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A B S T R A C T

The charging of electric vehicles (EVs) at residential premises is orchestrated through either centralized or
decentralized control mechanisms. The former emphasizes adherence to power grid constraints, employing
demand management techniques to restrict EV charging when the aggregated demand exceeds a predetermined
threshold, which may result in user discontentment. Conversely, the latter endows EV users with the authority
to self-regulate their charging behavior to optimize cost, allowing a multitude of interconnected EVs to charge
during the same off-peak window. However, this decentralized approach gives rise to the herding problem,
wherein a simultaneous surge in EV charging during off-peak periods burdens the power grid, leading to
potential system overloads. This paper presents a hybrid coordinating scheme that integrates a fuzzy inference
mechanism to synergistically blend the merits of centralized and decentralized coordinations. The proposed
hybrid coordination scheme aims to minimize peak load, alleviate herding, and optimize charging costs while
ensuring adherence to EV users’ charging obligations at the lowest feasible expense. The problem is formulated
with the introduction of a novel fuzzy objective function and subsequently resolved through the fuzzy inference
mechanism. The fuzzy inference encapsulates independent and uncertain price profiles, consumption load
patterns, and state-of-charge data collected from the power grid, households, and EV domains, which are
effectively integrated into weighted variables for the requesting EVs. The proposed hybrid coordinating
scheme leverages weighted variables to optimize the objective function, enabling the determination of an
optimal charging schedule that satisfies the charging requirements of the requesting EVs, while adhering to
stringent power grid operational constraints and minimizing charging costs. To assess the efficacy of the
hybrid coordination scheme, we conducted two meticulous case studies employing the IEEE 34 bus system
as a testbed, thoroughly evaluating performance metrics encompassing charging cost, load profile impact, and
peak-to-average ratio. The results demonstrate the superior performance of the proposed hybrid coordination
scheme compared to alternative charging strategies, including uncoordinated charging, standard-rate charging,
time-of-use charging, and two-layer decentralized approaches.
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Nomenclature

Symbols

∪, ∖, ⊙ Union, subtraction & composition opera-
tors

𝜇(𝑥) Membership function of 𝑥
𝜇, 𝜎 Mean and standard deviation
∮ Fuzzy aggregation function
𝜂 Charging efficiency
¢, 𝜙 Cent, empty set

Variables

𝐴,𝐵, 𝐶 Fuzzy sets
𝐵𝐶 Battery capacity
𝐵𝐿 Baseload
𝐵𝐿𝑝𝑒𝑎𝑘 Peak baseload
𝐶𝑟 Charging rate
𝐶ℎ Charging cost for h-th house EV
𝐶𝑡𝑜𝑡𝑎𝑙 Total charging cost
𝐶𝑆𝑠𝑡𝑎𝑡𝑢𝑠 Status of a charging station
𝐶𝑜𝑢𝑛𝑡𝑠𝑎𝑡 Count variable for holding satisfied EVs
𝐶𝑜𝑢𝑛𝑡𝑢𝑛𝑠𝑎𝑡 Count variable for holding unsatisfied EVs
𝐷 Decision variable (1, 0)
𝐸ℎ Energy consumption charging of hth EV
𝐸𝑡𝑜𝑡𝑎𝑙 Total energy consumption
𝐸𝑉ℎ EV of ℎth house
𝐷𝑇 Dwell time
𝐻 Set of houses
ℎ Index of house and EV
𝐼 Impact on baseload
𝑘 Loop control variable
𝑃 Set of prices
𝑃𝐴𝑅 Peak-to-average ratio
𝑄,𝑅, 𝑆 Relationship sets
𝑆𝑜𝐶 State-of-Charge
𝑆𝑜𝐶𝑟 Required state-of-charge
𝑆𝑜𝐶𝑑𝑒𝑝 Departure time state-of-charge
𝑆𝑜𝐶𝑚𝑎𝑥 Maximum state-of-charge
𝑆𝑜𝐶𝑚𝑖𝑛 Minimum state-of-charge
𝑇 Set of time steps
𝑇 𝑟𝑎𝑛𝑐𝑎𝑝 Transformer thermal limit
𝑡 Index of time
𝑡𝑎𝑟𝑟 Arrival time
𝑡𝑑𝑒𝑝 Departure time
𝑡𝑒𝑛𝑑 End time of charging
𝑡𝑠𝑡𝑟 Start time of charging
𝑇 𝑟𝑎𝑛𝑠𝑐𝑎𝑝 Transformer thermal limit
𝑇 𝑟
ℎ Required charging duration of ℎth EV

𝑈𝐷𝑆𝐿 User dissatisfaction level
𝑉 Set of aggregated decision variables
𝑉 ′ Set of candidate decision variables for

charging
𝑉 ∗ Set of optimal decision variables for charg-

ing
∼
𝑣ℎ Fuzzy aggregated variable
𝑥, 𝑦, 𝑧 Member of fuzzy sets
𝑋, 𝑌 ,𝑍 Universal sets
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Abbreviations

𝐶𝐶𝑀 Centralized charging management
𝑀𝑇𝑂𝑈 Multiple time of use
𝑆𝑇𝑂𝑈 Single time-of-use
𝑇𝑂𝑈 Time of use
𝑆𝑅 Standard rate
𝑇𝐿𝐷𝐶𝐴 Two-layer decentralized charging approach
𝑈𝐶𝐶 Uncoordinated charging
𝐶𝑂𝐺 Center of gravity
𝑀𝑂𝑀 Middle of maxima
𝐹𝑂𝑀 First of maxima
𝐿𝑂𝑀 Last of maxima
𝑅𝐶𝑂𝑀 Random choice of maxima
𝑀𝐹 Membership function
𝐻𝐶𝑆 Hybrid coordination scheme
𝐿𝑉 Low voltage
𝑀𝑉 Medium voltage
𝐻𝑉 High voltage
𝐹𝐼𝑆 Fuzzy inference mechanism
𝑡𝑚𝑝 Temporary variable

Fuzzy terms

𝐻𝐵𝐿 High baseload
𝐻𝐴𝑉 High aggregated value
𝐻𝑃 High price
𝐻𝑆𝑜𝐶 High State of Charge
𝐿𝐴𝑉 Low aggregated value
𝐿𝐵𝐿 Low baseload
𝐿𝑆𝑜𝐶 Low State of Charge
𝑀𝐴𝑉 Medium aggregated value
𝑀𝑆𝑜𝐶 Medium State of Charge
𝑉 𝐿𝑃 Very low price
𝑉 𝐿𝑆𝑜𝐶 Very low State of Charge
𝑉 𝐻𝑃 Very high price
𝑉 𝐻𝑆𝑜𝐶 Very high State of Charge

1. Introduction

1.1. Background study

The escalating costs of fossil fuels, coupled with growing environ-
mental concerns, have generated significant interest in the adoption of
electric vehicles (EVs) as an alternative means of transportation [1].
Electric vehicles offer the potential to mitigate carbon dioxide (CO2)
emissions and reduce the transportation sector’s reliance on fossil fuels,
while simultaneously enhancing energy efficiency [2]. Besides being
ecologically benign, EVs offer lower fuel prices with new opportunities
for cleaner and transformative energy carriers that may help the power
grid via vehicle-to-grid (V2G), especially during peak hours [3,4]. Con-
sequently, EVs are gaining popularity, and the automobile industry has
rapidly moved towards electrified transportation in recent years [5].
In 2018, more than 5.1 million electric fleets were in operation world-
wide, with China having the largest EV market, followed by Europe
and the United States [6]. However, the widespread use of EVs has a
negative impact on the current power grid since it overstretched the
transmission and distribution infrastructure, which results in significant
voltage dips, poor power quality, load shedding, and blackouts when
EVs are charged simultaneously [7]. Adhering new power generation
sources to the existing power grid infrastructure and its up-gradation
could fulfill the additional power demands and mitigate the adverse
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effect [8]. Albeit, installation of new power generation sources and
reforming the overall power grid system associate techno-economic
barriers and would not be a feasible solution [9]. Otherwise, their oper-
ations may be regulated by leveraging the EV user’s habits (e.g., dwell
duration and the required energy) and spatial–temporal power baseload
and pricing (e.g., off-peak, on-peak hours, and cost) [10].

The EVs are charged and discharged at private garages or public
parking lots, and they are managed by either centralized or decentral-
ized systems [11]. In the case of a centralized solution, a central entity
(i.e., power grid or system operators) is in charge of controlling the EV
operations that evaluate the power grid consumption pattern and inter-
cedes the EV operations if their accumulative load surpasses a specified
threshold to maintain a balanced grid load [12]. These centralized
approaches aim to determine the number of charging EVs based on vari-
ous parameters, including State-of-charge (SoC) and length of stay [13].
They subsequently implement curtailment by deferring the charging of
certain EVs when the grid is overloaded [14]. The overarching objective
is to enhance power grid stability, encompassing improvements in
voltage profile and reduction of losses, which collectively contribute to
the efficiency of power grid operations [15]. Nevertheless, it benefits
the power grid with a fast stabilization through the intervention of the
central control entity yet discriminating against the EV user’s prefer-
ences concerning their charging time [16], energy consumption [17],
and charging costs [18], resulting in their discomfort [19].

In contrast, the decentralized model gives EVs autonomy and al-
lows users to follow time-of-use (TOU) pricing signals to govern their
charging and discharging activities, which creates a herding prob-
lem [20,21]. Herding occurs when many customers charge their electric
cars simultaneously during a low-priced period, boosting electricity
use and overwhelming the power grid by creating a new peak dur-
ing these periods [22]. In the context of conventional TOU pricing
mechanisms, where distinct low and high pricing intervals are es-
tablished [23], numerous charging control algorithms are structured
around these timeframes [24], encompassing low, mid, and high pric-
ing slots [25,26]. Consequently, EV owners frequently configure their
charging schedules to align with the low-cost (off-peak) hours, a tactic
aimed at curtailing expenses while attaining their stipulated energy
requisites [27]. However, while this strategy enhances individual cost-
efficiency, the simultaneous aggregation of numerous EVs charging
during off-peak hours can potentially have significant implications for
overall power consumption dynamics, causing the off-peak period to
transition into on-peak hours [28].

With traditional centralized and decentralized systems, there is a
possibility of the degree of resemblance between EV energy demand
and lower price times, presenting a trade-off between power grid over-
loading and EV user requirements [29]. Simplified pricing or power
pattern-based strategies are insufficient to meet the demands of the
power grid and EV users, necessitating hybrid strategies that combine
the benefits of centralized and decentralized approaches to optimize the
trade-off problem [11].

1.2. Literature review and motivation

The literature divides EV charging into centralized, decentralized,
and hybrid mechanisms to manage demand, reduce costs, offer ancil-
lary services, and manage distribution network services [19,30].

Centrally controlled techniques based on Monte Carlo Simulation
[31], battery swapping [32], and heuristic learning of power pat-
terns [22] aided in preventing transformer overload, eliminating power
loss, and regulating voltage across the current distribution network.
The adoption of home baseload (i.e., non-EVs) profiles [33], tariff-
based systems [34], and centralized operated genetic algorithm (GA)-
based methodology [35] also helps to minimize line loads, losses,
voltage profiles, and voltage in medium and large scale distribution net-
works. Several centralized techniques were utilized to suggest different
3

charging management strategies for EV fleets with a range of criteria,
including lowering peak loads [36], optimizing waiting times [37],
and improving voltage [38] by utilizing tariff-based systems and fuzzy
logic theory [39,40]. Considerable research has harnessed a central-
ized Markov Decision Process framework to intricately incorporate
extreme fast charging stations (XFCSs) into the power system [41],
effectively accommodate a significant volume of EVs [42,43], and cater
to the charging requisites of private EVs through photovoltaic [44].
All of these centralized solutions were implemented with the goal
of reducing peak loads, enhancing voltage, and better regulating the
distribution network’s services, and if the distribution system works
abnormally, the control entity would interrupt the operation of EVs,
resulting in insufficient user needs and, as a consequence, customer
dissatisfaction [45].

Numerous research studies have looked at decentralized charging,
which assumes no official coordinator and often relies on pricing signals
to suit the complex charging demands of EV users [19,46], utilizing
multi-agent and fuzzy logic controllers [47], real-time and TOU sig-
nals [48], and dynamically optimized time step-based optimal [49]
methods. Other decentralized techniques focused on non-cooperative
game theory [50], battery energy storage systems (BESS) [51], de-
mand response with pricing mechanism [52,53], customers prioriti-
zation [54], bidirectional charging control methods [55], regulated
peer-to-peer energy market [56], IoT-enabled hierarchical decentral-
ized framework [57], and interval-based nested optimization [58] to
coordinate the charging of EVs in order to meet the user’s energy
requirements while lowering charging costs. A few decentralized ap-
proaches focused on multi-objective optimization aimed at minimizing
grid stress, lowering charging costs, and preventing battery degradation
were proposed in [59,60]. Although such studies focused on the de-
mands of both EV users and grid requirements, instead of electrical load
profiles, they primarily employed renewable energy options to fulfill
grid requirements. Generally, these studies enable EV users to set their
charging schedule based on their needs, which may result in herding
issues that strain the power grid [61].

A mix of centralized and decentralized systems based on pricing
mechanisms [11], variable charging power [62], Stackelberg game
theory [63], deep reinforcement learning [64], mobility-aware optimal
trade [65], demand-side management [66], and two-stage hierarchical
designs [33] have been developed to fulfill the needs of distribu-
tion system operators (DSO), aggregators, and EV users. Other hy-
brid approaches concentrate on leveraging blockchain technology [67]
and quadratic programming strategies [68] to enhance privacy, data
security, computational efficiency, and effectively mitigate net-load
variance. Nonetheless, these systems necessitated meticulous method-
ologies such as Stackelberg games to compute bidirectional pricing, pri-
marily concentrating on the advantages for DSOs and communication
aspects, while largely disregarding the satisfaction of EV users.

1.3. Knowledge gap and novelty

It is evident that conventional centralized methods [22,31–40] are
preoccupied with the necessities of the power grid, disallowing EV
charging if the aggregated demand for charging surpasses a specific
limit, causing EV customers to be dissatisfied [45]. In contrast, de-
centralized alternatives [19,46–55,59,60] offer EV users the power to
control their charging and reduce costs, allowing many connecting
EVs to charge simultaneously during off-peak hours, resulting in the
herding problem [20,21], which overburdens the power system [61].
To address the arbitrage needs of both the power grid and EV users,
mix approaches coupling centralized and decentralized strategies based
on pricing [11], variable charging [62], game theory [63], and hierar-
chical architecture [33] were created; however, these systems utilize
traditional objective functions for governing EV charging, relying on
static binary crisp decision control variables and a single domain.

The conventional crisp objective functions are limited when it

comes to optimizing a range of values from various domains [69],
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hindering their performance in meeting the needs of power grids
and EV users. In contrast, fuzzy objective functions consider multiple
criteria, which makes them better suited for dealing with imprecise
or uncertain values from various domains [70]. Therefore, a charging
coordination scheme for residential electric vehicles is required that
pays attention to the non-rational demands of EV users while adhering
to the operational limitations of the power grid [71].

The literature review reveals that the power grid, EV users, and
households each have distinct requirements that must be met when
coordinating the residential charging of EVs; yet, these domains have
imprecise data, resulting in complex systems [72]. The fuzzy logic
approach resolves the complexity of any real-time nonlinear system
by decomposing it into a rationalized weighted sum of linear sub-
systems [73,74]. Motivated by the multi-domain complex system for
EV charging and the fuzzy logic-based strategy for dealing with such
a complex system, this study proposes a hybrid coordinating scheme
that leverages fuzzy inference, focusing on the arbitrage needs of the
power grid and EV users. The multi-domain charging problem, with
uncertain and imprecise parameters and requirements, is articulated
through the use of a novel fuzzy objective function, and the entire fuzzy
mechanism is analyzed together with the implications of Bellman and
Zadeh’s principles to resolve the objective function for the regulation
and provision of charging EVs.

1.4. Objective and contribution

The objective of this study is to offer an EV charging coordination
method that satisfies the arbitrage requirements of the power grid
and the EV users by combining the advantages of centralized and
decentralized techniques. Our contribution to this study is divided into
three parts, which are listed below.

• We identified the tradeoff problem between EV user requirements
and power system overload by utilizing established pricing and
power pattern-based centralized and decentralized approaches,
resulting in a charging problem of multiple domains with impre-
cise and uncertain parameters. Consequently, we formulate the
problem with a novel fuzzy objective function and establish the
underlying fuzzy inference mechanism for computing aggregated
weighted variables for requesting EVs and capturing the optimal
solution set utilizing Bellman and Zadeh principles [75].

• We proposed a hybrid coordination scheme (HCS) based on a
fuzzy inference mechanism that combines the advantages of cen-
tralized and decentralized coordination to reduce power grid
overloading and meet users’ charging demands at the lowest fea-
sible cost. In addition, the developed fuzzy inference mechanism
(FIM) integrates the independence and uncertainty of pricing
profiles, consumption load patterns, and state-of-charge data from
the power grid, household, and EV domains into a weighted
value. The HCS leverages the weighted value to resolve the
objective function and calculate the optimal charging schedule to
prevent herding, reduce grid overload, and meet user demands
while adhering to power grid operational limits.

• We simulated two case studies using the IEEE 34 bus system to
evaluate the performance of the proposed HCS, where the first
scenario investigates the behavior of the HCS for individual EVs,
and the second case compares the HCS for aggregated EVs. The
simulation findings illustrate the benefits of the proposed HCS
over time-of-use charging techniques, standard rate charging,
uncoordinated charging, and two-layer decentralized charging.

.5. Paper organization

In Section 2, the problem formulation and modeling of the different
eatures of the proposed hybrid coordinating scheme are presented.
ection 3 discuss the performance metrics and evaluation criteria in
4

order to highlight the various state-of-the-art techniques to evaluate the
proposed HCS. The simulation results and discussion are illustrated in
Section 4. The paper is concluded in Section 5 by a discussion of future
potential work.

2. System model of the proposed hybrid coordinating scheme

We consider a low-voltage distribution system, depicted in Fig. 1,
that provides electric power to residential buildings with EVs. The
power system serves as the primary source of energy for residential
houses via a low-voltage distribution network. The power grid and
the utility firm interact bidirectionally and exchange energy through
the wholesale market, while electricity is sold to residential consumers
through the aggregator using the retail market. The houses are sup-
posed to have charging stations (CSs) and smart meters installed, so that
the meters record household consumption and notify the aggregator
while getting the most recent retail pricing signals across local [76]
and wide area communication networks [77,78]. The aggregator plays
a critical role in gathering the baseload from the houses, the pricing
signals from the utility provider, and the data from the EVs and
utilizing the services of the proposed HCS to calculate the optimal
charging schedules for the connected EVs. The suggested HCS learns the
pricing pattern, the baseload, and the inputs from EVs and computes an
aggregated value using the fuzzy inference mechanism. Consequently,
the HCS resolves the objective using the aggregated value and computes
an optimal solution set for charging EVs. The following sections provide
a thorough explanation of the HCS’s workings.

2.1. Problem formulation and objective function

In this work, a set of 𝐻 numbers of houses are taken into consider-
ation, where ℎ is the index of a house such that ℎ = {1, 2,… ,𝐻}, and
each house is assumed to have an EV represented by 𝐸𝑉ℎ. The HCS
begins recording the EV’s arrival & departure sequence (𝑡𝑎𝑟𝑟, 𝑡𝑑𝑒𝑝), bat-
ery capacity (𝐵𝐶), and state-of-charge (𝑆𝑜𝐶) as soon as it is connected
o a charging outlet. The dwell time (𝐷𝑇 ) of an EV is the duration of
he EV’s stay as determined by arrival and departure time, whereas the
equired state-of-charge (𝑆𝑜𝐶𝑟) is a function of 𝐵𝐶, 𝑆𝑜𝐶, and departure
𝑆𝑜𝐶𝑑𝑒𝑝) and for an ℎth EV at time step (𝑡) they are computed using
qs. (1) and (2). The charging duration (𝑇 𝑟

ℎ) of ℎth EV is the amount
f time require to charge an EV and is determined by the battery
apacity, 𝑆𝑜𝐶, charging rate (𝐶𝑟), and efficiency (𝜂), as calculated in
q. (3). The energy consumption (𝐸ℎ) (i.e., charging) of an ℎth EV is
he amount of power delivered to the battery in the time step (𝑡) and
s affected by the 𝑆𝑜𝐶, 𝐵𝐶, and 𝐶𝑟, as calculated by Eq. (4). The total
oad induction on the distribution network at the time (𝑡) is the sum of
ll residential baseloads and the energy consumption of all connected
Vs, as calculated by Eq. (5).

𝑇ℎ = 𝑡𝑑𝑒𝑝ℎ − 𝑡𝑎𝑟𝑟ℎ (1)

𝑜𝐶𝑟
ℎ(𝑡) =

{

1 − 𝑆𝑜𝐶ℎ(𝑡), 𝐼𝑓 𝑆𝑜𝐶𝑟
ℎ = 1

𝑆𝑜𝐶𝑑𝑒𝑝
ℎ − 𝑆𝑜𝐶ℎ(𝑡) 𝐼𝑓 𝑆𝑜𝐶ℎ < 𝑆𝑜𝐶𝑑𝑒𝑝

ℎ < 1
(2)

𝑟
ℎ =

𝑆𝑜𝐶𝑟
ℎ × 𝐵𝐶ℎ

𝐶𝑟 × 𝜂
(3)

𝐸ℎ(𝑡) =
(

𝑆𝑜𝐶ℎ(𝑡 − 1) × 𝐵𝐶ℎ
)

+
(

𝜂 × 𝐶𝑟
)

(4)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝐻
∑

ℎ=1
[𝐵𝐿ℎ(𝑡) + 𝐸ℎ(𝑡)] (5)

The centralized strategy aims to minimize total load induction
cross the discretized time horizon 𝑡 = {1, 2,… , 𝑇 } by managing the

charging EVs ℎ = {1, 2,… ,𝐻} and therefore defining the objective
function as given in Eq. (6).

min
𝐻
∑

𝑇
∑

𝐸ℎ(𝑡) ×𝐷ℎ(𝑡) (6)

𝐸ℎ∈𝐸𝑡𝑜𝑡𝑎𝑙 ℎ=1 𝑡=1
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Fig. 1. System model of the proposed hybrid Coordination Scheme for residential charging of electric vehicles.
where 𝐷 is a binary decision control variable that is used to limit the
energy consumption of some EVs if the overall load exceeds a limit,
such as a transformer thermal limit (𝑇 𝑟𝑎𝑛𝑠𝑐𝑎𝑝), resulting in unfulfilled
energy demands and, subsequently, dissatisfied users and is thus not
a preferred choice from the standpoint of EV users [19]. Decentral-
ized charging, on the other hand, aims to reduce charging prices and
schedule EV charging based on pricing patterns by implementing the
objective function presented in Eq. (7).

min
𝑝∈𝑃 , 𝑇 𝑟

𝐻
∑

ℎ=1

𝑇
∑

𝑡=1
𝑝(𝑡) × 𝑇 𝑟

ℎ 𝑓𝑜𝑟 𝑇 𝑟
ℎ ≤ 𝐷𝑇ℎ (7)

where 𝑝 = {1, 2,… , 𝑃 } is the vector of power prices from the utility
company used to plan the charging EV for the time steps with the lowest
cost, resulting in herding and the generation of a new peak.

To improve total energy consumption while preserving EV user
satisfaction, the objective function must be based on multiple inputs
acquired from diverse domains. Consequently, the baseload from the
household, the energy pricing from the power grid, and the state-of-
charge from the EV must all be assessed in order to make an optimal
charging decision that results in the desired objective, as shown in
Fig. 1. Once the EV is plugged into a charging outlet, it has tight
constraints on 𝐷𝑇 and required 𝑆𝑜𝐶𝑟, and there exist several candidate
EVs with temporal household baseload (BL) and energy price 𝑝; conse-
quently, we develop the novel objective function with fuzzy variable
in Eq. (8) to determine the optimal time steps for charging EVs that
minimize overall energy consumption while satisfying energy needs.

min
ℎ∈𝐻, 𝑡∈𝑇 ,

∼
𝑣ℎ∈𝑉

𝐸ℎ(ℎ, 𝑡,
∼
𝑣ℎ) (8)

subject to: 𝑡𝑠𝑡𝑟ℎ ≥ 𝑡𝑎𝑟𝑟ℎ (9)

𝑡𝑒𝑛𝑑 ≤ 𝑡𝑑𝑒𝑝 (10)
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ℎ ℎ
𝑡𝑎𝑟𝑟ℎ < 𝑇 𝑟
ℎ ≤ 𝑡𝑑𝑒𝑝ℎ (11)

𝑆𝑜𝐶𝑚𝑖𝑛
ℎ < 𝑆𝑜𝐶ℎ ≤ 𝑆𝑜𝐶𝑚𝑎𝑥

ℎ (12)

where ℎ ∈ 𝐻 denotes the index of a house aka EV index, 𝑡 ∈ 𝑇 the time
step, and

∼
𝑣 ∈ 𝑉 the aggregated fuzzy value used to control the charging.

The objective function is subject to several non-linear constraints,
including that the charging start (𝑡𝑠𝑡𝑟ℎ ) and stop (𝑡𝑒𝑛𝑑ℎ ) times should
correspond to the arrival and departure sequence (𝑡𝑎𝑟𝑟ℎ , 𝑡𝑑𝑒𝑝ℎ ) of ℎth EV
as defined by Eqs. (9) and (10) respectively. The required charging
time 𝑇 𝑟

ℎ must coincide with the arrival and departure times, and at
each time step 𝑡, the 𝑆𝑜𝐶 must retain the specified minimum (𝑆𝑜𝐶𝑚𝑖𝑛

ℎ )
and maximum (𝑆𝑜𝐶𝑚𝑎𝑥

ℎ ) battery capacities, as indicated by Eqs. (11)
and (12) respectively. The optimal solution set is determined by

∼
𝑣 ∈

𝑉 , which is a function of aggregation of the baseload (𝐵𝐿ℎ), energy
price (𝑃𝑡), and 𝑆𝑜𝐶𝑟

ℎ, as stated in Eq. (13), and can be resolved using
the fuzzy inference process outlined in the next section.
∼
𝑣ℎ(𝑡) = ∮ (𝐵𝐿ℎ, 𝑃𝑡, 𝑆𝑜𝐶

𝑟
ℎ) (13)

2.2. The fuzzy inference mechanism

The aggregator collects information from the utility grid, house-
holds, and EVs and uses the services of the proposed HCS to optimize
the charging of the requesting EVs at each time step, as illustrated in
Fig. 2. The input data is erratic in time and relies on human activity;
for example, the household baseload depends on home activities, and
the 𝑆𝑜𝐶 depends on user travel needs [72]. In order to simplify the

∼
𝑣

based on these uncertain input facts, the fuzzy inference method uses
fuzzification, experts knowledge representation, and defuzzification.



Applied Energy 352 (2023) 121939S. Hussain et al.
Fig. 2. Illustration of input domains and the procedure of the proposed hybrid charging
scheme (HCS).

2.2.1. Fuzzification of input and output variables
The fuzzification technique recognizes the uncertainty of the crisp

input parameters by modeling them as fuzzy variables using linguistic
terminology and standard membership functions (MFs). The inputs
must be described by their lower and upper limits, suitable units, and
appropriate MFs for representation through the fuzzy inference system.
Albeit there is no precise procedure for selecting the MFs, the MFs
should be chosen based on the effect on the output values caused
by a change in the input linguistic term. For instance, if a range of
values produces a minimum change, a trapezoidal MF is preferable;
however, if a gradual shift yields a maximum, a triangular MF is a
suitable option [79]. In light of this, we used an adaptive strategy and
selected a mixture of triangular and trapezoidal MFs for the input MFs.
Then, using those MFs, we applied the criteria [79] to determine the
MFs for the output variable. Following the methodology outlined in
our previous work [61], we utilized a combination of triangular and
trapezoidal MFs to characterize the price 𝑃 and 𝑆𝑜𝐶𝑟, as illustrated in
Figs. 3a and 3b. The baseload is generally measured in kilowatts (kW),
and we established a range of [0∼3] for the BL input variable based
on the average household of 2.78 ≈ 3.0 kW [80]. We define the BL
by referring to three MFs denoted by the terms low baseload (LBL),
medium baseload (MBL), and high baseload (HBL). The terms LBL and
HBL are represented using left-open and right-open trapezoidal MFs,
respectively, whereas MBL is defined by a trapezoidal MF, as shown in
Fig. 3c.

The output variable used in this study is the aggregated control
value, indicated by the symbol

∼
𝑣, which holds the decision probability

in each time step within the normalized range [0∼1] [39]. The infer-
ence engine transforms the input into a fuzzified output that reflects
the rectification mandated by the MFs and the group of expert rules
managing the fuzzy input variables, as shown in Fig. 2. Eventually, the
output variable ought to be fuzzified using linguistic terms and MFs.
The output variable 𝑉 is thus defined by three trapezoidal MFs, denoted
by the linguistic terms low aggregated value (LAV), medium aggregated
value (MAV), and high aggregated value (HAV). As shown in Fig. 4, the
linguistic terms LAV, HAV, and MAV are modeled with left-open and
right-open trapezoidal MFs and a trapezoidal MF, respectively [37,79].
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2.2.2. Experts knowledge representation
The fuzzy inference engine resolves the uncertainty of the inde-

pendent input variables and transforms them into the fuzzified output
variable by employing the fuzzy rules, which constitute expert knowl-
edge [81]. The expert’s knowledge is connected using a logical IF-THEN
sequence, where the IF (antecedents) gathers the pertinent input MFs
related to the input linguistic terms using AND/OR logical operators,
and the THEN (consequences) translates those terms to the output MFs’
linguistic variables [82]. The design method of the expert’s knowledge
representation is based on the principles of fuzzy theory and fuzzy set
operations (i.e., intersection, union, and compositions) [37,39,40], as
demonstrated in the following.

Definition 1. A fuzzy set 𝐴 ⊆ 𝑋 is represented as an ordered pair
consisting of its member (𝑥 ∈ 𝑋) and the degree (𝜇𝐴(𝑥)) of its MF
linking 𝑥′𝑠 membership to 𝐴, as provided by Eq. (14) [75].

𝐴 =
{(

𝑥, 𝜇𝐴(𝑥)
)

∶ 𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) → [0, 1]
}

(14)

Where 𝑋 is the discursive universal set and (𝜇𝐴(𝑥)) is the degree of MF
describing the probability of element 𝑥 to the fuzzy set 𝐴, such that
𝑥 ∈ 𝐴, if 𝜇𝐴(𝑥) = 1, 𝑥 ∉ 𝐴, if 𝜇𝐴(𝑥) = 0, and 𝑥 partially belong to 𝐴,
if 0 < 𝜇𝐴(𝑥) < 1, respectively. The higher the degree, the more closely
related the element 𝑥 is with the fuzzy set 𝐴, and vice versa.

Definition 2. The relationship between the two fuzzy sets 𝐴 ⊆ 𝑋 and
𝐵 ⊆ 𝑌 is the cartesian product (𝑥 × 𝑦) of 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , which is
represented by 𝑅 in Eq. (15) [83]. When there are multiple elements, a
𝑚×𝑛 matrix is frequently used to represent the relationship 𝑅(𝑥𝑚, 𝑦𝑛), as
demonstrated by Eq. (16) [84]. Nonetheless, two relations 𝑅 = 𝐴 → 𝐵
and 𝑄 = 𝐵 → 𝐶, where 𝐴 ⊆ 𝑋, 𝐵 ⊆ 𝑌 , and 𝐶 ⊆ 𝑍, respectively, can be
linked by a third relation 𝑆, which relates the elements (𝑥 ∈ 𝐴) in 𝑅 and
(𝑧 ∈ 𝐶) in 𝑄 and is derived using the fuzzy composition operation (⊙)
as shown in Eqs. (17) and (18) [39], whereas the degree of their MFs
can be estimated using the min–max operation stated in Eq. (19) [40].

𝑅(𝑥, 𝑦) =
{

((𝑥, 𝑦), 𝜇𝑅(𝑥, 𝑦)) ∶ (𝑥, 𝑦) ∈ 𝑋 × 𝑌
}

(15)

𝑅(𝑥𝑚, 𝑦𝑛) =
⎡

⎢

⎢

⎣

𝜇𝑅(𝑥1, 𝑦1) … 𝜇𝑅(𝑥1, 𝑦𝑛)
⋮ ⋱ ⋮

𝜇𝑅(𝑥𝑚, 𝑦1) … 𝜇𝑅(𝑥𝑚, 𝑦𝑛)

⎤

⎥

⎥

⎦

(16)

𝑆 = 𝑅⊙𝑄 (17)

𝑆(𝑥, 𝑧) =
{

(

(𝑥, 𝑧), 𝜇𝑆 (𝑥, 𝑧)
)

∶ (𝑥, 𝑧) ∈ 𝑋 ×𝑍
}

(18)

𝜇𝑆 (𝑥, 𝑧) = max

(

min
(

𝜇𝑅(𝑥, 𝑦), 𝜇𝑄(𝑦, 𝑧)
)

)

(19)

In accordance with the fuzzy sets relationship guidelines, the set of
fuzzy rules 𝑅𝑢𝑙𝑒𝑠 = {𝑅𝑢𝑙𝑒1, 𝑅𝑢𝑙𝑒2,… , 𝑅𝑢𝑙𝑒𝑛′} could be described by a
series of IF-THEN logical assertions as stated by Eq. (20) and can be
generalized as indicated by Eq. (21).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅𝑢𝑙𝑒1 = IF 𝑥1 is 𝐴1 THEN 𝑦1 is 𝐵1

𝑅𝑢𝑙𝑒2 = IF 𝑥2 is 𝐴2 THEN 𝑦2 is 𝐵2

⋮

𝑅𝑢𝑙𝑒𝑛′ = IF 𝑥𝑛′ is 𝐴𝑛′ THEN 𝑦𝑚′ is 𝐵𝑚′

(20)

𝑅𝑢𝑙𝑒𝑠 = IF 𝑥𝑠 is 𝐴𝑠 THEN 𝑦𝑠 is 𝐵𝑠 (21)

where 𝑥𝑠 = {𝑥1, 𝑥2,… , 𝑥𝑛′} and 𝑦𝑠 = {𝑦1, 𝑦2,… , 𝑦𝑚′} represent the sets of
the input variables and 𝐴𝑠 = {𝐴1, 𝐴2,… , 𝐴𝑛′} and 𝐵𝑠 = {𝐵1, 𝐵2,… , 𝐵𝑚′}
are the sets of their linguistic representations of the antecedents and
consequences, respectively [85]. Using the three input variables and
their associated membership functions, we construct a total of 75 fuzzy
rules (𝐹 ) such that 𝐹 = 3 ∗ 5 ∗ 5 for the inference system
𝑟𝑢𝑙𝑒𝑠 𝑟𝑢𝑙𝑒𝑠
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used to link the inputs to the output variable, as shown in Tables 1–
3 [86]. We inferred Eq. (22) from Eq. (17) to calculate the relation 𝑉
of aggregated control values for the requested EVs; consequently, we
adopt Eq. (23) to compute 𝑣 for an ℎth EV using instances of fuzzy
sets 𝑝𝑡 ∈ 𝑃 , 𝑠𝑜𝑐ℎ𝑟 ∈ 𝑆𝑜𝐶𝑟, and 𝑏𝑙ℎ ∈ 𝐵𝐿 and their respective degrees
of membership. Likewise, following Eq. (19), we inferred Eq. (24) to
compute the degree of membership for the given inputs of an ℎth EV
utilizing knowledge of a set of multiple relevant fuzzy rules (i.e., 𝑟
number of applicable rules, such that 𝑖 = 1, 2,… , 𝑟) and the min–max
operations.

𝑉 = 𝑃 ⊙ 𝑆𝑜𝐶𝑟 ⊙ 𝐵𝐿 (22)

𝑣ℎ =
{𝜇𝑣ℎ (𝑝𝑡, 𝑠𝑜𝑐ℎ

𝑟, 𝑏𝑙ℎ)
(𝑝𝑡, 𝑠𝑜𝑐ℎ𝑟, 𝑏𝑙ℎ)

|

|

|

(𝑝𝑡, 𝑠𝑜𝑐ℎ𝑟, 𝑏𝑙ℎ) ∈ 𝑃 × 𝑆𝑜𝐶𝑟 × 𝐵𝐿
}

(23)

𝜇𝑉 (𝑣ℎ) = max
[

min
(

𝜇𝑃 (𝑝𝑡)1, 𝜇𝑆𝑜𝐶𝑟 (𝑠𝑜𝑐ℎ𝑟)
1
)

, 𝜇𝐵𝐿(𝑏𝑙ℎ)1
)

,

⋯ ,min
(

𝜇𝑃 (𝑝𝑡)𝑟
′
, 𝜇𝑆𝑜𝐶𝑟 (𝑠𝑜𝑐ℎ𝑟)

𝑟′ , 𝜇𝐵𝐿(𝑏𝑙ℎ)𝑟
′
) ] (24)

2.2.3. Defuzzification of output data
The fuzzy process approximates the aggregated output values (𝑣)

in the fuzzified range [0, 1] that should be transformed to crisp
values using any defuzzification approach, such as Center of Grav-
ity COG), Middle of Maxima (MOM), First of Maxima (FOM), Last
of Maxima (LOM), and Random Choice of Maxima (RCOM) [87].
The adoption of a specific defuzzification method is dependent on
the type of input membership functions, such as overlapping or non-
overlapping membership functions, with the MOM being a good choice
for non-overlapping membership functions and the COG being the
most practicable approach for overlapping membership functions [40].
Given the overlapping membership functions employed in the input
data for this work, the COG technique is applied to compute the
crisp value for the aggregated output value. Secondly, the COG is a
frequently employed technique in realistic applications that effectively
combines the best arrangement among the many linguistic terms for
the chosen input data type, such as discrete or continuous [87]. We
employ Eq. (25) to compute the aggregated crisp value for the ℎth EV
while taking into account both the discrete and continuous input data
cases [88].

𝑣ℎ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑𝑚
𝑘=1 𝜇𝑑𝑖 (𝑥𝑘)×(𝑥𝑘)
∑𝑚

𝑘=1 𝜇𝑑𝑖 (𝑥𝑘)
, 𝐹 𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑑𝑎𝑡𝑎 𝑐𝑎𝑠𝑒

∫ 𝑚
𝑘 𝑥𝑘×𝜇𝑑𝑖 (𝑥𝑘) 𝑑𝑥
∫ 𝑚
𝑘 𝜇𝑑𝑖 (𝑥𝑘) 𝑑𝑥

, 𝐹 𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑑𝑎𝑡𝑎 𝑐𝑎𝑠𝑒

(25)

We compute the aggregated values for ℎth EV in each time step 𝑡, which
are used to regulate charging processes in the time domain 𝑇 , applying
Eqs. (22)–(25), where the vector V of the aggregated values is denoted
by Eq. (26).

𝑉ℎ =
{ ∼
𝑣1,

∼
𝑣2,… ,

∼
𝑣ℎ,… ,

∼
𝑣𝐻

}

(26)

where
∼
𝑣ℎ is a function (i.e., Eq. (13)) comprised of the crisp value

𝑣ℎ and the degree of membership function 𝜇(𝑣ℎ) for the ℎth EV,
represented by

∼
𝑣ℎ = (𝑣ℎ, 𝜇(𝑣ℎ)) ≅ ∮ (𝐵𝐿ℎ, 𝑃𝑡, 𝑆𝑜𝐶𝑟

ℎ). The following
section employs the defined function

∼
𝑣ℎ for each of the EVs to compute

the optimal solution set, defining a suitable set of time steps for the
charging operations of ℎth EV.

2.3. Acquiring optimal solution set

The set of the candidate aggregated values calculated in Eq (26) is
employed to obtain the optimal solution set (𝑉 ∗ ⊆ 𝑉 ) that enable the
EVs to charge at the most suitable time steps. To derive the optimal so-
lution set, we resolve the optimization problem (Eq. (13)) as a function
of the degree of membership 𝜇(𝑣ℎ) for the 𝑣ℎ ∈ 𝑉 (Eq. (26)) using the
following properties and the Bellman and Zadeh principles [75].
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Fig. 3. Representation of the three input variables through linguistic terms and
membership. (a). The fuzzified price input variable, (b). The fuzzified required SoC
input variable, (c). The fuzzified baseload input variable.

Fig. 4. Representation of the output variable through linguistic terms and the
membership functions.
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Definition 3. The support set (Supp(A)) of a fuzzy set 𝐴 =
(

𝑥, 𝜇𝐴(𝑥)
)

in
he universe of discourse 𝑋 (i.e., 𝐴 ⊆ 𝑋) is the crisp 𝐴′ such that 𝐴′ ⊆ 𝐴
ith nonzero membership grades, as defined by Eq. (27) [89]. Likewise,

or a given fuzzy relation 𝑅(𝑥, 𝑦) ∈ 𝐴 × 𝐵, such that (𝑥 ∈ 𝐴) ⊆ 𝑋 and
𝑦 ∈ 𝐵) ⊆ 𝑌 , the projection (i.e., 𝑥′) of 𝑅 on 𝑋 returns 𝑥 ∈ 𝑋 with the
aximum 𝜇(𝑥) as presented by Eq. (28) [84].

𝑢𝑝𝑝(𝐴) =
{

𝐴′
| 𝜇𝐴(𝑥) ∈ 𝐴, 𝜇𝐴(𝑥) > 0

}

(27)

′ = 𝑆𝑢𝑝𝑝{𝑅(𝑥, 𝑦)| 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} (28)

ccording to the Bellman and Zadeh principles [75] the feasible solu-
ion set is obtained by intersecting (i.e., min operation of fuzzy set) all
(𝑣ℎ) of 𝑉 that satisfy Eq. (27) i.e., 𝜇(𝑣ℎ) ≰ 0, as defined by Eq. (29).
urthermore, by using the projection property of fuzzy sets presented
n (Eq. (28)), we derive the projection 𝑉 ′ of aggregated values 𝑉 as
ndicated by Eq. (30). Let 𝑉 ∗ be the set of aggregated values with the
ighest degrees of membership (𝜇(𝑣)), then 𝑉 ∗

𝑛′ is the optimal solution
set, provided that the criteria 𝑉 ∗

𝑛′ ≠ 𝜙 and 𝑣∗ ∈ 𝑉 ∗
𝑛′ met as give by

Eq. (31) [90].

𝑆𝑢𝑝𝑝(𝑉 ) = min
{

𝜇(𝑣1), 𝜇(𝑣2),… .𝜇(𝑣𝑞)
}

∀𝑞 ≤ 𝑛 (29)

𝑉 ′ = 𝑆𝑢𝑝𝑝
{

𝑉 | 𝜇𝑉 (𝑣) ∈ 𝑉 , 𝜇𝑉 (𝑣) ≰ 0
}

(30)

𝑉 ∗
𝑛′ = 𝑆𝑢𝑝𝑝

{

𝑉 ∗ ∈ 𝑉 | 𝜇𝑉 ∗ (𝑣∗) ∈ 𝜇𝑉 ′ (𝑣′)
}

(31)

2.4. Pseudocode of the proposed hybrid coordination scheme

The proposed HCS algorithm employs multi-domain inputs to regu-
late the charging process when an EV is plugged into a charging outlet
or station (CS). The algorithms 1 and 2 use the inputs to compute
aggregated value for the requesting EVs and optimize their charging
services accordingly. The main actions that make up the overall process
are listed below.

1. Set all of the system’s local and global variables to their initial
settings, and then load the price profile from power grid domain
in lines #1 and #2 of algorithm 1.

2. Check whether an EV is plugged in or not by going through each
house iteratively. If there is an EV connected, proceed to step 3,
otherwise go to step 5.

3. Acquire the arrival time, departure time, charge status, state of
charge at departure, and battery capacity from connected EVs
(i.e., the EV domain). Calculate the dwell time, required state-
of-charge, required charging time, and validate the constraints
as defined by Eqs. (9) – (11) from lines 6–8.

4. Load the baseload profile from the house and the fuzzy experts
rules from Tables 1–3. Consequently, fuzzify the input and out-
put parameters in line with the membership functions illustrated
in Figs. 3–4, and then evaluate the parameters employing the
fuzzy inference system (FIS), a set of expert rules, and the
membership functions. The FIS analyze the inputs and calculate
the degree of membership functions and their corresponding
crisp values from line 9 to 14.

5. If no plugged-in connections are identified, continue to the next
house by incrementing the house index h and repeat the process
from lines 4 to 16.

6. Call algorithm 2 (Manage_operations) with several parameters,
including the vectors 𝐻 , 𝐵𝐿, 𝑉 , 𝜇𝑉 (𝑉 ), 𝑆𝑜𝐶𝑟, 𝐵𝐶, 𝑃 , and 𝐸𝑡𝑜𝑡𝑎𝑙,
along with transformer capacity (𝑇 𝑟𝑎𝑛𝑠𝑐𝑎𝑝). It sets the local pa-
rameters (loop control and other variables) and iterates through
each house to get the peak baseload and the highest membership
function for each requesting EV. Consequently, if the baseload
is lower than the peak load and an EV needs to be charged,
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it validates constraint (12) and lets the EV with the highest i
Table 1
Fuzzy inference rules when baseload (BL) is low (i.e., LBL).

V P

VLP LP MP HP VHP

SoC𝑟

VLSoC LAV MAV LAV LAV LAV
LSoC MAV MAV MAV LAV LAV
MSoC MAV MAV LAV LAV LAV
HSoC HAV HAV HAV LAV LAV
VHSoC HAV HAV HAV LAV LAV

Table 2
Fuzzy inference rules when baseload (BL) is medium (i.e., MBL).

V P

VLP LP MP HP VHP

SoCr

VLSoC LAV LAV LAV LAV LAV
LSoC LAV LAV MAV LAV LAV
MSoC MAV MAV MAV LAV LAV
HSoC HAV HAV MAV LAV LAV
VHSoC HAV HAV HAV MAV LAV

grade of a membership charge, update the baseload, calculate
the charging cost (Eq. (32)), and reset the degree of its grade in
the current time step. Next, it continues to charge the remaining
EVs following their membership grade while updating the total
energy consumption and comparing it to the transformer ther-
mal limit (Trans_cap). When the transformer’s thermal limit is
reached or there are no charging EVs, the algorithm returns the
charging cost (Eq. (33)) and total energy to the main algorithm.

7. Repeat the overall process until the maximum duration is
reached, then compute the peak-to-average ratio (PAR) and load
impact (𝐼) using Eqs. (34)–(35) and output the results.

2.5. Illustration of the grade of MF and crisp value

We provide an exemplary scenario for computing the aggregated
control value and its degree of membership for a household (i.e., with
an EV) with predetermined values for the three input variables to
justify the viability of the proposed HCS. In this scenario, we assume
that the aggregator is responsible for charging an EV by using the
proposed HCS service, which collects the price value (𝑃 = 17 /kWh),
required state-of-charge (𝑆𝑜𝐶𝑟

ℎ = 0.65 %), and baseload (𝐵𝐿ℎ = 1 kW)
from the power grid, EV, and household consumption, respectively,
at time step 𝑡. The inputs and output are fuzzified following Figures3
and 4, where the membership function corresponds to the linguistic
terms MP, HP, MSoC, HSoC, LBL, and MBL for the given input values
of 𝑃 , 𝑆𝑜𝐶𝑟

ℎ, and 𝐵𝐿ℎ, respectively. A seven-step process for deriving
he aggregated value (𝑉ℎ) and the associated degree of membership
𝜇𝑉 (𝑉ℎ)) is depicted in Fig. 5, where a total of six fuzzy experts rules
i.e., Rules #: 13, 14, 24, 28, 43, and 44) presented in Tables 1 and

are applicable in this scenario. From Fig. 5, it is evident that each
pplicable fuzzy expert rule has an impact on the fuzzified resultant
utput variable, with differing heights (H) signifying the degree of
hange in the input variable and their membership functions. The HCS
ecalls the min–max and aggregation procedures outlined in Eqs. (25)–
26), which correspond to the intersection and union operations of
uzzy sets, and applies them to the fuzzy expert rules for approximating
he aggregated fuzzy control value 𝑉ℎ for the given EV in the time slot
. Eventually, the fuzzy aggregated value and its associated degree of
embership are obtained, (i.e., 𝑜𝑣𝑒𝑟𝑠𝑖𝑚𝑉ℎ = (0.352, 0.75)), and the HCS

hen evaluates the scenario of multiple houses and computes the fuzzy
ggregated values and their corresponding degrees of membership in
he current time slot 𝑡 and, as a result, employs the values 𝑉ℎ = 0.51
nd 𝜇𝑉 (𝑉ℎ) = 0.75 to obtain the most optimal solution as set presented

n Eqs. (27)–(31).
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Fig. 5. Illustration of acquiring the crisp value and its associated grade of membership for the given set of inputs utilizing the fuzzy inference system.
Table 3
Fuzzy inference rules when baseload (BL) is high (i.e., HBL).

V P

VLP LP MP HP VHP

SoCr

VLSoC LAV LAV LAV LAV LAV
LSoC LAV LAV LAV LAV LAV
MSoC MAV LAV LAV LAV LAV
HSoC MAV MAV MAV LAV LAV
VHSoC MAV MAV LAV LAV LAV

3. Performance metrics and evaluation criteria

The effectiveness of the proposed HCS is assessed by using several
performance measurements and assessment methods, as outlined in the
following sections.

3.1. Performance metrics

The standard unit of measurement for the battery capacity of EVs is
the kilowatt-hour (kWh), which is also used to determine household
energy consumption and EV charging costs [91]. Nonetheless, the
charging cost of an ℎth EV is established by adding the energy (𝐸ℎ)
consumed during the time slots when power is granted to the EV in the
arrival and departure time sequence, and the cost of a household is the
total of the baseload and EV charging costs as defined by Eq. (32) [22].
Accordingly, the total cost is the sum of the costs of all houses and is
calculated using Eq. (33).

𝐶ℎ =
𝑇
∑

𝑡=1

(

𝐵𝐿ℎ(𝑡) × 𝑃 (𝑡)
)

+
𝑡𝑑𝑒𝑝ℎ
∑

𝑡=𝑡𝑎𝑟𝑟ℎ

𝐸ℎ(𝑡) ×𝐷ℎ(𝑡) × 𝑃 (𝑡) (32)

𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐻
∑

𝐶ℎ (33)
9

ℎ=1
Algorithm 1 Main algorithm of the proposed HCS
Input: Arrival and departure times, battery capacity, SoC, baseload,
and energy price profile
Output: Charging cost, final 𝑆𝑜𝐶, PAR, and impact on load
1: Initialize the system’s local and global variables
2: Load the price profile 𝑃
3: for 𝑡 ← 1 to |𝑇 | do
4: for ℎ ← 1 to |𝐻| do ⊳ Iterate through each house
5: if

(

𝐶𝑆𝑠𝑡𝑎𝑡𝑢𝑠[ℎ] == 1
)

then ⊳ Check connection
6: Get 𝑡𝑎𝑟𝑟, 𝑡𝑑𝑒𝑝, 𝑆𝑜𝐶, 𝑆𝑜𝐶𝑑𝑒𝑝, 𝐵𝐶
7: Compute 𝐷𝑇 , 𝑆𝑜𝐶𝑟, 𝑇 𝑟 ⊳ By Eqs. (1)-(3)
8: Validate constraints (9)–(11)
9: Load the baseload profile BL for ℎ house

10: Load the fuzzy expert rules from Tables 1–3
11: Fuzzify inputs & output variables (Figs. 3–4)
12: 𝑡𝑚𝑝 ← FIS.Evaluate(𝑃 , SoC𝑟,BL)
13: 𝜇𝑉 (𝑉 [ℎ]) ← FIS.MF(𝑡𝑚𝑝) ⊳ Get MFs
14: else
15: ℎ ← ℎ + 1
16: end if
17: end for
18: Manage_operations (arguments)
19: 𝑡 ← 𝑡 + 1
20: end for
21: Compute PAR and 𝐼 ⊳ According to Eqs. (34)–(35)
22: Print results

The peak-to-average ratio (PAR) of energy consumption defines the
difference between peak and average energy consumption which is
computed by acquiring the peak and average energy consumption of
all households as determined by Eq. (34) [92]. Likewise, the impact
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Algorithm 2 Manage_operations (arguments )
1: Initialize loop controls and other variables
2: 𝐵𝐿𝑃𝑒𝑎𝑘 ← 𝐵𝐿[0]
3: 𝜇max ← 𝜇𝑉 (𝑉 [0])
4: while

(

ℎ ≤ |𝐻|

)

do
5: for 𝑗 ← 1 to |𝐵𝐿| do
6: if

(

𝐵𝐿[𝑗] > 𝐵𝐿𝑃𝑒𝑎𝑘
)

then
7: 𝐵𝐿𝑃𝑒𝑎𝑘 ← 𝐵𝐿[𝑗]
8: end if
9: end for

10: for 𝑘 ← 1 to |𝑉 | do
11: if

((

𝜇𝑉 (𝑉 [𝑘]) > 𝜇max
)

then
12: 𝜇max ← 𝜇𝑉 (𝑉 [𝑘])
13: end if
14: end for
15: if

(

𝐸[ℎ] ≤ 𝐵𝐿𝑃𝑒𝑎𝑘 & 𝑆𝑜𝐶[ℎ] ≤ 𝑆𝑜𝐶𝑟[ℎ]
)

then
16: if

((

𝜇max ≠ 0
))

then
17: Validate constraint (12)
18: (𝑆𝑜𝐶[ℎ] × 𝐵𝐶[ℎ]) ← (𝑆𝑜𝐶[ℎ] × 𝐵𝐶[ℎ]) + (𝜂 × 𝐶𝑟)
19: 𝐸[ℎ] ← 𝐵𝐿[ℎ] + (𝑆𝑜𝐶[ℎ] × 𝐵𝐶[ℎ])
20: 𝐶[ℎ] ← 𝐸[ℎ] × 𝑃 [ℎ]) ⊳ Cost by Eq. (32)
21: 𝜇max ← 0
22: end if
23: end if
24: 𝐸𝑡𝑜𝑡𝑎𝑙 ← 𝐸[ℎ − 1] + 𝐸[ℎ]
25: if

(

𝐸𝑡𝑜𝑡𝑎𝑙 ≥ 𝑇 𝑟𝑎𝑛𝑠𝑐𝑎𝑝
)

then
26: Break
27: else
28: if

(

𝑆𝑜𝐶[ℎ] ≥ 𝑆𝑜𝐶𝑟[ℎ]
)

then
29: 𝐶𝑜𝑢𝑛𝑡𝑠𝑎𝑡 ← 𝐶𝑜𝑢𝑛𝑡𝑠𝑎𝑡 + 1
30: else
31: 𝐶𝑜𝑢𝑛𝑡𝑢𝑛𝑠𝑎𝑡 ← 𝐶𝑜𝑢𝑛𝑡𝑢𝑛𝑠𝑎𝑡 + 1
32: end if
33: ℎ ← ℎ + 1
34: end if
35: Compute 𝐶𝑡𝑜𝑡𝑎𝑙 for all households ⊳ By Eq. (33)
36: 𝑈𝐷𝑆𝐿 ←

𝐶𝑜𝑢𝑛𝑡𝑢𝑛𝑠𝑎𝑡
𝐶𝑜𝑢𝑛𝑡𝑠𝑎𝑡+𝐶𝑜𝑢𝑛𝑡𝑢𝑛𝑠𝑎𝑡

× 100

7: end while
8: Return updated

(

𝐶, 𝐶𝑡𝑜𝑡𝑎𝑙, 𝐸𝑡𝑜𝑡𝑎𝑙 and 𝑈𝐷𝑆𝐿
)

(𝐼) on the baseload profile refers to the strain that EV charging loads
place on both individual households and groups of households. It can be
computed by contemplating the maximum difference between a house-
hold’s total energy consumption and its peak baseload, as indicated in
Eq. (35) [61].

𝑃𝐴𝑅 =
max

(

∑𝐻
ℎ=1

∑𝑇
𝑡=1 𝐸𝑡𝑜𝑡𝑎𝑙ℎ (𝑡)

)

∑𝐻
ℎ=1

(

1
𝑇
∑𝑇

𝑖=1 𝐸𝑡𝑜𝑡𝑎𝑙ℎ (𝑡)
) (34)

𝐼 =
max

(

∑𝑇
𝑡=1 𝐸𝑡𝑜𝑡𝑎𝑙ℎ (𝑡)

)

− max
(

∑𝑇
𝑡=1 𝐵𝐿ℎ(𝑡)

)

max
(

∑𝐻
ℎ=1

∑𝑇
𝑖=1 𝐸𝑡𝑜𝑡𝑎𝑙ℎ (𝑡)

) (35)

.2. Evaluation criteria

This section discusses the performance evaluation criteria, which
ertain to the various methods regulating the charging process of EVs
n both uncoordinated and coordinated fashions.

.2.1. Uncoordinated charging
Uncoordinated charging (UCC) typically complies with the charging

eeds of the EV user and is dependent upon the availability of a charg-
ng outlet. The batteries of the EVs may begin charging immediately
10
pon arrival at home and plugging in or after a user-adjustable set
tart time, regardless of peak or off-peak hours [93]. When an EV
tarts to charge, it typically keeps running until the battery is fully
harged. It has been noted that most EVs come at home during peak
emand, and their charging may overlap with the peak period, resulting
n an overloading problem for system transmission infrastructure [94].
onsequently, the UCC is a crucial factor in understanding the effects of
he charging process on the electricity grid and the user’s premises [61].

.2.2. Coordinated charging
The coordinated charging approaches attempt to automate the

harging process by identifying the most optimal charging period (off-
eak), resulting in a start and stop mechanism governed by external
riteria (charging power and energy tariff) that classify coordinated
harging into centralized and decentralized [95].
A. Centralized charging: In the centralized charging management

CCM) the charging schedule of each EV is determined by a direct ag-
regator, who collects the charge requirements of all the EVs and then
olves an optimization problem (Eq. (6)) to identify the appropriate
imeslots at which each EV will charge [96]. Nevertheless, centralized
ystems have the benefit of frequently producing optimal solutions at
he system level by taking into account various global system states and
oupling constraints. However, such advantages are offset by some EV
ser satisfaction if the aggregated load exceeds the transformer thermal
imits in certain periods [19].
B. Decentralized charging with standard rate: The standard tariff

ften defines fixed or standard electricity rates (SR) for specific kilowatt
ours consumption and a different set rate for the rest amount of the
onsumed energy over a month, quarter, or year with no change in
he stated period [97]. According to the authors of [98], the SR is
he average rate for charging ℎth EVs during 24 h, as determined by
q. (36). However, the SR appears to work for residential consumption
ut is inefficient for EV charging since various factors, including gener-
tion, demand, transmission, losses compensation, and linearization of
holesale market costs, influence the electricity cost every hour [99].
urthermore, EVs are permitted to charge at any time, putting addi-
ional strain on the transmission system; consequently, the insecurity
f SR argues that it is insufficient for both the power grid and its
ubscribers [97].

ℎ = 1
24

24
∑

𝑡=1
𝐸ℎ(𝑡) × 𝑃 (𝑡) (36)

C. Decentralized charging with single and multiple rates: The
ime-of-use (TOU) method takes the weather into account and defines
ingle-TOU (STOU) and multiple-TOU (MTOU) electricity prices ac-
ordingly. The STOU corresponds to the off-peak and on-peak loads,
here the off-peak period is from 0:00 to 8:00, and the on-peak period

s the next 16 h for charging an ℎ-the EV, as given by Eq. (37) [22].
hile the MTOU expands the STOU into five different on-off periods
ith a four-hour time step, including 00:00–4:00, 01:00-05:00, 02:0–
6:00, 03:0–07:00, and 04:0–08:00, each of the periods has a different
lectricity rate for EV charging [98]. However, the stochastic nature of
V users makes it extremely difficult for them to adhere to the TOU rate
cheme while striving to minimize charging expenses; thereby, real-
ime price signals are more useful for EV charging optimization [100].
n earlier work [61], we developed a two-layer decentralized charging
pproach (TLDCA) based on fuzzy logic, which incorporates real-time
lectricity prices to alleviate EV charging costs. Although the TLDCA
utperforms the traditional methods, it has been seen in case-I that due
o the herding problem, several requesting EVs follow the same off-peak
eriod and present overloading of the household, having a considerable
mpact on the aggregated load (case-II).

ℎ =

{

1
8
∑8

𝑡=1 𝐸ℎ(𝑡) × 𝑃 (𝑡), 𝑅𝑎𝑡𝑒 1 𝑓𝑜𝑟 𝑜𝑓𝑓 − 𝑝𝑒𝑎𝑘
1 ∑16 (37)

16 𝑡=1 𝐸ℎ(𝑡) × 𝑃 (𝑡), 𝑅𝑎𝑡𝑒 2 𝑓𝑜𝑟 𝑜𝑛 − 𝑝𝑒𝑎𝑘
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Fig. 6. Modified IEEE 34 distribution system with feeder nominal voltage of 24.9 kV and several LV distribution networks connecting a number of residential houses with EVs.
4. Simulation setup and result discussion

4.1. Simulation environment

In this paper, we consider an IEEE 34 bus system with a nominal
voltage level of 24.9 kV and several low voltage (LV) distribution net-
works, which include 6 spot loads and 27 distributed loads, and the bus
number 800 is connected to the power transmission source that con-
nects a number of households with EVs, as depicted in Fig. 6 [101]. Our
analysis, aligned with the EirGrid distribution system, centers on the
integration of an HV/MV substation operating at 110 kV/38 kV voltage
levels, strategically coupled with an MV/LV substation at 38 kV/230 V
voltage levels [102]. Following the home charging suggestion [103], a
charging outlet with 𝐶𝑟 = 6.6 kW [104] and 95% charging efficiency (𝜂
= 0.95) [105] with a time step (TS) size (𝑡= 15 min) is considered for
the simulation scenarios. These Level 2 Phase-1 AC chargers typically
function within a voltage range of 208V-240V, providing current rat-
ings that span from 12 to 80 amps, with a prevalent 32-amp rating. This
arrangement enables a diverse charging capacity, ranging from 2.5 kW
to 19.2 kW [106]. Notably, the 6.6 kW charging rate stands out, finding
widespread adoption for residential and street charging scenarios and
being extensively installed in residential properties across the UK and
EU regions [107].

4.2. Result discussion

In this section, two distinct scenarios for individual and aggregated
EVs are performed.

4.2.1. Individual charging scenarios
We evaluated the algorithm for three EVs with household loads and

EV characteristics chosen at random to illustrate how the proposed HCS
preserves household load while satisfying EV charging requirements.
For clarity, all three EVs are assumed to have the same battery capacity
11
Fig. 7. Three different household electric load profiles.

of 53 kWh, albeit with various arrival and departure sequences and
SoCs obtained from our previous work [61], as shown in Table 4. Figs. 7
and 8 depict the electrical load profiles of the three households, as
well as the price profile with TOU and typical real-time rates obtained
from the utility grid domain [108]. The first, second, and third load
profiles in Fig. 7 exhibit peak periods commencing at 2:00 PM, 4:45
PM, and 5:45 AM, respectively, reflecting cooling, cocking, and heating
operations in the summer, spring, and winter seasons. The price profile
in Fig. 8 demonstrates that prices are intimately tied to the electric
load profile, with prices being higher during the on-peak (5:45 AM-
11:45 AM and 5:45 PM-9:00 PM) periods than during the off-peak
(12:00 AM-5:30 AM and 12:00 PM-5:30 PM). The various charging
methods schedule the EV charging differently and hence influence the
baseload according to the scheduling criterion, as illustrated in Fig. 9.
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Table 4
Input data of electric vehicles and charging outlet for three different households.

Household # EV characteristics [61] 𝐶𝑟 [104] Time step
size [22]Arrival

time
Departure
time

SoC BC 𝑆𝑜𝐶𝑟 Required
charging time

1 6:00 PM 9:00 AM 21.2 kW
53 kWh

31.8 kW 4.5 h (19 TSs) 6.6 kW/h
(1.65 kW/TS) 15 min2 8:00 PM 10:00 AM 26.5 kW 26.5 kW 4 h (16 TSs)

3 7:00 PM 11:30 AM 10.6 kW 42.4 kW 6.5 hrs (26 TSs)
Table 5
Summary of comparative analysis: Various charging coordination schemes for power grid and EV user satisfaction requirements.

Household # Method Average load
(kW)

Peak load
(kW)

Baseload peak
(kW)

Grid requirements User requirements

PAR Impact (%) Cost (¢) SoC satisfactions

1

UCC 2.51 6.09

4.44

2.43 27.00 209.10 1
SR 2.51 6.09 2.43 27.00 200.70 1
STOU 2.82 4.44 1.58 0.00 199.70 1
MTOU 2.82 4.44 1.58 0.00 186.30 1
TLDCA 2.80 4.44 1.59 0.00 180.12 1
CCM 2.84 4.44 1.56 0.00 129.00 1
HCS 2.84 4.44 1.56 0.00 129.00 1

2

UCC 2.96 4.86

3.92

1.64 19.39 179.10 1
SR 2.96 4.86 1.64 19.39 178.90 1
STOU 2.87 4.13 1.44 5.13 172.10 1
MTOU 2.82 4.11 1.46 4.72 178.30 1
TLDCA 2.84 4.26 1.50 7.90 151.68 1
CCM 2.82 3.92 1.39 0.00 178.90 1
HCS 2.82 3.92 1.39 0.00 109.40 1

3

UCC 2.91 4.47

3.94

1.54 11.75 273.40 1
SR 2.91 4.47 1.54 11.75 270.20 1
STOU 2.91 4.14 1.42 4.83 264.00 1
MTOU 2.91 4.47 1.54 11.75 251.50 1
TLDCA 2.89 4.32 1.49 8.69 246.48 1
CCM 2.84 3.94 1.39 0.00 200.00 0
HCS 2.91 3.99 1.37 1.25 232.60 1

Note*: The satisfactions level of the SoC corresponds to the user’s demanded energy. It is set to 1 if the requirement is met; otherwise, it remains 0.
Fig. 8. Real-time PJM market [108] and time-of-use (TOU) [61] price profiles.

It is evident from Fig. 9(a) that the centralized (CCM), decentralized
(SR, STOU, MTOU, and TLDCA) and proposed HCS perform equally,
without causing any additional load to the baseload profile, whereas
the UCC and SR charges are similar and overload the baseload by
around 27.08% with the introduction of a new peak load. The UCC
and decentralized approaches (SR, STOU, MTOU, and TLDCA) harm
the baseload profile by adding additional peak loads, but the CCM and
proposed HCS do not overburden the baseload, as seen in Fig. 9(b).
More specifically, the UCC & SR, STOU, MTOU, and TLDCA overload
the baseload by approximately 19.39%, 5.13%, 4.72%, and 7.90%, re-
spectively. Likewise, Fig. 9c indicates that the UCC & SR, STOU, MTOU,
TLDCA, and HCS overload the baseload by around 11.75%, 4.83%,
12
11.75%, 8.69%, and 1.25% respectively. The higher load induction
with the MTOU and TLDCA makes sense since both methods consider
the lowest price signals offered by the utility grid regardless of the
particular load pattern [61]. The marginal overload of 1.25% observed
with the proposed HCS in comparison to the CCM is attributed to the
HCS’s fulfillment of user SoC requirements. In contrast, the CCM falls
short in meeting the charging demands, leading to SoC discrimination
as indicated in Fig. 10 and Table 5.

Henceforth, we assess the PAR for each of the household’s baseloads
using Eq. (34). The finding demonstrate that the PAR for the baseload
of Household 1 is 2.43 with the UCC and SR strategies, while it is ≈
1.58 for the decentralized approaches (STOU, MTOM, and TLDCA). In
comparison, the PAR is 1.56 for both the CCM and the proposed HCS
approaches. The PAR for Household 2 (Baseload 2) is 1.64 when utiliz-
ing the UCC and SR strategies. In contrast, it measures 1.44, 1.46, and
1.50 with the decentralized (STOU, MTOU, and TLDCA) approaches,
and 1.39 with both the CCM and the proposed HCS strategy. In the
context of Household 3 (Baseload 3), the PAR is 1.54 when employing
the UCC & SR strategy. Comparatively, it registers values of 1.42,
1.54, 1.49, 1.39, and 1.37 with the STOU, MTOU, TLDCA, CCM, and
proposed HCS approaches, respectively.

The EV user’s requirements and satisfactions are examined based
on their require SoC, and the battery charging procedure with various
approaches is depicted in Fig. 10 and Table 5 (last column). It is
evident that the proposed HCS and decentralized charging methods
satisfy users’ charging needs, however, in the case of household 3,
which necessitates a 𝑆𝑜𝐶𝑟 of 0.8 (equivalent to 42.4 kW), the central-
ized charging approach falls short in providing the complete required
energy amount. The charging completes at 37.1 kW, which signifies
a 10% deficit from the requirement, leading to a discrepancy in user
satisfaction, as presented in Table 5. This disparity arises from the
centralized charging system’s imposition of restrictions on charging
when the electrical load surpasses a predefined threshold, leading
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Fig. 9. The household electric load profile with EV charging following the different charging coordination methods. (a). The electric load profile of household 1 (baseload 1), (b).
The electric load profile of household 2 (baseload 2), and (c). The electric load profile of household 3 (baseload 3).
Fig. 10. The charging process of battery with different charging methods.

to dissatisfaction among specific EV owners concerning their energy
needs.

The charging costs of the three households for charging their EVs
using the different techniques are examined in Fig. 11 and second last
column of Table 5. In the example of household 1, the suggested HCS
and CCM have the lowest cost because the household electric load pro-
file and prices are lower; thus, both approaches function similarly. In
the case of Household 2, the proposed HCS demonstrates its superiority
by achieving the lowest charging cost among the considered methods.
This outcome highlights the effective coordination and optimization
capabilities of the HCS, leading to cost-efficient charging strategies that
align with both user demands and power grid constraints. However,
upon scrutinizing Household 3, a marginal shift in cost-effectiveness
dynamics becomes evident, with the CCM method emerging with the
lowest cost compared to the proposed HCS. This variation in cost ef-
fectiveness can be attributed to the contrasting operational approaches
of the two systems. The CCM, while achieving a cost advantage, falls
short in fulfilling the required energy quantity for EVs, consequently
resulting in user dissatisfaction due to unmet charging expectations.

Ultimately, the summarized comparative analysis of individual
charging scenarios presented in Table 5 reveals that the proposed HCS
effectively maintains the household load profile without causing any
overload. This approach minimizes charging costs and the PAR, all
while meeting the requirements of EV users. To further explore the
implications of the proposed HCS at the aggregator level, we extend the
simulation to encompass aggregated charging scenarios, as elaborated
in the following section.

4.2.2. Aggregated charging scenarios
Considering the LV distribution network, the overall residential load

of each node is determined by the total number of connected houses
13
Fig. 11. The charging cost of three households (EVs) with different methods.

and their daily consumption, where a typical household consumes
around 2.78 kW [72] per day. Given the lumped load for each node, it is
anticipated that 70% of it is utilized, for residential purposes, with the
remaining 30% allocated to other uses, such as losses compensation and
reserves, etc. Consequently, the total number of 102 houses connected
to node number 844 is determined using the equation stated in [109].

The cumulative electric load of all connected houses is illustrated
in Fig. 12 at the distribution level. Given that the residences have
EVs with varied battery capacities, we evaluate four distinct types of
battery capacities (40 kWh [110], 53 kWh [111], 80.5 kWh [112],
and 100 kWh [113]) with their arrival and departure times generated
randomly by the Gaussian distribution with means (𝜇 = 6:00 PM),
standard deviation (𝜎 = 3 h), and 𝜇 = 10:00 AM, 𝜎 = 2.5 h, respec-
tively [61,72], as shown in Fig. 13. Besides that, the arrival time SoC
is distributed uniformly between 20% and 50% against each of their
battery capacities [22], as depicted in Fig. 14.

The power grid requirements (PAR, and the Impact on baseload) are
computed utilizing the peak and average loads according to Eq. (34),
whereas the users’ requirements (users’ dissatisfaction) are determined
as a percentage, representing the ratio of unsatisfied users to the total
number of users. Accordingly, the outcomes of these analyses are
presented in Table 6. The PAR with UCC and SR is 2.25, whereas
it is 1.97, 1.73, 1.68, 1.66, and 1.67, and with the STOU, MTOU,
TLDCA, CCM, and proposed HCS, respectively. The results presented
in Table 6 distinctly reveal a marginal difference in the PAR between
the proposed HCS and the CCM. However, the former notably excels
in satisfying a higher percentage of users, underscoring its emphasis on
user contentment. The lower PAR attributed to the CCM in contrast to
the proposed HCS is rational, as the CCM maintains load profiles within
acceptable thresholds, albeit leading to user dissatisfaction regarding
their energy needs, affecting approximately 7.00% of users. Moreover,
the impact on the baseload with the UCC and SR is around 41.24%,
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Table 6
Comparative analysis of various charging methods: evaluating PAR, impact, and SoC dissatisfaction for power grid and EV user requirements.

Methods Average load (kW) Peak load (kW) Baseload peak (kW) Grid requirements User requirements

PAR Impact (%) SoC disatisfaction (%)

UCC 173.52 390.92

229.70

2.25 41.24 0.00
SR 173.52 390.92 2.25 41.24 0.00
STOU 159.90 315.03 1.97 27.08 0.00
MTOU 152.49 264.35 1.73 13.11 0.00
TLDCA 146.82 247.06 1.68 7.03 0.00
CCM 114.79 190.98 1.66 0.00 7.00
HCS 125.73 210.00 1.67 0.00 0.00

Note*: The calculation of SoC dissatisfaction in the aggregated scenarios involves computing the percentage by considering the number of unsatisfied users in relation to the total
number of users.
Fig. 12. Aggregated load profile of the low-voltage distribution at bus number 844.

while it is 27.08%, 13.10%, and 7.03% with STOU, MTOU, and TLDCA,
respectively, whereas the CCM and HCS impose no additional load.

Since each charging method coordinates the requesting EVs based
on their criteria, they impose different temporal loads, as demonstrated
in the violin plot, which compares their load induction for the aggre-
gated scenario in Fig. 15. In the worst-case scenario with the highest
peak load (390.92 kW), the HCS reduces the loads by approximately
12.23% when compared to the UCC and SR and by 8.74%, 6.85%, and
5.39% when compared to the STOU, MTOU, and TLDCA, respectively.
However, the average load of CCM is approximately 2.80% lower than
the suggested HCS.

This implies that each method has a distinct charging price, as
illustrated in Fig. 16, which compares the normalized charging prices
for these strategies. The result illustrates that the HCS and TLDCA
have relatively similar charges while saving around 28.17%, 26.54%,
15.39%, and 7.80% when compared to the UCC, SR, STOU, and MTOU
methods, respectively; nonetheless, they have about a 5.00% higher
cost than the CCM method. The CCM’s lower average load and cheaper
cost as compared to the HCS are evident when the factor of user
satisfaction is taken into account.

4.3. Discussion

Traditional charging approaches often prioritize either power grid
stability or user satisfaction, necessitating optimal charging control
strategies to harmonize these conflicting aspects. In our study, we
shift the focus towards a more intricate exploration of the interplay
between charging loads, energy demands, costs, and power grid ca-
pacity. The ultimate goal is to create an optimized experience for
EV users, while adhering to the power grid operational constraints.
Consequently, we address the complex trade-off problem by formulat-
ing it as a fuzzy objective function and resolving it through a fuzzy
14
Fig. 13. The arrival (𝜇 = 6:00 PM, 𝜎 = 3 h) and departure (𝜇 = 10:00 AM, 𝜎 = 2.5 h)
times sequence of EVs using Gaussian distribution [61,72].

Fig. 14. The uniform distribution of EV arrival times SoC ranges from 20% to
50% [22].

inference mechanism, ultimately aiming for a harmonized solution that
benefits both EV users and the power grid ecosystem.Our proposed
Hierarchical Charging System (HCS) was thoroughly evaluated across
individual and aggregated charging scenarios, revealing its consis-
tent superiority in fulfilling both EV users’ requirements and power
grid constraints. Notably, the HCS surpassed the conventional Central-
ized Charging Management (CCM) approach, achieving around 7.00%
higher user satisfaction in aggregated charging scenarios. This accom-
plishment was coupled with reduced charging costs, differentiating it
from decentralized (STOU, MTOU, annd TLDCA) alternatives.
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Fig. 15. Violin plot of the charging loads for the aggregated scenarios.

Fig. 16. Normalized cost of different methods with aggregated charging scenarios.

However, the study predominantly evaluates power grid requisites
for an aggregator at the distribution level, with a primary emphasis
on the thermal capacity of distribution transformers. While it is crucial
to emphasize that both DSO and EV aggregator scenarios can be con-
ceptualized as multi-level optimization problems, a more comprehen-
sive evaluation encompassing nodal voltage levels, energy distribution,
thermal loading of distribution lines, and power losses would con-
tribute to a more precise understanding of power grid requisites [114].
Recognizing the potential complexities arising from such a multilevel
optimization approach, we foresee the exploration of this avenue as a
pivotal aspect of our future research endeavors, further fortifying the
foundational framework for the seamless integration of EVs. Moreover,
our study involved a concentrated analysis of single-phase Level 2 home
chargers, which are widely employed in diverse scenarios [107]. We
acknowledge the vital role of the charging rate, noting a discernible
trend towards 3-phase home chargers due to their potential effects on
power grid overloading and subsequent operational outcomes [115].
This underscores the imperative to understand the impact of varying
charging rates on power grid stability, prompting a central focus on
power flow analysis in our ongoing and future research.

5. Conclusion

In this study, we introduce a hybrid charging scheme (HCS) based
on a fuzzy inference system that blends the benefits of centralized and
decentralized charging to avoid herding, minimize charging costs, and
meet users’ energy requirements. We define the problem with a novel
fuzzy objective function and explore the underlying fuzzy inference
mechanism together with the implications of the Bellman and Zadeh’s
15
principles, which combines the independent and uncertain pricing pro-
file, consumption load pattern, and state-of-charge collected from the
power grid, household, and EV domains into an aggregated weighted
value. The proposed HCS employs aggregated weighted values to re-
solve the objective function and, eventually, determine the optimal
charging schedule, which supports charging requirements with the
lowest possible charging cost for the requesting EVs while respecting
power grid operating constraints.

The IEEE 34 bus system was utilized to simulate both individual and
aggregated charging scenarios, and the proposed HCS was contrasted
with the UCC, SR, centralized (CCM), and decentralized (STOU, MTOU,
TLDCA) charging methods. Individual charging scenarios demonstrate
that the proposed HCS maintains the household load profile without
imposing any overload, lowering charging costs and PAR while meeting
the demands of EV users. In the aggregated scenarios, the HCS showed
reduced PAR and impact on the baseload profile compared to the UCC,
SR, STOU, MTOU, and TLDCA, respectively, while enhancing user sat-
isfaction by approximately 7% when compared to the CCM approach.
Likewise, compared to the UCC, SR, STOU, and MTOU methods, the
HCS lowered charging costs by around 28.17%, 26.54%, 15.39%, and
7.80%, respectively.
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