
MethodsX 11 (2023) 102426

Contents lists available at ScienceDirect

MethodsX

journal homepage: www.elsevier.com/locate/methodsx

A method for creating complex real-world networks using ESRI

Shapefiles.

Harish

a , ∗ , Peter Mooney

b , Edgar Galván

c

a Naturally Inspired Computation Research Group, Department of Computer Science, National University of Ireland Maynooth, Ireland
b Naturally Inspired Computation Research Group, Department of Computer Science, Hamilton Institute, National University of Ireland Maynooth,

Ireland
c Naturally Inspired Computation Research Group, Department of Computer Science, Hamilton Institute, National University of Ireland Maynooth,

Lero, Ireland

a r t i c l e i n f o

Method name:

Complex Real-World Networks using

Geospatial Data.

Keywords:

Graphical Networks

ESRI Shapefiles

NetworkX

OSMnx

a b s t r a c t

A classic optimization problem with many real-world applications is optimal route search in graphs or

networks. Graphical networks resembling real world networks are an important requirement for these

studies. Python packages NetworkX and OSMnx are probably the most popular approaches in in-

dustry for creating and analyzing real world graphical networks using ESRI S hapefiles (Geospatial

Vector Data). However, creating such a network is a complex and tedious process as these packages

require the input data to be in a specific format. In this study,

• We outline a flexible method that can be used to easily create graphical network representa-

tions in NetworkX or OSMnx using road network topology data stored in ESRI Shapefiles .

• A detailed step-by-step process is outlined to successfully transform the ESRI Shapefile data into

the compatible format for graph analysis libraries like OSMnx and NetworkX.

• A data cleaning strategy is suggested to reduce resource consumption without distorting the actual

structure of the graph.

This method will allow researchers to efficiently generate graphical networks and validate their theo-

ries by evaluating their efficiencies using real-world network data of different sizes and topologies.

This method could benefit, but is not limited to, research areas such as Advanced Transportation

Systems (ATS), Graph Neural Networks (GNN), Multi-Objective Genetic Algorithms, to mention

a few.
Specifications table

Subject area: Computer Science

More specific subject area: Graph Theory

Name of your method: Complex Real-World Networks using Geospatial Data.

Name and reference of original method: 1. NetworkX: Hagberg, A., Swart, P. and S Chult, D., 2008. Exploring network structure, dynamics, and function using

NetworkX (No. LA-UR-08–05495; LA-UR-08–5495). Los Alamos National Lab.(LANL), Los Alamos, NM (United

States).

2. OSMnx: Boeing, G., 2017. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex

street networks. Computers, Environment and Urban Systems, 65 , pp.126–139.

Resource availability: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
∗ Corresponding author.

E-mail address: Harish.Harish.2020@mumail.ie (Harish) .

https://doi.org/10.1016/j.mex.2023.102426

Received 2 June 2023; Accepted 7 October 2023

Available online 11 October 2023

2215-0161/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.mex.2023.102426
http://www.ScienceDirect.com/science/journal/22150161
http://www.elsevier.com/locate/methodsx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2023.102426&domain=pdf
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
mailto:Harish.Harish.2020@mumail.ie
https://doi.org/10.1016/j.mex.2023.102426
http://creativecommons.org/licenses/by/4.0/

Harish, P. Mooney and E. Galván MethodsX 11 (2023) 102426

Method details

Background

Path routing refers to the process of determining the optimal path between any two nodes in a graph. Because of its widespread

application in areas such as transportation, logistics, and robotics, this problem has a long history in graph theory and has been

extensively studied. Typically, distance is the primary objective to optimize in path routing problems. Given any two nodes S and T

in a graph, Dijkstra’s algorithm [1] can compute the shortest path with the complexity of O (n log n + m) . Due to its efficiency, this

algorithm is widely used in applications like Apple maps, Google Maps, and others for finding the shortest path in networks.

The selection of a graphical representation can significantly influence the effectiveness of a graph theory approach. For instance,

Breadth-first Search (BFS) [2] and Depth-first Search (DFS) [3] are well-known for their efficiency on small networks. However,

for larger networks these algorithms become inefficient due to issues like memory limitations, time complexity, and disconnected

components. Therefore, to ensure the efficiency and effectiveness of a graph algorithm, it is critical to test it on multiple networks of

varying sizes and topologies.

For many years, ESRI Shapefiles have been considered as one of the most reliable sources of data for the storage and acquisition

of graphical networks representing real-world road networks. An ESRI Shapefile is a vector data format that stores geospatial infor-

mation about various features such as traffic signals, buildings, land parcels, roads, among others. To represent these features, they

use a variety of geometries such as points, polylines, and polygons. The European Petroleum Survey Group (EPSG) is a non-profit

organization that keeps and maintains geographic records using standard codes known as EPSG codes, which define the Coordinate

Reference System (CRS) for ESRI Shapefile projections. The projections are stored in a binary-encoded format with a datatype called

Geometry. Python packages NetworkX [4] and OSMnx [5] are widely known for using ESRI Shapefiles to create graphical networks.

However, to convert a ESRI Shapefile representation of a network into a graph format of nodes and edges, both packages require

the data to be preprocessed, cleaned, and provided in a specific format. In the following section, we detail our proposed method to

take spatial data from an ESRI Shapefile containing polylines and then transform this data into the desired format for both NetworkX

[4] and OSMnx [5] .

Method

In this study, we outline a method for transforming spatial data from an ESRI Shapefile containing polylines into the desired format

for NetworkX [4] and OSMnx [5] . Using this method, researchers will be able to create efficient and accurate graphical representations

of big and small networks to test their graph theory approaches This method will also give users a better understanding of their graphs

in focus and assist them in comprehending the fundamental ideas behind graph theory, network analysis, and graph-based algorithms.

To replicate this method, an ESRI Shapefile consisting of polylines in a geometry format data is required. The ESRI Shapefiles used in

this study are from the open data provided by the US Census Bureau, which provides ESRI Shapefiles providing road networks for every

state in the United States of America (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html).

Python packages

Following is the list of some useful python packages to accomplish our task. Other packages, including OSMnx [5] can also be

used.

• NetworkX [4]

• Matplotlib.pyplot [6]

• Pandas [7]

• Geopandas [8]

• Shapely [9]

Coordinate reference system (CRS)

The geometry objects in each ESRI Shapefile are stored using an EPSG value that defines the coordinate reference system (CRS)

to accurately map the geographic location of features in the data. An EPSG code is a unique number assigned to distinct CRS. For

instance, the ESRI Shapefiles used in our study have an EPSG value of 4269, which is a degree-based projection system. To calculate

the distance (in meters) for all road segments in the datasets, we transformed the datasets to EPSG:2163, which is a meter-based

projection system for the geographic features in the United States. Similarly, to create an accurate graphical representation from

any ESRI Shapefile, it must be represented in a meter-based projection code for the geographical area. For instance, the meter-based

projection code for geographic features in Australia is 3112. The database of EPSG codes may be searched at https://epsg.io/ .

Data cleaning

Many ESRI Shapefile data sources, including OSMnx [5] allow users to download ESRI Shapefile data for any city or country on the

planet. However, this data is typically provided in raw format. Duplicate records may exist in this raw data for a variety of reasons,
2

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://epsg.io/

Harish, P. Mooney and E. Galván MethodsX 11 (2023) 102426

Fig. 1. Graphical Abstract for the Process.

Fig. 2. (a) ESRI Shapefile Representation of Texas before cleaning, (b) ESRI Shapefile Representation of Texas after cleaning.

including representing a single feature with multiple attributes. As a result, the data must be preprocessed and cleaned before it can

be used effectively (Fig. 1).

The cleaning stage described in this study not only refers to identifying and removing duplicate records but also involves identifying

and removing several records that may not contribute significantly to the network. The ESRI Shapefiles used in our study contain

polylines representing road segments. A polyline in our ESRI Shapefile is considered inadequate when,

• A polyline is completely contained within another polyline. For instance, an overpass represents this scenario where a new road

segment is created over a pre-existing road.

• A portion (more than one consecutive point) of a polyline is contained within another polyline. For instance, city roads segments

contained within major highways represent this scenario.

• Two polylines intersect with each other on more than one distinct point. For instance, consider a road that runs parallel to a

highway and intersects it twice.

Using this strategy, we can remove a considerable number of road segments from our graph without distorting the actual structure

of the graph. For instance, the largest network we used in our study had 15,257 road segments. After removing the polylines complying

with the aforementioned conditions, we had 7997 (only 52.4 % of the original) road segments without any considerable difference

between the networks, as shown in Fig. 2 .

Geographic feature extraction

A graph is defined as a collection of vertices (nodes) and edges that connects a pair of vertices. Mathematically, a graph is defined

as a pair of sets, G = (V, E), where V is a set of vertices and E is a set of Edges. Both NetworkX [4] and OSMnx [5] require the data

in the same format to create a graphical representation of a network. In contrast to OSMnx [5] NetworkX [4] requires the user to

manually extract the set of vertices and edges from the graph. While OSMnx [5] provides a convenient feature for directly extracting

the required set of vertices and edges from the graph, this can lead to potential data quality issues. For our study, we extracted
3

Harish, P. Mooney and E. Galván MethodsX 11 (2023) 102426

Fig. 3. (a) Shapefile Representation of Texas after cleaning. (b) Graphical Representation of Texas using NetworkX.

our data separately using python package Shapely and commonly used string manipulation techniques. Steps required to extract the

unique set of vertices and edges are as followed:

1. Extract the coordinates of the first node of each polyline (Using Shapely [9]).

2. Extract the coordinates of the last node of each polyline (Using Shapely [9]).

3. Using the intersection property provided by python package Shapely [9] , compute the polylines that share an intersecting ge-

ometry with other polylines and create a set for edges. As stated in the data cleaning strategy, two geometries sharing multiple

intersections are considered invalid.

4. Extract the coordinates of all intersection nodes. It must be noted that a single polyline can share geometries with multiple unique

polylines at the same or different intersection point.

5. Calculate the weight (distance) for each edge by first splitting the original polyline into two parts at the intersection node, and

then calculate the length of both parts using the split and length property respectively, provided by Shapely [9] .

6. At this point we now have two sets:

a. Set of nodes containing first, last, and intersection nodes.

b. Set of edges containing weights between two nodes.

7. Remove any duplicates from both sets.

Fig. 3 (a) and (b) display the Shapefile Representation of Texas after cleaning and the graphical representation of Texas using

NetworkX, respectively. Data cleaning steps described in Section 1.2.3 reduce the network size by 48 % but still the graphical

representation obtained consists of 10,858 unique nodes and 24,407 edges.

Fig. 4 illustrates the potential and reproducibility of our strategy through graphical representations of three unique networks of

varying sizes. Fig. 4 (a) shows an ESRI Shapefile depiction of Louisiana, which includes 9151 roadways. We were able to minimize

the network size to 4616 roads, or approximately 50 % of the original size, by using the data cleaning procedure outlined in Section

1.2.3. Oklahoma’s network, represented in Fig. 4 (c), was the smallest of the networks investigated in our study, with 5838 roadways.

Following the data cleaning, only 2743 roads (about 48 %) were deemed appropriate for investigation. The graphical representation,

shown in Fig. 4 (d), included 3344 distinct nodes and 6889 edges. Furthermore, Figs. 4 (e) and 4(f) show the Arkansas network’s ESRI

Shapefile and graphical representation, respectively. The data cleaning approach mentioned in Section 1.2.3 reduced the network

size from 5932 roads to 3012 roads (about 51 %), as in the prior situations. The finished graphical network had 4368 distinct nodes

and 8966 edges.

Conclusion

In this study, we proposed a method to create complex real-world networks using ESRI Shapefiles. The proposed method success-

fully resolves the issue of transforming ESRI Shapefile data into the necessary format for well-known graph analysis libraries like

OSMnx and NetworkX. The proposed method enables researchers to quickly create graphical networks for their research projects,

allowing them to test their theories on actual networks. The method’s simplified data format avoids the need for time-consuming data

preprocessing, allowing researchers to focus more on the analysis itself. The data cleaning strategy described in this study not only

reduces resource consumption but also enhances the user’s understanding of graph networks. As proof of its efficacy, the proposed

method was successfully used to convert the ESRI Shapefile data from Texas, Louisiana, Arkansas, and Oklahoma into the graphical

representations of the networks. As a result, this study significantly advances the field by empowering other researchers to evaluate

the efficacy of graph algorithms.
4

Harish, P. Mooney and E. Galván MethodsX 11 (2023) 102426

Fig. 4. (a), (c), and (e) shows the Shapefile Representation of Louisiana, Oklahoma, and Arkansas respectively. (b), (d), and (e) displays the Graphical

Representation of Louisiana, Oklahoma, and Arkansas using NetworkX respectively.
Ethics statements

We made use of open-data from the US Census Bureau (https://www.census.gov/geographies/mapping-files/time-series/geo/

tiger-line-file.html), which offers ESRI Shapefiles containing road networks for all states in the United States.

Credit author statement

Harish: Conceptualization, formal analysis, investigation, data curation, software, methodolog, visualization, writing – original

draft, writing – review and editing. Peter Mooney: Supervision, writing – original draft, writing – review & editing. Edgar Galván:

Supervision, writing – original draft, writing – review & editing. All authors have agreed to the publication of this manuscript.
5

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html

Harish, P. Mooney and E. Galván MethodsX 11 (2023) 102426

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the Department of Computer Science, Maynooth University, Ireland . The authors wish to acknowledge

the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.mex.2023.102426 .

References

[1] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271 .

[2] R. Bellman, On a routing problem, Q. Appl. Math. 16 (1) (1958) 87–90 .

[3] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146–160 .

[4] A. Hagberg, P. Swart, D. S Chult, Exploring Network structure, dynamics, and Function Using NetworkX (No. LA-UR-08-05495; LA-UR-08-5495), Los Alamos National

Lab.(LANL), Los Alamos, NM (United States), 2008 .

[5] G. Boeing, OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks, Comput. Environ. Urban Syst. 65 (2017) 126–139 .

[6] J.D. Hunter, Matplotlib: a 2D graphics environment, Comput. Sci. Eng. 9 (03) (2007) 90–95 .

[7] McKinney, W., & others. (2020). pandas: powerful data analysis toolkit (Version 1.3.0) [Software]. Zenodo. Retrieved from https://pandas.pydata.org/ .

[8] K. Jordahl, J. Van den Bossche, M. Fleischmann, J. Wasserman, J. McBride, J. Gerard, J. Tratner, M. Perry, A. Garcia Badaracco, C. Farmer, G.A. Hjelle, geopan-

das/geopandas: v0. 8.1, Zenodo (2020) .

[9] E. Westra, Python Geospatial Analysis Essentials, Packt Publishing Ltd, 2015 .
6

https://doi.org/10.1016/j.mex.2023.102426
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0001
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0002
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0003
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0004
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0005
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0006
https://pandas.pydata.org/
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0008
http://refhub.elsevier.com/S2215-0161(23)00422-3/sbref0009

	A method for creating complex real-world networks using ESRI Shapefiles.
	Background
	Method
	Python packages
	Coordinate reference system (CRS)
	Data cleaning
	Geographic feature extraction

	Conclusion
	Ethics statements
	Credit author statement
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References

