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A B S T R A C T

Under control action, wave energy devices typically display nonlinear hydrodynamic behaviour, making the
design of energy maximising control somewhat onerous. One solution to approach the optimal performance
for nonlinear control problem under model mismatches is to employ a linear control strategy, which can be
robust to linear model mismatches. However, accurate characterisation of the uncertainty in the linear model
is vital, if the controller is to adequately capture the full extent of the uncertainty, while not being overly
conservative due to overestimation of the uncertainty. This paper describes a procedure, employing CFD-based
numerical tank experiments, to accurately produce a nominal linear empirical transfer function model, along
with an accurate estimate of the uncertainty bounds in that linear model, due to hydrodynamic uncertainty. A
robust control case study is provided, illustrating the nominal model estimation process, and its corresponding
uncertainty set, including the complete procedure, required to generate the robust controller. Robust control
results, on the fully nonlinear CFD model, are provided to demonstrate the efficacy of the modelling and
control philosophy.
1. Introduction

Electrification, based on renewables, is a key solution to cater
for increasing energy demand and tackle climate change. Among the
renewable energy modalities, the exploitation of energy from the ocean
waves, due to their high power density and relatively untapped po-
tential, is key. However, economic competitiveness of wave energy
converters (WECs) needs to be improved, in which energy-maximising
control systems can play an important role.

Model-based control systems contribute to the majority of WEC
control strategies, where the system model has a significant influence
on the control efficiency. WECs are commonly modelled considering
linearity assumptions, i.e. small displacements, based on Cummin’s
equation [1], with linearised hydrodynamic coefficients. However, lin-
ear models, under the linearising assumption of small movements, are
challenged due to the requirement for exaggerated device oscillations
to maximise power absorption [2]. Thus, the WEC models capturing
possible nonlinearities, such as viscous drag, flow separation, vortex
shedding [2], power take-off (PTO) nonlinearities [3], and complex
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hydrodynamic interactions, should be considered for the design and im-
plementation of model-based control approaches. Nonlinear hydrody-
namic modelling of WECs have been reviewed in [4–6]. Among nonlin-
ear WEC models, computational fluid dynamics (CFD)-based numerical
wave tanks (NWTs), capturing relevant hydrodynamic non-linearities,
have proven to of high-fidelity in research and development [2,7].

A considerable number of energy maximising control approaches
have been developed to deal with nonlinear WEC models. Nonlinear
model predictive control (NMPC) is a popular model-based control
strategy, which obtains an optimal control input (in theory), while
handling motion and force constraints systematically over a finite
future time horizon [8–10]. Moment-Based nonlinear optimal control,
subjected to nonlinear dynamics of the WECs, is another particular
energy-maximising strategy, using model order reduction theory by
matching the frequency response of the device at specific spectral
components (discrete frequencies) [11,12]. Pseudospectral (PS)-based
methods are another class of nonlinear WEC control methodology
where the continuous-time energy maximisation problem is transcribed
into a finite-dimensional optimisation problem. Application of the PS
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method for a nonlinear WEC control dealing with viscous drag and PTO
nonlinearity is reviewed in [13].

Despite the development of different nonlinear control methodolo-
gies for WECs, the computational burden of the optimisation problems
is a significative aspect [8,14]. In addition, even fully nonlinear WEC
models obtained from CFD simulations include numerical errors and
uncertainty [15]. To enhance the computational complexity of nonlin-
ear WEC controllers, while improving controller efficiency by dealing
with distinct sources of nondeterminism in the WEC model, a robust
control methodology, based on a linear nominal WEC model and un-
certainty bound, has been developed in [16]. Precise nominal models
and small uncertainty bounds are the key roles to reduce conservatism
in the robust control design of WECs. Recent efforts have been aimed
at accurately characterising the nominal and uncertainty models based
on CFD simulations for the optimal robust control design of WECs [17].
However, a particularly important issue of the potential non-passive
representation of the nominal and uncertainty model arises from CNWT
modelling, which inherently discards intrinsic valuable information and
degrades power absorption [17]. In order to best support robust control
objectives, there is motivation for passivising a system by means of
different approaches, most notably, feedback passivity, practical pas-
sivity, and frequency domain passivisation methodology [18]. A recent
practical passivisation methodology, proposed by García et al. [19],
can be considered for an efficient application of the robust spectral-
based control methodology [16], when the system nominal description,
or the corresponding uncertainty bounds, violate the intrinsic physical
passivity of the system.

In the field of WECs, uncertainty quantification has been addressed
in different studies. To briefly summarise, in [20] uncertainty in wave
and environmental conditions is quantified and parameterised with
the objective of minimising uncertainty towards the impact on power
and mooring line tension prediction. Numerical uncertainty estimation
for passive control of WECs, focusing on the spatial and temporal
discretisation of CFD simulation, is studied Wang et al. [15]. Online
estimation of dynamic uncertainty, for robust adaptive optimal control
of WECs, is presented in [21]. Recently, a generalised polynomial chaos
(gPC) methodology has been utilised for uncertainty estimation, where
the studies in [22,23] address the gPC in WEC applications.

Consistent across all the noted studies is the implicit understanding
that the fidelity of nominal and uncertainty models plays a crucial
role in the effective robust control design for WECs. However, in wave
energy robust control, none of the studies to date includes a compre-
hensive representation of input signal synthesis and characterisation,
to give sufficient fidelity in CFD-based NWT tests, for a sensible repre-
sentation of a nominal model and minimised uncertainty region, while
satisfying the passivity condition with the goal of robust control design.
Within this context, the latter is tackled in this study, representing a
novel and original contribution to the state-of-the-art.

The layout of the remainder of this paper is as follows: First, the
CFD-based numerical wave tank setup for system identification and
wave excitation force tests, as well as CFD mesh refinement of the
set-up, is presented in Section 2. Section 3 details input signal syn-
thesis, including empirical transfer function estimate (ETFE) definition
and details on the three types of input signals considered for system
identification. Next, data post-processing, related to each input signal
type and determination of the best input signal choice for robust
model-based control design of the WEC, is presented in Section 4. In
Section 5, nominal model determination and uncertainty quantification
from ETFE with consideration of ETFE refinement, and ETFE interpola-
tion methodology is presented. A robust control design procedure, with
a focus on the input signal required for the control design, is presented
in Section 6. Section 7 demonstrates the application example, working
through determination of the nominal model, uncertainty region, and
robust control design for the case study. The results are presented
in Section 7.3 and, finally, conclusions on the overall application are
195

drawn in Section 8. 𝐿
2. CFD model construction

CFD-based numerical wave tanks (CNWTs), offering complete non-
linear hydrodynamic models, are important tools for analysing WECs.
The interaction of the waves and a submerged WEC can be simulated
using well-established numerical tools, such as the open-source CFD
toolbox OpenFOAM [24], where the fluid behaviour is analysed by
numerically solving the Navier–Stokes equations. Under the assump-
tion of incompressible fluid, Reynolds averaged Navier–Stokes (RANS)
equations, describing the conservation of mass and momentum, can be
written as:
𝜕𝜌(𝑡, 𝑥)

𝜕𝑡
+ ∇.(𝜌(𝑡, 𝑥)𝑈 (𝑡, 𝑥)) = 0, (1)

𝜕𝜌(𝑡, 𝑥)𝑈 (𝑡, 𝑥)
𝜕𝑡

+ ∇.𝜌𝑈 (𝑡, 𝑥)𝑈 (𝑡, 𝑥) = −∇𝑝(𝑡, 𝑥) + ∇.(𝜇∇𝑈 (𝑡, 𝑥))

+ 𝜌𝑓𝑏(𝑡, 𝑥) + 𝑓𝑢(𝑡, 𝑥), (2)

where Eqs. (1) and (2) represent the conservation equations for mass
and momentum, respectively, with 𝑡 and 𝑥 denoting the time and spatial
variables, respectively, 𝑈 (𝑡, 𝑥) the fluid velocity field, 𝑝(𝑡, 𝑥) the fluid
pressure, 𝜌 the fluid density, 𝜇 the dynamic viscosity, and 𝑓𝑏(𝑡, 𝑥) the
ield of external forces, such as gravity.

.1. NWT configurations

CFD-based NWTs, depending on the modelling objectives, can be
esigned and equipped in different ways. In this study, two 3D NWT
onfigurations are proposed, based on two different experiment types,
.e. system identification and evaluation tests. The WEC structure with
single degree of freedom, in the heave direction, is considered in our
WT.

.1.1. NWT for system identification
The three-dimensional CFD-based NWT for system identification

ests is designed in a tank with equal span in the 𝑥 and 𝑦-directions,
erpendicular to the tank depth (𝑧-direction), with the buoy located
n the centre of the tank corresponding to (𝑥, 𝑦, 𝑧) = (0, 0, 0). The tank
s equipped with a wave absorber at the left and right boundaries
𝑥 = ±𝐿𝑇 1∕2). In the system identification tests, the WEC is driven
nto motion by applying a defined input force (excitation signal) 𝑓𝑢(𝑡)
irectly to the WEC, which are notionally applied through the PTO
ystem (𝑓𝑢(𝑡) is the actual force generated by the PTO). Due to sym-
etry in both 𝑥- and 𝑦-directions, the NWT configuration allows the
FD simulation to be carried out on a quarter of the full NWT, with a
ignificant advantage in terms of computation time. The side view of
he NWT schematic for system identification tests is shown in Fig. 1(a),
here 𝐷 and 𝑑 are the tank and water depths, respectively, and 𝐿𝑇 1 is

he tank length.
For the numerical experiments analysed in this study, the NWT

etup is designed in a 6 m deep tank with a water depth of 3 m. The
WT for system identification spanning a length of 𝐿𝑇 1 = 14m in the
-direction and 14 m in the 𝑦–direction, which is designed to be six
avelengths of the most significant radiated waves (occurring at peak

requency of the radiation damping of the WEC).

.1.2. NWT for evaluation tests
The three-dimensional CFD-based NWT, for evaluation tests, is de-

igned in a tank spanning the 𝑥 (wave propagation direction) and
-directions, perpendicular to the tank depth (𝑧-direction), and the
uoy’s location corresponding to (𝑥, 𝑦, 𝑧) = (0, 0, 0). The tank is equipped
ith a wave generation mechanism (at 𝑥 = −𝑐) and a wave absorber
t the down-wave domain boundary (at 𝑥 = 𝐿𝑇 2 − 𝑐) specified in [2],
here incoming waves alone induce the WEC motion. The side view of

he NWT schematic for evaluation tests is shown in Fig. 1(b), where

𝑇 2 is the tank length, and 𝑐 is the buoy distance from the wave
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Fig. 1. Schematic of the numerical wave tank for (a) system identification tests and
(b) evaluation tests: Side view.

Fig. 2. Paraview snapshots of computational mesh of geometry.

generation boundary. The NWT configuration is symmetric in the 𝑦-
direction, allowing a half of the full NWT for the CFD simulation, which
is computationally efficient.

The NWT, for evaluation tests, spans a length of 𝐿𝑇 2 = 21.1m
in 𝑥-direction and 15.6 m in the 𝑦-directions, and the buoy location
is 𝑐 = 7.2m down-wave (at least one wavelength distance) from the
wave generation boundary, and 𝐿𝑇 2 − 𝑐 = 13.9m from wave absorption
boundary (at least two wavelengths distance).

2.2. CFD mesh refinement

The spatial discretisation of the NWT is implemented via a mesh;
based on the CNWT setup presented in [2], ensuring the efficient and
accurate simulations. With the aim of reducing the potential numerical
uncertainty effects, additional mesh refinement of the NWT geometry,
for system identification tests, is performed to ensure high fidelity. The
buoy displacement resulting from the smallest input force is considered
to generate the smallest mesh size around the buoy. Meshes are denser
around the buoy boundary and gradually increase in size towards the
NWT boundary. Mesh refinement is performed on the existing mesh
generated in [2,17] by adding more cells and, therefore, decreasing
the dimension of the cells around the buoy. Fig. 2 shows a snapshot
of the computational mesh of the side view of the quarter NWT using
ParaView, an open-source software utility for visualising the data from
OpenFOAM. As a result of mesh refinement, the total number of cells
increases from the initial number of 1.3 million to 4.06 million, and the
cell dimension around the buoy has reduced from 0.013 m to 0.0054 m.

3. Input signal synthesis

Frequency response analysis (FRA) of systems, defined as the ra-
tio of the Fourier transform of the output response to the Fourier
196
transform of the input excitation, is a well-researched area which is
used to characterise the system. In this study, based on well-known
optimal conditions for the maximisation of energy absorption [25],
the so-called force-to-velocity mapping is computed from the set of
input excitation forces (PTO force), and their corresponding outputs
(velocity) to identify the system. The specification of the system input
is one important issue in system identification. The input signal must
excite the system over the frequency range where the system has a
significant frequency response, while, at the same time, covers the full
input amplitude (dynamical) range. Three input signal types and their
FRA are considered for this study: Sinusoidal signals, chirp signals, and
multisine signals. In order to effectively describe the type of calculation
required for the analysis and the use of the input signal, we begin with
a definition of the empirical transfer function estimate (ETFE).

3.1. EFTE definition

The linear control design model for the current study is identified
via a frequency-domain black-box-identification methodology, aiming
to characterise the force-to-velocity mapping, i.e. the mapping 𝑓 (𝑡) →
𝑣(𝑡), where (𝑓 (𝑡), 𝑣(𝑡)) is the input–output pair, defined in the time-
domain. By defining 𝐹 (𝑗𝜔) and 𝑉 (𝑗𝜔) as the Fourier transform of the
𝑓 (𝑡) and 𝑣(𝑡), respectively, the ETFE, 𝐻(𝑗𝜔), is computed as:

𝐻(𝑗𝜔) =
𝑉 (𝑗𝜔)
𝐹 (𝑗𝜔)

. (3)

3.2. Sinusoidal signals

A sinusoidal input, with a single frequency, can be represented by:

𝑥(𝑡) = 𝐴sin(𝜔𝑡 + 𝜙), for 𝑡 ≥ 0, (4)

where 𝐴, 𝜔, and 𝜙 are the amplitude, frequency and phase of the
sinusoid, respectively. To obtain a complete frequency domain charac-
terisation of the system, for each considered amplitude, ‘sufficient’1 fre-
quency values, 𝜔, should be selected for the system identification tests,
as follows: Asymptotic frequency values (low and high frequency lim-
its), as well as the resonance frequency of the device, are of paramount
importance. Considering the high variability of the frequency response
around the resonance frequency of the system, selection of frequency
points around the resonance frequency is advantageous in terms of
efficiently capturing the main dynamical behaviour of the system in
spectral domain. Using a series of sinusoids as input signal generates
a line-spectral characterisation of the system, with a large experimen-
tation time (with sufficient individual sinusoids) to cover the required
frequency range.

3.3. Chirp signals

A chirp signal is a signal with a time-varying frequency. Due to the
possibility of defining a so-called instantaneous frequency, chirp signals
are of particular interest. Assigning a specific frequency to every time
point in the input signal allows for a one-to-one mapping between time
and frequency domains for linear systems.

3.3.1. Linear frequency modulated chirp signal
In a linear frequency modulated (LFM) chirp signal, the instanta-

neous frequency 𝑓 (𝑡) varies linearly with time:

𝑓 (𝑡) = 𝑐𝑡 + 𝑓0 (5)

where 𝑓0 is the initial frequency and c is the chirp rate. A chirp signal
in which the frequency increases with time is termed ‘up-chirp’ (𝑐 > 0
for LFM up-chirp), and a chirp signal in which the frequency decreases
with time is termed ‘down-chirp’ (𝑐 < 0 for LFM down-chirp).

1 According to the specified target spectral discretisation.
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The corresponding time-domain function for a sinusoidal linear
chirp can be formulated as:

𝑥(𝑡) = 𝐴sin
(

𝜙0 + 2𝜋
( 𝑐
2
𝑡2 + 𝑓0𝑡

))

, for 𝑡 ≥ 0, (6)

where, 𝐴 and 𝜙0 are the amplitude and initial phase of the LFM chirp
ignal, respectively. In a standard LFM chirp signal, 𝐴 is a constant
alue while, in an amplitude modulated LFM chirp signal, 𝐴 is a
unction of time.

.3.2. Nonlinear frequency modulation chirp
In a nonlinear frequency modulated (NLFM) chirp signal, the in-

tantaneous frequency 𝑓 (𝑡) varies nonlinearly with time. A NLFM chirp
ignal can be defined, for example, by assigning equal, or balanced,
ermanency time to each frequency where the instantaneous frequency
(𝑡) is calculated as:

(𝑡) = 𝑐
𝑡
+ 𝑓0 (7)

3.4. Multisine signals

Multisine signals consist of a sum of several simultaneously gener-
ated sinusoids, denoted as:

𝑥(𝑡) =
𝑁
∑

𝑘=1
𝐴𝑘sin

(

𝜔𝑘𝑡 + 𝜙𝑘
)

, (8)

here 𝐴𝑘 is the amplitude and 𝜙𝑘 the phase of the 𝑘th sinusoid, with
the number of sinusoidal components. 𝜔𝑘 = 𝜔0+(𝑘−1)𝛥𝜔 is defined

or harmonic multisine signals, where 𝜔0 is the initial frequency and
𝜔 the constant frequency interval. 𝜔𝑘, for non-harmonic multisines, is
ased on user selected frequency points. While 𝐴𝑘 and 𝜔𝑘 are normally
ot chosen independently, in the case of present study we use an open
hoice on the combination of 𝐴𝑘 and 𝜔𝑘.

Combining sinusoids increases the signal amplitude, which is gen-
rally undesirable in NWT experiments, where specific amplitude ex-
itation is desired. In order to produce a specific amplitude multisine,
he crest factor (CF), i.e. the ratio of the peak value of a signal to its
oot mean square level, should be minimised. A well-known frequency-
omain CF minimisation methodology, for uniformly spaced frequency
omponents, is Schroeder’s method [26], which optimises the 𝜙𝑘 to
inimise the CF.

. Data postprocessing

Typically, the NWT output signals show a level of distortion, ad-
ersely affecting the system identification process. The primary source
f distortion relate to issues associated with limitations of the NWT
tself. Most notably, the limitation in NWT length causes wave reflec-
ion, and, due to the computational burden, there is also a limitation
n the time duration of the excitation signal. A level of post-processing
s therefore carried out to mitigate the resulting distortion. A sample
FD-based input/output time domain analysis, based on an input signal
ith a maximum force amplitude of 20N and signal duration of 25s is

onsidered, to illustrate the post-processing methodology.

.1. Sinusoidal signal

Sinusoidal CFD-based NWT experiments for the system identifica-
ion are processed in the time domain data for specific frequency points
n the frequency range. Output signal distortion, corresponding to low-
requency input sinusoidal signals, are particularly noticeable, resulting
rom short signal duration. A potential methodology to reduce such
istortion involves the application of a band pass filter (BPF) which
197

asses only frequencies within a specific (narrow) frequency range. The s
Fig. 3. Time trace of unfiltered and filtered input/output signals for input sinusoidal
signal.

Fig. 4. ETFE for sinusoidal input force.

transfer function of a second-order BPF is formulated from the standard
continuous-time form:

𝑇𝐵𝑃 (𝑠) = 𝐺𝑜.
( 𝜔𝑜
𝑄𝑝

)𝑠

𝑠2 + (𝜔𝑜
𝑄 )𝑠 + 𝜔2

𝑜
(9)

here 𝐺𝑜 is the filter gain, 𝜔𝑜 the centre frequency of the filter, and
the quality factor, determining the sharpness of the resonance in

he filter frequency response. The filter bandwidth, defined as the
ifference between the higher and lower 3 dB cut-off frequencies, is
nversely proportional to 𝑄. A bandpass filter, with a centre frequency

of exactly the same frequency as the sinusoidal signal, is employed.
To work with the sampled signals, a discrete-time version of the filter
is obtained using a matched z-Transform equivalent, with zero initial
conditions, and is applied to both input and output signals. Fig. 3
shows sample unfiltered and filtered (using the BPF) input/output time-
domain signals from a CFD simulation. The input signal is a single
sinusoid with an amplitude of 20N and frequency of 0.2rad/s (low
frequency asymptote), and sampling period of 0.001s, over the time
interval of [0, 25]s. A direct consequence of the short signal duration
s the incomplete period of the signal in this specific case. Consid-
ring sinusoidal signals, the ETFE for three different cases, including
nfiltered input/unfiltered output, unfiltered input/filtered output, and
iltered input/filtered output is computed, with results shown in Fig. 4.
he discrete (in both time and frequency) ETFE is obtained using the
ast Fourier transform (FFT), with zero-padding to bring the number
f calculation points to the next 2𝑗 (𝑗 an integer), as required by
he FFT. Based on the phase plot in Fig. 4, applying the BPF to the
utput signal, or input and output signals for the system identification
rocess, results in even more distortion as the phases diverge from
he expected (due to the passive nature of the device) value of 90◦

t the low frequency asymptote. As a result, BPF was abandoned as
post-processing technique for input/output time domain data using

inusoidal input force experiments.
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Fig. 5. Time trace and spectrogram of the input/output signals for input LFM up-chirp
signal (unfiltered).

4.2. Chirp signal

Chirp CNWT experiments for system identification are simulated
at different amplitude levels. Fig. 5 shows the input/output time-
domain signals and their corresponding spectrograms. Based on the
output spectrogram analysis in Fig. 5, distortion is evident, with the
presence of parasitic low-frequency components. One possibility, to
diminish this distortion, involves the application of a frequency-varying
BPF, where the centre frequency of the filter varies with the instanta-
neous frequency of the chirp. The transfer function of the frequency-
varying second-order BPF can be formulated as in (9), where 𝜔 is the
time-varying frequency of the filter.

Fig. 6 shows sample unfiltered and filtered input/output time-
domain signal from the CFD simulation using a frequency-varying
BPF. The input signal is a linear (frequency with time) up-chirp with
maximum amplitude of 20N, where the frequency is linearly varying
from 0.06rad/s to 18.89rad/s over a time interval of [0, 25]s, with
a sampling period of 0.001s. The bandpass filter, with the centre
frequency coincident with the signal frequency, is again discretised
using a matched z-Transform equivalent and applied to both input and
output signals. The ETFE for three different cases, including unfiltered
input/unfiltered output, unfiltered input/filtered output, and filtered
input/filtered output is computed, and results are shown in Fig. 7.
Based on the phase plot in the ETFE, applying the BPF to the output
signal, or input and output signals, for the system identification pro-
cess, results in even more distortion as the phases diverge from the
expected value of 90◦ at the low-frequency asymptote. As a result, BPF
was abandoned as a post-processing technique using chirp input force
experiments.

4.3. Final choice of input signal

In this section, the potential signal types and their corresponding
ETFEs will be examined to choose the best set of input signals for
system identification, leading to the most effective control of the
WEC. Smaller ETFE variance values, resulting in a correspondingly
small uncertainty bound, will lead to the less conservative control of
WEC with corresponding improvement in control performance over
the full operational space [16]. For comparison, five input signals,
and their corresponding ETFEs, are presented in Fig. 8 and Fig. 9,
respectively. The time-domain simulations are performed over the
interval [0, 25]s. Fig. 8(a) shows a LFM up-chirp signal, specified
in Section 3.3.1. Fig. 8(b) shows an amplitude-modulated LFM up-
chirp signal (Section 3.3.1), which is obtained by multiplying the
LFM up-chirp signal in Fig. 8(a) by the half parabola starting from
the value of 7.5 at 𝑡 = 0s and finishing with the value of 1 at
198
Fig. 6. Time trace of unfiltered and filtered input/output signals based on LFM up-chirp
input force.

Fig. 7. ETFEs computed from unfiltered input/unfiltered output, unfiltered in-
put/filtered output, and filtered input/filtered output based on LFM up-chirp input
force.

resonance time 𝑡 = 7.65s. The NLFM down-chirp signal (Section 3.3.2),
with maximum amplitude of 20N, and frequency function accord-
ing to Eq. (7), which varies from 18.89rad/s to 0.06rad/s, is shown
in Fig. 8(c). A sample of a sinusoidal signal (Section 3.2) with an
amplitude of 20N and frequency of 5.7rad/s is shown in Fig. 8(d),
and finally, the non-harmonic multisine signal (Section 3.4), defined
with flat amplitude spectra of 20N and the frequency set of 𝛺 =
{0.2, 1, 2, 3, 4, 5, 5.5, 5.7, 6, 6.5, 7, 8, 9, 10, 18.89}rad/s and CF optimised us-
ing Schroeder’s method [26] is presented in Fig. 8(e). The ETFEs, calcu-
lated from the various input/output time-domain signals, is presented
in Fig. 9. The ETFEs obtained from LFM up-chirp, amplitude-modulated
LFM up-chirp, and NLFM down-chirp input signals are shown in red,
yellow, and orange lines, respectively. The individual circular and
diamond markers represent the ETFE calculated from single sinusoidal
signals and the multisine signal with frequencies contained in 𝛺,
respectively.

Based on the ETFEs obtained for the five different input signal types
(Fig. 9), the following conclusions can be drawn:

• The ETFE from the LFM up-chirp input signal has high variability,
both in magnitude and phase. The main issue arises from the
limitation of the simulation time length, which is designed to
avoid wave reflections from the tank and also to reduce the com-
putational complexity of the simulations. The limited-time length
results in a very short effective time duration spent at each fre-
quency. LFM up-chirp input signals clearly result in considerable
phase values above 90◦ violating the passivity requirement [17].

• The ETFE from the amplitude modulated LFM up-chirp input sig-
nal results in a smoother ETFE compared, with the standard linear
up-chirp signal, at frequencies up to the resonance frequency
of the device, and the overall signal-to-noise ratio is improved.
However, passivity issues with this input signal are also evident,
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Fig. 8. Time series of potential identification signals.

and the ETFE shows high variability at frequencies higher than
the resonance frequency of the device.

• The ETFE from a NLFM down-chirp shows poor resolution and
high variability at the resonance frequency and at high frequency,
which will result in a large uncertainty bound. However, this
experiment results in a relatively good low-frequency asymptote,
which is around 90◦.

• The ETFE from a non-harmonic multisine signal results in very
large variations in the magnitude and phase. One possibility cause
may be from distortion of the unequal amounts of time spent at
each frequency by the CF optimisation algorithm.

• The ETFE from the sinusoidal input signals is smooth and has
low variance, which is a direct result of spending more time at
each frequency. This is the best compromise between the 25 s
time limit from reflections and the need to spend sufficient time
at each frequency to resolve the ETFE.

In summary, the drawbacks associated with the LFM up-chirp,
mplitude modulated LFM up-chirp, NLFM down-chirp signals reduce
he value of their use in a system identification context. Ultimately,
onsistent amplitude sinusoidal signals at specific frequency set plus
n additional frequency point at resonance were used to excite the
ystem, repeated for different amplitude levels. However, some data
rom other experiment types, e.g. asymptotic values, are valuable in
verall calibration of the data. As a result, these signal characteristics
re considered to be a good compromise between time domain data
esolution and computational requirements.

In the following, CFD simulations with sinusoidal input types will
e exclusively adopted for ETFE calculation.

. Uncertainty quantification using the EFTE

ETFEs obtained from the CNWT experiments are now used to select
oth the nominal model and quantify the uncertainty for robust control
esign. ETFE refinement is performed prior to nominal and uncertainty
odel selection to ensure the correct asymptotic nature of the ETFE and
assivity of the WEC model. Ultimately, the total uncertainty measured
s a combination of nonlinearity in the (linear) nominal model, together
ith some minor phenomena resulting from imperfect simulation in the
WT.

.1. EFTE refinement

ETFE refinement refers to mitigation of ETFE distortion arising from
he CNWT experimental errors. ETFE refinement is carried out based on
he satisfaction of two fundamental physical properties of the system:
199
5.1.1. Asymptotic nature of the ETFE
In order to ensure asymptotic behaviour consistent with a passive

system, the ETFE phase components are forced to 90◦ and −90◦ at the
low and high-frequency asymptotes, respectively.

5.1.2. Passive nature of the WEC
Considering the passive behaviour, which is formulated based on

physical energy processes of the device, a passivisation methodology,
based on Bode plot shaping, is applied. In this study, ETFE refinement
is performed by means of forcing the phase within ±90◦ degrees for all
frequencies.

5.2. Uncertainty quantification

The methodology for determining the nominal model and specifying
uncertainty, based on the ETFEs calculated from the NWT experimental
data, is presented in this section.

5.2.1. Nominal model determination
The nominal model, based on the calculated ETFEs, can be deter-

mined using different approaches. Three possible choices are:

1. Nominal model based on average ETFE: In this methodology, the
nominal model is calculated by taking the average of all ETFEs.

2. Nominal model based on the most linear case: This approach uses
the ETFE corresponding to the smallest input force amplitude.
The nominal model based on the smallest force will result in the
closest model calculated by linear boundary element methods
(BEMs) [27]. However, nominal model selection based on a
linear approach may result in a large uncertainty region, with
resulting conservative control [17].

3. Nominal model based on minimum radius circles: This method
produces synthetically built nominal model, which is formulated
to minimise the uncertainty region. At each frequency point,
the nominal model is located at the centre of a minimum ra-
dius circle which includes the extremities of the uncertainty
region [16,17].

5.2.2. Uncertainty specification
The uncertainty region, at a specific frequency point, is calculated

based on the minimum distance between the nominal model and ex-
perimental models of different amplitude levels at that frequency. The
multiplicative uncertainty, 𝛥𝑚(𝜔), is defined :

max
1⩽𝑖⩽𝑛

{|𝛥𝑖
𝑚(𝜔)|} = max

1⩽𝑖⩽𝑛

{

|

|

|

|

𝐻 𝑖(𝜔) − 𝐺𝑜(𝜔)
𝐺𝑜(𝜔)

|

|

|

|

}

(10)

where 𝑛 is the number of experiment sets and 𝐺𝑜 is the nominal model.

5.3. ETFE interpolation

Since the number of frequency points returned in the ETFE is
limited by the number of individual sinusoids used for excitation (16
points), some level of interpolation is required to provide an adequate
number of frequency points for robust control design. This is due to
the pseudospectral nature of the control design, where a number of
pseudospectral basis functions considerably in excess of 16 is required.
Such an interpolation can be carried out using two methods: (A) Inter-
polation of the ETFEs based on the basis function frequency points and
determination of the nominal model and uncertainty bounds at these
points OR (B) Determination of the nominal model and uncertainty
bounds from the raw ETFEs and then interpolate the nominal model and
uncertainty bound at the basis function frequency points. Methodology
(A) is adopted since, by first interpolating the sinusoidal based ETFEs,
smoother interpolation is obtained.
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Fig. 9. Empirical transfer function estimate obtained from five different input signals: LFM up-chirp input signal, amplitude modulated LFM up-chirp signal, NLFM down-chirp
input signal, sinusoidal input signals, and multisine input signal. Note that the multisine and individual sinusoids are only defined at discrete frequency points.
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6. Robust control design

The control objective for the WEC system is to maximise the total
absorbed energy, J, defined as:

𝐽 ≡ 𝐸 = −∫

𝑇

0
𝑃𝑑𝑡 = −∫

𝑇

0
𝑣𝑇 (𝑡)𝑢(𝑡)𝑑𝑡, (11)

which, in spectral and pseudospectral form, can be reformulated as:

𝐽 ≈ 𝐽𝑁 = ∫

𝑇

0
û𝑇𝛷𝑇 (𝑡)𝛷(𝑡)v̂ = −𝑇

2
û𝑇 v̂, (12)

n (11) and (12), 𝐸 represents the absorbed power over the time
nterval [0 𝑇 ], 𝑃 the instantaneous power, 𝑢(𝑡) the control force ap-
lied through the PTO system, and 𝑣(𝑡) the device velocity. û and v̂

are approximations of 𝑢(𝑡) and 𝑣(𝑡) using an orthogonal set of basis
functions 𝛷 [16]. Substituting the approximation of the equation of
motion of the WEC, v̂ = 𝐺(û+ ê), into the approximate absorbed energy
expression in (12), the following equality is obtained:

𝐽𝑁 = −𝑇
2
û𝑇𝐺(û + ê), (13)

which is a quadratic function in the control variable û alone. In (13), 𝐺
s defined as the system model and ê is an approximation of the wave
xcitation force. If the concavity of Eq. (13) can be guaranteed, there
ill exist a global maximum for the optimisation problem, with optimal

olution:

̂⋆𝑜 = −(𝐺 + 𝐺𝑇 )−1𝐺ê. (14)

he optimal value of 𝐽𝑁 , with (14) is substituted into (12), is then

⋆
𝑁 = 𝑇

2
û⋆𝑇𝑜 𝐺(û⋆𝑜 + e). (15)

For application of the robust control approach, the system model,
should represent a family of models which includes the nominal plus

ncertainty model, defined as:

= 𝐺𝑜 + 𝛥𝑎, (16)

ith 𝐺𝑜 representing the nominal model of the system and 𝛥𝑎 ∈ R𝑁×𝑁

he uncertainty model, formulated as:

𝑜 =
𝑁∕2
⨁

𝑘=1

[

𝑜
𝑘 𝑜

𝑘
−𝑜

𝑘 𝑜
𝑘

]

(17)

nd

𝑎 =
𝑁∕2
⨁

[

𝛿𝑘 𝛿𝑘
 

]

,
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𝑘=1 −𝛿𝑘 𝛿𝑘
here
𝑜
𝑘 = R𝑒{𝑔𝑜(𝑗𝜔𝑘)},𝑜

𝑘 = I𝑚{𝑔𝑜(𝑗𝜔𝑘)}

nd

𝑘 = R𝑒{𝛿𝑘}, 𝛿𝑘 = I𝑚{𝛿𝑘}.

𝑜
𝑘,

𝑜
𝑘 ∈ R, and 𝑔𝑜(𝑗𝜔𝑘) represent the nominal frequency response,

while 𝛿𝑘 ∈ C represents the uncertainty level at frequency 𝜔𝑘. Consid-
ering the feasibility (passivity) condition for the real system, 𝐺 must be
positive real:

𝑘 = 𝑜
𝑘 + 𝛿𝑘 > 0, (18)

where 𝑘 is the real part of the system model.
Using the feasibility condition and defining the bestworst case

performance (best-WCP) solution as the input that minimises the per-
formance degradation when the system under study is affected by a
bounded uncertainty set 𝛥, the robust control problem statement can
be defined as:

û⋆𝑟 ← max
û∈R𝑁

min
𝛥∈

𝐽𝑁 . (19)

Eq. (19) represents a robust quadratic formulation where  indicates
the set of all possible uncertainty.

7. Case study

7.1. System setup

The point absorber-type WEC considered for this study has an ax-
isymmetric cylindrical geometry and hemispherical bottom. A
schematic of the structure, including all relevant physical properties,
are shown in Fig. 10. The radius of the hemispherical and cylindrical
sections is 0.25 m, with the height of the cylindrical section also 0.25 m.
The mass of the device is 43.67 kg, with the centre of the mass located
at a vertical distance of 0.191 m from the bottom-most point of the
buoy.

7.2. ETFE evaluation

The ETFEs resulting from the complete set of sinusoidal exciting
signals are shown in Fig. 11. ETFE determination is based on the NWT
configuration presented in Section 2.1.1. The sinusoidal PTO force
excitation signals consist of a total of 96 experiments combining the
amplitude set 𝐴𝑖 = {20, 40, 60, 80, 100, 120}N using a set of individual
frequencies 𝑤𝑗 ∈ {0.2, 1, 2, 3, 4, 5, 5.5, 5.7, 6, 6.5, 7, 8, 9, 10, 18.89} rad/s

plus a resonance frequency specific to each amplitude set. This selection
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Fig. 10. Schematic of the considered WEC structure.

Fig. 11. Empirical transfer function estimates (ETFEs) for the 6 amplitude levels, using
sinusoidal signal excitation (based on unfiltered data).

of frequencies and amplitudes gives a smooth representation transition
between the ETFE points corresponding to discrete values of ampli-
tude/frequency. In particular, the amplitude range selection ranging
from linear behaviour (smallest amplitude) to amplitudes forcing the
device out of the water (largest amplitude) and intermediate values,
covers a full dynamical characterisation of the nonlinear system. Each
experiment is driven by a finite set of 𝑁 exciting force signals that
generate a corresponding set of velocity signals. The simulation time
of the sinusoidal experiments is the interval [0, 25]s. The ETFEs for
each of the 𝐴𝑖 amplitudes, after the employment of ETFE refinement
as explained in Section 5.1, and interpolation across frequency points
using piecewise cubic Hermite interpolating polynomials (PCHIPs), are
shown in Fig. 11.

In this study, three nominal model candidates are considered for
robust control design. Fig. 12 shows the interpolated ETFEs, along with
the three nominal model possibilities; �̂�(𝜔) is the nominal model based
on the average ETFE, 𝐺𝑙𝑖𝑛(𝜔) is the nominal model based on a linear
BEM approach, and 𝐺𝑐𝑖𝑟𝑐 (𝜔) is based on the minimum radius uncer-
tainty circles as detailed in Section 5.2.1 (1–3). The same information,
including the ETFEs and the three nominal model candidates, is shown
in Fig. 13 on a polar (Nyquist) plot.

The uncertainty bound, based on the formulation presented in
Section 5.2.2, is obtained for the three nominal model candidates,
with results as shown in Fig. 14. Comparing the uncertainty magnitude
corresponding to the three different nominal models, �̂�(𝜔), 𝐺𝑙𝑖𝑛(𝜔), and
𝐺𝑐𝑖𝑟𝑐 (𝜔), it is clear that selection of the centre of the minimum radius
circles as a nominal model (𝐺 (𝜔)) results in a significantly smaller
201

𝑐𝑖𝑟𝑐
Fig. 12. ETFE and Nominal models based on �̂�(𝜔), 𝐺𝑙𝑖𝑛(𝜔), and 𝐺𝑐𝑖𝑟𝑐 (𝜔).

Fig. 13. ETFEs and nominal models based on �̂�(𝜔), 𝐺𝑙𝑖𝑛(𝜔), and 𝐺𝑐𝑖𝑟𝑐 (𝜔) in polar form.

Fig. 14. Uncertainty size |𝛥𝑚| using multiplicative uncertainty structure for three
different nominal models �̂�(𝜔), 𝐺𝑙𝑖𝑛(𝜔), and 𝐺𝑐𝑖𝑟𝑐 (𝜔).

multiplicative uncertainty bound, |𝛥𝑚|. The ETFEs, the three different
nominal models, and their corresponding uncertainty regions are also
represented in the Nyquist (polar) domain, shown in Fig. 15.

7.3. Sample robust control results

The control part of this study is based on the assumption of full
knowledge of the wave excitation force. Wave excitation force tests
are simulated in a CFD environment, as detailed in 2.1.2. The WEC
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Fig. 15. ETFEs, Nominal models based on �̂�(𝜔), 𝐺𝑙𝑖𝑛(𝜔), and 𝐺𝑐𝑖𝑟𝑐 (𝜔), and their corresponding uncertainty, in polar form.
Fig. 16. Experimental and approximated wave excitation force.

structure is exposed to the irregular incident waves of a JONSWAP
spectrum with a significant wave height of 𝐻𝑠 = 0.1m, peak period of
𝑇𝑝 = 1.94s, and steepness parameter 𝛾 = 3.3. This condition represents
ealistic, scaled conditions at the AMETS test site in Bellmullet, Co.
ayo, off the West Coast of Ireland [28], which has challenging wave

onditions, consistent with the generation of nonlinear hydrodynamic
luid/device interaction. (To retain deep water conditions of the AMETS
ite, the Froude scaling with a scaling factor of 1/30th is applied [29].)
he time-domain representation the wave excitation force, extracted
rom the numerical simulation data, together with the approximated
xcitation force using 63 frequency components, is shown in Fig. 16.

good agreement between the approximated excitation 𝑓𝑒𝑥(𝑡) and
xperimental excitation wave force 𝑓𝑒𝑥(𝑡) can be observed.

The robust controller is designed based on the nominal models,
𝐺𝑐𝑖𝑟𝑐 (the nominal model corresponding to the smallest uncertainty size
(Fig. 14)) and 𝐺𝑡𝑒𝑠𝑡(𝜔), where 𝐺𝑡𝑒𝑠𝑡(𝜔) is a generic test model contained
in the family of systems, represented by the set of circular boundaries.
In addition, two solutions for the optimal control forces are computed:

• 𝑢𝑜(𝑡) is computed using the nominal approach, i.e. using the
nominal model, 𝐺𝑐𝑖𝑟𝑐 (𝜔).

• 𝑢𝑟(𝑡) is computed using the robust approach, based on experimen-
tal test models, 𝐻 𝑖(𝜔).

The sin and cos frequency component coefficients of the optimal
control inputs, 𝑢𝑜(𝑡) and 𝑢𝑟(𝑡) are shown in Fig. 17. Note that, in general,
the components corresponding to 𝑢𝑜(𝑡) have a greater amplitude than
𝑢𝑟(𝑡). For assessment of the control performance, the following steps are
taken:

1. 𝑢𝑜(𝑡) is applied to 𝐺𝑐𝑖𝑟𝑐 (𝜔) and 𝐺𝑡𝑒𝑠𝑡(𝜔), and
2. 𝑢𝑟(𝑡) is applied to 𝐺𝑐𝑖𝑟𝑐 (𝜔) and 𝐺𝑡𝑒𝑠𝑡(𝜔).

Fig. 18 shows the time trace of absorbed energy when 𝑢𝑜(𝑡) and 𝑢𝑟(𝑡)
are applied to 𝐺𝑐𝑖𝑟𝑐 (𝜔) and 𝐺𝑡𝑒𝑠𝑡(𝜔).

• The solid red line represents the absorbed energy when 𝑢𝑜(𝑡) is
applied to the nominal model 𝐺𝑐𝑖𝑟𝑐 (𝜔). This case is the ideal per-
formance, where the optimal control input using nominal model
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𝐺𝑐𝑖𝑟𝑐 (𝜔) is applied to the same nominal system.
Fig. 17. Frequency components of the optimal control inputs.

Fig. 18. Time trace of the absorbed energy, applying different control input forces to
the different nominal models.

• The orange dashed line represents the absorbed energy when 𝑢𝑜(𝑡)
is applied to the nominal model 𝐺𝑡𝑒𝑠𝑡(𝜔). In particular, as the
test model has been specifically selected, this case is the worst
performance, where the optimal control input using the nominal
model 𝐺𝑐𝑖𝑟𝑐 (𝜔) is applied to the nominal model 𝐺𝑡𝑒𝑠𝑡(𝜔).

• The dark purple dashed line represents the absorbed energy when
𝑢𝑟(𝑡) is applied to the nominal model 𝐺𝑐𝑖𝑟𝑐 (𝜔). In this case, the
performance of the system has improved and absorbed energy
of the system has moved closer to the absorbed energy for ideal
performance.

• The purple dashed line represents the absorbed energy when 𝑢𝑟(𝑡)
is applied to the nominal model 𝐺𝑡𝑒𝑠𝑡(𝜔). This case is the best
worse-case performance for energy absorption.

Comparing the results of applying 𝑢𝑟(𝑡) to the two different nominal
models, the impact of the correct selection of nominal model and

uncertainty bound is highlighted. In robust control, applying 𝑢𝑟(𝑡),
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where the nominal model is based on the centre of the minimum radius
circles (𝐺𝑐𝑖𝑟𝑐 (𝜔)), which corresponds to a small size of uncertainty
bound, improves the control performance. Fig. 18 shows that the mean
generated power, using the robust approach, is always non-negative,
which is in accordance with the principle of non-consumption of power
using robust approaches. In this study, nominal control also results
in a positive mean absorbed energy, but in the general (non-robust)
case, negative mean power ‘production’ can occur, for mismatched
control/system models [16].

8. Conclusions

This study proposes a framework for estimating uncertainty in WEC
systems with applications in robust control. With the objective of
obtaining high-fidelity results from a CFD-based NWT, mesh refinement
has been applied to the NWT setup proposed in [17], resulting in
improved ETFE resolution considering the same experiments. The main
contribution of this study is the synthesis of input signal types, and
post-processing towards the aim of reducing conservatism in the WEC
uncertainty description with the following results:

• Sinusoidal signals: Computing an ETFE with individual sinusoidal
input signals and their corresponding output signals results in
a high level of fidelity in terms of a low-variability ETFE, and
satisfying the asymptotic nature of the phase response with minor
errors which are addressed by applying ETFE refinement. It has
been shown that there is no value in applying a BPF for the
experiments showing distortion in the output signal. The major
drawback for the experiments with individual sinusoidal signals
is the high computational cost (relatively long simulation time).

• Chirp signal: The ETFEs obtained from LFM up-chirp input sig-
nals, and their corresponding output signals, show high variabil-
ity, resulting in a large uncertainty region, while distorting the
passive nature of the asymptotic ETFE properties. ETFEs obtained
from input/output signals by pre-distorting the LFM up-chirp
input signal, by modulating the input amplitude, resulted in a
less variable ETFE, at low frequency. However, the resulted ETFE,
computed from amplitude modulated LFM up-chirp signal, is not
as smooth as the ETFE obtained from sinusoidal input signals.
Moreover, the ETFE obtained from a NLFM down-chirp resulted in
a highly variable ETFE at resonance and at high frequency. It has
been shown that application of a BPF to the input/output signals
is problematic, due to the difficulty of correct initialisation of the
filter output, resulting in unwanted additional transient behaviour
artefacts.

• Multisine: ETFEs obtained from non-harmonic multisine signal
show high variability. The application of Schroder’s minimisation
method to a multisine signal, with user selected frequencies,
results in a highly-variable ETFE, with distortion of the amount of
time spent at each frequency as a likely explanation. Thus, it can
be concluded that achieving a balance between minimisation of
the crest factor, and concentrating on the particular frequencies
(non-harmonic multisine), is virtually impossible.

In the NWT experiments, proper input signal selection, application
of ETFE refinement, and quantifying uncertainty by representative
nominal model selection and uncertainty region estimation, results in
a passive system representation and small uncertainty region, which
improves robust control performance. The comparison of the overall
energy absorption from this study and [17] highlights the improvement
in the resulting controller performance.
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