theta power. 

Decreases in theta power and a decline in memory retention are natural with age (Cummins & 

Finnigan, 2007) – with theta shown to decrease in older adults during cognitive mapping tasks 

and spatial memory retrieval (Ferreira et al., 2019; Lithfous et al., 2015). Stimulating and by 

result increasing delta-theta and synchronising these oscillations with gamma in older adults 

has been recently shown to improve memory performance (Reinhart & Nguyen, 2019) with 

theta neurofeedback showing similar improvements (Reis et al., 2016). Therefore, focusing on 

low-frequency stimulation or neurofeedback may help with long-term spatial memory 

retention. However, our remote group’s behavioural performance was poorer, but still 

significantly above chance levels.  

All of our memory results from Chapter 4-6 may be applied to the current theoretical 

debate regarding consolidation (Nadel & Moscovitch, 1997; Squire et al., 2015; Tse et al., 

2007). We reported low-frequency delta-theta increases across retrieval phases, which may 

suggest reliance on hippocampus for spatial memory retrieval – which aligns with multiple 

trace theory. However, we reported increased frontal alpha power with increased retrieval 

periods (immediate < recent < remote). As discussed throughout the current thesis, alpha 

increases is thought to represent effortful engagement of the cortex resulting in successful 

memory retrieval, aligning with standard consolidation theory. Therefore, it is possible our 
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results could be applied to a dual-consolidation approach in which when retrieval is not 

successful through cortical networks (i.e., in older adults at remote recall) hippocampal-

dependent networks are recruited (Robin & Moscovitch, 2017), and its recruitment is altered 

by memory workload. This would need to be much more strongly investigated to propose such 

a concept, using high-density source analysis amongst other methodologies. The ability to 

integrate information into an overall schematic of spatial memory traces, has been proposed 

previously (Farzanfar et al., 2023; Robin & Moscovitch, 2017; Tse et al., 2007), which may 

align with the above interpretation. Specific/detailed and gist-like/schematic representations 

can co-exist with different subregions responsible for their retrieval (Audrain & McAndrews, 

2022; McCormick et al., 2020). How they are recruited may not be determined by the age of 

the memory, but by the task demands (Robin & Moscovitch, 2017). This leaves some open 

questions for future research: 

• Does the reduced theta power in spatial learning reflect the similar dynamics reported 

during associative learning tasks? How does it interact with other frequency bands? 

• Do oscillatory dynamics during spatial recall change with spatial navigation deficits? 

• What subcortical EEG sources are responsible for recent and remote recall, and do they 

both involve the hippocampus? 

• Are neural dynamics different for good and poor performing older adults?  

 

7.4 Thesis Difficulties, Limitations and Strengths 

One major limitation of the current thesis was the COVID-19 pandemic, and the restrictions in 

Ireland. In March 2020, the Irish government announced the closure of all higher education 

facilities and the introduction of physical distancing measures. Government plans were made 

to reopen university settings at various stages throughout the pandemic, but the spread of 

COVID-19 in Ireland was constantly fluctuating, with universities not returning in-person until 
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September 2021. All in-person research had stopped during this period, and further distancing 

and safety measures were still in place until 22nd January 2022, with mask wearing still in effect 

until the 28th of February 2022. Contingency plans for the current thesis were put in place, but 

all research was placed on hold, as it required in-person close contact.  

The original project proposal was to involve more older adult data collection, but such 

a vulnerable population was difficult to access in the months following the lifting of 

restrictions. We had some data (n = 3) from before March 2020 from Experiment 3 which was 

then placed on hold. The remaining participants were not tested until after November 2021, 

following completion of COVID-19 safety training, a new standard operating procedure and a 

renewal of ethics approval. The time was used to learn how to analyse the EEG data collected 

prior to the pandemic, but all planned experiments incurred a delay of up to 2 years. The older 

adult experiment was moved to much later in thesis timeline, to allow for older adults to feel 

comfortable and safe coming to the lab and in close contact with the researcher. Data from 

younger adults was collected once feasible, but several participants dropped out due to COVID-

19 infection or being a COVID-19 close-contact (as per restriction criteria). This caused 

significant delays to data collection for Chapter 3 as well as data quality issues due to the 

wearing of masks, gloves and lab time-constraints with the new COVID-19 safety precautions. 

Data from Chapter 4 was also impacted by this, and some participants did not complete a recall 

trial, as some did not feel well during testing or exceeded their permitted timeslot, which caused 

further significant delays. This had a knock-on delay to data collection for Chapter 5 which 

only began in late 2022/early 2023. Simultaneous recruitment of older adults during this time 

also proved difficult but eased into late 2023. 

 Further specific limitations of particular studies are addressed in their corresponding 

chapters throughout the thesis. However, in Chapter 4-6 we examined EEG data during spatial 

recall trials in NavWell. To our knowledge, no other studies had attempted to examine this 
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within the same restrictions of our paradigm. Relying on clean and useable data from a single 

recording session was an incredibly large risk. Particularly for Chapters 5 and 6, some 

participants may have completed a learning phase and immediate recall phase, returned after 

one month and produced unusable data during the remote phase. Which essentially removes 

that participant from majority of the analysis. A small amount of participant data was lost due 

to this (as well as some participants only revealing they do not meet inclusion criteria on their 

re-test). Careful testing protocols and data quality assurance were carried out during all 

recording sessions, which caused even further delays. This is where retaining the typical 

protocol of the Morris water maze was challenging. We would strongly encourage future 

researchers to design spatial memory consolidation and electrophysiology paradigms with this 

in mind. 

 Aside from time-constraints, convenience sampling and the use of the Department of 

Psychology Participation Pool resulted in population samples for most studies being 

predominantly female. Due to the restrictions and time-constraints mentioned above, we could 

not afford to be demanding or selective with participant recruitment. Though many of our 

studies report little to no influence of gender (but see Buckley & Bast, 2018), and even though 

NavWell is known to eliminate this bias (Commins et al., 2020) – the results are not as 

generalisable as originally intended.  

Furthermore, much of our research was exploratory due to the lack of supporting 

literature and the novelty of our research paradigm and protocols. Where possible, we tried to 

remain hypothesis-driven in our approach, but this proved difficult, due to the incredibly 

problematic differences in the literature in behavioural procedures (Alcalá et al., 2020; 

D’Hooge & De Deyn, 2001; Padilla et al., 2017; Thornberry et al., 2021; Vorhees & Williams, 

2024), EEG analysis methods (Cohen, 1995; Cohen, 2014; Cohen, 2017, 2019; Cohen et al., 

2013; Delaux et al., 2021; Delorme, 2023; Morales & Bowers, 2022), and even relevant 
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research findings (Chrastil et al., 2022; Delaux et al., 2021; Du et al., 2023; Herweg, Solomon, 

et al., 2020; Jones & Wilson, 2005; Kaplan et al., 2014; Liang et al., 2021; Lin et al., 2015; 

Lithfous et al., 2015; Miyakoshi et al., 2021; Thornberry et al., 2023; Vivekananda et al., 2021). 

There are even disputes over the definition of frequency bands, with no definitive division of 

the human EEG frequency range (Chen et al., 2008; Herrmann et al., 1979; Herweg, Solomon, 

et al., 2020; Jaušovec & Jaušovec, 2010), and more than 20 arbitrary frequency boundaries 

reported in the literature for alpha alone (Bazanova & Vernon, 2014). Therefore, it was 

incredibly difficult to obtain guidance on procedure, protocol or signal-processing and analysis 

techniques. Despite these difficulties, we remained as controlled as we could. We  performed 

a priori power calculations and remained hypothesis driven where possible (see Larson & 

Carbine, 2017). Furthermore, all statistics were corrected for multiple comparisons using FDR 

correction, utilised non-parametric permutation t-tests and only reported findings if they were 

previously hypothesised. For exploratory analyses and our novel paradigms, we predefined any 

regions of interests, used very strict analysis methods and utilised control groups where 

possible. We ensured all participants were cognitively matched before experimentation and 

kept signal processing procedures the exact same throughout, based on key research papers 

(see above). 

Finally, prior to the beginning of the outlined series of experiments, we made the active 

decision to use relative power as opposed to absolute power throughout out analyses. 

Considering the large number of analyses that were planned to be conducted, it would have 

been impossible to analyse both power outputs. Since relative power values are interdependent, 

changes in one frequency band will affect the values of other frequency bands (Cohen, 1995; 

Cohen, 2014). This made the interpretation of some of our relative power changes more 

challenging (for example, see Figure 6.7 – in which higher delta/theta in younger adults results 

in lower beta/gamma power). Furthermore, Relative power measures can be influenced by 
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individual differences in total power, which may be related to factors such as skull thickness 

or electrode impedance, introducing unwanted noise. Nevertheless, we gain reduced sensitivity 

to artefacts, a normalisation for some individual differences and is probably a better choice for 

examining task-related changes in power distribution (Fernández et al., 1993). Based on the 

methodology of previous EEG and navigation studies (Jabès et al., 2021; Lin et al., 2015; Lin 

et al., 2017), we opted for relative power despite these limitations. However, future research 

should analyse and report both absolute and relative power outputs to provide a more 

comprehensive understanding of neural dynamics during spatial navigation tasks. 

 

7.5 Conclusions 

 

In conclusion, the current thesis presents a series of experiments which examined both learning 

(Chapter 3) and memory (Chapter 4) during human spatial navigation in a virtual water maze 

task. We further investigated the dynamics of brain oscillations using EEG during these 

cognitive processes, and how they are influenced by consolidation time (Chapter 5) and age 

(Chapter 6). Results suggest that successful and efficient spatial encoding results in the 

reduction of posterior theta (4-8 Hz) accompanied by continuous alpha (8-12 Hz) suppression. 

During spatial memory retrieval, increased low-frequency oscillations in delta (2-4 Hz) and 

theta (5-7 Hz) are related to successful navigation. When search strategies are unsuccessful, 

frontal midline power within these bands increases. During remote spatial memory retrieval, 

we found increases in all bands apart from theta, suggested to relate to active retrieval and 

memory load. Recent spatial memory retrieval requires greater oscillatory recruitment, but no 

change in dynamics. Older adults show reduced power throughout most frequency bands 

compared to younger adults. Within older adults, delta power increases and theta power 

decreases are also observed during remote memory retrieval, with beta (15-29 Hz) and gamma 
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(30-40 Hz) decreases during recent memory retrieval. Results suggest that increased low-

frequency oscillations are associated with spatial memory retrieval for demanding tasks or 

remote memories. These dynamics do not change with healthy ageing but may become less 

efficient resulting in poorer spatial performance. Many of these findings contribute to existing 

literature, whilst introducing novel findings to hopefully generate new hypotheses. They also 

possess some theoretical and practical implications for spatial learning and memory research. 
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Appendices 

Appendix A: EEG Standard Operating Procedure during COVID-19. 

Appendix B: Participant Information Sheet.  
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Appendix A 

Department of Psychology 

Specific health precautions for EEG testing 

  

As EEG experiments will require close proximity to the participant at certain times, extra 

precautions to those laid out in the general document will need to be followed.   

Cubicle area/laboratory space  

• Separate areas should be used for EEG preparation and recording.  

• No other experiments should take place in the cubicle/EEG area during this time.  

• Only one participant and one experimenter should be present in the laboratory area.  

• Keep the area well ventilated.   

Equipment  

• EEG cap.   

Use separate EEG caps for each participant where possible. All caps must be disinfected 

thoroughly following use. Allow 3 days between use of the same cap.    

• Face mask  

A face mask must be worn throughout the entire procedure.  

• A log book  

A log of names, contact details of all participants and the relevant experimenter should be kept. 

The date and time of entry/exit of the participants should also be noted. This will be used for 

contact tracing.  

Procedure  

Prior to participant arrival  

• Note, if the participants are not students or staff the experimenter further covid 

protocols may be needed to be completed before the experiment can be done. Ensure 

all relevant paperwork is done. Contact the Return to Campus Office for further 

information.  

• The experimenter should sign into the log book upon entry to the laboratory area.  

• Lay out as much of the equipment prior to the arrival of the participant. This includes a 

EEG cap, gel-filled syringe, syringe tips, towels, electrodes, gloves, alcohol wipes etc.   

• Participants may need to be warned that some gel may remain in their hair following 

the experiment, if the wash area is not in use or if the participant is not willing to avail 

of this facility.  

• Both the participant and experimenter should wash hands for at least 20 seconds (or 

apply hand sanitizer) upon entry to the laboratory.  
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During the experiment and application of electrodes  

• The experimenter should already be wearing gloves, a lab coat, and mask. The 

participant should also be wearing a mask (see general rules) before entering the 

building.  

• Upon arrival the participant should log their name and contact details and time of entry.  

• Ensure that both parties continue to wear face masks when applying the electrodes at 

the beginning of the session, while making any adjustments to the electrodes during the 

session, and while removing them at the end of the session.   

• To the extent possible, the experimenter should stand behind the subject while attaching 

the electrodes.   

• Keep social distance at all times apart from when applying the electrodes.  

Post testing  

• Participant hair washing is not recommended. Gel should be wiped from the hair as 

much as possible with a tissue. This is done by the participant. If the wash room is used, 

it must be entirely disinfected after the participant leaves.   

• The participant should be signed out and walked to the exit, while maintaining social 

distance.   

• The participant must re-apply hand sanitizer, and keep wearing the mask until he/she 

leaves the building.   

• The experimenter should then apply hand sanitizer.  

• Disinfect the electrodes and electrode caps in Envirocide solution for 3 minutes. This 

disinfecting procedure is recommended for the Brain Products actiCAP system.   

• As usual, used syringes and tips are discarded.   

• Disinfect chairs, computers, all equipment, response pad, mouse, door handles - 

anything that might be touched by the subject or the experimenter using disinfection 

wipes.  

• The experimenter’s gloves can be discarded and the lab coat can be removed once the 

participant has departed.   

• Laboratory coats must be laundered at least once per week on a hot wash (>60°C) and 

can’t be shared with others.  

• The experimenter’s mask should be discarded and a new one used in the rest of the 

building.  

• Hands should be sanitized when leaving the laboratory/cubicle area. The experimenter 

should then sign out using the log book.  
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