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Abstract
We consider intermediate Ricci curvatures Rick on a closed Riemannian manifold
Mn . These interpolate between the Ricci curvature when k = n − 1 and the sectional
curvature when k = 1. By establishing a surgery result for Riemannian metrics with
Rick > 0, we show that Gromov’s upper Betti number bound for sectional curvature
bounded below fails to hold for Rick > 0 when �n/2� + 2 ≤ k ≤ n − 1. This was
previously known only in the case of positive Ricci curvature (Sha andYang in J Differ
Geom 29(1):95–103, 1989, J Differ Geom 33:127–138, 1991).

Keywords Riemannian geometry · Intermediate Ricci curvatures · Surgery · Total
Betti numbers
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1 Introduction

A basic question in Riemannian geometry is to understand the relationship between
curvature and topology. A fundamental result of this type is the following celebrated
theorem of Gromov for sectional curvature bounded below:
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Theorem 1.1 [6] Given n ∈ N, d > 0, H ∈ R and a field F, if (Mn, g) is a closed
Riemannian manifold with diameter at most d and sectional curvature K ≥ H ,

then there is a number C = C(n, Hd2) such that the total Betti number of M with
coefficients in F is bounded above by C, i.e.

∑

i

bi (M
n;F) ≤ C(n, Hd2).

In particular, if the sectional curvature is non-negative, the total Betti number is
bounded above by a constant depending only on dimension.

It is natural to ask to whether such a result continues to hold under weaker curvature
conditions. In the case of positive Ricci curvature, Sha and Yang [19] were the first
to demonstrate that an analogous result is not possible. Indeed one can find examples
of closed manifolds in any dimension at least four with positive Ricci curvature and
arbitrarily large total Betti number.

Interpolating between the Ricci and sectional curvatures are a natural family of
intermediate curvatures: the kth-intermediate Ricci curvatures. These are defined as
follows:

Definition 1.2 Given a point p in a Riemannian manifold M , and a collection
v0, . . . , vk of orthonormal vectors in TpM , the kth-intermediate Ricci curvature at

p corresponding to this choice of vectors is defined to be
k∑

i=1

K (v0, vi ), where K

denotes the sectional curvature.

Notice that for an n-dimensional manifold Ric1 > 0 coincides with positive sectional
curvature, and Ricn−1 > 0 agrees with positive Ricci curvature. For background
concerning these curvatures, see for example [1, 5, 7–13, 17, 21, 23].

The primary motivation behind this paper is to understand the extent to which
a Gromov-like total Betti number bound holds, or fails to hold, in positive kth-
intermediate Ricci curvature. We prove

Theorem A In dimension d ≥ 5, the Gromov Betti number bound fails in Rick > 0
for any k ≥ �d/2� + 2.

The principal difficulty in establishing Theorem A is the problem of constructing
examples with positive kth-intermediate Ricci curvature. After many years of progress
there is now a rich collection of manifolds which are known to admit positive Ricci
curvature; however, in contrast, there is a dearth of examples as soon as one increases
the strength of the curvature condition. The issue here is the lack of available construc-
tion techniques. Before now, the only known approach was via symmetry arguments
familiar from the study of positive and non-negative sectional curvature. (See the
recent paper [5] for examples of this type.) In this paper, we develop a surgery-based
approach for Rick > 0, where k is roughly greater than half the dimension of the
manifold. We apply this technique to establish the following theorem, from which
Theorem A follows easily:
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Theorem B For n,m ≥ 2with n �= m, and any r ∈ N, the connected sum �ri=1S
n×Sm

admits a metric with Rick > 0 for k ≥ max{n,m} + 1. If n = m ≥ 3 then this
connected sum admits a metric with Rick > 0 for k ≥ n + 2.

Note that Theorem B demonstrates that one of the classical results of Sha and Yang
for positive Ricci curvature, see [20], continues to hold through a range of stronger
curvature conditions.

The precise surgery result used to prove Theorem B is the following, which extends
the positive Ricci curvature surgery results by Sha-Yang [20] and the authors [16, 22]
to positive kth-intermediate Ricci curvature.

For ρ > 0 we denote by S p(ρ) the round sphere of radius ρ and for R, N > 0
we denote by Dq+1

R (N ) a geodesic ball of radius R in Sq+1(N ). We will call a map
isometric if it preserves the Riemannian metrics (and not necessarily the underlying
distance functions).

Theorem C Let (Mn, gM ) be a Riemannian manifold with Rick > 0 and, for p, q ≥ 2
with p+q+1 = n, let ι : S p(ρ)×Dq+1

R (N ) ↪→ M bean isometric embedding. Suppose
k ≥ max{p, q}+2 and p, q ≥ 2. Then there exists a constant κ = κ(p, q, k, R/N ) >

0 such that if ρ
N < κ , then the manifold

Mι = M \ im(ι)◦ ∪S p×Sq (Dp+1 × Sq)

admits a metric with Rick > 0.

The major advantage that the Ricci curvature enjoys that all the stronger curva-
ture conditions under consideration here lack, is that the Ricci curvature (respectively,
Ricci tensor) is a quadratic form (respectively, symmetric bilinear form). These alge-
braic properties make the positivity of the Ricci curvature relatively straightforward
to detect. On the other hand, detecting Rick > 0 (for 1 ≤ k ≤ n−2) is fundamentally
more challenging. The detection problem is, therefore, the first, and most crucial issue
which we have to address in this paper. In general this problem is extremely difficult,
as is well-known in the case of positive sectional curvature, i.e. Ric1 > 0. Moreover,
the appearance of the vector v0 in every summand in Definition 1.2 imposes an addi-
tional technical difficulty whenever k > 1. In the situations we are interested in for our
applications, the detection problem reduces to a highly non-trivial algebraic question.
In some sense, the resolution of this question (addressed in Proposition 2.4) is the key
innovation in this paper.

The metrics we use in the proof of Theorem C are doubly warped product metrics
as in [20]. However, it is not hard to see that the warping functions in [20] do not
produce a metric with Rick > 0 for k as claimed in the theorem.We, therefore, follow
a modified approach as in [16]. We also note that the strategy of using doubly warped
product metrics cannot produce a metric with Rick > 0 in Theorem B for any smaller
k than indicated in the theorem, except in the case n = m, where one could potentially
reduce the lower bound by 1, see Remark 4.3 below.

On a more technical level, we also prove a smoothing result via mollification tech-
niques, which we expect to be useful in a variety of situations beyond the current
paper.
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This paper is laid out as follows. In the second section we discuss the curvature
of certain double warped product metrics, and establish the algebraic result which
enables us to guarantee that our warped product metrics have Rick > 0 for a range
of k. In the third section we discuss a gluing result which will allow us to smooth a
C1 gluing of double warped product metrics within Rick > 0. Finally, in the fourth
section we discuss the precise choice of scaling functions necessary for us to carry out
our surgery construction, and prove the main theorems.

2 Warped Products and Positive Intermediate Ricci Curvatures

As discussed in the introduction, we ultimately wish to establish a surgery result
for Rick > 0. The traditional starting point for surgery theorems in positive Ricci
curvature is to consider double warped product metrics, and we proceed in a similar
fashion here.

Instead of expressing Rick as a sum of sectional curvatures, it will be convenient for
our purposes to think of Rick in terms of the curvature operatorR : �2 M → �2 M .

Recall that this is defined by the equation

〈R(X ∧ Y ),U ∧ W 〉 = R(X ,Y ,W ,U ),

where R is the curvature tensor and 〈·, ·〉 denotes the Riemannian metric. (Here we
assume the following curvature tensor convention: R(X ,Y ,W ,U ) = 〈∇X∇YW −
∇Y∇XW − ∇[X ,Y ]W ,U 〉.) Note that if V is a vector space with inner product 〈·, ·〉,
we obtain an induced inner product on �2V given by

〈v1 ∧ v2, v3 ∧ v4〉 = 〈v1, v3〉〈v2, v4〉 − 〈v1, v4〉〈v2, v3〉.

As R(X ,Y ,W ,U ) = R(W ,U , X ,Y ) we see that R is symmetric. For a pair of
orthonormal tangent vectors U ,W , we have

K (U ,W ) = R(U ,W ,W ,U ) = 〈R(U ∧ W ),U ∧ W 〉,

so for an orthonormal collection of vectors v0, . . . , vk we have

k∑

i=1

K (v0, vi ) =
k∑

i=1

〈R(v0 ∧ vi ), v0 ∧ vi 〉.

Now consider a warped product metric dt2 + f 2(t)ds2p + h2(t)ds2q on R+ × S p ×
Sq , and orthonormal frame fields ∂t , E1, . . . , Ep, F1, . . . , Fq for this metric where
E1, . . . , Ep are tangent to S p and F1, . . . , Fq are tangent to Sq .
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Lemma 2.1 ([15, Section 4.2.4]) The curvature operator R : �2(R+ × S p × Sq) →
�2(R+ × S p × Sq) satisfies:

R(∂t ∧ Ei ) = − f ′′

f
∂t ∧ Ei ;

R(∂t ∧ Fk) = −h′′

h
∂t ∧ Fk;

R(Ei ∧ E j ) = 1 − ( f ′)2

f 2
Ei ∧ E j ;

R(Fk ∧ F	) = 1 − (h′)2

h2
Fk ∧ F	;

R(Ei ∧ Fk) = − f ′h′

f h
Ei ∧ Fk .

Here it is assumed that i < j and k < 	. The elements of �2(R+ × S p × Sq) listed
above form an orthonormal basis of eigenvectors for R, and the coefficients above
form a complete set of eigenvalues.

In order to analyse the Rick > 0 condition via the curvature operator in the context
of double warped product metrics, we introduce the following concepts. Fix k ∈
{1, . . . , n − 1}.
Definition 2.2 Let (v0, . . . , vk) be an orthonormal basis of a (k + 1)-dimensional
subspace of V .

• The set {v0 ∧ v1, . . . , v0 ∧ vk} ⊆ �2V will be called a k-chain. The vector v0 is
the base of this k-chain.

• For a linear map A : �2V → �2V we call

k∑

i=1

〈A(v0 ∧ vi ), v0 ∧ vi 〉

the value of A on the k-chain {v0 ∧ v1, . . . , v0 ∧ vk}.
We now consider a linear self-adjoint map A : �2V → �2V and suppose that V

splits orthogonally as

V = V1 ⊕ V2 ⊕ V2

so that the spaces

Vi ∧ Vj

with i, j ∈ {1, 2, 3} are eigenspaces of A. We denote the corresponding eigenvalues
by λi j .
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Definition 2.3 For fixed i ∈ {1, 2, 3} we say that a partition n1 + n2 + n3 = k of
k with n j ∈ N0 is admissible for i , if ni ≤ dim(Vi ) − 1 and n j ≤ dim(Vj ) for all
j ∈ {1, 2, 3} with j �= i .

Our main algebraic result, which is key to estimating Rick , is the following.

Proposition 2.4 The value of A on every k-chain is positive if and only if

n1λi1 + n2λi2 + n3λi3 > 0 (1)

for all i ∈ {1, 2, 3} and all partitions n1 + n2 + n3 = k that are admissible for i .

Before proving this proposition, we first need some preliminary results. We begin
with a definition.

Definition 2.5 For a linear self-adjoint map A : �2V → �2V and for any unit v ∈ V ,
let Av : V → V denote the map given by

〈Av(x), y〉 = 〈A(v ∧ x), v ∧ y〉.

Note that the self-adjointness of A immediately implies that Av is self-adjoint.
Recall that a self-adjoint linear endomorphism θ : W → W of a finite dimensional

inner product space (W , 〈·, ·〉) is said to be k-positive if for all orthonormal sets of k
vectors {w1, . . . , wk} ⊂ W , the sum

〈θ(w1), w1〉 + · · · + 〈θ(wk), wk〉 > 0.

Lemma 2.6 ([18, Lemma 1.1]) The following are equivalent:

1. θ is k-positive;
2. the sum of any k eigenvalues of θ is positive.

Using this result in the case where θ = Av , we establish

Lemma 2.7 The following are equivalent:

1. A is positive on every k-chain with base v;
2. Av|v⊥ : v⊥ → v⊥ is k-positive;
3. Av is (k + 1)-positive.

Proof First note that v is an eigenvector of Av with eigenvalue 0. Since Av is self-
adjoint, the other eigenvalues of Av (counted with multiplicity) can be associated to
an orthonormal frame of eigenvectors belonging to v⊥. Thus, by Lemma 2.6, (k +
1)-positivity of Av is equivalent to k-positivity of Av|v⊥ , so items (2) and (3) are
equivalent.

The equivalence of items (1) and (2) now directly follows from the fact that every
orthonormal set of vectors {v1, . . . , vk} ⊆ v⊥ defines a k-chain {v ∧ v1, . . . , v ∧ vk}
with base v and vice versa. ��
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Proof of Proposition 2.4 That condition (1) is necessary can easily be seen by choosing
a k-chain {v0 ∧ v1, . . . , v0 ∧ vk} with base v0 contained in Vi and where n j of the
vectors v1, . . . , vk are contained in Vj .

To see that (1) is sufficient, by Lemma 2.7, it suffices to prove that the map Av|v⊥
is k-positive for any unit length v ∈ V . Given such a v, there exist unit length vectors
vi ∈ Vi and μi ∈ R with μ2

1 + μ2
2 + μ2

3 = 1 so that

v = μ1v1 + μ2v2 + μ3v3.

We extend the vectors vi to orthonormal bases (vi = v1i , v
2
i , . . . , v

dim(Vi )
i ) of the

spaces Vi . Then

(v11, . . . , v
dim(V1)
1 , v12, . . . , v

dim(V2)
2 , v13, . . . , v

dim(V3)
3 )

is an orthonormal basis of V . In this basis the map Av is given by the following matrix,
where we set ai = μ2

1λi1 + μ2
2λi2 + μ2

3λi3.

μ22λ12+μ23λ13 0 0 −μ1μ2λ12 0 0 −μ1μ3λ13 0 0

0 a1 0 0 0 0
0

0 0 a1 0 0 0 0
−μ1μ2λ12 0 0 μ21λ12+μ23λ23 0 0 −μ2μ3λ23 0 0

0 0 0 a2 0 0
0

0 0 0 0 a2 0 0
−μ1μ3λ13 0 0 −μ2μ3λ23 0 0 μ21λ13+μ22λ23 0 0

0 0 0 0 0 a3
0

0 0 0 0 0 0 a3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

The eigenvalues of this matrix are the values ai withmultiplicity dim(Vi )−1, together
with the eigenvalues of the matrix

⎛

⎝
μ2
2λ12 + μ2

3λ13 −μ1μ2λ12 −μ1μ3λ13
−μ1μ2λ12 μ2

1λ12 + μ2
3λ23 −μ2μ3λ23

−μ1μ3λ13 −μ2μ3λ23 μ2
1λ13 + μ2

2λ23

⎞

⎠ .

This matrix has eigenvalue 0 with eigenvector (μ1, μ2, μ3)
�, which corresponds to

the vector v. The other eigenvalues λ± are given by

λ± = 1

2

(
μ2
1(λ12 + λ13) + μ2

2(λ12 + λ23) + μ2
3(λ13 + λ23) ± √

D
)

,
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where

D = −4(λ12λ13μ
2
1 + λ12λ23μ

2
2 + λ13λ23μ

2
3)

+(μ2
1(λ12 + λ13) + μ2

2(λ12 + λ23) + μ2
3(λ13 + λ23))

2.

Rearranging the terms yields

D = − 4(μ2
1 + μ2

2 + μ2
3)(λ12λ13μ

2
1 + λ12λ23μ

2
2 + λ13λ23μ

2
3)

+ (μ2
1(λ12 + λ13) + μ2

2(λ12 + λ23) + μ2
3(λ13 + λ23))

2

=μ4
1(λ12 − λ13)

2 + μ4
2(λ12 − λ23)

2 + μ4
3(λ13 − λ23)

2

+ 2μ2
1μ

2
2(λ12 − λ13)(λ12 − λ23) + 2μ2

1μ
2
3(λ13 − λ12)(λ13 − λ23)

+ 2μ2
2μ

2
3(λ23 − λ13)(λ23 − λ12). (2)

By symmetry, we can assume that λ12 ≥ λ13 ≥ λ23. Then only the term
2μ2

1μ
2
3(λ13 − λ12)(λ13 − λ23) in (2) can possibly be negative, all other terms are

non-negative. Hence, we can estimate D from below as follows:

D ≥ μ4
1(λ12 − λ13)

2 + 2μ2
1μ

2
3(λ13 − λ12)(λ13 − λ23) + μ4

3(λ13 − λ23)
2

= (μ2
1(λ12 − λ13) + μ2

3(λ23 − λ13))
2.

Further, by using that

2μ2
1μ

2
3(λ13 − λ12)(λ13 − λ23) ≤ 0 ≤ 2μ2

1μ
2
3(λ12 − λ13)(λ13 − λ23),

we can estimate D from above as follows:

D ≤ μ4
1(λ12 − λ13)

2 + μ4
2(λ12 − λ23)

2 + μ4
3(λ13 − λ23)

2

+ 2μ2
1μ

2
2(λ12 − λ13)(λ12 − λ23) + 2μ2

1μ
2
3(λ12 − λ13)(λ13 − λ23)

+ 2μ2
2μ

2
3(λ23 − λ13)(λ23 − λ12)

= (μ2
1(λ12 − λ13) + μ2

2(λ12 − λ23) + μ2
3(λ13 − λ23))

2.

Using these estimates for D, we obtain the following lower and upper bounds for λ+
and λ−, respectively:

λ+ ≥ 1

2

(
μ2
1(λ12 + λ13) + μ2

2(λ12 + λ23)

+μ2
3(λ13 + λ23) + μ2

1(λ12 − λ13) + μ2
3(λ23 − λ13)

)

= μ2
1λ12 + 1

2
μ2
2(λ12 + λ23) + μ2

3λ23

≥ μ2
1λ12 + μ2

2λ23 + μ2
3λ23
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and

λ− ≥1

2
(μ2

1(λ12 + λ13) + μ2
2(λ12 + λ23) + μ2

3(λ13 + λ23)

− (μ2
1(λ12 − λ13) + μ2

2(λ12 − λ23) + μ2
3(λ13 − λ23)))

=μ2
1λ13 + μ2

2λ23 + μ2
3λ23.

Nowlet (λ1, . . . , λk)be a collectionof k non-zero eigenvalues of Av|v⊥ .Wedistinguish
several cases:

• Case 1: λ+ and λ− are both not contained in this list. Then there are 0 ≤ ni ≤
dim(Vi ) − 1 with n1 + n2 + n3 = k, so that ni of these eigenvalues are given by
ai . Thus,

k∑

i=1

λi =
3∑

j=1

μ2
j (n1λ j1 + n2λ j2 + n3λ j3) > 0.

• Case 2: Only λ+ is contained in this list. Then there are 0 ≤ ni ≤ dim(Vi ) − 1
with n1 + n2 + n3 = k − 1, so that ni of the remaining eigenvalues are given by
ai . Thus,

k∑

i=1

λi ≥μ2
1(n1λ11 + (n2 + 1)λ12 + n3λ13) + μ2

2(n1λ21 + n2λ22 + (n3 + 1)λ23)

+ μ2
3(n1λ31 + (n2 + 1)λ32 + n3λ33) > 0.

• Case 3: Only λ− is contained in this list. Then there are 0 ≤ ni ≤ dim(Vi ) − 1
with n1 + n2 + n3 = k − 1, so that ni of the remaining eigenvalues are given by
ai . Thus,

k∑

i=1

λi ≥μ2
1(n1λ11 + n2λ12 + (n3 + 1)λ13) + μ2

2(n1λ21 + n2λ22 + (n3 + 1)λ23)

+ μ2
3(n1λ31 + (n2 + 1)λ32 + n3λ33) > 0.

• Case 4: Both λ+ and λ− are contained in this list. Then there are 0 ≤ ni ≤
dim(Vi ) − 1 with n1 + n2 + n3 = k − 2, so that ni of the remaining eigenvalues
are given by ai . Further, we have

λ+ + λ− = μ2
1(λ12 + λ13) + μ2

2(λ12 + λ23) + μ2
3(λ13 + λ23).
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Thus,

k∑

i=1

λi =μ2
1(n1λ11 + (n2 + 1)λ12 + (n3 + 1)λ13) + μ2

2((n1 + 1)λ21

+ n2λ22+(n3 + 1)λ23)+μ2
3((n1 + 1)λ31+(n2 + 1)λ32 + n3λ33) > 0.

Hence, the map Av|v⊥ is k-positive. By Lemma 2.7 and since v ∈ V was arbitrary, it
follows that A is positive on every k-chain. ��
Remark 2.8 In a similar way, one can show in the setting of Proposition 2.4 the value
of A on every k-chain is greater than c ∈ R, provided all sums of eigenvalues as in (1)
are greater than c.

Corollary 2.9 Let I be an interval, and consider a warped product metric dt2 +
h2(t)ds2p + f 2(t)ds2q on I × S p × Sq , where f ′′ ≥ 0, h′′ < 0, h′, f ′ ∈ [0, 1),
p ≥ 1 and q ≥ 2. Then the warped product metric has Rick > 0 if and only if the
following inequalities are satisfied.

1. −(k − q) h
′′
h − q f ′′

f > 0,

2. − h′′
h + (k − q − 1) 1−h′2

h2
− q f ′h′

f h > 0,

3. (k − q) 1−h′2
h2

− q f ′h′
f h > 0,

4. − f ′′
f − p f ′h′

f h + (k − p − 1) 1− f ′2
f 2

> 0.

Note that inequality (1) implies k ≥ q +1 and inequality (4) implies k ≥ p+2. Thus,
the assumptions of Corollary 2.9 can only be satisfied if k ≥ max{p + 2, q + 1}.
Proof It is easily verified that inequalities (1)–(4) are necessary conditions for having
Rick > 0 by considering appropriate k-chains consisting of the vectors ∂t , Ei and
F	 in Lemma 2.1. In fact, inequality (1) is obtained from a k-chain with base ∂t ,
inequalities (2) and (3) from k-chains with base F	 and inequality (4) from a k-chain
with base Ei .

To show that the inequalities provide sufficient conditions, we apply our main
algebraic result, Proposition 2.4. For that we consider the vector space

V = R ⊕ Tx S
p ⊕ TyS

q .

According to this result, we need to consider the three cases i = 1, 2, 3, where i = 1
corresponds to R, i = 2 to Tx S p, and i = 3 to TySq .

Considering first the case i = 1, we see that the only possibility for n1 is 0. If
n1 �= 0, this would indicate the existence of a bivector involving a pair of orthonormal
vectors from within the R component of V , which of course is impossible. Thus,
we only have to consider n2, n3 ∈ N0 with n2 + n3 = k. Incorporating the relevant
eigenvalues of the curvature operator, we need the following inequality to hold:

−n2
h′′

h
− n3

f ′′

f
> 0.
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Since h′′ < 0 and f ′′ ≥ 0, it follows that

−n2
h′′

h
− n3

f ′′

f
≥ −(k − q)

h′′

h
− q

f ′′

f
> 0

by (1).
Moving on to the case i = 2, we need the following inequality to hold:

−n1
h′′

h
+ n2

1 − h′2

h2
− n3

f ′h′

f h
> 0.

The first two terms in this expression are positive, and the third is negative. Note that
since dim(R) = 1, we have n1 ∈ {0, 1}. If n1 = 1, then

−n1
h′′

h
+ n2

1 − h′2

h2
− n3

f ′h′

f h
≥ −h′′

h
+ (k − q − 1)

1 − h′2

h2
− q

f ′h′

f h
> 0

by (2). If n1 = 0, then

−n1
h′′

h
+ n2

1 − h′2

h2
− n3

f ′h′

f h
≥ (k − q)

1 − h′2

h2
− q

f ′h′

f h
> 0

by (3).
Finally, we consider i = 3. The inequality we need to consider here is

−n1
f ′′

f
− n2

f ′h′

f h
+ n3

1 − f ′2

f 2
> 0.

The only positive term here is the third term, hence we have

−n1
f ′′

f
− n2

f ′h′

f h
+ n3

1 − f ′2

f 2
≥ − f ′′

f
− p

f ′h′

f h
+ (k − p − 1)

1 − f ′2

f 2
> 0

by (4).
Taking all three cases together, we will ensure that all three inequalities hold, as

required by the hypothesis of our algebraic result. ��

3 GluingWithin Positive Intermediate Ricci Curvature

As in [20] we wish to perform surgery on Sn−1 × Sm+1 as follows:

Sn−1 ×
(
Sm+1 \

r∐

i=0

Dm+1
i

)
∪id Dn ×

r∐

i=0

Smi . (∗)
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The resulting manifold is the connected sum �r (Sn × Sm), see e.g. [4, Proposition
2.6] and cf. [20, Equation 2]. The metric on each connected component Dn × Sm of
Dn ×∐r

i=0 S
m
i will be given by a double warped product metric of the kind discussed

in Sect. 2. The curvature analysis performed in that sectionwill help us to guarantee our
desired curvature condition. On the left-hand term of (∗)wewill assume the restriction
of a certain product metric, namely ρ2ds2n−1+ds2m+1 for some suitably small constant
ρ > 0. It is easy to see that in a neighbourhood of each boundary component, the
metric can be described as a double warped product. In the construction of Sect. 4 we
will arrange for a C1 join between the metrics on each piece of the surgery (∗). In this
section we show that such a metric can always be smoothed within Rick > 0.

Lemma 3.1 Consider the following function:

h(x) :=
{
f (x) x ≤ 0

g(x) x > 0,

and assume that f , g are smooth functions on R such that h(x) is C1 at x = 0.
Then for any δ > 0 and any ν > 0 sufficiently small (where the upper bound for ν

depends on f , g and δ), the function h can be smoothed in the neighbourhood [−ν, ν]
of x = 0 in such a way that h and its smoothing are δ-close in a C1 sense, and the
second derivative of the smoothed function on [−ν, ν] lies in the interval between
min{ f ′′(−ν), g′′(ν)} − δ and max{ f ′′(−ν), g′′(ν)} + δ.

This result can be proved using a spline interpolation similarly as in the proof of
the gluing theorem of Perelman for positive Ricci curvature [14], see e.g. [2, Lemma
7]. Below we give an alternative proof using mollifying techniques.

Proof Let φε : R → R be a standard mollifying function with support (−ε, ε). Define
h̄ to be the convolution φε ∗ h, i.e. set

h̄(x) =
∫

R

φε(x − y)h(y) dy.

It is well known that h̄ is a smooth function. Moreover, since h isC1, we have h̄′(x) =
φε ∗ h′. Since h′ is continuous, we have

h̄′′(x) = d

dx

∫ x+ε

x−ε

φε(x − y)h′(y)dy =
∫ x+ε

x−ε

φ′
ε(x − y)h′(y)dy.

Since h′ is absolutely continuous on [x−ε, x +ε], it follows from integration by parts
that the latter expression is equal to φε ∗ h′′, where we view h′′ as a function defined
almost everywhere.

Given any δ > 0, it is clear that by choosing ε sufficiently small, we can ensure
that ‖h̄ − h‖C1 < δ over the interval [−1, 1] say. Moreover, by choosing ε smaller
if necessary, we can ensure that ‖h̄ − h‖C2 < δ on the set [−1,−ε] ∪ [ε, 1]. (Notice
that this last norm only depends on f alone on [−1,−ε], and on g alone on [ε, 1].)
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As indicated above, let us suppose that the smoothing interval is [−ν, ν] for some
ν ∈ (0, 1). Given a choice of ν, let ψ : R → [0, 1] be a smooth bump function with
support in [−ν, ν], such that ψ(x) = 1 for x ∈ [−ν/2, ν/2] say. Set

H(x) = h̄(x)ψ(x) + h(x)
(
1 − ψ(x)

)
.

Thus, H is a smooth function which agrees with h outside [−ν, ν], and with h̄ for
x ∈ [−ν/2, ν/2]. We claim that for a suitable choice of ε, H is the desired smoothing
of h.

Clearly H ′′ is influenced by ψ and its first and second derivatives. However, for
any choice of ν and ψ , it is clear that a sufficiently small value for ε will render both
‖H − h‖C1 < δ on all of R, and ‖H − h‖C2 < δ on R \ (−ε, ε).

It remains then to investigate H ′′ over [−ε, ε]. Let us assume that ε < ν/2, so then
H agrees with h̄ on this interval. Thus, it suffices to focus on h̄.

We can ensure the desired behaviour of h̄′′ by choosing ε sufficiently small. Indeed,
let f ′′− and f ′′+ (resp. g′′− and g′′+) be theminimumandmaximumvalue of f ′′ on [−2ε, 0]
(resp. of g′′ on [0, 2ε]). Then, since h̄′′ = φε ∗ h′′, it follows that for ε sufficiently
small,

h̄′′ ∈ [min{ f ′′−, g′′−},max{ f ′′+, g′′+}]

on [−ε, ε]. By the continuity of f ′′ and g′′, this interval is contained in the interval
between min{ f ′′(−ν), g′′(ν)} − δ and max{ f ′′(−ν), g′′(ν)} + δ for ν sufficiently
small.

Thus, with a suitable choice of ε (depending on the functions f and g), the resulting
function H will have all the desired properties. ��

Adapting the argument given above by replacing C1 by Ck immediately yields the
following corollary:

Corollary 3.2 Suppose that f , g in the above lemma are Cl functions for some
l ∈ N ∪ {∞} and that h at x = 0 is Ck for k < l. Then given any δ > 0
and any ν > 0 sufficiently small, there exists a Cl function H which agrees
with h outside [−ν, ν], satisfies ‖H − h‖Ck < δ, and we have that H (k+1)(x) ∈
[min{ f (k+1)(−ν), g(k+1)(ν)} − δ,max{ f (k+1)(−ν), g(k+1)(ν)} + δ] for x ∈ [−ν, ν].

When applied to double warped product metrics, Lemma 3.1 yields the following
corollary:

Corollary 3.3 Consider smooth double-warped product metrics dt2 + h21(t)ds
2
p +

f 21 (t)ds2q and dt2 + h22(t)ds
2
p + f 22 (t)ds2q on R × S p × Sq . Suppose that for some k

the first of these metrics satisfies Rick > 0 when t ≤ 0, and the second satisfies the
same curvature condition when t ≥ 0. If the metric

g :=
{
dt2 + h21(t)ds

2
p + f 21 (t)ds2q if t ≤ 0

dt2 + h22(t)ds
2
p + f 22 (t)ds2q if t ≥ 0
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isC1 at t = 0, then there exists a smoothmetric dt2+h2(t)ds2p+ f 2(t)ds2q with Rick >

0 on R × S p × Sq , which agrees with g outside an arbitrarily small neighbourhood
of t = 0.

Proof We simply apply Lemma 3.1 to the corresponding pairs of scaling functions, i.e.
to f1 and f2, and to h1 and h2. Notice that the curvature inequalities in Corollary 2.9
depend linearly on the second derivatives of the scaling functions. It is then clear that
by choosing δ in Lemma 3.1 sufficiently small, the resulting smooth functions are the
desired scaling functions f and h. ��

4 Proof of theMain Result

The main task in this section is to show how to choose scaling functions f , h for our
double warped product metric which satisfy the conditions required by Corollary 2.9.
These functions must also satisfy certain boundary conditions at t = 0 to ensure
smooth extension to a metric on Dn × Sm , as well as boundary conditions for large
t so as to guarantee at least a C1 join with the metric on the ambient manifold when
surgery is completed. Corollary 3.3 will then complete the metric surgery construction
within Rick > 0 for suitable k.

We begin by restating Theorem C from the Introduction.

Theorem 4.1 Let (Mn, gM ) be a Riemannian manifold with Rick > 0 and, for p, q ≥
2 with p + q + 1 = n, let ι : S p(ρ) × Dq+1

R (N ) ↪→ M be an isometric embedding.
Suppose k ≥ max{p, q} + 2. Then there exists a constant κ = κ(p, q, k, R/N ) > 0
such that if ρ

N < κ , then the manifold

Mι = M \ im(ι)◦ ∪S p×Sq (Dp+1 × Sq)

admits a metric with Rick > 0.

Proof Let I = [t0, t1] be a closed interval. Then we can identify Dp+1 × Sq with the
space obtained from

I × S p × Sq

by collapsing {t0}× S p×{x} for every x ∈ Sq . Via this identification a double-warped
product metric

g f ,h = dt2 + h2(t)ds2p + f 2(t)ds2q

defines a smooth metric on Dp+1 × Sq if and only if

h(even)(t0) = 0, h′(t0) = 1, (3)

f (t0) > 0, f (odd)(t0) = 0, (4)
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see [15, Proposition 1.4.7].
The metric on S p(ρ) × Dq+1

R (N ) can also be obtained from the double warped
product metric

dt2 + ρ2ds2p + N 2 sin2
(

t

N

)
ds2q

on [0, R]×S p×Sq . We replace R by 9
10 R, so that a neighbourhood of the boundary of

M \ ι(S p(ρ)×Dq+1
R (N )) is isometric to the corresponding part of this double warped

product metric. Hence, in order to make a C1 join with this metric, the functions f
and h need to satisfy

h(t1) = ρ, h′(t1) = 0, (5)

f (t1) = N sin

(
R

N

)
, f ′(t1) = cos

(
R

N

)
. (6)

Thus, if we can construct functions f and h satisfying the boundary conditions (3)–(6)
for which the metric g f ,h has positive k-th intermediate Ricci curvature, then we can

apply Lemma 3.3 to glue the metric g f ,h to M\ι(S p(ρ) × Dq+1
R (N )) and obtain a

metric with positive kth-intermediate Ricci curvature on Mι.
We will construct the required functions piecewise in four steps based on a partition

t0 < 0 < t2 < t3 < t1. We will then use Corollary 2.9 to show that these functions
define a metric of Rick > 0.

We start as in [16, Section 3.3], i.e. we first define the functions h0 : [0,∞) → R

and fC : [0,∞) → R for some C > 0 as the unique smooth functions satisfying

h′
0 = e− 1

2 h
2
0 ,

h0(0) = 1,

and

f ′′
C = Ce−h20 fC ,

fC (0) = 1,

f ′
C (0) = 0.

For a, b > 0 we set ha = a · h0 and fb,C = b · fC . Then from the definition it follows
that

ha(0) = a, h′
a(0) = a√

e
,

fb,C (0) = b, f ′
b,C (0) = 0.

To show that g fb,C ,ha has Rick > 0 for suitable a, b,C we will use Corollary 2.9. For
that, we need to ensure that the inequalities (1)–(4) in Corollary 2.9 are satisfied. Here
we follow the same strategy as in [16, Proof of Lemma 3.9].
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First note that h′′
0 = −h0e−h20 . Hence, we have

h′′
a

ha
= −e−h20 and

f ′′
b,C

fb,C
= Ce−h20 .

It follows that inequality (1) is satisfied for all C > 0 sufficiently small and for all
a, b > 0.

For the other inequalities we have by [16, Lemma 3.7 (4)] that

f ′
b,Ch

′
a

fb,Cha
= f ′

C

fCh0h′
0
h′
0
2 ≤ h′

0
2
.

Hence, it follows that

− h′′
a

ha
+ (k − q − 1)

1 − h′
a
2

h2a
− q

f ′
b,Ch

′
a

fb,Cha

≥ 1

h20

(
h20e

−h20 + (k − q − 1)

(
1

a2
− e−h20

)
− qh20e

−h20

)

Since h20e
−h20 and e−h20 are bounded independently of a, b,C , it follows that this

expression is positive for all a > 0 sufficiently small and for all b,C > 0. Thus,
inequality (2) holds. By a similar argument it also follows that inequality (3) holds for
all a > 0 sufficiently small and for all b,C > 0.

For inequality (4) we fix a,C > 0 so that inequalities (1)–(3) are satisfied. We have

− f ′′
b,C

fb,C
− p

f ′
b,Ch

′
a

fb,Cha
+ (k − p − 1)

1 − f ′
b,C

2

f 2b,C

≥ 1

f 2C

(
−Ce−h20 f 2C − p f 2Ch

′
0
2 + (k − p − 1)

(
1

b2
− f ′

C
2
))

= 1

f 2C

(
−(p + C) f 2Ch

′
0
2 + (k − p − 1)

(
1

b2
− f ′

C
2
))

.

The last expression is positive at t = 0, and hence also for all t > 0 sufficiently small.
Further, by [16, Lemma 3.7 (3)], the term fCh′

0 converges to 0 as t → ∞ and by [16,
Lemma 3.7 (2)], the term f ′

C converges to ∞ as t → ∞. Thus, the whole expression
eventually becomes negative as t → ∞. Let tb > 0 be the smallest value for which
it vanishes. Since fCh′

0 is bounded, we have tb → ∞ as b → 0. Further, rearranging
the terms yields

f ′
b,C (tb)

2 = b2 f ′
C (tb)

2 = 1 − b2

k − p − 1
(p + C) fC (tb)

2h′
0(tb)

2 → 1

as b → 0.
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Hence, there is t2 > 0 so that for a, b,C sufficiently small the inequalities in
Corollary 2.9 are satisfied on [0, t2], so themetric g fb,C ,ha has positive k

th-intermediate
Ricci curvature, with f ′

b,C (t2) > cos(R/N ) and h′
a(t2) > 0. We set h = ha and

f = fb,C on [0, t2].
To satisfy the boundary conditions (3) and (4) let R′, N ′ > 0 so that

N ′ sin
(
R′

N ′

)
= a, cos

(
R′

N ′

)
= a√

e
.

For t0 = −R′ we then define for t ∈ [t0, 0]

h(t) = N ′ sin
(
t − t0
N ′

)
,

f (t) = b.

Then h and f are C1 and satisfy (3) and (4). Further it is easily verified that the
assumptions of Corollary 2.9 are satisfied on [t0, 0], hence the metric g f ,h has positive
kth-intermediate Ricci curvature on this piece.

For the boundary conditions (5) and (6) we extend h and f in two steps. First, for
ε > 0 there exists δ > 0, so that h can be extended on [t2, t2 + δ] such that

1. h is C1 at t = t2 and smooth at all other points,
2. h′′+(t2), h′′(t) < − 1

ε
for all t ∈ (t2, t2 + δ], and

3. h′(t2 + δ) = 0.

By integrating the inequality h′′(t) < −1/ε over [t2, t2 + δ] and using h′(t2 + δ) = 0,
we obtain δ < εh′(t2). Hence,

h(t2 + δ) < h(t2) + δh′(t2) < h(t2) + εh′(t2)2.

In particular, δ = O(ε) and h(t) = h(t2) + O(ε). Further, by construction, we have
h(t) ≥ h(t2) and h′(t) ≤ h′(t2), and for ε sufficiently small h′′(t) < h′′−(t2) for
t ∈ [t2, t2 + δ]. If we now extend f linearly on [t2, t2 + δ], then we obtain

f (t) = f (t2) + O(ε), f ′(t) = f ′(t2) and f ′′(t) = 0 ≤ f ′′−(t2)

for all t ∈ [t2, t2 + δ]. Hence, for ε sufficiently small, it follows that all inequalities in
Corollary 2.9 are satisfied: For (1) this follows from the fact that f ′′ ≡ 0 and h′′ < 0
on [t2, t2 + δ]. For (2) we estimate

− h′′(t)
h(t)

+ (k − q − 1)
1 − h′(t)2

h(t)2
− q

f ′(t)h′(t)
f (t)h(t)

≥ −h′′−(t2)

h(t)
+ (k − q − 1)

1 − h′(t2)2

h(t)2
− q

f ′(t2)h′(t2)
f (t)h(t)

.

Now, by using the fact that h(t) = h(t2) + O(ε) and f (t) = f (t2) + O(ε) and that
the corresponding expression at t = t2 is positive, the required inequality follows
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for ε sufficiently small. The remaining inequalities follow similarly. Hence g f ,h has
positive kth-intermediate Ricci curvature on [t2, t2 + δ]. We set t3 = t2 + δ.

Finally, we extend f on [t3, t1] for some t1 > t3, so that

1. f is C1 at t = t3 and smooth at all other points,
2. f ′′+(t3), f ′′(t) < 0 for all t ∈ (t3, t3 + δ],
3. f (t1)

h(t3)
= N

ρ
sin

( R
N

)
and f ′(t1) = cos

( R
N

)
.

This is possible if and only if f (t3) <
h(t3)

ρ
N sin

( R
N

)
, which can be arranged, by

choosing ε sufficiently small, if and only if

f (t2) <
h(t2)

ρ
N sin

(
R

N

)
,

i.e. if and only if

ρ

N
<

h(t2)

f (t2)
sin

(
R

N

)
.

By construction, the values of h and f at t = t2 only depend on the quotient R/N and
on the coefficients of the differential inequalities in Corollary 2.9, which in turn only
depend on p, q and k. Hence we can define

κ = κ(p, q, k, R/N ) = h(t2)

f (t2)
sin

(
R

N

)

and we can extend f in the desired way if and only if

ρ

N
< κ.

If we now extend h constantly on [t3, t1], it follows from Corollary 2.9 that g f ,h has
positive kth-intermediate Ricci curvature.

We rescale the metric by λ = ρ
h(t1)

, i.e. we replace the functions h and f by

λh

(
t

λ

)
and λ f

(
t

λ

)

and we replace t0 and t1 by λt0 and λt1, respectively. Note that this preserves the
boundary conditions (3) and (4) and the boundary conditions (5) and (6) are now also
satisfied. Finally, we smooth the functions h and f using Corollary 3.3. This concludes
the proof. ��
Remark 4.2 The metric in Theorem C is constructed so that it coincides with
Dp+1

R′ (N ′) × Sq(ρ′) near the centre of Dp+1 × Sq for some ρ′, R′, N ′ > 0. In fact,
by defining a suitable value for h0(0) and by possibly choosing the constants a and
b even smaller, we can prescribe the values of ρ′, R′, N ′ (after possibly rescaling the
metric). This adds additional dependencies for κ .
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Proof of Theorem B Let us compare this with the Sha–Yang surgery result. Sha–Yang
guarantee the existence of a positive Ricci curvature metric on �r Sn × Sm for any
n,m ≥ 2 by performing r+1 surgeries on the Sn−1 factor of the product Sn−1× Sm+1

as in (∗). Using Theorem C instead of Sha and Yang’s surgery result, and comparing
the two scenarios, we clearly need p = n − 1 and and q = m. Thus, we can put a
Rick > 0 metric on �r Sn × Sm whenever

k ≥ max{q + 2, p + 2} = max{m + 2, n + 1}.

But notice that m and n are interchangable here, so the smallest value of k which will
work is the smaller of the quantities max{m + 2, n + 1} and max{n + 2,m + 1}. It is
easy to see that ifm �= n, then kmin = max{n,m}+1, and if n = m then kmin = n+2.
��
Proof of TheoremA We want to show that the Gromov Betti number bound fails to
hold for some Rick > 0, with k as small as possible, in a given dimension d ≥ 5.
There are two situations to consider, depending on whether d is even or odd.

Beginning with d even, suppose that d = 2n. Considering �r Sn × Sn will yield
the minimal k which we desire. Setting n = m = d/2 in Theorem B, we see that
kmin = n + 2 = (d/2) + 2.

If d is odd, say d = 2c+1, then the optimal connected sum to consider is �r Sc+1×
Sc, and by Theorem B this gives kmin = c + 2 = �d/2� + 2. ��
Remark 4.3 Lemma 2.1 shows that the metric constructed in the proof of Theorem C
is simple, i.e. the curvature operator has an orthonormal basis of decomposable eigen-
vectors. By [3, Corollary 5.28] compact Riemannian manifolds with Rick > 0 and
simple curvature operator satisfy bk(M) = 0. Hence, for metrics with simple curva-
ture operator, the bound on k in Theorem B is optimal if n �= m and could potentially
only be lowered by 1 if n = m.
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