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A B S T R A C T

In guiding the progression, development, and operation of wave energy converters (WECs) in a more efficient
way, mathematical analysis and understanding of the dynamic process is essential. Mathematical WEC models,
obtained either by numerical analysis or physical modelling, form the basis of most (model-based) energy
maximising control strategies available in the literature, where experimental design and system identification
methodology directly impact the resulting model. This study, using an experimental-based WEC model (which
can be used for linear control design), investigates the dynamic behaviour of a WEC by analysing the dominant
poles of the system, generated using fully nonlinear computational fluid dynamics (CFD)-based numerical wave
tank (NWT) experiments. The aim is to effectively track the dominant dynamics of the WEC, using different
force-input amplitude levels in the NWT setup, and perform a comparison with the classical linear boundary-
element-methods (BEM) equivalent methodology. Thus, the presented case studies are shown to agree with
previously proposed model assessment of linear WEC models, based on a free-decay NWT setup. In addition,
the representative WEC models determined as part of this study can be used for WEC controller design, either
singly, or using a form of model/controller gain scheduling.
1. Introduction

Considerable modelling and testing is required for the develop-
ment, optimisation, and power production assessment of wave energy
converters (WECs). It is essential to accurately model WECs, and to
measure, estimate, and monitor their dynamics in order to design
effective (model-based) energy maximising control strategies, while
preventing device damage due to undamped oscillations, or excursions
beyond physical constraints, during operation. Developing a represen-
tative WEC model to describe body motion, wave–structure interaction,
and the dynamics of different energy conversion stages is fundamental.
Commonly used WEC models for control strategies are typically based
on linear hydrodynamic models, either obtained from linear potential
flow theory or data-driven system identification methodologies. Linear
WEC models, based on boundary element methods (BEM), result in
computationally attractive models commonly used for model-based
control strategies, where the frequency-dependent hydrodynamic pa-
rameters are obtained under the assumption of inviscid, irrotational,
and incompressible flow and small body motion (relative to the body
dimension) around the equilibrium point. However, linear models, de-
veloped under these assumptions, and small wave amplitude/steepness,
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are in conflict with the requirement of exaggerated device oscilla-
tions, as a consequence of the optimal energy-maximisation condi-
tions (Windt et al., 2021). In contrast, nonlinear approaches for math-
ematical modelling of WECs, reviewed in Penalba et al. (2017), point
to techniques which can capture nonlinear hydrodynamic (and other)
effects, and/or provide high fidelity data. Nonlinear WEC hydrody-
namic effects can be handled using different strategies, namely, partially
nonlinear methods, based on expansion of the linear model by includ-
ing some nonlinear effects (Merigaud et al., 2012), weakly nonlinear
methods, based on simplification of the fully nonlinear formulation (Le-
tournel et al., 2014), and fully nonlinear models (Babarit et al., 2009).
Among modelling techniques in the field of WECs, computational fluid
dynamics (CFD)-based analysis, capable of fully capturing hydrody-
namic nonlinearities (consistent with the Navier–Stokes equations),
is useful for high-fidelity modelling of WECs, but at great computa-
tional expense (Windt et al., 2019). Nevertheless, CFD-based numerical
wave tank (NWT) models have shown to be powerful tools, providing
high-fidelity time-domain analysis of WECs, and power production
assessment (Windt et al., 2018, 2020).

In order to produce computationally simpler models, while consid-
ering WEC nonlinearity, recent efforts have aimed at the development
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of representative linear models, using system identification method-
ologies, from nonlinear NWT experiments, where the design of the
NWT testing setup for data generation, and the employed system
identification techniques, impact the resulting identified WEC model.
This can be viewed as a data-based form of model reduction. For
instance, Farajvand et al. (2021) developed a framework to identify a
nominal linear model for application of a robust control strategy from
force-input CFD-based NWT (CNWT) experiments, following an empir-
ical transfer function estimate (ETFE) methodology, essentially using
a black-box identification method. Similarly, Armesto et al. (2014)
proposed a solution for parameter identification of a state-space WEC
representation from a series of (zero-input) decay tests in a CNWT
setup. The study in Davidson et al. (2015) uses a linear modelling
approach for WECs, combining high-fidelity CNWT simulations, system
identification, and BEM-based modelling methods.

There is motivation to apply system identification strategies to
wave energy modelling to characterise the movement of the WECs.
The study in Bacelli et al. (2017) considers system identification tech-
niques and model validation procedures to calculate the WEC dynam-
ics based on data from wave tank experiments. The FOAMM tool-
box (Pena-Sanchez et al., 2019) provides an identification technique
capable of computing parametric WEC models, which can charac-
terise the system dynamics. This toolbox systematically implements
a moment-matching (Faedo et al., 2018) based identification strategy
from nonparametric frequency-domain data.

The novelty of the present study is to model the state-space form
of a WEC system and investigate the dominant dynamics, particu-
larly considering force-input experiments in the CNWT setup. The
OAMM toolbox is used to implement the frequency-domain identifi-
ation through the moments (key frequencies) of the ETFEs calculated
rom input/output data. Compared to similar studies in the literature,
hich use system identification based free-decay experiments in a

CNWT setup (Davidson et al., 2015), and basically focus only on
parameters connected with inertia, restoring, and damping forces, the
current study with appropriate selection of input force levels, covering
the main range of frequencies and amplitudes of the device, is capable
of determining a sufficiently representative model of the total system
dynamics. Furthermore, as the force inputs acting on the WEC system
for the system identification process are basically applied through
the power take-off (PTO) system, the identified linear models can be
used for linear model-based WEC control design. A comparison of the
dominant dynamics from the force-input experiments with a BEM-based
linear model is also performed, as a baseline. The overview of the
sequences of steps to perform the dominant dynamics assessment from
CNWT and WAMIT setups is outlined in Fig. 1.

The NWT considered for the experiments is a modified version of
the setup presented in Farajvand et al. (2021) for system identification
tests. Sinusoidal input signals, covering the most significant frequency
range of the device and full input and output signal ranges, are used to
provide the data for the system identification process.

Using different levels of input amplitude forces, WEC models are
identified at each amplitude level and the dominant dynamics of the
system, most notably the resonance frequency and pole location trends,
have been tracked. Finally, a comparison of the dynamical behaviour
of the system obtained with the presented study, using force-input NWT
experiments, with equivalent free-decay NWT experiments as presented
in Davidson et al. (2015), have been drawn.

The remainder of the paper is laid out as follows. Initially, standard
linear modelling assumptions, as well as essential properties of WEC
systems, are recalled in Section 2. The NWT specifications, used as the
experimental setup, are provided in Section 3. Next, the experiment
type, i.e. force-to-velocity experiments, used to obtain data for the
system identification procedure, is detailed in Section 4. The system
identification methodology applied to the generated data is presented
in Section 5. The case study, including NWT features, the input force
signals, and the results of the system identification and dominant pole
analysis, follows in Section 6 and, finally, overall conclusions from the
2

study are drawn in Section 7. i
Fig. 1. Overview of the sequences of steps to perform dominant dynamic assessment
from CNWT and WAMIT setups.

2. Linear models for wave energy systems

Mathematical WEC models, under the assumption of linearity, are
commonly studied using linear potential flow theory and the well-
known Cummins’ equation (Cummins, 1962), where the motion of a
single degree of freedom (DoF) floating structure, in the time domain,
can be expressed as:

(𝑚 + 𝑚∞)�̈�(𝑡) = 𝑓ex(𝑡) − 𝑓𝑢(𝑡) − 𝑘h𝑦(𝑡) − ℎr ⋆ �̇�(𝑡), (1)

here 𝑦(𝑡), �̇�(𝑡), and �̈�(𝑡) are the device displacement, velocity, and
cceleration, respectively, with ‘⋆’ representing convolution. 𝑓ex(𝑡) is
he wave excitation force, produced by the action of incoming waves,
r(𝑡) is the radiation force, arising from device motion in the fluid
ℎr(𝑡) the radiation impulse response function), 𝑓𝑢(𝑡) is the control input
pplied by means of the PTO system, and 𝑘h the hydrostatic stiffness,
elated to buoyancy/gravity forces. 𝑚 ∈ R+ is the mass of the device
nd 𝑚∞ = lim𝜔→+∞ 𝐴r(𝜔) the added mass at infinite frequency, where
r(𝜔) and 𝐵r(𝜔) are the so-called radiation added-mass and damping,

espectively, defined from Ogilvie’s relations (Ogilvie, 1964) as:

𝐴r(𝜔) = 𝑚∞ − 1
𝜔 ∫ +∞

0 ℎr(𝑡) sin(𝜔𝑡)𝑑𝑡,

𝐵r(𝜔) = ∫ +∞
0 ℎr(𝑡) cos(𝜔𝑡)𝑑𝑡.

(2)

q. (2) fully characterises the Fourier transform of ℎr(𝑡), i.e.

r(𝜔) = 𝐵r(𝜔) + 𝚥𝜔
[

𝐴r(𝜔) − 𝑚∞
]

, (3)

here ℎ𝑟(𝑡) and 𝐻𝑟(𝜔) denote a Fourier transform pair. Using Eq. (3),
he model in Eq. (1) can be compactly expressed (Falnes, 2002), in the
requency domain, as follows:

(𝜔) = 1
𝑍𝑖(𝜔)

[

𝐹ex(𝜔) − 𝐹𝑢(𝜔)
]

, (4)

where

𝑍𝑖(𝜔) = 𝐵r(𝜔) + 𝚥𝜔
(

𝑚 + 𝐴r(𝜔) −
𝑘h
𝜔2

)

. (5)

Considering the force-to-velocity mapping in the Laplace domain
(García-Violini et al., 2020):

𝐺(𝑠) = 𝑠
𝑠2(𝑚 + 𝑚∞) + 𝑠�̂�r(𝑠) + 𝑘h

|

|

|

|𝑠=𝚥𝜔
≈ 1

𝑍𝑖(𝜔)
, (6)

where 𝐻r(𝜔) is commonly computed using boundary-element methods,
such as WAMIT (Wamit Inc, 2022), and �̂�r(𝑠) ≈ 𝐻r(𝜔), for 𝑠 = 𝚥𝜔, with
̂ r(𝑠) a stable linear time-invariant (LTI) system.

Cummins’ equation can be implemented numerically directly by
umerical convolution, or by first approximating the convolution term

n state-space sub-system form and then calculating the state-space
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representation of Eq. (1), according to the study in (Davidson et al.,
2015):

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵u(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷u(𝑡), (7)

In Eq. (7), 𝑥(𝑡) is the state vector and the function u(𝑡), defined as
u(𝑡) = 𝑓𝑒𝑥(𝑡) − 𝑓𝑢(𝑡), is the input of the system. 𝐴, 𝐵, 𝐶, and 𝐷 are
the state (dynamic), input, output, and direct transmission matrices,
respectively. Matrix 𝐷 is a null matrix (zero matrix), as 𝐺(𝚥𝜔) in Eq. (6)
is strictly proper (for real (physical) WEC systems the matrix D is the
null matrix).

2.1. WEC systems essential properties

After defining the WEC model, it is crucial to consider the funda-
mental properties which are key drivers for dynamic system analysis
and synthesis. Fundamentally, WECs are characterised by the properties
of stability and passivity (Pérez and Fossen, 2008).

2.1.1. Stability
Maintaining the stability of WEC structures exposed to external

loading with different frequencies and amplitudes is one of the main
priorities. Stability analysis of WECs has been carried out using differ-
ent strategies. Perez and Fossen (2011) stabilises unstable identified
models by means of reflecting the unstable poles in the imaginary
axis (reflecting from the right-hand side to the left-hand side of the
complex plane) and reconstructing the model. Another methodology for
guarantying stability is proposed in Davidson et al. (2015) by applying
constraints on the model parameters.

2.1.2. Passivity
Passivity (related to stability of systems), is a particular case of ‘dis-

sipativity’, arising from an intuitive interpretation of system behaviour.
The concept is formalised based on the physical energy process of the
system, assuming that any increase in the system energy is purely from
external sources. Passivity for LTI systems can be guaranteed with the
phase range saturated to ±90◦ degrees for the complete spectral domain,
based on Bode plot shaping, or with a positive real transfer function for
all frequencies (Khalil, 2014; Pérez and Fossen, 2008);

𝐺(𝚥𝜔) + 𝐺𝐻 (𝚥𝜔) > 0, ∀𝜔 ∈ R, (8)

where the symbol 𝐻 denotes the self-adjoint matrix (Hermitian), and
equivalently for SISO systems:

Re (𝐺(𝚥𝜔)) > 0, ∀𝜔 ∈ R, (9)

so the entire Nyquist plot lies in the right-half plane. Then, the transfer
function is given, using the state-space representation in Eq. (7), as
follows:

𝐺(𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 +𝐷, (10)

while the passivity of the system (Eqs. (7) and (10)) is guaranteed
with a passive sub-state space representation for the radiation struc-
ture, in Eqs. (2) and (3) (Pérez and Fossen, 2008). A recent practical
passivisation methodology, considering the passivity of nominal lin-
ear and uncertainty models for a WEC, is proposed by García-Violini
et al. (2021) for the application of a robust spectral-based control
methodology.

3. Numerical wave tank

The three-dimensional NWT setup considered for this study uses a
point absorber-type WEC. To simplify the NWT illustration, analysis,
and identification test, the WEC structure consists of a single degree
of freedom, only oscillating in heave, which also eliminates poten-
tial effects of motion coupling. For the specific application of system
3

identification tests, the tank is designed with equal spans in the 𝑥 t
Fig. 2. Schematic of the numerical wave tank for (a) Side view (b) Top view.

and 𝑦-directions (perpendicular to the tank depth, in the 𝑧-direction),
nd the buoy is located in the centre of the tank corresponding to
𝑥, 𝑦, 𝑧) = (0, 0, 0). To avoid reflections of the WEC-induced waves, the
ank is equipped with wave absorbers, at the left and right boundaries
𝑥 = ±𝐿∕2), consistent with the operation of the NWT in a wave
lume mode (Windt et al., 2021). The tests are performed by applying

defined external input force (𝑓𝑢(𝑡)) directly to the WEC to induce
EC motion. The side view and top view of the NWT are shown in

ig. 2(a) and (b), respectively, where 𝐿 is the tank length in 𝑥- and
-directions, 𝐷 and 𝑑 are the tank, and water, depths, respectively. The
ank length is designed to be six wavelengths of the most significant
adiated waves (occurring at peak frequency of the radiation damping
f the WEC), under the assumption of deep-water conditions. The
ymmetry configuration of NWT in both the 𝑥- and 𝑦-directions allows
he CFD simulation to be carried out on a quarter of the full NWT,
ith a significant reduction in computation time. NWT mesh gener-
tion uses the blockMesh utility supplied with OpenFOAM, with finer
eshes around the WEC boundary, gradually getting coarser towards

he NWT boundary. NWT simulation is implemented using the mesh-
ased CFD method via numerical solution of the Navier–Stokes (NS)
quations (Farajvand et al., 2021) in OpenFOAM.

. Force-to-velocity experiments

In this study, the input/output data, for system identification and
ynamical assessment of the WEC structure, are taken from the CNWT,
ith the buoy motion resulting from a defined external input (PTO)

orce, applied directly to the WEC. Due to the nonlinear nature of the
luid/structure interaction, the input force is designed in a way to cover
he complete range of frequencies and amplitudes corresponding to
ypical scaled (Froude scaling with a scaling factor of 1/30th, emulating

he full-scale conditions at the AMETS test site in Bellmullet, Co. Mayo,
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off the West Coast of Ireland Heller (2011)) operational conditions, in
order to obtain a complete hydrodynamic representation of the system.
Consequently, exciting the system by applying the input force (PTO
force), 𝑓𝑢(𝑡), generates a corresponding output (velocity), 𝑣(𝑡), in the
ime domain, both of which are used to identify the so-called force-
o-velocity mapping. In this study, a frequency-domain representation,
rom the time-domain input/output data of the NWT simulations, is
btained through calculation of the discrete-time Fourier transform
DTFT) of input and output signals, at the frequencies at which the
pectral analysis is required.

. System identification method

The objective of system identification is to model the system from
he measured input/output signals. The identification procedure can
roduce either parametric or non-parametric models where, in the
arametric case, the dynamic behaviour of the system is described
y partial, or ordinary, differential equations. In the non-parametric
ase, the system response is obtained directly, or indirectly, from
xperimental data, in time- (impulse response) or frequency-domain
frequency response). A frequency-domain empirical transfer function
stimate (ETFE), representing the system frequency response, offers a
on-parametric representation of the system dynamics, computed by
ividing the DTFT of the output with 𝐹𝑢(𝜔), the known DTFT of the
nput, as:

TFE(𝜔) =
DTFT(𝑣[𝑛])

𝐹𝑢(𝜔)
(11)

Note that, in Eq. (11), the discrete-time Fourier transform is employed,
since the (sinusoidal) frequency is known, with just the amplitude
and phase to be determined. Furthermore, the DTFT of the input
signal, 𝐹𝑢(𝜔), is trivial (user defined sinusoidal input signal with known
amplitude and phase), so these parameters are substituted directly.

The DTFT calculates a frequency-domain representation of a signal
at a single frequency point. The DTFT of a sequence of 𝑁 equispaced
samples of a finite discrete-time series signal 𝑣[𝑛]1 (𝑣[𝑛] = 𝑣(𝑛𝑇𝑠) where
𝑇𝑠 is sampling period), considering a sequence of 𝑁 samples, where
0 ≤ 𝑛 ≤ 𝑁 − 1, is depicted as 𝑉 (𝑒𝚥𝜔) with 𝜔 being the real frequency
variable (0 ≤ 𝜔 ≤ 2𝜋), defined as

𝑉 (𝑒𝚥𝜔) =
𝑁−1
∑

𝑛=0
𝑣[𝑛]𝑤[𝑛]𝑒−𝚥𝜔𝑛, (12)

where 𝑤[𝑛] is a window function. Note that, in calculating a short-term
Fourier transform, it is customary to employ a non-rectangular window
function to reduce the effect of spectral leakage, caused by the abrupt
start and finish of the data record. The choice of window function is
discussed further in Section 5.1.

Regarding parametric models, a useful classification (Ljung, 2010),
considering the connection of the model to physical (parametric) quan-
tities, is:

• White-box, where all the parameters of the physical system are
estimated from the data,

• Grey-box (and the sub-classes of off-white, smoke-grey, steel-
grey and slate-grey), where the generic model structure has some
connection to the physical model at various levels, and

• Black-box, where the model structure, capable of reproducing the
experimental output data, excited with the same input, cannot
be physically interpreted, which means that its states have no
connection to the physical world.

1 From now on, the notation [] refers to discrete samples.
4

o

In general, no hydrodynamic models are truly white-box, in that there
is no direct relationship between the physical system parameters and
the hydrodynamic ‘coefficients’, which are usually provided in non-
parametric frequency-, or time-domain, as in (5). However, hydrody-
namicists may be more comfortable with the individual determination
of the non-parametric hydrodynamic quantities corresponding to added
mass (𝐴𝑟) and radiation damping (𝐵𝑟). For a system identified purely
from data, the models are usually limited to black- or, at best, grey-box,
where some information about the likely order of the model can be used
to specify the structure of the parametric model.

5.1. Window function

A non-rectangular window function is used both to alleviate the ef-
fect of spectral leakage due to abrupt termination of the short-term data
segment (at both ends), while also minimising the effect of the leading
transient in the output signal. A well-known window function, used in
conjunction with a short-term Fourier transform, is the Tukey window
(tapered cosine window) which is generated by convolving a cosine
lobe with a rectangular window. The time-domain representation of the
Tukey window (Prabhu, 2014) is:

𝑤[𝑛] =

⎧

⎪

⎨

⎪

⎩

1, 0 ≤ |𝑛| ≤ (1 − 𝛼)𝑁2
0.5

[

1 + cos
( 𝜋(𝑛−(1−𝛼)𝑁2 )

𝛼 𝑁
2

)]

, (1 − 𝛼)𝑁2 ≤ |𝑛| ≤ 𝑁
2

(13)

where 𝛼 (0 ≤ 𝛼 ≤ 1) is a parameter controlling the gradual change
etween a rectangular window (𝛼 = 0) and a Hanning window (𝛼 = 1).
he application of the Tukey windowing directly affects the magnitude
f the signal in the spectral domain. To compensate for the amplitude
istortion due to windowing, an amplitude correction factor is applied,
ased on a gain calculation by dividing the amplitude of the known
inusoidal input signal by magnitude of the Tukey-windowed sinusoidal
ignal in spectral domain.

.2. Moment-based system identification

A particular, frequency-domain, system identification strategy,
pecifically oriented to WEC modelling, is the FOAMM (Pena-Sanchez
t al., 2019) MATLAB toolbox, which identifies a parametric model
in state-space form) for WEC dynamics, based on a moment-matching
pproach. A notable feature is the ability to pre-specify particular key
requency points at which exact matching between the parametric
odel and the non-parametric ETFE is achieved, which can include

he device resonant frequency. In addition, the asymptotic behaviour
f the model can also be guaranteed by matching at extreme (low/high)
requency values. The FOAMM toolbox, based on finite-order hydrody-
amic approximation by moment-matching, is a user-friendly platform
llowing parametric system identification for either the radiation con-
olution term in (1), or the complete force-to-motion WEC dynamics in
5) (Pena-Sanchez et al., 2019). In this study, the FOAMM toolbox is
sed to identify a state-space model for the complete (force-to-motion)
EC dynamics.

. Case study

The structure considered for this study is a point absorber-type WEC
ith the physical properties shown in Fig. 3. The buoy has an axisym-
etric cylindrical geometry, with both radius and height of 0.25 m, and
hemispherical bottom with radius 0.25 m. The mass of the device is
3.67 kg, and the centre of the mass is located at a vertical distance of
.191 m from the bottom-most point of the buoy. For CNWT simulation,
he buoy is located at the centre of a 6 m deep tank with a water depth
f 3 m as shown in Fig. 2. The tank spans a length of 𝐿 = 14 m in the 𝑥-
nd 𝑦–directions, designed to be six wavelengths of the waves occurring
t the peak frequency of the radiation damping of the WEC (4.56 rad/s),

btained from NEMOH (Babarit and Delhommeau, 2015). The NWT
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Fig. 3. Schematic of the considered WEC structure.

Fig. 4. Time traces of the input/output signals in the CNWT for sinusoidal input signals
with amplitude of 20 N and frequencies of 1 rad/s and 5.84 rad/s, along with Tukey
(𝛼 = 0.5) window profile.

setup is a modified version of that used in Farajvand et al. (2021),
with further mesh refinement applied to ensure the fidelity of the NWT
simulation. The smallest buoy displacement resulting from the input
force is used to design the mesh sizes around the buoy, with a minimum
cell dimension of 0.0054 m (3 cells per smallest displacement, induced
by the smallest force amplitude at high frequency asymptote), giving
a total number of NWT cells of 4.06 million. (For a screen shot of
the spatial discretisation and computational mesh of the NWT, the
interested reader is referred to Farajvand et al. (2022)).

The input excitation force is monochromatic sinusoidal, 𝑓𝑢(𝑡) =
𝐴sin(𝜔𝑡), where 𝐴 and 𝜔 are the amplitude and frequency of the sinu-
soids, respectively. Considering the limitations of the NWT dimensions,
and the simulation duration, pure sinusoidal signals have been shown
to provide high-fidelity representation of the system in terms of ETFE
(for a detailed input signal synthesis to characterise dynamical uncer-
tainty in WEC systems, the interested reader is referred to Farajvand
et al. (2022)), which is a result of spending sufficient time at each
frequency (low frequency variation ratio, i.e. high signal spectral per-
manency.) However, a relatively long experimentation time is required
to cover the complete amplitude and frequency space. In this study, the
sinusoidal excitation signals comprise a total of 96 individual experi-
ments, combining the amplitude set 𝐴𝑖 = {20, 40, 60, 80, 100, 120} N with
frequencies 𝛺𝑗 ∈ {0.2, 1, 2, 3, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 18.89} rad/s,
plus a specific resonance frequency tailored to each amplitude set. This
selection of frequencies and amplitudes gives a smooth representational
transition between the ETFE points corresponding to discrete values
of amplitude/frequency. The frequency range covers the complete dy-
namical range (with respect to the resonance frequency), and the
amplitude range selection, ranging from linear behaviour (smallest
amplitude) to amplitudes almost forcing the device out of the water
(largest amplitude) and intermediate values, covers a full dynamical
characterisation of the nonlinear system. Moreover, the amplitude set
𝐴 perfectly covers the amplitudes corresponding to scaled (scaling
5

𝑖

Fig. 5. ETFEs of the CNWT experiments using sinusoidal input signals with 6 amplitude
levels.

Fig. 6. Resonance frequency corresponding to different amplitude levels of input
signals.

factor of 1/30th) operational conditions at the AMETS test site (Heller,
2011) with the maximum excitation force amplitude of 60N (Windt
et al., 2021). Each experiment is driven by a finite set of 𝑁 time-
domain samples of input signals (exciting force signals) that generate
a corresponding set of 𝑁 output samples (which in this case are heave
velocities). The NWT simulation interval of the sinusoidal experiments
is [0, 25] s which guarantees enough spectral permanency time at each
frequency and avoids wave reflections (Farajvand et al., 2021). By
way of example, input/output time domain analysis for two sample
experiments, with an amplitude of 20 N and frequencies of 1 rad/s
and 5.84 rad/s (the resonance frequency of the system corresponding
to a 20 N input amplitude force), is presented in Fig. 4. The transient
response in the velocity time trace corresponding to a 20 N input signal,
at 5.84 rad/s, is mitigated by the application of a Tukey window.
Considering the longest transient response among the output time-
domain signals from the 96 experiments, a Tukey window according
to Eq. (13) with 𝛼 = 0.5 is applied, also shown in Fig. 4. Each
series of experiments generates a single frequency point in the ETFE
(Eq. (11)) of the system, obtained from the calculation of the DTFT
of the output signal 𝑣(𝑡) and the known amplitude and phase of the
sinusoidal input signal (𝑓𝑢(𝑡)). ETFEs, covering the complete amplitude
range 𝐴𝑖, and their corresponding frequency ranges, with further ETFE
refinement (based on the physical principles articulated in Section 2.1)
are obtained based on: (A) ETFE phase components are corrected to 90◦

and −90◦ at the low and high-frequency asymptotes, respectively, and
(B) The system phase is forced within ±90◦ degrees for all frequencies,
respecting the passive nature of the system.

The ETFEs, and their interpolation across frequency points us-
ing piecewise cubic Hermite interpolating polynomials (PCHIPs), are
shown in Fig. 5.

Due to nonlinearity, different levels of input signal amplitude re-
sult in different ETFEs. One major characteristic observed from the
determined ETFEs is an increasing trend of the bandwidth, and a
decreasing trend of the peak frequency response (resonance frequency),
as the amplitude of the input signal increases. It can be concluded
that, as the amplitude of the input force gets larger, the resonance
frequency decreases, and the damping ratio increases. The resonance
frequency, corresponding to each amplitude level (from CNWT data),
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is presented in Fig. 6, showing a decreasing resonance frequency trend
with increasing input signal amplitude. The results of the resonance
frequencies from force-input experiments are also compared with the
resonance frequency from WAMIT data (effectively zero input am-
plitude) in Fig. 6. Note that the resonance frequency obtained from
WAMIT (infinitesimally small amplitude) data violates the expected
resonance frequency trend, suggesting that a WAMIT model may not
provide a representative model of the system, even at relatively low
excitation amplitudes. (However, due to extreme computational effort
and higher mesh resolution requirement, the convergence towards the
0 N point is not resolved beyond the 𝑎𝑚𝑝(𝑓𝑢(𝑡)) = 20 N point.)

6.1. System identification results

State-space representations of the WEC system, at different force
levels, are obtained using the FOAMM (Faedo et al., 2018) toolbox,
where three ‘cardinal’ points of each ETFE, i.e., low-frequency asymp-
tote, resonance frequency, and high-frequency asymptote, are selected
manually as inputs to the FOAMM toolbox. The order of the output
system will be twice the number of selected frequencies (6th order in
this case) with exact frequency matching based on the selection of the
desired set of frequencies (e.g. the resonance frequency) in the manual
mode. By way of example, the state, input, and output matrices of the
state-space model according to Eq. (7), obtained for an 80 N input level,
are:

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−692.92 693.12 −692.92 692.92 −692.92 692.92
−640.69 640.49 −640.49 640.49 640.49 640.49
−0.51 0.51 −0.51 6.01 −0.51 0.51
−7.05 7.05 −12.55 7.05 −7.05 7.05
−19.00 19.00 −19.00 19.00 −19.0 37.89
−13.96 13.96 −13.96 13.96 −32.85 13.96

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐵 =
[

692.92 640.49 0.51 7.05 19.00 13.96
]⊤,

𝐶 =
[

0.00 0.00 0.01 −0.01 0.00 0.00
]

,

respectively, with corresponding pole pairs:

Pole pairs of the 6𝑡ℎ order system
−0.51 ± 5.50i
−12.46 ± 12.21i
−12.48 ± 12.36i

The frequency response of the obtained parametric model using the
FOAMM toolbox (solid-red), (which will be used to perform the domi-
nant dynamical assessment), along with the target frequency response
(dashed-blue), and the interpolated frequencies (green-dots), for all
the input amplitude forces, are shown in Fig. 7. The identified system
fits well with the actual system, for low input amplitudes, and the
error between actual and identified models, calculated in terms of
the Mean Absolute Percentage Error (MAPE), gets larger as the input
amplitude increases, recognising the increasing difficulty of fitting a
linear model for greater input amplitudes. The same identification
procedure is applied to a WEC model obtained from WAMIT (zero-
input signal) in order to compare the results. The MAPE between actual
and identified models, corresponding to each input amplitude level, is
presented in Table 1. Note that the MAPE value, corresponding to each
input amplitude level, depends on the manual selection of the desired
(matching) frequency points chosen in the FOAMM toolbox.

6.2. Dominant pole analysis

The identified systems in Section 6.2 are used to locate the least
damped (slowest) poles, which most affect the behaviour of the dy-
namic system. For a stable linear system, the relative dominance of the
poles is determined by the ratio of the real parts of the poles nearest
the 𝑗𝜔 axis, where the suggested value is 3–5 in Wang et al. (2008)
6

and Nedić et al. (2017), and 10 in Dorf and Bishop (2008). As the
Table 1
The MAPE between actual and identified 6𝑡ℎ order models corresponding to each input
amplitude level.

Input signal amplitude [N] MAPE

0 (WAMIT) 0.000895
20 0.029779
40 0.027002
60 0.075799
80 0.115651
100 0.155575
120 0.164085

requirement that a ratio >3 may not be fulfilled, the ratio of the real
parts of the poles >5 is assigned where the pole (or complex pair) with
the smallest real part, i.e. closest to the imaginary axis, is the dominant
pole (or complex pair), and other poles may be regarded as relatively
insignificant. A pole dominancy condition for each input amplitude
level (including three pairs of complex conjugate poles for each of the
6th order identified models) is considered. Pole dominance, for the
models corresponding to each input amplitude level, is calculated by
the ratio of the real parts of the two pole pairs closest to the imaginary
axis, with results listed in Table 2. For the models obtained with input
force amplitudes of 20 N, 40 N, 60 N, and 120 N the closest pole pairs to
the imaginary axis cannot be truly considered as dominant poles, but
the pole dominancy condition is satisfied for the models corresponding
to 0 N (the WAMIT model), 80 N and 100 N input amplitudes. There
is no clear trend of pole dominance with respect to the input signal
amplitude, which can be possibly due to the obtained identification
error, computed in terms of MAPE, between the target and identified
frequency responses. In particular, for some cases, the identification
error is larger in the region around resonance while, for other cases
(higher input forces), the error is more significant at the extremes of
the frequency range, considered for error computation, as represented
in Fig. 7.

Poles closer to the imaginary axis represent slower modes, indicat-
ing a lower damping effect. The least damped pole pairs (closest pole
to the imaginary axis), corresponding to the identified models of all
input amplitude levels, along with the dominant pole pair obtained
from the WAMIT model, are presented in Fig. 8. Since the magnitude
of the real part of the least damped poles of the models show an
increase as the input amplitude force increases, it can be concluded
that larger input amplitudes correspond to stronger damping (possibly
due to viscous effects). Note that a linearised viscous damping effect
can be approximated using Lorentz linearisation (Terra et al., 2005).

Note that the least damped pole locations, corresponding to the
smallest input amplitude force (close to a truly linear model), is very
similar to the dominant pole of the WAMIT model, indicating the
relative accuracy of the WAMIT model for representing the WEC model
excited with very small input amplitude forces. However, the WAMIT
model fails to provide a representative model of the system dynamics
when the device is subject to high input amplitude forces, typical of a
WEC in power production mode. However, the convergence of the CFD-
derived pole locations on the WAMIT poles, for small input amplitude
provides a degree of validation of the modelling method, and is similar
to results obtained for free-response tests (Davidson et al., 2015).

In Fig. 8, a gentle trend in the values of the imaginary components
of the least damped poles can be observed, essentially related to the
oscillatory frequency in the response. The trend of the imaginary com-
ponent of the least damped poles is similar to the resonance frequency
trend presented in Fig. 6, i.e. the imaginary component of the least
damped poles decreases as the input amplitude increases, and a discrep-
ancy of the trend is observed with the zero-input data, obtained from
the WAMIT model. In a 2nd order system, the imaginary component of
the pole corresponds to the value of 𝜔𝑛

√

1 − 𝜁2 (the damped ‘natural’
frequency), where 𝜔𝑛 is the natural frequency of the device, related
to the resonance frequency of the system (𝜔

√

1 − 2𝜁2) (depicted in
𝑛
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Fig. 7. The frequency response of the obtained parametric model using FOAMM toolbox (solid-red), along with the target frequency response (dashed-blue), and the interpolated
frequencies (green-dots) for all the input amplitude forces.
Fig. 8. Location in the complex-plane of the least damped model poles.
Fig. 9. 3D view of pole diagram and Bode plot.

ig. 9 in three-dimensions), and 𝜁 is the damping factor. In this study,
here is no clear relationship between the imaginary components of the
east damped poles and the resonance frequencies obtained from ETFEs
Fig. 6). A possible explanation related to the error of approximating
he system model using the FOAMM toolbox, and the fact that the least
amped poles are not truly dominant poles for all models. Imaginary
omponent values, for the least damped poles corresponding to input
ignal amplitudes, are presented in Table 3.

One particularly significant result obtained in this study is the
imilarity of the trend of the least damped poles location of the force-
nput CNWT experiments and WAMIT model (Fig. 8) to the dominant
oles location trend obtained from free-decay CNWT experiments and a
7

Table 2
Pole dominance assessment for system models corresponding to different input
amplitude levels.

Force amplitude [N] Ratio of the real parts of the poles Pole dominance

0 (WAMIT) 12.56 ✓

20 3.92 ×
40 4.51 ×
60 2.04 ×
80 24.12 ✓

100 5.07 ✓

120 4.46 ×

Table 3
Imaginary components of the dominant poles corresponding to input signal
amplitudes.

Input signal amplitude [N] Imaginary part of the least damped poles

0 (WAMIT) 5.580
20 5.845
40 5.819
60 5.554
80 5.508
100 5.343
120 5.136

BEM presented in Davidson et al. (2015) (Fig. 14). This provides some
level of cross validation, though both sets of results are obtained using
different stimuli (forced input Vs non-zero initial condition).
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7. Conclusion

In this study, representative linearised WEC models are investigated
by performing system identification using force input (PTO force)
CNWT experiments. Considering the true complexity of real WEC mod-
els (viz the NS equations), force-input experiments, with careful design
of input signals to cover the full range of frequencies and ampli-
tudes likely to be encountered during system operation, are capable
of providing a sufficiently representative linear model set that can be
used for dynamical assessment of WECs, and for model-based control
design, using either a single representative model, or some form of
gain scheduling (Leith and Leithead, 2000), interpolating between
models/controllers. The following conclusions can be drawn regarding
the dominant dynamical assessment of the WEC system:

• Analysis of the resonance frequency of the system, from the
ETFE results of the input-force CNWT experiments and WAMIT
data, shows an increasing trend in resonance frequency as the
amplitude of the input force decreases, with a small deviation
in the trend due to a less representative model obtained from
WAMIT data.

• Investigation of the least damped poles of the system sheds light
on two important dynamical behavioural aspects of the system:
(A) The real part of the least damped poles gets closer to the
imaginary axis, indicating a lower damping effect, as the ampli-
tude of the input-force decreases, and (B) The imaginary part of
the least damped poles is related to the resonance frequency, and
thus shows the same trend as the resonance frequency.

• The trend obtained from the force-input CNWT experiments (and
WAMIT model), for the real part of the least damped poles of the
system, is very similar to the results obtained from the free-decay
CNWT experiments (and BEM model) reported in Davidson et al.
(2015).

inally, a dominant 2nd order WEC model has been shown to have
tility in the design of relatively simple controllers for WECs (Fusco
nd Ringwood, 2011), while variations in real parts of poles can be
raced to implications for sensitivity and robustness (Ringwood et al.,
019).
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