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Abstract
The development of the “causal” forest by Wager and Athey (J Am Stat Assoc 
113(523): 1228–1242, 2018) represents a significant advance in the area of explan-
atory/causal machine learning. However, this approach has not yet been widely 
applied to geographically referenced data, which present some unique issues: the 
random split of the test and training sets in the typical causal forest design fractures 
the spatial fabric of geographic data. To help solve this issue, we use a simulated 
dataset with known properties for average treatment effects and conditional aver-
age treatment effects to compare the performance of CF models across different 
definitions of the test/train split. We also develop a new “spatial” T-learner that can 
be implemented using predictive methods like random forest to provide estimates 
of heterogeneous treatment effects across all units. Our results show that all of the 
machine learning models outperform traditional ordinary least squares regression at 
identifying the true average treatment effect, but are not significantly different from 
one another. We then apply the preferred causal forest model in the context of ana-
lysing the treatment effect of the construction of the Valley Metro light rail (tram) 
system on on-road  CO2 emissions per capita at the block group level in Maricopa 
County, Arizona, and find that the neighbourhoods most likely to benefit from treat-
ment are those with higher pre-treatment proportions of transit and pedestrian com-
muting and lower proportions of auto commuting.
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1 Introduction

Initially, the use of machine learning techniques such as random forest and neural 
networks focused mostly on prediction tasks because of the “black box,” non-
linear nature of the relationship between input variables and outputs. But given 
the high predictive performance of these models compared to traditional statisti-
cal methods (like linear regression) (Strittmatter 2019; Farbmacher et  al. 2021; 
Hagenauer et al. 2019; Yoshida and Seya 2021; Credit 2022), there has been con-
siderable interest in developing new approaches for using these models to answer 
explanatory—and even causal—research questions in the social sciences. The 
development of the “causal” forest by Wager and Athey (2018) represents a sig-
nificant advance in this area. By applying the fundamental logic of the princi-
ples of causal inference—“the science” of Rubin (2005)—to the powerful random 
forest model format, the causal forest not only provides an estimate of the aver-
age treatment effect (ATE) across the entire dataset, but also unit-level condi-
tional average treatment effects (CATE) that allow researchers to draw conclu-
sions about the effectiveness of treatment across various subpopulations (Athey 
and Imbens 2016). Providing estimates of heterogeneous treatment effects (HTE) 
for all treated and untreated units are particularly valuable in the context of local 
urban policy decision-making and could allow planners to assess the viability of 
infrastructure investments or policies in candidate areas.

Several studies have used causal forests to analyse HTE for the effect of vari-
ous interventions on outcomes such as student achievement, agricultural yields, 
crime, and corporate investment (Athey and Wager 2019; Deines et  al. 2019; 
Hoffman and Mast 2019; Davisd and Heller 2020; Gulen et al. 2019). However, 
this approach has not yet been widely applied to geographically referenced data 
(Deines et al. 2019; Hoffman and Mast 2019), which present some unique issues, 
including the fact that the random split of the test and training sets in the typical 
causal forest design fractures the spatial fabric of geographic data (Nikparvar and 
Thrill 2021).

Whilst this randomised split makes sense in a controlled trial for independently 
selected individuals, geographic entities have intrinsic relationships with each 
other based on distance (Tobler 1970) that should be included as a part of the 
process of modelling treatment effects, particularly when spatially lagged char-
acteristics are included in the model. At the same time, of course, concerns over 
bias from overfitting training data are well-understood and need to be addressed, 
especially in  situations where the treatment assignment may not be randomly 
determined, as is the case in most urban planning applications (Hawkins 2004; 
Kuhn and Johnson 2013).

To help solve these issues, we use a simulated dataset with known prop-
erties for ATE and CATE to compare the performance of causal forest models 
across two different definitions of the test/train split. We also develop a “spatial” 
T-learner (STL) that can be implemented using predictive methods like random 
forest to provide estimates of HTE across all units (Künzel et  al. 2019). Our 
results show that in cases where the treatment is not randomly assigned, all three 
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machine learning models nearly significantly outperform ordinary least squares 
regression (OLS) at identifying the true ATE, but are not significantly different 
from one another. This indicates that, in this instance, there are no significant 
differences in performance based on the nature of the train/test split. The spa-
tial lag of X (SLX) and spatial Durbin specifications offer some small additional 
performance over the baseline (non-spatial) specification, with the Durbin causal 
forest model without train/test split displaying the best estimate of true ATE and 
second-lowest mean squared error (MSE) for CATE, although, again, the differ-
ence is not statistically significant.

We then apply this preferred model in the context of analysing the treatment effect of 
the construction of the Valley Metro light rail (tram) system on on-road  CO2 emissions 
per capita at the block group (BG) level in Maricopa County, Arizona. We estimate that 
building the Valley Metro system reduced on-road  CO2 emissions at the BG level by 
an average of 8.02% over the treatment period analysed (2009–2017), or about 1% per 
year. This is roughly in line with estimates of reduction in total Vehicle Miles Travelled 
(VMT) due to transit construction in other studies (e.g. 2.97% per year) (Ewing and 
Hamidi 2014). Interestingly, the characteristics of BGs that are most important to pre-
dicting treatment effect are all transportation-related: the proportion of auto commuters 
in neighbouring BGs, the proportion of cycling and walking commuters, the proportion 
of transit commuters in neighbouring BGs, and the proportion of cycling and walking 
commuters in neighbouring BGs. Block groups with higher levels of transit, walking, 
and cycling commuting tend to have larger estimated reductions in  CO2 per capita due 
to light rail construction (treatment effects), whilst BGs with higher levels of pre-treat-
ment  CO2 auto commuting tend to have smaller treatment effects from light rail. These 
relationships are generally reflected in the resulting spatial pattern of estimated treat-
ment effects, which suggests that the chosen corridor was reasonably well-suited for 
construction (in terms of impacts on  CO2). Areas in the more walkable city centres of 
Phoenix, Tempe, and Mesa are most likely to benefit from light rail construction, whilst 
areas with more auto-oriented development patterns (e.g. those near highways) are less 
likely to benefit in terms of on-road  CO2 reductions.

By employing a causal machine learning analysis framework designed specifically 
around spatial data, providing a structured comparison of various causal machine learn-
ing specifications, and developing the STL, this paper provides a useful contribution to 
the ongoing work on “explainable AI” approaches in general and causal machine learn-
ing methods more specifically. In addition, the empirical results provide insight on the 
positive impact of transit construction on automobile emissions at a fine-grained spatial 
scale, which can be used by urban planners and policy-makers to help inform future 
decision-making around transportation infrastructure investment.

2  Methods

2.1  Potential outcomes model

The general approach to identifying causal effects from empirical data is known 
as the “potential outcomes” or “Rubin Causal Model,” which provides a basic 
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formulation of the causal estimand (Rubin 1978; 2005). In the potential outcomes 
model, we have a number of individual units (i) which receive some treatment (T), 
and we are trying to find out whether that treatment has an effect on some outcome 
of interest in the post-intervention time period (Y). In a medical application of causal 
inference, this might be an analysis of the effect of some drug treatment (T) on the 
blood pressure (Y) of hospital patients (i), or in a geographic context, it might be 
an analysis of the effect of the construction of a new light rail line (T) on the on-
road  CO2 emissions (Y) of Census block groups (i). In any case, in the potential 
outcomes model, conditional average treatment effects (CATE) are determined 
by taking the difference in Y between the treated condition Yi(1) (i.e. what would 
happen if a unit received the treatment) and the counterfactual condition Yi(0) (i.e. 
what would happen if a unit was never treated): Yi(1)−Yi(0). Averaging these dif-
ferences across an entire set of similar units provide the average treatment effect 
(ATE): E[Y(1)−Y(0)] = E[Y(1)]−E[Y(0)]. Unfortunately, it is of course not possible 
to observe both Y(0) and Y(1) empirically for the same unit (because in reality, some 
units are treated and others aren’t), which is known as the “fundamental problem 
of causal inference” (Rubin 1978; 2005). Therefore, in practice, the TE can only 
be estimated by comparing the values of Y in the treated and untreated (or “con-
trol”) units, commonly by taking the average (or median) difference in Y between 
the treated and untreated observations.1

However, identification of the estimated TE in this way rests on several assump-
tions, in particular “ignorability” or “conditional independence” and the Stable Unit 
Treatment Value Assumption (SUTVA). For ignorability, the simple idea is that the 
set of observations in the treatment and control groups must be as similar as pos-
sible in order to draw a valid causal inference about the effect of a treatment; or, put 
another way, the treatment assignment cannot be related in any way to the potential 
outcomes (Rubin 1978; 2005; Dorie et al. 2019; Matthay et al. 2020). In a true ran-
domised experiment, the treatment assignment mechanism is random, thus allowing 
us to “ignore” it (i.e. the treatment and control groups are equally likely to have any 
given set of characteristics). This is of course impossible to recreate in most cases 
of urban-geographic or social science research where the treatment is (often very 
purposefully) not applied randomly.2 The solution in these cases is to control for 

1 A common extension of the potential outcomes model, often used in economics, is the ‘differ-
ence in differences’ estimator or ‘gain score’ and evaluates the difference between the treatment and 
control observations in terms of their difference from pre- to post-intervention: E[YPOST(1)−YPRE(1)]–
E[YPOST(0)−YPRE(0)] (Card and Krueger 1994; Gelman and Hill 2006). The difference-in-differences 
estimator inherently incorporates the pre-intervention value of Y into the estimation of the causal effect 
(as the outcome is a difference ‘from’ that value); not knowing at the outset how this construction might 
behave in the causal forest model, we opted to test the more basic potential outcomes model with the pre-
intervention value of Y as a covariate (that could be removed if necessary) in our simulation study. Given 
the vast and quickly growing body of literature on difference-in-differences, however, it would certainly 
be useful to extend the concepts explored in this paper to difference-in-differences in future work.
2 In Fig. 2, we develop a directed acyclic graph (DAG) to describe the causal relationships in our simu-
lated data design, in which the treatment is not randomly assigned. The magenta lines denote “biased” 
causal pathways where particular variables influence both the treatment assignment T and the potential 
outcomes inherent in the response variable, YPOST. These must be controlled for in order to fulfil the 
“conditional” ignorability assumption.
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the effect of confounding variables, i.e. pre-treatment characteristics of observations 
that affect both the treatment assignment and the potential outcomes, either by care-
fully matching treatment and control observations using a propensity score method-
ology (Rubin 2001) or by including the pre-treatment confounders in the estimation 
of the causal model, after which the model can be said to fulfil the assumption of 
“conditional” ignorability (Matthay et al. 2020; Gelman and Hill 2006).

For the SUTVA, the basic principles are that (1) each observation’s potential out-
come is not dependent on other observations’ treatment status, and (2) that there 
are not multiple or “hidden” versions of treatment (Rubin 1980, 2005; VanderWeele 
and Hernán 2013). This is particularly difficult to fulfil in urban-geographic or other 
spatial contexts where global and local spatial spillovers and neighbourhood effects 
may be present (Baylis and Ham 2015; Kolak and Anselin 2020). For instance, 
extending the light rail example from above, for a given treated block group i, treat-
ment in a neighbouring observation j may increase i’s treatment effect since addi-
tional nearby stations multiply the usefulness of the rail line (and thus the reduction 
in on-road  CO2) due to there being more nearby destination options. Or perhaps the 
fact that j is treated means that complimentary transit-oriented development is estab-
lished in j which attracts residents of i to that area, from which they take transit, 
replacing auto trips in a way that would not have happened had j not been treated. 
Whilst one common approach to mitigating the effects of the SUTVA is to aggre-
gate the data to larger spatial units (so that i and j are no longer neighbours, but part 
of the same observation), this reduces the granularity of the data and what we can 
learn from it. For that reason, a spatially explicit modelling approach that takes into 
account these spatial effects has been suggested as a better alternative solution to 
the SUTVA (Baylis and Ham 2015; Huber and Steinmayr 2019; Kolak and Anselin 
2020; Kosfeld et al. 2021; Butts 2021).

2.2  Spatial models

In fact, spatial effects can impact the basic causal inference framework in a vari-
ety of complex ways, including treatment assignment (ignorability), spillover effects 
(SUTVA), mismatched scales for spatial processes and outcomes, and more. Given 
this, Kolak and Anselin (2020, p.132) suggest taking a broadly spatial perspective 
that goes “beyond the uncritical implementation of spatial tools or methods…[to] 
consider the inherently spatially and temporally dynamic, interactive nature of the 
populations being studied, and, as such, inform the initial design of the model”. In 
this paper, we adapt the standard spatial model specifications for use in a machine 
learning context, with spatial lags of the dependent and independent variables 
directly entered into the model as individual variables (as in similar previous work) 
(Credit 2022). However, we’ll start here by describing the standard spatial econo-
metric specifications in matrix notation for a two time-period analysis so that the 
reader has a point of comparison for the machine learning-adapted specifications 
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used in this paper3 (Gelman and Hill 2006; LeSage and Pace 2009; Kolak and 
Anslein 2020). We’ll start with the baseline (non-spatial) OLS specification in 
Eq. (1):

where Yi is the value of the outcome variable (Y) in the post-intervention time period 
(POST) for observation i, T is a binary treatment variable taking the value of “1” 
if an observation is treated and “0” if not, X is a vector of confounding covariates 
measured before the treatment, and ε is the error term. In the spatial lag or spa-
tial autoregressive model (SAR) shown in Eq. (2), the spatial lag of the dependent 
variable (WYPOSTi) enters on the right-hand side of the equation, which controls for 
the value of post-intervention outcomes in neighbouring observations (i.e. spillover 
effects):

In the spatial lag of X (SLX) specification shown in Eq. (3), spatial lags of the 
treatment variable (WTi) and covariates (WXi) are included. These lags control for 
the effect of neighbours’ treatment status on a given observation’s (i) outcome (the 
most straightforward SUTVA violation) as well as for the effect that neighbouring 
confounders might have on i, which could capture spillovers in the covariates or dif-
fering spatial extents between the determinants of a process and where it is being 
measured (i.e. a reduction in on-road  CO2 emissions in block group i may be related 
to the % of people commuting by auto in block group i as well as the % of people 
commuting by auto in all of the surrounding block groups as well):

Lastly, the spatial Durbin model simply combines the SAR and SLX models by 
including spatial lags of both the dependent and independent variables (including 
T), as described in Eq. (4):

These specifications form the basis for comparing the performance of different 
causal machine learning models in this paper under designed conditions of spatial 
dependence.
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3 There are some important differences between linearly estimated spatial models (whose specifications 
are described in Eqs.  (1)–(4)) and the machine learning versions used in this paper. First, the “forest” 
algorithms are nonlinear estimators, so they do not produce a typical regression coefficient (Krzywinski 
and Altman 2017). Second, because of this, causal forest and random forest do not use the typical proce-
dures for estimating spatial econometric models, e.g. maximum likelihood estimation, Bayesian estima-
tion, or general method of moments (GMM) (LeSage and Pace 2009; Anselin and Rey 2014). Thus, they 
do not produce estimates of “direct” and “indirect” spatial effects from the spatial lag model and cannot 
be used to directly estimate spatial error models.
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2.3  Heterogeneous treatment effects (HTE)

Heterogeneous treatment effects (HTE), i.e. variations in the extent to which a given 
treatment impacts different types of observations, are important to understand in 
nearly all applications of causal inference. However, given the fundamental prob-
lem of causal inference, the true CATE are not readily observable; only aggregate 
measures of the treatment effect can be observed from the data. Researchers initially 
approached this problem via “sub-group” analysis, which essentially entails splitting 
the sample into relevant subsets (e.g. women vs. men) and finding the difference in 
ATE between the two, and/or inserting an interaction term into a causal regression 
between the characteristics of interest and the T variable (Parker and Naylor 2000; 
Lagakos 2006; Imai and Ratkovic 2013). However, several issues have been noted 
with this approach, including the fact that subsetting the data reduces the sample 
size in each sub-group, increasing the number of sub-groups increases the chance 
of a false positive, and this approach still does not provide estimates of CATE. To 
address these shortcomings, in recent years, many semi- and nonparametric machine 
learning methods for estimating HTE have been developed, including Bayes-
ian regression trees (Hill 2011), Support Vector Machines (SVM) with LASSO 
(Imai and Ratkovic 2013), neural networks (Shalit et al. 2017) and the causal for-
est (Wager and Athey 2019). Given the relative novelty of the causal forest and 
the demonstrated high predictive power of the (similar) random forest (Strittmat-
ter 2019; Farbmacher et al. 2021; Credit 2022), in this paper, we are interested pri-
marily in comparing the performance of the causal forest alongside a new, spatially 
informed, T-learner model for estimating HTE (using random forest). We describe 
both in more detail below.

2.3.1  Causal forest

The causal forest is a type of “generalised” random forest that produces predicted 
values of the unit-level conditional average treatment effects rather than predicted 
values of the outcome variable, as in the traditional random forest (Athey et  al. 
2019). Statistically, the generalised random forest is broadly similar to the random 
forest in that it is an ensemble of decision trees that are grown on random subsam-
ples of the training data. It uses an “honest” estimation strategy in which a given 
tree’s (random) subsample is split again into two subsamples: one used to estimate 
the tree’s partitions, and the other to “populate” the tree based on these partitions. 
For building the tree, a random subset of candidate covariates is selected; for each 
covariate, the algorithm takes each possible value and considers making a split 
based on which value will maximise heterogeneity in the resulting “child” nodes, 
which is importantly different than the random forest’s goal of minimising prediction 
error. For the causal forest, this involves maximising the difference in estimated TE 
between the children according to a linear approximation of the mean difference gra-
dient (Wager and Athey 2018; Knaus et al. 2018; Athey et al. 2019; Tibshirani et al. 
2022a). For predicting values, the generalised random forest can be conceptualised 
as an adaptive-kernel nearest-neighbour method, where “proximity” is measured in 
terms of the characteristics of the training observations that fall into the same leaf 
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as a given test observation. In this way, the test set is “dropped” into the built tree; 
each test observation lands in a particular leaf based on its characteristics, and a list 
of similar training observations (leaf-mates) is generated. A neighbourhood weight 
for each training observation is then calculated (across all trees in the forest) based 
on the number of times it falls into the same leaf as a given test observation. The 
predicted TE for each test data point, then, is the neighbourhood-weighted aver-
age difference of the outcome variable (Y) between treated and untreated observa-
tions (Wager and Athey 2018; Knaus et al. 2018; Athey et al. 2019; Tibshirani et al. 
2022a). The causal forest as estimated in the grf package in R also includes some 
items pertaining specifically to the estimation of causal effects, including orthogo-
nalization and balanced splits (between observations in the treatment and control 
groups) (see Tibshirani et al. 2022a for more detail).

2.3.2  Spatial T‑learner (STL)

This paper also explores an alternative “forest”-based approach to estimating the 
CATE, which we have called the “spatial” T-learner (STL) after the two-stage 
(T) metalearner described in Künzel et  al. (2019). The basic concept for the spa-
tial T-learner is the same as the T-learner but with explicitly spatial components in 
terms of both a) the delineation of the treatment and control areas and b) the inclu-
sion of spatially lagged variables in the predictive models at both states. The STL 
first involves predicting outcomes (YPOST) using only data from the control group 
(training set) in the pre-intervention period. In this paper, we have estimated all 
steps of the STL using random forest due to its strong predictive accuracy, but other 
models could be used. Equation (5) shows the spatial Durbin specification (without 
regression coefficients) for first stage of the STL model:

where Ti = 0. Dropping the values of the “test” set—in this case, only the treatment 
area—into this tree (using the ‘predict’ function in R) produces an estimate of the 
counterfactual condition in the treated area, i.e. an estimate of YPOST if the treatment 
had never occurred in the treated observations. This is a reasonable assumption as 
long as the number and quality of covariates is enough to produce a good prediction 
and the control and treatment groups are relatively similar (e.g. within the same city 
or subpopulation). In this case, we can say that Ŷ  from Eq. (5) is an estimate of the 
true Y(0), i.e. Ŷ(0).

Now we can obtain estimates of the CATE  (TEi) directly by subtracting Ŷ
i
(0) 

from observed values for Yi(1) in the treatment area, YPOSTi (where Ti = 1). To find 
the CATE for untreated observations, a secondary random forest model is trained 
with TEi as the dependent variable, as shown in Eq. (6):

where Ti = 1. Dropping the values of the “training” set, i.e. the control group, into 
this tree produces predictions for the TE in the untreated observations (based on 
their other characteristics). From here, all summary statistics of treatment effect can 
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be calculated, including the ATE, which in this case is simply the average of  TEi 
across the entire study area.

3  Simulated data design

It is difficult to structure a true comparison of the performance of different causal 
machine learning methods at identifying average and unit-level TE without know-
ing the values of these effects beforehand, which necessitates the use of some simu-
lated data with known properties. In this case, we created a simulated dataset that 
attempted to mimic the conditions present in many urban-geographic applications, 
including spatial effects and relationships. Our idea here is to design a system where 
the treatment assignment, pre-intervention values of Y, and post-intervention val-
ues of Y are all related (to various extents) to the spatial configuration of the data. 
This is motivated by a thought experiment—similar to the one we investigate in this 
paper’s application—in which city centre locations attract populations with certain 
characteristics, e.g. educational attainment and propensity to cycle or walk to work 
(U1 and U2), that generate lower pre-intervention levels of on-road  CO2 emissions 
(YPRE). There are also unobserved variables (UO) and variables whose characteris-
tics are randomly distributed with respect to spatial location (X1 and X2).

To do this, we first create a rectangular study area of 500 equidistant points, 35 
wide × 25 long. Next, we identify a smaller rectangular “centre” area in the middle 
of the study area, as shown in Fig. 1a, and create two confounding factors, U1 and 
U2, correlated with the Centre dummy variable at 0.7 and 0.5, respectively, using 
the R package faux version 1.1.0. We then add a “pre-intervention” value of Y, YPRE, 
correlated with the Centre dummy at − 0.7 and an “unobserved” variable (UO) that 
would not be added to any of the models but is also correlated with Centre at 0.8. 
This is intended to reflect many real-world situations where numerous factors are 
correlated with specific geographic locations but are not available to model. Finally, 
we add two uncorrelated random variables for additional noise, X1 and X2. Full 
characteristics of the variables can be found in Appendix 2.

We can imagine that true counterfactual values of Y are in some sense a product 
of all of these factors, so we create a new variable, Y(0)f, that is correlated with the 
entire existing bundle of variables at 0.3, and add that to YPRE to obtain the true 
counterfactual value of Y in all locations, Y(0). Importantly, this is a product of each 
observation’s characteristics (some of which in turn are correlated with the central 
location), but not related to the treatment in any way. Next, we model a (very realis-
tic) scenario in which treatment assignment is correlated with existing characteris-
tics (U1, U2, and UO4) of observations (0.7). Continuing our example, this assign-
ment mechanism simulates a condition in which the characteristics of populations 
drawn to the centre not only influence the pre-treatment emissions and counterfac-
tual emissions, but also make it more likely (through activism, planning analysis, 
etc.) to have a new transit system built in their neighbourhoods. Thus, in this way, 

4 In this case, YPRE was excluded since it is negatively correlated with the other variables, which pre-
vented high correlations from being possible. X1 and X2 were excluded for similar reasons.
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U1, U2, and UO are true confounders that must be controlled for in order to meet 
the assumption of ignorability (Matthay et  al. 2020; Gelman and Hill 2006). The 
resulting treated observations (T) are shown in Fig. 1b.

Since we want to create a scenario where the treatment has some impact, we specify 
a TE variable with a mean of − 2 that is highly correlated with the treatment (− 0.8). 
Adding that to Y(0) yields Y(1), the true treated value of Y in every observation. Since 
we have created the data, in this case, we can overcome the fundamental problem of 
causal inference, but in order to mimic real-world data, we create a final YPOST variable 
that takes the value of Y(0) for untreated observations and Y(1) for treated observations. 
Figure 2a shows a directed acyclic graph5 (DAG) of the causal relationships that we 
have generated through this simulated data—because the Centre influences both the 
treatment assignment T and the values of U1, U2, and YPRE, which all subsequently 
influence YPOST (through Y(0)), U1, U2, and YPRE are true confounders producing bias 
that must be adjusted for in order to identify the treatment effect. Figure 2b shows the 

Fig. 1  a–d Spatial distributions of a selection of simulated variables

5 Graphs were created using DAGitty v.3.0 in a Chrome browser.
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correlational relationships embodied by this data structure, which are of course quite 
tangled, as is the case in many real-world urban-geographic applications of causal 
inference.

Due to the spatial nature of these correlations, the influence of the Centre on UO 
can indirectly be controlled for by adding spatial lags of the observed variables to the 
model, which we do using an eight nearest-neighbour spatial weights matrix. The spa-
tial pattern for YPOST and the spatial lag of T are shown in Fig. 1c, d, respectively.

4  Structured model comparison using simulated data

The primary goal of this paper is to compare the performance of causal machine 
learning methods (Models B–D in Table 1) with traditional OLS (Model A) across 
four different spatial specifications: a baseline (non-spatial) model based in Eq. (1), 

Fig. 2  a, b Directed acyclic graphs (DAG) showing causal and correlational relationships for simulated 
variables

Table 1  Average values for average treatment effect (ATE) and mean squared error (MSE) for simulated 
data across 16 different combinations of model choice and specification

Values nearing statistically significant deviation from true values (based on 999 iterations each) are 
shown in orange. Boxes highlight the best estimates of ATE and MSE across all model-specification 
combinations

Model Baseline SAR SLX Durbin

ATE MSE ATE MSE ATE MSE ATE MSE

A Ordinary least squares (OLS) − 2.050 − 2.110 − 2.123 − 2.128
B Causal forest: No split − 1.992 0.026 − 2.007 0.027 − 2.010 0.027 − 2.000 0.027
C Causal forest: Random 70/30 

test/train split
− 1.965 0.034 − 1.967 0.033 − 1.974 0.035 − 1.963 0.035

D Spatial T-learner: Random 
forest

− 2.036 0.108 − 1.965 0.137 − 1.983 0.146 − 2.003 0.129
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a spatial lag (SAR) model based in Eq. (2), a spatial lag of X (SLX) model based in 
Eq. (3), and a spatial Durbin model based in Eq. (4).6 In addition, we are interested 
in assessing the risk of overfitting when using the entirety of the data for training in 
the causal forest (Model B)—and thus preserving the underlying spatial configura-
tion of the data as compared to the usual 70% train/test split (Model C)—and in test-
ing the viability of the “predicted counterfactual” model (Model D).

To understand the distributional properties of this data—and be able to make 
comparisons based on statistical significance—we ran 999 simulations on each 
estimation method.  This approach allows us to test the statistical significance of 
each estimation technique against each other. We assessed the performance of each 
respective estimation technique and specification through the construction of violin 
plots. These plots show the distribution of the given metrics of interest along with 
their mean and ninety-five percent confidence interval.

It is also important to note that when estimating with decision tree-based algo-
rithms, various hyperparameters can be tuned. For the sake of simplicity, we do 
not tune the hyperparameters of each run for causal forest and random forest. In 
practice, this would make the simulations too computationally expensive as there is 
an infinite combination of hyperparameters that could be used. Instead, we use the 
default hyperparameters that are set within the given libraries we used for estima-
tion. These default values can be found in the documentation for causal forest and 
random forest in the grf package and the Random Forest package in R.

For each model-specification combination, two types of assessments of accuracy 
are made: ATE and MSE. ATE is calculated differently for each model type: for 
OLS, we take the regression coefficient on the T variable. For the two causal forests, 
we use the ‘average_treatment_effect’ function from the grf package in R (version 
2.0.2) on the “all” target sample using the augmented inverse-propensity weight-
ing method from Robins and Rotnitzky (1995). For the STL, we use the predictive 
method described in Sect. 2.3.2 above. Since the three machine learning models pro-
duce heterogenous estimates of CATE—which we have also generated in the simu-
lated dataset—we can also find the accuracy of those individual values by calculat-
ing the MSE between known CATE and predicted CATE for each observation. The 
average value for ATE and MSE after 3,966 iterations of each model-specification 
combination can be found in Table 1. Violin plots showing the full distribution of 
results for ATE and MSE for the preferred Durbin model (discussed in more detail 
below) are also shown in Fig. 3a, b (respectively). The Durbin plots are broadly rep-
resentative of the results of each of the specifications.7

Four primary results stand out. First, the three machine learning models nearly 
significantly outperform OLS in terms of identifying the true ATE of -2 for the 
SAR, SLX, and Durbin models; as Fig. 3a shows, the true estimate falls just within 
the upper 95% confidence interval for the OLS estimate, whilst each of the other 

6 Complete specifications of these models using the simulated data variables can be found in Appen-
dix 4. It is important to note that the OLS models in this paper are not estimated using standard spa-
tial econometric techniques, but—to maintain consistency with the machine learning models—simply 
employ the same spatially lagged variables.
7 Violin plots for all specifications tested in the paper available by request.
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three averages very nearly pinpoint the true value. However, the three models’ esti-
mates are not significantly different from one another, although the STL model’s 
variance is somewhat larger than the two causal forest models. Second, these results 
also hold for MSE of the CATE, except that in this case, as Fig. 3b shows, the STL 
models are slightly worse than the causal forests, nearing (but not quite attaining) 
statistical significance.

Third, for the machine learning models, the SAR specification tends to margin-
ally outperform the baseline across the board, which makes sense given the spatial 
construction of the dataset. The SLX or Durbin models (or both) also offer some 
small additional performance over the SAR in most cases. For example, the Dur-
bin performs better than the SAR for Models B and D (in terms of both ATE and 
MSE), whilst the SLX performs better than the SAR for Model 3 in terms of ATE 
only. However, it is important to note that none of these differences are statistically 
significant. Finally, along those lines, the Durbin specification for Model B displays 
the most accurate average estimate of ATE and the second-lowest average MSE, 
although the difference is not statistically significant. This is chosen as the preferred 
model for this reason.

4.1  Application: assessing the impact of light rail construction on on‑road  CO2 
emissions in phoenix

This paper’s application is motivated primarily by a growing interest in the literature 
on the impact of transportation patterns, infrastructure, and urban form on reduc-
ing greenhouse gas (GHG) emissions that are harmful to the global climate (IPCC 
2018). Existing empirical research has primarily focused either on the impacts of 
transit construction on reductions in Vehicle Miles Travelled (VMT) (Newman and 

Fig. 3  a, b Violin plots showing distributional results (based on 999 iterations each) for average treat-
ment effect (ATE) and mean squared error (MSE) for the causal forest (CF), ordinary least squares 
(OLS), and spatial T-learner (STL) models using the spatial Durbin specification
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Kenworthy 1999; Holtzclaw 2000; Bailey et  al. 2008; Ewing and Hamidi 2014; 
Boarnet et al. 2020) or the impact of more aggregate features of urban spatial struc-
ture (e.g. compactness, density) on reductions in greenhouse gas (GHG) emissions 
(Glaeser and Kahn 2010; Jones and Kammen 2013; Lee and Lee 2014; Gately et al. 
2015; Gudipudi et al. 2016; Mitchell et al. 2017). However, relatively little existing 
work looks at the direct empirical impact of transit construction on  CO2 emissions 
using methods of causal inference or at fine-grained spatial scales of analysis.

To do this, we employ the Database of Road Transportation Emissions (DARTE), 
which contains block group-level estimates of on-road  CO2 emissions for the entire 
continental US for every year from 1980 to 2017 (Gudipudi et al. 2016). Whilst this 
dataset obviously has immense utility for several potential applications of spatial and 
causal inference, in this paper, we are interested in presenting a relatively straight-
forward analysis. Thus, we have focused on one region in particular, Phoenix, AZ, 
which finished construction of its Valley Metro light rail system in 2009. Phoenix 
offers an ideal case from the perspective of the DARTE time series, with sufficient 
data on the outcome variable both pre- and post-construction. Also, by using Phoe-
nix, we are able to directly import study design considerations from previous quasi-
experimental work in the region looking at the impact of transit construction on 
new business creation (Credit 2018). Phoenix is also an interesting test case from a 
scientific standpoint—it is one of the largest and fastest-growing regions in the US 
(US Census Bureau 2022), and at the same time has one of the most auto-oriented, 
“sprawling” urban development patterns in the country. Given this context, finding 
a measurable impact of transit construction on reducing on-road  CO2 emissions in 
Phoenix (even if small) would certainly be interesting for urban planners, research-
ers, and policy-makers.

4.2  Treatment and control groups, variables, and model specification

To test the impact of light rail construction on  CO2 emissions at the block group 
scale in Phoenix, we first must delineate suitable “treatment” and “control” areas. 
Whilst distances from 1/4 mile to one mile have been put forward in previous 
research as boundaries of economic development impact around transit stations 
(Calthorpe 1993; Zhao et al. 2003; Guerra et al. 2011; Mohammad et al. 2013), for 
this application, we have chosen the 1 mile buffer used in a previous analysis of 
Phoenix’s light rail, which roughly corresponds to a 20-min walk (Credit 2018). 
For the control area, again following an approach offered in Credit (2018), we have 
chosen a 2.5-mile buffer around major highway interchanges in Phoenix (exclud-
ing areas already within the treatment area), which roughly corresponds to a 10-min 
drive at 15 miles per hour. This choice of control area is motivated primarily by 
theoretical considerations, i.e. in Phoenix, areas near highway interchanges are 
mostly likely to represent a counterfactual condition to areas around transit stations; 
both are influenced by the development and use of transportation infrastructure, but 
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the highway (automobile) infrastructure serves the “business as usual” mode.8 Both 
buffers are calculated using street network distance, and the resulting treatment and 
control areas are determined by the block groups which intersect each respective 
buffer. Figure 4 shows the full set of block groups chosen for analysis, with the treat-
ment buffer overlaid on the “treated” block groups. The remaining block groups 
belong to the control group.

Following the results of Sect. 4 above, we have chosen to use a causal forest spa-
tial Durbin model specification with no train/test split to analyse the causal effect of 
transit construction on  CO2 emissions. Given the lack of useful covariates in non-
decennial Census years through the introduction of the American Community Sur-
vey (ACS) in 2005, we employ a two time-period strategy with 2000 as the “pre-
intervention” year and 2017 as the “post-intervention” year. To deal with the fact 
that the spatial boundaries of block groups changed between 2000 and 2010, counts 
of demographic variables at the centroids of 2000 block groups are summed within 
the 2010 block group boundaries (which are used as a stable unit of reference for 
all years of DARTE data) and then re-divided by new totals (or area, in the case of 
population density). Block length was calculated by block group in 2000 and aver-
aged within the 2010 block group boundaries. Other variables were available only at 
the Census tract scale in 2000, so these values were applied evenly to the 2017 block 
group centroids within 2000 Census tract boundaries.

Fig. 4  a–c Rank-weighted average treatment effects (RATE) and targeting operator characteristic (TOC) 
curves for a priority based on treatment susceptibility (conditional average treatment effects), b priority 
based on baseline risk, and c a comparison of the statistical significance of the area under the TOC curve 
(AUTOC) for both rules. Negative values indicate larger benefit for reducing on-road  CO2 per capita. For 
more details, see Yadlowsky et al. (2021) and Tibshirani et al. (2022b)

8 For additional detail on the specific methodology and justification for this choice of treatment and con-
trol areas, please see Credit (2018, pp. 2844-2845).
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Appendix 3 provides a description for the covariates used in the analysis, each 
of which falls generally into one of three broad, theoretically relevant categories for 
possible confounders: socio-demographics, transportation, and built environment 
(based on the so-called “D” variables) (Ewing and Cervero 2010). On-road  CO2 per 
capita (i.e. emissions divided by population) was chosen as the outcome variable 
since emissions are primarily generated by people driving vehicles, not by the areal 
size of a block group (as in a density). The natural log of this variable was taken due 
to right-skewness. Spatial lags of each variable were calculated using a six nearest-
neighbour spatial weights matrix, according to the Durbin specification laid out in 
Appendix 4.

5  Results

To better understand the impact of light rail construction on  CO2 emissions and 
the spatial nature of heterogeneities in this impact, we are primarily interested in 
three items: (1) the estimated ATE from the causal forest model, (2) the heterog-
enous relationships between the CATE and the most important variables, and (3) 
the general spatial patterns of the CATE. To calculate the ATE, as above, we use 
the ‘average_treatment_effect’ function on the entire target sample and find a value 
of – 0.084, with an estimated standard error of 0.034. Since the outcome variable is 
logged, we take the exponentiated value of this variable − 1 to find the aggregate % 
decrease in on-road  CO2 per capital attributable to light rail over the impact period 
(2009–2017), which is 8.02%.

In addition, one of the most useful features of models that produce HTE is that 
we can learn something about the “susceptibility” of certain observations to treat-
ment. This can be done formally by constructing a rank-weighted average treatment 
effect (RATE) measure based on a given treatment prioritisation rule and evaluating 
its significance using a targeting operator characteristic (TOC) curve (Yadlowsky 
et al. 2021). Figure 4 shows the TOC graphs and results for two prioritisation rules: 
(1) priority based on treatment susceptibility, i.e. conditional average treatment 
effect (CATE), and (2) priority based on baseline risk, i.e. composition of features 
that predict high levels of 2017 on-road  CO2 per capita. In this case, for the first 
rule, calculating the area under the TOC curve (AUTOC) suggests that HTE are sig-
nificantly present and that this is a useful prioritisation rule (Tibshirani et al. 2022b).

To get a sense for the relationships driving the CATE, we can examine the impor-
tance (proportion of times each variable was split on at each depth in the causal 
forest) of each of the covariates used in the model, shown in Appendix 5 ranked 
from highest to lowest. Interestingly, the four most important variables all involve 
transportation characteristics of block groups, and nine of the top eleven are either 
transportation or built environment-related.

To understand the direction of these relationships—and whether they vary 
between treated and untreated observations—we need to look at the correlations 
between the predicted TE and these variables. Figure 5 shows the linear association 
between predicted CATE and all six of the transportation variables, as well as two 
of the most important built environment variables, population density and average 
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block length.9 In general, we can see that the spatially lagged variables here tend 
to follow the associations in the raw pre-treatment variables: higher proportions of 
auto commuting, longer average block length, and (surprisingly) higher population 
densities are all associated with smaller treatment effects (smaller reductions in on-
road  CO2). On the other hand, higher proportions of transit, cycling, and walking 

Fig. 5  Scatterplots showing linear relationships between selected covariates and predicted conditional 
average treatment effects (CATE) from causal forest model with no test/train split using spatial Durbin 
specification

9 Appendix 6 shows the full table of regression results between the doubly robust method for estimating 
the CATE from Cui et al. (2023) and each of the covariates of interest (with coefficient values and esti-
mates of standard error) from the ‘best_linear_projection’ function in the grf package. Whilst we prefer 
the graphical representation of results in Fig. 5 because it allows the reader to see the context of each 
individual relationship – and differences in the relationship between treated and untreated units, which 
may be obscured in a single regression coefficient – without the effects of multicollinearity, we under-
stand that the regression table may be of interest to some readers.
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commuting are associated with larger treatment effects (larger reductions in on-road 
 CO2). In general, this confirms our fundamental notions of transit ridership, i.e. that 
neighbourhoods with higher proportions of non-auto travel are likely to take advan-
tage of new light rail system construction (Werner et al. 2017), but it also reveals 
important empirical information for planners and policy-makers interested in les-
sons for future transit line planning.

The spatial pattern of CATE, shown in Fig.  6, generally confirms the relation-
ships shown in Fig. 5 in a spatial context. More walkable areas in the city centres of 
Phoenix (along N Central Ave.) and Tempe (Mill Ave. and Arizona State Univer-
sity) that are within one mile of stations appear to be most susceptible to the benefits 
of light rail construction, as we would expect given the relationships in Fig. 5. In 
general, these results suggest that the planned alignment for the light rail was well-
suited to benefit from transit construction. Given the significant results of the CATE 
RATE, prioritising treatment based on CATE (as estimated from the causal forest 
Durbin model) appears to be an effective approach for maximising the benefits of 
light rail construction. These results also speak to areas outside of the initial align-
ment that could be targeted for future extension of the line. In fact, two of the areas 
outside of the original “treatment” area with the highest CATE did see small exten-
sions of the system within the time period of the analysis: the PHX Sky Train people 
mover opened in 2013, providing direct service to the airport from the 44th Street/
Washington, which shows up on the map just to the west of Phoenix Sky Harbour 
Airport. In addition, the Central Mesa Extension to downtown Mesa was completed 

Fig. 6  Map of predicted conditional average treatment effects (CATE) from causal forest model with no 
test/train split using spatial Durbin specification
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in 2015; this area likewise shows up with large CATE or “susceptibility” to the tran-
sit “treatment”. Similarly, more auto-oriented, suburban portions of Glendale, south 
Tempe, and Mesa appear to be least susceptible to treatment, as might be expected 
given their land use/development patterns.

In general, the spatial Durbin causal forest model appears to be well-suited to the 
task of identifying CATE in application to an analysis of the effect of light rail con-
struction on reducing on-road  CO2 emissions. Whilst the relationships between pre-
treatment characteristics and predicted TE that we found are generally as expected, 
they provide useful confirmation of existing urban planning theory, namely that 
neighbourhoods with higher levels of non-auto commuting and more walkable built 
environments are best-suited for transit construction (in terms of reducing on-road 
emissions through high levels of ridership). This application also demonstrates 
how this kind of causal machine learning model could be used in a wide variety 
of urban planning contexts to identify and evaluate the spatial location of policy 
interventions.

6  Conclusions

In this paper, we have compared the performance of three causal machine learning 
techniques—including a newly developed “spatial” T-learner model—using simu-
lated spatial data to better understand whether or not these methods outperform tra-
ditional OLS, the benefits and drawbacks of randomly splitting the test and training 
sets, and the role of “spatial” specifications in identifying treatment effects. We also 
applied the preferred model from the simulation analysis to real data, analysing the 
causal impact of light rail construction on reducing on-road  CO2 emissions in Phoe-
nix, Arizona.

Overall, we found that (1) the three causal machine learning models consistently 
outperform traditional OLS at identifying ATE in this context, but (2) are not sig-
nificantly different from one another, which suggests that neither splitting the test/
training set nor training on a random sample of spatial data change the underlying 
results much. (3) Ultimately, the causal forest with no test/train split using the spa-
tial Durbin specification, which includes lags of the dependent and independent var-
iables, performed marginally better (on average) than all other models at identifying 
the true ATE and was second-best at reducing MSE of the CATE, though these dif-
ferences were not statistically significant. We then applied this model to the question 
of assessing the causal impact of light rail (tram) construction on reducing on-road 
 CO2 emissions per capita and found that the (4) estimated average reduction in on-
road  CO2 per capita due to light rail construction over the entire impact period is 
8.02%, or about 1% per year, which is on the low end of previous estimates of VMT 
reduction due to transit construction (Ewing and Hamidi 2014). Finally, (5) analysis 
of the HTE from the model found that higher proportions of transit, cycling, and 
walking commuting in the pre-treatment period are associated with larger reductions 
in on-road  CO2.

There are of course several limitations to our current approach that should be 
explored and expanded on in future work. Whilst our strategy for simulating data 
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represents a useful first step in structurally diagramming how causal relationships 
work in complex urban environments, a comprehensive comparison of model per-
formance in a wider range of different scenarios, accounting for, e.g. multiple types 
of bias, larger datasets, additional covariates, multiple spatial “poles”, and global/
local spatial spillovers, would be a useful contribution to the burgeoning literature 
on spatial and causal machine learning. It would also be interesting to extend the 
model specifications tested here to the very large difference-in-differences literature; 
whilst a similar approach to this papers’ using “gain” models could be implemented, 
recent advances to the difference-in-differences methodology regarding temporal 
dynamics, staggered adoption, and treatment intensity would be interesting to adapt 
to the causal forest and STL specifications laid out here (Roth et al. 2022). Empirical 
applications of the causal forest “Durbin” (or other spatial specifications used here) 
in a wider variety of urban-geographic contexts would also be highly useful.

Overall, we feel this paper has important implications for both future research and 
policy. From a scientific standpoint, this paper represents an early attempt to bridge 
the machine learning, causal inference, and spatial econometrics literature. Since 
work on both (1) spatially informed methods for causal inference (Baylis and Ham 
2015; Pollmann 2020; Kolak and Anselin 2020) and (2) causal machine learning 
methods (Wager and Athey 2018; Athey andWager 2019; Deines et al. 2019; Hoff-
man and Mast 2019; Davis and Heller 2020; Gulen et al. 2019) are still relatively 
new, there is a real need to combine insights from these two subfields in a systematic 
way and in particular to create structured approaches for dealing with spatial data 
in causal machine learning models. The framework that we have developed in this 
paper for thinking about—and simulating—the overlapping correlations in urban 
spatial data and processes is hopefully a useful contribution in this direction and 
may be helpful to future researchers interested in causal inference for spatial data.

From a policy perspective, the application of the causal forest Durbin model to 
analysing the impact of transit construction on  CO2 emissions provides some useful 
information for urban planners and policy-makers looking to undertake new transit 
system planning in the future. Even more broadly, this paper’s use of methods for a 
question related to urban policy analysis hopefully provides a useful contribution for 
analytically minded practitioners. In general, models that produce (spatial) HTE can 
be powerful tools for determining and evaluating the location of existing and future 
policy interventions.

However, we would like to stress here that applications of these methods to 
urban planning and policy-making must be carefully designed to avoid algorith-
mic bias. Whilst we have attempted in this paper to begin to disentangle a small 
piece of the web of overlapping (spatial) correlations at play in many common 
urban-geographic analyses, many of these factors are correlated with historical 
disadvantage, structural racism, and ongoing politics of oppression (Braveman 
et al. 2022). These models cannot be applied in an urban context without a con-
scious knowledge of that history and an understanding of the structural forces 
that might influence the results. Interestingly, in our application, the causal for-
est Durbin model did a relatively “good” job of picking up on characteristics 
directly related to transportation patterns rather than correlated socioeconomic 
or demographic features, which is encouraging; but models (and their outputs) 
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will ultimately reflect the biases and errors of the data, analysts, and societies that 
create them, and future users of these causal machine learning approaches have 
a grave responsibility to carefully interrogate their data, methodologies, assump-
tions, and biases when applying them to policy-making and planning.

7  Appendix

See Tables 2, 3, 4, 5, 6

Table 2  Full characteristics of the simulated variables

Name Description Avg Std. Dev Correlated with r

Centre Spatial centre: x = [6, 20], y = [8, 12]
U1 Confounder 1 1 0.5 Centre 0.7
U2 Confounder 2 2 1 Centre 0.5
UO Unobserved 4 2 Centre 0.8
Tf Treatment factor 0 1 [U1, U2, UO] 0.7
T Treatment: Tf > 1.75
TE Unit-level treatment effects -2 0.1 T -0.8
X1 Random variable 1 10 5
X2 Random variable 2 5 1
YPRE Pre-intervention Y 9 1 Centre -0.7
Y(0)f Counterfactual Y factor 2 0.5 [U1, U2, UO, X1, X2, YPRE] 0.3
Y(0) Counterfactual Y: YPRE + Y(0)f
Y(1) Treatment effected Y: Y(0) + TE
Y Post-intervention Y: 

(T = 0 → Y(0))∧(T = 1 → Y(1))
T_lag Spatial lag of T (8NN)
U1_lag Spatial lag of U1 (8NN)
U2_ lag Spatial lag of U2 (8NN)
X1_ lag Spatial lag of X1 (8NN)
X2_ lag Spatial lag of X2 (8NN)
YPOST_ lag Spatial lag of YPOST (8NN)
T_ lag Spatial lag of T (8NN)
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Table 4  Detailed specifications 
for model comparisons 
performed in Sect. 4

“_lag” suffix denotes a spatially lagged variable using an 8NN spa-
tial weights matrix. “YPRE_lag” was tested but not included in the 
SLX or Durbin specifications due to its high correlation with YPRE. 
In the end the Durbin model without YPRE_lag performed best out 
of any model tested, so, to be consistent, the versions of the SLX 
and Durbin models without YPRE_lag were chosen for the paper. Full 
model results available by request

Model Specification

Baseline YPOST = T + U1 + U2 + X1 + X2 + YPRE

SAR YPOST = T + U1 + U2 + X1 + X2 + YPRE + YPOST_lag

SLX YPOST = T + U1 + U2 + X1 + X2 + YPRE + U1_lag 
+ U2_lag + X1_lag + X2_lag + T_lag

Durbin YPOST = T + U1 + U2 + X1 + X2 + YPRE + U1_
lag + U2_lag + X1_lag + X2_lag + T_lag + 
YPOST_lag

Table 5  Percentage of times each feature was split on at each depth in the Durbin causal forest (top 12 
values shown)

Name Description Importance (%)

LAGAUTO Spatial lag of commuting by automobile % 15.77
BWLK2000 Commuting by cycling and walking % 11.25
LAGTRANS Spatial lag of commuting by public transportation % 10.46
LAGBWLK Spatial lag of commuting by cycling and walking % 7.97
LAGBLKP Spatial lag of Black non-Hispanic population % 5.67
TRAN2000 Commuting by public transportation % 4.95
AUTO2000 Commuting by automobile % 4.36
BLKP2000 Black non-Hispanic population % 3.98
LAGAVBL Spatial lag of average Census block length (within block group) 3.33
AVBL2000 Average Census block length (within block group) 2.97
POPD2000 Population density 2.58
LAGPINC Spatial lag of per capita income 2.38
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Table 6  Regression results 
between the estimated CATE 
and covariates of interests 
provided by the ‘best_linear_
projection’ function in the grf 
package

Variable Estimate Std. Error t-value Pr( >|t|)

(Intercept) − 0.823 1.148 − 0.717 0.474
LGCO2C00 − 3.55E−04 0.004 − 0.087 0.931
POPD2000 4.260 5.829 0.731 0.465
WHTP2000 − 0.109 0.157 − 0.695 0.487
BLKP2000 − 0.269 0.282 − 0.956 0.339
HSPP2000 − 0.030 0.186 − 0.160 0.873
U18P2000 − 0.049 0.113 − 0.432 0.666
O65P2000 0.002 0.071 0.030 0.976
AUTO2000 0.825 0.268 3.079 0.002
TRAN2000 0.879 0.393 2.238 0.026
BWLK2000 0.015 0.543 0.027 0.979
TT302000 − 0.210 0.198 − 1.065 0.287
PINC2000 6.41E−07 9.14E−07 0.702 0.483
AGED2000 − 0.021 0.039 − 0.534 0.593
AVBL2000 − 1.01E−05 3.13E−05 − 0.323 0.747
LAGCO2C17 − 0.010 0.005 − 1.862 0.063
LAGTT30 0.210 0.221 0.949 0.343
LAGPOPD − 8.729 7.460 − 1.170 0.242
LAGWHTP 0.186 0.343 0.542 0.588
LAGBLKP 0.298 0.502 0.593 0.553
LAGHISPP 0.089 0.357 0.249 0.804
LAGU18P − 0.280 0.262 − 1.068 0.286
LAGO65P − 0.114 0.117 − 0.975 0.330
LAGPINC − 2.56E−06 1.94E−06 − 1.318 0.188
LAGAGED − 0.041 0.091 − 0.455 0.649
LAGAVBL − 1.23E−05 2.80E−05 − 0.438 0.661
LAGTRANS 0.247 1.313 0.188 0.851
LAGAUTO 0.312 1.025 0.305 0.761
LAGBWLK − 2.594 1.244 − 2.084 0.037
LAGTREAT 0.050 0.060 0.836 0.404
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