
On Low-Rank
Multiplicity-Free
Fusion Categories

Gert Vercleyen

Thesis Presented for the Degree of
Doctor of Philosophy

to

Maynooth University

Department of Theoretical Physics

February 26, 2024

Department Head

Dr. J. K. Slingerland

Research Advisor

Dr. J. K. Slingerland

Declaration

I declare that this thesis has not been submitted in whole, or in part, to this or any other

university for any other degree and is, exceptwhere otherwise stated, the originalwork

of the author.

Gert Vercleyen, February 10, 2024

ii

Acknowledgements

First, I want to thank my promoter, Joost Slingerland, who endured my ceaseless firing

of questions and crazy ideas and still managed to keep me on the right track. Special

thanks go to Colleen Delaney, Eric Samperton, and Catherine Meusburger, whose en-

couragement has helped me overcome doubt about the value of my work. I also want

to thank Eddie Ardonne, Eric Rowell, Andrew Schopieray, and Sebastien Palcoux for

their great enthusiasm, without which the AnyonWiki would not have been possible.

Several people from the University of Ghent deserve my deepest gratitude. First of

all, this project was only possible because of the confidence and support of Frank Ver-

straete, who kickstarted the project of solving pentagon equations. I would also like to

thank Professor Hendrik De Bie and the Clifford research group for their hospitality.

The most productive period has been the time spent in their presence.

I would also like to thank the examiners, Eddy Ardonne and Paul Watts, for doing

a fantastic job. The many helpful comments and suggestions show that you have spent

quite the effort delving into the abstract nonsense that constitutes my thesis.

This work would not have been possible without the encouragement of my family.

I want to thank Mom for giving me access to the many puzzle and riddle books when

I was young and for being a creative genius who has inspired me in many ways. I

want to thank Dad for supporting me all the way and showing me the joy of living a

carefree, non-judgemental life. Last but not least, I would like to thank my Brother for

accompanying me to the Pokémon TCG world championships in Florida and for the

good memories we share. Then there is also my +dad Chris, whose renowned cooking

makes my day, and my +mom Esmeralda, who has aided my quest for discovery ever

since primary school.

My friends have supported me greatly throughout my career as a doctoral student.

Sam and Spoon have been there for me when I needed a safe place and board game

evening. Tommeke’s support means more than he can imagine. I know he is rooting

for me, and I am proud to call him my friend. There are, of course, also Nasha, Denis,

and Elena, with whom I can spend hours talking about virtually anything. And then

there’s Eden, who sneaks out past bedtime and always manages to score a few hugs

from the conversing grown-ups before his glorious return to dreamland. You truly are

a little angel. Deborah, I’m so happy I met you and hope to keep in touch for many

years. You are a great inspiration to keep fighting for what I want. Nadia, you have

always believed in me, even at times when I did not. It really means a lot to me. Lastly,

Laurent deserves special mention as well. You were an integral part of the best year in

high school, and I’m so happy we still keep in touch.

The acknowledgments would not be complete without thanking my Brother’s per-

sonal dishwasher, our family’s favorite footwarmer, the winner of multiple prestigious

gardening awards1, the entity that strikes fear in many cats: Zempo, the crazy dog.

Who’s a good woof woof? You are!

1Including award for deepest pit, highest heap, longest distance traveled by dirt, and most bones buried
per 𝑚2

iv

At last, I want to conclude the acknowledgments by thanking my partner in crime

for making the previous year one of the best so far. Your support is boundless, and

your encouragement keepsme going until the end. From failing at crossword puzzles to

failing at cooking to failing atwoodworking in the garage to being successfully trampled

by a group of angry mammoths, you are always there to support me.

v

Abstract

This thesis explains the methods and algorithms we used to obtain explicit 𝐹 symbols,

𝑅 symbols, and pivotal coefficients of all multiplicity-free pivotal fusion categories up

to rank 7. The thesis starts by introducing the concept of a unitary modular fusion

system via two applications: modeling anyons for topological quantum computation

and calculating braid group representations. Next, the notions of a pivotal, spheri-

cal, braided, ribbon, and modular fusion system are introduced. These are arithmetic

counterparts to fusion categories with the respective structure. Unitarity and its im-

plications on the pivotal structure are discussed as well. The next part of the thesis is

devoted to algorithms for finding fusion systems and compatible structures. First, an

algorithm to find low-rank fusion rings is explained, and its results are given. Special

attention is given to the structure of non-commutative fusion rings and the construc-

tion of songs, which are generalizations of theTambara-Yamagami andHaagerup Izumi

fusion rings, is given. Then, the algorithms used to find fusion systems are discussed.

Particular attention is given to how the individual steps for solving the consistency

equations are done with Anyonica, a software package we developed for working with

fusion systems. Gauge and automorphism equivalence are reviewed, and algorithms

that put solutions in a unitary gauge and remove redundant solutions are given. Some

results on the categorification of all multiplicity-free pivotal fusion rings up to rank 7
are presented. The final part of the thesis is devoted to building models of anyons on

graphs and how their behavior differs from those in the plane. The appendices contain

a minimal mathematical exposition on fusion categories with their relation to fusion

systems, a list of all multiplicity-free fusion rings up to rank 9 with information on cat-

egorifiability, a list of all multiplicity-free fusion categories up to rank 7, and data on

some graph-braid models.

vii

Contents

I Introduction 1

1 Anyons as Unitary Modular Fusion Systems 3

1.1 Fusion Theory . 4

1.1.1 Fusion and Splitting of Two Anyons 4

1.1.2 Fusion and Splitting of Multiple Anyons 6

1.1.3 Vertical Bends and Removal of Vacuum Lines 10

1.2 Unitary Modular Fusion Theory . 16

1.3 Braid Group Representations and Topological Quantum Computation . . 19

1.3.1 Constructing Braid Group Representations 19

1.3.2 Topological Quantum Computation 21

2 From Fusion System to Unitary Modular Fusion System 23

2.1 Fusion Systems . 24

2.2 From Fusion System to Modular Fusion System 26

2.3 Unitary Fusion Systems . 29

2.4 The Landscape of Fusion Categories . 31

II Finding Fusion Categories 39

3 Finding Fusion Rings 41

3.1 Algorithm . 41

3.1.1 Reducing the Number of Variables 42

3.1.2 Breaking Permutation Symmetry 42

3.1.3 Backtracking . 44

3.1.4 Results . 45

3.2 Naming of Fusion Rings . 47

3.3 Characters and Modular Data of Commutative Fusion Rings 48

3.3.1 Characters of Commutative Fusion Rings 48

3.3.2 Modular Data . 49

3.3.3 Finding 𝑆-matrices . 49

3.3.4 Finding 𝑇-Matrices . 50

3.4 Some Comments on Non-commutative Fusion Rings 50

3.4.1 Song Extensions of Groups . 50

ix

3.4.2 Generic Non-commutative Fusion Rings 52

3.4.3 Non-Commutative Fusion Rings Without Non-Trivial Subgroup . 57

4 Categorifying Fusion Rings: Solving Consistency Equations 59

4.1 Solving Pentagon Equations . 60

4.1.1 Obstructions To Categorification 60

4.1.2 Determining Which 𝐹-Symbols Could Be Zero 62

4.1.3 Fixing the Gauge . 67

4.1.4 Solving Binomial Equations . 70

4.1.5 Reduction Via Linear Polynomials 73

4.1.6 Incremental and Parallel Gröbner Bases 75

4.1.7 Solving the Pentagon Equations . 76

4.1.8 Removing Equivalent Solutions . 77

4.1.9 Fixing a Unitary Gauge . 81

4.2 Solving Hexagon Equations . 82

4.3 Solving Pivotal Equations . 84

4.4 Results . 84

4.4.1 Correctness of the Results . 89

4.5 Naming of Fusion Categories . 91

4.6 Other Software to Work With Fusion Rings and Fusion Categories . . . 92

4.6.1 Predecessors . 92

4.6.2 Other Packages . 93

III Anyons on Graphs 95

5 Anyons on Graphs 97

5.1 Anyons on a Circle . 98

5.2 Anyons on a Trijunction . 101

5.2.1 Two Particles on a Trijunction . 101

5.2.2 Three Particles on a Trijunction 102

5.2.3 Four Particles on a Trijunction . 103

5.3 Three Particles on a Lollipop Graph . 105

5.4 Solving Graph-Braid Equations . 106

5.4.1 Removing Equivalent Solutions . 107

5.4.2 Results . 108

IV Summary and Outlook 113

6 Summary and Outlook 115

6.1 Summary . 115

6.2 Outlook . 116

x

V Appendix 119

7 The Mathematics of Anyons 121

7.1 From Category to Modular Category . 121

7.1.1 From Category to Fusion Category 121

7.1.2 From Fusion Category To Modular Category 127

7.2 From Fusion System to Fusion Category and Back 131

8 List of multiplicity-free fusion rings up to rank 9 135

9 List of Multiplicity-free Fusion Categories up to Rank 7 151

10 Solutions For Specific Graph-Braid Models 187

10.1 Solutions for the Ising Model . 187

10.1.1 Solutions to the Pentagon Equations 187

10.1.2 Solutions to the Planar Hexagon Equations 188

10.1.3 Solutions to the Trijunction Equations 188

10.1.4 Solutions to the Lollipop Equations 189

10.2 Solutions for the Quantum Double of ℤ2 190

10.2.1 Solutions to the Planar Hexagon Equations 190

10.2.2 Solutions to the Trijunction Equations 190

10.2.3 Solutions to the Lollipop Equations 192

10.3 Solutions for the TY(ℤ3) Model . 193

10.3.1 Solutions to the Pentagon Equations 194

10.3.2 Solutions to the Circle Equations 194

xi

Part I

Introduction

1

Chapter 1

Anyons as Unitary Modular Fusion

Systems

Anyons are particle-like excitations that only exist in two dimensions [81, 82, 79, 56].

In contrast to particles living in three dimensions, whose exchange is governed by the

sign representation of the symmetric group, the exchange of anyons is governed by

representations of the braid group. For anyons, it is possible that more exotic phases

𝑒𝑖𝜙 ≠ ±1,𝜙 ∈ ℚ, are required to describe the swap of two anyons. It might also be that

a higher dimensional, non-Abelian representation of the braid group is required. The

reason for this strange behavior comes from the fact that the fundamental group of the

configuration space of particles in 3 + 1 dimensions is the symmetric group, while in

2 + 1 dimensions, it is the braid group [60].

One of the aims of this chapter is to explore two of the consequences of these braid-

group statistics of anyons. The first one is of mathematical interest, namely that a sys-

tem of anyons can be used to obtain representations of the braid group. The other one

is of physical interest, namely that anyons play a central role in topological quantum

computation.

Another aim of this chapter is to introduce the concept of a unitary modular fusion

system by means of the theory of anyons. These unitary modular fusion systems and

their generalizations form the main topic of this thesis and are directly related to the

more abstract fusion categories (see Section 7.2). This introduction is mainly based on

Section E of Kitaev’s paper [56], but the normalization and graphical conventions from

Bonderson’s thesis [10] are used. The exposition is necessarily ad-hoc since building

up the mathematical structures starting from field theory would distract from the main

story of this thesis. The proofs that are not necessary to understand the diagrammatic

language are also left out. The contents of this chapter can be summarized as follows.

Section 1.1 introduces the notion of a unitary fusion system and explains how it relates

to the fusion and splitting of anyons in the plane using a diagrammatic language. The

notion of progressive planar isotopy is discussed, conventions for dealing with bends

in diagrams are introduced, and how to assign topological invariants to disjoint loops in

diagrams is shown. In Section 1.2 the definition of a unitary modular fusion system is

given. Such a system allows us to describe the braiding of anyons and express specific

3

processes with anyons via braid diagrams. The chapter concludes with Section 1.3,

which explains how anyons allow us to construct braid group representations and how

these can be used for topological quantum computation.

It must be noted that a lot of the physical exposition relies on the fact that we will

be working with a unitary theory, i.e. the underlying mathematical description is given

by a unitary fusion category. Unitarity simplifies matters a lot but also sweeps certain

subtleties under the carpet. In Chapter 2, we will drop the unitarity assumption at first

and later discuss the consequences of demanding unitarity.

1.1 Fusion Theory

For our purposes, we imagine a finite set of anyons on a line. While anyons live in 2 di-

mensions, one can and should define an order on points in the plane in order to arrange

the anyons in a non-ambiguous way, such as in figure 1.1. We start by considering a

system of two anyons.

1.1.1 Fusion and Splitting of Two Anyons

The state space of two anyons, say 𝑎, 𝑏 with total charge 𝑐, is a Hilbert space 𝑉𝑐
𝑎,𝑏. An

element of this space corresponds to a process where the two charges 𝑎, 𝑏 fuse to give

charge 𝑐. These should be thought of as operators that map a two-particle state to a

one-particle state. The dimension dim𝑉𝑐
𝑎,𝑏 equals the different number of inequiva-

lent ways such a process can happen. Let {⟨𝑎, 𝑏; 𝑐, 𝛼| |𝛼 = 1,… ,dim𝑉𝑐
𝑎,𝑏} be an or-

thonormal basis for𝑉𝑐
𝑎,𝑏, and{|𝑎, 𝑏; 𝑐, 𝛼⟩ |𝛼 = 1,… ,dim𝑉𝑐

𝑎,𝑏} a dual basis for the dual

space 𝑉𝑎,𝑏
𝑐 . We can use a diagrammatic language that makes it much easier to deal with

c da b

e

g

h

a

b

c

d

h g e

x

y

Figure 1.1: By using the lexicographic ordering on the (𝑥, 𝑦) coordinates, the positions
of the four anyons can be ordered unambiguously. In this case, we have also grouped
the anyons in subsystems and assigned labels to these.

4

anyons by using the following conventions.

ba

c

α = 4√
𝑑𝑐

𝑑𝑎𝑑𝑏
⟨𝑎, 𝑏; 𝑐, 𝛼|, (1.1)

ba

c

α = 4√
𝑑𝑐

𝑑𝑎𝑑𝑏
|𝑎, 𝑏; 𝑐, 𝛼⟩. (1.2)

The labeled lines in these diagrams can be thought of as trajectories in space-time.

For now, one may regard the 𝑑𝑖 as formal symbols. We will assign these well-chosen

non-zero values later on that will simplify computations.

Note 1. Diagrams like (1.1) and (1.2) are modeled via equivalence classes of

oriented labeled planar graphs a embedded inside a rectangle [𝑥1, 𝑥2]×[𝑦1, 𝑦2] ⊂
ℝ2 for which

• the labeled edges always point upwards. In particular, no edge is allowed

to have a horizontal tangent at any point (yet). They need not be straight

lines but must have a tangent at each point and be non-pathological (see

[101] for more detail).

• Every edge is connected to either a labeled disk or the interior of the bot-

tom or top line of the rectangle.

• The vertices are either labeled disks that are connected to three edges, with

at least one incoming and one outgoing edge, or they are points on the

bottom or top line of the rectangle.

• two diagrams are regarded as equivalent if they can be transformed into

each other by moving the vertices (and thus deforming the edges as well)

of the labeled graph in such a way that

– no vertices overlap,

– no edges cross,

– no vertex enters or leaves the bottom or top lines of the rectangle,

– and no edges have a horizontal tangent

at any point during this process. Graphs like these are called progressive

planar graphs, the allowed deformations are called progressive planar de-

formations, and two graphs that are equivalent under such deformations

are called progressive planar isotopic. This is a weaker form than full pla-

nar isotopy, where the vertices are allowed to move everywhere, and the

edges need not have horizontal tangents, but overlap of vertices and cross-

ing of edges are still not allowed.
aIn [53] and [101] the precise definition of these classes are given, but here we will present

their definition more intuitively.

5

Splitting operators from 𝑉𝑎,𝑏
𝑐′ and fusion operators from 𝑉𝑐

𝑎,𝑏 can be composed as

follows

α

ba

c

α

c
′

β

= 𝛿𝑐
𝑐′𝛿

𝛼
𝛽√

𝑑𝑐
𝑑𝑎𝑑𝑏

c, (1.3)

where the line labeled by 𝑐 should be thought of as the identity operator and one is

allowed to use equation (1.3) to replace lines in any diagram by a decomposition into

a splitting and fusion operator. Note that we do not sum over fusion labels. The ap-

pearance of 𝛿𝑐
𝑐′ can be considered the equivalent of demanding charge conservation.

It might seem strange at first that, algebraically, ⟨𝑎, 𝑏; 𝑐′, 𝛽|𝑎, 𝑏; 𝑐, 𝛼⟩ does not result in

a number but rather in a number multiplied with an identity operator. These two are,

however, equivalent. One can regard the identity operator as a basis vector in the 1-
dimensional space of processes, which keeps the charge 𝑐 unchanged. Combining two

processes from this space, say 𝜆 id𝑐 and 𝜏 id𝑐, then corresponds to a process 𝜆𝜏 id𝑐.

We can also combine a fusion operator with a splitting operator the other way.

The decomposition of the identity operator on two charges is expressed using such a

combination as follows

ba = ∑
𝑐,𝛼

√
𝑑𝑐

𝑑𝑎𝑑𝑏

ba

c

α

α

ba

. (1.4)

1.1.2 Fusion and Splitting of Multiple Anyons

For systems with more than two anyons, one must combine multiple splitting and fu-

sion operators in a compatible way. All lines can only have one label, and one can only

connect lines of diagrams with matching labels. To describe, e.g., a process where an

anyon with charge 𝑑 splits into two anyons with charges, 𝑒 and 𝑐, followed by the pro-

cess where 𝑒 splits into charges 𝑎 and 𝑏 one would compose the operators ⟨𝑎, 𝑏; 𝑒, 𝛼|⊗
id𝑐 and ⟨𝑒, 𝑐; 𝑑, 𝛽|. Up to a scalar factor, this composition is represented by the follow-

ing diagram,

α

β

c

d

e

a b

. (1.5)

Each composition is completely determined by the couple ⟨𝑎, 𝑏; 𝑒, 𝛼|⟨𝑒, 𝑐; 𝑑, 𝛽| and is

thus described by elements of a Hilbert space isomorphic to 𝑉𝑎,𝑏
𝑒 ⊗ 𝑉𝑒,𝑐

𝑑 . This isomor-

6

phism is typically used to write ⟨𝑎, 𝑏; 𝑒, 𝛼|⟨𝑒, 𝑐; 𝑑, 𝛽| instead of the longer (⟨𝑎, 𝑏; 𝑒, 𝛼|⊗
id𝑐)⟨𝑒, 𝑐; 𝑑, 𝛽|.

There might be multiple charges 𝑒 that allow 𝑑 to split in this way to 𝑎, 𝑏, 𝑐, so the

space that describes such processes is given by⨁𝑒 𝑉
𝑎,𝑏
𝑒 ⊗𝑉𝑒,𝑐

𝑑 . Now, if we are just given

the information that 𝑑 is the total charge of the anyons with charges 𝑎, 𝑏, 𝑐, we might

as well describe this space using basis vectors of the following form:

c

d

a b

γ

δ

f
. (1.6)

The two sets of basis vectors are related by a unitary change of basis which is de-

noted by

α

β

c

d

e

a b

= ∑
𝑓,𝛾,𝛿

[𝐹𝑎𝑏𝑐
𝑑](𝑒,𝛼,𝛽)(𝑓,𝛾,𝛿)

c

d

a b

γ

δ

f
. (1.7)

In what follows, we will assume that the triples (𝑒, 𝛼, 𝛽), (𝑓, 𝛾, 𝛿) are ordered lexico-

graphically, and we regard each triple as a single index. This way, the basis transform

is given by unitary matrices {[𝐹𝑎𝑏𝑐
𝑑]} that are called the 𝐹-matrices of the theory. Its el-

ements [𝐹𝑎𝑏𝑐
𝑑](𝑒,𝛼,𝛽)(𝑓,𝛾,𝛿) are called the 𝐹-symbols, and a basis transform using the 𝐹-symbols

is called an 𝐹-move. We will denote the inverse 𝐹 matrices by [̃𝐹𝑎𝑏𝑐
𝑑].

The fusion theory of systems with any number of anyons is determined by a unitary

fusion system. A unitary fusion system is a collection of data (L, ∗,N,V,F) that allows

one to consistently deal with processes involving any number of anyons that fuse and

split. It is given by

1. A finite list L of labels (also called charge types, superselection sectors, parti-

cle types, anyon types, or whatever suits your needs) which we will denote by

{1,…, 𝑟}. Each label represents a type of anyon and one of the labels, 1 in our

case, represents the vacuum (or trivial charge). The number 𝑟 will be called the

rank of the unitary fusion system.

2. A map ∗ ∶ L → L called the conjugation, that maps anyons to their dual (or

conjugate, or antiparticle). The map has to satisfy that 1∗ = 1 and (𝑎∗)∗ = 𝑎.

3. A finite set of natural numbers N = {𝑁𝑐
𝑎,𝑏| 𝑎, 𝑏, 𝑐 = 1,…, 𝑟}, the dimensions of

the fusion spaces {𝑉𝑐
𝑎,𝑏| 𝑎, 𝑏, 𝑐 = 1,…, 𝑟}, that satisfy

• Fusing with the vacuum is trivial: 𝑁𝑏
𝑎,1 = 𝑁𝑏

1,𝑎 = 𝛿𝑏
𝑎

• Only fusion with antiparticles can create the vacuum: 𝑁1
𝑎,𝑏 = 𝛿𝑎

𝑏∗

• Fusion is associative: 𝑁𝑑
𝑎,𝑏,𝑐 ∶= ∑𝑒 𝑁

𝑒
𝑎,𝑏𝑁

𝑑
𝑒,𝑐 = ∑𝑓 𝑁

𝑑
𝑎,𝑓𝑁

𝑓
𝑏,𝑐

7

• Fusion is commutative: 𝑁𝑐
𝑎,𝑏 = 𝑁𝑐

𝑏,𝑎

4. A finite set of Hilbert spaces V = {𝑉𝑐
𝑎,𝑏| 𝑎, 𝑏, 𝑐 = 1,… , 𝑟}, also called fusion

spaces, for which dim𝑉𝑐
𝑎,𝑏 = 𝑁𝑐

𝑎,𝑏 and whose inner product induces an Hermitian

adjoint † that satisfies

𝑑𝑎 ∶= (|𝑎, 𝑎∗; 1, 1⟩)†|𝑎, 𝑎∗; 1, 1⟩ = ⟨𝑎, 𝑎∗; 1, 1|𝑎, 𝑎∗; 1, 1⟩ =
1

|[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1)|

,(1.8)

𝑑𝑎∗ = 𝑑𝑎, (1.9)

∀𝑎 ∈ L. The interpretation of 𝑑𝑎 is explained in Section 1.1.3.

5. A finite setF = {[𝐹𝑎𝑏𝑐
𝑑] ∈ Mat𝑁𝑑

𝑎,𝑏,𝑐×𝑁𝑑
𝑎,𝑏,𝑐

(ℂ)| 𝑎, 𝑏, 𝑐, 𝑑 = 1,…, 𝑟}of finite-dimensional

unitary matrices, whose entries, also called 𝐹-symbols, are denoted by

[𝐹𝑎𝑏𝑐
𝑑](𝑒,𝛼,𝛽)(𝑓,𝛾,𝛿) ,

𝛼 ∈ {1,…,𝑁𝑒
𝑎,𝑏}

𝛾 ∈ {1,…,𝑁𝑑
𝑎,𝑓}

,
𝛽 ∈ {1,…,𝑁𝑑

𝑒,𝑐}

𝛿 ∈ {1,…,𝑁𝑓
𝑏,𝑐}

, (1.10)

where the labels (𝑒, 𝛼, 𝛽) and (𝑓, 𝛾, 𝛿) are ordered lexicographically and we use

the notation [̃𝐹𝑎𝑏𝑐
𝑑] for the inverse of [𝐹𝑎𝑏𝑐

𝑑]. These matrices are required to sat-

isfy

• Fusion with the vacuum is irrelevant:

[𝐹1𝑏𝑐
𝑑] = 𝟙𝑁𝑑

𝑏,𝑐×𝑁𝑑
𝑏,𝑐
, (1.11)

[𝐹𝑎1𝑐
𝑑] = 𝟙𝑁𝑑

𝑎,𝑐×𝑁𝑑
𝑎,𝑐
, (1.12)

[𝐹𝑎𝑏1
𝑑] = 𝟙𝑁𝑑

𝑎,𝑏×𝑁𝑑
𝑎,𝑏
, (1.13)

where [𝟙𝑚×𝑛]
𝑖
𝑗 = 𝛿𝑖

𝑗 is the 𝑚× 𝑛 identity matrix.

• The pentagon equations:

∑
𝜁
[𝐹𝑓𝑐𝑑

𝑒](𝑔,𝛽,𝛾)(𝑙,𝜁 ,𝜀) [𝐹
𝑎𝑏𝑙
𝑒](𝑓,𝛼,𝜁)(𝑘,𝜃,𝜂) = ∑

ℎ,𝜄,𝜅,𝜆
[𝐹𝑎𝑏𝑐

𝑔](𝑓,𝛼,𝛽)(ℎ,𝜅,𝜄) [𝐹
𝑎ℎ𝑑
𝑒](𝑔,𝜅,𝛾)(𝑘,𝜃,𝜆)[𝐹

𝑏𝑐𝑑
𝑘](ℎ,𝜄,𝜆)(𝑙,𝜂,𝜀) , (1.14)

where whenever a zero dimensional matrix is encountered in a term, it is

automatically 0. Equivalently, one could demand that the summation index

ℎ on the RHS of (1.14) only takes values for which none of the 𝐹-matrices

are zero-dimensional.

• The snake property

[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1) ≠ 0, (1.15)

which demands that the 𝑑𝑎 from equation (1.8) are well-defined.

The interpretation of the pentagon equations is the following. If we want to describe

the splitting of a charge into 𝑛 charges, we would have a basis for every binary tree with

8

c da b

f

e

g

c da b

f

e

g

c da b

e

g

c da b

e

k

lh

c da b

e

h

k

α

β

γ

α ε

ζ

θ

η

ǫ

γ

ι

κ

θ

λ

ι

F

FF

F F

Figure 1.2: The graphical interpretation of the pentagon equations.

𝑛 leaves. Any basis can be transformed into another basis by a sequence of 𝐹-moves,

but if 𝑛 > 3, there are multiple different combinations of 𝐹-moves that relate one basis

to the other. To have a consistent theory, we demand that the 𝐹-symbols satisfy the

pentagon equations. These can be graphically depicted as in figure 1.2. Mac Lane’s

coherence theorem [67] then states that these demands, on configurations with only

4 anyons, are strong enough to guarantee that any sequence of 𝐹 moves between two

fixed trees of any shape is equal.

For a fusion system, an arbitrary process that starts with 𝑚+ 1 anyons 𝑏1,…, 𝑏𝑚+1

and results in 𝑛 + 1 anyons 𝑎1,…, 𝑎𝑛+1 (both in that order on the line) can be de de-

composed into a superposition of processes that consist of two parts: first all anyons

𝑏1,…, 𝑏𝑚+1 are fused and next the fusion product is split into the anyons 𝑎1,…, 𝑎𝑛+1.
Figure 1.3 shows a possible convention of a standard basis for all such processes.

The following procedure can express any fusion diagram as a linear combination

of standard basis vectors. Given a diagram with 𝑚 + 1 bottom strands and 𝑛 + 1 top

strands it works as follows

1. Transform this diagram into a top and bottom diagram connected by a single

vertical line. This can be done as follows. First, we can draw a horizontal line

at any height of the diagram, such that it does not overlap with any vertices.

Consider this our split between the twodiagrams. If only one vertical line crosses

9

a1 a2

α1

αn

an+1

y2

yn

x2

xn

b1 b2

β1

βm

c

bm+1

Figure 1.3: A possible standard basis in which any process that starts with 𝑚 anyons
and ends with 𝑛 anyons can be expressed.

this horizontal line, we are done. If there are multiple, then one can apply the

decomposition of the identity (1.4) to reduce the number of vertical lines until

only one remains.

2. If neither the top nor bottom contains any loops, they must be trees. In this case,

a sequence of 𝐹-moves can be used to recouple the trees to the required form, and

we are done. If a diagram contains one or more loops, these can be removed by

combining 𝐹-moves, inverse 𝐹-moves, and formula (1.3). To do so, pick any loop

that contains no inner lines. Then, use the 𝐹-moves to move all lines attached to

this loop to two other lines of choice. The various moves that can be used to do

so are described in figures 1.4 and 1.5. Formula (1.3) can then be used to remove

this loop. By removing all loops this way we end up with two tree diagrams and

a sequence of 𝐹-moves can be used to recouple the trees to the required form.

1.1.3 Vertical Bends and Removal of Vacuum Lines

The interpretation of the snake property is that we would like the following process to

have a non-zero expectation value.

a

1

aa
∗

1

a

a

=[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1) a

1

aa
∗

1

a

a

= 𝑑𝑎[𝐹
𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1) a (1.16)

Note that

• we have not included the labels for the basis vectors of the splitting and fusion

10

a b

c d

a b

c d

c d

a b

d

e

f

e e

g

f

c d

a b

f

c d

α

β

α

β

γ

γ

β

δ

ǫ

γ

δ

γ

∼ ∼ ∼

F IdĨd

(∗)

ab

cd

ab

cd

cd

ab

d

e

f

e e

g

f

cd

ab

f

cd

α

β

α

β

γ

γ

β

δ

ǫ

γ

δ

γ

∼ ∼ ∼

F̃Ĩd Id

(∗∗)

Figure 1.4: By adding a loop, performing an (inverse) 𝐹-move and removing the loop
we can transform ‘H-shaped’ diagrams into superpositions of ‘I’-shaped diagrams.
Here Id means that we have used the decomposition of the identity (1.4), while ̃Id
means we have used equation (1.3)

11

,→ →

→ , →

→

→

,

,

→

→

(∗)

(∗)

(∗∗)

(∗∗)

F̃

F

F

F̃

Figure 1.5: Using the equivalences defined in figure 1.4 we can reduce the number of
lines attached to a loop (whose edges and interior are drawn in blue)

12

spaces. This is because, in this case, those spaces are 1-dimensional, so there is

no ambiguity in leaving those labels out.

• We used dotted lines to denote vacuum charges. One of the goals of this subsec-

tion is to set up conventions such that the vacuum lines can be left out. Diagrams

like the one on the LHS of (1.16) will look like a single bent line. Later on, in

Section 1.2, when we add over and under crossings of lines, this will enable us

to construct braid diagrams. Under the assumption that diagrammatic calculus

becomes isotopy-invariant, we can compute (framed) knot invariants by reducing

these diagrams.

There are two independent snake equations that we need to fix:

a

1

aa
∗

1

a

a

= 𝑑𝑎[𝐹
𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1) a, a

1

a a
∗

1

a

a

= 𝑑𝑎[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1) a.(1.17)

Since 𝑑𝑎 = |[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1)|

−1
we can define 𝜒𝑎 ∶= 𝑑𝑎[𝐹

𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1) ∈ U(1) and we find

that

a

1

aa
∗

1

a

a

= 𝜒𝑎 a, a

1

a a
∗

1

a

a

= 𝜒𝑎 a.

𝑑𝑎 is called the quantum dimensions of the particle 𝑎 and it is invariant under unitary

basis transforms of the fusion and splitting spaces. For a unitary fusion system, the

quantum dimensions are, by definition, positive and have the following properties. If

we denote by 𝑉𝑏
𝑎𝑛 the Hilbert space that describes the fusion of 𝑛 particles 𝑎 into a

particle 𝑏 then for a unitary fusion system

dim(⨁
𝑏∈𝐋

𝑉𝑏
𝑎𝑛) = ∑

𝑖2,…,𝑖𝑛−1,𝑏
𝑁 𝑖2

𝑎,𝑎𝑁
𝑖3
𝑖2,𝑎

⋯𝑁𝑏
𝑖𝑛−1,𝑎

𝑛→∞∼ (FPDim(𝑎))𝑛 = 𝑑𝑛
𝑎 , (1.18)

where FPDim(𝑎), the Frobenius-Perron dimension, is the largest positive eigenvalue

of the matrix [𝑁𝑎] (which always exists due to the Frobenius-Perron theorem). For

unitary fusion systems 𝑑𝑎 = FPDim(𝑎). The intuition of 𝑑𝑎 is thus that, as one increases

the number 𝑛 of anyons 𝑎, the dimension of the Hilbert space describing all possible

fusion processes of the particles 𝑎 grows as 𝑑𝑛
𝑎 . Interestingly, 𝑑𝑎 can be non-integer

13

for generic anyons. Another interpretation of the number 𝑑𝑎 is the following [103].

Given a process (as in equation (1.26)) where an anyon 𝑥 and its dual 𝑥∗ split off from

the vacuum and immediately fuse back to the vacuum. The chance that that process

involves the anyon 𝑎 is given by 𝑑2
𝑎/(∑𝑏∈𝐋 𝑑

2
𝑏). So, the higher the value of 𝑑𝑎, the more

likely it will pop up in such a process.

For a self-dual particle 𝑎, 𝜒𝑎 = ±1 and is invariant under unitary basis transforms.

For unitary fusion systems, it is called the Frobenius-Schur indicator of 𝑎. For non-self-

dual particles, the value 𝜒𝑎 depends on the choice of basis for the fusion and splitting

spaces and therefore has no invariant meaning.

Notes 1. In chapter 2 we will drop the unitarity assumption. One of the con-

sequences is that the quantum dimensions could be complex numbers. In this

case, one can still use the Frobenius-Perron dimensions (which only depend on

the list 𝐍) as scaling exponents. Another consequence of dropping unitarity is

that, to even talk about quantum dimensions, we must provide a list of phases

𝜒𝑎 that satisfy specific properties. In the more general setting, these are called

pivotal coefficients. Chapter 2 also discusses these in more detail.

By introducing flagged cups and caps as follows

a
∗

a

∶=

1

a
∗

a

,
a
∗

a

∶= (
a
∗

a

)
†

=

a

1

a
∗

,

a
∗

a

∶= 𝜒𝑎

a

1

a
∗

,
a
∗

a

∶= (
a
∗

a

)
†

= 𝜒𝑎

1

a
∗

a

,

(1.19)

we find that

a
∗

aa = a = a
∗

a a. (1.20)

If we swap 𝑎 with 𝑎∗ in definitions (1.19) it follows that

a
∗

a

= 𝜒𝑎∗
a
∗

a

, (1.21)

a
∗

a

= 𝜒𝑎∗
a
∗

a

, (1.22)

14

and thus also

a
∗

aa = a = a
∗

a a. (1.23)

So far, all arrows have been pointing upward. From now on, we will also use down-

ward arrows, which are defined as follows

a =∶ a
∗. (1.24)

We will also use the convention that whenever two flags on a line point in the opposite

direction, we will not draw those flags. Equation (1.21) in combination with the fact

that 𝜒𝑎 ∈ U(1), ∀𝑎 implies that this does not result in any inconsistencies. The snake

identities become

a = a = a , (1.25)

so they basically say that we can pull any bends in a line straight.

By combining a cup and a cap, with flags pointing in opposite directions along the

line, we find that a loop labeled by particle 𝑎 evaluates to 𝑑𝑎:

a = 𝑑𝑎. (1.26)

When a loop is a disconnected part of a bigger diagram, we can remove it and multiply

the diagram by the loop’s value. We can also put it back at any point in the diagram.

The reason this can be done is because of the demand that vacuum 𝐹-matrices are

identity matrices.

The results from the above derivations can be summarized as follows:

• In any diagram, we can perform the following substitutions

1

a
∗

a

↦
a
∗

a

,

a

1

a
∗

↦
a
∗

a

, (1.27)

that remove vacuum lines and introduce bent flagged lines whose flags point to

the right. Together with the fact that all vacuum 𝐹-matrices are identity matrices,

we can always remove any vacuum line from any diagram and add vacuum lines

15

as desired.1

• When a line contains two opposite flags, these flags may be removed. Likewise,

one can always add pairs of opposite flags to any line as desired. Flags may also

be moved from one bend to another but generically not through fusion vertices.

• The direction of a flag on a line with label 𝑎 can be changed at the cost of a phase

factor 𝜒𝑎.

• Double bends in lines can be straightened out. In [56] and [10], it is shown

that one can also straighten out single bends at the cost of introducing linear

transformations, which are often called 𝐴 and 𝐵 matrices. Such transforms allow

one to introduce spirals in diagrams, but this lies outside the scope of this thesis.

• If a disconnected loop is encountered at any point in a diagram, itmay be replaced

by the quantum dimension of its particle label.

1.2 Unitary Modular Fusion Theory

One of the interesting properties of anyons is their strange behavior under particle

exchange. In contrast to particles in three-dimensional space, the effect of swapping

anyons is governed by representations of the braid group. The specific properties of

the braiding of anyons are captured by the notion of a unitary modular fusion system.

A unitary modular fusion system (L, ∗,N,F,V,R) is a unitary fusion system together

with

• a finite list R of unitary matrices {𝑅𝑎𝑏
𝑐 ∈ Mat𝑁𝑎,𝑏

𝑐 ×𝑁𝑎,𝑏
𝑐
(ℂ)| 𝑎, 𝑏, 𝑐 = 1,…, 𝑟}, with

inverses { ̃𝑅𝑎𝑏
𝑐 } which satisfy the hexagon equations:

∑
𝜆,𝛾

[𝑅𝑐𝑎
𝑒]𝛼𝜆[𝐹

𝑎𝑐𝑏
𝑑](𝑒,𝜆,𝛽)(𝑔,𝜇,𝛾)[𝑅

𝑐𝑏
𝑔]𝛾𝜈 = ∑

𝑓,𝜎,𝛿,𝜓
[𝐹𝑐𝑎𝑏

𝑑](𝑒,𝛼,𝛽)(𝑓,𝜎,𝛿)[𝑅
𝑐𝑓
𝑑]𝜎𝜓[𝐹

𝑎𝑏𝑐
𝑑](𝑓,𝛿,𝜓)

(𝑔,𝜇,𝜈) , (1.28)

∑
𝜆,𝛾

[̃𝑅𝑎𝑐
𝑒]𝛼𝜆[𝐹

𝑎𝑐𝑏
𝑑](𝑒,𝜆,𝛽)(𝑔,𝜇,𝛾)[̃𝑅𝑏𝑐

𝑔]𝛾𝜈 = ∑
𝑓,𝜎,𝛿,𝜓

[𝐹𝑐𝑎𝑏
𝑑](𝑒,𝛼,𝛽)(𝑓,𝜎,𝛿)[̃𝑅𝑓𝑐

𝑑]𝜎𝜓[𝐹
𝑎𝑏𝑐
𝑑](𝑓,𝛿,𝜓)

(𝑔,𝜇,𝜈) , (1.29)

and are such that the matrix ̂𝑆 ∈ Mat𝑟×𝑟(ℂ), whose entries are given by

[̂𝑆]𝑎𝑏 =
𝑟
∑
𝑐=1

𝑁𝑐
𝑎,𝑏∗

∑
𝑖=1

𝑁𝑎
𝑐,𝑏

∑
𝑗=1

𝑁𝑐
𝑏∗,𝑎

∑
𝑖′=1

𝑁𝑐
𝑎,𝑏∗

∑
𝑖″=1

[̃𝐹𝑎𝑏∗𝑏
𝑎](1,1,1)(𝑐,𝑖,𝑗) [𝑅

𝑏∗𝑎
𝑐]𝑖𝑖′[𝑅

𝑎𝑏∗
𝑐]𝑖

′

𝑖″[𝐹
𝑎𝑏∗𝑏
𝑎](𝑐,𝑖

″,𝑗)
(1,1,1), (1.30)

is invertible. Note that as a consequence of the hexagon equations, we have that

[𝑅𝑎1
𝑎]11 = 1 = [𝑅1𝑎

𝑎]11 , and [̃𝑅𝑎1
𝑎]11 = 1 = [̃𝑅1𝑎

𝑎]11. (1.31)

1This is because the demand that vacuum 𝐹-matrices are the identity implies the triangle equations
(7.6) for a monoidal category. Mac Lane’s coherence theorem then assures that the removal or addition
of identity maps is allowed at will.

16

The action of the 𝑅-matrices can be graphically represented as

α

a b

c

= ∑
𝛽
[𝑅𝑏𝑎

𝑐]𝛼𝛽

ba

c

β , (1.32)

α

a b

c

= ∑
𝛽
[̃𝑅𝑎𝑏

𝑐]𝛼𝛽

ba

c

β (1.33)

The diagrammatic interpretation of the hexagon equations is given in figure 1.6.

Similarly to the pentagon equations, there is also a coherence theorem [52] for the

hexagon equations. It states that the hexagon equations imply that any two transfor-

mations between two fixed fusion trees, using only 𝐹 and 𝑅-symbols, must be equal.

So it does not matter which combination of 𝐹 and 𝑅 one chooses to transform a certain

tree 𝐴 into another tree 𝐵; eventually, they all have the same effect.

Note that any process that starts with 𝑚 anyons and ends with 𝑛 anyons can still be

uniquely expressed in a standard basis. To do so one can add a decomposition of the

identity (1.4) on the bottom of all braids, and then remove each braid using equations

(1.32) and (1.33). The rest of the procedure is then the same as for the reduction of

non-braided diagrams.

17

c

d

g

a b

c

d

a b

µ

ν

f

δ

ψ

c

d

f

a b

µ

γλ

β

c

d

e

a b

c

d

e

a b

β

α

c

d

f

a b

δ

F

F F

R R

R

σ

c

d

g

a b

c

d

a b

µ

ν

f

δ

ψ

c

d

f

a b

µ

γλ

β

c

d

e

a b

c

d

e

a b

β

α

c

d

f

a b

δ

F

F F

R̃ R̃

R̃

σ

Figure 1.6: The diagrammatic interpretation of the hexagon equations

18

1.3 Braid Group Representations and Topological Quantum

Computation

This section aims to give a theoretical, and necessarily naive, introduction to two of the

most profound applications of anyons: the construction of braid group representations,

and topological quantum computation. The exposition is based on several other, more

thorough, introductions such as [91, 20, 103, 82, 104, 87].

1.3.1 Constructing Braid Group Representations

Consider 𝑛 anyons of the same charge 𝑎with total charge 𝑏. Let us assume, for simplic-

ity, that the modular fusion system describing these anyons is multiplicity-free. The

state of these 𝑛 anyons is described by a Hilbert space 𝑉𝑏
𝑎𝑛 . Take the set of well-formed

left-ordered fusion trees, such as in (1.34), as a basis for this space. If fixing the top

charges as 𝑎 completely fixes the tree then dim𝑉𝑏
𝑎𝑛 = 1 and we say that 𝑎 is an Abelian

anyon. The reason for this name will become clear soon. If there are multiple fusion

trees with top charges 𝑎 and bottom charge 𝑏 then the dim𝑉𝑏
𝑎𝑛 depends on the specific

anyon model but it grows as dim𝑉𝑏
𝑎𝑛 ∼ 𝑑𝑛

𝑎 . We call anyons of this type non-Abelian

anyons, or nonabelions. A nonabelion has the interesting property that its state space

carries a non-Abelian representation of the braid group [90], hence the name. The spe-

cific representation of the braid group can be computed as follows. Let 𝑎𝑖 denote the

anyon 𝑎 at the 𝑖th leg of the fusion tree and denote the operator that braids 𝑎𝑖 around

𝑎𝑖+1 by 𝜎𝑖. The braided tree is still a tree with top charges 𝑎 and total charge 𝑏 so 𝜎𝑖 is a

map from 𝑉𝑏
𝑎𝑛 to itself. The matrix representing this map can be calculated by express-

ing the braided tree in terms of the basis elements of 𝑉𝑏
𝑎𝑛 , via 𝐹 and 𝑅 moves. Since the

hexagon equations imply the Yang-Baxter equations (see e.g. prop 8.1.10 in [25]) we

have that the representation 𝜌 is automatically a dim𝑉𝑏
𝑎𝑛-dimensional representation

of the braid group on 𝑛 strands.

Example 1.3.1. Consider the Fibonacci theory which has two anyons 1, 𝜏where 1 is the

vacuum and the fusion of 𝜏 with itself can result in either 1 or 𝜏. The space 𝑉1
𝜏4 is two

dimensional and we choose

⎧⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪
⎩

τ τ τ τ

τ

x

1

||||||||||||||||

|

𝑥 ∈ {1, 𝜏}

⎫⎪⎪⎪⎪⎪⎪⎪

⎬⎪⎪⎪⎪⎪⎪⎪
⎭

(1.34)

as its basis. Since max𝑁𝑐
𝑎,𝑏 = 1 we will write [𝐹𝑎𝑏𝑐

𝑑]𝑒𝑓 instead of [𝐹𝑎𝑏𝑐
𝑑](𝑒,1,1)(𝑓,1,1) and 𝑅𝑎𝑏

𝑐

19

instead of [𝑅𝑎𝑏
𝑐]11. For 𝜎1 we find that

τ τ

τ τ

τ

x

1

= 𝑅𝜏𝜏
𝑥

τ τ τ τ

τ

x

1

(1.35)

so [𝜌(𝜎1)]
𝑥
𝑦 = 𝛿𝑥

𝑦𝑅
𝜏𝜏
𝑥 . For 𝜎2 we find that

τ

τ τ

τ

τ

x

1

= ∑
𝑧∈{1,𝜏}

[𝐹𝜏𝜏𝜏
𝜏]𝑥𝑧

τ τ

τ

z

τ τ

1

(1.36)

= ∑
𝑧∈{1,𝜏}

[𝐹𝜏𝜏𝜏
𝜏]𝑥𝑧𝑅

𝜏𝜏
𝑧

τ τ

τ

z

τ τ

1

(1.37)

= ∑
𝑧∈{1,𝜏},𝑦∈{1,𝜏}

[𝐹𝜏𝜏𝜏
𝜏]𝑥𝑧𝑅

𝜏𝜏
𝑧 [̃𝐹𝜏𝜏𝜏

𝜏]𝑧𝑦

τ τ τ τ

τ

y

1

(1.38)

so [𝜌(𝜎2)]
𝑥
𝑦 = ∑𝑧∈{1,𝜏}[𝐹

𝜏𝜏𝜏
𝜏]𝑥𝑧𝑅

𝜏𝜏
𝑧 [̃𝐹𝜏𝜏𝜏

𝜏]𝑧𝑦. Lastly for 𝜎3 we find that

τ τ τ τ

τ

x

1

= ∑
𝑧∈{1,𝜏}

[𝐹𝑥𝜏𝜏
1]𝜏𝑧

τ ττ τ

x

1

z

(1.39)

= ∑
𝑧∈{1,𝜏}

[𝐹𝑥𝜏𝜏
1]𝜏𝑧𝑅

𝜏𝜏
𝑧

τ ττ τ

x

1

z

(1.40)

20

= ∑
𝑧∈{1,𝜏},𝑦∈{1,𝜏}

[𝐹𝑥𝜏𝜏
𝜏]𝜏𝑧𝑅

𝜏𝜏
𝑧 [̃𝐹𝑥𝜏𝜏

1]𝑧𝑦

τ τ τ τ

y

1

x , (1.41)

= 𝑅𝜏𝜏
𝑦

τ τ τ τ

y

1

x , (1.42)

so [𝜌(𝜎3)]
𝑥
𝑦 = 𝛿𝑥

𝑦𝑅
𝜏𝜏
𝑦 = [𝜌(𝜎1)]

𝑥
𝑦.

1.3.2 Topological Quantum Computation

Quantum computation is a term used to describe a computation method based on cre-

ating, manipulating, and measuring quantum states [37]. Several algorithms with quite

remarkable properties are based on quantum computation. For example,

• factoring integers and computing discrete logarithms can be done “exponentially

faster” using Shor’s algorithm [93].

• Searching for a specific entry in an unstructured database can be donewithGrover’s

algorithm in 𝓞(√𝑁) evaluations as opposed to the classical 𝓞(𝑁) evaluations

[45].

• The time required for simulating certain quantum systems, in particular the sys-

tem that describes the computer itself, can be exponentially faster [35, 66].

• Quantum invariants of three-dimensional manifolds and knots, e.g., the absolute

value of the Jones polynomial of a link 𝐿 at certain roots of unity, can be approx-

imated exponentially fast [37].

One of the main difficulties in quantum computing is the accumulation of errors due

to environmental interactions. Indeed, any interaction of a quantum system with the

environment can be seen as a measurement and thus causes a collapse of the wave

function. Quantum memory can, therefore, be quite volatile. This is where anyons

can play a big role. Anyonic systems realize quantum memory that is inherently fault-

tolerant [56, 55]. The clue lies in the fact that anyon statistics are governed by the braid

group, and thus only depend on the topology of the paths taken during the exchange.

These paths may be perturbed, but no errors will occur as long as the perturbations

are smaller than the distance between two anyons.

For the system described in example 1.3.1, the Hilbert space associated with the

four 𝜏 anyons with total charge 1 is two-dimensional. This means that, in theory, one

can use such a system as a qubit. By braiding the 𝜏 particles around each other, one

21

can apply transformations to these qubits. The specific transforms that can be real-

ized on these qubits (via braiding) depend on the type of anyons used. In the case of

Fibonacci anyons, it turns out [103] that any unitary transform can be approximated

with arbitrary precision. Anyons for which such a property hold are said to be uni-

versal for quantum computation. Not all anyonic systems have this property, the Ising

anyons being a standard counter-example. Since the outcome of the braiding of qubits

depends only on the topology of the space-time trajectories, this scheme of quantum

computation is called topological quantum computation (TQC).

The mathematical structure that describes anyons is that of a unitary modular fu-

sion system or, more abstractly, a unitary modular fusion category [56]. The advantage

of the categorical description is that it can be used without worrying about the explicit

realization of anyons in a lab. This allows us to investigate the properties of anyons

without the need for a microscopic description.

There are a myriad of practical challenges that need to be overcome, though, if one

wants to use nonabelions for TQC. At the moment of writing, I do not know any ex-

perimental setup that has realized nonabelions that can be manipulated in the ways

required for TQC. While there are signs of the existence of Ising anyons [86, 22, 76,

14, 36, 2], and proposals for the detection of Fibonacci anyons [74], one still needs

to be able to manipulate these anyons in a controlled manner to perform actual quan-

tum computation. That being said, there are some recent breakthroughs in simulating

nonabelions on quantum computers [42, 49].

Notes 2. • The treatment given here not only ignores various practical dif-

ficulties but also several important theoretical issues. One of these is that

it is unclear whether the representations obtained from anyons are irre-

ducible or not. Another one is that it is not obvious which anyons lead to

universal quantum computation. The papers cited at the beginning of this

section provide a more in-depth discussion of these problems.

• A famous conjecture [78] says that if ∑𝑎 𝑑
2
𝑎 ∉ ℕ, there are non-abelian

anyons whose braiding allows for universal quantum computing.

22

Chapter 2

From Fusion System to Unitary

Modular Fusion System

In the previous chapter, we saw how to describe processes with anyons via diagrams.

To do so, we started with a unitary fusion system and very quickly introduced the more

specialized unitary modular fusion system. This chapter aims to present the more gen-

eral fusion systems and to add structures, one by one until we arrive at the notion of a

unitary modular fusion system. It will also point out a relation between a fusion system

and a fusion category, but leave the exact details for Section 7.2. While not all fusion

systems are suitable to describe anyons, they still provide a powerful language that has

proven useful in bridging the gap between many research areas, such as knot theory

[54, 84, 83, 96], representation theory of weak Hopf algebras and quantum groups [54,

8], low-dimensional topology and topological field theory [97, 16, 8, 18, 98], topolog-

ical quantum computation [89, 87, 88, 103, 56], subfactor theory and planar algebras

[51, 44, 13, 30], vertex operator algebras and conformal field theory [75, 17, 30], etc.

The outline of this chapter is the following. The chapter starts by introducing the

notion of a (not necessarily unitary) fusion system in Section 2.1. In Section 2.2, we

will start adding extra structures to a fusion system. This way, we will arrive at the

notions of pivotal, spherical, braided, ribbon, and modular fusion systems. In Section

2.3, the notion of unitarity of fusion systems will be discussed. The chapter concludes

with Section 2.4 that discusses some of the challenges in research in fusion categories

andhow the rest of this thesis tackles someof these. Most of thematerial in this chapter

comes straight from [19], an excellent resource for people who want to bridge the

gap between the abstract fusion categories and the down-to-earth numerical fusion

systems.

2.1 Fusion Systems

The definition of a fusion system is closely related to that of a unitary fusion system,

given in Chapter 1.

Definition 2.1.1. A fusion system is a collection of data (L, ∗,N,F) where

23

1. L = {1,…, 𝑟}

2. ∗ ∶ L → L is a map for which 1∗ = 1 and (𝑎∗)∗ = 𝑎.

3. N = {𝑁𝑐
𝑎,𝑏| 𝑎, 𝑏, 𝑐 = 1,…, 𝑟} is a finite set of natural numbers that satisfy

𝑁𝑏
𝑎,1 = 𝑁𝑏

1,𝑎 = 𝛿𝑎
𝑏 , (2.1)

𝑁1
𝑎,𝑏 = 𝛿𝑎

𝑏∗ , (2.2)

𝑁𝑑
𝑎,𝑏,𝑐 ∶= ∑

𝑒
𝑁𝑒

𝑎,𝑏𝑁
𝑑
𝑒,𝑐 = ∑

𝑓
𝑁𝑑

𝑎,𝑓𝑁
𝑓
𝑏,𝑐. (2.3)

4. F = {[𝐹𝑎𝑏𝑐
𝑑] ∈ Mat𝑁𝑑

𝑎,𝑏,𝑐×𝑁𝑑
𝑎,𝑏,𝑐

| 𝑎, 𝑏, 𝑐, 𝑑 = 1,…, 𝑟} is a finite set of finite-dimensional

invertible matrices, with inverses {[̃𝐹𝑎𝑏𝑐
𝑑]}, that satisfy

[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1) ≠ 0, (2.4)

[𝐹1𝑏𝑐
𝑑] = 𝟙𝑁𝑑

𝑏,𝑐×𝑁𝑑
𝑏,𝑐
, (2.5)

[𝐹𝑎1𝑐
𝑑] = 𝟙𝑁𝑑

𝑎,𝑐×𝑁𝑑
𝑎,𝑐
, (2.6)

[𝐹𝑎𝑏1
𝑑] = 𝟙𝑁𝑑

𝑎,𝑏×𝑁𝑑
𝑎,𝑏
, (2.7)

[𝐹𝑓𝑐𝑑
𝑒](𝑔,𝛽,𝛾)(𝑙,𝜁 ,𝜀) [𝐹

𝑎𝑏𝑙
𝑒](𝑓,𝛼,𝜁)(𝑘,𝜃,𝜂) = ∑

ℎ,𝜄,𝜅,𝜆
[𝐹𝑎𝑏𝑐

𝑔](𝑓,𝛼,𝛽)(ℎ,𝜅,𝜄) [𝐹
𝑎ℎ𝑑
𝑒](𝑔,𝜅,𝛾)(𝑘,𝜃,𝜆)[𝐹

𝑏𝑐𝑑
𝑘](ℎ,𝜄,𝜆)(𝑙,𝜂,𝜀) , (2.8)

where whenever a zero dimensional matrix is encountered in a term, it is auto-

matically 0.

Note 2. We did not demand that 𝑁𝑐
𝑎,𝑏 = 𝑁𝑐

𝑏,𝑎, i.e. that fusion is commutative.

Neither did we demand that the 𝐹-matrices are unitary. The 𝑁𝑐
𝑎,𝑏 can still be

interpreted as the dimensions of fusion and splitting spaces, but these are now

just vector spaces instead of Hilbert spaces. There is no notion of a canonical

inner product for a generic fusion system.

Fusion systems are closely related to fusion categories. In [19] it is shown that each

fusion system gives rise to a unique fusion category. On the other hand, each fusion

category gives rise to an infinite number of fusion systems. This is because a choice of

bases, also called a choice of the gauge, for the various fusion spaces 𝑉𝑎,𝑏
𝑐 is required to

determine the 𝐹 matrices. Let the matrices [𝐺𝑎𝑏
𝑐], with inverses [�̃�𝑎𝑏

𝑐], represent basis

transformations (also called gauge transformations) of the various 𝑉𝑎,𝑏
𝑐 . The induced

transformations on the 𝐹-matrices are of the form

[𝐹𝑎𝑏𝑐
𝑑](𝑒,𝛼,𝛽)(𝑓,𝛾,𝛿) ↦ ∑

𝛼′,𝛽′,𝛾′,𝛿′
[𝐺𝑎𝑏

𝑒]𝛼
′

𝛼 [𝐺𝑒𝑐
𝑑]𝛽

′

𝛽 [𝐹
𝑎𝑏𝑐
𝑑](𝑒,𝛼

′,𝛽′)
(𝑓,𝛾′,𝛿′) [�̃�

𝑎𝑓
𝑑]𝛾

′

𝛾 [�̃�𝑏𝑐
𝑓]𝛿

′

𝛿 . (2.9)

For any solution {[𝐹𝑎𝑏𝑐
𝑑](𝑒,𝛼,𝛽)(𝑓,𝛾,𝛿)} to the pentagon equations,

{ ∑
𝛼′,𝛽′,𝛾′,𝛿′

[𝐺𝑎𝑏
𝑒]𝛼

′

𝛼 [𝐺𝑒𝑓
𝑑]𝛽

′

𝛽 [𝐹
𝑎𝑏𝑐
𝑑](𝑒,𝛼

′,𝛽′)
(𝛾′,𝛿′,𝛿′)[�̃�

𝑎𝑓
𝑑]𝛾

′

𝛾 [�̃�𝑏𝑐
𝑓]𝛿

′

𝛿 } (2.10)

24

is also a solution to the pentagon equations. So as long as the gauge transforms are

chosen such that (2.4), (2.5), (2.6) and (2.7) are satisfied for the new set of 𝐹-symbols

(which is always possible), we obtain a fusion system that corresponds to the same

fusion category.

A fusion system is called multiplicity-free if max{𝑁𝑐
𝑎,𝑏} = 1. For a multiplicity-

free fusion system, we use the notation [𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓 ∶= [𝐹𝑎𝑏𝑐

𝑑](𝑒,1,1)(𝑓,1,1) and the demands on the

𝐹-matrices simplify to

[𝐹𝑎𝑎∗𝑎
𝑎]11 ≠ 0, (2.11)

[𝐹1𝑏𝑐
𝑑] = [𝐹𝑎1𝑐

𝑑] = [𝐹𝑎𝑏1
𝑑] = 𝟙1×1, (2.12)

[𝐹𝑓𝑐𝑑
𝑒]𝑔𝑙 [𝐹

𝑎𝑏𝑙
𝑒]𝑓𝑘 = ∑

ℎ
[𝐹𝑎𝑏𝑐

𝑔]𝑓ℎ[𝐹
𝑎ℎ𝑑
𝑒]𝑔𝑘[𝐹

𝑏𝑐𝑑
𝑘]ℎ𝑙 . (2.13)

For a multiplicity-free fusion system each fusion and splitting space is one-dimensional

and, by writing 𝑔𝑎𝑏
𝑐 ∶= [𝐺𝑎𝑏

𝑐]11, the 𝐹-symbols transform as

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓 ↦

𝑔𝑎𝑏
𝑒 𝑔𝑒𝑐

𝑑

𝑔𝑎𝑓
𝑑 𝑔𝑏𝑐

𝑓

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓. (2.14)

Note 3. In contrast with [19], definition 2.1.1 demands that any vacuum 𝐹 ma-

trix is the identity. While actually only demand (2.6) is necessary, it is, without

loss of generality, always possible to satisfy (2.5) and (2.7) (see proposition 4.1.3

for a proof for the multiplicity-free case). The main difference between demand

(2.6) and demands (2.5) and (2.7) is that the latter two are not necessary and

only there to simplify calculations, while the first is equivalent to the triangle

equations (7.6) and thus necessary. The latter two also restrict the choice of

gauge, while the first does not.

The terms fusion system and fusion category will often be used interchangeably

in what follows. The latter is the more common term, while the former is, as far as I

am aware, only introduced in [19] to point out the relationship between the abstract

structure and the more down-to-earth, numerical description of a fusion category. For

most of this thesis, understanding the category theory is unnecessary. Therefore, the

categorical definition and its relation with the numerical description is postponed to

Section 7.2.

2.2 From Fusion System to Modular Fusion System

We start by adding a pivotal structure.

Definition 2.2.1.

• A pivotal fusion system (𝐋, ∗, 𝐍, 𝐅, 𝐏) is a fusion system together with a list of

25

phases 𝐏 = {𝑝𝑎 ∈ U(1)|𝑎 ∈ 𝐋}, called pivotal coeffictients, for which

𝑝1 = 1, (2.15)

𝑝𝑎 = 𝑝−1
𝑎∗ , (2.16)

𝑝𝑐

𝑝𝑎𝑝𝑏
=

𝑁𝑎∗
𝑏,𝑐∗

∑
𝑠=1

𝑁𝑏∗
𝑐∗,𝑎

∑
𝑡=1

[𝐹𝑎𝑏𝑐∗
1](𝑐,𝑖,1)(𝑎∗,1,𝑠)[𝐹

𝑏𝑐∗𝑎
1](𝑎

∗,𝑠,1)
(𝑏∗,1,𝑡)[𝐹

𝑐∗𝑎𝑏
1](𝑏

∗,𝑡,1)
(𝑐,1,𝑖) , (2.17)

for all 𝑖 ∈ {1,… ,𝑁𝑐
𝑎,𝑏}.

• The quantum dimensions {𝑑𝑎 ∈ ℂ|𝑎 ∈ 𝐿} of a pivotal fusion system are defined

as

𝑑𝑎 ∶=
𝑝𝑎

[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1)

. (2.18)

• The pivotal structure 𝐏 is called spherical if 𝑑𝑎 = 𝑑𝑎∗ for all 𝑎 ∈ 𝐋. In this case,

the pivotal fusion system is called a spherical fusion system.

It might seem odd that we need to add an extra structure in order to be able to

define the quantum dimensions of a fusion system, whereas, in the previous chapter,

we did not make such demands. This is because, in the previous chapter, we worked

with a unitary fusion system, where the values of the quantum dimensions are fixed

by definition. Section 2.3 expands more on this subtlety.

The pivotal coefficients are also gauge-dependent. A gauge-transform, with matri-

ces [𝐺𝑎𝑏
𝑐], has the following effect

𝑝𝑎 ↦
[𝐺𝑎𝑎∗

1]11[𝐺
1𝑎
𝑎]11

[𝐺𝑎1
𝑎]11[𝐺

𝑎∗𝑎
1]11

𝑝𝑎 =
[𝐺𝑎𝑎∗

1]11
[𝐺𝑎∗𝑎

1]11
𝑝𝑎, (2.19)

where the last equality comes from the fact that the vacuum 𝐹-symbols are not allowed

to change, and thus [𝐺1𝑎
𝑎]11/[𝐺

𝑎1
𝑎]11 = 1. The reason this is the correct transform comes

from a categorical argument. For a pivotal fusion category, the quantum dimensions 𝑑𝑎
are defined in a basis-independent manner (see 7.1.21) and must therefore be gauge-

invariant. Since the quantum dimensions are gauge-invariant, 𝑝𝑎 must transform the

same way as [𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1), i.e., as in equation 2.19.

We can also add a braided structure to a fusion system independent of a pivotal

structure.

Definition 2.2.2.

• A braided fusion system (𝐋, ∗, 𝐍, 𝐅, 𝐑) is a fusion system together with a finite

list 𝐑 of invertible matrices {[𝑅𝑎𝑏
𝑐] ∈ Mat𝑁𝑎,𝑏

𝑐 ×𝑁𝑎,𝑏
𝑐
(ℂ)| 𝑎, 𝑏, 𝑐 = 1,…, 𝑟}, with in-

26

verses {[̃𝑅𝑎𝑏
𝑐]}, that satisfy the hexagon equations:

∑
𝜆,𝛾

[𝑅𝑐𝑎
𝑒]𝛼𝜆[𝐹

𝑎𝑐𝑏
𝑑](𝑒,𝜆,𝛽)(𝑔𝜇,𝛾,𝛾)[𝑅

𝑐𝑏
𝑔]𝛾𝜈 = ∑

𝑓,𝜎,𝛿,𝜓
[𝐹𝑐𝑎𝑏

𝑑](𝑒,𝛼,𝛽)(𝑓,𝜎,𝛿)[𝑅
𝑐𝑓
𝑑]𝜎𝜓[𝐹

𝑎𝑏𝑐
𝑑](𝑓,𝛿,𝜓)

(𝑔,𝜇,𝜈) , (2.20)

∑
𝜆,𝛾

[̃𝑅𝑎𝑐
𝑒]𝛼𝜆[𝐹

𝑎𝑐𝑏
𝑑](𝑒,𝜆,𝛽)(𝑔,𝜇,𝛾)[̃𝑅𝑏𝑐

𝑔]𝛾𝜈 = ∑
𝑓,𝜎,𝛿,𝜓

[𝐹𝑐𝑎𝑏
𝑑](𝑒,𝛼,𝛽)(𝑓,𝜎,𝛿)[̃𝑅𝑓𝑐

𝑑]𝜎𝜓[𝐹
𝑎𝑏𝑐
𝑑](𝑓,𝛿,𝜓)

(𝑔,𝜇,𝜈) . (2.21)

• A ribbon fusion system is a spherical braided fusion system.

• A modular fusion system (𝐋, ∗, 𝐍, 𝐅, 𝐏, 𝐑) is a ribbon fusion system for which the

matrix ̂𝑆 ∈ Mat𝑟×𝑟(ℂ), whose entries are given by

[̂𝑆]𝑎𝑏 =
𝑟
∑
𝑐=1

𝑁𝑐
𝑎,𝑏∗

∑
𝑖=1

𝑁𝑎
𝑐,𝑏

∑
𝑗=1

𝑁𝑐
𝑏∗,𝑎

∑
𝑖′=1

𝑁𝑐
𝑎,𝑏∗

∑
𝑖″=1

[̃𝐹𝑎𝑏∗𝑏
𝑎](1,1,1)(𝑐,𝑖,𝑗) [𝑅

𝑏∗𝑎
𝑐]𝑖𝑖′[𝑅

𝑎𝑏∗
𝑐]𝑖

′

𝑖″[𝐹
𝑎𝑏∗𝑏
𝑎](𝑐,𝑖

″,𝑗)
(1,1,1), (2.22)

is invertible.

Each of the systems above defines a fusion category, with the corresponding adjec-

tives, that is unique up to equivalence. See Section 7.2 for the exact correspondences.

Just like the𝐹-symbols andpivotal coefficients, the𝑅-symbols are gauge-dependent.

A gauge-transform, with matrices [𝐺𝑎𝑏
𝑐], has the following effect

[𝑅𝑎𝑏
𝑐]𝛼𝛽 ↦ ∑

𝛾,𝛿
[�̃�𝑏𝑎

𝑐]𝛼𝛾 [𝑅
𝑎𝑏
𝑐]𝛼𝛽[𝐺

𝑎𝑏
𝑐]𝛽𝛿 . (2.23)

If the underlying fusion system is multiplicity-free, then several formulas are simpli-

fied. The pivotal equations lose the summation on the RHS and are simplified to

𝑝𝑐

𝑝𝑎𝑝𝑏
= [𝐹𝑎𝑏𝑐∗

1]𝑐𝑎∗[𝐹
𝑏𝑐∗𝑎
1]𝑎

∗

𝑏∗ [𝐹
𝑐∗𝑏𝑎
1]𝑏

∗

𝑐 . (2.24)

Let 𝑅𝑎𝑏
𝑐 ∶= [𝑅𝑎𝑏

𝑐]11 then the hexagon equations simplify to

𝑅𝑐𝑎
𝑒 [𝐹𝑎𝑐𝑏

𝑑]𝑒𝑔𝑅
𝑐𝑏
𝑔 = ∑

𝑓
[𝐹𝑐𝑎𝑏

𝑑]𝑒𝑓𝑅
𝑐𝑓
𝑑 [𝐹𝑎𝑏𝑐

𝑑]𝑓𝑔, (2.25)

̃𝑅𝑎𝑐
𝑒 [𝐹𝑎𝑐𝑏

𝑑]𝑒𝑔 ̃𝑅𝑏𝑐
𝑔 = ∑

𝑓
[𝐹𝑐𝑎𝑏

𝑑]𝑒𝑓 ̃𝑅𝑓𝑐
𝑑 [𝐹𝑎𝑏𝑐

𝑑]𝑓𝑔. (2.26)

Equations (2.34) and (2.35) respectively simplify to

𝜃𝑐

𝜃𝑎𝜃𝑏
= 𝑅𝑎𝑏

𝑐 𝑅𝑏𝑎
𝑐 , ∀𝑎, 𝑏, 𝑐 ∈ 𝐋,with 𝑁𝑐

𝑎,𝑏 ≠ 0 (2.27)

𝜃𝑎 =
1
𝑑𝑎

𝑟
∑
𝑐=1

𝑑𝑐𝑅
𝑎𝑎
𝑐 , (2.28)

and the matrix ̂𝑆 ∈ Mat𝑟×𝑟(ℂ), for a multiplicity-free ribbon category has entries

[̂𝑆]𝑎𝑏 =
𝑟
∑
𝑐=1

[̃𝐹𝑎𝑏∗𝑏
𝑎]1𝑐𝑅

𝑏∗𝑎
𝑐 𝑅𝑎𝑏∗

𝑐 [𝐹𝑎𝑏∗𝑏
𝑎]𝑐1. (2.29)

27

For the multiplicity-free case, the gauge transforms (2.19) and (2.23) also simplify to

𝑝𝑎 ↦
𝑔𝑎𝑎∗
1

𝑔𝑎∗𝑎
1

𝑝𝑎 (2.30)

𝑅𝑎𝑏
𝑐 ↦

𝑔𝑎𝑏
𝑐

𝑔𝑏𝑎
𝑐
𝑅𝑎𝑏
𝑐 . (2.31)

Notes 3.

• The origin of the equations (2.15), (2.16), and (2.17) is described in [19].

They stem from the fact that 𝑥∗∗ ≅ 𝑥 in the categorical language rather

than 𝑥∗∗ = 𝑥. For several formulas, including the one to calculate quantum

dimensions, a set of isomorphisms 𝜓𝑥 ∶ 𝑥∗∗ → 𝑥 is required to match the

input and output of various morphisms properly. Requiring that a given set

of isomorphisms {𝜓𝑥} behaves naturally with respect to the tensor product

comes down to demanding the pivotal equations.

• For each ribbon fusion system, there exists a canonical list of gauge-

independent phases, also called twists, 𝐓 = {𝜃𝑖 ∈ U(1)|𝑖 ∈ 𝐋} that satisfy

equations

𝜃1 = 1, (2.32)

𝜃𝑎 = 𝜃𝑎∗ , (2.33)
𝜃𝑐

𝜃𝑎𝜃𝑏
= ∑

𝛽,𝛾
[𝑅𝑎𝑏

𝑐]𝛾𝛽[𝑅
𝑏𝑎
𝑐]𝛽𝛾 , (2.34)

𝜃𝑎 =
1
𝑑𝑎

𝑟
∑
𝑐=1

∑
𝛼

𝑑𝑐[𝑅
𝑎𝑎
𝑐]𝛼𝛼. (2.35)

Often, the definition of a ribbon structure on a monoidal category (see, e.g.,

[25]) only demands that the first three equalities (2.32), (2.33), and (2.34)

hold. These are independent of the pivotal structure, and there could be

multiple ribbon structures that one can put on a braided category. One

could, therefore, also investigate the notion of non-spherical ribbon cate-

gories. Such ribbon categories do not admit the twist’s interpretation as a

combination of a braid with caps and cups (which is, in essence, what equa-

tion (2.35) demands). The authors of some books, including [25], there-

fore identify ribbon fusion categories with braided spherical categories.

Note that the twists are gauge-independent.

• The 𝑆-matrix of a modular fusion system is defined as

[𝑆]𝑎𝑏 = 𝑑𝑎𝑑𝑏[̂𝑆]𝑎𝑏 . (2.36)

It can be shown that it is, up to scaling, always a unitary matrix [27]. The

rank of 𝑆 equals that of ̂𝑆, but typically, ̂𝑆 has a nicer form. Moreover, ̂𝑆

28

can be defined independent of the specific pivotal structure, so to calculate

the 𝑆-matrix for multiple pivotal fusion systems with the same 𝐹 and 𝑅-

symbols, one only has to calculate ̂𝑆 once.

• Let 𝑇 be an 𝑟 × 𝑟 matrix with entries

[𝑇]𝑎𝑏 ∶= 𝛿𝑎
𝑏𝜃𝑎, (2.37)

then, for a modular fusion system, 𝑆 and 𝑇 satisfy

(𝑆𝑇)3 = 𝜆𝑆2, (2.38)

𝑆4 = 1 (2.39)

for some 𝜆 ∈ ℂ× [25]. They define a projective representation of the mod-

ular group SL2(ℤ), hence the origin of the adjective ‘modular’.

• Via a construction known as the center of a category, one can construct

modular fusion categories from spherical fusion categories [77]. This is yet

another reason why it is interesting to study more general fusion categories

than just modular ones.

2.3 Unitary Fusion Systems

Not demanding unitarity from the start makes it easier to see several subtleties that

were otherwise hidden. One of these subtleties is the existence (and choice) of dif-

ferent pivotal and possibly non-spherical structures. In the previous chapter, we did

not choose a pivotal structure for the fusion system because the fusion system corre-

sponded to a unitary fusion category. This is a fusion category that comes with a Her-

mitian structure, †, that satisfies several properties (see, e.g., [40, 48] for a definition).

The Hermitian structure defines the notion of unitary maps and can, in particular, be

used to define cups and caps that can be stacked on each other to calculate the quan-

tum dimensions 𝑑𝑎 [50, 106, 105]. The quantum dimensions, arising this way, satisfy

𝑑𝑎 = FPDim(𝑎). The dagger also fixes a spherical pivotal structure P, which, for the

corresponding fusion system, is given by {𝑝𝑎 = 𝑑𝑎[𝐹
𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1)| 𝑎 ∈ L}. This spherical

structure is also called the canonical spherical structure of the unitary fusion category.

While a priori, it looks like there might be multiple Hermitian structures that one can

put on a fusion category, it was recently shown in [85] that any unitarizable fusion cat-

egory admits a unique unitary structure (up to unitary monoidal equivalence). There-

fore, the canonical spherical structure can be implicitly included in the definition of a

unitary fusion category.

The link between a unitary fusion category and a fusion system is the following.

If a fusion system has a gauge for which its 𝐹-matrices are unitary, then its category

can always be made into a unitary category via the choice of an appropriate Hermitian

structure (see [106], part 4). Now, define a unitary fusion system as follows.

29

Definition 2.3.1. A unitary fusion system is a spherical fusion system (L, ∗,N,F,P) for

which the 𝐹-matrices are unitary and the quantum dimensions satisfy 𝑑𝑎 = FPDim(𝑎).

For a unitary category, there always exists a gauge choice for which the 𝐹-symbols

of the corresponding spherical fusion system are unitary. So, the notion of a unitary

fusion system is equivalent to that of a unitary fusion category.

Note 4. In the previous chapter, we already introduced a unitary fusion system

as a fusion system with unitary 𝐹-symbols and a specific Hermitian structure

that gives rise to positive quantum dimensions. That definition is equivalent to

definition 2.3.1 but not as practical so we will use definition 2.3.1 from now on.

It is important to remember that if the𝐹-matrices of a fusion systemare unitary, one

could still choose a (spherical) pivotal structure that is not canonical. For example, any

fusion system with a fusion ring corresponding to the group algebra ℤ3 has unitary 𝐹-

symbols, but there are multiple non-spherical pivotal structures for which the quantum

dimensions are not positive. We will not call these fusion systems unitary but rather

say that they admit a unitary gauge.

The definition of unitarity of a fusion category can be extended to braided, ribbon,

and modular fusion categories by demanding that the braided and ribbon structures

are compatible with the unitary structure. In the paper [40], these demands are written

out, and the following statements are proven:

• If a unitary fusion category admits a braiding, it is automatically a unitary braided

fusion category.

• every unitary braided fusion category admits a unique unitary ribbon structure.

This ribbon structure is the canonical ribbon structure that comes from the canon-

ical spherical structure in combination with the braiding.

In particular, a unitary braided fusion category is immediately a ribbon fusion category.

We will therefore use the following definitions

Definitions 2.3.2.

• A unitary braided fusion system, or equivalently a unitary ribbon fusion sys-

tem, is a ribbon fusion system (𝐋, ∗, 𝐍, 𝐅, 𝐏, 𝐑) for which (𝐋, ∗, 𝐍, 𝐅, 𝐏) form a uni-

tary fusion system and the 𝑅-matrices are unitary matrices.

• A unitary modular fusion system is a unitary ribbon fusion system for which

the matrix ̂𝑆 is invertible.

We end this chapter by noting that not all fusion categories are unitary. Typically,

the non-unitary categories lead to a much richer variety of examples. This is because

the cascade of canonical structures that follow from the Hermitian structure of a uni-

tary category is not there for a generic category. Therefore, one can put many more

combinations of different structures on non-unitary categories.

30

Note 5. The demand that the 𝐹-and 𝑅-symbols of a unitary fusion system are

unitary is out of convenience rather than necessity. Since such a basis always

exists and it is not hard to find (see Section 4.1.9 for an algorithm) this should

cause no issues in practice.

2.4 The Landscape of Fusion Categories

Aswehave seen, every fusion category is fully determinedby a fusion system (L, ∗,N,F).
The mathematical structure that captures the properties of L, ∗, andN is that of a fusion

ring [25], which is defined as follows.

Definitions 2.4.1. A ℤ+-ring is an associative unital ring ℛ ≡ (ℛ, 𝐵, 1,×,+), finitely

generated and free as a ℤ-module, which is equipped with a distinguished basis 𝐵 such

that 1 ∈ 𝐵 and for which the structure constants {𝑁𝑐
𝑎𝑏} are non-negative.

A fusion ring ℛ ≡ (ℛ, 𝐵, 1,×,+, ∗) is a ℤ+ ring with basis 𝐵 and a linear involution

⋅∗ ∶ 𝑎 ↦ 𝑎∗ such that𝑁1
𝑎,𝑏∗ = 𝛿𝑎𝑏 and𝑁𝑐

𝑎,𝑏 = 𝑁𝑏
𝑎∗,𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝐵. The size of 𝐵 is called

the rank of the fusion ring, and the number max{𝑁𝑐
𝑎,𝑏} is called the multiplicity of

the fusion ring. If the multiplicity of a fusion ring is 1 we say the ring is multiplicity-

free. We also say that 𝐵 generates ℛ and write ℛ = ⟨𝐵⟩ ≡ ⟨𝜓1,… ,𝜓𝑟⟩.

Notes 4.

• Fromnowon, wewill reserve the notationℛ for a fusion ring, 𝐵 for its basis,

𝑟 for its rank, 𝑚 for its multiplicity, and 𝑁𝑐
𝑎,𝑏 for its structure constants. We

will always use the convention that the basis of a fusion ring is ordered so

that its unit is the first element in this ordering. By a fusion ring automor-

phism, we mean a map 𝜎 ∶ 𝐵 → 𝐵 that satsifies𝑁𝜎(𝑐)
𝜎(𝑎),𝜎(𝑏) = 𝑁𝑐

𝑎,𝑏, ∀𝑎, 𝑏, 𝑐 ∈ 𝐵
is meant.

• Since a fusion ring is entirely determined by a finite set of integer structure

constants {0 ≤ 𝑁𝑐
𝑎,𝑏 ≤ 𝑚| 𝑎, 𝑏, 𝑐 = 1,…, 𝑟}, there are only a finite number

of fusion rings for a given rank 𝑟 and multiplicity 𝑚.

A fusion ring is the only required information to set up the necessary constraints

(2.4), (2.5), (2.6), (2.7), and (2.8) on the 𝐹-symbols in order to obtain a fusion sys-

tem. These constraints form a system of polynomial equations and inequalities. Such

a system is, in theory, always algorithmically solvable, but it could be that the solution

set is empty. Solving these equations is also known as categorifying the fusion ring.

Most known fusion categories are of some ‘standard form’, a combination of these

(via, e.g., tensor products), modifications of these (via, e.g., zesting [21]) or extensions

of these (via, e.g., constructions such as the Tambara-Yamagami or Haagerup-Izumi

categories (see Section 3.4.1)). By a standard form I1 mean that the fusion ring is one

1Different authors might have different opinions on what should be regarded as standard.

31

of the following:

• A group ring of a finite group.

• A ring of finite dimensional irreps of a finite group with the product being the

tensor product.

• A fusion ring coming from the representation theory of quantum groups at roots

of unity. (see [92] for a gentle introduction)

To what extent these standard categories populate the landscape of fusion categories

is unknown. In order to get an overview of a small part of the landscape of fusion

categories one could theoretically, apply the following approach:

1. Fix a multiplicity 𝑚, and a rank 𝑟.

2. Find all fusion rings with this rank and multiplicity.

3. Solve the pentagon equations per fusion ring found.

4. Solve the pivotal and hexagon equations per solution to the pentagon equations.

5. For each triple of 𝐹-symbols, 𝑅-symbols (possibly empty), and pivotal coeffi-

cients (possibly empty but not for any of the categories we considered), calculate

all other properties such as the quantum dimensions, twists, and the 𝑆-matrix.

If one fixes the multiplicity 𝑚 and lists fusion rings by their rank 𝑟, one gets a tree

of possible fusion categories per fixed value of 𝑚. While the standard constructions

typically provide several categories for each rank 𝑟 and thus descend deep into these

trees, the approach above produces all categories per rank, i.e., it goes wide into the

tree (see Figure 2.1).

There are several caveats when applying this strategy, however.

1. Firstly, due to gauge symmetry, there are an infinite number of solutions to the

consistency equations that, in essence, describe the same fusion system. With-

out breaking this gauge symmetry beforehand, solving the consistency equations

is only possible for the simplest examples. For fusion rings with multiplicity, i.e.,

with 𝑁𝑐
𝑎,𝑏 > 1 for some labels, I failed to find a general way to break this symme-

try. This made it very hard for me to solve the pentagon equations for the case

with multiplicity, even for the smallest ranks. If the fusion ring is multiplicity-

free, though, the symmetry transformations have a simple form, and we can get

rid of this symmetry before solving the pentagon equations. I, therefore, decided

to restrict my attention to the categorification of multiplicity-free fusion rings.

2. Secondly, while theoretically, any set of polynomial equations can be solved al-

gorithmically, there are some serious limits on the systems for which this can be

done in practice. A system of polynomial equations is algorithmically solved by

finding a suitable Gröbner basis that brings the system of equations into an “up-

per triangular” form. By this, we mean a new, typically smaller, system with the

32

. . .

. . . m = n

. . .

. . .

. . .

. . .

. . .

. . .

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

m = 2m = 1

r = 1

r = 2

r = 3

r = k

Set of fusion categories with the same fusion ring

Paths of fusion categories obtained via some constructions,
e.g., SU(2)k categories. Some constructions provide categories,
e.g., SU(3)k categories, with increasing multiplicity (dashed line)

,

Categories found using a breadth-first search

=

=

=

Figure 2.1: By fixing amultiplicity𝑚 and listing fusion rings by rank 𝑟, one can visualize
the landscape of fusion categories as a series of trees. While the standard constructions
cut out deep paths in these trees, our approach cuts out a wide area in the 𝑚 = 1 tree.

same roots as the original one, but from which one can find all roots by only solv-

ing polynomial equations in one variable. Most computer algebra systems have

standard built-in algorithms to calculate Gröbner bases, such as Buchberger’s

original algorithm [11], or the more recent and more optimized F4 [34] and F5

[33] algorithms. We found that none of these algorithms is capable of solving

the pentagon equations, without some serious pre-processing of the system. The

number of equations and 𝐹-symbols just grows too fast with the rank of the fusion

ring (see figure 2.2 for the exact numbers).

By using methods specifically designed for solving pentagon and hexagon equations,

I believe2 we found all multiplicity-free pivotal3 fusion categories up to rank seven,

however. Much of the progress in solving these equations comes from methods and

heuristics aimed at reducing sparse systems of polynomial equations. While these

methods were written to solve pentagon and hexagon equations, it soon became clear

that they are more widely applicable. Therefore we decided to create the Anyonica

package [100].

Anyonica has multiple use cases. For one, it is meant to ease research in the theory

of anyon models and, more generally, fusion categories. To this end, it contains lists of

fusion rings and categories together with all the relevant data we could find. Moreover,

many functions have been implemented to aid in finding properties of fusion rings and

categories and transforming and or combining them. The second way in which the

package is useful is via the many specialized functions it provides for reducing large

2See the notes at the end of this Section for why this is a statement of informed faith, rather than one
of absolute truth

3If all fusion categories with PSU(2)12 fusion rules are pivotal then we found all multiplicity-free fusion
categories up to rank seven.

33

1

10

100

1000

104

105

106

N
u
m
b
e
r
o
f
P
e
n
ta
go
n
E
q
u
at
io
n
s

0 20 40 60 80 100

10

100

1000

104

Position in List of Fusion Rings

N
u
m
b
e
r
o
f
F
-
S
y
m
b
o
ls

Figure 2.2: Number of pentagon equations and 𝐹-symbols per fusion ring. The num-
bers on the horizontal axis correspond to the position of the fusion ring in the list
of multiplicity-free fusion rings in Section 8. Here, we assumed that the vacuum 𝐹-
symbols are already known and the trivial pentagon equations have already been re-
moved. This is also why the trivial ring (at position 1) has no data.

34

systems of polynomial equations. Different reduction techniques and heuristics can

and have been applied for solving both the pentagon and hexagon equations as well as

for other systems of polynomial equations, such as the equations governing anyons on

wire networks [68]. The package, written in the Wolfram Language, a.k.a. Mathemat-

ica, is freely available on https://github.com/gert-vercleyen/Anyonica.

The next part of the thesis explains the various algorithms developed and how they

helped find fusion categories. Also, small examples of code will be provided to illus-

trate how the Anyonica package can be used. Most of the examples will focus on the

fusion ring FR3,1,0
2 = Rep(𝐷3) which has the following fusion rules

1 2 3

2 1 3

3 3 1 + 2 + 3

.

These examples should be regarded as if they belong to the same Mathematica session,

so if the variable repD3 is defined in one example, it must be assumed that it is acces-

sible in the other examples as well. Although the programming style and keywords are

those of the Wolfram Language, the code should be as readable as any pseudo-code.

Notes 5. • Ideally, one would first look at the classification of fusion rings

before classifying fusion categories. The defining properties of a fusion

ring are only a slight generalization of those that define a group. Indeed,

any group ring is a fusion ring, and for any fusion ring ℛ, demanding that

𝑎 × 𝑎∗ = 1 for all 𝑎 ∈ ℛ comes down to demanding that ℛ is a group ring.

This means that classifying fusion rings is at least as hard as classifying

finite groups, and there is little hope that all fusion rings will be classified

soon.

• There is no reason to believe that there won’t be a generic algorithm that

can tackle the pentagon equations sometime in the future. Often, a direct

Gröbner basis calculation is thought to be undoable since theoretically (see

[24]) the largest degree of an element of a Gröbner basis is bounded above

by

2(
𝑑2

2
+ 𝑑)

2𝑛−2

, (2.40)

with 𝑑 the highest degree of the input polynomials (always 3 in our case),

and 𝑛 the number of variables (easily larger than 100 for fusion rings of

rank 5 or higher as can be seen in figure 2.2). While there exist polyno-

mial systems for which such a degree is obtained [72], we found that the

pentagon equations typically can be reduced to a Gröbner basis of a degree

of the order of 𝑟. The double exponential asymptotic scaling in time and

memory of Gröbner basis algorithms might be correct for arbitrary sys-

35

https://github.com/gert-vercleyen/Anyonica

tems of polynomial equations but the pentagon and hexagon equations are

in no way arbitrary. There is a lot of structure behind these equations that

is not taken into account in an expression for a bound like (2.40).

• Some other efforts at achieving similar results have also been made. These

will be reviewed in Section 4.6.

• Besides the gauge symmetry, one would ideally also like to break permuta-

tion symmetry, coming from the fusion ring automorphisms. However, we

did not attempt to break this symmetry while solving the consistency equa-

tions and only removed equivalent solutions afterward. One of the reasons

this workflow was chosen is that it is very hard to get rid of this symmetry

beforehand. The complexity of the workflow would also increase a lot by

adding intermediate steps to hunt down these redundancies. It might be in-

teresting or even necessary to add this functionality in order to categorify

larger rings with bigger groups of automorphisms.

• The completeness of the classification of all multiplicity-free fusion cate-

gories up to rank seven depends on symbolic computer algorithms. These

algorithms have been tested over several years, and up to rank six, the re-

sults look in line with theory. Each time the consistency equations were

solved, the solver created log files. These log files contain reports on when

and why intermediate solutions to parts of the systems were refused. They

also allow us to check the calculations without the need to redo them

again. Even though the algorithms rely on exact methods, they are still

programmed by a non-perfect human (me) in a high-level language (the

Wolfram Language) that can and does contain bugs. If there is anything I

have learned throughout my Ph.D., then it is that one should never unques-

tioningly trust a computer.

36

Part II

Finding Fusion Categories

37

Chapter 3

Finding Fusion Rings

We start our quest to find fusion categories by searching for fusion rings. In this chap-

ter we take the viewpoint that fusion rings are interesting structures in their own right.

We will, therefore, also search for fusion rings of higher multiplicity despite the fact

that the categories of interest are multiplicity-free. As a side quest, we will also delve

a bit deeper in the structure of non-commutative fusion rings and introduce a recipe

for creating so called SONGs (Single Orbit Normal Group fusion rings).

The explanation of the algorithm, together with a quick overview of the results

it brought forth, are described in section 3.1. Section 3.2 discusses a canonical nam-

ing scheme for fusion rings, and Section 3.3 deals with methods for finding fusion ring

characters and modular data for commutative fusion rings. In section 3.4 we introduce

a method to create generalizations of the Tambara-Yamagami and Haagerup Izumi fu-

sion rings, which we call songs. Furthermore, the structure of non-commutative fusion

rings with a subgroup is reviewed, and the one-and two-particle extensions of groups

are classified.

3.1 Algorithm

Any fusion ring ℛ of rank 𝑟 and multiplicity 𝑚 is entirely determined by a set of struc-

ture constants{0 ≤ 𝑁𝑐
𝑎,𝑏 ≤ 𝑚| 𝑎, 𝑏, 𝑐 = 1,… , 𝑟}. Therefore, the search for fusion rings

can be reduced to filling three-dimensional tables with natural numbers such that the

defining properties, like associativity, unitality, etc, are apparent.

Several algorithms for doing this exist. One could, e.g., try using brute force to

generate all integer rings of a certain rank and multiplicity and filter those that do not

satisfy the requirements of a fusion ring. Even after breaking symmetry and reducing

the number of variables (see sections 3.1.1 and 3.1.2), this method quickly becomes

unfeasible, as can be seen in table 3.1.

Another strategy (see [41]) consists of simultaneously diagonalising the fusion ma-

trices of the particles, which is always possible if all fusion matrices commute. For

non-commutative fusion rings one can only guarantee a block diagonal form and this

method becomes quite cumbersome to implement. Instead, we built an algorithm

based on a backtracking approach or tree search. This is a classical method that is

39

3 4 5 6 7 8 9
1 2.0 × 101 1.2 × 103 1.1 × 106 3.5 × 1010 7.3 × 1016 1.9 × 1025 1.3 × 1036

2 9.0 × 101 6.1 × 104 3.5 × 109 5.0 × 1016 5.2 × 1026 1.2 × 1040 1.8 × 1057

3 2.7 × 102 1.1 × 106 1.1 × 1012 1.2 × 1021 5.2 × 1033 3.7 × 1050 1.8 × 1072

4 6.5 × 102 9.8 × 106 9.6 × 1013 2.9 × 1024 1.4 × 1039 5.2 × 1058 7.5 × 1083

5 1.3 × 103 6.1 × 107 3.7 × 1015 1.7 × 1027 3.8 × 1043 2.3 × 1065 2.4 × 1093

6 2.5 × 103 2.8 × 108 8.0 × 1016 3.8 × 1029 2.1 × 1047 9.7 × 1070 2.6 × 10101

7 4.2 × 103 1.1 × 109 1.2 × 1018 4.1 × 1031 3.7 × 1050 7.2 × 1075 2.3 × 10108

8 6.6 × 103 3.5 × 109 1.2 × 1019 2.5 × 1033 2.7 × 1053 1.4 × 1080 3.2 × 10114

Table 3.1: Size of the search space of fusion rings of rank 𝑟 (columns) and multiplicity
𝑚 (rows) with two significant digits after reduction of the number of variables and
symmetry breaking.

also used to, e.g., solve sudokus, a problem that is of exactly the same nature as ours.

Before delving into the details of the algorithm, we first present some general results

and techniques that were applied to make the task more tractable.

3.1.1 Reducing the Number of Variables

There are relations between the structure constants that can be used to reduce the

number of variables greatly. From the definition of a fusion ring, it follows that

𝑁𝑐
𝑎,𝑏 =

𝑟
∑
𝑒=1

𝑁𝑒
𝑎,𝑏𝑁

1
𝑒,𝑐∗ =

𝑟
∑
𝑓=1

𝑁1
𝑎,𝑓𝑁

𝑓
𝑏,𝑐∗ = 𝑁𝑎∗

𝑏,𝑐∗ . (3.1)

Combined with the relations 𝑁𝑐
𝑎,𝑏 = 𝑁𝑏

𝑎∗,𝑐 we obtain

𝑁𝑐
𝑎,𝑏 = 𝑁𝑏

𝑎∗,𝑐 = 𝑁𝑎
𝑐,𝑏∗ = 𝑁𝑎∗

𝑏,𝑐∗ = 𝑁𝑏∗
𝑐∗,𝑎 = 𝑁𝑐∗

𝑏∗,𝑎∗ , (3.2)

which we will call pivotal relations. A reduced set of fusion coefficients can be obtained

using the pivotal relations. Since these relations depend on the number 𝑠 of self-dual

particles, we will assume from here on that we are searching for fusion rings with a

fixed value for 𝑠. One only needs to apply the algorithm to each of the ⌊ 𝑟+12 ⌋ values of

𝑠 to find all fusion rings of rank 𝑟 and multiplicity 𝑚.

3.1.2 Breaking Permutation Symmetry

When expressing structure constants using tables, a labelling of the elements of the

basis 𝐵 is implicitly made. Any relabeling of the elements of 𝐵 results in a table of

structure constants that describe the same ring. In particular, for every fusion ring of

rank 𝑟, there are up to 𝑟! different, yet equivalent, tables of structure constants. This

redundancy dramatically increases the work of searching for fusion rings by construct-

ing multiplication tables.

40

One way to break this symmetry slightly is by numbering the basis elements and

demanding that the first element is the unit element. We can break the symmetry fur-

ther by requiring that all self-dual elements appear before the non-self-dual elements,

and all non-self-dual elements are grouped in pairs. To break the symmetry even fur-

ther, we added a set of constraints on the structure constants to the set of associativity

relations. To explain the idea behind these constraints, we will first assume that all

particles are self-dual and later generalise to generic fusion rings. The constraints are

built up by looking at a particle that is not the unit, demanding it will be the 2nd par-

ticle and sorting the other particles based on their fusion with this particle. Doing so

gives a candidate for the 3rd particle. Then we demand that all particles, apart from

the 1st, 2nd, and 3rd particle, whose positions are not uniquely fixed by their fusion

with the 2nd particle, are sorted by their fusion with the 3rd particle. A candidate for

the 4th particle is then given, and we can continue this way until all particle labels are

fixed. To apply this scheme, we need to define an ordering of a set of particles {𝜓𝑖}
that is solely based on their fusion with a given particle, say 𝜓𝑎. We used the function

𝜄𝑎 ∶ 𝑖 ↦ 𝑁 𝑖
𝑎,𝑖 for this. Practically this means that we demand that for particle 𝜓2 the

following inequalities

𝜄2(𝑗) ≤ 𝜄2(𝑗 + 1), (3.3)

for 𝑗 = 3, 4,… , 𝑟 − 1, hold. For some particles 𝜓𝑖, 𝜓𝑘 we still might have that 𝜄2(𝑖) =
𝜄2(𝑘). Those particles are then sorted further using the values of 𝜄3, which yields the

following inequalities

¬(𝜄2(𝑗) = 𝜄2(𝑗 + 1)) ∨ (𝜄3(𝑗) ≤ 𝜄3(𝑗 + 1)), (3.4)

for 𝑗 = 4, 5,… , 𝑟 − 1. Applied to all particles {𝜓2,… ,𝜓𝑟} we get

¬(
𝑖−1

⋀
𝑛=2

𝜄𝑛(𝑗) = 𝜄𝑛(𝑗 + 1)) ∨ (𝜄𝑖(𝑗) ≤ 𝜄𝑖(𝑗 + 1)) , (3.5)

for 𝑖 = 2,… , 𝑟, 𝑗 = 𝑖 + 1,… , 𝑟 − 1. Although equations (3.5) break some symmetry,

it is clear that there is still redundancy in the choice of the 2nd particle. Furthermore,

there might also be multiple choices for the 3rd particle since the order of the particles,

determined by fusion with the 2nd particle, is not strict. The same is true for the 4th
particle and so on. To reduce this redundancy, we demand that the 2nd particle should

be such that 𝑟
∑
𝑖=1

𝜄2(𝑖) ≥
𝑟
∑
𝑖=1

𝜄𝑘(𝑖), (3.6)

for 𝑘 = 3,… , 𝑟. For the 3rd, 4th, and other particles, a similar set of inequalities can be

constructed, but we can only compare with particles that could not be distinguished

by all previous particles. These extra constraints become so tedious that considering

them only increases computation time. Therefore we only added constraints (3.6) to

the set of constraints.

Now assume not all particles are self-dual. In this case, we can still apply symmetry

41

Figure 3.1: Procedure for finding solutions to a system of constraints applied to a sys-
tem of 3 equations in 4 unknowns with values in {0, 1}. Note that the order in which
the constraints are checked is vital for the performance.

breaking but should do so separately for self-dual and non-self-dual particles. This

must be done so that no comparison occurs between the structure constants of self-

dual particles and non-self-dual particles. Note that for the non-self-dual particles,

the constraints above will not make an ordering between dual particles because of the

pivotal relations. Therefore, only pairs of particles can be sorted this way.

3.1.3 Backtracking

Under the assumption that the techniques described above have been applied, one

should now have (a) a reduced set of unknowns, say {𝑛𝑖}, and (b) an enlarged set

of constraints consisting of a set of associativity relations together with a set of in-

equalities (forcing a non-strict order on the particles). The remaining procedure then

consists of finding solutions to the system of constraints. Here, a backtracking ap-

proach naturally arises since, for any constraint, only partial information about the

values of the 𝑛𝑖 is needed to check its validity. We can therefore do a tree search for

admissible solution sets. The branches of the tree at level 𝑗 correspond to a choice of

𝑛𝑗. The leaves at all but the last level correspond to invalidated constraints, and those

at the last level correspond to valid solutions. Figure 3.1 shows a graphical depiction

of this process.

Whenever a constraint is violated, 𝑚𝐾 configurations (where 𝐾 denotes the num-

ber of remaining unknowns) are ruled out. The order in which the unknowns are given

values is thus of great importance. To cut off branches of the search tree as soon as pos-

sible, we sorted the unknowns in the following way. First, we look for the constraints

42

with the fewest number of different unknowns. If there are multiple, pick any as a first

constraint. Then regard all the unknowns in this constraint as known and choose a sec-

ond constraintwith the least number of unknowns (thus, after removing the unknowns

from the first constraint from all other constraints). Keep repeating this procedure

until no constraints remain. Now group the constraints in sets 𝐶[𝑖], 𝑖 = 1,… , 𝑘, such

that every constraint in 𝐶[𝑖] requires the same set of new unknowns to be validated.

For each set 𝐶[𝑖] construct a set 𝑉[𝑖] = {𝑉[𝑖, 1], 𝑉[𝑖, 2],… ,𝑉[𝑖, 𝑙𝑖]} that contains the

𝑙𝑖 unknowns in 𝐶[𝑖], given that all the unknowns in 𝑉[𝑖 − 1],… ,𝑉[1],∅ are known.

The following code then finds all fusion rings of rank 𝑟, multiplicity 𝑚, and number of

self-dual particles 𝑠:

for V[1,1] in 0:m, ..., V[1,l_1] in 0:m
if(all constr in C[1] are verified)

for V[2,1] in 0:m, ..., V[2,l_2] in 0:m
if(all constr in C[2] are verified)

...
for V[k,1] in 0:m, ..., V[k,l_k] in 0:m

if(constraints in C[k] are verified)
saveSol({ V[1,1], V[1,2], ..., V[k,l_k] })

A few remarks are in place.

• Because of the nature of the above algorithm, different code must be created

for each rank, multiplicity, and number of self-dual particles separately. To ac-

commodate this need, we used the Wolfram Language to generate the polyno-

mial constraints, reduce the number of variables, break the symmetry, sort the

equations and unknowns, and create, compile, and execute the corresponding C

source code. The link to the Wolfram Language code we used to find the fusion

rings can be found as an attachment to the paper [102].

• It is important to note that adding other specific constraints on the fusion rings

is very easy. Since the constraints are sorted purely based on the number of vari-

ables, any constraint on the structure constants can easily be added and sorted

with the rest. One could, e.g., add constraints on the maximum number of non-

zero structure constants per particle or put a bound on several structure con-

stants.

• Just like [58] pointed out, it is very hard to benchmark the code since the perfor-

mance crucially depends on how efficiently cache memory is used. Sometimes

the CPU decides to swap between cache and RAM, and computation times get

multiplied by a factor that can go up to 100 or even higher.

3.1.4 Results

Using the algorithm described in Subsection 3.1.3, 28451 fusion rings were found, of

which 353 are multiplicity-free, and 118 are non-commutative. These results were

43

Rank

M
ul

ti
pl

ic
it
y

1 2 3 4 5 6 7 8 9

1 1 2 4 10 16 39 43 96 142

2 0 1 3 17 37 154 319 874+

3 0 1 4 24 82 384 562+

4 0 1 6 45 134 872 1236+

5 0 1 5 55 209 533+

6 0 1 9 81 336 872+

7 0 1 6 92 477 976+

8 0 1 10 137 733 1672+

9 0 1 12 151 1463

10 0 1 9 186 1794

11 0 1 10 238 2283

12 0 1 20 291 3049

13 0 1 9 246 1300+

14 0 1 13 340 1323+

15 0 1 16 349 1550+

16 0 1 25 525 1925+

Table 3.2: Table of total number of fusion rings per rank and multiplicity. The grey
numbers with a + indicate partial results from an incomplete search.

obtained without the use of a high-end machine. A summary of the number of rings

per rank and multiplicity is given in table 3.2. A more detailed overview of fusion rings

with 𝑟 ≥ 6 is shown in table 3.3.

A complete list of all the fusion ringswithmultiplication tables and other properties

can be found as a part of the Anyonica package. A list fusion matrices, “FusionRing-

MultiplicationTables”, can be also be found as an attachment to the paper [102]. The

number of fusion rings per rank and multiplicity and least-squares fits are shown in

figure 3.2.

Remark 3.1.1. It seems that the number of fusion rings for a given multiplicity𝑚 can be

60 62 64 70 72 74 76 80 82 84 86 90 92 94 96 98

1 20 9, 2 8 18 14, 3 7 1 38 17, 13 3, 15 7, 3 46 34, 11 12, 21 13, 3 2
2 13 37, 2 102 2 32 86, 5 194
3 16 81, 1 286
4 17 151, 1 703

Table 3.3: Table of fusion rings per multiplicity (rows) and rank (columns), where the
rank is subdivided into sets 𝑟𝑖 with 𝑖 the number of non-self-dual particles. Numbers
separated by a comma, 𝑎, 𝑏, indicate that there are 𝑎 commutative rings and 𝑏 non-
commutative rings.

44

+
+

+
+

+
+ +

+
+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

1 2 3 4 5 6 7 8 9

1

10

100

1000

Rank

N
u
m
b
e
r
o
f
F
u
si
o
n
R
in
gs

Figure 3.2: The number of fusion rings per rank. Each line represents a least squares
fit of the function 𝑎(𝑚 + 1)𝑏𝑟.

approximated well by a function of the form 𝑎𝑚×(𝑚+1)𝑏𝑟, where 𝑎𝑚 is a constant and

𝑏 ≈ 1. Whether the number of fusion rings with multiplicity 𝑚 grows asymptotically

as (𝑚 + 1)𝑟 for all 𝑚 (or as 𝑚 becomes larger as well) is unknown to the authors.

3.2 Naming of Fusion Rings

Many fusion rings are still unnamed, which is inconvenient for referencing specific

rings. To resolve this issue, we constructed a naming scheme that uniquely charac-

terises a fusion ring using 3 to 4 natural numbers. Every fusion ring is denoted by a

formal name FR𝑟,𝑚,𝑛
𝑖 where

• 𝑟 denotes the rank of the fusion ring,

• 𝑚 equals the multiplicity of the fusion ring, i.e. the largest structure constant,

and

• 𝑛 denotes the number of particles that are not self-dual.

Every triple (𝑟,𝑚, 𝑛) determines a finite list of fusion rings that can be sorted canon-

ically. The number 𝑖 then denotes the position of the fusion ring in such a list. The

canonical order we implemented is based on a unique number assigned to each fusion

ring that can be computed as follows. First, we sort the fusion rings by multiplicity,

rank, number of non-self-dual particles, and number of non-zero structure constants.

If there is any remaining ambiguity, we sort further by calculating a unique number for

each fusion ring as follows.

1. First, the elements of the rings themselves are sorted. All self-dual particles are

grouped, and the non-self-dual particles are grouped in dual pairs. The self-dual

particles appear before the pairs and are sorted by increasing quantum dimen-

sion. The pairs are sorted by increasing maximum quantum dimension.

45

2. Let 𝑁𝑐
𝑎,𝑏 denote the structure constants of a multiplication table of a fusion ring.

For each permutation of the elements of the ring (where the identity is kept fixed,

and the previous ordering is kept fixed), a list of digits can be created by ordering

the structure constants 𝑁𝑐
𝑎,𝑏 lexicographically on 𝑎, 𝑏, 𝑐:

𝑁1
1,1, 𝑁

2
1,1,…,𝑁1

1,2, 𝑁
2
1,2,…,𝑁𝑟

𝑟,𝑟.

3. By regarding each list as a number, in base 𝑚 + 1, with digits given by the list

elements, a unique number is assigned to each permutation of the same ring.

Moreover, these numbers are unique for each different fusion ring.

4. Taking the maximum value of the numbers generated per ring, a unique number

is assigned to each fusion ring.

If 𝑚 = 1, we omit this value and just write FR𝑟,𝑛
𝑖 . The nice thing about formal names

is that it allows one to easily look up a fusion ring. For example the list of small

mulitplicity-free fusion rings on the anyonwiki uses these names and the Anyonica

package has a function FusionRingByCode which takes a list of four numbers and

returns the respective fusion ring.

3.3 Characters andModularData ofCommutative FusionRings

3.3.1 Characters of Commutative Fusion Rings

Finding a character table of commutative fusion rings comes down to finding a matrix

𝑉 that simultaneously diagonalises the fusion matrices [𝑁𝑘]
𝑗
𝑖 [39]. A simple way to

do this is by taking a linear combination 𝑀 = ∑𝑟
𝑘=1 𝑐𝑘[𝑁𝑘], where the 𝑐𝑘 are random

real numbers in an interval [𝑎, 𝑏], and finding the eigenspace of 𝑀. There are values

of 𝑐𝑘 for which this method provides an incorrect answer, but it is always easy to test

whether this is the case by performing the diagonalisation. When a wrong result is

returned, a new set of 𝑐𝑘 can be chosen at random until a set that works is found. The

following lemma shows that the set of vectors �⃗� for which the procedure above fails is

a subset of a strict sub-vector space of ℂ𝑟.

Proposition 3.3.1. Let {𝑀𝑘} be a set of simultaneously diagonalisable 𝑛×𝑛-matrices. Let

𝑐 ∈ ℂ𝑛 be a vector for which there exists a matrix 𝑉 that diagonalises 𝑀 ∶= ∑𝑛
𝑘=1 𝑐𝑘𝑀𝑘 but

does not diagonalise each 𝑀𝑘 individually. The set of vectors {𝑐} for which this property

holds is a subset of a strict subspace of ℂ𝑛.

Proof. First we note that for any 𝑐 ∈ ℂ𝑛 there always exists a matrix 𝑉 that diagonalises

all 𝑀𝑘 and therefore 𝑀 as well. Now assume there exists a 𝑉 that diagonalises 𝑀 but

not every 𝑀𝑘. We then have that

[𝑉−1𝑀𝑉]𝑖𝑗 =
𝑛
∑
𝑘=1

𝑐𝑘[𝑉
−1𝑀𝑘𝑉]

𝑖
𝑗 = 0, for 𝑖 ≠ 𝑗. (3.7)

46

https://anyonwiki.github.io/pages/Lists/losmffr.html
https://anyonwiki.github.io/pages/Lists/losmffr.html
https://anyonwiki.github.io/

Since not all [𝑉−1𝑀𝑘𝑉]
𝑖
𝑗 are 0 (3.7) is a system of linear equations in the variables 𝑐𝑘

with at least 1 non-trivial equation. �

Whether the character table contains

1. symbolic expressions, or

2. approximate floating point numbers

depends on the technique for finding eigenspaces. For the first case, we found exact

character tables for 28227 out of the 28333 commutative rings. In the second case, we

found character tables for all commutative fusion rings expressing each character with

99 significant digits. In both cases, we checked diagonalisation by performing matrix

multiplications such that the matrix elements in the final results were correct up to 99
significant digits.

3.3.2 Modular Data

Not every fusion ring can be categorified into a modular fusion category (MFC). If

they can, then some of the structure of their categories can be extracted without the

need for categorification. Since categorification of a fusion ring can be quite hard to

do, any information that can be extracted beforehand is more than welcome. In par-

ticular, any MFC has an associated 𝑆 and 𝑇-matrix that define a representation of the

modular group. The possible (normalized) 𝑆 and 𝑇-matrices belonging to an MFC can

be constructed using only information from the fusion ring. In particular, if no such

𝑆 or 𝑇-matrices exist, we know there can be no MFC associated with the fusion ring.

Note that the 𝑆 and 𝑇-matrices found this way do not necessarily appear as the modu-

lar data of some category. There exists at least one modular fusion ring (𝐹𝑅7,1,2
1 1) that

has no categorifications. Whether each categorifiable modular fusion ring has at least

one modular fusion category is not known to us. The code we used to find the possible

𝑆-matrices and 𝑇-matrices can be found in the file “CharactersAndModularData.wl”,

attached to the paper [102].

3.3.3 Finding 𝑆-matrices

An 𝑆-matrix associated with a fusion ring ℛ is a square, symmetric, invertible matrix

that diagonalises the set of matrices {[𝑁𝑖]}
𝑟
𝑖=1, and satisfies

[𝑆2]
𝑖𝑗
= 𝑁1

𝑖,𝑗 (3.8)

[𝑆2]
11

= 1 (3.9)

Once the character table of a commutative fusion ring is found, it is easy to construct

𝑆-matrices belonging to the ring. Indeed: we know that the rows of the character table

are the simultaneous eigenvectors of the fusion matrices [𝑁𝑖]. Likewise, the rows and

47

columns of the 𝑆-matrix consist of simultaneous eigenvectors of the [𝑁𝑖]. By permut-

ing the rows of the character table and rescaling them such that 𝑆1𝑖 = 𝑆𝑖1, one can find

a set of possible 𝑆-matrices starting from the character table.

3.3.4 Finding 𝑇-Matrices

Recall that a 𝑇-matrix belonging to a fusion ringℛ is a square diagonal matrix for which

there exists a 𝜆 ∈ ℂ\{0} such that

(𝑆𝑇)3 = 𝜆𝑆2, (3.10)

i.e. the 𝑆-and𝑇matrices form a projective representation of themodular group. Instead

of solving equations (3.10) directly we can use a theorem from Vafa [99]:

Theorem 3.3.2. Let 𝑇 be a 𝑇-matrix, with diagonal entries 𝜃𝑖, belonging to a fusion ring ℛ
then the following (Vafa) equations hold

𝜃1 = 1 (3.11)

(𝜃𝑖𝜃𝑗𝜃𝑘𝜃𝑙)
𝑟
∑
𝑛=1

𝑁𝑛∗
𝑖,𝑗 𝑁

𝑛
𝑘,𝑙 =

𝑟
∏
𝑛=1

𝜃
𝑁𝑛
𝑖,𝑗𝑁

𝑘∗
𝑙,𝑛+𝑁

𝑛
𝑗,𝑘𝑁

𝑖∗
𝑙,𝑛+𝑁

𝑛
𝑖,𝑘𝑁

𝑗∗
𝑙,𝑛

𝑛 , (3.12)

where 𝑖, 𝑗, 𝑘, 𝑙 = 1,… , 𝑟. To find admissible 𝑇-matrices, one can first solve the Vafa

equations and then check whether the modularity constraint (3.10) holds. To solve

the Vafa equations, one can take a logarithm of both sides of the equations to obtain

𝑟
∑
𝑛=1

𝑁𝑛∗

𝑖,𝑗𝑁
𝑛
𝑘,𝑙𝑡𝑖 + 𝑁𝑛∗

𝑖,𝑗𝑁
𝑛
𝑘,𝑙𝑡𝑗 + 𝑁𝑛∗

𝑖,𝑗𝑁
𝑛
𝑘,𝑙𝑡𝑘 + 𝑁𝑛∗

𝑖,𝑗𝑁
𝑛
𝑘,𝑙𝑡𝑙 (3.13)

−(𝑁𝑛
𝑖,𝑗𝑁

𝑘∗
𝑙,𝑛 + 𝑁𝑛

𝑗,𝑘𝑁
𝑖∗
𝑙,𝑛 + 𝑁𝑛

𝑖,𝑘𝑁
𝑗∗

𝑙,𝑛) 𝑡𝑛 ∈ ℤ (3.14)

where 𝑡𝑖 ∶= ln(𝜃𝑖)/(2𝜋𝑖). This is a system of linear equations with integer coefficients,

which can, e.g. be solved using a Smith decomposition.

From the collection of commutative fusion rings we obtained, 54 have matching

𝑆-and 𝑇-matrices.

3.4 Some Comments on Non-commutative Fusion Rings

Out of the 28451 fusion rings we have found, 118 are non-commutative. Apart from

4 exceptions (see 3.4.3), all non-commutative fusion rings contain a non-trivial sub-

group.

3.4.1 Song Extensions of Groups

Fusion rings that contain a subgroup are called generalised near-group fusion rings

[95]. The most notable of such fusion rings are the Tambara-Yamagami fusion rings

[94] and the Haagerup-Izumi fusion rings of groups. The structure of both of these

rings can be generalised as follows.

48

Definition 3.4.1. Let 𝐺 be a finite group, 𝑇 a finite set, and 𝜎𝑙 ∶ 𝐺 × 𝑇 → 𝑇 ∶ (𝑔, 𝑡) ↦
𝜎𝑙(𝑔, 𝑡) =∶ 𝑔 ⋅ 𝑡 a left action of 𝐺 on 𝑇 such that 𝑇 = 𝐺 ⋅ 𝑡1 for some 𝑡1 ∈ 𝑇 and the left

stabilizer of 𝑡1, 𝐺
𝑙
𝑡1
, obeys 𝐺𝑙

𝑡1
= 𝐻 ⊴ 𝐺. Let �̃� ∈ 𝐺, 𝑛 ∈ ℕ and

• 𝐴 ∶ 𝐺/𝐻 → 𝐺/𝐻 be an automorphism such that

𝐴2([𝑔]) = [�̃�−1𝑔�̃�], ∀𝑔 ∈ 𝐺, and (3.15)

𝐴([�̃�]) = [�̃�], (3.16)

where [⋅] denotes the canonical projection from 𝐺 to 𝐺/𝐻,

• Φ ∶ 𝑇 → 𝐺/𝐻 be such that Φ(𝑔 ⋅ 𝑡1) = [𝑔], i.e. Φ maps a 𝑡 ∈ 𝑇 to the class in 𝐺/𝐻
that maps 𝑡1 to 𝑡, and

• 𝜆 ∶ 𝐺/𝐻 → 𝐺 be a lift of the elements of 𝐺/𝐻 into 𝐺, i.e. [𝜆(𝑔𝐻)] = 𝑔, ∀𝑔 ∈ 𝐺.

The set 𝐺 ⊔ 𝑇 with the following product

𝑔 × 𝑔′ = 𝑔𝑔′, (3.17)

𝑔 × 𝑡 = 𝑔 ⋅ 𝑡 (3.18)

𝑡 × 𝑔 = 𝜆(Φ(𝑡)𝐴([𝑔])) ⋅ 𝑡1, (3.19)

𝑡 × 𝑡′ = 𝜆(Φ(𝑡)𝐴(Φ(𝑡′)))�̃�−1 ∑
ℎ∈𝐻

ℎ + 𝑛∑
𝑡∈𝑇

𝑡, (3.20)

∀𝑔, 𝑔′ ∈ 𝐺, ∀𝑡, 𝑡′ ∈ 𝑇, is called the 𝑛’th single orbit normal group (or song) extension

of 𝐺 featuring 𝐻, 𝐴, and �̃� and we denote it by [𝐻 ⊴ 𝐺]𝐴�̃�|𝑛.

The proof that songs are well-defined and the rings they produce are fusion rings

can be found in the paper [102]. We have the following

Examples 3.4.2. 1. Let 𝑇 = {𝑡}, �̃� = 1, and 𝑛 ∈ ℕ. Then 𝐻 = 𝐺, 𝐴 is trivial, and the

fusion rules become

𝑔𝑖 × 𝑔𝑗 = 𝑔𝑖𝑔𝑗, (3.21)

𝑔𝑖 × 𝑡 = 𝑡 × 𝑔𝑖 = 𝑡, (3.22)

𝑡 × 𝑡 = ∑
𝑔∈𝐺

𝑔 + 𝑛𝑡. (3.23)

This ring is called a near-group fusion ring, and in particular, when 𝑛 = 0, this

ring is called the Tambara-Yamagami fusion ring of the group 𝐺: TY(𝐺). Such a

ring is non-commutative iff the the group 𝐺 is non-commutative. Corollary 3.4.4

tells us that these songs capture all extensions of any group by one particle.

2. Let 𝐺 = {𝑔1,… , 𝑔𝑛} be a commutative group, 𝑇 = {𝑡1, 𝑔2 ⋅ 𝑡1,… , 𝑔𝑛 ⋅ 𝑡1} (and

49

thus 𝐻 = {1}), �̃� = 1, and 𝐴 ∶ 𝑔 ↦ 𝑔−1 then the fusion rules become

𝑔𝑖 × 𝑔𝑗 = 𝑔𝑖𝑔𝑗, (3.24)

𝑔𝑖 × 𝑡𝑗 = (𝑔𝑖𝑔𝑗)𝑡1, (3.25)

𝑡𝑖 × 𝑔𝑗 = (𝑔𝑖𝑔
−1
𝑗)𝑡1, (3.26)

𝑡𝑖 × 𝑡𝑗 = 𝑔𝑖𝑔
−1
𝑗 𝑔−1

0 + 𝑛∑
𝑡∈𝑇

𝑡. (3.27)

If 𝑛 = 1, this ring is called the Haagerup-Izumi fusion ring of the commutative

group 𝐺: HI(𝐺). Such a ring is non-commutative iff the group 𝐺 (seen as a group

fusion ring) contains non-self-dual particles.

3. Let 𝐺 = 𝐷3 be the dihedral group with 6 elements, 𝑇 = {𝑡1, 𝑡2}, 𝐻 = ℤ3, �̃� = 1,
and 𝐴 trivial. The song [ℤ3 ⊴ 𝐷3]

Id
1|0 (= FR8,1,2

2) is a non-commutative categori-

fiable fusion ring that is not of the type TY(𝐺) or HI(𝐺) for any group 𝐺. This

ring has categorifications since it is the Grothendieck ring of the crossed product

category 𝒞TY(ℤ3)
⋊ ℤ2. [29]

4. Let 𝛼 ∶ ℤ3 → ℤ3 ∶ 𝑔 ↦ 𝑔−1. The song [ℤ2 ⊴ ℤ6]
𝛼
1|0 (= FR9,1,4

3) also has categori-

fications but is neither of the types TY(𝐺) or HI(𝐺) for any group 𝐺, nor is it the

Grothendieck ring of a crossed product category. The links to the categorifica-

tions for this and the previous example can be found as attachments to the paper

[102].

3.4.2 Generic Non-commutative Fusion Rings

Not all non-commutative fusion rings are of this type, however. Table 3.4 gives an

overview of the multiplicity-free fusion rings per subgroup and rank.

To get some insight into the properties of generic non-commutative rings and un-

derstand the structure of table 3.4, it is interesting to look at the consequences of having

a subgroup structure.

Let 𝐺 = ⟨𝑔1 = 1,… , 𝑔𝑛⟩ be a group fusion ring and consider extending it by adding

elements from a finite set, say 𝑡1,… , 𝑡𝑚 ∈ 𝑇. Now consider a product, say ×, on 𝐺 ⊔ 𝑇
that coincides with the product on 𝐺, i.e. 𝑔×ℎ = 𝑔ℎ, ∀𝑔, ℎ ∈ 𝐺. Since 𝐺 is a group, and

a fusion ring is associative and has a unique unit, the left and right action 𝜎𝑙
𝑔 ∶ 𝑡 ↦ 𝑔×𝑡

and 𝜎𝑟
𝑔 ∶ 𝑡 ↦ 𝑡 × 𝑔 of 𝐺 on 𝑇 must permute the elements of 𝑇. Requiring that the ring

𝐺𝑇 ∶= ⟨𝑔1 = 1,… , 𝑔𝑛, 𝑡1,… 𝑡𝑚⟩ with product × is a fusion ring puts further restrictions

on ×:

Proposition 3.4.3. Let 𝐺 and 𝑇 be as above and write 𝐺𝑙
𝑡 (𝐺𝑟

𝑡) for the left (right) stabilizer

of 𝑡 under 𝐺, [𝑡]𝑙 ([𝑡]𝑟) for the left (right) orbit of 𝑡 under 𝐺 and 𝐻 𝑙
𝑖 (𝐻 𝑟

𝑖) for the elements

of 𝐺/𝐺𝑙
𝑡 (𝐺/𝐺𝑟

𝑡) (with 𝐻 𝑙
1 = 𝐺𝑙

𝑡 and 𝐻 𝑟
1 = 𝐺𝑟

𝑡) then for all 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺

1.

𝐺𝑙
𝑡 = 𝐺𝑟

𝑡∗ , (3.28)

50

6 7 8 9

ℤ2

FR8,1,2
11 ,

FR8,1,2
29 ,

FR8,1,2
30

FR9,1,2
32 ,

FR9,1,2
38 ,

FR9,1,2
41 ,

FR9,1,2
44 ,

FR9,1,4
20 ,

FR9,1,4
31 ,

FR9,1,4
33

ℤ3 HI(ℤ3) FR7,1,2
15 FR9,1,4

27

ℤ4

FR8,1,2
8 ,

HI(ℤ4),
FR8,1,4

8 ,
FR8,1,6

7 ,
[𝐼 ⊴ ℤ4]

𝛼
2;1

FR9,1,2
36 ,

FR9,1,4
9 ,

FR9,1,4
17 ,

FR9,1,6
13

ℤ2 × ℤ2

FR8,1,2
6 ,

FR8,1,2
9 ,

FR8,1,2
10 ,

[𝐼 ⊴ ℤ2 × ℤ2]
𝛼
1;1

FR9,1,2
7 ,

FR9,1,2
22 ,

FR9,1,2
37 ,

FR9,1,4
4 ,

FR9,1,4
8 ,

FR9,1,4
22

ℤ6
[ℤ2 ⊴ ℤ6]

𝛼
1;0

[ℤ2 ⊴ ℤ6]
𝛼
1;1

𝐷3 𝐷3
TY(𝐷3),
[𝐷3 ⊴ 𝐷3]

Id
1;1

[ℤ3 ⊴ 𝐷3]
Id
1;0,

[ℤ3 ⊴ 𝐷3]
Id
2;1,

[ℤ3 ⊴ 𝐷3]
Id
1;1,

[ℤ3 ⊴ 𝐷3]
Id
2;0,

FR8,1,2
3

FR9,1,2
4 ,

FR9,1,4
6

𝐷4 𝐷4
TY(𝐷4),
[𝐷4 ⊴ 𝐷4]

Id
1;1

𝑄 𝑄
TY(𝑄),
[𝑄 ⊴ 𝑄]Id1;1

Table 3.4: Non-commutative multiplicity-free fusion rings per non-trivial largest sub-
group (rows) and rank (columns). Here 𝐼 stands for the trivial group, HI(𝐺) for the
Haagerup-Izumi fusion ring of 𝐺 and TY(𝐺) for the Tambara-Yamagami fusion ring
of 𝐺. 𝛼 denotes the, up to isomorphism, only non-trivial group automorphism, 1 the
unit element, and 2 the, up to isomorphism, only non-trivial group element. For the
meaning of the names FR𝑟,𝑚,𝑛

𝑖 see Section 3.2

51

2. for all 𝑎, 𝑏 ∈ 𝐺 ⊔ 𝑇 ∶ 𝑁𝑔
𝑎,𝑏 ∈ {0, 1} and

𝑁𝑔
𝑡,𝑡∗ = 1 ⇔ 𝑔 ∈ 𝐺𝑙

𝑡 , and (3.29)

𝑁𝑔
𝑡∗,𝑡 = 1 ⇔ 𝑔 ∈ 𝐺𝑟

𝑡 (3.30)

3. every 𝜏 ∈ [𝑡]𝑙 can be labelled by a unique 𝐻 𝑙
𝑖 (say 𝜏𝐻 𝑙

𝑖
≡ 𝜏𝑖) in such a way that for all

𝑔 in 𝐺
𝑁𝑔

𝜏𝑖,𝑡∗
= 1 ⇔ 𝑔 ∈ 𝐻 𝑙

𝑖 , (3.31)

4. if |𝑇| < |𝐺| then there exists a 𝑡 ∈ 𝑇 with non-trivial 𝐺𝑙
𝑡 such that |[𝑡]𝑙| divides

|𝐺|,

5. if |𝑇| = |𝐺| and there exists a 𝑡 ∈ 𝑇 with trivial 𝐺𝑙
𝑡 , then [𝑡]𝑙 = 𝑇 and 𝐺𝑙

𝑡 is trivial

for all 𝑡 ∈ 𝑇, and

6. if |𝑇| > |𝐺| then at least mod(|𝐺|, |𝑇|) elements of 𝑇 have a non-trivial left sta-

bilizer.

Proof. Let 𝑒 denote the unit of 𝐺.

1. For all ℎ in 𝐺𝑙
𝑡 ∶ 𝑒 ∈ 𝑡∗ × 𝑡 = 𝑡∗ × (ℎ × 𝑡) = (𝑡∗ × ℎ) × 𝑡 but every element of a

fusion ring has a unique dual so 𝑡∗ × ℎ = 𝑡∗ for all ℎ in 𝐺𝑙
𝑡 .

2. Since 𝑒 ∈ 𝑡 × 𝑡∗, 𝑔 ∈ 𝑔 × 𝑡 × 𝑡∗ so 𝑔 ∈ 𝐺𝑙
𝑡 ⇒ 𝑔 ∈ 𝑡 × 𝑡∗. Now assume that 𝑔 ∉ 𝐺𝑙

𝑡

and 𝑔 ∈ 𝑡 × 𝑡∗. Then 𝑒 ∈ 𝑔−1 × 𝑡 × 𝑡∗ so 𝑔−1 × 𝑡 = (𝑡∗)∗ = 𝑡 which is impossible

by assumption. Similar reasoning can be applied to prove the second formula.

3. For all ℎ𝑖 in 𝐻 𝑙
𝑖 : 𝜏𝑖 × 𝑡∗ = ℎ𝑖 × 𝑡 × 𝑡∗ ∋ ℎ𝑖

The last three statements follow directly from the orbit stabiliser theorem. �

The following corollary then classifies all 1-particle extensions of groups to fusion

rings.

Corollary 3.4.4. Let 𝐺 and 𝑇 be as above. If |𝑇| = 1 then for each 𝑘 ∈ ℕ there exists only

one extension ℛ of 𝐺 by 𝑇. Moreover ℛ is commutative if and only if 𝐺 is commutative and

for 𝑡 ∈ 𝑇 and all 𝑔 ∈ 𝐺 (seen as elements of ℛ)

𝑔 × 𝑡 = 𝑡 × 𝑔 = 𝑡, (3.32)

𝑡 × 𝑡 = ∑
𝑔∈𝐺

𝑔 + 𝑘 𝑡. (3.33)

Proof. Since 𝐺 stabilizes 𝑡 and 𝑡 is self-dual it follows from (3.30) that 𝑁𝑔
𝑡,𝑡 = 𝑁𝑔

𝑡,𝑡∗ = 1
for all 𝑔 in 𝐺. The only remaining degree of freedom is the value of 𝑁 𝑡

𝑡,𝑡 ∈ ℕ, which can

be chosen freely as verified by checking the associativity constraints. �

For |𝑇| = 2 commutativity of an extension also depends solely on the commuta-

tivity of the group, and all extensions can be classified as well.

52

Proposition 3.4.5. If ℛ is an extension of a non-trivial group 𝐺 = ⟨𝑔1,… , 𝑔𝑛⟩ by 𝑇 =
{𝑡1, 𝑡2} then we have for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ that

1. ℛ is a commutative fusion ring iff 𝐺 is a commutative group,

2. if 𝐺 = 𝐺𝑙
𝑡 ∀𝑡 ∈ 𝑇 and 𝑡𝑖 = 𝑡∗𝑖

𝑡1 × 𝑡1 = ∑
𝑔∈𝐺

𝑔 + 𝑎𝑡1 + 𝑏𝑡2, (3.34)

𝑡2 × 𝑡2 = ∑
𝑔∈𝐺

𝑔 + 𝑐𝑡1 + 𝑑𝑡2, (3.35)

𝑡1 × 𝑡2 = 𝑡2 × 𝑡1 = 𝑏𝑡1 + 𝑐𝑡2, (3.36)

where: 𝑏(𝑏 − 𝑑) + 𝑐(𝑐 − 𝑎) = |𝐺|,

3. if 𝐺 = 𝐺𝑙
𝑡 ∀𝑡 ∈ 𝑇 and 𝑡𝑖 ≠ 𝑡∗𝑖

𝑡1 × 𝑡1 = 𝑎𝑡1 + 𝑏𝑡2, (3.37)

𝑡2 × 𝑡2 = 𝑏𝑡1 + 𝑎𝑡2, (3.38)

𝑡1 × 𝑡2 = 𝑡2 × 𝑡1 = ∑
𝑔∈𝐺

𝑔 + 𝑎𝑡1 + 𝑎𝑡2, (3.39)

where: 𝑏2 − 𝑎2 = |𝐺|,

4. if 𝐺 ≠ 𝐺𝑙
𝑡 ∀𝑡 ∈ 𝑇 and 𝑡𝑖 = 𝑡∗𝑖

𝑡1 × 𝑡1 = 𝑡2 × 𝑡2 = ∑
𝑔∈𝐺𝑙

𝑡

𝑔 + 𝑎𝑡1 + 𝑏𝑡2, (3.40)

𝑡1 × 𝑡2 = 𝑡2 × 𝑡1 = ∑
𝑔∉𝐺𝑙

𝑡

𝑔 + 𝑏𝑡1 + 𝑎𝑡2. (3.41)

5. if 𝐺 ≠ 𝐺𝑙
𝑡 ∀𝑡 ∈ 𝑇 and 𝑡𝑖 ≠ 𝑡∗𝑖

𝑡1 × 𝑡1 = 𝑡2 × 𝑡2 = ∑
𝑔∉𝐺𝑙

𝑡

𝑔 + 𝑎𝑡1 + 𝑎𝑡2, (3.42)

𝑡1 × 𝑡2 = 𝑡2 × 𝑡1 = ∑
𝑔∈𝐺𝑙

𝑡

𝑔 + 𝑎𝑡1 + 𝑎𝑡2. (3.43)

6. if |𝐺| > 2 there are no multiplicity-free extensions ℛ of 𝐺 by 𝑇 where 𝐺 stabilizes

every element of 𝑇,

7. if ℛ is multiplicity-free then |𝐺| is even.

Proof. (1) By setting 𝑎 = 𝑐∗ in the pivotal relation 𝑁𝑐
𝑎,𝑏 = 𝑁𝑎∗

𝑏,𝑐∗ we obtain 𝑁𝑎∗
𝑎,𝑏 = 𝑁𝑎∗

𝑏,𝑎.

For both the case where 𝑡1 = 𝑡∗1 and the case where 𝑡1 = 𝑡∗2 this results in the

relations 𝑁 𝑡1
𝑡1,𝑡2 = 𝑁 𝑡1

𝑡2,𝑡1 and 𝑁 𝑡2
𝑡1,𝑡2 = 𝑁 𝑡2

𝑡2,𝑡1 . Therefore 𝑡𝑖 ×𝑡𝑗 = 𝑡𝑗 ×𝑡𝑖, 𝑖 = 1, 2. We

also have that 𝐺𝑙
𝑡 = 𝐺𝑟

𝑡 , ∀𝑡 ∈ 𝑇 (and therefore 𝑡𝑖 × 𝑟 = 𝑟 × 𝑡𝑖∀𝑟 ∈ ℛ). Indeed:

for the case where 𝑡𝑖 = 𝑡∗𝑖 this follows from equation (3.28). If 𝑡𝑖 ≠ 𝑡∗𝑖 and there

53

would exist a 𝑡 ∈ 𝑇, 𝑔 ∈ 𝐺 with 𝑔 ∈ 𝐺𝑙
𝑡 but 𝑔 ∉ 𝐺𝑟

𝑡 then 𝑡1 × 𝑡1 = 𝑡1 × 𝑔 × 𝑡1 =
𝑡2 × 𝑡1 ⇒ 𝑡1 = 𝑡∗1, a contradiction.

(2)…(5) Follows directly from applying equations (3.30) and (3.31) in combination with

the pivotal relations (3.2), and the associativity constraints.

(6) If 𝐺 stabilizes every element of 𝑇 then either |𝐺| = 𝑏(𝑏 − 𝑑) + 𝑐(𝑐 − 𝑎) ≤ 2 or

|𝐺| = 𝑏2 − 𝑎2 ≤ 1.

(7) If 𝐺 stabilizes every element of 𝑇 then, since 𝐺 is non-trivial, statement nr. 6

implies that |𝐺| = 2. If𝐺does not stabilise every element of𝑇, then for any 𝑡 ∈ 𝑇,

|[𝑡]| = |𝑇| and the result follows directly from statement nr. 4 of proposition

3.4.3.

�

A lot can be said about fusion rings with subgroups by looking at the cardinality

of the stabilisers. Indeed, in proposition 3.4.5, we found several relations between the

size of stabiliser subgroups (in that case, the whole group) and the fusion coefficients.

These are useful tools for finding obstructions to extend groups into fusion rings. The

following lemma and its corollaries will prove useful to exclude extensions of groups

to fusion rings for more general 𝑇.

Lemma 3.4.6. Let 𝜏 ∈ 𝑇, then for all 𝑎 ∈ ℛ

|𝐺𝑙
𝜏 ∩ 𝐺𝑙

𝑎| = ∑
𝑔∈𝐺

(𝑁𝑔
𝜏,𝑎)2 +∑

𝑡∈𝑇
(𝑁 𝑡

𝜏,𝑎)
2
−∑

𝑡∈𝑇
𝑁𝜏

𝜏,𝑡𝑁
𝑎
𝑡,𝑎. (3.44)

Proof. For any particle 𝜏 ∈ 𝑇 and 𝑎 ∈ ℛ we have that

𝜏∗ × (𝜏 × 𝑎) = ∑
𝑒∈ℛ

∑
𝑑∈ℛ

𝑁𝑑
𝜏,𝑎𝑁

𝑒
𝜏∗,𝑑𝑒, (3.45)

while

(𝜏∗ × 𝜏) × 𝑎 = ∑
𝑔∈𝐺𝑙

𝜏

𝑔 × 𝑎 +∑
𝑡∈𝑇

𝑁 𝑡
𝜏∗,𝜏𝑡 × 𝑎 (3.46)

= ∑
𝑔∈𝐺𝑙

𝜏∩𝐺𝑙
𝑎

𝑎 + ∑
𝑔∈𝐺𝑙

𝜏\𝐺𝑙
𝑎

𝑔 × 𝑎 +∑
𝑡∈𝑇

𝑁 𝑡
𝜏∗,𝜏𝑡 × 𝑎 (3.47)

= |𝐺𝑙
𝜏 ∩ 𝐺𝑙

𝑎| 𝑎 + ∑
𝑔∈𝐺𝑙

𝜏\𝐺𝑙
𝑎

𝑔 × 𝑎 + ∑
𝑒∈ℛ

∑
𝑡∈𝑇

𝑁 𝑡
𝜏∗,𝜏𝑁

𝑒
𝑡,𝑎𝑒 (3.48)

By looking at the 𝑎’th component and using the pivotal relation 𝑁𝑐
𝑎,𝑏 = 𝑁𝑏

𝑎∗,𝑐 we find

that

|𝐺𝑙
𝜏 ∩ 𝐺𝑙

𝑎| = ∑
𝑔∈𝐺

(𝑁𝑔
𝜏,𝑎)2 +∑

𝑡∈𝑇
(𝑁 𝑡

𝜏,𝑎)
2
−∑

𝑡∈𝑇
𝑁𝜏

𝜏,𝑡𝑁
𝑎
𝑡,𝑎. (3.49)

�

This bound becomes stronger when one or multiple particles are fixed by the group

𝐺.

54

Corollary 3.4.7. If |𝑇| ≥ 2 and ∃𝜏 ∈ 𝑇 for which 𝐺𝑙
𝜏 = 𝐺 then for any 𝑎 ∈ 𝑇 with 𝑎 ≠ 𝜏∗

|𝐺𝑙
𝑎| = ∑

𝑡∈𝑇
(𝑁 𝑡

𝜏,𝑎)
2
−∑

𝑡∈𝑇
𝑁𝜏

𝜏,𝑡𝑁
𝑎
𝑡,𝑎 ≤ |𝑇|𝑚2, (3.50)

where 𝑚 is the multiplicity of the fusion ring.

We can now generalize proposition 3.4.5(6):

Proposition 3.4.8. If 2 ≤ |𝑇| < |𝐺| and 𝐺𝑙
𝑡 = 𝐺 for all 𝑡 ∈ 𝑇 then there exists no

multiplicity-free extension ℛ of 𝐺 by 𝑇. In particular, if |𝐺| is prime and 2 ≤ |𝑇| < |𝐺|,
there exists no multiplicity-free-extensions of 𝐺 by 𝑇.

We are now in a position where several patterns in table 3.4 can easily be explained.

From corollary 3.4.4 we conclude that the only groups with rank less than 9 and non-

commutative 1-particle extensions are D3, D4 and Q8. For each group, there are 2
such extensions. Corollary 3.4.4 also explains the absence of the table’s 3 commutative

groups of order 8. Proposition 3.4.8 implies that both ℤ5 and ℤ7 have no multiplicity-

free non-commutative extensions with rank less than 10 hence their absence in the

table.

3.4.3 Non-Commutative Fusion Rings Without Non-Trivial Subgroup

Only 4 non-commutative rings were found that contain no non-trivial subgroup. Three

of these (FR6,6,2
312 ,FR6,7,2

115 , and FR6,8,2
48) are simple, i.e. contain no subring at all. The sole

non-commutative non-simple fusion ring without a proper subgroup has the following

multiplication table

1 2 3 4 5 6

2 1 + 2 6 4 + 5 4 3 + 6

3 5 1 + 3 4 + 6 2 + 5 4

4 4 + 6 4 + 5 1 + 2 + 3 + 2 4 + 5 + 6 3 + 4 + 5 + 6 2 + 4 + 5 + 6

5 3 + 5 4 2 + 4 + 5 + 6 4 + 6 1 + 3 + 4

6 4 2 + 6 3 + 4 + 5 + 6 1 + 2 + 4 4 + 5

The elements 2 and 3 generate Fibonacci subrings. Elements 5 = 3× 2 and 6 = 2× 3

can be regarded as couples of Fibonacci particles and 4 = 2× 3× 2 = 3× 2× 3 as a

triple of Fibonacci particles. Indeed, the above fusion ring is completely determined

by the generators 1, 2 and 3 together with the relations 22 = 1 + 2, 32 = 1 + 3, and

2× 3× 2 = 3× 2× 3. The structure of the ring thus corresponds to that of a Hecke

algebra with generators 2 and 3.

55

56

Chapter 4

Categorifying Fusion Rings: Solving

Consistency Equations

Now that we have an extensive list of multiplicity-free fusion rings, it is time to turn to

the quest of categorification and the search for braided and pivotal data. All data we are

after are fully determined by finite sets of variables that satisfy polynomial constraints.

The workflow per fusion ring is the following

1. First, we set up the pentagon equations and combine these with the constraints

that each 𝐹-matrix must be invertible, i.e., {det([𝐹𝑎𝑏𝑐
𝑑]) ≠ 0| 𝑎, 𝑏, 𝑐, 𝑑 = 1,… , 𝑟}.

The other constraints, (2.12), on the 𝐹-matrices can be implemented beforehand

to reduce the number of variables. The solutions to the consistency relations are

sets of 𝐹-matrices. Next, the sets of 𝐹-matrices for which a basis exists in which

they are unitary are expressed in such a basis. Some of the sets of 𝐹-symbols

might be equivalent due to a gauge transform, possibly in combination with a

fusion ring automorphism. By removing redundant solutions, we obtain a final

set of inequivalent fusion systems, say {ℱ𝑖 ∶= (L, ∗,N,F𝑖)}
𝑛𝐹
𝑖=1.

2. For each fusion system, the hexagon equations, (2.25) and (2.26), are set up and

combined with the constraints that none of the 𝑅-symbols can be 0. If there

are solutions to the hexagon equations, then these are combined with the fusion

system into a braided fusion system. Here, we also might have equivalent braided

fusion systems, and the redundant ones have to be removed as well. The result

is a set of possibly braided fusion systems {(ℱ𝑖,ℛ𝑖,𝑗)}
𝑛𝑅(𝑖)

𝑗=1
where ℛ𝑖,𝑗 might be

empty in the case of a non-braided fusion system.

3. For each braided fusion system, the pivotal constraints, (2.24), are solved. The

solutions to these equations are combined with the (braided) fusion systems.

Here, we also might have equivalent (braided) pivotal fusion systems, and redun-

dant systems have to be removed as well. The result is a set of (braided) pivotal

fusion systems {(ℱ𝑖,ℛ𝑖,𝑗,𝒫𝑖,𝑘)}
𝑛𝑃(𝑖)

𝑘=1
where ℛ𝑗 might be empty. Although it is a

famous open question whether the pivotal equations always have a solution, this

is the case for all the rings we investigated.

57

We will, despite the fact that we also take other constraints into account, from now

on refer to step 1 as “solving the pentagon equations”, step 2 as “solving the hexagon

equations” and step 3 as “solving the pivotal equations”.

In order to solve these equations, several techniques must be applied to reduce the

systems of consistency equations. This chapter aims to explain the various methods

used to reduce and eventually solve these sets of consistency equations. In particular,

Section 4.1 explains the various techniques developed and their application to solving

pentagon equations. Most, but not all, of the techniques used also find their application

in solving the hexagon equations. The minor differences between the strategy used to

solve the hexagon equations and that to solve the pentagon equations are explained in

Section 4.2. Section 4.3 explains how the pivotal equations were solved. The solutions

are discussed in Section 4.4. Section 4.5 discusses the naming scheme we use for fusion

categories, and Section 4.6 concisely discusses some predecessors to Anyonica and

alternative software.

All categorifiable rings up to rank 6 have already been classified in [63]. By using

Anyonica, I believe we classified all pivotal categorifiable multiplicity-free fusion rings

of rank 7. If the PSU(2)12 fusion ring only has pivotal solutions, then we classified all of

the multiplicity free categorifiable fusion rings up to rank 7. Moreover, all 𝐹-symbols,

𝑅-symbols, and pivotal coefficients of the fusion categories have been found and are

now available as well. For each ring that could not be categorified, there is a Mathemat-

ica notebook that explains why this is the case. The only place where an undetectable

error could occur is during the procedure to find zero values of 𝐹-symbols. Since log-

ging intermediate results for this step causes enormous slowdowns, we did not let the

computer do this.

Note 6. Steps 2 and 3 in the process of finding fusion categories are independent

and can be interchanged.

4.1 Solving Pentagon Equations

This section explains the procedures for solving the pentagon equations in the order

they are applied when one evaluates the function SolvePentagonEquations from

the Anyonica package. The only procedures not a standard part of the SolvePen-
tagonEquations function are checking for obstructions to categorification, trying

to fix a unitary gauge, and removing duplicate solutions. This was done manually since

the SageMath software package needed to be used for some categories.

4.1.1 Obstructions To Categorification

The quickest way to categorify a fusion ring is not categorifying it at all. Before start-

ing the process of categorification, it is interesting to check whether there might be

obstructions from categorification. For a given fusion ring, one can sometimes rule

out categorification using specific criteria. The criteria used all come from the papers

58

Criterion Abbreviation Only Commutative Rules out

Zero-Spectrum ZS No FC

Commutative Schur Product CSP Yes UFC

𝑑-number DN Yes FC

Pivotal Drinfeld Center PDC Yes PFC

Lagrange L No FC

Extended Cyclotomic EC Yes FC

Table 4.1: The various categorifiability criteria that were used. Here “Only Commuta-
tive” means that the criterium only applies to commutative fusion rings. FC, UFC, and
PFC respectively stand for fusion category, unitary fusion category, and pivotal fusion
category.

[65], [63], and [64]. Table 4.1 gives an overview of the various criteria.

The ZS criterion is implemented in Anyonica as ZSCriterion and was able to rule

out general categorification for 267 of the 28451 fusion rings.

The CSP criterion is implemented via the function CSPCValue, whose output is a

floating point number 𝑝. If 𝑝 < 0, then the fusion ring has no unitary fusion category.

We could not implement an exact test since the CSP criterion uses fusion ring char-

acters, and we do not have symbolic versions of all character tables. This is also why

a number is returned rather than a boolean: it is up to the user to determine whether

|𝑝| is big enough to be convinced that the test result is correct. For an accuracy of

64-digits, the CSP criterion ruled out unitary categorification for 19471 of the 28333
commutative fusion rings.

Some of the more decisive criteria, such as the DN, PDC, L, and EC criteria, require

algorithms from number field theory (see [63] for the source code). These algorithms

could be highly demanding, to the point of needing more than 128GB of RAM. These

were, therefore, only applied to the multiplicity-free fusion rings, some of which were

still too hard to crack. The DN, PD, and L criteria are implemented in Anyonica as

DNCriterion, PDCCriterion, and LCriterion. Mathematica does not have the

required functionality that I1 needed to implement the EC criterion, so I used the Sage-

Math code from the original paper to calculate its outcome.

Example 4.1.1. The following code

rings = FusionRingList[[{ 5, 16, 22, 29 }]];

Print @
TableForm @
Prepend[{ "ZS", "L", "CSP", "PDC", "DN" }] @
Table[

{
ZSCriterion[r], LCriterion[r], CSPCValue[10][r],
PDCCriterion[r], DNCriterion[r]

1Several functions for working with field extensions are required, and I do not have the skills to im-
plement these myself.

59

},
{ r, rings }

]

returns

ZS L CSP PDC DN
False False ∞ False False
False True ∞ True True
True True -0.96226071 True True
False True ∞ True True

So for the first ring, Rep(𝐷3), none of the criteria exclude categorification, while for

each of the other rings, there is at least one criterion that rules out categorification.

The numerical value, different from ∞, indicates that the third ring has no unitary

categorifications due to the CSP criterion. The other criteria already made the stronger

statement that this ring has no categorifications at all, however. As a matter of fact, all

multiplicity-free fusion rings up to rank 7 for which the CSP criterion rules out unitary

categorification are already ruled out from general categorification due to some other

criteria.

In Section 8, the categorifiability data of the multiplicity-free fusion rings up to

rank 9 is listed. All rings of rank 8 or greater, except for FR8,2
4 , FR8,4

2 , FR8,4
5 , FR9,2

2 , and

FR9,6
3 , that are listed as not categorifiable were ruled out because of the DN, PDC, L, or

EC criteria. The rings FR8,2
4 ,FR8,4

2 ,FR8,4
5 ,FR9,2

2 , and FR9,6
3 are ruled out from categori-

fication by using Anyonica to reduce the pentagon equations to the point it was clear

that no non-singular solution exists. The rings listed as categorifiable, but for which

we don’t have explicit data, are rings with a special structure. For example fusion rings

arising from finite groups, the representation theory of quantum groups at roots of

unity, or products of these are automatically categorifiable.

Note that there is one fusion ring, FR9,0
38 , that has no pivotal categorifications due

to the PDC criterium but is not ruled out from general categorification by any of the

other criteria. This ring is, therefore, the only multiplicity-free fusion ring of rank 9 or

less that might be a counterexample to the famous conjecture that all fusion categories

have a pivotal structure.

4.1.2 Determining Which 𝐹-Symbols Could Be Zero

Multiple steps in solving the pentagon equations assume that the variables to be solved

for are non-zero. Therefore, we must determine which variables could be zero be-

forehand. The main steps that we performed, in the order they are applied, are the

following:

1. Translate the pentagon equations and invertibility constraints to a logical propo-

sition.

2. Reduce the proposition via tetrahedral symmetries, pattern matching, and con-

version between normal forms.

60

3. Find all lists of booleans that satisfy the proposition.

4.1.2.1 Constructing the logical proposition

The pentagon equations and the demands that all 𝐹-matrices have full rank can be

translated to a boolean proposition in the following way. First, every 𝐹-symbol 𝐹𝐼

(where 𝐼 is some admissible label) is replaced by a boolean variable 𝑏𝐼 for which

𝑏𝐼 = {
FALSE iff 𝐹𝐼 = 0

TRUE iff 𝐹𝐼 ≠ 0
. (4.1)

Next, for every pentagon equation, a proposition is constructed that demands that

it is not allowed for exactly one term to be non-zero. For example, for the following

equation

𝐹𝐼𝐹𝐽 = 𝐹𝐾𝐹𝐿𝐹𝑀 (4.2)

this translates to the proposition

𝑏𝐼 ∧ 𝑏𝐽 ⇔ 𝑏𝐾 ∧ 𝑏𝐿 ∧ 𝑏𝑀, (4.3)

while for

𝐹𝐼𝐹𝐽 = 𝐹𝐾𝐹𝐿𝐹𝑀 + 𝐹𝑁𝐹𝑂𝐹𝑃 (4.4)

this translates to

¬((𝑝1 ∧¬𝑝2 ∧¬𝑝3) ∨ (¬𝑝1 ∧ 𝑝2 ∧¬𝑝3) ∨ (¬𝑝1 ∧¬𝑝2 ∧ 𝑝3)) , (4.5)

with

𝑝1 = 𝑏𝐼 ∧ 𝑏𝐽, (4.6)

𝑝2 = 𝑏𝐾 ∧ 𝑏𝐿 ∧ 𝑏𝑀, (4.7)

𝑝3 = 𝑏𝑁 ∧ 𝑏𝑂 ∧ 𝑏𝑃. (4.8)

The demand that the 𝐹-matrices are invertible would typically translate to the de-

terminant of each matrix being non-zero. There is no way to translate such a demand to

a proposition in the variables 𝑏𝐼 since it depends on the exact values of the 𝐹-symbols.

Therefore, we weaken this demand to the demand that at least one of the terms of the

determinant should be non-zero. If this demand is violated, the determinant is equal

to zero, but the opposite is clearly not true.

Let 𝑝(𝑏𝐼1 ,… , 𝑏𝐼𝑛) be the logical conjunction of all propositions constructed for a

certain fusion ring. Then, the task of finding all admissible sets of zero values of

𝐹-symbols comes down to finding lists of booleans for which 𝑝 evaluates to TRUE.

This problem is a specific case of an ALLSAT problem in theoretical computer science.

61

However, the proposition 𝑝 is often too big to handle directly, so some heuristics were

implemented to reduce its complexity.

4.1.2.2 Reducing the Proposition

Several methods were applied to reduce the proposition 𝑝. Firstly, we made use of

so-called tetrahedral symmetries, which allow us to identify several of the boolean

variables as follows

[𝑏𝑎𝑏𝑐𝑑]𝑒𝑓 = [𝑏𝑐𝑏𝑎
∗

𝑑∗]𝑒𝑓∗ = [𝑏𝑎
∗𝑑𝑐

𝑏∗]𝑒
∗

𝑓 = [𝑏𝑒
∗𝑐𝑓∗

𝑎∗]𝑏
∗

𝑑∗ . (4.9)

These symmetries come from a group of natural transformations in the fusion category

(see definition 5.1. in [64]) that map 𝐹-symbols to other 𝐹-symbols up to a non-zero

scalar factor. In the physics literature, sometimes a stronger form of these symmetries,

namely

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓 = [𝐹𝑐𝑏𝑎∗

𝑑∗]𝑒𝑓∗ = [𝐹𝑎∗𝑑𝑐
𝑏∗]𝑒

∗

𝑓 = [𝐹𝑒∗𝑐𝑓∗
𝑎∗]𝑏

∗

𝑑∗
√

𝑑𝑒𝑑𝑓
𝑑𝑏𝑑𝑑

, (4.10)

is demanded (see [61] for examples and applications). This helps reduce the pentagon

equations, but there are fusion systems for which the stricter version (4.10) do not

hold. There is, for example, no gauge for the fusion systems belonging to the HI(ℤ3)
fusion ring, introduced in [43], for which (4.10) holds.

Note 7. The factors that appear in front of the 𝐹-symbols after applying the nat-

ural transformations come from the fact that in the categorical language 𝑥∗∗ ≅ 𝑥
rather than 𝑥∗∗ = 𝑥. The translation to a language where 𝑥∗∗ = 𝑥must involve the

isomorphisms (𝑥∗∗ → 𝑥) ∈ hom(𝑥∗∗, 𝑥) which cause nonzero numerical factors

to appear. The group of natural transformations is a group of linear transfor-

mations, so they must map non-zero 𝐹-symbols to non-zero 𝐹-symbols and vice

versa. In particular, they hold exactly on the variables 𝑏𝐼.

The reduction in the number of variables is quite significant. For example, for the

fusion ring PSU(2)6, the number of variables in the proposition gets reduced from 163
to 44, while for HI(ℤ3) the number of variables gets reduced from 1259 to 396. Once

the tetrahedral symmetries are exhausted, one can still reduce the system by using

pattern matching and recursion. The invertibility constraints on the 1𝐷 𝐹-symbols

cause 𝑝 to contain sub-propositions of the form

(a) 𝑏𝐼1 ∧…∧ 𝑏𝐼𝑘 , and

(b) 𝑏𝐼 ⇔ 𝑏𝐽

that can be factored out. Factors of form (a) can be used to conclude that 𝑏𝐼1 =
TRUE,… , 𝑏𝐼𝑘 = TRUE and this new information can be used to update 𝑝. Factors

of form (b) can be used to set up equivalence relations between certain variables and,

62

therefore, reduce the number of variables appearing in 𝑝. After updating 𝑝 in this way,

new factors of the form (a) and (b) can appear, and the process is repeated until no

factors are left.

One last procedure can be applied to reduce the proposition. Propositions can be

expressed in certain normal forms, such as

• CNF (Conjunctive Normal Form): the proposition is written as an AND of OR’s,

• DNF (Disjunctive Normal Form): the proposition is written as an OR of AND’s.

For example, proposition (4.3) looks like

(¬𝐹𝐼 ∨¬𝐹𝐽 ∨ 𝐹𝐾) ∧ (¬𝐹𝐼 ∨¬𝐹𝐽 ∨ 𝐹𝐿) ∧ (¬𝐹𝐼 ∨¬𝐹𝐽 ∨ 𝐹𝑀)∧

(𝐹𝐼 ∨¬𝐹𝐾 ∨¬𝐹𝐿 ∨¬𝐹𝑀) ∧ (𝐹𝐽 ∨¬𝐹𝐾 ∨¬𝐹𝐿 ∨¬𝐹𝑀)
(4.11)

in CNF, but like

(𝐹𝐼 ∧ 𝐹𝐽 ∧ 𝐹𝐾 ∧ 𝐹𝐿 ∧ 𝐹𝑀) ∨ (¬𝐹𝐼 ∧¬𝐹𝐾) ∨ (¬𝐹𝐼 ∧¬𝐹𝐿)∨

(¬𝐹𝐼 ∧¬𝐹𝑀) ∨ (¬𝐹𝐽 ∧¬𝐹𝐾) ∨ (¬𝐹𝐽 ∧¬𝐹𝐿) ∨ (¬𝐹𝐽 ∧¬𝐹𝑀)
(4.12)

in DNF. By expressing the proposition in CNF form, sometimes extra factors of the

form (a) can be identified. When the proposition is expressed in DNF form, some-

times variables appear in all AND clauses, which implies they have to be TRUE. The

method used to find zero values converts back and forth between CNF and DNF forms

to extract these extra pieces of information until no extra info can be extracted.

4.1.2.3 Finding All Instances

Mathematica has a function SatisfiabilityInstances, which can be used to find

all boolean vectors that satisfy a proposition. It is also possible to use the built-in func-

tion Reduce or our implementation of an ALLSAT solver that writes, compiles, and

executes C code without leaving Mathematica. This solver uses the same technique

(see 3.1.3) as used to find fusion matrices.

All of the above functionality has been implemented in the FindZeroValues
function of Anyonica. This function takes two arguments equations and vari-
ables and several optional arguments. The option "FindZerosBy" allows you to

change the algorithm to solve the ALLSAT problem, while "InvertibleMatrices"
allows you to add matrices of variables that are required to be invertible. By default,

not all equations containing more than two terms are included in the boolean propo-

sition. This is because these equations are often much weaker than those with only

two terms. Also, the execution time and memory pressure of the algorithm increases

drastically by including all such equations. So by default, FindZeroValues only in-

cludes 30% of the least complex equations with more than two terms, a value that can

be changed via the option "SumSubSetParameter". At the end of the algorithm,

however, solutions incompatible with the other 70% of these equations are removed,

so this value has no effect on the output itself. The default measure of complexity that

63

ZeroValues uses is the built-in LeafCount function, which returns the number of

leaves that the formal tree form of an expression has. A custom function can be used

by setting the "SumSubsetFunction" option.

Example 4.1.2. The following code

repD3 = FusionRingList[[5]];
pEqns = PentagonEquations @ repD3;
fSymb = FSymbols @ repD3;
fMats = FMatrices @ repD3;
FindZeroValues[pEqns, fSymb, "InvertibleMatrices" -> fMats]

returns

{ { }, { [𝐹333
3]33 -> 0 } }

which means that there are two possible sets of zero values. Either no 𝐹-symbol is

zero, or only [𝐹333
3]33 = 0. For both of these possibilities, the pentagon equations need

to be solved. It turns out that the first configuration, with no zero 𝐹-symbols, does not

lead to any solutions, and Rep(𝐷3) is the smallest multiplicity-free fusion ring with a

non-trivial zero 𝐹-symbol.

Note 8. Since code listings can take up much space, LATEXtypesetting will be

used to display the variables in these environments. In particular, [𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓 will be

used instead of the standard output F[a, b, c, d, e, f] from the pack-

age. Likewise, triple dots ... will be used to condense all but a few elements of

long lists whenever their content is similar to the elements that will be shown.

For all but three multiplicity-free fusion rings with rank up to seven there is a

unique configuration of zero values for the 𝐹 -symbols. The three exceptions are the

following.

• FR7,1,0
1 = Adj(SO(16)2) admits 56 (braided) pivotal fusion categories of which

32 have 192 𝐹-symbols equal to 0, 16 have 96 zero-𝐹-symbols equal to 0, and 8
have 24 𝐹-symbols equal to 0.

• FR7,1,0
6 = Adj(SO(11)2) has 5 categorifications of which 3 have 135 𝐹-symbols

that are 0 and 2 have 45 𝐹-symbols that are zero.

• FR7,1,2
4 has 22 categorifications of which 16 have 192 𝐹-symbols that are zero and

6 have 24 𝐹-symbols that are 0.

For all three cases, the smaller sets of 𝐹-symbols that are zero are included in all larger

sets of 𝐹-symbols that are zero.

4.1.3 Fixing the Gauge

The pentagon and hexagon equations never have a finite number of solutions because

they have gauge freedom associated with each distinct vertex that amounts to the

choice of basis vectors. Let {𝑔𝑎𝑏
𝑐 ∈ ℂ\{0} |𝑁𝑐

𝑎,𝑏 ≠ 0} be a set of numbers that denote

64

the change of basis of the 1D vector spaces 𝑉𝑎𝑏
𝑐 . By applying such a basis transform,

the values of the 𝐹-symbols change as

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓 ↦

𝑔𝑎𝑏
𝑒 𝑔𝑏𝑐

𝑑

𝑔𝑎𝑓
𝑑 𝑔𝑏𝑐

𝑓

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓. (4.13)

Since the pentagon equations are derived in a basis-independentway, they are symmet-

ric under such transforms. In particular, for every solution to the pentagon equations

given by a set {[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓}, the set { 𝑔𝑎𝑏𝑒 𝑔𝑏𝑐𝑑

𝑔𝑎𝑓𝑑 𝑔𝑏𝑐𝑓
[𝐹𝑎𝑏𝑐

𝑑]𝑒𝑓| 𝑔
𝑎𝑏
𝑐 ∈ ℂ\0} is also a valid solution.

This allows us, even without knowing any of the values 𝑜𝑓𝑡ℎ𝑒𝐹-symbols a priori, to fix

the values of certain 𝐹-symbols before solving the pentagon equations. In effect, we

are choosing specific representatives for the orbits of the solutions under such gauge

transforms. This is why we call this process fixing the gauge. Interestingly, a result of

Ocneanu tells us that after fixing the gauge, the number of solutions to the pentagon

(and hexagon) equations is finite [27]. Completely fixing the gauge is often not possi-

ble, though. What we can do, however, is fix the gauge up to a discrete group of gauge

transforms. After we solve the pentagon (and hexagon) equations, we will need to

check for equivalent solutions and remove these.

The definition of a fusion system already has several gauge demands in disguise.

Indeed, the demand that any 𝐹-symbol [𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓 with 𝑎 = 1, or 𝑐 = 1 equals 1 has

no effect on the categorical level. Here, we show that these demands are artificial in

that it is always possible to fix a gauge for which they are true. Moreover, if such a

gauge is chosen, one also has that [𝐹𝑎1𝑐
𝑑]𝑒𝑓 = 1, so any vacuum 𝐹-symbol, i.e., for which

𝑎 = 1,𝑏 = 1, or 𝑐 = 1, must equal 1.

Proposition 4.1.3. For any set of 𝐹-symbols of a multiplicity-free fusion category it is pos-

sible to choose a gauge such that any vacuum 𝐹-symbol equals 1.

Proof. First we note that any vacuum 𝐹-matrix must be a 1×1 invertible matrix. In par-

ticular any vacuum 𝐹-symbol is non-zero. Now assume a set {[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓} of values of 𝐹-

symbols is given. Wewill show that there exists a set of symbols{𝑔𝑎𝑏
𝑐 ∈ ℂ\{0} |𝑁𝑐

𝑎,𝑏 ≠ 0}
parametrizing a gauge transform𝜑 such that𝜑([𝐹𝑎𝑏𝑐

𝑑]𝑒𝑓) = 1whenever 𝑎 = 1, 𝑏 = 1, or

𝑐 = 1. This will be shown by listing all cases of vacuum symbols in order of decreasing

number of vacuum labels and refining the gauge transform as we go along.

Denote by 𝐸(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖) the pentagon equation in the gauge transformed

variables:

𝜑([𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓)𝜑([𝐹𝑔ℎ𝑓

𝑑]𝑎𝑖) = ∑
𝑗
𝜑([𝐹𝑔ℎ𝑏

𝑒]𝑎𝑗)𝜑([𝐹𝑔𝑗𝑐
𝑑]𝑒𝑖)𝜑([𝐹ℎ𝑏𝑐

𝑖]𝑗𝑓). (4.14)

This is nothing but equation (4.14), where the indices are relabeled to make the argu-

ments easier to follow.

Case 1: 𝑎 = 𝑏 = 𝑐 = 1

65

In this case also 𝑑 = 𝑒 = 𝑓 = 1 and there is only one such symbol: [𝐹111
1]11. This symbol

is gauge-invariant, i.e. 𝜑([𝐹111
1]11) = [𝐹111

1]11 but from the pentagon equation

𝐸(1, 1, 1, 1, 1, 1, 1, 1, 1) ∶ 𝜑([𝐹111
1]11)

2 = 𝜑([𝐹111
1]11)

3 (4.15)

it follows immediately that 𝜑([𝐹111
1]11) = 1.

Case 2: 𝑎 = 𝑏 = 1, 𝑐 ≠ 1

In this case 𝑐 = 𝑑 = 𝑓, 𝑒 = 1 and we find that

𝜑([𝐹11𝑐
𝑐]1𝑐) =

𝑔11
1

𝑔1𝑐
𝑐
[𝐹11𝑐

𝑐]1𝑐 , (4.16)

so if we set 𝑔1𝑐
𝑐 = 𝑔11

1 /[𝐹11𝑐
𝑐]1𝑐 for all 𝑐 ≠ 1 then 𝜑([𝐹11𝑐

𝑐]1𝑐) = 1.

Case 3: 𝑎 = 𝑐 = 1, 𝑏 ≠ 1

In this case 𝑏 = 𝑑 = 𝑒 = 𝑓 and we find that the symbol is gauge invariant. Because of the

choice of 𝜑 from case 2 we find that 𝐸(1, 𝑏, 1, 𝑏, 𝑏, 𝑏, 1, 1, 𝑏) ∶ 𝜑([𝐹1𝑏1
𝑏]𝑏𝑏)𝜑([𝐹11𝑏

𝑏]1𝑏) =
𝜑([𝐹11𝑏

𝑏]1𝑏)𝜑([𝐹1𝑏1
𝑏]𝑏𝑏)𝜑([𝐹1𝑏1

𝑏]𝑏𝑏) simplifies to𝜑([𝐹1𝑏1
𝑏]𝑏𝑏) = 𝜑([𝐹1𝑏1

𝑏]𝑏𝑏)
2 and thus [𝐹1𝑏1

𝑏]𝑏𝑏 =
1 for all 𝑏 ≠ 1.

Case 4: 𝑏 = 𝑐 = 1, 𝑎 ≠ 1

In this case 𝑑 = 𝑒 = 𝑎, 𝑓 = 1 and we find that

𝜑([𝐹𝑎11
𝑎]𝑎1) =

𝑔𝑎1
𝑎

𝑔11
1

[𝐹𝑎11
𝑎]𝑎1, (4.17)

so if we set 𝑔𝑎1
𝑎 = [𝐹𝑎11

𝑎]𝑎1/𝑔
11
1 for all 𝑎 ≠ 1 then 𝜑([𝐹𝑎11

𝑎]𝑎1) = 1.

Case 5: 𝑎 = 1, 𝑏 ≠ 1, 𝑐 ≠ 1

In this case 𝑒 = 𝑏, 𝑓 = 𝑑 and we find that

𝜑([𝐹1𝑏𝑐
𝑑]𝑏𝑑) =

𝑔1𝑏
𝑏

𝑔1𝑑
𝑑

[𝐹1𝑏𝑐
𝑑]𝑏𝑑 =

[𝐹11𝑑
𝑑]1𝑑

[𝐹11𝑏
𝑏]1𝑏

[𝐹1𝑏𝑐
𝑑]𝑏𝑑 (4.18)

and thus its value is fixed because we already put constraints on the relevant gauge

factors. By choosing suitable labels, however, we find that

𝐸(1, 𝑏, 𝑐, 𝑑, 𝑏, 𝑑, 1, 1, 𝑑) ∶ 𝜑([𝐹1𝑏𝑐
𝑑]𝑏𝑑)𝜑([𝐹11𝑑

𝑑]1𝑑) = 𝜑([𝐹11𝑏
𝑏]1𝑏)𝜑([𝐹1𝑏𝑐

𝑑]𝑏𝑑)𝜑([𝐹1𝑏𝑐
𝑑]𝑏𝑑)(4.19)

or, because of our choice of 𝜑,

𝜑([𝐹1𝑏𝑐
𝑑]𝑏𝑑) = 𝜑([𝐹1𝑏𝑐

𝑑]𝑏𝑑)
2 (4.20)

and thus 𝜑([𝐹1𝑏𝑐
𝑑]𝑏𝑑) = 1.

Case 6: 𝑎 ≠ 1, 𝑏 = 1, 𝑐 ≠ 1

In this case 𝑒 = 𝑎, 𝑓 = 𝑐 and from

𝐸(𝑎, 1, 𝑐, 𝑑, 𝑎, 𝑐, 𝑎, 1, 𝑐) ∶ 𝜑([𝐹𝑎1𝑐
𝑑]𝑎𝑐)

2 = 𝜑([𝐹𝑎1𝑐
𝑑]𝑎𝑐) (4.21)

66

we find that 𝜑([𝐹𝑎1𝑐
𝑑]𝑎𝑐) = 1.

Case 7: 𝑎 ≠ 1, 𝑏 ≠ 1, 𝑐 = 1
In this case we choose our labels such that the second factor in the pentagon equation

equals [𝐹𝑎𝑏1
𝑑]𝑑𝑏 ,

𝐸(𝑑, 1, 1, 𝑑, 𝑑, 1, 𝑎, 𝑏, 𝑏) ∶ 𝜑([𝐹𝑎𝑏1
𝑑]𝑑𝑏) = 𝜑([𝐹𝑎𝑏1

𝑑]𝑑𝑏)
2 (4.22)

and we find that 𝜑([𝐹𝑎𝑏1
𝑑]𝑑𝑏) = 1. �

In what follows, we will assume that vacuum 𝐹-symbols have already been set to 1,
and no gauge transform is allowed to change these values.

One can apply the following procedure to fix the gauge for the other 𝐹-symbols.

Let {𝜑([𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓)} be a set of 𝐹-symbols obtained after applying a gauge transform

with variables {𝑔𝑎𝑏
𝑐 ∈ ℂ\{0} |𝑁𝑐

𝑎,𝑏 ≠ 0} on {[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓}, i.e.

𝜑(𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓) =

𝑔𝑎𝑏
𝑒 𝑔𝑏𝑐

𝑑

𝑔𝑎𝑓
𝑑 𝑔𝑏𝑐

𝑓

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓. (4.23)

Pick an 𝐹-symbol whose transform has a gauge variable, say 𝑔𝑥𝑦
𝑧 , that appears linearly

(to the power 1 or−1) in Eq. (4.23). Set the transformed𝐹-symbol equal to 1, and solve

this equation for 𝑔𝑥𝑦
𝑧 . Then, substitute this value of 𝑔𝑥𝑦

𝑧 into the other gauge equations

and repeat this procedure with another 𝐹-symbol. Sometimes, this procedure can be

carried through until no more free gauge factors appear in the equations. When this

happens, the gauge freedom of the 𝐹-symbols is completely exhausted. However, we

may generally run out of equations containing linear gauge factors before the gauge

is fully fixed. In such cases, one can continue the process using quadratic or higher-

order equations in the gauge factors. Such equations do not have unique solutions for

the gauge factors, which results in a partly broken gauge. The continuous symmetry

is broken, but a discrete symmetry from a residual finite group of gauge transforms

remains. This is not a problem when solving the pentagon equations since the number

of solutions will still be finite, but afterward, duplicate equivalent solutions should be

deleted.

The Anyonica package contains several functions that help deal with multiplica-

tive symmetries, i.e., symmetry transforms that act via multiplication with specific

variables. The function BreakMultiplicativeSymmetry takes a set of symmetries

(that can be created using the GaugeSymmetries function) and returns a couple of

(1) remaining symmetries and (2) a list of values of fixed symbols.

For example

Example 4.1.4. For the Rep(𝐷3) fusion ring initialized in example 4.1.2, evaluating

symmetries = GaugeSymmetries[FSymbols @ repD3, g];
brokenSymmetries = BreakMultiplicativeSymmetry[symmetries];

Print[symmetries];
Print[brokenSymmetries];

67

returns

<|
"Transforms" -> {

[𝐹111
1]11 -> [𝐹111

1]11, ...,
[𝐹333

3]32 -> ((𝑔33
3)^2 [𝐹333

3]32)/(𝑔
32
3 𝑔33

2), [𝐹333
3]33 -> [𝐹333

3]33
},
"Symbols" -> { 𝑔 }

|>

{
<|

"Transforms" -> {
[𝐹111

1]11 -> [𝐹111
1]11, ..., [𝐹333

3]32 -> [𝐹333
3]32, [𝐹333

3]33 -> [𝐹333
3]33

},
"Symbols" -> { 𝑔 }

|>
,
{

[𝐹112
2]12 -> 1, [𝐹113

3]13 -> 1, [𝐹211
2]21 -> 1, [𝐹223

3]13 -> 1,
[𝐹233

1]32 -> 1, [𝐹311
3]31 -> 1, [𝐹322

3]31 -> 1, [𝐹333
3]13 -> 1

}
}

It is possible to set desired𝐹-symbols to specific values by setting the option"GaugeDe-
mands" in which case these symbols will be changed to the desired value as soon as

possible in the process, to the extent that they are free to choose. Likewise, one can ex-

clude variables from being fixed by using the "ExcludedVariables" option. While

the symmetries in the example were calculated via the GaugeSymmetries function

that recognizes𝐹-symbols and𝑅-symbols, the functionBreakMultiplicativeSym-
metry accepts arbitrary symbols and transforms as long as the symmetries are multi-

plicative.

4.1.4 Solving Binomial Equations

Now that the gauge is fixed and none of the remaining variables are 0, the pentagon

equations can be greatly reduced using the subset of equations with two terms. These

equations have the specific form 𝑚𝑖1
= 𝑚𝑖2

where the 𝑚𝑖𝑗
are monomials in non-zero

variables. Since none of the variables can be 0, one can apply a logarithm to transform

these equations to a linear system of the form 𝐴.�⃗� = �⃗� mod 2𝜋𝑖ℤ𝑛, where 𝑛 is the

number of 𝐹-symbols. Such a system can be solved by taking a Smith decomposition

of the matrix 𝐴.

The general form of the solution to a system of binomial equations in the variables

𝑓𝑗 is the following:

𝑓𝑗 = 𝑣𝑗
rk(𝐴)
∏
𝑘=1

𝑒2𝜋𝑖[𝑄]𝑘𝑗𝑚𝑘
𝑛−rk(𝐴)
∏
𝑘=1

𝑧
[𝑍]𝑘𝑗
𝑘 , (4.24)

68

where 𝑣 is a constant vector, 𝑄 a matrix of fractions, 𝑍 a matrix of integers, the 𝑚𝑘

are integer parameters, the 𝑧𝑘 are complex parameters, and rk(𝐴) is the rank of 𝐴.

From the RHS in (4.24), we see that only a finite number of lists of integers �⃗� =
(𝑚1,…,𝑚𝑟) give rise to different solutions. For each �⃗�, we get a parametrization of the

𝐹-symbols in fewer variables than before. These parametrizations can be substituted

in the remaining non-binomial equations, which become equations in the parameters

𝑧𝑘. Parametrizations for which an 𝐹-matrix becomes singular or for which the updated

set of equations is inconsistent are removed at this point.

Typically, a new subset of binomial equations arises after the parametrization, and

thus, we can repeat the process recursively until no new binomial equations are found.

This procedure results in a finite number of couples consisting of (a) a system with

fewer equations and fewer variables and (b) a parametrization of the 𝐹-symbols in

these variables.

The reduction in the number of variables and equations is often quite drastic. For

example, for the Rep(𝐷3) and PSU(2)6 fusion rings, all equations are solved by this

procedure. For the HI(ℤ3) fusion ring, we get a reduction of 36018 equations to 3319
and 1212 variables to 5.

In Anyonica, the function SolveBinomialSystem solves a binomial system of

equations using the Smith decomposition. It takes three arguments, equations, vari-
ables, and parameter, and returns a list of solutions parametrized by parameter.

Several options can be set, such as

• "NonSingular" which is set to True if no variable is allowed to be zero,

• "ZeroValues" which is set to a list of sets of variables that are known to be 0,

• "Symmetries" which is set to a list of symmetries that should be broken,

• "InvertibleMatrices"which is set to a list ofmatrices of variables that should

be invertible,

• "PolynomialConstraints"which can be set to a list of more general polyno-

mial constraints (such as inequalities) that should be satisfied by the solutions,

• "UseDatabaseOfSmithDecompositions"which can be set to True in order

to reuse previously calculated Smith decompositions, and

• "StoreDecompositions" which can be set to False in order not to waste

time storing decompositions.

Example 4.1.5. After fixing the gauge for Rep(𝐷3) and substituting {[𝐹333
3]33 → 0}, the

pentagon equations become a system of 82 polynomial equations in 19 variables. 72
of these equations are binomial. If we solve these as follows

binEqns =
{

1 == [𝐹222
2]11^2, 1 == [𝐹332

1]23 [𝐹332
2]13, ...,

[𝐹333
3]32 == [𝐹323

3]33 [𝐹333
3]31, [𝐹333

3]31 == -[𝐹323
3]33 [𝐹333

3]23 [𝐹333
3]32

69

}

vars =
{ [𝐹222

2]11, [𝐹232
3]33, ..., [𝐹333

3]32 }

invMats =
{

{{[𝐹222
2]11}}, {{[𝐹232

3]33}}, {{[𝐹233
2]31}}, ..., {{[𝐹333

2]33}},
{{[𝐹333

3]11,[𝐹
333
3]12,1},{[𝐹

333
3]21,[𝐹

333
3]22,[𝐹

333
3]23},{[𝐹

333
3]31,[𝐹

333
3]32,0}}

}

SolveBinomialSystem[
binEqns, vars, z, "InvertibleMatrices" -> invMats

]

then we obtain 6 parametrizations of the 𝐹-symbols in terms of one parameter 𝑧1
{

{ [𝐹222
2]11 -> 1, ..., [𝐹333

3]31 -> 𝑧1, [𝐹333
3]32 -> −𝑧1 },

{ [𝐹222
2]11 -> 1, ..., [𝐹333

3]31 -> 𝑧1𝑒
−𝑖𝜋/3, [𝐹333

3]32 -> −𝑒2𝑖𝜋/3𝑧1 },
{ [𝐹222

2]11 -> 1, ..., [𝐹333
3]31 -> 𝑧1𝑒

−2𝑖𝜋/3, [𝐹333
3]32 -> −𝑒−2𝑖𝜋/3𝑧1 },

{ [𝐹222
2]11 -> 1, ..., [𝐹333

3]31 -> −𝑧1, [𝐹333
3]32 -> −𝑧1 },

{ [𝐹222
2]11 -> 1, ..., [𝐹333

3]31 -> 𝑧1𝑒
2𝑖𝜋/3, [𝐹333

3]32 -> −𝑒2𝑖𝜋/3𝑧1 },
{ [𝐹222

2]11 -> 1, ..., [𝐹333
3]31 -> 𝑧1𝑒

𝑖𝜋/3, [𝐹333
3]32 -> −𝑒−2𝑖𝜋/3𝑧1 }

}

By substituting these parametrizations into the 10 remaining equations, we obtain 6
new, greatly simplified systems of equations.

To repeatedly reduce a system of equations with more than two terms, the func-

tion ReduceByBinomials can be used. It takes four arguments, sumEquations,

twoTermEquations, variables, and parameter. Besides all the options it inher-

its from SolveBinomialSystem, it also takes the option "SimplifyIntermedi-
ateResultsBy" (with default Identity), which can be set to a function that sim-

plifies intermediate solutions before substituting them. This is primarily useful if the

polynomial equations contain non-integer coefficients. While this situation can occur

when solving the pentagon equations, the non-integer coefficients are always cyclo-

tomic integers at this point in the calculation. Mathematica typically simplifies com-

binations of these coefficients by default. However, the coefficients that appear in

the hexagon equations are solutions to the pentagon equations and can be pretty wild.

Since the solutions to the hexagon equations are always phases, it is often desirable to

express intermediate coefficients as phases.

4.1.5 Reduction Via Linear Polynomials

When no more binomial equations are present we can reduce the system of equations

even further by using equations that are linear in a certain variable, i.e. of the form

𝑧𝑝 + 𝑞 = 0, (4.25)

70

where 𝑝 and 𝑞 are polynomials that are independent of the variable 𝑧. From this equa-

tion it is clear that either

𝑧 = −𝑞/𝑝, or 𝑝 = 0. (4.26)

The process of reduction is the following. Let 𝐷 = (𝑙𝑃, 𝑙𝐴, 𝑙𝑍) be a triple of lists, to

which we will refer to as ‘the data’, with the following purpose:

• 𝑙𝑃 is the list of polynomials that we want to reduce. During the reduction process

the polynomials in this list will be updated, and polynomials equal to 0 will be

deleted. Initially 𝑙𝑃 contains the list of all polynomials we want to reduce.

• 𝑙𝐴 is the list of assumptions that are made during the reduction process. Here

polynomials will be stored that are assumed to be non zero. 𝑙𝐴 is initially empty.

• 𝑙𝑍 is the list of deduced values of variables. During the reduction process, more

values will be added and previous values will be updated. 𝑙𝑍 is initially empty.

If at any point during the reduction 𝑙𝑃 contains a non-zero number, 𝑙𝐴 contains 0, or

any of the values in 𝑙𝑍 becomes zero then the data at that point is regarded as invalid.

The following procedure is then applied to reduce the list of polynomials.

Let 𝐿reduced be an empty stack.

1. Find the simplest linear polynomial in 𝑙𝑃.

2. If there is no linear polynomial, throw 𝐷 on 𝐿reduced.
If there is, then

(a) if 𝑝 is monomial, solve for 𝑧 and update 𝐷 to 𝐷new by substituting the value

of 𝑧 in 𝐷, and adding its value to 𝑙𝑍. If 𝐷new is valid then remove all 0 poly-

nomials from it, convert all equations with rational functions to polynomial

equations, and repeat step 1 with the 𝐷new as input.

(b) If 𝑝 is not monomial then create two copies of 𝐷, say 𝐷1 and 𝐷2, and

i. solve for 𝑧 under the assumption that 𝑝 ≠ 0. Update 𝐷1 to 𝐷new,1 by

substituting the value of 𝑧 in 𝐷1, adding 𝑧 to 𝑙𝑃1 , and adding 𝑝 to 𝑙𝐴1
. If

𝐷new,1 is valid, remove all 0 polynomials from it, convert all equations

with rational functions to polynomial equations, and repeat step 1 with

𝐷new,1.

ii. Update𝐷2 to𝐷new,2 by reducing all polynomials in𝐷2 modulo𝑝. If𝐷new,2

is valid, remove all 0 polynomials from it and repeat step 1 with the

updated data.

In each step where a linear polynomial is encountered the list of polynomials gets ei-

ther reduced by at least 1 element or, in the case of an invalid system, the process quits.

The algorithm, therefore, always stops in a finite time.

71

After performing these steps one should have a stack of triples

{{𝑙𝑃;1, 𝑙𝐴;1, 𝑙𝑍;1},… , {𝑙𝑃;𝑛, 𝑙𝐴;𝑛, 𝑙𝑍;𝑛}},

all corresponding to reduced systems of equations. Note that while the systems of

equations have fewer equations and variables, the size (in bits) can become quite big.

However, the systems created this way are easier to tackle using Gröbner bases

algorithms combined with some tricks.

The function ReduceByLinearity performs the reduction of a system of poly-

nomial equations by linear equations. It takes two standard arguments"polynomial-
List" andx, where the variables of the polynomials should be of the formx[1],...,x[n].

The simplest linear equation is based on (1) the lexicographic weight of the function {
MonomialQ[p], MonomialQ[q] }which prefers fractions of monomials but prior-

itizes fraction where only 𝑝 is monomial over those where only 𝑞 is monomial, and (2)

LeafCount[p/q] which provides a simple measure of the complexity of an expres-

sion. With the option "LinearReductionWeight", a custom weight function can

be given to decide the simplest polynomial. This can be necessary since the execution

time, maximum memory used, the size, and the form of the result depend greatly on

the order of the variables that are solved for. Extra options can also be set to parallelize

evaluation and control the memory pressure.

Notes 6. • This procedure can also be used to reduce the system binomial

equations to a great extent (which is what J.K. Slingerland’s code does). I

still decided to use F.Verstraete’s idea to use the Smith decomposition since

these decompositions can be stored. This allows one to check and redo cal-

culations much faster. The Smith decomposition does have some serious

drawbacks, however. Firstly, the required memory for the algorithm scales

quite badly with the size of the system. Secondly, the Smith decomposition

returns all solutions to the binomial system in one go. For example, for the

SO(7)2 fusion ring, the outcome of ReduceByBinomials is a list of 64
reduced systems. Many of these intermediate solutions do not result in an

actual solution and are thus a waste of space and time. Lastly, if a crash oc-

curs during the computation of the Smith decomposition, it is very hard to

recover the computations performed so far. While the linear reduction can

also suffer from memory blowup, this can often be prevented by choosing

a different order in which the variables are substituted. Because it is easy

to keep track of the steps of the linear reduction, it is easier to avoid in-

termediate memory blowups. The linear reduction also avoids the blowup

in the number of solutions since quadratic and higher order terms are not

substituted for. For bigger systems of pentagon equations, it might be more

beneficial to use the linear reduction directly after fixing the gauge instead

of reducing the system via the Smith decomposition.

72

• While 𝑙𝐴 is initialized as an empty list when solving all systems, it might

be beneficial to initialize it to a list of determinants of the 𝐹-matrices. This

does not affect the eventual solutions found since, in the last step, all sin-

gular solutions are removed. It might affect computation speed, however.

4.1.6 Incremental and Parallel Gröbner Bases

The penultimate step in solving the pentagon and hexagon equations is the computa-

tion of Gröbner bases. A Gröbner basis of a set of polynomials is a set of polynomials

that has the same roots as the original system, but from which it is easier to extract

certain properties of the system. Both the form of the basis and the properties that can

be extracted depend on a given monomial ordering. A Gröbner basis in “Lexicographic

order” is especially interesting for our purpose. It has a polynomial upper triangular

form: the first polynomial contains only one variable, the second contains only two

variables, one shared with the first polynomial, and so on. While the number of vari-

ables at this stage is quite low, the number and size of equations could still be high.

Typically, though, a lot of the equations are redundant. Therefore, we implemented

the function IncrementalGroebnerBasis, which creates such a basis incremen-

tally. It takes two arguments, polynomials and variables, and works as follows.

Let 𝑙𝑃 be the list of polynomials given by polynomials.

1. First find several of the simplest polynomials and compute a Gröbner basis, say

𝒢 = {𝑝1,… , 𝑝𝑛}, for these.

2. The system 𝑙𝑃 is then reduced via 𝒢 as follows. Each polynomial 𝑞 in 𝑙𝑃 can be

written as a linear combination 𝑞 = 𝑎𝑞;1𝑝1 + ⋯𝑎𝑞;𝑛𝑝𝑛 + 𝑟𝑞 where 𝑎𝑞;1,… , 𝑎𝑞;𝑛,
and 𝑏(𝑞) are polynomials such that 𝑏(𝑞) is indivisible by any of the 𝑝𝑖, i.e. is the

remainder of the division of 𝑞 by {𝑝1,… , 𝑝𝑛}. Since the 𝑝𝑖 are assumed to be

zero, one can replace all polynomials 𝑞 by 𝑟𝑞.

3. Next all 0 polynomials and all duplicate polynomials are removed from 𝑙𝑃. If no

polynomials remain then 𝒢 is a Gröbner basis for the system. If some polyno-

mials remain then we add 𝒢 to the reduced 𝑙𝑃 and repeat steps 1, 2, 3 with the

updated 𝑙𝑃.

The Gröbner bases are calculated using the standard GroebnerBasis function

that comes with Mathematica. While the implementation of this function uses algo-

rithms that are somewhat dated, I found no alternative algorithm that could properly

deal with polynomial systems with non-integer symbolic coefficients.

Just likeReduceByLinearity, thememory consumption ofIncrementalGröb-
nerBasis can easily blow up. To reduce the risk of memory overflows, we made it

possible to set certain options by hand. The option "Cutoff" can be set to a number

between 0 and 1, determining which fraction of all polynomials to consider in step 1.

The option "GroebnerWeightFunction" determines how simple a polynomial is,

73

and by default, it is the function PolynomialDegree. In some cases, it might be ben-

eficial to choose another measure of complexity, such as e.g. the number of terms or

a measure based on the complexity of the coefficients. If the polynomial system con-

tains symbolic roots of polynomials as coefficients, it might be interesting to set the

option "ReduceRoots" to True. This implies that the algorithm will reduce algebraic

expressions containing roots to roots of single polynomials after each reduction step.

Without intermediate simplification of this kind, large algebraic expressions without

variables often linger in the system while they should either be 0 or, if not, allow us to

conclude that the system has no roots. A custom function to perform simplifications

can also be given by setting the "SimplifyIntermediateResultsBy" option.

The order of the variables given to the GroebnerBasis function also plays an

important role. Different permutations of the list of variables given to the function

can result in considerable differences in execution time, memory consumption, and

output complexity. The function ParallelGroebnerBasiswas constructed to deal

with this issue. For every available parallel kernel, the function chooses a permutation

of the variables and starts the task of computing a Gröbner basis. The moment one of

the tasks finishes, it returns the Gröbner basis, and all other tasks are killed. This way,

one can obtain speedups of factors 10000 or higher using only a few extra cores.

For the pentagon and hexagon equations we tackled, such a basis typically contains

less than 20 polynomials and less than 5 variables.

Note 9. For some systems, it is not beneficial to compute Gröbner bases in the

first place. If the results from the linear reduction are systems in one variable, it

is often much faster to find the lowest degree polynomial in that variable, solve it,

and remove solutions that do not satisfy the assumptions from 𝑙𝐴 or are incom-

patible with the other equations in 𝑙𝑃. It might even be beneficial to do this for

systems with two or more variables (which might or might not have equations

containing only one variable), but at the moment, only the check for systems

with one variable is implemented.

4.1.7 Solving the Pentagon Equations

To find roots of Gröbner bases, the built-in function Reduce was used. This function

returns a proposition that provides the solutions for a polynomial system with a finite

number of solutions. Sometimes, a closed form cannot be found or is too complicated,

so Mathematica solves the system in terms of Root expressions. These are symbolic

placeholders, in our case of the form Root[𝑝(𝑥), 𝑛] where 𝑝 is a polynomial and 𝑛
denotes the index of the root according to a specific ordering. Such an expression con-

tains all the information to specify the root it represents exactly. One can, in particular,

obtain the numeric value of a Root expression to arbitrary precision and combine and

simplify root objects symbolically.

All the functionality described so far is bundled in the functionSolvePentagonEqua-
tions. By default, SolvePentagonEquations takes only a single argument: a fu-

74

sion ring. There are, however, a large number of options one can set. Each option for

the functions discussed so far is also valid for SolvePentagonEquations. Other op-

tions come from built-in functions such as GroebnerBasis, Reduce, and there are

also some other options which can looked up in the documentation of the package. For

multiplicity-free fusion rings up to rank 6, only several of the options are necessary.

To categorify a generic fusion ring of higher rank, however, one likely needs to experi-

ment with various options to avoid bottlenecks and crashes. It is even quite likely that

more fine-tuned control is required and that, for example, it is necessary to swap the

order of specific steps, substitute solutions to subsystems, or manually find and solve

certain polynomial equations. Various extra functionswere implemented to accommo-

date this need. These include functions that manipulate polynomial expressions, gauge

symmetries, fusion rings, fusion categories, and more. Anyonica contains more than

170 different documented functions at the moment of writing. By evaluating ?Any-
onica`* in Mathematica, one gets a list of all functions with clickable hyperlinks that

reveal usage information.

Example 4.1.6. The result from evaluating the following code

solutions = SolvePentagonEquations[repD3];

Print[Length @ solutions];
Print[First @ solutions];

is

6

{
[𝐹111

1]11 -> 1, [𝐹112
2]12 -> 1, [𝐹113

3]13 -> 1, [𝐹121
2]22 -> 1, [𝐹122

1]21 -> 1, ...
[𝐹333

3]23 -> -1, [𝐹333
3]31 -> 1/2, [𝐹333

3]32 -> -(1/2), [𝐹333
3]33 -> 0

}

4.1.8 Removing Equivalent Solutions

We say that two solutions to the pentagon equations are equivalent if they can be trans-

formed into each other via

• a gauge transform: {[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓} ↦ { 𝑔𝑎𝑏𝑒 𝑔𝑒𝑐𝑑

𝑔𝑎𝑓𝑑 𝑔𝑏𝑐𝑓
[𝐹𝑎𝑏𝑐

𝑑]𝑒𝑓} for some set of numbers

{𝑔𝑎𝑏
𝑐 ∈ ℂ\{0} |𝑁𝑐

𝑎,𝑏 ≠ 0} ,

• a fusion ring automorphism: {[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓} ↦ {[𝐹𝜎(𝑎)𝜎(𝑏)𝜎(𝑐)

𝜎(𝑑)]𝜎(𝑒)𝜎(𝑓)} where 𝜎 ∈ 𝑆𝑟 is a

permutation that leaves the multiplication table of the fusion ring invariant, or

• a combination of the previous two transforms.

After the pentagon equations are solved, there are typically several equivalent solu-

tions, and it is desirable to remove redundant solutions. To do so, we used a ‘gauge-split

75

set’ of rational functions in formal 𝐹-symbols to check whether two solutions are gauge

equivalent. By this, we mean a list of rational monomials (RMs) in formal 𝐹-symbols

(i.e., without assigned values) for which the first 𝑚 RMs form a generating set of the

ring for all gauge-invariant rational functions in the 𝐹-symbols, and the last 𝑛 RMs are

completely gauge-dependent. The generating set for the gauge-invariant RMs is con-

structed as follows. Let 𝐼1, ..., 𝐼𝑘 be all admissible labels for which 𝐹𝐼𝑗
≠ 0, 𝑗 = 1,… , 𝑘,

and define

𝐺𝐼𝑖
∶=

𝑔𝑎𝑖𝑏𝑖
𝑒𝑖 𝑔𝑒𝑖𝑐𝑖

𝑑𝑖

𝑔𝑎𝑖𝑓𝑖
𝑑𝑖

𝑔𝑏𝑖𝑐𝑖
𝑓𝑖

(4.27)

as the overall multiplicative gauge factor that appears in the gauge transform 𝐹𝐼𝑖
↦

𝐺𝐼𝑖
𝐹𝐼𝑖

. An arbitrary RM in the 𝐹-symbols of a fusion category can be written as

(𝐹𝐼1
)𝑝1(𝐹𝐼2

)𝑝2⋯(𝐹𝐼𝑘
)𝑝𝑘 , 𝑝𝑖 ∈ ℤ. (4.28)

The demand that it is gauge invariant then comes down to

(𝐺𝐼1
𝐹𝐼1

)𝑝1(𝐺𝐼2
𝐹𝐼2

)𝑝2⋯(𝐺𝐼𝑘
𝐹𝐼𝑘

)𝑝𝑘 = (𝐹𝐼1
)𝑝1(𝐹𝐼2

)𝑝2⋯(𝐹𝐼𝑘
)𝑝𝑘 , (4.29)

⟺ (𝐺𝐼1
)
𝑝1 (𝐺𝐼2

)
𝑝2 ⋯(𝐺𝐼𝑘

)
𝑝𝑘 = 1, (4.30)

⟺⎛
⎝

𝑔𝑎1𝑏1
𝑒1 𝑔𝑒1𝑐1

𝑑1

𝑔𝑎1𝑓1
𝑑1

𝑔𝑏1𝑐1
𝑓1

⎞
⎠

𝑝1

⋯⎛
⎝

𝑔𝑎𝑘𝑏𝑘
𝑒𝑘 𝑔𝑒𝑘𝑐𝑘

𝑑𝑘

𝑔𝑎𝑘𝑓𝑘
𝑑𝑘

𝑔𝑏𝑘𝑐𝑘
𝑓𝑘

⎞
⎠

𝑝𝑘

= 1, (4.31)

∀𝑔𝑎𝑏
𝑐 ∈ ℂ\{0}. Now assume that the 𝑔𝑎𝑏

𝑐 are ordered lexicographically on (𝑎, 𝑏, 𝑐) in

a list of length 𝑙 and write 𝑔𝑗 for the 𝑗th variable that appears in this list. By collecting

factors 𝑔𝑗 in equation 4.31 we get that

𝑔
∑𝑖1

[𝑍]1𝑖1𝑝𝑖1
1 𝑔

∑𝑖2
[𝑍]2𝑖2𝑝𝑖2

2 ⋯𝑔
∑𝑖𝑙

[𝑍]𝑙𝑖1𝑝𝑖𝑙
𝑙 = 1, ∀𝑔1,…, 𝑔𝑙 ∈ ℂ\{0}, (4.32)

where [𝑍] is a matrix with integer coefficients. Equation (4.32) can only be satisfied

if each exponent of each 𝑔𝑖 is identically zero, i.e.,

𝑍.�⃗� = 0⃗ (4.33)

with �⃗� ∶= (𝑝1, 𝑝2,…, 𝑝𝑘). The space of vectors that produce gauge-invariant RMs

is isomorphic to the kernel of 𝑍, while span of the vectors that give rise to gauge-

dependent RMs is isomorphic to the co-kernel of 𝑍. In particular 𝑚 = dim (ker𝑍),
𝑛 = dim (CoKer𝑍). The kernel and co-kernel of 𝑍 can be constructed via a Smith de-

composition. Indeed, if we write 𝑍 = 𝑈.𝐷.𝑉, with𝑈,𝑉 orthogonal matrices and𝐷 diag-

onal, then the dimension of the kernel equals the number of non-zero rows of 𝐷 and is

spanned by the first 𝑚 columns of 𝑉. The remaining columns of 𝑉 span the co-kernel.

The matrix 𝑉 thus allows us to transform a lexicographically ordered list of 𝐹-symbols

into a gauge-split basis. Since 𝑉 is orthogonal, any non-zero (and trivially any zero)

76

𝐹-symbol can be written as a unique multiplication of powers of gauge-invariant and

gauge-dependent RMs. This implies, in particular, that two solutions to the pentagon

equations are gauge-equivalent if and only if their gauge-invariant RMs evaluate to the

same values.

Several functions are implemented in Anyonica to play around with gauge invari-

ants.

• GaugeSplitTransform takes a fusion ring and returns a couple of (1) the ma-

trix 𝑉 and (2) the number 𝑚.

• GaugeSplitBasis takes a fusion ring and returns a couple of lists. The first list

corresponds to the gauge-invariant RMs and the second to the remaining gauge-

dependent RMs.

• GaugeInvariants takes a fusion ring and returns only the first list fromGauge-
SplitBasis.

For all these functions, one can set option "Zeros" to a list of symbols that are

0. By default, these functions also include 𝑅-symbols in the gauge invariants (which

has no meaning if the categories are non-braided), but by setting the option "In-
cludeOnly" to "FSymbols", it is possible to return invariants in 𝐹-symbols. These

functions then form the core of the function GaugeEquivalentQ, which takes a fu-

sion ring and two sets of 𝐹-symbols and returns true if the solutions are gauge equiva-

lent.

Example 4.1.7. The following code

gInv =
GaugeInvariants[

repD3, "IncludeOnly" -> "FSymbols", "Zeros" -> { [𝐹333
3]33 }

];
Print[gInv];

returns

{
[𝐹333

3]33, [𝐹111
1]11, [𝐹121

2]22, ...,
([𝐹113

3]13 [𝐹311
3]31 [𝐹322

3]31 [𝐹333
3]13^2 [𝐹333

3]32^2)/([𝐹
223
3]13 [𝐹233

1]32^2)
}

Using these invariants one can easily see which solutions are gauge equivalent. The

following code

gaugeValues[i_] := ReplaceAll[solutions[[i]]] @ gInv;
DeleteDuplicates[Range @ Length @ solutions, gaugeValues]

returns the indices of the unique solutions, in this case

{ 1, 2, 3, 4, 5, 6 }

Since we started with six solutions, we find that none of the solutions are gauge equiv-

alent. We will see that only three unique solutions are left when we delete solutions

based on full equivalence, however.

77

To check whether two solutions are equivalent up to a gauge transform in combi-

nation with a fusion ring automorphism, one can check gauge equivalence between the

first solution and a permutation of the second solution for each pair of solutions and

each fusion ring automorphism. The function SymmetryEquivalentQ can be used to

check for such general equivalence. However, removing multiple redundant solutions

by pairwise comparison with SymmetryEquivalentQ is not efficient. This is mainly

because this algorithm computes and checks permutations one by one. If no matches

are found, it will compute the same permutations again, wasting time. Instead, one

can use the more efficient DeleteEquivalentSolutions. This function creates all

permutations of each solution and calculates the values of the gauge invariants using

these permutations. This way, each solution has a corresponding orbit of lists of gauge

invariant values. Two solutions are then equivalent if their orbits intersect2. Since

the function checks for equality to remove solutions, it is by default conservative: it

might return solutions that are still equivalent but whose equivalence is not immedi-

ately clear.

Example 4.1.8. Any computer algebra system has to deal with how much it should au-

tomatically simplify symbolic expressions. Mathematica is quite conservative, and for

all but the most trivial cases, the user must choose when to simplify. The following,

almost trivial, equality is, for example, not simplified by default

Exp[-2 I Pi / 3] == (-1 - I Sqrt[3]) / 2

However, applying a function such as RootReduce transforms this equality to True.

To avoid this situation, it is possible to set the option "PreEqualCheck" to a func-

tion of choice that will be evaluated on any two arguments before they are checked for

equality. Note that this way it becomes possible that too many solutions are removed.

To avoid this from happening, built-in functions such as FullSimplify or N (which

gives a numerical approximation) should be avoided, if possible, and replaced by safe

variants such as RootReduce. It is also possible to delete redundant solutions using

numerical methods, which are almost always faster. By setting the option "Numeric"
to True each gauge invariant is calculated with an accuracy of (by default) 64 digits

and infinite precision (which means that Mathematica uses as many extra digits re-

quired in intermediate calculations to ensure that those 64 digits are 100% correct). A

different accuracy can be set if desired using the "Accuracy" option.

Example 4.1.9. The following code

pentSoln = DeleteEquivalentSolutions[solution, repD3];
Length @ pentSoln

returns

3

which means that checking for gauge invariance alone is not enough to remove redun-

dant solutions.
2Actually, if they are equal, but since the orbits are not sorted, it is faster to check whether they inter-

sect.

78

We removed redundant solutions using both the symbolic and numeric methods

for each set of solutions to the pentagon equations and checked whether these agreed.

This was always the case for an accuracy of 1000 digits.3

Notes 7. • Computing gauge invariant monomials can be done almost com-

pletely with information from only the fusion ring. The only information

the 𝐹-symbols provide is which 𝐹-symbols are 0. If these zeros are not

considered up-front, they might appear in a RM denominator, resulting in

problems when checking gauge equivalence.

• The algorithm above was already described in [47], but I only recently

came across this paper. The paper [47] views the problem from the more

general viewpoint of algebraic geometry, however.

4.1.9 Fixing a Unitary Gauge

The specific values of the𝐹-symbols are gauge-dependent, and thus, we can manipulate

the gauge to put solutions to the pentagon equations, as provided by the SolvePen-
tagonEquations, in a more appealing form. A particularly interesting gauge is one

for which all 𝐹-matrices are unitary. Not all solutions permit such a unitary gauge,

though, but if they do, we would like to represent them in such a gauge.

If a set of 𝐹-symbols is in a unitary gauge then we know that

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓[̃𝐹𝑎𝑏𝑐

𝑑]𝑓𝑒 = |[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓|

2
(4.34)

for all admissible 𝐹-symbols, and vice versa. Since the left hand side of this equation

is gauge-invariant we already know its value, even for a set of non-unitary 𝐹-symbols.

Now assume that we have a set of 𝐹-symbols that is not in a unitary gauge. Finding a

unitary gauge then comes down to finding a set of gauge variables{𝑔𝑎𝑏
𝑐 ∈ ℂ\{0} |𝑁𝑐

𝑎,𝑏 ≠ 0}
such that

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓[̃𝐹𝑎𝑏𝑐

𝑑]𝑓𝑒 = |
𝑔𝑎𝑏
𝑒 𝑔𝑒𝑐

𝑑

𝑔𝑎𝑓
𝑑 𝑔𝑏𝑐

𝑓

[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓|

2

. (4.35)

Since we know all the values of the 𝐹-symbols involved, this is a set of equations in the

variables ℎ𝑎,𝑏
𝑐 ∶= |𝑔𝑎𝑏

𝑐 |2. These equations can be tackled one by one in a similar manner

that we fixed the gauge before solving the pentagon equations: we pick the simplest

equation, solve it, substitute the solution into the rest of the equations, and continue.

At some point, equations might appear that only contain higher powers of the vari-

ables ℎ𝑎,𝑏
𝑐 but, as was the case with fixing the gauge, we are free to choose any solution

for the ℎ𝑎,𝑏
𝑐 variable in consideration. The difference between the various solutions

for the variable ℎ𝑎,𝑏
𝑐 is that certain 𝐹-symbols will differ by a phase factor when com-

paring solutions. However, if we look at (4.35), we see that the right-hand side does
3While the symbolic method should, in principle, always give a correct result, it is still important to

check the results by other means, whenever possible

79

not care about phases, and the left-hand side does not care about gauge transforms.

Therefore, this redundancy is harmless, and we can use the first solution for the ℎ𝑎,𝑏
𝑐

that the Solve function returns. It is always possible to solve for all {ℎ𝑎,𝑏
𝑐 }, but this

only implies that the specific equations we used to find such a solution are satisfied.

The final step in the algorithm consists of checking whether all equations of the form

(4.35) are satisfied. If so then we can apply a gauge transform with gauge variables

𝑔𝑎𝑏
𝑐 = √|ℎ𝑎,𝑏

𝑐 | to the original set of 𝐹-symbols {[𝐹𝑎𝑏𝑐
𝑑]𝑒𝑓} to put it into a unitary gauge.

Note that also here there is a redundancy of the phases of the various 𝑔𝑎𝑏
𝑐 , but this does

not matter for the same reason that the redundancy in the phases for the various ℎ𝑎,𝑏
𝑐

do not matter.

4.2 Solving Hexagon Equations

The hexagon equations (2.25) and (2.26) have a structure that is very similar to the

pentagon equations. In particular, per solution to the pentagon equations, there are,

up to gauge equivalence, only a finite number of solutions to the hexagon equations

(see remark 2.33 of [27]). The same tools we used to solve the pentagon equations

were also used to solve the hexagon equations. There are a few important differences,

however. Since we solve the hexagon equations per solution to the pentagon equa-

tions, the only variables that appear are 1-dimensional invertible 𝑅-matrices. The 𝑅
symbols are, in particular, never 0. To solve the pentagon equations, we already fixed

the gauge up to a certain degree for the 𝐹-symbols, and therefore, we can now only

fix the remaining degrees of freedom that leave the 𝐹-symbols invariant. To do so, the

function RestrictMultiplicativeSymmetries was implemented. It takes a list

of symmetry transforms symmetries, a set of variables variables, and a symbol g
that denote the gauge variables {g[a,b,c]} as arguments and returns a set of gauge

transforms that leave the set variables invariant. The remaining gauge can then be

fixed the same way as for the 𝐹-symbols. For most fusion rings, once the gauge for the

𝐹-symbols was fixed, no gauge freedom was left for the values of the 𝑅-symbols. Thus,

one should not expect a significant reduction in variables. Once the gauge is fixed

we can apply the usual functions such as ReduceByBinomials, ReduceByLinear-
ity, and IncrementalGroebnerBasis. All this functionality is implemented in

the function SolveHexagonEquations, which takes one argument, the fusion ring,

and several options. The most important option is "Knowns", which can be set to a

solution to the pentagon equations. Without this option, SolveHexagonEquations
would assume that the 𝐹-symbols are variables and try to find their value as far as possi-

ble. The other important options overlap with those of SolvePentagonEquations.

Example 4.2.1. The following code

hexSol =
Table[

SolveHexagonEquations[repD3, "Knowns" -> sol],
{ sol, pentSol }

];

80

Map[Length] @ hexSol

returns

{ 3, 0, 0 }

which means that the first solution to the pentagon equations has at most three com-

patible braided structures, and the other ones have none. It turns out there are actually

exactly three braided structures since the following code

uniqueHexSol = DeleteEquivalentSolutions[First @ hexSol, repD3];
Length @ uniqueHexSol

returns

3

There is one catch, however. While the function SolveBinomialSystem (that

forms the core of ReduceByBinomials) works quite fine for pentagon equations,

it does not perform nearly as well for hexagon equations. The cause of this problem

lies with the Smith decomposition. On the one hand, the solutions to the pentagon

equations often contain root expressions, i.e., expressions containing 𝑛th roots or even

expressions containing formal roots of the form Root[𝑝(𝑥), 𝑛]. On the other hand,

the matrices that result from taking a Smith decomposition often contain big integers.

Eventually, these integers are the exponents with which the root expressions appear

in the solution to a binomial system. If the root expressions were just integers, then

Mathematica has no issues canceling fractions of gigantic integers. Fractions of root

objects, raised to huge powers, form a big problem, however. Moreover, even if the

binomial system can be solved, it often contains many solutions. In contrast to the

pentagon equations, the main restriction to the number of solutions of the binomial

equations comes from the equations containing more than two terms. Eventually, most

of the solutions to the binomial equations fail to satisfy the other equations, but they

do cause a blowup of required memory and time.

For some fusion rings, solving the hexagon equations by first reducing the system

via binomial equations was impossible. In these cases, it was, however, quite easy to

solve the equations via the ReduceByLinearity function in combination with the

option "SimplifyIntermediateResultsBy" to simplify intermediate results as

soon and frequently as possible.

After solutions for the hexagon equations have been obtained, we need to remove

the equivalent solutions again since some discrete gauge freedom might remain for the

𝑅-symbols. This is done the same way as for the 𝐹-symbols, but now we use gauge

invariants that include 𝑅-symbols to distinguish solutions.

4.3 Solving Pivotal Equations

To find pivotal structures for a given (braided) fusion system 𝒞, we must solve the

pivotal equations (2.24). While Anyonica can solve these equations, they are so sim-

ple that the built-in Solve function is much more efficient. As always, once a set of

81

solutions has been found, we must eliminate redundant solutions. Since the values of

the quantum dimensions 𝑑𝑎 = 𝑝𝑎
[𝐹𝑎𝑎∗𝑎

𝑎]11
are gauge invariants, and different for every so-

lution, only fusion ring automorphisms can cause redundancy in the solutions. These

automorphisms must be such that, up to gauge transforms, they have no effect on the

𝐹 and 𝑅-symbols and map the quantum dimensions of one solution to the quantum

dimensions of another. Once this is done, the pivotal structures can be added to the

data of the (braided) fusion system 𝒞. In order to ease calculations with a graphical

language, I decided to apply a gauge transform such that every pivotal coefficient of a

non-self-dual particle equals 1. This implies that in the list of stored fusion categories

in Anyonica, there are pivotal fusion systems that correspond to the same solution to

the pentagon equations but have slightly different 𝐹-symbols.

4.4 Results

The pentagon, hexagon, and pivotal equations for all multiplicity-free fusion rings up

to rank 7were solved, and all redundant solutions were removed. For all but two rings,

namely PSU(2)12 and PSU(2)13, Anyonica’s functionality was sufficient. An alterna-

tive approach for the two exceptions was necessary because the systems of pentagon

equations were too big to handle. The categorifications of PSU(2)2𝑛+1, 𝑛 ∈ ℕ are inter-

estingly already classified [38], and the 𝐹 and 𝑅-symbols can be easily calculated by the

alatc package from E. Ardonne (see 4.6 for more info). For PSU(2𝑛), 𝑛 ∈ ℕ only the

pivotal categorifications are classified (see appendix of [28]). While the same paper

argues that it is most likely the case that all fusion categories are pivotal and therefore

most likely the all fusion categories with PSU(2)𝑘, 𝑘 ∈ ℕ are classified, we will not

make such an assumption. We therefore have the slightly weaker result that all pivotal

multiplicity-free fusion categories up to rank 7 are now classified and this classification

extends to all multiplicity-free fusion categories up to rank 7 if the PSU(2)12 fusion ring

only has pivotal categorifications. The 𝐹 and 𝑅-symbols for the pivotal categories with

PSU(2)12 fusion rules were also obtained using alatc.

Out of the 115 multiplicity-free fusion rings of rank 7 or less, 59 are categorifi-

able, leading to a total of 225 inequivalent fusion systems. All of these fusion systems

have solutions to the pivotal equations, and 108 of the fusion systems admit a braided

structure. In total, there are 977 pivotal and possibly braided fusion systems. The

number of inequivalent solutions to the pentagon equations per rank can be seen in

figure 4.1. Figure 4.3 gives a complete overview of the number of pivotal and braided

fusion systems per fusion ring, and figure 4.2 shows a Venn diagram of the number of

systems that have a combination of any of the five properties: braided, unitary, spheri-

cal, ribbon, and modular. In Section 9, one can find a list of all multiplicity-free fusion

categories with indicators for braided, unitary, spherical, ribbon, and modular struc-

tures. All categorifiable fusion rings up to rank 7 have at least one fusion category that

is either braided or unitary.

From figure 4.3, it is clear that the number of (pivotal) (braided) fusion systems of

82

1 2 3 4 5 6 7
0

20

40

60

80

100

Non Unitary

Unitary

Figure 4.1: Number of solutions to the pentagon equations for multiplicity-free fusion
rings per rank (horizontal axis). Unitary means that a gauge exists in which the 𝐹-
symbols are unitary.

Figure 4.2: Venn diagram of the number of multiplicity-free fusion systems up to rank
7 with certain properties. By definition, the ribbon fusion systems belong to the in-
tersection of the braided and spherical squares. Each number indicates the number of
fusion systems that lie in the connected region of the Venn diagram. There are thus,
e.g., 37 fusion systems with no extra properties, 185 ribbon fusion systems that are
neither modular nor unitary, 101 fusion systems that are modular and unitary, 221 fu-
sion systems that are modular but non-unitary and thus 322 modular fusion systems
in total.

83

1B, 1P

2B, 2P 2B, 2P

2B, 1P 2B, 1P

4B, 2P 4B, 2P

3B, 1P 0B, 1P 0B, 1P

2B, 1P 2B, 1P 2B, 1P

3B, 2P 0B, 2P 0B, 2P

4B, 3P 6B, 4P 0B, 3P 0B, 2P

4B, 2P 4B, 2P 4B, 2P 4B, 2P

3B, 1P 0B, 1P 0B, 1P

1B, 1P 1B, 1P

3B, 1P 4B, 1P 3B, 1P

2B, 1P 2B, 1P 2B, 1P

4B, 3P 4B, 3P 0B, 3P 0B, 3P

0B, 2P 0B, 2P 0B, 2P 0B, 2P

0B, 1P 0B, 1P 0B, 1P 0B, 1P

4B, 2P 4B, 2P 6B, 2P 6B, 2P

2B, 2P 2B, 2P

3B, 1P 0B, 1P 0B, 1P 0B, 1P 0B, 1P 0B, 1P 0B, 1P

1B, 1P 1B, 1P

2B, 1P 2B, 1P

2B, 1P 2B, 1P 2B, 1P 2B, 1P 2B, 1P

0B, 2P 0B, 2P 0B, 2P 0B, 2P

0B, 2P 0B, 2P

0B, 1P 0B, 1P

3B, 3P 0B, 3P 0B, 3P

8B, 4P 6B, 4P 6B, 4P 0B, 4P 0B, 3P 0B, 3P

6B, 2P 6B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P

8B, 2P 8B, 2P 8B, 2P 8B, 2P

6B, 1P 6B, 1P

4B, 2P 4B, 2P 4B, 2P 4B, 2P 4B, 2P 4B, 2P

5B, 1P 0B, 1P 0B, 1P 0B, 1P 0B, 1P

5B, 1P 0B, 1P 0B, 1P 0B, 1P 0B, 1P

1B, 2P 1B, 2P 1B, 2P 1B, 2P

4B, 1P 4B, 1P 4B, 1P 4B, 1P 4B, 1P 4B, 1P

2B, 1P 2B, 1P

2B, 1P 2B, 1P 2B, 1P 2B, 1P 2B, 1P 2B, 1P

0B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P

0B, 3P 0B, 3P 0B, 4P 0B, 3P 0B, 3P 0B, 4P

8B, 3P 0B, 3P

6B, 2P 6B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P

0B, 2P 0B, 2P

0B, 1P 0B, 1P 0B, 1P 0B, 1P

6B, 4P 6B, 4P 0B, 4P 0B, 4P 0B, 4P 0B, 4P

0B, 3P 0B, 3P 0B, 3P 0B, 3P

0B, 2P 0B, 2P 0B, 2P 0B, 2P

6B, 2P 6B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P

8B, 2P 8B, 2P 4B, 2P 4B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P

3B, 1P 0B, 1P 0B, 1P

4B, 2P 4B, 2P

2B, 2P 2B, 2P

2B, 1P 2B, 1P 2B, 1P

2B, 1P 2B, 1P 2B, 1P 2B, 1P

0B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P 0B, 2P

8B, 2P 0B, 2P 0B, 2P 0B, 2P

0B, 2P 0B, 2P

0B, 2P 0B, 2P 0B, 2P 0B, 2P

0B, 2P 0B, 2P 0B, 2P 0B, 2P

3B, 4P 0B, 4P 0B, 4P

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Unitary

Non Unitary

Figure 4.3: Number of solutions to the pentagon equations per fusion ring. Each rect-
angle corresponds to a unique fusion system. The first number in a rectangle denotes
the number of braided fusion systems corresponding to that fusion system while the
second denotes the number of pivotal fusion systems. Unitary (orange color) means
a gauge exists in which the 𝐹-symbols are unitary, and not that all braided and pivotal
fusion systems are unitary.

84

the product of two fusion rings is not necessarily equal to the product of the number

of (pivotal) (braided) fusion systems for each ring separately. For, e.g., the ℤ2 × Ising

fusion ring one finds6 solutions to the pentagon equationswhile theℤ2 and Ising fusion

rings have 2 solutions each. Moreover, the number of braided fusion systems and the

number of pivotal fusion systems for ℤ2 × Ising varies per solution to the pentagon

equations, which is not the case for the individual fusion rings. There are even fusion

systems for ℤ2 × Ising that cannot be braided at all, even though all fusion systems are

braided for ℤ2, and Ising separately!

Almost all categorifiable fusion rings up to rank 7 all belong to one of the following

groups (note that these might overlap)

• Finite group rings:

– ℤ𝑘 for 𝑘 = 1,…, 7, ℤ2 × ℤ2, ℤ2 × ℤ3

– 𝐷3.

• Representation rings of finite groups:

– Rep(𝐷𝑘) for 𝑘 = 3, 4, 5, 7, 9,

– Rep(𝑆4),

– Rep(ℤ3 ⋊ 𝐷3),

– Rep(Dic12).

• Fusion rings coming from the representation theory of quantum groups at roots

of unity:

– PSU(2)𝑘 for 𝑘 = 3,…, 13 (note that Fib = PSU(2)3),

– SU(2)𝑘 for 𝑘 = 2,…, 6 (note that Ising = SU(2)2),

– SO(2𝑘 + 1)2 for 𝑘 = 1, 2, 3

• Products of rings in one of the groups above:

– ℤ2 ×ℛ with ℛ any of the rings from the groups above with rank up to 3,

– Fib × ℛ with ℛ any of the rings from the groups above with rank up to 3
(note that TriCritIsing = Fib × Ising).

• Extensions of rings in one of the groups above:

– TY(𝐺) with 𝐺 any commutative group ring up to rank 6 (note that Potts =
TY(ℤ3)),

– HI(ℤ3).

• Zestings (see [21] for a definition) of rings in one of the groups above:

– According to [63] , Pseudo SU(2)4 = Zest(SU(2)4), Pseudo SO(5)2 = Zest(SO(5)2),
and the three rings [ℤ2 ⊴ ℤ4]

Id
𝟏|0, [ℤ2 ⊴ ℤ2 × ℤ2]

Id
𝟑|0, and MR6 are zestings

of ℤ2 × Ising.

85

• Adjoint fusion rings (see [25] Chapter 3) of fusion rings coming from quantum

groups at roots of unity: Adj(SO(16)2), Adj(SO(11)2)

The remaining fusion rings are the following: Pseudo PSU(2)6, Pseudo Rep(𝑆4), FR7,2
3 ,

FR7,2
4 , FR7,2

12 , and FR7,4
3 .

According to [63], Pseudo PSU(2)6 comes from the evenpart of the 1-supertransitive

subfactor of index 3 + 2√2 with non-self-adjoint objects [62].

The structure of the multiplication tables and the Frobenius-Perron dimensions

(and private conversations with E. Rowell) indicate that FR7,2
12 might be a zesting of

SO(7)2, and FR7,2
4 might be a zesting of Adj(SO(11)2). From a conversation with S.

Palcoux on Stackoverflow, we know that according to the paper [26] Pseudo Rep(𝑆4),
FR7,2

3 , and FR7,4
3 should be weakly group-theoretical.

4.4.1 Correctness of the Results

For each fusion ring, a notebook4 is kept with the code we used to solve the equations,

together with a log file that can be used to access intermediate results (see figures 4.4,

4.5, and 4.6). The log file is a notebook designed to be readable and contains clickable

hyperlinks to the notebooks with intermediate results. For almost any function, there

is the possibility to create log files. To do so, one wraps the code for which a log file

is desired inside the PrintLog function. The function PrintLog takes the options

"Directory" and "FileName", which are by default set to respectively a temporary

directory and a filename containing the date and time of execution.

Example 4.4.1. To create a log of the steps taken during the evaluation of SolvePen-
tagonEquations[repD3] one can use the following code

PrintLog[SolvePentagonEquations[repD3]]

4These are available upon request rather than online since they take up quite a lot of memory.

86

Figure 4.4: For each fusion ring, a notebook that contains all steps from the categorifi-
cation process is kept. This is an example of such a notebook for the FR6,1,2

8 = HI(ℤ3)
fusion ring. We only knew about the zero-spectrum criterion when this ring was cat-
egorified.

Figure 4.5: For each fusion ring, several log files were kept. These files log the steps
taken by various functions and give warnings whenever decisions are made based on
the equality of symbolic expressions. This is an example of such a log file for the func-
tion SolvePentagonEquations, applied to the FR6,1,2

8 = HI(ℤ3) fusion ring

87

Figure 4.6: The log files contain clickable hyperlinks that open notebooks with the
relevant data. This way, it is easy to check the arguments and results of intermediate
computations. The figure shows the results of the FindZeroValues function for the
pentagon equations corresponding to the FR6,1,2

8 = HI(ℤ3) fusion ring

4.5 Naming of Fusion Categories

To be able to refer to fusion systems or categories, the following naming scheme is

used. A fusion system is written down as follows

[RingName]𝑘𝑖,𝑗

where RingName is the name of its fusion ring, and 𝑖, 𝑗, 𝑘 are natural numbers that

distinguish between the solutions to the pentagon, hexagon, and pivotal equations, re-

spectively. If there are no solutions to the hexagon equations, then 𝑗 = 1. For example,

[Rep(𝐷3)]
1
1,2 is the fusion system with fusion ring Rep(𝐷3), corresponding to the first

solution to the pentagon equations, the second solution to the hexagon equations, and

the first solution to the pivotal equations. This scheme only makes sense if there is a

canonical ordering on the solutions to the consistency equations. The ordering applied

on the pentagon solutions is based on the list of data (𝑏𝐵, 𝑏𝑈, 𝑏𝑆, 𝑏𝑅, 𝑏𝑀, 𝑤𝐹), where

• 𝑏𝐵, 𝑏𝑈, 𝑏𝑆, 𝑏𝑅, 𝑏𝑀 are 1 if the fusion system can be expanded to respectively a

braided, unitary, spherical, ribbon, modular fusion system, and 0 otherwise.

• 𝑤𝐹 is a canonical weight function that calculates the list of values of the gauge-

invariant rationalmonomials (in a specific order) and rewrites every gauge-invariant

number 𝑟𝑒𝑖𝜙, 𝜙 ∈ [0, 2𝜋[as a couple (−𝑟,−𝜙).

The values of these lists then sort the solutions in decreasing lexicographic order. In

88

particular, the solutions that admit braiding have a lower 𝑖 index than those that do not.

Within these classes, the unitary solutions have a lower index than the non-unitary

ones, and so on.

The following is why the weight 𝑤𝐹 can be considered unique. For every fusion

ring, there exists a canonical basis, determined as in Section 3.2. This ordering implies

a lexicographic ordering on the labels of the 𝐹-symbols. In our case we let [𝐹𝑎1𝑏1𝑐1
𝑑1

]𝑒1𝑓1 <

[𝐹𝑎2𝑏2𝑐2
𝑑2

]𝑒2𝑓2 ⇔ (𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1, 𝑓1) < (𝑎2, 𝑏2, 𝑐2, 𝑑2, 𝑒2, 𝑓2) in the list of formal𝐹-symbols

(i.e. 𝐹-symbols without values). Each gauge-invariant rational monomial can be ex-

pressed via a list 𝑙 of 𝑛 exponents, where 𝑛 is the number of 𝐹-symbols and 𝑙𝑚 ∈ ℤ
denotes the exponent of the 𝑚th symbol for the rational monomial. For example, for

Fib we have that [𝐹112
2]12[𝐹

122
1]21 is a gauge-invariant rational monomial and in the list

of 𝐹-symbols [𝐹112
2]12, [𝐹

122
1]21 have positions 2, 4 out of 15. The list 𝑙 for this rational

monomial would thus be (0, 1, 0, 1, 0,…, 0).
The gauge-invariant monomials are then sorted lexicographically by the values of

(∑𝑚 |𝑙𝑚|, reverse(𝑙)), where (reverse(𝑙))𝑚 = 𝑙𝑛−𝑚, in increasing order5 and the result-

ing list is a canonical list of gauge-invariant rational monomials.

For all fusion systems with equivalent 𝐹-symbols, the solutions to the hexagon

equations are sorted via the list of data (𝑏𝑆, 𝑏𝑅, 𝑏𝑀, 𝑤𝑅) where 𝑤𝑅 is a weight function

that works analogous to 𝑤𝐹, except for the fact that it uses gauge-invariant rational

monomials that include 𝑅-symbols.

For all fusion systems with equivalent 𝐹 and 𝑅-symbols, the solutions to the pivotal

equations were sorted lexicographically by (𝑏𝑆, 𝑏𝑅, 𝑏𝑀, 𝑤𝑃) in decreasing order (where

the booleans now say that the fusion system is respectively spherical, ribbon, modular).

Here 𝑤𝑃 is a weight function that calculates the quantum dimensions 𝑑𝑎 and rewrites

every 𝑑𝑎 = 𝑟𝑒𝑖𝜙, 𝜙 ∈ [0, 2𝜋[as a couple (−𝑟,−𝜙).

4.6 Other Software to Work With Fusion Rings and Fusion

Categories

4.6.1 Predecessors

Anyonica is partly based on software that has not been published. P. Bonderson’s thesis

[10] describes in some detail basic techniques for solving multiplicity-free pentagon

and hexagon equations on a computer, and we are using several of those. J. K. Slinger-

land wrote Mathematica code based on those techniques, and by using their code, they

produced the tables of pentagon/hexagon solutions in the back of Bonderson’s thesis.

Subsequently, J. K. Slingerland found all multiplicity-free fusion rings up to rank

6 with a search algorithm similar to that used by Gepner [41] (but not specialized

to rings with modular properties). He also found all solutions to the pentagon and

hexagon equations for all categorifiable rings up to rank 6, although it was not clear that

these were all solutions because unitarity was assumed in finding the zero 𝐹-symbols.

5The reverse function is used to ensure that the rational monomials that also contain 𝑅-symbols are
sorted behind the ones without 𝑅-symbols.

89

Non-unitary systems with those same zeros patterns were also found, but there could

have been systems with another configuration of zero 𝐹-symbols. Pivotal and spherical

structures were not systematically considered. Neither the code nor the full results

were published.

F.Verstraete also programmed software inMatlab to solve the pentagon andhexagon

equations. Instead of fixing the gauge separately, a Smith decomposition was used to

solve the logarithm of the binomial equations and to find a subspace of the solution set

that is orthogonal to the space of gauge transforms. Under the assumption that a zero

value can only appear for one 𝐹-symbol, the pentagon equations could also be solved

numerically. To find a unitary gauge, the solver searched for a solution to the algebraic

equations describing the unitarity of 𝐹 matrices. As far as I know, neither the code nor

the results were published.

While Anyonica is written from scratch, it is still based on several techniques of

P. Bonderson, J. K. Slingerland, and F. Verstraete. The method used for gauge fixing

is the same as that of J. K. Slingerland and P. Bonderson. The reduction of systems of

linear equations is based on that of P. Bonderson and J. K. Slingerland but has been

generalized in the sense that Anyonica also divides by non-monomials. This requires

more bookkeeping since assumptions need to be saved and checked recursively, but

there is a payoff in the level of reduction that can be achieved. Anyonica’s method for

solving binomial equations is the same as that of F. Verstraete, except that Anyonica

fixes the gauge before solving these equations. While doing both in one go is more

elegant, it is more efficient not to do so. Solving the eventual reduced system of equa-

tions is done the same way by every author, namely by using a built-in solver based on

Gröbner basis calculations.

Some of the things of which we think Anyonica supersedes its predecessors are

• the fact that no assumptions (in particular no unitarity) on the solutions are

made,

• all configurations of 0 𝐹-symbols can be found,

• finding a unitary gauge, which used to be very hard, is now almost trivial,

• any operation can be logged so it is easy to see when and why solutions are re-

jected,

• the code consists of modular pieces that can be used for any system of polynomial

equations. The programming style is almost completely functional, so running

the same code twice should result in the same outcome,

• all fusion rings and categories (including pivotal, spherical, and modular data)

are available, easy to access, easy to work with due to various extra functions,

and combined into a single package.

There is still lots of functionality left to implement such an algorithm to compute the

center of a category, check whether two categories are Morita-equivalent, find possi-

90

ble equivariantizations and de-equivartiantizations of a category, compute zestings of

fusion categories, etc.

4.6.2 Other Packages

Anyonica is not the only software that provides tools to work with fusion rings and

fusion categories. Some of the other software packages are the following

• Recently, W. Aboumrad released a software package that solves the pentagon

and hexagon equations for specific fusion rings [1]. The functionality is more

oriented towards applications in topological quantum computation and, at the

moment, seems only to categorify multiplicity-free fusion rings coming from the

representation theory of quantum groups at roots of unity. The nice thing about

the software is that it is entirely open source, uses parallelization, and can be

paused and resumed in a user-friendly way at any time. It also cleverly handles

the creation of the pentagon equations: these are constructed at the same time

they are being solved. At the moment, Anyonica creates all the equations in one

go, and then it starts simplifying. This leads to unnecessary memory consump-

tion, so I hope to implement a more clever method soon. The way that pentagon

and hexagon equations are being dealt with is clever, but some assumptions, such

as the existence of braiding and orthogonality of the 𝐹-symbols, do not hold for

general fusion categories.

• There is another package for finding fusion categories related to the represen-

tation theory of quantum groups at roots of unity: alatc (affine Lie algebra and

tensor categories), written by E. Ardonne [6, 5]. This package finds fusion cate-

gories and braided structures based on calculating Clebsch-Gordan coefficients.

It can handle fusion ringswithmultiplicity but comeswith the downside that, just

like Anyonica, it is implemented in the Wolfram Language. It can find 𝐹-symbols

for fusion rings that are much larger than Anyonica is capable of handling. There

are plans to incorporate alatc into Anyonica.

• F. Meuser and U. Thiel are developing tensorcategories.jl [69, 70, 71], a package

that provides a framework as well as examples for computations in the realm of

categories.

• T.Hagge andM. Titsworth constructed aMathematica package (referenced in the

introduction of [47]) that contains data on various categories, including some of

rank 8 and higher. It also contains data for rigidity, pivotal, and braiding struc-

tures, calculates 𝑆 and 𝑇matrices, and can check for monoidal equivalence of two

categories.

• J. C. Bridgeman created the GitHub repository “smallRankUnitaryFusionData”

[12], which contains data on all multiplicity-free unitary fusion categories (and

their braidings) up to rank six. This data has also been incorporated in the Ten-

91

sorKit.jl [46] package from J. Haegeman via the extension CategoryData.jl [23]

from L. Devos.

• Kac is a software package that computes fusion rules for rational conformal field

theories based on affine Lie algebras. It can be accessed athttps://www.nikhef.
nl/~t58/Site/Kac.html.

• The SageMath code to check various categorifiablity criteria listed in 4.1.1 can be

found in the paper [63].

• For the classification of modular data of integral fusion rings up to rank 12 [3]

the Normaliz software was used. The integrality constraint puts bounds on the

sums of certain fusion coefficients, and Normaliz is very fast at finding all integer

lattice points within a polytope defined by such bounds.

92

https://www.nikhef.nl/~t58/Site/Kac.html
https://www.nikhef.nl/~t58/Site/Kac.html

Part III

Anyons on Graphs

93

Chapter 5

Anyons on Graphs

In Chapter 1 we saw how braiding anyons in a plane could be useful for topological

quantumcomputation. A significant advantage of topological quantumcomputing is its

protection against decoherence. There is another way in which topological protection

can be acquired, though. Recently several experiments have demonstrated evidence

for the existence of so-called Majorana modes at opposite ends of a nanowire [76, 86,

22, 14, 36, 2]. To measure the properties of one of the modes, one needs to measure

those of the other one at the same time. The longer the wire, the lower the chance

this accidentally happens via interaction with the environment. These wires could,

therefore, provide a way to store quantum information. Sadly, there is no way to braid

these states around each other on a single wire. But what if one connects multiple wires

to create a network? The modes then still move in one dimension, but depending on

the shape of the network, they might actually be braided around each other. While

planar braiding has been studied for quite some time [7], graph-braiding has received

less attention. Only recently have people started investigating the mathematical theory

of graph braiding [31, 32, 59, 4]. The idea of describing anyons on graphs is even

more recent. In 2023 A. Conlon and J. K. Slingerland published a paper discussing the

braiding of anyons on a tri and tetrajunction [15]. The scope of this paper got expanded

to braiding on more general networks by T. Maciazek, A. Conlon, J. K. Slingerland, and

me [68]. In this chapter, a shorter account of that paper will be presented.

In particular, we will set up the theory for several of the simplest graphs, and we

will see that consistency equations differ from one graph to another. Braiding on the

two simplest graphs, the circle and the trijunction, will be considered respectively in

Sections 5.1 and 5.2, while braiding on a lollipop graph is discussed in Section 5.3. The

chapter concludes with Section 5.4 that shows how to solve the graph-braid equations

for the circle, trijunction, and lollipop graphs, and discusses theirs solutions for certain

fusion systems.

In the following, we will assume that we are always working with a fusion category

whose fusion ring is commutative. We will still call the ‘particles’ in question anyons

(and their respective fusion systems anyon models), but this terminology should be

taken with a grain of salt because no planar braiding may exist.

95

Notes 8. • The exposition will be very naive and there are a myriad of ques-

tions one should ask themselves, such as

– Why are the fusion systems for graph-braiding are the same as for

planar braiding? Isn’t it possible that one also needs new pentagon

equations?

– How do we know that these consistency equations are all consistency

equations?

– Why are the paths of particles denoted by lines instead of ribbons,

and why do some of the paths contain seemingly unnecessary bends?

– What about bigger graphs?

– What about non-planar graphs?

– Etc.

Discussions on these topics are delibirately avoided since they are quite

technical and can be read in the paper [68] of T. Maciazek, A. Conlon, J. K.

Slingerland, and me.

• On a graph it might actually make sense to look at non-commutative fu-

sion because the particles are bound to move in one dimension. We have

not managed to develop this idea into a proper theory of non-commutative

fusion, though.

5.1 Anyons on a Circle

Let us start by considering braiding when anyons are restricted to move on a circle

𝑆1. On the circle, the only possible permutations of anyons that can be performed are

cyclic permutations. If one would be braiding in the plane then for two particles, 𝑎, 𝑏
with total charge 𝑐, such a permutation would be described by the 𝑅-symbol 𝑅𝑎𝑏

𝑐 . For

movement of particles that is restricted to a circle, we will represent this permutation

by the𝐷-symbol𝐷𝑎𝑏
𝑐 (see figure 5.1). We will assume that these𝐷-symbols are unitary,

i.e. 𝐷𝑎𝑏
𝑐 ∈ U(1).

Similar to the planar casewedemand that braiding around a circle behaves naturally

with respect to the fusion of particles. By this wemean that if we move particles around

Figure 5.1: The 𝐷-symbol represents the braiding of a single anyon around the circle.

96

Figure 5.2: The naturality condition for braiding clockwise around the circle

one by one then this should have the same effect as moving the fusion product of those

particles around. This comes down to demanding that the diagrams in figures 5.2 and

5.3 commute.

This leads to two sets of consistency relations which will be called the 𝐷-hexagon

equations, or circle equations:

𝐷𝑔𝑏
𝑑 [̃𝐹𝑏𝑐𝑎

𝑑]𝑔𝑓𝐷
𝑓𝑎
𝑑 = ∑

𝑒
[𝐹𝑐𝑎𝑏

𝑑]𝑔𝑒𝐷𝑐𝑒
𝑑 [𝐹𝑎𝑏𝑐

𝑑]𝑒𝑓, (5.1)

𝐷𝑔𝑏
𝑑 [𝐹𝑐𝑎𝑏

𝑑]𝑔𝑒𝐷𝑒𝑐
𝑑 = ∑

𝑓
[̃𝐹𝑏𝑐𝑎

𝑑]𝑔𝑓𝐷
𝑎𝑓
𝑑 [̃𝐹𝑎𝑏𝑐

𝑑]𝑓𝑒 . (5.2)

Equations (5.2) are equivalent to equations (5.1), though. Indeed, let 𝑐 = 1 in (5.1).

Then we find that

𝐷𝑎𝑏
𝑒 𝐷𝑏𝑎

𝑒 = 𝐷1𝑒
𝑒 . (5.3)

By setting 𝑏 → 𝑓, 𝑒 → 𝑑 and inverting two of the 𝐷-symbols in (5.3) we obtain that

𝐷𝑎𝑓
𝑑 = 𝐷𝑓𝑎

𝑑 𝐷1𝑑
𝑑 . By substituting 𝐷𝑎𝑓

𝑑 in the RHS of (5.2) and inserting 1 = 𝐷𝑔𝑏
𝑑 𝐷𝑔𝑏

𝑑 we

see that

∑
𝑓
[̃𝐹𝑏𝑐𝑎

𝑑]𝑔𝑓𝐷
𝑎𝑓
𝑑 [̃𝐹𝑎𝑏𝑐

𝑑]𝑓𝑒 = 𝐷𝑔𝑏
𝑑 ∑

𝑓
(𝐷𝑔𝑏

𝑑 [̃𝐹𝑏𝑐𝑎
𝑑]𝑔𝑓𝐷

𝑓𝑎
𝑑)𝐷1𝑑

𝑑 [̃𝐹𝑎𝑏𝑐
𝑑]𝑓𝑒 , (5.4)

where the factor in parenthesis is nothing but the LHS of (5.1). By using (5.1) we see

97

Figure 5.3: The naturality condition for braiding anti-clockwise around the circle

that the RHS of (5.1) is nothing but

𝐷𝑔𝑏
𝑑 𝐷1𝑑

𝑑 ∑
𝑓,𝑒′

[𝐹𝑐𝑎𝑏
𝑑]𝑔𝑒′𝐷

𝑐𝑒
𝑑 [𝐹𝑎𝑏𝑐

𝑑]𝑒
′

𝑓 [̃𝐹𝑎𝑏𝑐
𝑑]𝑓𝑒 = 𝐷𝑔𝑏

𝑑 𝐷1𝑑
𝑑 ∑

𝑒′
𝛿𝑒
𝑒′[𝐹

𝑐𝑎𝑏
𝑑]𝑔𝑒′𝐷

𝑐𝑒′
𝑑 (5.5)

= 𝐷𝑔𝑏
𝑑 [𝐹𝑐𝑎𝑏

𝑑]𝑔𝑒𝐷𝑐𝑒
𝑑 𝐷1𝑑

𝑑 (5.6)

= 𝐷𝑔𝑏
𝑑 [𝐹𝑐𝑎𝑏

𝑑]𝑔𝑒𝐷𝑒𝑐
𝑑 (5.7)

which equals the LHS of (5.2).

Interestingly, in contrast to the 𝑅-symbols, we only have that 𝐷𝑎1
𝑎 = 1,∀𝑎. 𝐷1𝑎

𝑎

can take other values because the particle’s frame also makes a full twist upon moving

around the circle. The 𝐷1𝑎
𝑎 -symbols are the topological twists for the graph braid mod-

els. These are more general than the classical topological twists 𝜃𝑎 since any solution

to the planar hexagon equations is automatically a solution to the𝐷-hexagon equations.

For e.g., anyons with ℤ3 fusion rules the traditional twists 𝜃𝑎 are always third roots of

unity, while the solutions to the𝐷-hexagon equations for these anyons also allow twists

that are a ninth root of unity.

In [68] it is shown that the 𝐷-hexagon equations are sufficient to provide coher-

ence, i.e. the 𝐷-hexagons imply that any combination of 𝐹 and 𝐷 moves between two

given graph-braided fusion trees on a cirle must always be the same.

In Section 5.4.2 we present solutions of the𝐷-hexagon equations for some low-rank

anyon models. Interestingly, we always found a finite number of solutions. Whether

there exists an Ocneanu-type result for these equations is not known to us.

98

Figure 5.4: The exchange of two particles on a trijunction is governed by a set of 𝑅-
symbols.

5.2 Anyons on a Trijunction

When considering anyons that are restricted to move on a trijunction the situation is

more complex. The main reason is that extra symbols appear whenever we increase

the number of particles. This is not necessary for planar and circle braiding since the

coherence theorem identifies all combinations of simple braids, that have the same

outcome, with each other. We have not managed to prove coherence for the trijunction

so we need to investigate the theory of trijunction braiding per number of particles.

The situation is not as bad as it sounds, though. Just like it is possible to express any

planar braid operation on 𝑛 particles via a sequence of braids on 2 particles, there are

also relations that relate the braiding operations on, e.g., 4 particles to the braiding

operators on 3 particles. T. Maciazek, A. Conlon, J. K. Slingerland and me hypothesize

that as the particle number increases, these relations will be strong enough to provide

coherence for any particle number, given that we have coherence for 4 particles. For

a more in-depth discussion on this topic we refer to [68]. We will now investigate the

theory of anyons on a trijunction for up to four particles. Here, some extra assumptions

will be made in order to keep the exposition more readable. In particular, an edge of

the trijunction will be fixed as the base edge where all particles reside, and we will

assume that after a braid, all particles return to that base edge. This way, we avoid the

subtle question of how to represent states of particles living on a different edge. We

also assume that the Hilbert space of these particles is the same as if the particles would

reside in the plane (which are interpreted as lying on a line as in figure 1.1). Section

5.2.1, 5.2.2 and 5.2.3 consider a system of respectively two, three, and four particles.

Each time an extra particle is added, new symbols and consistency equations arise.

5.2.1 Two Particles on a Trijunction

For this section, we will assume that the trijunction is configured as in figure 5.4: the

base edge points to the left, the back edge is called edge (1), the front edge is called edge

(2), latin characters label particles, and the vertical dimension represents time, which

flows from bottom to top. For two anyons 𝑎, 𝑏 with total charge 𝑐 on the base edge

the situation is quite simple. There are two (inverse) ways in which these particles can

exchange. We can move 𝑎 to edge (1), 𝑏 to edge (2), 𝑎 back to the base, and then 𝑏 back

to the base, or we can do it the other way around. These are represented by unitary

𝑅-symbols as shown in figure 5.4.

99

Figure 5.5: The exchange of particles 𝑎 and 𝑏 can be done in two topologically different
ways. These moves are represented by 𝑃 and 𝑄-symbols.

Note 10. We chose to have the initial configuration of the particles on the bot-

tom in such a way that after the braid is applied, we end up with the labels in

lexicographic order at the top. This will be the convention for the rest of the

chapter.

These 𝑅-symbols should not be confused with the 𝑅-symbols for planar braiding.

As a matter of fact, for two particles we don’t even have consistency equations that the

𝑅-symbols need to satisfy. This changes when we consider systems with three anyons.

5.2.2 Three Particles on a Trijunction

Let 𝑎, 𝑏, 𝑐 be three particles on the base vertex of a trijunction, such that 𝑐 lies closest

to, and 𝑎 lies furthest from the vertex. There are now three distinct braid operations.

Firstly, we can still exchange 𝑏 and 𝑐 the same way as in the two particle case. To ex-

change 𝑎 and 𝑏, however, we will need to move 𝑐 out of the way. As shown in figure 5.5,

this can be done in two inequivalent ways. We will represent such exchanges by the

symbols 𝑃,𝑄. Here, we choose to allow their values to depend on all particles in the

fusion tree. In [68], we also mention the simplified case where each symbol that rep-

resents a braid on a system with 𝑛 particles depends on only four labels: two labels

for the exchanged particles, one for the total charge of these particles, and one for the

total charge of the particles moving out of the way. While this simplifies matters, we

will not do this here since the theory without such simplifications is more general and

still not too involved.

For three particles on a trijunction, we can now demand that fusion interacts natu-

rally with braiding, i.e., braiding a product of particles should be equal to braiding the

individual particles one by one. By demanding that the diagram in figure 5.6 commutes

we arrive at the 𝑄-hexagon equations,

𝑅𝑐𝑎
𝑔 [̃𝐹𝑏𝑎𝑐

𝑑]𝑔𝑒𝑄𝑏𝑎𝑐
𝑒𝑑 = ∑

𝑓
[̃𝐹𝑏𝑐𝑎

𝑑]𝑔𝑓𝑅
𝑓𝑎
𝑑 [̃𝐹𝑎𝑏𝑐

𝑑]𝑓𝑒 . (5.8)

Just like for the circle, there is another diagram for the 𝑄 braid but it turns out that the

equations it produces are equivalent to (5.8). Via a similar deduction the 𝑃-hexagon

equations,

𝑃𝑐𝑎𝑏
𝑔𝑑 [𝐹𝑎𝑐𝑏

𝑑]𝑔𝑓𝑅
𝑐𝑏
𝑓 = ∑

𝑒
[𝐹𝑐𝑎𝑏

𝑑]𝑔𝑒𝑅𝑐𝑒
𝑑 [𝐹𝑎𝑏𝑐

𝑑]𝑒𝑓, (5.9)

100

Figure 5.6: One of the diagrams that demands naturality for the 𝑄 braid.

can be derived.

The 𝑃 and 𝑄 hexagon equations often have an infinite number of solutions because

there are no constraints on the 𝑅-symbols besides being elements of U(1).

Note 11. Although we are working with a trijunction, similar arguments apply

to a star graph with more edges. With an increasing number of edges we get

an increasing number of new variables but as was shown in [15] these do not

interact with each other. The solutions for the different sets of equations are all

the same as those for a single set of 𝑃 and 𝑄-hexagon equations.

5.2.3 Four Particles on a Trijunction

For four particles, the situation becomes more complex. When we exchange two par-

ticles we define the symbols using a basis in which a common fusion vertex joins them.

In the case of three particles there is only one fusion tree that allows this situation. For

four particles, however, there might be multiple fusion trees. If e.g., 𝑎 and 𝑏 exchange,

a common fusion vertex must join them. However, then 𝑐 and 𝑑 can either be fused

one by one with this vertex, or first fused together and only then fused with this ver-

tex. The former allows us to move 𝑐 and 𝑑 to different vertices, while the latter only

allows us to move 𝑐 and 𝑑 to the same vertex. We will, therefore, define the new set of

braid symbols via braids on a left-ordered fusion basis, where the other particles have

the freedom to move to different edges.

If we assume that the the 𝑅, 𝑃, and 𝑄-symbols govern the braiding of the three

particles closest to the vertex, then we only need to define symbols that exchange the

101

two particles furthest from the vertex. There are four ways in which the two particles

closest to the vertex can be moved out of the way, and thus four new types of braid

operations. The action of these operations, which we denote by the symbols 𝑋 , 𝑌 , 𝐴,

and 𝐵, on the particles 𝑏, 𝑎, 𝑐, 𝑑 are the following:

𝑋: moves 𝑑 and 𝑐 to edge (1), applies an 𝑅 move on 𝑏 and 𝑎, and moves 𝑐 and 𝑑 back,

𝑌: moves 𝑑 and 𝑐 to edge (2), applies an 𝑅 move on 𝑏 and 𝑎, and moves 𝑐 and 𝑑 back,

𝐴: moves 𝑑 to edge (1), 𝑐 to edge (2), applies an 𝑅 move on 𝑏 and 𝑎, and moves 𝑐 and

𝑑 back (without braiding 𝑐 and 𝑑),

𝐵: moves 𝑑 to edge (2), 𝑐 to edge (1), applies an 𝑅 move on 𝑏 and 𝑎, and moves 𝑐 and

𝑑 back (without braiding 𝑐 and 𝑑).

In [68] it is shown that demanding naturality comes down to demanding that at

least the following equations hold

𝑋𝑏𝑎𝑐𝑑
𝑓𝑔𝑒 𝛿𝑔

𝑔′ = ∑
𝑙
[𝐹𝑓𝑐𝑑

𝑒]𝑔𝑙 𝑃
𝑏𝑎𝑙
𝑓𝑑 [̃𝐹𝑓𝑐𝑑

𝑒]𝑙𝑔′ , (5.10)

𝑌𝑏𝑎𝑐𝑑
𝑓𝑔𝑒 𝛿𝑔

𝑔′ = ∑
𝑙
[𝐹𝑓𝑐𝑑

𝑒]𝑔𝑙 𝑄
𝑏𝑎𝑙
𝑓𝑒 [̃𝐹𝑓𝑐𝑑

𝑒]𝑙𝑔′ , (5.11)

𝐴𝑏𝑎𝑑𝑐
𝑓𝑗𝑒 𝛿𝑗

𝑗′ = ∑
𝑔,𝑙,𝑙′

[̃𝐹𝑓𝑑𝑐
𝑒]𝑙

′

𝑗′(𝑅
𝑑𝑐
𝑙′)

−1[𝐹𝑓𝑑𝑐
𝑒]𝑗𝑙𝑅

𝑑𝑐
𝑙 [̃𝐹𝑓𝑐𝑑

𝑒]𝑙𝑔𝐵
𝑏𝑎𝑐𝑑
𝑓𝑔𝑒 [𝐹𝑓𝑐𝑑

𝑒]𝑔𝑙′ , (5.12)

𝐵𝑐𝑎𝑏𝑑
𝑛𝑔𝑒 𝛿𝑛

𝑛′𝛿𝑔𝑔′ = ∑
𝑓,ℎ,𝑘

[𝐹𝑐𝑎𝑏
𝑔]𝑛𝑓𝑄

𝑐𝑓𝑑
𝑔𝑒 [𝐹𝑎𝑏𝑐

𝑔]𝑓ℎ[𝐹
𝑎ℎ𝑑
𝑒]𝑔𝑘(𝑄

𝑐𝑏𝑑
ℎ𝑘)−1[̃𝐹𝑎ℎ𝑑

𝑒]𝑘𝑔′[̃𝐹𝑎𝑐𝑏
𝑔′]ℎ𝑛′ . (5.13)

These look asymmetric, but that is mainly because these four equations come from a

much larger set of consistency equations. Many of the equations in this more extensive

set turned out to be equivalent, though, and eventually only equations (5.10), (5.11),

(5.12), and (5.13) are independent. We do not include the commutative diagrams for

these equations since they are too big to depict properly.

It is interesting to note the particular way in which the consistency equations split

into two parts. If, for an equation, the LHS is zero, then the equation becomes a consis-

tency equation for the three particle symbols (for equation (5.12) we assume that the

value of 𝐵 from (5.13) has been substituted). If the LHS is non-zero, the equation can

be seen as the definition of the symbols 𝑋,𝑌, 𝐴, or 𝐵 appearing on the LHS. The same

trick can be applied for the 𝑃 and 𝑄-hexagon equations: by moving all the 𝐹-symbols

to the RHS, these equations split in, on the one hand, consistency relations for the 𝑅-

symbols, and on the other hand, in definitions for the 𝑃 and 𝑄-symbols. In this sense,

there are no new symbols at all. However, we get new consistency equations each time

we add a particle. If it can be shown that the validity of such equations for any parti-

cle number follows from that of those for a certain finite number of particles, then we

would have a coherence theorem.

The trijunction equations for three and four particles were solved for several fusion

systems. An overview of the solutions from Section 5.4.2, and an in-depth discussion

for the fusion systems based on the fusion rings Ising, ℤ2 × ℤ2, and TY(ℤ3) can be

found, respectively, in Sections 10.1, 10.2, and 10.3.

102

Figure 5.7: The two different paths that lead from the top diagram to the bottom dia-
gram must be identical

5.3 Three Particles on a Lollipop Graph

The last graph we will consider is the lollipop graph. This graph is a trijunction graph

where the base edge is joined with edge (1). Since the lollipop is a combination of the

trijunction with the circle, the consistency equations include both the 𝑃-hexagon rela-

tions, the𝑄-hexagon relations, and the circle equations. There is also some interaction

between moves on the trijunction and circle subgraphs. Demanding that such inter-

action is natural comes down to demanding that the diagram in figure 5.7 commutes.

Since 𝐷𝑓𝑎
𝑑 ∈ 𝑈(1) this is equivalent to demanding that

𝐷𝑓𝑎
𝑑 𝑃𝑐𝑏𝑎

𝑓𝑑 = 𝑅𝑐𝑏
𝑓 𝐷𝑓𝑎

𝑑 (5.14)

⟺ 𝑃𝑐𝑏𝑎
𝑓𝑑 = 𝑅𝑐𝑏

𝑓 (5.15)

Note that if we substitute this result in the 𝑃-hexagon equation, we recover one

of the planar hexagon equations. So, by ‘adding’ a loop to the trijunction, we obtain

restrictions that start to look more like the planar hexagon equations. The more con-

nected a planar graph becomes, themore its braiding starts to resemble the usual planar

braiding. As a matter of fact, in [68], it is shown that braiding on a triconnected graph,

i.e., a connected graph such that deleting any two vertices (and incident edges) results

in a graph that is still connected, is already equivalent to braiding on the plane.

We will see that for some models 𝑄𝑐𝑏𝑎
𝑓𝑑 = 𝑅𝑐𝑏

𝑓 as well. In this case, the solutions to

the graph braid equations are the same as those to the planar hexagon equations.

There is one final move on the lollipop that we have not considered yet. It consists

of moving the particle closest to the vertex onto the stick and swapping the other two

particles by using the circle. This move does not introduce new consistency relations,

though, and we will not include it in this discussion. The interested reader is referred

103

to part 6.4.1 of the original paper [68].

5.4 Solving Graph-Braid Equations

The consistency equations for braiding on a graph are similar to the pentagon and

hexagon equations. These were, therefore, tackled by the functions provided by Any-

onica package. While there is no function SolveGraphBraidEquations, we do

have the function SolvePolynomialSystem, which is specifically designed to solve

large sparse systems of polynomial equations with multiplicative gauge symmetries.

The functionDeleteDuplicateSolutions is also capable of using the customgauge

symmetries for the graph-braid symbols.

Instead of just generating the consistency equations and feeding those to Solve-
PolynomialSystem it is interesting to look at some heuristics that we used to save

time. For both the lollipop and trijunction graphs, equations (5.8) and (5.9) need to

be satisfied. It is, therefore, beneficial to start by searching for admissible sets of 𝑃,𝑄,
and 𝑅-symbols for each given set of 𝐹-symbols. By inverting some of the arrows and

going around the whole hexagon, these equations can be re-expressed in terms of 𝑃
and 𝑄 as follows.

𝑃𝑐𝑎𝑏
𝑒𝑑 𝛿𝑒

𝑒′ =
𝑟
∑
𝑓,𝑔

[̃𝐹𝑎𝑐𝑏
𝑑]𝑔𝑒′[𝐹

𝑐𝑎𝑏
𝑑]𝑒𝑓𝑅

𝑐𝑓
𝑑 [𝐹𝑎𝑏𝑐

𝑑]𝑓𝑔(𝑅𝑐𝑏
𝑔)−1, (5.16)

𝑄𝑏𝑎𝑐
𝑒𝑑 𝛿𝑒

𝑒′ =
𝑟
∑
𝑓,𝑔

[𝐹𝑏𝑎𝑐
𝑑]𝑒

′

𝑔 (𝑅
𝑐𝑎
𝑔)−1[̃𝐹𝑏𝑐𝑎

𝑑]𝑔𝑓𝑅
𝑓𝑎
𝑑 [̃𝐹𝑎𝑏𝑐

𝑑]𝑓𝑒 . (5.17)

Here the 𝛿𝑒
𝑒′ appears as a consequence of the fact that we demand 𝑃 and 𝑄 to preserve

the charge 𝑒. As mentioned in Section 5.2.3 these equations split into two sets.

• If 𝑒 ≠ 𝑒′ we might get a consistency equation on the 𝑅-symbols which can be

solved in terms of 𝑅.

• If 𝑒 = 𝑒′ we get a definition for the 𝑃 and 𝑄-symbols in terms of the 𝑅-symbols

we solved for. In particular we don’t need to solve for these symbols.

Note 12. The consistency equations on 𝑅 might be trivially satisfied. This is al-

ways the case for Abelian anyons and for these theories all the 𝑅-symbols remain

completely free.

For three particles on the trijunction, these are all the equations we need to solve.

For four particles, we need to take into account equations (5.10), (5.11), (5.12),

and (5.13). These split in the same manner as the 𝑃 and 𝑄 hexagons do. It is best

to tackle equations (5.10) and (5.11) first. Typically, the solutions to the 𝑃 and 𝑄
hexagon equations have continuous degrees of freedom. By substituting their values

into the consistency equations coming from the 𝑋 and 𝑌 moves, this solution set might

get restricted somewhat. By substituting these restricted solutions into the equations

104

for the 𝐴 and 𝐵-symbols we may obtain further restrictions on the values of the 𝑃 and

𝑄-symbols.

For the lollipop graph, extra constraints on the 𝑃 and 𝑅-symbols (5.14) together

with equations 5.1 for the 𝐷-symbols, need to be added. The equations for the 𝐷-

symbols can be solved separately.

If there is no gauge freedom left after fixing the 𝐹-symbols then the solutions to

the lollipop equations consist of all possible combinations of solutions to the circle

equations 5.1 with solutions to equations (5.8), (5.9), and (5.14). Of the anyon models

we investigated, only one model has gauge freedom left after fixing the 𝐹-symbols:

ℤ2×ℤ2. The method with which we constructed solutions to the lollipop equations for

ℤ2×ℤ2 is described in 10.2.3. Once the lollipop equations were solved we checked the

planarity of the solutions by checking whether 𝑅𝑎𝑏
𝑒 ≡ 𝑃𝑎𝑏𝑐

𝑒𝑑 ≡ 𝑄𝑎𝑏𝑐
𝑒𝑑 and 𝐷𝑎𝑏

𝑒 ≡ 𝑅𝑎𝑏
𝑒 𝐷1𝑏

𝑏 .

5.4.1 Removing Equivalent Solutions

Similar to the case of planar braiding, given a solution to the graph braid equations,

one can create an infinite set of other solutions by applying gauge transforms. Apart

from the 𝐹-symbols, all graph-braid symbols 𝑆 (= 𝑅,𝑄, 𝑃, 𝐴, 𝐵, 𝑋, 𝑌) correspond to

exchanging two anyons with each other and therefore transform in the same way:

𝑆 ↦
𝑔𝑎𝑏
𝑐

𝑔𝑏𝑎
𝑐
𝑆. (5.18)

For all sets of 𝐹-symbols we considered, except for ℤ2 × ℤ2, the gauge was already

completely fixed. For ℤ2 × ℤ2, the remaining gauge transforms form a ℤ2 group, and

we removed this symmetry after solving the equations.

For the rings of type SU(2)𝑘 and PSU(2)𝑘, we did not have access to all 𝐹-symbols

of these rings at the time of the project and made do with a single unitary solution per

ring. We obtained these using the methods in [6]. Moreover, the specific form of the

solutions for 𝑘 an odd number were too complicated to derive the solutions symboli-

cally. Eventually, we did find symbolic solutions by solving the systems numerically

and reverting the numeric solutions to roots of polynomial equations. All solutions

obtained this way are correct with an accuracy of 1000 decimal digits and infinite pre-

cision (meaning the computer used as many internal extra digits as needed to ensure

all 1000 digits are correct).

5.4.2 Results

We solved the graph braiding equations for the circle, the trijunction (with three and

four particles), and the lollipop graph for the following anyon models: ℤ2, Fib, Ising,

Rep(𝐷3), PSU(2)5, ℤ3, ℤ2 × ℤ2, SU(2)3, ℤ4, TY(ℤ3), Rep(𝐷4), and SU(2)4.
Some of these anyon models have different properties when braiding is confined to

a graph rather than the plane. There exist, in particular, several fusion categories that

have solutions for the graph-braid equations despite having no solutions to the planar

hexagon equations. For the anyon models we studied, we observed the following:

105

• The equations (5.1) for anyons on a circle, like the planar hexagon equations, lead

to discrete sets of solutions. There are always at least as many solutions as the

planar hexagons allow. The equations for a circle sometimes admit solutions for

models for which the planar hexagon equations don’t. The TY(ℤ3) fusion model

(see 10.3.2 for the solutions) is such an example.

• As was pointed out in [15], solutions to the trijunction equations for three par-

ticles sometimes contain free parameters. If we add the equations for four parti-

cles, then, depending on the model, this freedom either remains unaltered (e.g.,

for Abelian anyons), gets partially restricted (e.g., for Ising anyons), or disap-

pears completely (e.g., for Rep(𝐷3) anyons). For the models we investigated, we

found that if a model has solutions for the three-particle equations, it also has

solutions for the four-particle equations. Specific results on the number of free

variables and solutions to the trijunction equations can be found in table 5.1.

• The equations for the lollipop graph consist of (a) the trijunction equations (5.9)

and (5.8), (b) equations demanding equality between the𝑃 and𝑅-symbols (5.14),

and (c) equations for anyons on a circle (5.1). We will call the combined set of

(a) and (b) the lollipop trijunction equations. The lollipop trijunction equations

are sufficient to fix all degrees of freedom in the standard trijunction solutions.

Since the equations on a circle give rise to a discrete set of solutions, all inves-

tigated models have a discrete set of solutions to the full lollipop equations. Let

𝑛𝑐, 𝑛𝑡, 𝑛𝑙 denote the number of gauge-inequivalent solutions to the circle equa-

tions, lollipop trijunction equations, and full lollipop equations, respectively. Al-

though the equations for a circle graph are independent of the lollipop trijunction

equations, 𝑛𝑙 need not be equal to 𝑛𝑐𝑛𝑡. This happens when there is still some

gauge freedom left after fixing the values of the 𝐹-symbols. In this case, the num-

ber of solutions to each set of equations gets reduced by the same factor. This

implies that the number of gauge-inequivalent solutions to the combined set of

equations will be greater than the product of the number of solutions of the in-

dividual equations. For the cases studied, only the ℤ2 ×ℤ2 model has remaining

gauge symmetry. More information on the number of solutions to the planar

hexagon equations, the circle equations, lollipop trijunction equations, and full

lollipop equations can be found in tables 5.2 and 5.3.

If all the anyons are Abelian (i.e., the fusion algebra is a group algebra), then:

• The trijunction equations are trivially fulfilled for 3 and 4 particles. All non-

trivial 𝑅- symbols are thus free variables for the trijunction. In particular, each

set of trijunction equations admits an infinite set of solutions for any set of 𝐹-

symbols. This is not the case for the planar hexagon equations. For, e.g., ℤ3

anyons only the trivial 𝐹-symbols admit a braided structure and forℤ2 andℤ2×ℤ2

only half of the sets of 𝐹-symbols admit a braided structure.

• For the circle, Lollipop trijunction, and full lollipop equations, we find that, for

106

Fusion

Ring

Solutions to the trijunction equations per set of unitary 𝐹-symbols

𝑁 = 3 𝑁 = 4
Solutions # Free Variables # Solutions # Free Variables Planar

Fib 2 None 2 None Always

Ising 2 2 2 1 UCC

PSU(2)5 2∗ None 2 None Always

Rep(𝐷3) 1∗∗ 2∗∗ 3∗∗ 0∗∗ Always

SU(2)3 2∗ 2 2 1 UCC

SU(2)4 2∗ 2 2 1 UCC

TY(ℤ3) 0
Rep(𝐷4) 4 10 4 1 UCC

Table 5.1: Generic properties of solutions to the trijunction equations for three and
four particles for various non-Abelian anyon models. Here UCC means that the solu-
tions are planar under certain conditions on the free 𝑅-symbols. All solutions listed
are gauge-inequivalent. Note that the number of solutions corresponds to the number
of gauge-inequivalent families of solutions, possibly parametrized by some free vari-
ables. *For these models we only obtained solutions for 1 set of unitary 𝐹-symbols per
model. **For Rep(𝐷3) it looks like there are more solutions to the equations for 𝑁 = 4,
but this is only due to the fact that for 𝑁 = 4 all free parameters are fixed and thus
instead of 2 continuous families of solutions we find 3 solutions without freedom.

a fixed fusion ring, each set of 𝐹-symbols gives rise to the same number of so-

lutions. If the 𝐹-symbols allow solutions to the planar hexagon equations, then

some solutions to the lollipop equations are also planar. Because of the𝐷-symbols

(which are also gauge-dependent), the number of planar solutions to the lollipop

equations is always greater than the number of solutions to the planar hexagon

equations. For more information on the number of solutions to the lollipop equa-

tions for Abelian anyons, see table 5.3.

If some of the anyons are not Abelian, then:

• The solutions to the trijunction equations without free variables are always pla-

nar, and the solutions with free variables are planar for a discrete set of values of

the free variables.

• All solutions to the lollipop equations are planar. The number of planar solutions

to the lollipop equations is always greater than the number of solutions to the

planar hexagon equations.

The exact solutions for the the Ising model, the quantum double of ℤ2, and TY(ℤ3) can

be found respectively in sections 10.1, 10.2, and 10.3.

107

Fusion

Ring

Number of solutions per type of equations

(3 particles) per set of unitary 𝐹-symbols

Planar Hexagon Circle Lollipop Trijunction Full Lollipop

Fib 2 2 2 22

Ising 22 24 22 26

PSU(2)5 2∗ 22 2 23

Rep(𝐷3) 3, 0, 0 3, 3, 3 3, 0, 0 32, 0, 0
SU(2)3 2∗ 26 2 27

TY(ℤ3) 0 3 0 0
SU(2)4 2∗ 28 2 29

Rep(𝐷4) 23 27 23 210

Table 5.2: Number of gauge inequivalent solutions to the consistency equations for
various non-Abelian anyon models. Except for the planar hexagon equations all equa-
tions were constructed for systems with only three anyons. All of the solutions to the
lollipop trijunction equations in this table are planar i.e., 𝑃 = 𝑄 = 𝑅. For Rep(𝐷3)
a different number of solutions was found for the different solutions to the pentagon
equations and so we used a notation where the 𝑖𝑡ℎ number in each column corresponds
to data regarding the 𝑖𝑡ℎ solution to the pentagon equations. *For these models we only
obtained solutions for 1 set of unitary 𝐹-symbols per case.

Fusion

Ring

Number of solutions per type of equations (3 particles)

per set of equivalent 𝐹-symbols

Planar Hexagon Circle
Lollipop

Trijunction
Full Lollipop

Lollipop but

non-planar

ℤ2 2 22 2 23 0

ℤ3
3 33 32 35 (2

3)35

0 33 32 35 35

ℤ2 × ℤ2
23 27 25 213 (3

4)213

0 27 25 213 213

ℤ4
22 28 26 214 (15

4)214

0 28 26 214 214

Table 5.3: Number of gauge inequivalent solutions to the consistency equations for
various Abelian anyon models. Here we say two sets of 𝐹-symbols are equivalent iff
they both have solvable planar hexagon equations. We chose to do this because, within
each equivalence class, all members give rise to identical rows.

108

Part IV

Summary and Outlook

109

Chapter 6

Summary and Outlook

6.1 Summary

This thesis shows the methods we used to get an overview of the landscape of fusion

categories. A fast algorithm is presented to find low-rank fusion rings via a tree search.

The results of the search is a list of 28451 fusion rings that, in particular, contains all

multiplicity-free fusion rings up to rank 9. We also found that out of the 118 non-

commutative fusion rings in this list, all but 4 contain a subgroup. We investigated

rings with a subgroup structure and classified all extensions of group rings by two el-

ements. We also derived several other structure theorems that can be used to explain

specific patterns in the table of non-commutative fusion rings per rank and subgroup.

The notion of a song (single-orbit normal group) extension, a generalization of the

Tambara-Yamagami (TY) and Haagerup-Izumi (HI), was introduced, and we showed

that there exist categorifiable songs that are not of TY or HI type. The thesis contin-

ues by explaining the methods used to obtain the 𝐹-symbols, 𝑅-symbols, and pivotal

coefficients of all multiplicity-free fusion categories up to rank 7. A total of 977 pivotal

(possibly braided) fusion categories have been found. The results we found have been

summarized in various ways, and a complete table of fusion categories can be found in

Section 9. Most of the fusion categories can be identified as being of a standard struc-

ture, but such identification is not immediately apparent for some categories. It turns

out that not all fusion rings with modular data are categorifiable. For the multiplicity-

free fusion rings up to rank 7, we have the result that if they can be categorified, a

modular categorification also exists. Interestingly, not all fusion categories belonging

to the same fusion ring have the same configuration of zero 𝐹-symbols. The first three

examples for which this is the case appear at rank 7. All the data on fusion rings and

categories are part of the Anyonica package. This package also contains all methods

for finding fusion categories and useful functions for working with these rings and cat-

egories. The package has also been used to export all data to the AnyonWiki website.

In the last part of the thesis, the theory of graph braiding is presented in a somewhat

naive fashion. The equations governing the braiding of anyons on the circle, trijunc-

tion, and lollipop graphs are derived, and a summary of their solutions is presented

for several fusion systems. For some fusion systems, graph braiding is possible despite

111

the lack of solutions to the planar hexagon equations. We also find that some fusion

systems have more planar solutions on the lollipop graph than in the plane due to the

appearance of extra gauge-dependent variables. For Abelian anyons, we also find that

the graph-braid equations are always trivially satisfied on a trijunction, so there are

always infinite solutions. While not all graphs lead to a finite number of solutions, it

must be noted that, for the models we investigated, this is always the case for the circle,

and one may wonder whether there is an Ocneanu-type theorem for this graph as well.

6.2 Outlook

Now that the Anyonica package is completed and there is an extensive database of

multiplicity-free fusion categories, the way to several other interesting projects has

opened.

1. The first project that comes to mind is the classification of multiplicity-free fu-

sion categories up to rank 8 or even higher. To do so, Anyonica could use some

updates. Some bottlenecks can still be dealt with, especially regarding the Smith

decomposition and memory usage. The package would, in particular, benefit

from making the Smith decomposition optional, having a smarter method of

setting up equations (such as in [1]) and parallelizing some of the most time-

consuming steps. It would also be nice if assumptions on the categories could be

added in order to optimize the search. For example, if one assumes the fusion

category is modular, then it must be braided, and one can immediately iden-

tify some values of the 𝑅-symbols. These can be used to simplify the hexagon

equations, whose solutions, in turn, can be used to simplify the pentagon equa-

tions. Likewise, if one assumes a fusion category is unitary, then several extra

constraints (such as orthogonality [1]) can be demanded that simplify the pen-

tagon equations. There are many other heuristics that can be applied and are

already implemented in J. K. Slingerland’s Mathematica code to solve pentagon

equations; therefore, it should not take too much time to incorporate these in

Anyonica. Such functionality would especially be useful for the next project.

2. Recently, a paper that classifies all modular data up to rank 11 has been published

[80]. We would like to find solutions to the pentagon, hexagon, and pivotal equa-

tions for these modular fusion rings.

3. The equations to find (bi)module categories over fusion categories are similar

to the pentagon equations. I want to try to use Anyonica to solve these equa-

tions as well. The examples found can then be investigated to, e.g., get insight

into the existence of new finite index subfactors or how the braiding on a bi-

module category relates to that of the fusion categories that work on it. Fu-

sion categories and bimodule categories are also interesting to compute state

sum invariants of 3-manifolds, such as the Turaev-Viro(-Barret-Westubury) and

Reshetikhin-Turaev state sums[9, 97]. If Anyonica could be connected to an on-

112

line database of 3-manifolds (e.g., “The Atlas of 3-manifolds”, hosted at http:
//www.matlas.math.csu.ru/), then hopefully it should not be too hard to

compute these invariants. One could even try to go further and calculate state

sums for manifolds with defects, which have applications in topological quantum

field theory [73, 18, 57].

4. As shown in Chapter 1, braided fusion categories directly provide the required

data to compute braid group representations. It should not be hard to implement

this functionality. If the category in question is a ribbon fusion category, then

one can use the quantum trace to find knot invariants as well [54, 84, 83, 96].

The theory to perform these calculations has been worked out numerous times

in the literature, and it would be nice if Anyonica provided functions to perform

these calculations. I would, in particular, like to program a function (or user

interface) that simplifies fusion trees and thus calculates amplitudes of processes

with anyons.

5. Solving generic pentagon equations for 𝑚 > 1 is very hard. Most known exam-

ples come from the representation theory at roots of unity. These can be calcu-

lated by using the alatc package of E. Ardonne. We also know that the zesting

construction [21] transforms fusion rings into other ones that do not belong to

the quantum group picture. By implementing the zesting procedure in Anyonica

on the level of the 𝐹-and 𝑅-symbols and incorporating alatc’s functionality, we

may be able to find new examples of fusion categories with multiplicity.

6. One complaint about Anyonica is that it requires Mathematica. Both the data

and the source code are freely available, though, and I would love it if some of

the techniques and tables were imported into other languages. For example, the

TensorCategories package of F. Maurer and U. Thiel shows great potential, and

maybe one day I might develop in Julia rather than Mathematica.

Besides these projects, I plan to maintain the AnyonWiki as long as possible. To do so,

I could use all the help that the community can offer.

I hope that the data and some of the techniques described in this thesis might also

be useful to other people. If you are one of those people, then I wish you the best of

luck, and who knows, we might even meet and talk fusion cats over a cup of tea.

Gert Vercleyen

113

http://www.matlas.math.csu.ru/
http://www.matlas.math.csu.ru/

114

Part V

Appendix

115

Chapter 7

The Mathematics of Anyons

In this chapter we introduce the concept of a fusion category and add extra structures

until we arrive at the concept of a unitary modular category. This is the notion that

is most useful for physicists since such categories provide an algebraic description of

systems with anyons. We also describe two different viewpoints of fusion categories.

On the one hand there is the approach that treats fusion categories as strict categories,

which simplifies abstract treatments and proofs considerably. On the other hand there

is a more concrete aproach that describes fusion catgories via their fusion data; sets of

numbers satisfying certain algebraic equations. While our approach for most part of

the thesis is the second one, the first approach is essential to understand some of the

subtle points of fusion systems, such as the need for a pivotal structure. Therefore, the

exact way that one can translate one approach into the other will also be explained.

7.1 From Category to Modular Category

In order to settle some notational conventions we will revise some of the main defini-

tions that are necessary to arrive to the concept of a fusion category. This section is

not intended as an introduction to fusion categories. Thinking categorically is a skill

that can only be obtained by practice and endurance.

7.1.1 From Category to Fusion Category

We start by defining the usual notions of a category, functor, natural transformation,

and equivalence of categories in order to settle the notation.

Definitions 7.1.1.

• A category 𝒞 consists of

– a collection Obj𝒞 of objects;

– for any two objects 𝑎, 𝑏 ∈ Obj𝒞, a collection hom𝓒(𝑎, 𝑏) (or just hom(𝑎, 𝑏)
if it is clear with which category we’re working) of morphisms with domain

𝑎 and codomain 𝑏;

117

– for each object 𝑎 ∈ Obj𝒞, an identity morphism 1𝑎 ∈ hom(𝑎, 𝑎), (or just 1
if it is clear on which object it acts);

– for any objects 𝑎, 𝑏, 𝑐 ∈ Obj𝒞, an associative composition operator ∘ for

morphisms hom(𝑏, 𝑐)×hom(𝑎, 𝑏) ∘→ hom(𝑎, 𝑐), sending (𝑔, 𝑓) to 𝑔 ∘𝑓 = 𝑔𝑓
for which 1𝑏 ∘ 𝑓 = 𝑓 and 𝑔 ∘ 1𝑎 = 𝑔.

• A functor 𝐹 ∶ 𝒞 → 𝒟 is a map from a category 𝒞 to a category 𝒟 that maps

objects to objects, i.e., 𝐹 ∶ Obj𝒞 ⟶ Obj𝒟; 𝑎 ⟼ 𝐹𝑎, morphisms to morphisms,

i.e., 𝐹 ∶ hom(𝑎, 𝑏) ⟶ hom(𝐹𝑎, 𝐹𝑏), 𝑓 ⟼ 𝐹𝑓, and satisfies

– Preservation of Identity: ∀𝑎 ∈ Obj𝒞

𝐹(1𝑎) = 1𝐹𝑎 (7.1)

and

– Preservation of Composition: ∀(𝑔, 𝑓) ∈ hom(𝑏, 𝑐) ×𝒞(𝑎, 𝑏)

𝐹(𝑔 ∘ 𝑓) = 𝐹𝑔 ∘ 𝐹𝑓. (7.2)

The functor id𝒞 that is the identity on objects and morphisms is called the iden-

tity functor.

• A natural transformation 𝜃 ∶ 𝐹 ⇒ 𝐺 between two functors 𝐹 ∶ 𝒞 → 𝒟 and

𝐺 ∶ 𝒞 → 𝒟 consists of a set of morphisms {𝜃𝑎 ∈ hom𝒟(𝐹𝑎, 𝐺𝑎)| 𝑎 ∈ Obj𝒞}
such that ∀𝑎, 𝑏 ∈ Obj𝒞,∀𝜓 ∈ hom𝒞(𝑎, 𝑏) the following diagram commutes

𝐹𝑎 𝐹𝑏

𝐺𝑎 𝐺𝑏

𝐹𝜓

𝜃𝑎 𝜃𝑏
𝐺𝜓

(7.3)

• If 𝜃 ∶ 𝐹 ⇒ 𝐺 and 𝜂 ∶ 𝐺 ⇒ 𝐻 are natural transformations, their composition is the

natural transformation 𝜂𝜃 ∶ 𝐹 ⇒ 𝐻 with structure morphisms (𝜂𝜃)𝑎 = 𝜂𝑎 ∘ 𝜃𝑎 ,

∀𝑎 ∈ Obj𝒞.

• A natural isomorphism is a natural transformation in which every structure

morphism is an isomorphism.

• We say that a functor 𝐹 ∶ 𝒞 → 𝒟 is an equivalence if there is a functor 𝐹−1 ∶
𝒟 → 𝒞, called a quasi-inverse of 𝐹, such that 𝐹−1◦𝐹 ≅ id𝒞 and 𝐹◦𝐹−1 ≅ id𝒟.

We say that the categories 𝒞 and 𝒟 are equivalent if there exists an equivalence

between them.

The other definitions and propositions in this sectionwill follow the EGNO[25] but

are adapted to the goal of understanding the following definition as quickly as possible.

118

Definition 7.1.2. A fusion category overℂ is a categorywhich is [FC1]ℂ−linear , [FC2]

Abelian , [FC3] indecomposable , [FC4] semi-simple , [FC5] finite , [FC6] monoidal

with unit 𝟏 and product ⊗ that is bilinear on morphisms , [FC7] rigid , and for which

[FC8] hom(𝟏, 𝟏) ≅ 𝑘

In particular we will only revise the notions that are necessary to understand fusion

categories over ℂ and will use more specific definitions whenever possible.

Definition 7.1.3. [FC1] A category is ℂ-linear if

1. Every set hom(𝑎, 𝑏) is equipped with a structure of a complex vector space such

that composition of morphisms is bilinear.

2. There exists a zero object 0 ∈ 𝒞 such that hom(0, 0) = 0 (the zero-dimensional

vector space).

3. (Existence of direct sums) For any objects 𝑎1, 𝑎2 ∈ 𝒞 there exists an object 𝑏 ∈ 𝒞
and morphisms 𝑝1 ∶ 𝑏 → 𝑎1, 𝑝2 ∶ 𝑏 → 𝑎2, 𝑖1 ∶ 𝑎1 → 𝑏, 𝑖2 ∶ 𝑎2 → 𝑏 such that

𝑝1 ∘ 𝑖1 = 1𝑎1 , 𝑝2 ∘ 𝑖2 = 1𝑎2 , and 𝑖1 ∘ 𝑝1 + 𝑖2 ∘ 𝑝2 = 1𝑏 .

A functor between twoℂ-linear categories is calledℂ-linear if its action on morphisms

is ℂ-linear.

Note that 𝑏 is often written as 𝑎1⊕𝑎2 and moreover⊕ can be extended to a bifunctor

(whose action on morphisms is defined via the maps 𝑝𝑗, 𝑖𝑗).

Definitions 7.1.4. Let 𝒞 be ℂ-linear and 𝜑 ∶ 𝑎 → 𝑏 a morphism in 𝒞.

• The kernel ker(𝜑) of 𝜑 (if it exists) is an object 𝑘 together with a morphism

𝜅 ∶ 𝑘 → 𝑎 such that 𝜑 ∘ 𝜅 = 0, and if 𝜅′ ∶ 𝑘 ′ → 𝑎 is such that 𝜑 ∘ 𝜅′ = 0 then there

exists a unique morphism 𝜆 ∶ 𝑘 ′ → 𝑘 such that 𝜅 ∘ 𝜆 = 𝜅′.

• If ker(𝜑) = (0, 0) then 𝜑 is called a monomorphism.

• An object 𝑎 together with a monomorphism 𝜄 ∶ 𝑎 → 𝑏 is called a subobject of 𝑏.
We also write 𝑎 ⊆ 𝑏 if there exists such a 𝜄.

Dually one defines

• The cokernel CoKer(𝜑) of a morphism 𝜑 ∶ 𝑎 → 𝑏 in 𝒞 (if it exists) is an object 𝑐
together with a morphism 𝛾 ∶ 𝑏 → 𝑐 such that 𝛾 ∘ 𝜑 = 0, and if 𝛾′ ∶ 𝑏 → 𝑐′ is such

that 𝛾′ ∘𝜑 = 0 then there exists a unique morphism 𝜆 ∶ 𝑐 → 𝑐′ such that 𝜆 ∘𝛾 = 𝛾′.

• If CoKer(𝜑) = (0, 0) then 𝜑 is called an epimorphism.

• An object 𝑐 together with an epimorphism 𝜀 ∶ 𝑏 → 𝑐 is called a quotient object

of 𝑏

119

Definition 7.1.5. [FC2] A 𝑘-linear category 𝒞 is called Abelian if for every morphism

𝜑 ∶ 𝑎 → 𝑏 there exists a sequence

𝑘 𝑎 Im(𝜑) 𝑏 𝑐𝜅 𝑖 𝑗 𝛾
(7.4)

such that

1. 𝑗 ∘ 𝑖 = 𝜑,

2. (𝑘, 𝜅) = ker(𝜑), (𝑐, 𝛾) = CoKer(𝜑),

3. (Im(𝜑), 𝑖) = CoKer(𝜅), (Im(𝜑), 𝑗) = ker(𝛾).

The abelian category with one object 0 is called the zero category.

We can use the ⊕ functor to define the direct sum of abelian categories

Definition 7.1.6. Let 𝒞𝑖, 𝑖 ∈ 𝐼, be a family of ℂ-linear categories. The direct sum 𝒞 =
⨁𝑖∈𝐼 𝒞𝑖 is the category whose objects are sums 𝑎 = ⨁𝑖∈𝐼 𝑎𝑖, 𝑎𝑖 ∈ 𝒞𝑖 , such that almost

all 𝑎𝑖 are zero, with hom(𝑎, 𝑏) = ⨁𝑖∈𝐼 hom𝒞𝑖
(𝑎𝑖, 𝑏𝑖) for 𝑎 = ⨁𝑖∈𝐼 𝑎𝑖 and 𝑏 = ⨁𝑖∈𝐼 𝑏𝑖.

Definition 7.1.7. [FC3] An abelian category𝒞 is indecomposable if it is not equivalent

to a direct sum of two nonzero categories.

The definition of a subobject can be used to define the fundamental notion of sim-

plicity.

Definition 7.1.8. [FC4] A nonzero object 𝑎 in 𝒞 is called simple if its only subobjects

are 𝟎 and 𝑎. An object 𝑎 in 𝒞 is called semisimple if it is a direct sum of simple objects,

and a category 𝒞 is called semisimple if every object of 𝒞 is semisimple.

Definition 7.1.9. Let 𝑎 be an object in an Abelian category 𝒞. We say that 𝑎 has finite

length if there exists a finite list of objects {𝑎0 = 0, 𝑎1,…, 𝑎𝑛 = 𝑎} , called a Jordan-

Holder series,such that 𝑎𝑖−1 ⊆ 𝑎𝑖, 𝑖 = 1,…, 𝑛 and 𝑎𝑖/𝑎𝑖−1 is simple for all 𝑖 = 1,…, 𝑛.

Due to a theorem by Jordan-Holder any Jordan-Holder series for an object has the

same length and any simple object, 𝑎𝑖/𝑎𝑖−1, in a Jordan-Holder series of 𝑎 appears the

same number of times in any other Jordan-Holder series of 𝑎.
For a fusion category any object has finite length and admits a unique decomposi-

tion into a direct sum of simple objects.

Definitions 7.1.10. A sequence of morphisms

… 𝑎𝑖−1 𝑎𝑖 𝑎𝑖+1 …
𝜑𝑖−1 𝜑𝑖

in an Abelian category is called exact in degree 𝑖 if Im𝜑𝑖−1 = ker𝜑𝑖. The sequence is

120

called exact if it is exact in every degree. An exact sequence

𝟎 𝑎 𝑏 𝑐 𝟎

is called a short exact sequence.

Definitions 7.1.11. An object 𝑝 in an Abelian category 𝒞 is called projective if the

functor hom(𝑝, ⋅) maps short exact sequences to short exact sequences. A projective

cover of an object 𝑎 is a projective object 𝑝𝑎 together with an epimorphism 𝜋 ∶ 𝑝𝑎 → 𝑎
such that if 𝜋′ ∶ 𝑞 → 𝑎 is an empimorphism form a projective object 𝑞 to 𝑎, there exists

an epimorphism 𝜆 ∶ 𝑞 → 𝑝𝑎 with 𝜋 ∘ 𝜆 = 𝜋′.

Definition 7.1.12. [FC5] A ℂ-linear Abelian category 𝒞 is called finite if

• dimhom(𝑎, 𝑏) < ∞ for all 𝑎, 𝑏 ∈ Obj𝒞,

• there are finitely many isomorphism classes of simple objects, and

• every object 𝑎 ∈ Obj𝒞 has finite length and has a projective cover.

A monoidal category is a category with an associative unital tensor product. More

specifically:

Definition 7.1.13. [FC6] A monoidal category is a six-tuple (𝒞,⊗, 𝟏, 𝛼, 𝜆, 𝜌) where

• 𝒞 is a category;

• 𝟏 is an object of 𝒞, called the unit object of 𝒞;

• ⊗ ∶ 𝒞 ×𝒞 → 𝒞 is a bifunctor, called the tensor (or monoidal) product;

• 𝛼 ∶ (⋅1 ⊗ ⋅2) ⊗ ⋅3 → ⋅1 ⊗ (⋅2 ⊗ ⋅3) is a natural isomorphism;

• 𝜆 ∶ 𝟏 ⊗ ⋅ → ⋅ and 𝜌 ∶ ⋅ ⊗ 𝟏 → ⋅ are natural isomorphisms;

such that for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝒞 the following diagrams commute

((𝑎 ⊗ 𝑏) ⊗ 𝑐) ⊗ 𝑑

(𝑎 ⊗ (𝑏 ⊗ 𝑐)) ⊗ 𝑑

𝑎 ⊗ ((𝑏 ⊗ 𝑐) ⊗ 𝑑) 𝑎 ⊗ (𝑏 ⊗ (𝑐 ⊗ 𝑑))

(𝑎 ⊗ 𝑏) ⊗ (𝑐 ⊗ 𝑑)

𝛼𝑎,𝑏,𝑐⊗id𝑑

𝛼𝑎,𝑏⊗𝑐,𝑑

id𝑎 ⊗𝛼𝑏,𝑐,𝑑

𝛼𝑎,𝑏,𝑐⊗𝑑

𝛼𝑎⊗𝑏,𝑐,𝑑

(7.5)

(𝑎 ⊗ 𝟏) ⊗ 𝑏 𝑎 ⊗ (𝟏 ⊗ 𝑏)

𝑎 ⊗ 𝑏

𝛼𝑎,𝟏,𝑏

𝜌𝑎⊗1𝑏
1𝑎⊗𝜆𝑏

(7.6)

121

Equation (7.5) is called the pentagon equation(s) and equation (7.6) is called the tri-

angle equation(s). The map 𝛼 is called the associator and the maps 𝜆 and 𝜌 are called

the left and right unit constraints. If 𝛼, 𝜆, 𝜌 are the identity maps then 𝒞 is called a

strict monoidal category.

Definitions 7.1.14. Let (𝒞,⊗, 𝟏, 𝛼, 𝜆, 𝜌) be a monoidal category. An object 𝑎∗ in 𝒞 is

said to be a left dual of 𝑎 if there exist morphisms 𝑒𝑎 ∶ 𝑎∗ ⊗ 𝑎 → 𝟏 and 𝑐𝑎 ∶ 𝟏 → 𝑎 ⊗ 𝑎∗

such that the compositions

𝑎 𝟏 ⊗ 𝑎 (𝑎 ⊗ 𝑎∗) ⊗ 𝑎 𝑎 ⊗ (𝑎∗ ⊗ 𝑎) 𝑎 ⊗ 𝟏 𝑎
𝜆−1
𝑎 𝑐𝑎⊗1𝑎 𝛼𝑎,𝑎∗,𝑎 1𝑎⊗𝑒𝑎 𝜌𝑎 , (7.7)

𝑎∗ 𝑎∗ ⊗ 𝟏 𝑎∗ ⊗ (𝑎 ⊗ 𝑎∗) (𝑎∗ ⊗ 𝑎) ⊗ 𝑎∗ 𝟏 ⊗ 𝑎∗ 𝑎∗𝜌−1
𝑎∗ 1𝑎∗⊗𝑐𝑎 𝛼−1

𝑎∗,𝑎,𝑎∗ 𝑒𝑎⊗1𝑎∗ 𝜆𝑎∗ (7.8)

are the identity maps. Given a morphism 𝑓 ∈ hom(𝑎, 𝑏), its left dual 𝑓∗ ∈ hom(𝑏∗, 𝑎∗)
is defined as

𝑓∗ ∶= 𝜆𝑎 ∘ (𝑒𝑏 ⊗ 1𝑎∗) ∘ ((1𝑏∗ ⊗ 𝑓) ⊗ 1𝑎∗) ∘ 𝛼
−1
𝑏∗,𝑎,𝑎∗ ∘ (1𝑏∗ ⊗ 𝑐𝑎) ∘ 𝜌

−1
𝑏∗ (7.9)

An object ∗𝑎 in 𝒞 is said to be a right dual of 𝑎 if there exist morphisms 𝑒′𝑎 ∶ 𝑎 ⊗ ∗𝑎 → 𝟏
and 𝑐′𝑎 ∶ 𝟏 → ∗𝑎 ⊗ 𝑎 such that the compositions

𝑎 𝑎 ⊗ 𝟏 𝑎 ⊗ (∗𝑎 ⊗ 𝑎) (𝑎 ⊗ ∗𝑎) ⊗ 𝑎 𝟏 ⊗ 𝑎 𝑎∗𝜌−1
𝑎 1𝑎⊗𝑐

′
𝑎

𝛼−1
𝑎,∗𝑎,𝑎 𝑒′𝑎⊗1∗𝑎 𝜆𝑎 , (7.10)

∗𝑎 𝟏 ⊗ ∗𝑎 (∗𝑎 ⊗ 𝑎) ⊗ ∗𝑎 ∗𝑎 ⊗ (𝑎 ⊗ ∗𝑎) ∗𝑎 ⊗ 𝟏 ∗𝑎
𝜆−1
∗𝑎 𝑐′𝑎⊗1𝑎 𝛼∗𝑎,𝑎,∗𝑎 1∗𝑎⊗𝑒

′
𝑎 𝜌∗𝑎 (7.11)

are the identitymaps. Given amorphism 𝑓 ∈ hom(𝑎, 𝑏), its right dual ∗𝑓 ∈ hom(∗𝑏, ∗𝑎)
is defined as

∗𝑓 ∶= 𝜌𝑏 ∘ (1∗𝑎 ⊗ 𝑒′𝑏) ∘ (1∗𝑎 ⊗ (𝑓 ⊗ 1∗𝑏)) ∘ 𝛼∗𝑎,𝑎,∗𝑏 ∘ (𝑐
′
𝑎 ⊗ 1∗𝑏) ∘ 𝜌

−1
𝑏∗ (7.12)

Definition 7.1.15. [FC7] An object in a monoidal category is called rigid if it has left

and right duals. If every object in a monoidal category 𝒞 is rigid then we say that 𝒞 is

rigid.

Now that we have defined all necessary notions to make sense of a fusion category

it is interesting to see how these interact with each other. The following proposition

is a combination of various propositions found throughout the EGNO [25] with the

added assumption that we are working with a fusion category. The number in front of

each statement equals the number of that statement in the EGNO.

Proposition 7.1.16. Let (𝒞,⊗, 𝟏, 𝛼, 𝜆, 𝜌) be aℂ-linear fusion category. Then the following

122

properties hold.

Property of simple objects

1.5.2. (Schur’s Lemma) Any morphism 𝜑 ∶ 𝑎 → 𝑏 between two simple objects is

either 0 or an isomorphism. In particular, for all simple 𝑎, 𝑏 ,hom(𝑎, 𝑎) ≅ ℂ and

hom(𝑎, 𝑏) = 𝟎 if 𝑎 is not isomorphic to 𝑏.

Properties of ⊕ and ⊗

1.2.4. For any ℂ-linear functor 𝐹 ∶ 𝒞 → 𝒟 there exists a natural isomorphism

𝐹(⋅1) ⊕ 𝐹(⋅2) ⇒ 𝐹(⋅1 ⊕ ⋅2).

4.2.1. The functors 𝑎⊗⋅ and#⊗𝑎map short exact sequences to short exact sequences.

4.2.8. For any two morphisms 𝜑,𝜓 one has Im(𝜑 ⊗ 𝜓) ≅ Im𝜑 ⊗ Im𝜓

Properties of the unit 𝟏

4.3.8. 𝟏 is simple.

2.2.6. 𝟏 is unique up to unique isomorphism.

Properties of duals

2.10.3. ∗(𝑎∗) ≅ 𝑎 ≅ (∗𝑎)∗, 𝟏∗ ≅ 𝟏 ≅ ∗𝟏, 𝑒′𝑎∗ = 𝑒𝑎, 𝑐
′
𝑎∗ = 𝑐𝑎 and vice versa 𝑒∗𝑎 = 𝑒′𝑎,

𝑐∗𝑎 = 𝑐′𝑎.

2.10.5. Left (respectively, right) duals of 𝑎 are unique up to unique isomorphism

2.10.7. Let 𝜓 ∶ 𝑏 → 𝑐,𝜑 ∶ 𝑎 → 𝑏 then (𝜓 ∘ 𝜑)∗ = 𝜑∗ ∘ 𝜓∗, ∗(𝜓 ∘ 𝜑) = ∗𝜑 ∘ ∗𝜓,

(𝑎 ⊗ 𝑏)∗ ≅ 𝑏∗ ⊗ 𝑎∗ , and ∗(𝑎 ⊗ 𝑏) ≅ ∗𝑏 ⊗ ∗𝑎

2.10.8. hom(𝑎 ⊗ 𝑏, 𝑐) ≅ hom(𝑎, 𝑐 ⊗ 𝑏∗), and hom(𝑎 ⊗ 𝑏, 𝑐) ≅ hom(𝑏, ∗𝑎 ⊗ 𝑐)

4.3.9. 𝑒 and 𝑒′ are monomorphisms and 𝑐 and 𝑐′ are epimorphisms.

Note 13. The duality between 𝑒′, 𝑒 and 𝑐′, 𝑐 given in 2.10.3. of proposition 7.1.16

is the reason why some authors only define and use the maps 𝑒, 𝑐.

7.1.2 From Fusion Category To Modular Category

There are two independent extra structures that one can put on a fusion category. On

the one hand there is a pivotal structure that relates objects to their double duals. On

the other hand there is a braiding that relates products 𝑎 ⊗ 𝑏 to 𝑏 ⊗ 𝑎. Depending on

the availability and properties of these structures, fusion categories are given different

adjectvies and find different applications.

From now on we will always assume that 𝒞 is a fusion category over ℂ.

123

7.1.2.1 Pivotal and Spherical Fusion Categories

We start by defining quantum traces.

Definitions 7.1.17. For any object 𝑎 ∈ 𝒞 and any morphisms 𝜑 ∈ hom(𝑎, 𝑎∗∗), 𝜓 ∈
hom(∗∗𝑎, 𝑎) we define

• the left quantum trace of 𝜑 as

Tr𝐿(𝜑) ∶ 𝟏 𝑎 ⊗ 𝑎∗ 𝑎∗∗ ⊗ 𝑎∗ 𝟏,
𝑐𝑎 𝜑⊗1𝑎∗ 𝑒𝑎∗ (7.13)

and

• the right quantum trace of 𝜓 as

Tr𝑅(𝜓) ∶ 𝟏 ∗𝑎 ⊗ 𝑎 ∗𝑎 ⊗ ∗∗𝑎 𝟏.
𝑐∗𝑎 1∗𝑎⊗𝜓 𝑒∗∗𝑎 (7.14)

Since hom(𝟏, 𝟏) ≅ ℂ we can identify left and right traces of morphisms with com-

plex numbers. In order to introduce a pivotal structure we need a few more definitions.

Definitions 7.1.18. Let (𝒞,⊗, 𝟏, 𝛼, 𝜆, 𝜌) and (𝒞′, ⊗′, 𝟏′, 𝛼′, 𝜆′, 𝜌′) be two monoidal cat-

egories. A monoidal functor 𝐹 ∶ 𝒞 → 𝒞′ is a triple (𝐹0, 𝐹1, 𝐹2) where 𝐹 ∶ 𝒞 → 𝒞′ is a

functor, 𝐹0 ∶ 𝟏′ → 𝐹1(𝟏) is an isomorphism, and (𝐹2)𝑎,𝑏 ∶ 𝐹1(𝑎) ⊗
′ 𝐹1(𝑏) → 𝐹1(𝑎 ⊗ 𝑏) is

a natural isomorphism such that the following diagrams commutes for all 𝑎, 𝑏, 𝑐 ∈ 𝒞

(𝐹1(𝑎) ⊗
′ 𝐹1(𝑏)) ⊗

′ 𝐹1(𝑐) 𝐹1(𝑎) ⊗
′ (𝐹1(𝑏) ⊗

′ 𝐹1(𝑐))

𝐹1(𝑎 ⊗ 𝑏) ⊗′ 𝐹1(𝑐) 𝐹1(𝑎) ⊗
′ 𝐹1(𝑏 ⊗ 𝑐)

𝐹1((𝑎 ⊗ 𝑏) ⊗ 𝑐)) 𝐹1(𝑎 ⊗ (𝑏 ⊗ 𝑐))

(𝐹2)𝑎,𝑏⊗
′id𝐹1(𝑐)

𝛼′
𝐹1(𝑎),𝐹1(𝑏),𝐹1(𝑐)

id𝐹1(𝑎)⊗
′(𝐹2)𝑏,𝑐

(𝐹2)𝑎⊗𝑏,𝑐 (𝐹2)𝑎,𝑏⊗𝑐
𝐹1(𝛼𝑎,𝑏,𝑐)

(7.15)

𝟏′ ⊗′ 𝐹1(𝑎) 𝐹1(𝑎)

𝐹1(𝟏) ⊗
′ 𝐹1(𝑎) 𝐹1(𝟏 ⊗ 𝑎)

𝜆′𝐹1(𝑎)

𝐹0⊗
′1𝐹1(𝑎) 𝐹1(𝜆𝑥)

−1

(𝐹2)𝟏,𝑎

,
𝐹1(𝑎) ⊗

′ 𝟏′ 𝐹1(𝑎)

𝐹1(𝑎) ⊗
′ 𝐹1(𝟏) 𝐹1(𝑎 ⊗ 𝟏)

𝜌′
𝐹1(𝑎)

1𝐹1(𝑎)⊗
′𝐹0 𝐹1(𝜌𝑥)

−1

(𝐹2)𝑎,𝟏

(7.16)

Likewise, a natural transformation of monoidal functors needs to take account of

the product structure.

Definition 7.1.19. Let (𝒞,⊗, 𝟏, 𝛼, 𝜆, 𝜌) and (𝒞′, ⊗′, 𝟏′, 𝛼′, 𝜆′, 𝜌′) be two monoidal cat-

egories and 𝐹, 𝐺 be monoidal functors from 𝒞 to 𝒞′. A natural transformation of

monoidal functors 𝜂 ∶ (𝐹0, 𝐹1, 𝐹2) → (𝐺0, 𝐺1, 𝐺2) is a natural transformation 𝜂 ∶ 𝐹1 →

124

𝐺1 such that 𝜂𝟏 is an isomorphism and the following diagram commutes for all 𝑎, 𝑏 ∈ 𝒞:

𝐹1(𝑎) ⊗
′ 𝐹1(𝑏) 𝐹1(𝑎 ⊗ 𝑏)

𝐺1(𝑎) ⊗
′ 𝐺1(𝑏) 𝐺1(𝑎 ⊗ 𝑏)

(𝐹2)𝑎,𝑏

𝜂𝑎⊗
′𝜂𝑏 𝜂𝑎⊗𝑏

(𝐺2)𝑎,𝑏

(7.17)

If there exist two monoidal functors 𝐹 ∶ 𝒞 → 𝒟 and 𝐺 ∶ 𝒟 → 𝒞 between fusion

categories, such that 𝐺 ∘ 𝐹 is monoidally isomorphic to the identity functor 1𝒞 and

𝐹 ∘ 𝐺 is monoidally isomorphic to the identity functor 1𝒟, then 𝒞 and 𝒟 are called

fusion equivalent.

Definitions 7.1.20. A pivotal structure on 𝒞 is an isomorphism of monoidal functors

𝑝 ∶ 1𝒞 → ⋅∗∗. A fusion category with a pivotal structure is called a pivotal fusion

category.

This definition implies that the pivotal structure needs to satisfy stronger con-

straints than a natural transformation between non-monoidal functors. In particular

we need to have that 𝑝𝑎 ⊗ 𝑝𝑏 = 𝑝𝑎⊗𝑏.

Using the pivotal structure, we can define the quantum dimensions of objects, and

the notion of a spherical category

Definitions 7.1.21. Let 𝜓 be a pivotal structure on 𝒞, the quantum dimension of 𝑎 ∈
Obj𝒞 is dim(𝑎) ∶= Tr𝐿𝜓𝑎

. We say that the fusion category 𝒞 is spherical if dim(𝑎) =
dim(𝑎∗) for all 𝑎 ∈ Obj𝒞.

7.1.2.2 Braided Fusion Categories

Definition 7.1.22. A braided fusion category is fusion category together with a natural

isomorphism 𝛽 ∶ ⋅1 ⊗ ⋅2 ⇒ ⋅2 ⊗ ⋅1 that satisfies the hexagon equations:

(𝑎 ⊗ 𝑏) ⊗ 𝑐

𝑎 ⊗ (𝑏 ⊗ 𝑐) (𝑏 ⊗ 𝑐) ⊗ 𝑎

𝑏 ⊗ (𝑐 ⊗ 𝑎)

𝑏 ⊗ (𝑎 ⊗ 𝑐)(𝑏 ⊗ 𝑎) ⊗ 𝑐

𝛼𝑎,𝑏,𝑐

𝛽𝑎,𝑏⊗𝑐

𝛼𝑏,𝑐,𝑎

𝟣⊗𝛽𝑎,𝑐

𝛼𝑏,𝑎,𝑐

𝛽𝑎,𝑏⊗𝟣

(7.18)

125

(𝑎 ⊗ 𝑏) ⊗ 𝑐

𝑎 ⊗ (𝑏 ⊗ 𝑐) (𝑏 ⊗ 𝑐) ⊗ 𝑎

𝑏 ⊗ (𝑐 ⊗ 𝑎)

𝑏 ⊗ (𝑎 ⊗ 𝑐)(𝑏 ⊗ 𝑎) ⊗ 𝑐

𝛼𝑎,𝑏,𝑐

𝛽−1
𝑏⊗𝑐,𝑎

𝛼𝑏,𝑐,𝑎

𝟣⊗𝛽−1
𝑐,𝑎

𝛼𝑏,𝑎,𝑐

𝛽−1
𝑏,𝑎⊗𝟣

(7.19)

The notion of a functor between braided categories that is natural is the following

Definitions 7.1.23. Let (𝒞,⊗, 𝟏, 𝛼, 𝜆, 𝜌, 𝛽) and (𝒞′, ⊗′, 𝟏′, 𝛼′, 𝜆′, 𝜌′, 𝛽′)be braidedmonoidal

categories whose braidings are denoted 𝛽 and 𝛽′, respectively. A monoidal functor

(𝐹0, 𝐹1, 𝐹2) from 𝒞 to 𝒞′ is called braided if the following diagram commutes:

𝐹1(𝑎) ⊗
′ 𝐹1(𝑏) 𝐹1(𝑏) ⊗

′ 𝐹1(𝑎)

𝐹1(𝑎 ⊗ 𝑏) 𝐹1(𝑏 ⊗ 𝑎)

𝛽′
𝐹1(𝑎),𝐹1(𝑏)

(𝐹2)𝑎,𝑏 (𝐹2)𝑏,𝑎
𝐹1(𝛽𝑎,𝑏)

(7.20)

for all 𝑎, 𝑏 ∈ Obj𝒞. A braided equivalence of braided categories is a braided monoidal

functor which is also an equivalence of categories.

Note 14. Being braided is a property of a monoidal functor, rather than an extra

structure.

The following proposition (see, e.g., [27]) is one of the reasons braided categories

are so interesting.

Proposition 7.1.24. Let𝒞 be a strict monoidal category with braiding 𝛽. For all 𝑎, 𝑏, 𝑐 ∈ 𝒞
the Yang-Baxter equation

(𝛽𝑏,𝑐 ⊗ 1𝑎) ∘ (1𝑏 ⊗ 𝛽𝑎,𝑐) ∘ (𝛽𝑎,𝑏 ⊗ 1𝑐) = (1𝑐 ⊗ 𝛽𝑎,𝑏) ∘ (𝛽𝑎,𝑐 ⊗ 1𝑏) ∘ (1𝑎 ⊗ 𝛽𝑏,𝑐) (7.21)

holds.

7.1.2.3 Ribbon and Modular Fusion Categories

We finally arive at the notion of a modular category

Definitions 7.1.25.

• A spherical braided fusion category𝒞 is called a ribbon fusion category. Let𝜓, 𝛽
be respectively the spherical and braided structure of a ribbon fusion category,

126

and define the natural isomorphism 𝑢 ∶ 1𝒞 ⇒ ⋅∗∗ as follows

𝑢𝑎 = 𝜆𝑎 ∘ (𝑒𝑎 ⊗ 1𝑎∗∗) ∘ (𝛽𝑎,𝑎∗ ⊗ 1𝑎∗∗) ∘ (1𝑎 ⊗ 𝑐𝑎∗) ∘ 𝜌𝑎∗ . (7.22)

The maps

𝜃𝑎 ∶= 𝜓−1
𝑎 ∘ 𝑢𝑎, (7.23)

are called the twists of 𝒞 and the natural isomorphism 𝜃 ∶ 1𝒞 ⇒ 1𝒞, defined by

these maps, is called the ribbon structure of 𝒞. Two ribbon fusion categories

𝒞 and 𝒟 are called ribbon equivalent if there exists a braided equivalence 𝐹 =
(𝐹0, 𝐹1, 𝐹2) such that 𝐹1(𝜃𝑎) = 𝜃𝐹1(𝑎)

, ∀𝑎 ∈ 𝒞

• The 𝑆-matrix of a ribbon category is defined as

[𝑆]𝑎𝑏 = Tr(𝛽𝑎,𝑏 ∘ 𝛽𝑏,𝑎) (7.24)

where the trace is taken with respect to the spherical structure 𝜓.

• A ribbon categorywhose 𝑆-matrix is invertible is called amodular category. Two

modular categories are called modular equivalent if they are ribbon equivalent.

7.2 From Fusion System to Fusion Category and Back

This section gives the explicit construction used to obtain a fusion system from a fu-

sion category and vice versa. These constructions come from the paper [19] that also

proves the following two propositions

Proposition 7.2.1. Given a fusion category 𝒞 over ℂ, one can construct a fusion system

FS(𝒞) from it. Given a fusion system ℱ = (L, ∗,N,F,P,R), one can construct a fusion

category Cat(ℱ) from it, such that Cat(FS(𝒞)) and 𝒞 are fusion equivalent.

Proposition 7.2.2. Given a modular fusion category𝒞 overℂ, one can construct a modular

fusion system MFS(𝒞) from it. Given a modular fusion system ℱ = (L, ∗,N,F), one can

construct a modular fusion category MCat(ℱ) from it, such that MCat(MFS(𝒞)) and 𝒞
are modular equivalent.

Note 15. In [19] these propositions are stated for the more general case of

fusion categories over a field 𝑘. In that case proposition 7.2.2 needs more re-

finement since the modular category is defined over a different field than the

modular fusion system.

The paper [19] proves these propositions in a constructive manner, i.e. by con-

structing the (modular) category from the (modular) fusion system and vice versa.

The constructions are basically the following.

127

From Fusion System to Fusion Category

Let (L, ∗,N,F) be a fusion system of rank 𝑟 and denote the elements of 𝐋 by 1,… , 𝑟.
Define a category 𝒞 as follows. The objects are 𝑟 tuples of natural numbers

Obj𝒞 = {(𝑛1,… , 𝑛𝑟)|𝑛1,… , 𝑛𝑟 ∈ ℕ} (7.25)

and for every two objects 𝑎, 𝑏 the set of morphisms is the following set of blockdiagonal

matrices

hom(𝑎, 𝑏) = ⨁
𝑖∈𝐿

Mat𝑎𝑖×𝑏𝑖
(ℂ). (7.26)

Composition of morphisms is given by matrix multiplication and the identity mor-

phism is 1𝑎 = ⊕𝑖∈𝐿𝟙𝑎𝑖×𝑎𝑖
. The simple objects of 𝒞 are the lists 𝛿𝑎 that have a 1 on the

𝑎th spot and are zero everywhere else.

The monoidal product ⊗ is defined on objects as

(𝑎 ⊗ 𝑏)𝑘 =
𝑟
∑

𝑖=1,𝑗=1
𝑎𝑖𝑏𝑗𝑁

𝑘
𝑖,𝑗, 𝑎, 𝑏 ∈ Obj𝒞, (7.27)

and on morphisms 𝐴 ∶ 𝑎 → 𝑎′, 𝐵 ∶ 𝑏 → 𝑏′ as

𝐴 ⊗ 𝐵 = (⨁
𝑖∈𝐿

𝐴𝑖) ⊗(⨁
𝑗∈𝐿

𝐵𝑗) = ⨁
𝑘∈𝐿

(⨁
𝑖,𝑗∈𝐿

𝐴𝑖 ⊗ 𝐵𝑗 ⊗ 𝟙𝑁𝑘
𝑖,𝑗×𝑁𝑘

𝑖,𝑗
) (7.28)

where 𝐴𝑖 ∈ Mat𝑎𝑖×𝑎′𝑖
, 𝐵𝑖 ∈ Mat𝑏𝑖×𝑏′𝑖

. The neutral object is 1 = 𝛿1 and the unitor maps

𝜆𝑎 ∶ 1⊗ 𝑎 → 𝑎 and 𝜌𝑎 ∶ 𝑎 ⊗ 1 → 𝑎 are taken to be the identity. Let 𝑎 = 𝛿𝑖, 𝑏 = 𝛿𝑗, 𝑐 = 𝛿𝑘
be simple objects. The associator 𝛼𝑎,𝑏,𝑐 ∶ 𝑎 ⊗ (𝑏 ⊗ 𝑐) → (𝑎 ⊗ 𝑏) ⊗ 𝑐 is then defined as

𝛼𝑎,𝑏,𝑐 ∶=
𝑟
⨁
𝑙=1

[̃𝐹𝑖𝑗𝑘
𝑙] ∈

𝑟
⨁
𝑙=1

Mat𝑁 𝑙
𝑖,𝑗,𝑘×𝑁 𝑙

𝑖,𝑗,𝑘
(ℂ). (7.29)

The ∗ function on L is a permutation on 𝑟 elements. Let 𝑀 be the corresponding 𝑟 × 𝑟
matrix, then for any object 𝑎 its right dual is defined as 𝑎.𝑀. For any simple object 𝑎
the evaluation and co-evaluations morphisms 𝑒𝑎 and 𝑐𝑎 are scalars, given by

𝑒𝑎 = 1, 𝑐𝑎=
1

[𝐹𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1)

. (7.30)

Note 16. In [19] other conventions are used for several structures:

• The associator is defined the opposite way, namely 𝛼𝑎,𝑏,𝑐 ∶ (𝑎 ⊗ 𝑏) ⊗ 𝑐 →
𝑎⊗(𝑏⊗𝑐). Therefore they use the regular 𝐹matrix, rather than the inverse,

in definition 7.29.

• The conventions for the evaluation and coevaluation maps are different to

ours. This has no effect on the values 𝑒𝑎 and 𝑐𝑎, since the derivation of

these values uses both opposite conventions, whose effects cancel in the

128

end.

• The pivotal structure in [19] is also defined as a map 𝑎∗∗ → 𝑎 which is

opposite to our definition. Therefore our formula for computing pivotal

coefficients 2.24 has an inverse LHS compared to the one in [19].

Additional Structure

If the fusion system is pivotal with pivotal structure 𝐏 = (𝑝1,…, 𝑝𝑟) then the pivotal

structure 𝜓 is defined as the set of scalars {𝜓𝑎 = 𝑝𝑎|𝑎 = 1, ..., 𝑟}. If the fusion system

is braided with braiding 𝐑 = {[𝑅𝑎𝑏
𝑐]|𝑎, 𝑏, 𝑐 = 1,…, 𝑟} then the braiding 𝜎 on 𝒞 is

determined by

𝜎𝑎,𝑏 =
𝑟
⨁
𝑘=1

[𝑅 𝑖𝑗
𝑘] ∈

𝑟
⨁
𝑘=1

Mat𝑁𝑘
𝑖,𝑗×𝑁𝑘

𝑖,𝑗
(ℂ), (7.31)

where 𝑎 = 𝛿𝑖 and 𝑏 = 𝛿𝑗.

From Fusion Category to Fusion System

Let 𝒞 be a fusion category and let ℒ denote a set of representatives of equivalence

classes of simple objects, and 𝑙 ∶ ℒ → {1,…, |ℒ| =∶ 𝑟} a labeling function which

maps the unit of 𝒞, 𝟏, to 1. Let 𝑎⋆ denote the dual of any object 𝑎 ∈ Obj𝒞. For

any simple object 𝑎 we have that 𝑎⋆⋆ ≅ 𝑎 and moreover 1⋆ ≅ 1. Let [⋅]ℒ denote the

projection of any simple object onto its representative in ℒ, then the set 𝐋 = {1,…, 𝑟}
together with the map ⋅∗ ∶ 𝐋 → 𝐋 = 𝑙([(𝑙−1(⋅))⋆]ℒ) are the first two elements of the

desired fusion system (𝐋, ∗, 𝐍, 𝐅).
Since all hom sets are finite dimensional vector spaces, we can use these to describe

the category by means of linear algebra. For all 𝑎, 𝑏, 𝑐 ∈ ℒ choose a basis {|𝑎, 𝑏; 𝑐, 𝑖⟩}
for the hom set hom(𝑎 ⊗ 𝑏, 𝑐) such that:

• the sets of maps {𝜆𝑎}, and {𝜌𝑎} are respectively the bases for the spaces hom(𝟏⊗
𝑎, 𝑎) and hom(𝑎 ⊗ 𝟏, 𝑎), and

• the set of maps {𝑒𝑎} is the basis for the space hom(𝑎∗ ⊗ 𝑎, 𝟏).

We have that 𝐍 ∶= {𝑁𝑐
𝑎,𝑏 ∶= dimhom(𝑎 ⊗ 𝑏, 𝑐)| 𝑎, 𝑏, 𝑐 ∈ ℒ} are the structure con-

stants of a fusion ring and thus satisfy all the required relations for a fusion system.

Let 𝑎, 𝑏, 𝑐 ∈ ℒ then 𝛼𝑎,𝑏,𝑐 ∶ (𝑎 ⊗ 𝑏) ⊗ 𝑐 → 𝑎 ⊗ (𝑏 ⊗ 𝑐) defines a pullback

𝛼′
𝑎,𝑏,𝑐 ∶ hom(𝑎 ⊗ (𝑏 ⊗ 𝑐), 𝑑) → hom((𝑎 ⊗ 𝑏) ⊗ 𝑐), 𝑑) (7.32)

for every 𝑑 ∈ ℒ. The choice of bases for the spaces hom(𝑖 ⊗ 𝑗, 𝑘), with 𝑖, 𝑗, 𝑘 ∈ ℒ
implies a choice of basis for higher tensor products as well. In particular the following

are bases for the hom spaces appearing in (7.32)

{|𝑎, 𝑓; 𝑑, 𝑖⟩ ∘ (1𝑎 ⊗ |𝑏, 𝑐; 𝑓, 𝑗⟩)|𝑖 = 1,…,𝑁𝑑
𝑎,𝑓, 𝑗 = 1,…,𝑁𝑓

𝑏,𝑐} ⊂ hom(𝑎 ⊗ (𝑏 ⊗ 𝑐), 𝑑), (7.33)

{|𝑒, 𝑐; 𝑑, 𝑗⟩ ∘ (|𝑎, 𝑏; 𝑒, 𝑖⟩ ⊗ 1𝑐)|𝑖 = 1,…,𝑁𝑒
𝑎,𝑏, 𝑗 = 1,…,𝑁𝑑

𝑒,𝑐} ⊂ hom((𝑎 ⊗ 𝑏) ⊗ 𝑐, 𝑑). (7.34)

129

The matrices [𝐹𝑎𝑏𝑐
𝑑] are then by definition the matrices representing 𝛼′

𝑎,𝑏,𝑐 in these

bases, i.e.

[𝐹𝑎𝑏𝑐
𝑑](𝑒,𝑖,𝑗)(𝑓,𝑖′,𝑗′) ∶= [𝛼′

𝑎,𝑏,𝑐(|𝑒, 𝑐; 𝑑, 𝑗⟩ ∘ (|𝑎, 𝑏; 𝑒, 𝑖⟩ ⊗ 1𝑐))](𝑓,𝑖′,𝑗′) (7.35)

Additional Structure

If 𝒞 is pivotal with pivotal structure 𝜓 then 𝐏 = (𝑝1,…, 𝑝𝑟), with

𝑝𝑎 = Tr𝐿(𝜓𝑎)[𝐹
𝑎𝑎∗𝑎
𝑎](1,1,1)(1,1,1), (7.36)

is a set of pivotal coefficients. If𝒞 is braided then the 𝑅-matrices are found in a similar

way as the 𝐹-symbols: via the pullback of the braiding map 𝜎. In particular we have

that, for all 𝑎, 𝑏, 𝑐 ∈ ℒ,

|𝑏, 𝑎; 𝑐, 𝑖⟩ ∘ 𝜎𝑎,𝑏 = ∑
𝑗
[𝑅𝑎𝑏

𝑐]𝑖𝑗|𝑎, 𝑏; 𝑐, 𝑗⟩ (7.37)

130

Chapter 8

List of multiplicity-free fusion rings

up to rank 9

A list of multiplicity-free fusion rings of rank up to 9 is given in the table below. 𝒟2
𝐹𝑃

denotes the sum of the squares of the quantum dimensions of the basis elements of

the ring, and for the last five columns, a value of indicates that at least one way

to categorify the fusion ring to a category with the respective structure exists. The

abbreviations FC, PFC, UFC, BFC, and MFC stand for Fusion Category, Pivotal Fusion

Category, Unitary Fusion Category, Braided Fusion Category, and Modular Fusion Cat-

egory. Multiple categories can stem from the same fusion ring with multiple (possibly

disjunct) properties. A indicates that it is known that the ring does not categorify

to the respective category, and an empty cell indicates that the authors don’t know

whether the ring has a category with the respective structure.

Note that:

• The table list the data of which the authors have knowledge. There might be

some fusion rings, of which more is known than listed in this table.

• The table on the AnyonWiki is derived from this paper but might contain more

information since it gets updated now and then by volunteers.

• Not all fusion rings that have a common name are categorifiable. Some names,

such as the Tambara-Yamagami (TY) fusion rings, the Haagerup-Izumi (HI) fu-

sion rings, and the songs, are derived from a construction of a fusion ring from

another ring. For e.g., the TY fusion rings, Tambara and Yamagami, proved[94]

that if they are based on a non-commutative group, there can be no categorifica-

tions. Likewise, a lot of the songs have no categorifications.

131

Table 8.1: List of multiplicity-free fusion rings up to rank 9

FR1,0
1 Trivial 1 1.

FR2,0
1 ℤ2 2 2.

FR2,0
2 Fib 2 3.618

FR3,0
1 Ising 3 4.

FR3,0
2 Rep(𝐷3) 3 6.

FR3,0
3 PSU(2)5 3 9.295

FR3,2
1 ℤ3 3 3.

FR4,0
1 ℤ2 × ℤ2 4 4.

FR4,0
2 SU(2)3 4 7.236

FR4,0
3 Rep(𝐷5) 4 10.

FR4,0
4 PSU(2)6 4 13.656

FR4,0
5 Fib × Fib 4 13.090

FR4,0
6 PSU(2)7 4 19.234

FR4,2
1 ℤ4 4 4.

FR4,2
2 TY(ℤ3) 4 6.

FR4,2
3 Fib(ℤ3) 4 8.3027

FR4,2
4 Pseudo PSU(2)6 4 13.656

FR5,0
1 Rep(𝐷4) 5 8.

FR5,0
2 Fib (ℤ2 × ℤ2) 5 10.561

FR5,0
3 SU(2)4 5 12.

FR5,0
4 Rep(𝐷7) 5 14.

FR5,0
5 5 16.605

FR5,0
6 Rep(𝑆4) 5 24.

FR5,0
7 PSU(2)8 5 26.180

FR5,0
8 5 31.092

FR5,0
9 5 30.142

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

132

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR5,0
10 PSU(2)9 5 34.646

FR5,2
1 TY(ℤ4) 5 8.

FR5,2
2 Fib(ℤ4) 5 10.561

FR5,2
3 Pseudo SU(2)4 5 12.

FR5,2
4 Pseudo Rep(𝑆4) 5 24.

FR5,2
5 5 31.092

FR5,4
1 ℤ5 5 5.

FR6,0
1 ℤ2 × Ising 6 8.

FR6,0
2 ℤ2 × Rep(𝐷3) 6 12.

FR6,0
3 6 18.928

FR6,0
4 TriCritIsing 6 14.472

FR6,0
5 Fib × Rep(𝐷3) 6 21.708

FR6,0
6 SU(2)5 6 18.591

FR6,0
7 Rep(ℤ3 ⋊ 𝐷3) 6 18.

FR6,0
8 Rep(𝐷9) 6 18.

FR6,0
9 SO(5)2 6 20.

FR6,0
10 6 25.582

FR6,0
11 6 28.392

FR6,0
12 6 28.392

FR6,0
13 6 33.798

FR6,0
14 Fib × ExtRep(𝐷3) 6 33.632

FR6,0
15 6 36.779

FR6,0
16 PSU(2)10 6 44.784

FR6,0
17 6 55.144

FR6,0
18 PSU(2)11 6 56.746

FR6,0
19 6 63.147

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

133

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR6,0
20 6 63.147

FR6,2
1 𝐷3 6 6.

FR6,2
2 [ℤ2 ⊴ ℤ4]

Id
1|0 6 8.

FR6,2
3 [ℤ2 ⊴ ℤ2 × ℤ2]

Id
3|0 6 8.

FR6,2
4 Rep(Dic12) 6 12.

FR6,2
5 [ℤ2 ⊴ ℤ4]

Id
1|1 6 18.928

FR6,2
6 [ℤ2 ⊴ ℤ2 × ℤ2]

Id
3|1 6 18.928

FR6,2
7 Pseudo SO(5)2 6 20.

FR6,2
8 HI(ℤ3) 6 35.725

FR6,2
9 6 33.798

FR6,2
10 6 36.779

FR6,2
11 6 55.144

FR6,4
1 ℤ6 6 6.

FR6,4
2 MR6 6 8.

FR6,4
3 TY(ℤ5) 6 10.

FR6,4
4 [ℤ5 ⊴ ℤ5]

Id
1|1 6 12.791

FR6,4
5 Fib × ℤ3 6 10.854

FR6,4
6 [ℤ2 ⊴ ℤ4]

Id
3|1 6 18.928

FR6,4
7 6 20.485

FR6,4
8 [𝐼 ⊴ ℤ3]

Id
1|1 6 35.725

FR7,0
1 7 16.

FR7,0
2 7 21.123

FR7,0
3 7 27.153

FR7,0
4 7 28.944

FR7,0
5 7 29.46

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

134

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR7,0
6 7 22.

FR7,0
7 SU(2)6 7 27.3137

FR7,0
8 SO(7)2 7 28.

FR7,0
9 7 34.3852

FR7,0
10 7 43.3137

FR7,0
11 7 36.9706

FR7,0
12 7 42.

FR7,0
13 7 52.93

FR7,0
14 PSU(2)12 7 70.6848

FR7,0
15 7 81.6695

FR7,0
16 7 87.0937

FR7,0
17 PSU(2)13 7 86.7508

FR7,0
18 7 118.138

FR7,2
1 TY(𝐷3) 7 12.

FR7,2
2 [𝐷3 ⊴ 𝐷3]

Id
1|1 7 15.

FR7,2
3 7 16.

FR7,2
4 7 16.

FR7,2
5 7 21.1231

FR7,2
6 7 27.1537

FR7,2
7 7 27.1537

FR7,2
8 7 28.9443

FR7,2
9 7 28.9443

FR7,2
10 7 29.46

FR7,2
11 7 27.3137

FR7,2
12 7 28.

FR7,2
13 7 43.3137

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

135

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR7,2
14 7 52.93

FR7,2
15 7 71.0118

FR7,2
16 7 81.6695

FR7,2
17 7 87.0937

FR7,4
1 TY(ℤ2 × ℤ3) 7 12.

FR7,4
2 [ℤ6 ⊴ ℤ6]

Id
1|1 7 15.

FR7,4
3 7 16.

FR7,4
4 7 27.1537

FR7,4
5 7 28.9443

FR7,4
6 7 57.2354

FR7,4
7 7 71.0118

FR7,6
1 ℤ7 7 7.

FR8,0
1 ℤ2 × ℤ2 × ℤ2 8 8.

FR8,0
2 Fib × ℤ2 × ℤ2 8 14.4721

FR8,0
3 Rep(𝐷5) × ℤ2 8 20.

FR8,0
4 8 24.

FR8,0
5 PSU(2)6 × ℤ2 8 27.3137

FR8,0
6 8 30.

FR8,0
7 Fib × Fib × ℤ2 8 26.1803

FR8,0
8 8 38.583

FR8,0
9 8 26.

FR8,0
10 8 42.4585

FR8,0
11 Fib × Rep(𝐷5) 8 36.1803

FR8,0
12 8 47.6333

FR8,0
13 SO(9)2 8 36.

FR8,0
14 Rep(𝐷(𝐷3)) 8 36.

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

136

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR8,0
15 SU(2)7 8 38.4688

FR8,0
16 Fib × PSU(2)6 8 49.411

FR8,0
17 8 43.0828

FR8,0
18 8 43.0828

FR8,0
19 8 68.6639

FR8,0
20 8 52.6491

FR8,0
21 8 52.6491

FR8,0
22 Fib × Fib × Fib 8 47.3607

FR8,0
23 HI(ℤ2 × ℤ2) 8 75.7771

FR8,0
24 8 48.0685

FR8,0
25 8 58.1168

FR8,0
26 8 58.1168

FR8,0
27 Fib × PSU(2)7 8 69.5908

FR8,0
28 8 72.

FR8,0
29 8 72.

FR8,0
30 8 78.1637

FR8,0
31 PSU(2)14 8 105.097

FR8,0
32 8 126.522

FR8,0
33 8 126.522

FR8,0
34 8 128.169

FR8,0
35 8 122.573

FR8,0
36 PSU(2)15 8 125.874

FR8,0
37 8 140.586

FR8,0
38 8 201.126

FR8,2
1 𝐷4 8 8.

FR8,2
2 [ℤ3 ⊴ 𝐷3]

Id
1|0 8 12.

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

137

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR8,2
3 8 16.6056

FR8,2
4 [ℤ3 ⊴ 𝐷3]

Id
1|1 8 24.

FR8,2
5 8 20.

FR8,2
6 8 20.

FR8,2
7 8 24.

FR8,2
8 8 27.3137

FR8,2
9 8 27.3137

FR8,2
10 8 27.3137

FR8,2
11 8 26.1803

FR8,2
12 8 38.583

FR8,2
13 8 42.4585

FR8,2
14 8 36.

FR8,2
15 8 36.

FR8,2
16 8 68.6639

FR8,2
17 8 52.6491

FR8,2
18 8 52.6491

FR8,2
19 HI(ℤ4) 8 75.7771

FR8,2
20 [𝐼 ⊴ ℤ2 × ℤ2]

(3 4)
1|1 8 75.7771

FR8,2
21 8 48.0685

FR8,2
22 8 58.1168

FR8,2
23 8 58.1168

FR8,2
24 8 72.

FR8,2
25 8 72.

FR8,2
26 8 126.522

FR8,2
27 8 126.522

FR8,2
28 8 128.169

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

138

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR8,2
29 8 122.573

FR8,2
30 8 140.586

FR8,4
1 ℤ2 × ℤ4 8 8.

FR8,4
2 [ℤ3 ⊴ 𝐷3]

Id
2|0 8 12.

FR8,4
3 ℤ2 × TY(ℤ3) 8 12.

FR8,4
4 ℤ2 × Fib(ℤ3) 8 16.6056

FR8,4
5 [ℤ3 ⊴ 𝐷3]

Id
2|1 8 24.

FR8,4
6 [ℤ3 ⊴ ℤ6]

Id
1|1 8 24.

FR8,4
7 Fib × ℤ4 8 14.4721

FR8,4
8 8 20.

FR8,4
9 Fib × TY(ℤ3) 8 21.7082

FR8,4
10 Fib × Fib(ℤ3) 8 30.0397

FR8,4
11 8 27.3137

FR8,4
12 8 27.3137

FR8,4
13 ℤ2 × (Pseudo PSU(2)6) 8 27.3137

FR8,4
14 8 47.6333

FR8,4
15 Fib × (Pseudo PSU(2)6) 8 49.411

FR8,4
16 [𝐼 ⊴ ℤ4]

Id
1|1 8 75.7771

FR8,4
17 [𝐼 ⊴ ℤ2 × ℤ2]

Id
2|1 8 75.7771

FR8,4
18 8 78.1637

FR8,6
1 Q 8 8.

FR8,6
2 ℤ8 8 8.

FR8,6
3 TY(ℤ7) 8 14.

FR8,6
4 [ℤ7 ⊴ ℤ7]

Id
1|1 8 17.1926

FR8,6
5 [ℤ3 ⊴ ℤ6]

Id
2|0 8 12.

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

139

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR8,6
6 [ℤ3 ⊴ ℤ6]

Id
2|1 8 24.

FR8,6
7 8 27.3137

FR8,6
8 8 27.3137

FR8,6
9 [𝐼 ⊴ ℤ4]

(3 4)
2|1 8 75.7771

FR8,6
10 [𝐼 ⊴ ℤ4]

Id
3|1 8 75.7771

FR9,0
1 TY(ℤ2 × ℤ2 × ℤ2) 9 16.

FR9,0
2 [(ℤ2)

×3 ⊴ (ℤ2)
×3]Id1|1 9 19.3723

FR9,0
3 Ising × Ising 9 16.

FR9,0
4 Ising × Rep(𝐷3) 9 24.

FR9,0
5 9 24.

FR9,0
6 Rep(𝐷3) × Rep(𝐷3) 9 36.

FR9,0
7 9 32.

FR9,0
8 9 38.7446

FR9,0
9 9 37.8564

FR9,0
10 9 48.

FR9,0
11 9 37.8564

FR9,0
12 9 30.

FR9,0
13 9 49.551

FR9,0
14 Ising × PSU(2)5 9 37.1836

FR9,0
15 9 60.

FR9,0
16 9 58.7386

FR9,0
17 9 58.2213

FR9,0
18 9 58.2213

FR9,0
19 SO(11)2 9 44.

FR9,0
20 Rep(𝐷3 × PSU(2)5 9 55.7754

FR9,0
21 9 51.7082

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

140

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR9,0
22 9 72.

FR9,0
23 9 74.3672

FR9,0
24 9 61.8564

FR9,0
25 9 48.

FR9,0
26 9 87.1918

FR9,0
27 SU(2)8 9 52.3607

FR9,0
28 9 60.

FR9,0
29 9 108.321

FR9,0
30 9 70.2101

FR9,0
31 9 88.108

FR9,0
32 9 77.166

FR9,0
33 9 77.166

FR9,0
34 PSU(2)5 × PSU(2)5 9 86.4137

FR9,0
35 9 134.976

FR9,0
36 9 97.9329

FR9,0
37 9 100.467

FR9,0
38 9 108.99

FR9,0
39 9 110.912

FR9,0
40 9 130.596

FR9,0
41 PSU(2)16 9 149.235

FR9,0
42 9 137.082

FR9,0
43 9 179.586

FR9,0
44 PSU(2)17 9 175.333

FR9,0
45 9 227.519

FR9,0
46 9 318.114

FR9,2
1 TY(𝐷4) 9 16.

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

141

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR9,2
2 [𝐷4 ⊴ 𝐷4]

Id
1|1 9 19.3723

FR9,2
3 9 16.

FR9,2
4 9 29.67

FR9,2
5 9 24.

FR9,2
6 9 24.

FR9,2
7 9 24.

FR9,2
8 9 24.

FR9,2
9 9 32.

FR9,2
10 9 32.

FR9,2
11 9 38.7446

FR9,2
12 9 37.8564

FR9,2
13 9 37.8564

FR9,2
14 9 48.

FR9,2
15 9 48.

FR9,2
16 9 37.8564

FR9,2
17 9 49.551

FR9,2
18 9 49.551

FR9,2
19 9 60.

FR9,2
20 9 60.

FR9,2
21 9 58.7386

FR9,2
22 9 58.7386

FR9,2
23 9 58.7386

FR9,2
24 9 58.2213

FR9,2
25 9 58.2213

FR9,2
26 9 44.

FR9,2
27 9 74.3672

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

142

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR9,2
28 9 74.3672

FR9,2
29 9 61.8564

FR9,2
30 9 48.

FR9,2
31 9 87.1918

FR9,2
32 9 60.

FR9,2
33 9 60.

FR9,2
34 9 77.166

FR9,2
35 9 77.166

FR9,2
36 9 134.976

FR9,2
37 9 134.976

FR9,2
38 9 100.467

FR9,2
39 9 100.467

FR9,2
40 9 130.596

FR9,2
41 9 137.082

FR9,2
42 9 137.082

FR9,2
43 9 179.586

FR9,2
44 9 227.519

FR9,2
45 9 227.519

FR9,4
1 TY(ℤ2 × ℤ4) 9 16.

FR9,4
2 [ℤ2 × ℤ4 ⊴ ℤ2 × ℤ4]

Id
1|1 9 19.3723

FR9,4
3 [ℤ2 ⊴ ℤ6]

(2 3)
1|0 9 12.

FR9,4
4 9 16.

FR9,4
5 9 16.

FR9,4
6 9 29.67

FR9,4
7 9 29.67

FR9,4
8 9 24.

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

143

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR9,4
9 9 24.

FR9,4
10 9 24.

FR9,4
11 [ℤ2 ⊴ ℤ6]

(2 3)
1|1 9 44.054

FR9,4
12 9 32.

FR9,4
13 9 37.8564

FR9,4
14 9 48.

FR9,4
15 9 49.551

FR9,4
16 9 60.

FR9,4
17 9 58.7386

FR9,4
18 9 58.7386

FR9,4
19 9 74.3672

FR9,4
20 9 48.

FR9,4
21 9 48.

FR9,4
22 9 87.1918

FR9,4
23 9 87.1918

FR9,4
24 9 52.3607

FR9,4
25 9 108.321

FR9,4
26 9 77.166

FR9,4
27 9 94.2873

FR9,4
28 9 134.976

FR9,4
29 9 134.976

FR9,4
30 9 97.9329

FR9,4
31 9 130.596

FR9,4
32 9 130.596

FR9,4
33 9 227.519

FR9,6
1 TY(Q) 9 16.

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

Continued on next page

144

Table 8.1: List of multiplicity-free fusion rings up to rank 9 (Continued)

FR9,6
2 TY(ℤ8) 9 16.

FR9,6
3 [Q ⊴ Q]Id1|1 9 19.3723

FR9,6
4 [ℤ8 ⊴ ℤ8]

Id
1|1 9 19.3723

FR9,6
5 Ising × ℤ3 9 12.

FR9,6
6 Rep(𝐷3) × ℤ3 9 18.

FR9,6
7 9 29.67

FR9,6
8 9 28.3923

FR9,6
9 [ℤ2 ⊴ ℤ6]

Id
1|1 9 44.054

FR9,6
10 PSU(2)5 × ℤ3 9 27.8877

FR9,6
11 9 55.1689

FR9,6
12 9 94.2873

FR9,6
13 9 134.976

FR9,6
14 9 134.976

FR9,6
15 9 127.95

FR9,6
16 9 163.373

FR9,8
1 ℤ9 9 9.

FR9,8
2 ℤ3 × ℤ3 9 9.

Name Common Name Rank 𝒟2
𝐹𝑃 Comm. FC PFC UFC BFC MFC

145

146

Chapter 9

List of Multiplicity-free Fusion

Categories up to Rank 7

The following is a list of all the fusion categories for multiplicity-free fusion rings up to

rank 7. The naming of the categories is described in section 4.5. The table has several

visual guides that groups the categories by property, namely

• Categories with the same fusion ring are separated by a horizontal line.

• Categories of the same fusion ring with equivalent 𝐹-symbols are separated by a

dashed horizontal line.

• Categories of the same fusion ring with equivalent 𝐹-symbols and equivalent 𝑅-

symbols are grouped by white or gray background color. The background colors

have no other meaning.

• The symbols , , , , denote that the category in question is re-

spectively braided, unitary, spherical, ribbon, modular.

Table 9.1: List of multiplicity-free fusion categories up to rank 7

[FR1,1,0
1]11,1 [Trivial]11,1

[FR2,1,0
1]11,1 [ℤ2]

1
1,1

[FR2,1,0
1]21,1 [ℤ2]

2
1,1

[FR2,1,0
1]11,2 [ℤ2]

1
1,2

[FR2,1,0
1]21,2 [ℤ2]

2
1,2

[FR2,1,0
1]12,1 [ℤ2]

1
2,1

[FR2,1,0
1]22,1 [ℤ2]

2
2,1

[FR2,1,0
1]12,2 [ℤ2]

1
2,2

Formal Name Common Name

Continued on next page

147

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR2,1,0
1]22,2 [ℤ2]

2
2,2

[FR2,1,0
2]11,1 [Fib]11,1

[FR2,1,0
2]11,2 [Fib]11,2

[FR2,1,0
2]12,1 [Fib]12,1

[FR2,1,0
2]12,2 [Fib]12,2

[FR3,1,0
1]11,1 [Ising]11,1

[FR3,1,0
1]21,1 [Ising]21,1

[FR3,1,0
1]11,2 [Ising]11,2

[FR3,1,0
1]21,2 [Ising]21,2

[FR3,1,0
1]11,3 [Ising]11,3

[FR3,1,0
1]21,3 [Ising]21,3

[FR3,1,0
1]11,4 [Ising]11,4

[FR3,1,0
1]21,4 [Ising]21,4

[FR3,1,0
1]12,1 [Ising]12,1

[FR3,1,0
1]22,1 [Ising]22,1

[FR3,1,0
1]12,2 [Ising]12,2

[FR3,1,0
1]22,2 [Ising]22,2

[FR3,1,0
1]12,3 [Ising]12,3

[FR3,1,0
1]22,3 [Ising]22,3

[FR3,1,0
1]12,4 [Ising]12,4

[FR3,1,0
1]22,4 [Ising]22,4

[FR3,1,0
2]11,1 [Rep(𝐷3)]

1
1,1

[FR3,1,0
2]11,2 [Rep(𝐷3)]

1
1,2

[FR3,1,0
2]11,3 [Rep(𝐷3)]

1
1,3

[FR3,1,0
2]12,1 [Rep(𝐷3)]

1
2,1

[FR3,1,0
2]13,1 [Rep(𝐷3)]

1
3,1

[FR3,1,0
3]11,1 [PSU(2)5]

1
1,1

[FR3,1,0
3]11,2 [PSU(2)5]

1
1,2

[FR3,1,0
3]12,1 [PSU(2)5]

1
2,1

Formal Name Common Name

Continued on next page

148

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR3,1,0
3]12,2 [PSU(2)5]

1
2,2

[FR3,1,0
3]13,1 [PSU(2)5]

1
3,1

[FR3,1,0
3]13,2 [PSU(2)5]

1
3,2

[FR3,1,2
1]11,1 [ℤ3]

1
1,1

[FR3,1,2
1]21,1 [ℤ3]

2
1,1

[FR3,1,2
1]11,2 [ℤ3]

1
1,2

[FR3,1,2
1]21,2 [ℤ3]

2
1,2

[FR3,1,2
1]11,3 [ℤ3]

1
1,3

[FR3,1,2
1]21,3 [ℤ3]

2
1,3

[FR3,1,2
1]12,1 [ℤ3]

1
2,1

[FR3,1,2
1]22,1 [ℤ3]

2
2,1

[FR3,1,2
1]13,1 [ℤ3]

1
3,1

[FR3,1,2
1]23,1 [ℤ3]

2
3,1

[FR4,1,0
1]11,1 [ℤ2 ⨯ ℤ2]

1
1,1

[FR4,1,0
1]21,1 [ℤ2 ⨯ ℤ2]

2
1,1

[FR4,1,0
1]31,1 [ℤ2 ⨯ ℤ2]

3
1,1

[FR4,1,0
1]11,2 [ℤ2 ⨯ ℤ2]

1
1,2

[FR4,1,0
1]21,2 [ℤ2 ⨯ ℤ2]

2
1,2

[FR4,1,0
1]11,3 [ℤ2 ⨯ ℤ2]

1
1,3

[FR4,1,0
1]21,3 [ℤ2 ⨯ ℤ2]

2
1,3

[FR4,1,0
1]11,4 [ℤ2 ⨯ ℤ2]

1
1,4

[FR4,1,0
1]21,4 [ℤ2 ⨯ ℤ2]

2
1,4

[FR4,1,0
1]31,4 [ℤ2 ⨯ ℤ2]

3
1,4

[FR4,1,0
1]12,1 [ℤ2 ⨯ ℤ2]

1
2,1

[FR4,1,0
1]22,1 [ℤ2 ⨯ ℤ2]

2
2,1

[FR4,1,0
1]32,1 [ℤ2 ⨯ ℤ2]

3
2,1

[FR4,1,0
1]12,2 [ℤ2 ⨯ ℤ2]

1
2,2

[FR4,1,0
1]22,2 [ℤ2 ⨯ ℤ2]

2
2,2

[FR4,1,0
1]32,2 [ℤ2 ⨯ ℤ2]

3
2,2

Formal Name Common Name

Continued on next page

149

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR4,1,0
1]42,2 [ℤ2 ⨯ ℤ2]

4
2,2

[FR4,1,0
1]12,3 [ℤ2 ⨯ ℤ2]

1
2,3

[FR4,1,0
1]22,3 [ℤ2 ⨯ ℤ2]

2
2,3

[FR4,1,0
1]32,3 [ℤ2 ⨯ ℤ2]

3
2,3

[FR4,1,0
1]12,4 [ℤ2 ⨯ ℤ2]

1
2,4

[FR4,1,0
1]22,4 [ℤ2 ⨯ ℤ2]

2
2,4

[FR4,1,0
1]32,4 [ℤ2 ⨯ ℤ2]

3
2,4

[FR4,1,0
1]12,5 [ℤ2 ⨯ ℤ2]

1
2,5

[FR4,1,0
1]22,5 [ℤ2 ⨯ ℤ2]

2
2,5

[FR4,1,0
1]32,5 [ℤ2 ⨯ ℤ2]

3
2,5

[FR4,1,0
1]42,5 [ℤ2 ⨯ ℤ2]

4
2,5

[FR4,1,0
1]12,6 [ℤ2 ⨯ ℤ2]

1
2,6

[FR4,1,0
1]22,6 [ℤ2 ⨯ ℤ2]

2
2,6

[FR4,1,0
1]32,6 [ℤ2 ⨯ ℤ2]

3
2,6

[FR4,1,0
1]13,1 [ℤ2 ⨯ ℤ2]

1
3,1

[FR4,1,0
1]23,1 [ℤ2 ⨯ ℤ2]

2
3,1

[FR4,1,0
1]33,1 [ℤ2 ⨯ ℤ2]

3
3,1

[FR4,1,0
1]14,1 [ℤ2 ⨯ ℤ2]

1
4,1

[FR4,1,0
1]24,1 [ℤ2 ⨯ ℤ2]

2
4,1

[FR4,1,0
2]11,1 [SU(2)3]

1
1,1

[FR4,1,0
2]21,1 [SU(2)3]

2
1,1

[FR4,1,0
2]11,2 [SU(2)3]

1
1,2

[FR4,1,0
2]21,2 [SU(2)3]

2
1,2

[FR4,1,0
2]11,3 [SU(2)3]

1
1,3

[FR4,1,0
2]21,3 [SU(2)3]

2
1,3

[FR4,1,0
2]11,4 [SU(2)3]

1
1,4

[FR4,1,0
2]21,4 [SU(2)3]

2
1,4

[FR4,1,0
2]12,1 [SU(2)3]

1
2,1

[FR4,1,0
2]22,1 [SU(2)3]

2
2,1

Formal Name Common Name

Continued on next page

150

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR4,1,0
2]12,2 [SU(2)3]

1
2,2

[FR4,1,0
2]22,2 [SU(2)3]

2
2,2

[FR4,1,0
2]12,3 [SU(2)3]

1
2,3

[FR4,1,0
2]22,3 [SU(2)3]

2
2,3

[FR4,1,0
2]12,4 [SU(2)3]

1
2,4

[FR4,1,0
2]22,4 [SU(2)3]

2
2,4

[FR4,1,0
2]13,1 [SU(2)3]

1
3,1

[FR4,1,0
2]23,1 [SU(2)3]

2
3,1

[FR4,1,0
2]13,2 [SU(2)3]

1
3,2

[FR4,1,0
2]23,2 [SU(2)3]

2
3,2

[FR4,1,0
2]13,3 [SU(2)3]

1
3,3

[FR4,1,0
2]23,3 [SU(2)3]

2
3,3

[FR4,1,0
2]13,4 [SU(2)3]

1
3,4

[FR4,1,0
2]23,4 [SU(2)3]

2
3,4

[FR4,1,0
2]14,1 [SU(2)3]

1
4,1

[FR4,1,0
2]24,1 [SU(2)3]

2
4,1

[FR4,1,0
2]14,2 [SU(2)3]

1
4,2

[FR4,1,0
2]24,2 [SU(2)3]

2
4,2

[FR4,1,0
2]14,3 [SU(2)3]

1
4,3

[FR4,1,0
2]24,3 [SU(2)3]

2
4,3

[FR4,1,0
2]14,4 [SU(2)3]

1
4,4

[FR4,1,0
2]24,4 [SU(2)3]

2
4,4

[FR4,1,0
3]11,1 [Rep(𝐷5)]

1
1,1

[FR4,1,0
3]11,2 [Rep(𝐷5)]

1
1,2

[FR4,1,0
3]11,3 [Rep(𝐷5)]

1
1,3

[FR4,1,0
3]12,1 [Rep(𝐷5)]

1
2,1

[FR4,1,0
3]13,1 [Rep(𝐷5)]

1
3,1

[FR4,1,0
4]11,1 [PSU(2)6]

1
1,1

[FR4,1,0
4]12,1 [PSU(2)6]

1
2,1

Formal Name Common Name

Continued on next page

151

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR4,1,0
5]11,1 [Fib ⨯ Fib]11,1

[FR4,1,0
5]11,2 [Fib ⨯ Fib]11,2

[FR4,1,0
5]11,3 [Fib ⨯ Fib]11,3

[FR4,1,0
5]12,1 [Fib ⨯ Fib]12,1

[FR4,1,0
5]12,2 [Fib ⨯ Fib]12,2

[FR4,1,0
5]12,3 [Fib ⨯ Fib]12,3

[FR4,1,0
5]12,4 [Fib ⨯ Fib]12,4

[FR4,1,0
5]13,1 [Fib ⨯ Fib]13,1

[FR4,1,0
5]13,2 [Fib ⨯ Fib]13,2

[FR4,1,0
5]13,3 [Fib ⨯ Fib]13,3

[FR4,1,0
6]11,1 [PSU(2)7]

1
1,1

[FR4,1,0
6]11,2 [PSU(2)7]

1
1,2

[FR4,1,0
6]12,1 [PSU(2)7]

1
2,1

[FR4,1,0
6]12,2 [PSU(2)7]

1
2,2

[FR4,1,0
6]13,1 [PSU(2)7]

1
3,1

[FR4,1,0
6]13,2 [PSU(2)7]

1
3,2

[FR4,1,2
1]11,1 [ℤ4]

1
1,1

[FR4,1,2
1]21,1 [ℤ4]

2
1,1

[FR4,1,2
1]31,1 [ℤ4]

3
1,1

[FR4,1,2
1]11,2 [ℤ4]

1
1,2

[FR4,1,2
1]21,2 [ℤ4]

2
1,2

[FR4,1,2
1]31,2 [ℤ4]

3
1,2

[FR4,1,2
1]11,3 [ℤ4]

1
1,3

[FR4,1,2
1]21,3 [ℤ4]

2
1,3

[FR4,1,2
1]31,3 [ℤ4]

3
1,3

[FR4,1,2
1]11,4 [ℤ4]

1
1,4

[FR4,1,2
1]21,4 [ℤ4]

2
1,4

[FR4,1,2
1]31,4 [ℤ4]

3
1,4

[FR4,1,2
1]12,1 [ℤ4]

1
2,1

Formal Name Common Name

Continued on next page

152

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR4,1,2
1]22,1 [ℤ4]

2
2,1

[FR4,1,2
1]32,1 [ℤ4]

3
2,1

[FR4,1,2
1]12,2 [ℤ4]

1
2,2

[FR4,1,2
1]22,2 [ℤ4]

2
2,2

[FR4,1,2
1]32,2 [ℤ4]

3
2,2

[FR4,1,2
1]12,3 [ℤ4]

1
2,3

[FR4,1,2
1]22,3 [ℤ4]

2
2,3

[FR4,1,2
1]32,3 [ℤ4]

3
2,3

[FR4,1,2
1]12,4 [ℤ4]

1
2,4

[FR4,1,2
1]22,4 [ℤ4]

2
2,4

[FR4,1,2
1]32,4 [ℤ4]

3
2,4

[FR4,1,2
1]13,1 [ℤ4]

1
3,1

[FR4,1,2
1]23,1 [ℤ4]

2
3,1

[FR4,1,2
1]33,1 [ℤ4]

3
3,1

[FR4,1,2
1]14,1 [ℤ4]

1
4,1

[FR4,1,2
1]24,1 [ℤ4]

2
4,1

[FR4,1,2
1]34,1 [ℤ4]

3
4,1

[FR4,1,2
2]11,1 [TY(ℤ3)]

1
1,1

[FR4,1,2
2]21,1 [TY(ℤ3)]

2
1,1

[FR4,1,2
2]12,1 [TY(ℤ3)]

1
2,1

[FR4,1,2
2]22,1 [TY(ℤ3)]

2
2,1

[FR4,1,2
2]13,1 [TY(ℤ3)]

1
3,1

[FR4,1,2
2]23,1 [TY(ℤ3)]

2
3,1

[FR4,1,2
2]14,1 [TY(ℤ3)]

1
4,1

[FR4,1,2
2]24,1 [TY(ℤ3)]

2
4,1

[FR4,1,2
4]11,1 [Pseudo PSU(2)6]

1
1,1

[FR4,1,2
4]12,1 [Pseudo PSU(2)6]

1
2,1

[FR4,1,2
4]13,1 [Pseudo PSU(2)6]

1
3,1

[FR4,1,2
4]14,1 [Pseudo PSU(2)6]

1
4,1

Formal Name Common Name

Continued on next page

153

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR5,1,0
1]11,1 [Rep(𝐷4)]

1
1,1

[FR5,1,0
1]21,1 [Rep(𝐷4)]

2
1,1

[FR5,1,0
1]11,2 [Rep(𝐷4)]

1
1,2

[FR5,1,0
1]21,2 [Rep(𝐷4)]

2
1,2

[FR5,1,0
1]11,3 [Rep(𝐷4)]

1
1,3

[FR5,1,0
1]21,3 [Rep(𝐷4)]

2
1,3

[FR5,1,0
1]11,4 [Rep(𝐷4)]

1
1,4

[FR5,1,0
1]21,4 [Rep(𝐷4)]

2
1,4

[FR5,1,0
1]12,1 [Rep(𝐷4)]

1
2,1

[FR5,1,0
1]22,1 [Rep(𝐷4)]

2
2,1

[FR5,1,0
1]12,2 [Rep(𝐷4)]

1
2,2

[FR5,1,0
1]22,2 [Rep(𝐷4)]

2
2,2

[FR5,1,0
1]12,3 [Rep(𝐷4)]

1
2,3

[FR5,1,0
1]22,3 [Rep(𝐷4)]

2
2,3

[FR5,1,0
1]12,4 [Rep(𝐷4)]

1
2,4

[FR5,1,0
1]22,4 [Rep(𝐷4)]

2
2,4

[FR5,1,0
1]13,1 [Rep(𝐷4)]

1
3,1

[FR5,1,0
1]23,1 [Rep(𝐷4)]

2
3,1

[FR5,1,0
1]13,2 [Rep(𝐷4)]

1
3,2

[FR5,1,0
1]23,2 [Rep(𝐷4)]

2
3,2

[FR5,1,0
1]13,3 [Rep(𝐷4)]

1
3,3

[FR5,1,0
1]23,3 [Rep(𝐷4)]

2
3,3

[FR5,1,0
1]13,4 [Rep(𝐷4)]

1
3,4

[FR5,1,0
1]23,4 [Rep(𝐷4)]

2
3,4

[FR5,1,0
1]13,5 [Rep(𝐷4)]

1
3,5

[FR5,1,0
1]23,5 [Rep(𝐷4)]

2
3,5

[FR5,1,0
1]13,6 [Rep(𝐷4)]

1
3,6

[FR5,1,0
1]23,6 [Rep(𝐷4)]

2
3,6

[FR5,1,0
1]14,1 [Rep(𝐷4)]

1
4,1

Formal Name Common Name

Continued on next page

154

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR5,1,0
1]24,1 [Rep(𝐷4)]

2
4,1

[FR5,1,0
1]14,2 [Rep(𝐷4)]

1
4,2

[FR5,1,0
1]24,2 [Rep(𝐷4)]

2
4,2

[FR5,1,0
1]14,3 [Rep(𝐷4)]

1
4,3

[FR5,1,0
1]24,3 [Rep(𝐷4)]

2
4,3

[FR5,1,0
1]14,4 [Rep(𝐷4)]

1
4,4

[FR5,1,0
1]24,4 [Rep(𝐷4)]

2
4,4

[FR5,1,0
1]14,5 [Rep(𝐷4)]

1
4,5

[FR5,1,0
1]24,5 [Rep(𝐷4)]

2
4,5

[FR5,1,0
1]14,6 [Rep(𝐷4)]

1
4,6

[FR5,1,0
1]24,6 [Rep(𝐷4)]

2
4,6

[FR5,1,0
3]11,1 [SU(2)4]

1
1,1

[FR5,1,0
3]21,1 [SU(2)4]

2
1,1

[FR5,1,0
3]11,2 [SU(2)4]

1
1,2

[FR5,1,0
3]21,2 [SU(2)4]

2
1,2

[FR5,1,0
3]12,1 [SU(2)4]

1
2,1

[FR5,1,0
3]22,1 [SU(2)4]

2
2,1

[FR5,1,0
3]12,2 [SU(2)4]

1
2,2

[FR5,1,0
3]22,2 [SU(2)4]

2
2,2

[FR5,1,0
4]11,1 [Rep(𝐷7)]

1
1,1

[FR5,1,0
4]11,2 [Rep(𝐷7)]

1
1,2

[FR5,1,0
4]11,3 [Rep(𝐷7)]

1
1,3

[FR5,1,0
4]12,1 [Rep(𝐷7)]

1
2,1

[FR5,1,0
4]13,1 [Rep(𝐷7)]

1
3,1

[FR5,1,0
4]14,1 [Rep(𝐷7)]

1
4,1

[FR5,1,0
4]15,1 [Rep(𝐷7)]

1
5,1

[FR5,1,0
4]16,1 [Rep(𝐷7)]

1
6,1

[FR5,1,0
4]17,1 [Rep(𝐷7)]

1
7,1

Formal Name Common Name

Continued on next page

155

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR5,1,0
6]11,1 [Rep(𝑆4)]

1
1,1

[FR5,1,0
6]12,1 [Rep(𝑆4)]

1
2,1

[FR5,1,0
7]11,1 [PSU(2)8]

1
1,1

[FR5,1,0
7]11,2 [PSU(2)8]

1
1,2

[FR5,1,0
7]12,1 [PSU(2)8]

1
2,1

[FR5,1,0
7]12,2 [PSU(2)8]

1
2,2

[FR5,1,0
10]11,1 [PSU(2)9]

1
1,1

[FR5,1,0
10]11,2 [PSU(2)9]

1
1,2

[FR5,1,0
10]12,1 [PSU(2)9]

1
2,1

[FR5,1,0
10]12,2 [PSU(2)9]

1
2,2

[FR5,1,0
10]13,1 [PSU(2)9]

1
3,1

[FR5,1,0
10]13,2 [PSU(2)9]

1
3,2

[FR5,1,0
10]14,1 [PSU(2)9]

1
4,1

[FR5,1,0
10]14,2 [PSU(2)9]

1
4,2

[FR5,1,0
10]15,1 [PSU(2)9]

1
5,1

[FR5,1,0
10]15,2 [PSU(2)9]

1
5,2

[FR5,1,2
1]11,1 [TY(ℤ4)]

1
1,1

[FR5,1,2
1]21,1 [TY(ℤ4)]

2
1,1

[FR5,1,2
1]12,1 [TY(ℤ4)]

1
2,1

[FR5,1,2
1]22,1 [TY(ℤ4)]

2
2,1

[FR5,1,2
1]13,1 [TY(ℤ4)]

1
3,1

[FR5,1,2
1]23,1 [TY(ℤ4)]

2
3,1

[FR5,1,2
1]14,1 [TY(ℤ4)]

1
4,1

[FR5,1,2
1]24,1 [TY(ℤ4)]

2
4,1

[FR5,1,2
3]11,1 [Pseudo SU(2)4]

1
1,1

[FR5,1,2
3]21,1 [Pseudo SU(2)4]

2
1,1

[FR5,1,2
3]12,1 [Pseudo SU(2)4]

1
2,1

[FR5,1,2
3]22,1 [Pseudo SU(2)4]

2
2,1

Formal Name Common Name

Continued on next page

156

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR5,1,2
4]11,1 [Pseudo Rep(𝑆4)]

1
1,1

[FR5,1,2
4]12,1 [Pseudo Rep(𝑆4)]

1
2,1

[FR5,1,4
1]11,1 [ℤ5]

1
1,1

[FR5,1,4
1]21,1 [ℤ5]

2
1,1

[FR5,1,4
1]31,1 [ℤ5]

3
1,1

[FR5,1,4
1]11,2 [ℤ5]

1
1,2

[FR5,1,4
1]21,2 [ℤ5]

2
1,2

[FR5,1,4
1]31,2 [ℤ5]

3
1,2

[FR5,1,4
1]11,3 [ℤ5]

1
1,3

[FR5,1,4
1]21,3 [ℤ5]

2
1,3

[FR5,1,4
1]12,1 [ℤ5]

1
2,1

[FR5,1,4
1]22,1 [ℤ5]

2
2,1

[FR5,1,4
1]32,1 [ℤ5]

3
2,1

[FR5,1,4
1]13,1 [ℤ5]

1
3,1

[FR5,1,4
1]23,1 [ℤ5]

2
3,1

[FR5,1,4
1]33,1 [ℤ5]

3
3,1

[FR6,1,0
1]11,1 [ℤ2 ⨯ Ising]11,1

[FR6,1,0
1]21,1 [ℤ2 ⨯ Ising]21,1

[FR6,1,0
1]31,1 [ℤ2 ⨯ Ising]31,1

[FR6,1,0
1]41,1 [ℤ2 ⨯ Ising]41,1

[FR6,1,0
1]11,2 [ℤ2 ⨯ Ising]11,2

[FR6,1,0
1]21,2 [ℤ2 ⨯ Ising]21,2

[FR6,1,0
1]31,2 [ℤ2 ⨯ Ising]31,2

[FR6,1,0
1]41,2 [ℤ2 ⨯ Ising]41,2

[FR6,1,0
1]11,3 [ℤ2 ⨯ Ising]11,3

[FR6,1,0
1]21,3 [ℤ2 ⨯ Ising]21,3

[FR6,1,0
1]31,3 [ℤ2 ⨯ Ising]31,3

[FR6,1,0
1]41,3 [ℤ2 ⨯ Ising]41,3

[FR6,1,0
1]11,4 [ℤ2 ⨯ Ising]11,4

Formal Name Common Name

Continued on next page

157

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
1]21,4 [ℤ2 ⨯ Ising]21,4

[FR6,1,0
1]31,4 [ℤ2 ⨯ Ising]31,4

[FR6,1,0
1]41,4 [ℤ2 ⨯ Ising]41,4

[FR6,1,0
1]11,5 [ℤ2 ⨯ Ising]11,5

[FR6,1,0
1]21,5 [ℤ2 ⨯ Ising]21,5

[FR6,1,0
1]31,5 [ℤ2 ⨯ Ising]31,5

[FR6,1,0
1]41,5 [ℤ2 ⨯ Ising]41,5

[FR6,1,0
1]11,6 [ℤ2 ⨯ Ising]11,6

[FR6,1,0
1]21,6 [ℤ2 ⨯ Ising]21,6

[FR6,1,0
1]31,6 [ℤ2 ⨯ Ising]31,6

[FR6,1,0
1]41,6 [ℤ2 ⨯ Ising]41,6

[FR6,1,0
1]11,7 [ℤ2 ⨯ Ising]11,7

[FR6,1,0
1]21,7 [ℤ2 ⨯ Ising]21,7

[FR6,1,0
1]31,7 [ℤ2 ⨯ Ising]31,7

[FR6,1,0
1]41,7 [ℤ2 ⨯ Ising]41,7

[FR6,1,0
1]11,8 [ℤ2 ⨯ Ising]11,8

[FR6,1,0
1]21,8 [ℤ2 ⨯ Ising]21,8

[FR6,1,0
1]31,8 [ℤ2 ⨯ Ising]31,8

[FR6,1,0
1]41,8 [ℤ2 ⨯ Ising]41,8

[FR6,1,0
1]12,1 [ℤ2 ⨯ Ising]12,1

[FR6,1,0
1]22,1 [ℤ2 ⨯ Ising]22,1

[FR6,1,0
1]32,1 [ℤ2 ⨯ Ising]32,1

[FR6,1,0
1]42,1 [ℤ2 ⨯ Ising]42,1

[FR6,1,0
1]12,2 [ℤ2 ⨯ Ising]12,2

[FR6,1,0
1]22,2 [ℤ2 ⨯ Ising]22,2

[FR6,1,0
1]32,2 [ℤ2 ⨯ Ising]32,2

[FR6,1,0
1]42,2 [ℤ2 ⨯ Ising]42,2

[FR6,1,0
1]12,3 [ℤ2 ⨯ Ising]12,3

[FR6,1,0
1]22,3 [ℤ2 ⨯ Ising]22,3

Formal Name Common Name

Continued on next page

158

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
1]32,3 [ℤ2 ⨯ Ising]32,3

[FR6,1,0
1]12,4 [ℤ2 ⨯ Ising]12,4

[FR6,1,0
1]22,4 [ℤ2 ⨯ Ising]22,4

[FR6,1,0
1]32,4 [ℤ2 ⨯ Ising]32,4

[FR6,1,0
1]12,5 [ℤ2 ⨯ Ising]12,5

[FR6,1,0
1]22,5 [ℤ2 ⨯ Ising]22,5

[FR6,1,0
1]32,5 [ℤ2 ⨯ Ising]32,5

[FR6,1,0
1]12,6 [ℤ2 ⨯ Ising]12,6

[FR6,1,0
1]22,6 [ℤ2 ⨯ Ising]22,6

[FR6,1,0
1]32,6 [ℤ2 ⨯ Ising]32,6

[FR6,1,0
1]13,1 [ℤ2 ⨯ Ising]13,1

[FR6,1,0
1]23,1 [ℤ2 ⨯ Ising]23,1

[FR6,1,0
1]33,1 [ℤ2 ⨯ Ising]33,1

[FR6,1,0
1]43,1 [ℤ2 ⨯ Ising]43,1

[FR6,1,0
1]13,2 [ℤ2 ⨯ Ising]13,2

[FR6,1,0
1]23,2 [ℤ2 ⨯ Ising]23,2

[FR6,1,0
1]33,2 [ℤ2 ⨯ Ising]33,2

[FR6,1,0
1]43,2 [ℤ2 ⨯ Ising]43,2

[FR6,1,0
1]13,3 [ℤ2 ⨯ Ising]13,3

[FR6,1,0
1]23,3 [ℤ2 ⨯ Ising]23,3

[FR6,1,0
1]33,3 [ℤ2 ⨯ Ising]33,3

[FR6,1,0
1]13,4 [ℤ2 ⨯ Ising]13,4

[FR6,1,0
1]23,4 [ℤ2 ⨯ Ising]23,4

[FR6,1,0
1]33,4 [ℤ2 ⨯ Ising]33,4

[FR6,1,0
1]13,5 [ℤ2 ⨯ Ising]13,5

[FR6,1,0
1]23,5 [ℤ2 ⨯ Ising]23,5

[FR6,1,0
1]33,5 [ℤ2 ⨯ Ising]33,5

[FR6,1,0
1]13,6 [ℤ2 ⨯ Ising]13,6

[FR6,1,0
1]23,6 [ℤ2 ⨯ Ising]23,6

Formal Name Common Name

Continued on next page

159

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
1]33,6 [ℤ2 ⨯ Ising]33,6

[FR6,1,0
1]14,1 [ℤ2 ⨯ Ising]14,1

[FR6,1,0
1]24,1 [ℤ2 ⨯ Ising]24,1

[FR6,1,0
1]34,1 [ℤ2 ⨯ Ising]34,1

[FR6,1,0
1]44,1 [ℤ2 ⨯ Ising]44,1

[FR6,1,0
1]15,1 [ℤ2 ⨯ Ising]15,1

[FR6,1,0
1]25,1 [ℤ2 ⨯ Ising]25,1

[FR6,1,0
1]35,1 [ℤ2 ⨯ Ising]35,1

[FR6,1,0
1]16,1 [ℤ2 ⨯ Ising]16,1

[FR6,1,0
1]26,1 [ℤ2 ⨯ Ising]26,1

[FR6,1,0
1]36,1 [ℤ2 ⨯ Ising]36,1

[FR6,1,0
2]11,1 [ℤ2 ⨯ Rep(𝐷3)]

1
1,1

[FR6,1,0
2]21,1 [ℤ2 ⨯ Rep(𝐷3)]

2
1,1

[FR6,1,0
2]11,2 [ℤ2 ⨯ Rep(𝐷3)]

1
1,2

[FR6,1,0
2]21,2 [ℤ2 ⨯ Rep(𝐷3)]

2
1,2

[FR6,1,0
2]11,3 [ℤ2 ⨯ Rep(𝐷3)]

1
1,3

[FR6,1,0
2]21,3 [ℤ2 ⨯ Rep(𝐷3)]

2
1,3

[FR6,1,0
2]11,4 [ℤ2 ⨯ Rep(𝐷3)]

1
1,4

[FR6,1,0
2]21,4 [ℤ2 ⨯ Rep(𝐷3)]

2
1,4

[FR6,1,0
2]11,5 [ℤ2 ⨯ Rep(𝐷3)]

1
1,5

[FR6,1,0
2]21,5 [ℤ2 ⨯ Rep(𝐷3)]

2
1,5

[FR6,1,0
2]11,6 [ℤ2 ⨯ Rep(𝐷3)]

1
1,6

[FR6,1,0
2]21,6 [ℤ2 ⨯ Rep(𝐷3)]

2
1,6

[FR6,1,0
2]12,1 [ℤ2 ⨯ Rep(𝐷3)]

1
2,1

[FR6,1,0
2]22,1 [ℤ2 ⨯ Rep(𝐷3)]

2
2,1

[FR6,1,0
2]12,2 [ℤ2 ⨯ Rep(𝐷3)]

1
2,2

[FR6,1,0
2]22,2 [ℤ2 ⨯ Rep(𝐷3)]

2
2,2

[FR6,1,0
2]12,3 [ℤ2 ⨯ Rep(𝐷3)]

1
2,3

[FR6,1,0
2]22,3 [ℤ2 ⨯ Rep(𝐷3)]

2
2,3

Formal Name Common Name

Continued on next page

160

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
2]12,4 [ℤ2 ⨯ Rep(𝐷3)]

1
2,4

[FR6,1,0
2]22,4 [ℤ2 ⨯ Rep(𝐷3)]

2
2,4

[FR6,1,0
2]12,5 [ℤ2 ⨯ Rep(𝐷3)]

1
2,5

[FR6,1,0
2]22,5 [ℤ2 ⨯ Rep(𝐷3)]

2
2,5

[FR6,1,0
2]12,6 [ℤ2 ⨯ Rep(𝐷3)]

1
2,6

[FR6,1,0
2]22,6 [ℤ2 ⨯ Rep(𝐷3)]

2
2,6

[FR6,1,0
2]13,1 [ℤ2 ⨯ Rep(𝐷3)]

1
3,1

[FR6,1,0
2]23,1 [ℤ2 ⨯ Rep(𝐷3)]

2
3,1

[FR6,1,0
2]14,1 [ℤ2 ⨯ Rep(𝐷3)]

1
4,1

[FR6,1,0
2]24,1 [ℤ2 ⨯ Rep(𝐷3)]

2
4,1

[FR6,1,0
2]15,1 [ℤ2 ⨯ Rep(𝐷3)]

1
5,1

[FR6,1,0
2]25,1 [ℤ2 ⨯ Rep(𝐷3)]

2
5,1

[FR6,1,0
2]16,1 [ℤ2 ⨯ Rep(𝐷3)]

1
6,1

[FR6,1,0
2]26,1 [ℤ2 ⨯ Rep(𝐷3)]

2
6,1

[FR6,1,0
4]11,1 [TriCritIsing]11,1

[FR6,1,0
4]21,1 [TriCritIsing]21,1

[FR6,1,0
4]11,2 [TriCritIsing]11,2

[FR6,1,0
4]21,2 [TriCritIsing]21,2

[FR6,1,0
4]11,3 [TriCritIsing]11,3

[FR6,1,0
4]21,3 [TriCritIsing]21,3

[FR6,1,0
4]11,4 [TriCritIsing]11,4

[FR6,1,0
4]21,4 [TriCritIsing]21,4

[FR6,1,0
4]11,5 [TriCritIsing]11,5

[FR6,1,0
4]21,5 [TriCritIsing]21,5

[FR6,1,0
4]11,6 [TriCritIsing]11,6

[FR6,1,0
4]21,6 [TriCritIsing]21,6

[FR6,1,0
4]11,7 [TriCritIsing]11,7

[FR6,1,0
4]21,7 [TriCritIsing]21,7

[FR6,1,0
4]11,8 [TriCritIsing]11,8

Formal Name Common Name

Continued on next page

161

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
4]21,8 [TriCritIsing]21,8

[FR6,1,0
4]12,1 [TriCritIsing]12,1

[FR6,1,0
4]22,1 [TriCritIsing]22,1

[FR6,1,0
4]12,2 [TriCritIsing]12,2

[FR6,1,0
4]22,2 [TriCritIsing]22,2

[FR6,1,0
4]12,3 [TriCritIsing]12,3

[FR6,1,0
4]22,3 [TriCritIsing]22,3

[FR6,1,0
4]12,4 [TriCritIsing]12,4

[FR6,1,0
4]22,4 [TriCritIsing]22,4

[FR6,1,0
4]12,5 [TriCritIsing]12,5

[FR6,1,0
4]22,5 [TriCritIsing]22,5

[FR6,1,0
4]12,6 [TriCritIsing]12,6

[FR6,1,0
4]22,6 [TriCritIsing]22,6

[FR6,1,0
4]12,7 [TriCritIsing]12,7

[FR6,1,0
4]22,7 [TriCritIsing]22,7

[FR6,1,0
4]12,8 [TriCritIsing]12,8

[FR6,1,0
4]22,8 [TriCritIsing]22,8

[FR6,1,0
4]13,1 [TriCritIsing]13,1

[FR6,1,0
4]23,1 [TriCritIsing]23,1

[FR6,1,0
4]13,2 [TriCritIsing]13,2

[FR6,1,0
4]23,2 [TriCritIsing]23,2

[FR6,1,0
4]13,3 [TriCritIsing]13,3

[FR6,1,0
4]23,3 [TriCritIsing]23,3

[FR6,1,0
4]13,4 [TriCritIsing]13,4

[FR6,1,0
4]23,4 [TriCritIsing]23,4

[FR6,1,0
4]13,5 [TriCritIsing]13,5

[FR6,1,0
4]23,5 [TriCritIsing]23,5

[FR6,1,0
4]13,6 [TriCritIsing]13,6

[FR6,1,0
4]23,6 [TriCritIsing]23,6

Formal Name Common Name

Continued on next page

162

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
4]13,7 [TriCritIsing]13,7

[FR6,1,0
4]23,7 [TriCritIsing]23,7

[FR6,1,0
4]13,8 [TriCritIsing]13,8

[FR6,1,0
4]23,8 [TriCritIsing]23,8

[FR6,1,0
4]14,1 [TriCritIsing]14,1

[FR6,1,0
4]24,1 [TriCritIsing]24,1

[FR6,1,0
4]14,2 [TriCritIsing]14,2

[FR6,1,0
4]24,2 [TriCritIsing]24,2

[FR6,1,0
4]14,3 [TriCritIsing]14,3

[FR6,1,0
4]24,3 [TriCritIsing]24,3

[FR6,1,0
4]14,4 [TriCritIsing]14,4

[FR6,1,0
4]24,4 [TriCritIsing]24,4

[FR6,1,0
4]14,5 [TriCritIsing]14,5

[FR6,1,0
4]24,5 [TriCritIsing]24,5

[FR6,1,0
4]14,6 [TriCritIsing]14,6

[FR6,1,0
4]24,6 [TriCritIsing]24,6

[FR6,1,0
4]14,7 [TriCritIsing]14,7

[FR6,1,0
4]24,7 [TriCritIsing]24,7

[FR6,1,0
4]14,8 [TriCritIsing]14,8

[FR6,1,0
4]24,8 [TriCritIsing]24,8

[FR6,1,0
5]11,1 [Fib ⨯ Rep(𝐷3)]

1
1,1

[FR6,1,0
5]11,2 [Fib ⨯ Rep(𝐷3)]

1
1,2

[FR6,1,0
5]11,3 [Fib ⨯ Rep(𝐷3)]

1
1,3

[FR6,1,0
5]11,4 [Fib ⨯ Rep(𝐷3)]

1
1,4

[FR6,1,0
5]11,5 [Fib ⨯ Rep(𝐷3)]

1
1,5

[FR6,1,0
5]11,6 [Fib ⨯ Rep(𝐷3)]

1
1,6

[FR6,1,0
5]12,1 [Fib ⨯ Rep(𝐷3)]

1
2,1

[FR6,1,0
5]12,2 [Fib ⨯ Rep(𝐷3)]

1
2,2

[FR6,1,0
5]12,3 [Fib ⨯ Rep(𝐷3)]

1
2,3

Formal Name Common Name

Continued on next page

163

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
5]12,4 [Fib ⨯ Rep(𝐷3)]

1
2,4

[FR6,1,0
5]12,5 [Fib ⨯ Rep(𝐷3)]

1
2,5

[FR6,1,0
5]12,6 [Fib ⨯ Rep(𝐷3)]

1
2,6

[FR6,1,0
6]11,1 [SU(2)5]

1
1,1

[FR6,1,0
6]21,1 [SU(2)5]

2
1,1

[FR6,1,0
6]11,2 [SU(2)5]

1
1,2

[FR6,1,0
6]21,2 [SU(2)5]

2
1,2

[FR6,1,0
6]11,3 [SU(2)5]

1
1,3

[FR6,1,0
6]21,3 [SU(2)5]

2
1,3

[FR6,1,0
6]11,4 [SU(2)5]

1
1,4

[FR6,1,0
6]21,4 [SU(2)5]

2
1,4

[FR6,1,0
6]12,1 [SU(2)5]

1
2,1

[FR6,1,0
6]22,1 [SU(2)5]

2
2,1

[FR6,1,0
6]12,2 [SU(2)5]

1
2,2

[FR6,1,0
6]22,2 [SU(2)5]

2
2,2

[FR6,1,0
6]12,3 [SU(2)5]

1
2,3

[FR6,1,0
6]22,3 [SU(2)5]

2
2,3

[FR6,1,0
6]12,4 [SU(2)5]

1
2,4

[FR6,1,0
6]22,4 [SU(2)5]

2
2,4

[FR6,1,0
6]13,1 [SU(2)5]

1
3,1

[FR6,1,0
6]23,1 [SU(2)5]

2
3,1

[FR6,1,0
6]13,2 [SU(2)5]

1
3,2

[FR6,1,0
6]23,2 [SU(2)5]

2
3,2

[FR6,1,0
6]13,3 [SU(2)5]

1
3,3

[FR6,1,0
6]23,3 [SU(2)5]

2
3,3

[FR6,1,0
6]13,4 [SU(2)5]

1
3,4

[FR6,1,0
6]23,4 [SU(2)5]

2
3,4

[FR6,1,0
6]14,1 [SU(2)5]

1
4,1

[FR6,1,0
6]24,1 [SU(2)5]

2
4,1

Formal Name Common Name

Continued on next page

164

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
6]14,2 [SU(2)5]

1
4,2

[FR6,1,0
6]24,2 [SU(2)5]

2
4,2

[FR6,1,0
6]14,3 [SU(2)5]

1
4,3

[FR6,1,0
6]24,3 [SU(2)5]

2
4,3

[FR6,1,0
6]14,4 [SU(2)5]

1
4,4

[FR6,1,0
6]24,4 [SU(2)5]

2
4,4

[FR6,1,0
6]15,1 [SU(2)5]

1
5,1

[FR6,1,0
6]25,1 [SU(2)5]

2
5,1

[FR6,1,0
6]15,2 [SU(2)5]

1
5,2

[FR6,1,0
6]25,2 [SU(2)5]

2
5,2

[FR6,1,0
6]15,3 [SU(2)5]

1
5,3

[FR6,1,0
6]25,3 [SU(2)5]

2
5,3

[FR6,1,0
6]15,4 [SU(2)5]

1
5,4

[FR6,1,0
6]25,4 [SU(2)5]

2
5,4

[FR6,1,0
6]16,1 [SU(2)5]

1
6,1

[FR6,1,0
6]26,1 [SU(2)5]

2
6,1

[FR6,1,0
6]16,2 [SU(2)5]

1
6,2

[FR6,1,0
6]26,2 [SU(2)5]

2
6,2

[FR6,1,0
6]16,3 [SU(2)5]

1
6,3

[FR6,1,0
6]26,3 [SU(2)5]

2
6,3

[FR6,1,0
6]16,4 [SU(2)5]

1
6,4

[FR6,1,0
6]26,4 [SU(2)5]

2
6,4

[FR6,1,0
7]11,1 [Rep(ℤ3 ⋊ 𝐷3)]

1
1,1

[FR6,1,0
7]11,2 [Rep(ℤ3 ⋊ 𝐷3)]

1
1,2

[FR6,1,0
7]11,3 [Rep(ℤ3 ⋊ 𝐷3)]

1
1,3

[FR6,1,0
7]11,4 [Rep(ℤ3 ⋊ 𝐷3)]

1
1,4

[FR6,1,0
7]11,5 [Rep(ℤ3 ⋊ 𝐷3)]

1
1,5

[FR6,1,0
7]12,1 [Rep(ℤ3 ⋊ 𝐷3)]

1
2,1

[FR6,1,0
7]13,1 [Rep(ℤ3 ⋊ 𝐷3)]

1
3,1

Formal Name Common Name

Continued on next page

165

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
7]14,1 [Rep(ℤ3 ⋊ 𝐷3)]

1
4,1

[FR6,1,0
7]15,1 [Rep(ℤ3 ⋊ 𝐷3)]

1
5,1

[FR6,1,0
8]11,1 [Rep(𝐷9)]

1
1,1

[FR6,1,0
8]11,2 [Rep(𝐷9)]

1
1,2

[FR6,1,0
8]11,3 [Rep(𝐷9)]

1
1,3

[FR6,1,0
8]11,4 [Rep(𝐷9)]

1
1,4

[FR6,1,0
8]11,5 [Rep(𝐷9)]

1
1,5

[FR6,1,0
8]12,1 [Rep(𝐷9)]

1
2,1

[FR6,1,0
8]13,1 [Rep(𝐷9)]

1
3,1

[FR6,1,0
8]14,1 [Rep(𝐷9)]

1
4,1

[FR6,1,0
8]15,1 [Rep(𝐷9)]

1
5,1

[FR6,1,0
9]11,1 [SO(5)2]

1
1,1

[FR6,1,0
9]21,1 [SO(5)2]

2
1,1

[FR6,1,0
9]12,1 [SO(5)2]

1
2,1

[FR6,1,0
9]22,1 [SO(5)2]

2
2,1

[FR6,1,0
9]13,1 [SO(5)2]

1
3,1

[FR6,1,0
9]23,1 [SO(5)2]

2
3,1

[FR6,1,0
9]14,1 [SO(5)2]

1
4,1

[FR6,1,0
9]24,1 [SO(5)2]

2
4,1

[FR6,1,0
14]11,1 [Fib ⨯ PSU(2)5]

1
1,1

[FR6,1,0
14]11,2 [Fib ⨯ PSU(2)5]

1
1,2

[FR6,1,0
14]11,3 [Fib ⨯ PSU(2)5]

1
1,3

[FR6,1,0
14]11,4 [Fib ⨯ PSU(2)5]

1
1,4

[FR6,1,0
14]12,1 [Fib ⨯ PSU(2)5]

1
2,1

[FR6,1,0
14]12,2 [Fib ⨯ PSU(2)5]

1
2,2

[FR6,1,0
14]12,3 [Fib ⨯ PSU(2)5]

1
2,3

[FR6,1,0
14]12,4 [Fib ⨯ PSU(2)5]

1
2,4

[FR6,1,0
14]13,1 [Fib ⨯ PSU(2)5]

1
3,1

Formal Name Common Name

Continued on next page

166

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
14]13,2 [Fib ⨯ PSU(2)5]

1
3,2

[FR6,1,0
14]13,3 [Fib ⨯ PSU(2)5]

1
3,3

[FR6,1,0
14]13,4 [Fib ⨯ PSU(2)5]

1
3,4

[FR6,1,0
14]14,1 [Fib ⨯ PSU(2)5]

1
4,1

[FR6,1,0
14]14,2 [Fib ⨯ PSU(2)5]

1
4,2

[FR6,1,0
14]14,3 [Fib ⨯ PSU(2)5]

1
4,3

[FR6,1,0
14]14,4 [Fib ⨯ PSU(2)5]

1
4,4

[FR6,1,0
14]15,1 [Fib ⨯ PSU(2)5]

1
5,1

[FR6,1,0
14]15,2 [Fib ⨯ PSU(2)5]

1
5,2

[FR6,1,0
14]15,3 [Fib ⨯ PSU(2)5]

1
5,3

[FR6,1,0
14]15,4 [Fib ⨯ PSU(2)5]

1
5,4

[FR6,1,0
14]16,1 [Fib ⨯ PSU(2)5]

1
6,1

[FR6,1,0
14]16,2 [Fib ⨯ PSU(2)5]

1
6,2

[FR6,1,0
14]16,3 [Fib ⨯ PSU(2)5]

1
6,3

[FR6,1,0
14]16,4 [Fib ⨯ PSU(2)5]

1
6,4

[FR6,1,0
16]11,1 [PSU(2)10]

1
1,1

[FR6,1,0
16]11,2 [PSU(2)10]

1
1,2

[FR6,1,0
16]12,1 [PSU(2)10]

1
2,1

[FR6,1,0
16]12,2 [PSU(2)10]

1
2,2

[FR6,1,0
18]11,1 [PSU(2)11]

1
1,1

[FR6,1,0
18]11,2 [PSU(2)11]

1
1,2

[FR6,1,0
18]12,1 [PSU(2)11]

1
2,1

[FR6,1,0
18]12,2 [PSU(2)11]

1
2,2

[FR6,1,0
18]13,1 [PSU(2)11]

1
3,1

[FR6,1,0
18]13,2 [PSU(2)11]

1
3,2

[FR6,1,0
18]14,1 [PSU(2)11]

1
4,1

[FR6,1,0
18]14,2 [PSU(2)11]

1
4,2

[FR6,1,0
18]15,1 [PSU(2)11]

1
5,1

Formal Name Common Name

Continued on next page

167

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,0
18]15,2 [PSU(2)11]

1
5,2

[FR6,1,0
18]16,1 [PSU(2)11]

1
6,1

[FR6,1,0
18]16,2 [PSU(2)11]

1
6,2

[FR6,1,2
1]11,1 [𝐷3]

1
1,1

[FR6,1,2
1]21,1 [𝐷3]

2
1,1

[FR6,1,2
1]12,1 [𝐷3]

1
2,1

[FR6,1,2
1]22,1 [𝐷3]

2
2,1

[FR6,1,2
1]13,1 [𝐷3]

1
3,1

[FR6,1,2
1]23,1 [𝐷3]

2
3,1

[FR6,1,2
1]14,1 [𝐷3]

1
4,1

[FR6,1,2
1]24,1 [𝐷3]

2
4,1

[FR6,1,2
1]15,1 [𝐷3]

1
5,1

[FR6,1,2
1]25,1 [𝐷3]

2
5,1

[FR6,1,2
1]16,1 [𝐷3]

1
6,1

[FR6,1,2
1]26,1 [𝐷3]

2
6,1

[FR6,1,2
2]11,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

1
1,1

[FR6,1,2
2]21,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

2
1,1

[FR6,1,2
2]31,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

3
1,1

[FR6,1,2
2]12,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

1
2,1

[FR6,1,2
2]22,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

2
2,1

[FR6,1,2
2]32,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

3
2,1

[FR6,1,2
2]13,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

1
3,1

[FR6,1,2
2]23,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

2
3,1

[FR6,1,2
2]33,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

3
3,1

[FR6,1,2
2]43,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

4
3,1

[FR6,1,2
2]14,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

1
4,1

[FR6,1,2
2]24,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

2
4,1

[FR6,1,2
2]34,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

3
4,1

Formal Name Common Name

Continued on next page

168

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,2
2]15,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

1
5,1

[FR6,1,2
2]25,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

2
5,1

[FR6,1,2
2]35,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

3
5,1

[FR6,1,2
2]16,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

1
6,1

[FR6,1,2
2]26,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

2
6,1

[FR6,1,2
2]36,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

3
6,1

[FR6,1,2
2]46,1 [[ℤ2 ⊴ ℤ4]

Id
1|0]

4
6,1

[FR6,1,2
3]11,1 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,1

[FR6,1,2
3]21,1 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,1

[FR6,1,2
3]31,1 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,1

[FR6,1,2
3]11,2 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,2

[FR6,1,2
3]21,2 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,2

[FR6,1,2
3]31,2 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,2

[FR6,1,2
3]11,3 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,3

[FR6,1,2
3]21,3 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,3

[FR6,1,2
3]31,3 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,3

[FR6,1,2
3]11,4 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,4

[FR6,1,2
3]21,4 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,4

[FR6,1,2
3]31,4 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,4

[FR6,1,2
3]11,5 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,5

[FR6,1,2
3]21,5 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,5

[FR6,1,2
3]31,5 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,5

[FR6,1,2
3]11,6 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,6

[FR6,1,2
3]21,6 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,6

[FR6,1,2
3]31,6 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,6

[FR6,1,2
3]11,7 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,7

[FR6,1,2
3]21,7 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,7

[FR6,1,2
3]31,7 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,7

Formal Name Common Name

Continued on next page

169

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,2
3]11,8 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
1,8

[FR6,1,2
3]21,8 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
1,8

[FR6,1,2
3]31,8 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
1,8

[FR6,1,2
3]12,1 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

1
2,1

[FR6,1,2
3]22,1 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

2
2,1

[FR6,1,2
3]32,1 [[ℤ2 ⊴ ℤ2 ⨯ ℤ2]

Id
3|0]

3
2,1

[FR6,1,2
4]11,1 [Rep(Dic12)]

1
1,1

[FR6,1,2
4]21,1 [Rep(Dic12)]

2
1,1

[FR6,1,2
4]11,2 [Rep(Dic12)]

1
1,2

[FR6,1,2
4]21,2 [Rep(Dic12)]

2
1,2

[FR6,1,2
4]11,3 [Rep(Dic12)]

1
1,3

[FR6,1,2
4]21,3 [Rep(Dic12)]

2
1,3

[FR6,1,2
4]11,4 [Rep(Dic12)]

1
1,4

[FR6,1,2
4]21,4 [Rep(Dic12)]

2
1,4

[FR6,1,2
4]11,5 [Rep(Dic12)]

1
1,5

[FR6,1,2
4]21,5 [Rep(Dic12)]

2
1,5

[FR6,1,2
4]11,6 [Rep(Dic12)]

1
1,6

[FR6,1,2
4]21,6 [Rep(Dic12)]

2
1,6

[FR6,1,2
4]12,1 [Rep(Dic12)]

1
2,1

[FR6,1,2
4]22,1 [Rep(Dic12)]

2
2,1

[FR6,1,2
4]12,2 [Rep(Dic12)]

1
2,2

[FR6,1,2
4]22,2 [Rep(Dic12)]

2
2,2

[FR6,1,2
4]12,3 [Rep(Dic12)]

1
2,3

[FR6,1,2
4]22,3 [Rep(Dic12)]

2
2,3

[FR6,1,2
4]12,4 [Rep(Dic12)]

1
2,4

[FR6,1,2
4]22,4 [Rep(Dic12)]

2
2,4

[FR6,1,2
4]12,5 [Rep(Dic12)]

1
2,5

[FR6,1,2
4]22,5 [Rep(Dic12)]

2
2,5

[FR6,1,2
4]12,6 [Rep(Dic12)]

1
2,6

Formal Name Common Name

Continued on next page

170

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,2
4]22,6 [Rep(Dic12)]

2
2,6

[FR6,1,2
4]13,1 [Rep(Dic12)]

1
3,1

[FR6,1,2
4]23,1 [Rep(Dic12)]

2
3,1

[FR6,1,2
4]14,1 [Rep(Dic12)]

1
4,1

[FR6,1,2
4]24,1 [Rep(Dic12)]

2
4,1

[FR6,1,2
4]15,1 [Rep(Dic12)]

1
5,1

[FR6,1,2
4]25,1 [Rep(Dic12)]

2
5,1

[FR6,1,2
4]16,1 [Rep(Dic12)]

1
6,1

[FR6,1,2
4]26,1 [Rep(Dic12)]

2
6,1

[FR6,1,2
7]11,1 [Pseudo SO(5)2]

1
1,1

[FR6,1,2
7]21,1 [Pseudo SO(5)2]

2
1,1

[FR6,1,2
7]12,1 [Pseudo SO(5)2]

1
2,1

[FR6,1,2
7]22,1 [Pseudo SO(5)2]

2
2,1

[FR6,1,2
8]11,1 [HI(ℤ3)]

1
1,1

[FR6,1,2
8]12,1 [HI(ℤ3)]

1
2,1

[FR6,1,2
8]13,1 [HI(ℤ3)]

1
3,1

[FR6,1,2
8]14,1 [HI(ℤ3)]

1
4,1

[FR6,1,4
1]11,1 [ℤ6]

1
1,1

[FR6,1,4
1]21,1 [ℤ6]

2
1,1

[FR6,1,4
1]31,1 [ℤ6]

3
1,1

[FR6,1,4
1]41,1 [ℤ6]

4
1,1

[FR6,1,4
1]11,2 [ℤ6]

1
1,2

[FR6,1,4
1]21,2 [ℤ6]

2
1,2

[FR6,1,4
1]31,2 [ℤ6]

3
1,2

[FR6,1,4
1]41,2 [ℤ6]

4
1,2

[FR6,1,4
1]11,3 [ℤ6]

1
1,3

[FR6,1,4
1]21,3 [ℤ6]

2
1,3

[FR6,1,4
1]31,3 [ℤ6]

3
1,3

Formal Name Common Name

Continued on next page

171

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,4
1]41,3 [ℤ6]

4
1,3

[FR6,1,4
1]11,4 [ℤ6]

1
1,4

[FR6,1,4
1]21,4 [ℤ6]

2
1,4

[FR6,1,4
1]31,4 [ℤ6]

3
1,4

[FR6,1,4
1]41,4 [ℤ6]

4
1,4

[FR6,1,4
1]11,5 [ℤ6]

1
1,5

[FR6,1,4
1]21,5 [ℤ6]

2
1,5

[FR6,1,4
1]31,5 [ℤ6]

3
1,5

[FR6,1,4
1]41,5 [ℤ6]

4
1,5

[FR6,1,4
1]11,6 [ℤ6]

1
1,6

[FR6,1,4
1]21,6 [ℤ6]

2
1,6

[FR6,1,4
1]31,6 [ℤ6]

3
1,6

[FR6,1,4
1]41,6 [ℤ6]

4
1,6

[FR6,1,4
1]12,1 [ℤ6]

1
2,1

[FR6,1,4
1]22,1 [ℤ6]

2
2,1

[FR6,1,4
1]32,1 [ℤ6]

3
2,1

[FR6,1,4
1]42,1 [ℤ6]

4
2,1

[FR6,1,4
1]12,2 [ℤ6]

1
2,2

[FR6,1,4
1]22,2 [ℤ6]

2
2,2

[FR6,1,4
1]32,2 [ℤ6]

3
2,2

[FR6,1,4
1]42,2 [ℤ6]

4
2,2

[FR6,1,4
1]12,3 [ℤ6]

1
2,3

[FR6,1,4
1]22,3 [ℤ6]

2
2,3

[FR6,1,4
1]32,3 [ℤ6]

3
2,3

[FR6,1,4
1]42,3 [ℤ6]

4
2,3

[FR6,1,4
1]12,4 [ℤ6]

1
2,4

[FR6,1,4
1]22,4 [ℤ6]

2
2,4

[FR6,1,4
1]32,4 [ℤ6]

3
2,4

[FR6,1,4
1]42,4 [ℤ6]

4
2,4

Formal Name Common Name

Continued on next page

172

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,4
1]12,5 [ℤ6]

1
2,5

[FR6,1,4
1]22,5 [ℤ6]

2
2,5

[FR6,1,4
1]32,5 [ℤ6]

3
2,5

[FR6,1,4
1]42,5 [ℤ6]

4
2,5

[FR6,1,4
1]12,6 [ℤ6]

1
2,6

[FR6,1,4
1]22,6 [ℤ6]

2
2,6

[FR6,1,4
1]32,6 [ℤ6]

3
2,6

[FR6,1,4
1]42,6 [ℤ6]

4
2,6

[FR6,1,4
1]13,1 [ℤ6]

1
3,1

[FR6,1,4
1]23,1 [ℤ6]

2
3,1

[FR6,1,4
1]33,1 [ℤ6]

3
3,1

[FR6,1,4
1]43,1 [ℤ6]

4
3,1

[FR6,1,4
1]14,1 [ℤ6]

1
4,1

[FR6,1,4
1]24,1 [ℤ6]

2
4,1

[FR6,1,4
1]34,1 [ℤ6]

3
4,1

[FR6,1,4
1]44,1 [ℤ6]

4
4,1

[FR6,1,4
1]15,1 [ℤ6]

1
5,1

[FR6,1,4
1]25,1 [ℤ6]

2
5,1

[FR6,1,4
1]35,1 [ℤ6]

3
5,1

[FR6,1,4
1]45,1 [ℤ6]

4
5,1

[FR6,1,4
1]16,1 [ℤ6]

1
6,1

[FR6,1,4
1]26,1 [ℤ6]

2
6,1

[FR6,1,4
1]36,1 [ℤ6]

3
6,1

[FR6,1,4
1]46,1 [ℤ6]

4
6,1

[FR6,1,4
2]11,1 [MR6]

1
1,1

[FR6,1,4
2]21,1 [MR6]

2
1,1

[FR6,1,4
2]31,1 [MR6]

3
1,1

[FR6,1,4
2]12,1 [MR6]

1
2,1

[FR6,1,4
2]22,1 [MR6]

2
2,1

Formal Name Common Name

Continued on next page

173

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,4
2]32,1 [MR6]

3
2,1

[FR6,1,4
2]13,1 [MR6]

1
3,1

[FR6,1,4
2]23,1 [MR6]

2
3,1

[FR6,1,4
2]33,1 [MR6]

3
3,1

[FR6,1,4
2]14,1 [MR6]

1
4,1

[FR6,1,4
2]24,1 [MR6]

2
4,1

[FR6,1,4
2]34,1 [MR6]

3
4,1

[FR6,1,4
3]11,1 [TY(ℤ5)]

1
1,1

[FR6,1,4
3]21,1 [TY(ℤ5)]

2
1,1

[FR6,1,4
3]12,1 [TY(ℤ5)]

1
2,1

[FR6,1,4
3]22,1 [TY(ℤ5)]

2
2,1

[FR6,1,4
3]13,1 [TY(ℤ5)]

1
3,1

[FR6,1,4
3]23,1 [TY(ℤ5)]

2
3,1

[FR6,1,4
3]14,1 [TY(ℤ5)]

1
4,1

[FR6,1,4
3]24,1 [TY(ℤ5)]

2
4,1

[FR6,1,4
5]11,1 [Fib ⨯ ℤ3]

1
1,1

[FR6,1,4
5]21,1 [Fib ⨯ ℤ3]

2
1,1

[FR6,1,4
5]11,2 [Fib ⨯ ℤ3]

1
1,2

[FR6,1,4
5]21,2 [Fib ⨯ ℤ3]

2
1,2

[FR6,1,4
5]11,3 [Fib ⨯ ℤ3]

1
1,3

[FR6,1,4
5]21,3 [Fib ⨯ ℤ3]

2
1,3

[FR6,1,4
5]11,4 [Fib ⨯ ℤ3]

1
1,4

[FR6,1,4
5]21,4 [Fib ⨯ ℤ3]

2
1,4

[FR6,1,4
5]11,5 [Fib ⨯ ℤ3]

1
1,5

[FR6,1,4
5]21,5 [Fib ⨯ ℤ3]

2
1,5

[FR6,1,4
5]11,6 [Fib ⨯ ℤ3]

1
1,6

[FR6,1,4
5]21,6 [Fib ⨯ ℤ3]

2
1,6

[FR6,1,4
5]12,1 [Fib ⨯ ℤ3]

1
2,1

[FR6,1,4
5]22,1 [Fib ⨯ ℤ3]

2
2,1

Formal Name Common Name

Continued on next page

174

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR6,1,4
5]12,2 [Fib ⨯ ℤ3]

1
2,2

[FR6,1,4
5]22,2 [Fib ⨯ ℤ3]

2
2,2

[FR6,1,4
5]12,3 [Fib ⨯ ℤ3]

1
2,3

[FR6,1,4
5]22,3 [Fib ⨯ ℤ3]

2
2,3

[FR6,1,4
5]12,4 [Fib ⨯ ℤ3]

1
2,4

[FR6,1,4
5]22,4 [Fib ⨯ ℤ3]

2
2,4

[FR6,1,4
5]12,5 [Fib ⨯ ℤ3]

1
2,5

[FR6,1,4
5]22,5 [Fib ⨯ ℤ3]

2
2,5

[FR6,1,4
5]12,6 [Fib ⨯ ℤ3]

1
2,6

[FR6,1,4
5]22,6 [Fib ⨯ ℤ3]

2
2,6

[FR6,1,4
5]13,1 [Fib ⨯ ℤ3]

1
3,1

[FR6,1,4
5]23,1 [Fib ⨯ ℤ3]

2
3,1

[FR6,1,4
5]14,1 [Fib ⨯ ℤ3]

1
4,1

[FR6,1,4
5]24,1 [Fib ⨯ ℤ3]

2
4,1

[FR6,1,4
5]15,1 [Fib ⨯ ℤ3]

1
5,1

[FR6,1,4
5]25,1 [Fib ⨯ ℤ3]

2
5,1

[FR6,1,4
5]16,1 [Fib ⨯ ℤ3]

1
6,1

[FR6,1,4
5]26,1 [Fib ⨯ ℤ3]

2
6,1

[FR7,1,0
1]11,1 [Adj(SO(16)2)]

1
1,1

[FR7,1,0
1]21,1 [Adj(SO(16)2)]

2
1,1

[FR7,1,0
1]11,2 [Adj(SO(16)2)]

1
1,2

[FR7,1,0
1]21,2 [Adj(SO(16)2)]

2
1,2

[FR7,1,0
1]11,3 [Adj(SO(16)2)]

1
1,3

[FR7,1,0
1]21,3 [Adj(SO(16)2)]

2
1,3

[FR7,1,0
1]11,4 [Adj(SO(16)2)]

1
1,4

[FR7,1,0
1]21,4 [Adj(SO(16)2)]

2
1,4

[FR7,1,0
1]11,5 [Adj(SO(16)2)]

1
1,5

[FR7,1,0
1]21,5 [Adj(SO(16)2)]

2
1,5

[FR7,1,0
1]11,6 [Adj(SO(16)2)]

1
1,6

Formal Name Common Name

Continued on next page

175

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR7,1,0
1]21,6 [Adj(SO(16)2)]

2
1,6

[FR7,1,0
1]11,7 [Adj(SO(16)2)]

1
1,7

[FR7,1,0
1]21,7 [Adj(SO(16)2)]

2
1,7

[FR7,1,0
1]11,8 [Adj(SO(16)2)]

1
1,8

[FR7,1,0
1]21,8 [Adj(SO(16)2)]

2
1,8

[FR7,1,0
1]12,1 [Adj(SO(16)2)]

1
2,1

[FR7,1,0
1]22,1 [Adj(SO(16)2)]

2
2,1

[FR7,1,0
1]12,2 [Adj(SO(16)2)]

1
2,2

[FR7,1,0
1]22,2 [Adj(SO(16)2)]

2
2,2

[FR7,1,0
1]12,3 [Adj(SO(16)2)]

1
2,3

[FR7,1,0
1]22,3 [Adj(SO(16)2)]

2
2,3

[FR7,1,0
1]12,4 [Adj(SO(16)2)]

1
2,4

[FR7,1,0
1]22,4 [Adj(SO(16)2)]

2
2,4

[FR7,1,0
1]12,5 [Adj(SO(16)2)]

1
2,5

[FR7,1,0
1]22,5 [Adj(SO(16)2)]

2
2,5

[FR7,1,0
1]12,6 [Adj(SO(16)2)]

1
2,6

[FR7,1,0
1]22,6 [Adj(SO(16)2)]

2
2,6

[FR7,1,0
1]12,7 [Adj(SO(16)2)]

1
2,7

[FR7,1,0
1]22,7 [Adj(SO(16)2)]

2
2,7

[FR7,1,0
1]12,8 [Adj(SO(16)2)]

1
2,8

[FR7,1,0
1]22,8 [Adj(SO(16)2)]

2
2,8

[FR7,1,0
1]13,1 [Adj(SO(16)2)]

1
3,1

[FR7,1,0
1]23,1 [Adj(SO(16)2)]

2
3,1

[FR7,1,0
1]13,2 [Adj(SO(16)2)]

1
3,2

[FR7,1,0
1]23,2 [Adj(SO(16)2)]

2
3,2

[FR7,1,0
1]13,3 [Adj(SO(16)2)]

1
3,3

[FR7,1,0
1]23,3 [Adj(SO(16)2)]

2
3,3

[FR7,1,0
1]13,4 [Adj(SO(16)2)]

1
3,4

[FR7,1,0
1]23,4 [Adj(SO(16)2)]

2
3,4

Formal Name Common Name

Continued on next page

176

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR7,1,0
1]14,1 [Adj(SO(16)2)]

1
4,1

[FR7,1,0
1]24,1 [Adj(SO(16)2)]

2
4,1

[FR7,1,0
1]14,2 [Adj(SO(16)2)]

1
4,2

[FR7,1,0
1]24,2 [Adj(SO(16)2)]

2
4,2

[FR7,1,0
1]14,3 [Adj(SO(16)2)]

1
4,3

[FR7,1,0
1]24,3 [Adj(SO(16)2)]

2
4,3

[FR7,1,0
1]14,4 [Adj(SO(16)2)]

1
4,4

[FR7,1,0
1]24,4 [Adj(SO(16)2)]

2
4,4

[FR7,1,0
1]15,1 [Adj(SO(16)2)]

1
5,1

[FR7,1,0
1]25,1 [Adj(SO(16)2)]

2
5,1

[FR7,1,0
1]16,1 [Adj(SO(16)2)]

1
6,1

[FR7,1,0
1]26,1 [Adj(SO(16)2)]

2
6,1

[FR7,1,0
1]17,1 [Adj(SO(16)2)]

1
7,1

[FR7,1,0
1]27,1 [Adj(SO(16)2)]

2
7,1

[FR7,1,0
1]18,1 [Adj(SO(16)2)]

1
8,1

[FR7,1,0
1]28,1 [Adj(SO(16)2)]

2
8,1

[FR7,1,0
6]11,1 [Adj(SO(11)2)]

1
1,1

[FR7,1,0
6]11,2 [Adj(SO(11)2)]

1
1,2

[FR7,1,0
6]11,3 [Adj(SO(11)2)]

1
1,3

[FR7,1,0
6]12,1 [Adj(SO(11)2)]

1
2,1

[FR7,1,0
6]13,1 [Adj(SO(11)2)]

1
3,1

[FR7,1,0
7]11,1 [SU(2)6]

1
1,1

[FR7,1,0
7]21,1 [SU(2)6]

2
1,1

[FR7,1,0
7]11,2 [SU(2)6]

1
1,2

[FR7,1,0
7]21,2 [SU(2)6]

2
1,2

[FR7,1,0
7]11,3 [SU(2)6]

1
1,3

[FR7,1,0
7]21,3 [SU(2)6]

2
1,3

[FR7,1,0
7]11,4 [SU(2)6]

1
1,4

[FR7,1,0
7]21,4 [SU(2)6]

2
1,4

Formal Name Common Name

Continued on next page

177

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR7,1,0
7]12,1 [SU(2)6]

1
2,1

[FR7,1,0
7]22,1 [SU(2)6]

2
2,1

[FR7,1,0
7]12,2 [SU(2)6]

1
2,2

[FR7,1,0
7]22,2 [SU(2)6]

2
2,2

[FR7,1,0
7]12,3 [SU(2)6]

1
2,3

[FR7,1,0
7]22,3 [SU(2)6]

2
2,3

[FR7,1,0
7]12,4 [SU(2)6]

1
2,4

[FR7,1,0
7]22,4 [SU(2)6]

2
2,4

[FR7,1,0
8]11,1 [SO(7)2]

1
1,1

[FR7,1,0
8]21,1 [SO(7)2]

2
1,1

[FR7,1,0
8]11,2 [SO(7)2]

1
1,2

[FR7,1,0
8]21,2 [SO(7)2]

2
1,2

[FR7,1,0
8]12,1 [SO(7)2]

1
2,1

[FR7,1,0
8]22,1 [SO(7)2]

2
2,1

[FR7,1,0
8]12,2 [SO(7)2]

1
2,2

[FR7,1,0
8]22,2 [SO(7)2]

2
2,2

[FR7,1,0
14]11,1 [PSU(2)12]

1
1,1

[FR7,1,0
14]11,2 [PSU(2)12]

1
1,2

[FR7,1,0
14]12,1 [PSU(2)12]

1
2,1

[FR7,1,0
14]12,2 [PSU(2)12]

1
2,2

[FR7,1,0
14]13,1 [PSU(2)12]

1
3,1

[FR7,1,0
14]13,2 [PSU(2)12]

1
3,2

[FR7,1,0
17]11,1 [PSU(2)13]

1
1,1

[FR7,1,0
17]11,2 [PSU(2)13]

1
1,2

[FR7,1,0
17]12,1 [PSU(2)13]

1
2,1

[FR7,1,0
17]12,2 [PSU(2)13]

1
2,2

[FR7,1,0
17]13,1 [PSU(2)13]

1
3,1

[FR7,1,0
17]13,2 [PSU(2)13]

1
3,2

[FR7,1,0
17]14,1 [PSU(2)13]

1
4,1

Formal Name Common Name

Continued on next page

178

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR7,1,0
17]14,2 [PSU(2)13]

1
4,2

[FR7,1,2
3]11,1

[FR7,1,2
3]21,1

[FR7,1,2
3]12,1

[FR7,1,2
3]22,1

[FR7,1,2
3]13,1

[FR7,1,2
3]23,1

[FR7,1,2
3]14,1

[FR7,1,2
3]24,1

[FR7,1,2
3]15,1

[FR7,1,2
3]25,1

[FR7,1,2
3]16,1

[FR7,1,2
3]26,1

[FR7,1,2
3]17,1

[FR7,1,2
3]27,1

[FR7,1,2
3]18,1

[FR7,1,2
3]28,1

[FR7,1,2
4]11,1

[FR7,1,2
4]21,1

[FR7,1,2
4]11,2

[FR7,1,2
4]21,2

[FR7,1,2
4]11,3

[FR7,1,2
4]21,3

[FR7,1,2
4]11,4

[FR7,1,2
4]21,4

[FR7,1,2
4]11,5

[FR7,1,2
4]21,5

[FR7,1,2
4]11,6

[FR7,1,2
4]21,6

Formal Name Common Name

Continued on next page

179

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR7,1,2
4]11,7

[FR7,1,2
4]21,7

[FR7,1,2
4]11,8

[FR7,1,2
4]21,8

[FR7,1,2
4]12,1

[FR7,1,2
4]22,1

[FR7,1,2
4]13,1

[FR7,1,2
4]23,1

[FR7,1,2
4]14,1

[FR7,1,2
4]24,1

[FR7,1,2
12]11,1

[FR7,1,2
12]21,1

[FR7,1,2
12]12,1

[FR7,1,2
12]22,1

[FR7,1,4
1]11,1 [TY(ℤ2 ⨯ ℤ3)]

1
1,1

[FR7,1,4
1]21,1 [TY(ℤ2 ⨯ ℤ3)]

2
1,1

[FR7,1,4
1]12,1 [TY(ℤ2 ⨯ ℤ3)]

1
2,1

[FR7,1,4
1]22,1 [TY(ℤ2 ⨯ ℤ3)]

2
2,1

[FR7,1,4
1]13,1 [TY(ℤ2 ⨯ ℤ3)]

1
3,1

[FR7,1,4
1]23,1 [TY(ℤ2 ⨯ ℤ3)]

2
3,1

[FR7,1,4
1]14,1 [TY(ℤ2 ⨯ ℤ3)]

1
4,1

[FR7,1,4
1]24,1 [TY(ℤ2 ⨯ ℤ3)]

2
4,1

[FR7,1,4
3]11,1

[FR7,1,4
3]21,1

[FR7,1,4
3]12,1

[FR7,1,4
3]22,1

[FR7,1,4
3]13,1

[FR7,1,4
3]23,1

Formal Name Common Name

Continued on next page

180

Table 9.1: List of multiplicity-free fusion categories up to rank 7 (Con-

tinued)

[FR7,1,4
3]14,1

[FR7,1,4
3]24,1

[FR7,1,6
1]11,1 [ℤ7]

1
1,1

[FR7,1,6
1]21,1 [ℤ7]

2
1,1

[FR7,1,6
1]31,1 [ℤ7]

3
1,1

[FR7,1,6
1]41,1 [ℤ7]

4
1,1

[FR7,1,6
1]11,2 [ℤ7]

1
1,2

[FR7,1,6
1]21,2 [ℤ7]

2
1,2

[FR7,1,6
1]31,2 [ℤ7]

3
1,2

[FR7,1,6
1]41,2 [ℤ7]

4
1,2

[FR7,1,6
1]11,3 [ℤ7]

1
1,3

[FR7,1,6
1]21,3 [ℤ7]

2
1,3

[FR7,1,6
1]12,1 [ℤ7]

1
2,1

[FR7,1,6
1]22,1 [ℤ7]

2
2,1

[FR7,1,6
1]32,1 [ℤ7]

3
2,1

[FR7,1,6
1]42,1 [ℤ7]

4
2,1

[FR7,1,6
1]13,1 [ℤ7]

1
3,1

[FR7,1,6
1]23,1 [ℤ7]

2
3,1

[FR7,1,6
1]33,1 [ℤ7]

3
3,1

[FR7,1,6
1]43,1 [ℤ7]

4
3,1

Formal Name Common Name

181

182

Chapter 10

Solutions For Specific Graph-Braid

Models

10.1 Solutions for the Ising Model

The Ising fusion ring has 3 particles, 1,𝜓, 𝜎 subject to the multiplication rules

1 × 𝑎 = 𝑎 × 1 = 𝑎, ∀ 𝑎 ∈ {1,𝜓, 𝜎}, (10.1)

𝜓 ×𝜓 = 1, 𝜎 × 𝜓 = 𝜓 × 𝜎 = 𝜎, 𝜎 × 𝜎 = 1 + 𝜓. (10.2)

In the following section we will list the solutions to various equations for the Ising

model. To save space we omit any well-defined symbol equal to 1. By well-defined we

mean that the fusion tree corresponding to the symbol exists.

10.1.1 Solutions to the Pentagon Equations

There are two solutions to the pentagon equations for the Ising fusion ring. Both solu-

tions share the same values for the following 𝐹-symbols

[𝐹𝜓𝜎𝜓
𝜎]𝜎𝜎 = [𝐹𝜎𝜓𝜎

1]𝜎𝜎 = [𝐹𝜎𝜎𝜓
1]𝜓𝜎 = [𝐹𝜎𝜎𝜓

𝜓]1𝜎 = −1, (10.3)

but have a different sign for the 𝐹-matrix

[𝐹𝜎𝜎𝜎
𝜎] = ±

1

√2
⎡
⎣

1 −1

1 1
⎤
⎦
. (10.4)

We will denote these solutions by ℱ𝜅 where 𝜅 = ±1. Note that some of the 𝐹-symbols

in these solutions are gauge dependent and so they may differ from those in other

works. In, e.g. [81] a gauge is used such that

[𝐹𝜎𝜎𝜎
𝜎] = ±

1

√2
⎡
⎣

1 1

1 −1
⎤
⎦
. (10.5)

183

As a matter of fact, the 𝐹-matrices of the Ising model that are currently stored in Any-

onica are also in a diagonal gauge, but theyweren’t at the timewedid these calculations.

Obviously this has no qualitative consequences for the results.

10.1.2 Solutions to the Planar Hexagon Equations

Each set of 𝐹-symbols allows four solutions to the planar hexagon equations. They can

be parameterized as follows:

𝑅𝜓𝜓
1 = −1,𝑅𝜓𝜎

𝜎 = 𝑅𝜎𝜓
𝜎 = 𝜀1𝑖,𝑅

𝜎𝜎
1 = (

𝜅𝜀1
𝑖

)
1+𝜅
2

𝑖𝜀2+1𝑒−𝜀1
𝑖𝜋
8 ,𝑅𝜎𝜎

1 = (
𝜅𝜀1
𝑖

)
1−𝜅
2

𝑖𝜀2+1𝑒−𝜀1
𝑖𝜋
8 ,

where 𝜀𝑖 ∈ {−1, 1}.

10.1.3 Solutions to the Trijunction Equations

10.1.3.1 Three Particles

For three particles each solution to the pentagon equation gives rise to two classes of

solutions to the trijunction equations. Each class of solutions are parameterized by two

complex phases 𝑧1, 𝑧2. To save space we will not denote the symbols 𝑃𝑎𝑏1
𝑒𝑑 ≡ 𝑄𝑎𝑏1

𝑒𝑑 since

these are equal to the 𝑅-symbols 𝑅𝑎𝑏
𝑒 . The four combinations of 𝐹-and 𝑅-symbols have

the following form

𝑃𝜓𝜓𝜓
1𝜓 = 1

𝑧1
, 𝑃𝜓𝜓𝜎

1𝜎 = −1, 𝑃𝜓𝜎𝜓
𝜎𝜎 = −𝜀𝑖

𝑧1
, 𝑃𝜓𝜎𝜎

𝜎1 = −𝜀𝑖𝑧1, 𝑃𝜓𝜎𝜎
𝜎𝜓 = 𝜀𝑖,

𝑃𝜎𝜓𝜓
𝜎𝜎 = 𝜀𝑖, 𝑃𝜎𝜓𝜎

𝜎1 = 𝜀𝑖, 𝑃𝜎𝜓𝜎
𝜎𝜓 = 𝜀𝑖, 𝑃𝜎𝜎𝜓

1𝜓 = 𝑧2, 𝑃𝜎𝜎𝜓
𝜓1 = 𝜀𝑖𝑧2,

𝑃𝜎𝜎𝜎
1𝜎 = 𝜅

𝑧2
𝑒−

𝜀𝑖𝜋
4 , 𝑃𝜎𝜎𝜎

𝜓𝜎 = 𝜅
𝑧2
𝑒

𝜀𝑖𝜋
4 ,

𝑄𝜓𝜓𝜓
1𝜓 = 1

𝑧1
, 𝑄𝜓𝜓𝜎

1𝜎 = −1, 𝑄𝜓𝜎𝜓
𝜎𝜎 = 𝜀𝑖, 𝑄𝜓𝜎𝜎

𝜎1 = 𝜀𝑖,

𝑄𝜓𝜎𝜎
𝜎𝜓 = 𝜀𝑖, 𝑄𝜎𝜓𝜓

𝜎𝜎 = −𝜀𝑖
𝑧1

, 𝑄𝜎𝜓𝜎
𝜎1 = −𝜀𝑖𝑧1, 𝑄𝜎𝜓𝜎

𝜎𝜓 = 𝜀𝑖, 𝑄𝜎𝜎𝜓
1𝜓 = 𝑧2,

𝑄𝜎𝜎𝜓
𝜓1 = 𝜀𝑖𝑧2, 𝑄𝜎𝜎𝜎

1𝜎 = 𝜅
𝑧2
𝑒−

𝜀𝑖𝜋
4 , 𝑄𝜎𝜎𝜎

𝜓𝜎 = 𝜅
𝑧2
𝑒

𝜀𝑖𝜋
4 ,

𝑅𝜓𝜓
1 = 𝑧1, 𝑅𝜓𝜎

𝜎 = 𝜀𝑖, 𝑅𝜎𝜓
𝜎 = 𝜀𝑖, 𝑅𝜎𝜎

1 = 𝑧2, 𝑅𝜎𝜎
𝜓 = 𝜀𝑖𝑧2,

where 𝜀 ∈ {−1, 1}. We will label each solution by 𝒯(3)
𝜅,𝜀 .

10.1.3.2 Four Particles

For four particles, the trijunction equations can only be satisfied if 𝑧1 = −1 (which

implies 𝑅𝜓𝜓
1 = −1) and therefore the solutions have the property that 𝑃 ≡ 𝑄. Note

that this does not necessarily imply that 𝑃 ≡ 𝑅, i.e. that the solutions are planar. The

solutions are then described by adding to the 𝒯(3)
𝜅,𝜀 the respective values of the 𝐴, 𝐵, 𝑋,

and 𝑌-symbols which we will describe here. All symbols with a 1 as the third or fourth

top label are 𝑃, 𝑄, or 𝑅-symbols and will therefore not be listed.

184

For the Ising model, it turns out that all symbols with the same labels are equal to

each other. We can thus write the solutions in terms of the symbol 𝑀, where 𝑀 could

be any of 𝐴, 𝐵, 𝑋, 𝑌. The solutions then read

𝑀𝜓𝜓𝑐𝑑
𝑓𝑔𝑒 ≡ −1 (10.6)

𝑀𝜎𝜓𝑐𝑑
𝑓𝑔𝑒 ≡ 𝑀𝜓𝜎𝑐𝑑

𝑓𝑔𝑒 ≡ 𝜀𝑖 (10.7)

𝑀𝜎𝜎𝑐𝑑
𝑓𝑔𝑒 =

⎧⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪
⎩

𝑧2 if 𝑐 = 𝑑 and 𝑓 = 1

𝜀𝑖𝑧2 if 𝑐 = 𝑑 and 𝑓 = 𝜓
𝜅
𝑧2
exp(−𝜀𝑖𝜋

4) if 𝑐 ≠ 𝑑 and 𝑓 = 1
𝜅
𝑧2
exp(𝜀𝑖𝜋

4) if 𝑐 ≠ 𝑑 and 𝑓 = 𝜓

(10.8)

where 𝑐, 𝑑 ∈ {𝜓, 𝜎}, 𝑓, 𝑔, 𝑒 ∈ {1,𝜓, 𝜎}, and the value of 𝜅 and 𝜀 are fixed by the choice

of 𝒯(3)
𝜅,𝜀 .

10.1.4 Solutions to the Lollipop Equations

10.1.4.1 Lollipop Trijunction

For the Ising model on the trijunction, on the lollipop, the demand that 𝑃𝑎𝑏𝑐
𝑒𝑑 ≡ 𝑅𝑎𝑏

𝑒

implies that the solutions must be planar. In particular, the solutions are the four so-

lutions for the planar hexagon equations with the addition of the 𝑃-and 𝑄-symbols,

which obey 𝑃𝑎𝑏𝑐
𝑒𝑑 ≡ 𝑄𝑎𝑏𝑐

𝑒𝑑 ≡ 𝑅𝑎𝑏
𝑒 .

10.1.4.2 Circle Solutions

There are sixteen solutions to the circle equations for each set of 𝐹-symbols. They can

be written as

𝐷1𝜓
𝜓 = −1, 𝐷1𝜎

𝜎 = 𝑒𝑖𝜋
−2−𝜈1+4𝜈2−2𝜅

8 ,𝐷𝜓𝜎
𝜎 = −𝜈1𝑒

𝑖𝜋 2−𝜈1+4𝜈2−2𝜅
8 ,

𝐷𝜎𝜓
𝜎 = 𝜈1𝑖, 𝐷

𝜎𝜎
1 = 𝜈3, 𝐷𝜎𝜎

𝜓 = 𝜈4𝑖,

where the 𝜈𝑖 ∈ {−1, 1} and 𝜅 is fixed by the choice of 𝐹-symbols. In particular we find

that, per set of 𝐹-symbols, there are four possible values for the generalized topological

spins. These coincide with the values of the topological spins for planar Ising anyons.

10.1.4.3 Full Lollipop Solutions

There are 32 solutions to the full lollipop equations per set of 𝐹-symbols. Because there

is no gauge freedom left after fixing a set of 𝐹-symbols, for a given set of 𝐹-symbols any

solution can be found by combining a solution to the lollipop trijunction equations with

matching label 𝜅 with a solution to the circle equations with matching label 𝜅.

185

10.2 Solutions for the Quantum Double of ℤ2

The quantum double of ℤ2 is a model with four anyons 1, 𝑒,𝑚, 𝜀 that follow the fusion

rules of ℤ2×ℤ2 (via, e.g., the identification 1 = (0, 0), 𝑒 = (1, 0),𝑚 = (0, 1), 𝜀 = (1, 1))
and for which [𝐹𝑎𝑏𝑐

𝑑]𝑒𝑓 ≡ 1 for each well-defined 𝐹-symbol. This model arises as the

excitations in the Toric code model with gauge group ℤ2 [55].

10.2.1 Solutions to the Planar Hexagon Equations

There are eight gauge-independent planar hexagon solutions:

𝑅𝜀𝜀
1 = 𝜈1, 𝑅𝜀𝑒

𝑚 = 𝜈2, 𝑅𝜀𝑚
𝑒 = 𝜈1𝜈2, 𝑅𝑒𝑒

1 = 𝜈3,

𝑅𝑒𝑚
𝜀 = 𝜈3, 𝑅𝑚𝜀

𝑒 = 𝜈1, 𝑅𝑚𝑒
𝜀 = 𝜈2𝜈3, 𝑅𝑚𝑚

1 = 𝜈1𝜈2𝜈3,

where 𝜈𝑖 ∈ {−1, 1}.

10.2.2 Solutions to the Trijunction Equations

The trijunction equations that impose constraints on any of the 𝑅-symbols are trivially

satisfied. Therefore, we find that all non-trivial 𝑅-symbols are free parameters

𝑅𝜀𝜀
1 = 𝑧1, 𝑅𝜀𝑒

𝑚 = 𝑧2, 𝑅𝜀𝑚
𝑒 = 𝑧3, 𝑅𝑒𝜀

𝑚 = 𝑧4, 𝑅𝑒𝑒
1 = 𝑧5,

𝑅𝑒𝑚
𝜀 = 𝑧6, 𝑅𝑚𝜀

𝑒 = 𝑧7, 𝑅𝑚𝑒
𝜀 = 𝑧8, 𝑅𝑚𝑚

1 = 𝑧9,

and all other symbols can be expressed in terms of these free parameters. To save

space we will omit the symbols 𝑃𝑎𝑏1
𝑒𝑑 ≡ 𝑄𝑎𝑏1

𝑒𝑑 since these are equal to the 𝑅-symbols

𝑅𝑎𝑏
𝑒 . The 𝑃-and 𝑄-symbols are the following

𝑃𝜀𝜀𝜀
1𝜀 = 1

𝑧1
, 𝑃𝑒𝜀𝜀

𝑚𝑒 = 1
𝑧4
, 𝑃𝑚𝜀𝜀

𝑒𝑚 = 1
𝑧7
, 𝑄𝜀𝜀𝜀

1𝜀 = 1
𝑧1
, 𝑄𝑒𝜀𝜀

𝑚𝑒 = 𝑧7
𝑧1
, 𝑄𝑚𝜀𝜀

𝑒𝑚 = 𝑧4
𝑧1
,

𝑃𝜀𝜀𝑒
1𝑒 = 𝑧3

𝑧2
, 𝑃𝑒𝜀𝑒

𝑚𝜀 = 𝑧6
𝑧5
, 𝑃𝑚𝜀𝑒

𝑒1 = 𝑧9
𝑧8
, 𝑄𝜀𝜀𝑒

1𝑒 = 𝑧7
𝑧4
, 𝑄𝑒𝜀𝑒

𝑚𝜀 = 1
𝑧4
, 𝑄𝑚𝜀𝑒

𝑒1 = 𝑧1
𝑧4
,

𝑃𝜀𝜀𝑚
1𝑚 = 𝑧2

𝑧3
, 𝑃𝑒𝜀𝑚

𝑚1 = 𝑧5
𝑧6
, 𝑃𝑚𝜀𝑚

𝑒𝜀 = 𝑧8
𝑧9
, 𝑄𝜀𝜀𝑚

1𝑚 = 𝑧4
𝑧7
, 𝑄𝑒𝜀𝑚

𝑚1 = 𝑧1
𝑧7
, 𝑄𝑚𝜀𝑚

𝑒𝜀 = 1
𝑧7
,

𝑃𝜀𝑒𝜀
𝑚𝑒 = 𝑧3

𝑧1
, 𝑃𝑒𝑒𝜀

1𝜀 = 𝑧6
𝑧4
, 𝑃𝑚𝑒𝜀

𝜀1 = 𝑧9
𝑧7
, 𝑄𝜀𝑒𝜀

𝑚𝑒 = 1
𝑧2
, 𝑄𝑒𝑒𝜀

1𝜀 = 𝑧8
𝑧2
, 𝑄𝑚𝑒𝜀

𝜀1 = 𝑧5
𝑧2
,

𝑃𝜀𝑒𝑒
𝑚𝜀 = 1

𝑧2
, 𝑃𝑒𝑒𝑒

1𝑒 = 1
𝑧5
, 𝑃𝑚𝑒𝑒

𝜀𝑚 = 1
𝑧8
, 𝑄𝜀𝑒𝑒

𝑚𝜀 = 𝑧8
𝑧5
, 𝑄𝑒𝑒𝑒

1𝑒 = 1
𝑧5
, 𝑄𝑚𝑒𝑒

𝜀𝑚 = 𝑧2
𝑧5
,

𝑃𝜀𝑒𝑚
𝑚1 = 𝑧1

𝑧3
, 𝑃𝑒𝑒𝑚

1𝑚 = 𝑧4
𝑧6
, 𝑃𝑚𝑒𝑚

𝜀𝑒 = 𝑧7
𝑧9
, 𝑄𝜀𝑒𝑚

𝑚1 = 𝑧5
𝑧8
, 𝑄𝑒𝑒𝑚

1𝑚 = 𝑧2
𝑧8
, 𝑄𝑚𝑒𝑚

𝜀𝑒 = 1
𝑧8
,

𝑃𝜀𝑚𝜀
𝑒𝑚 = 𝑧2

𝑧1
, 𝑃𝑒𝑚𝜀

𝜀1 = 𝑧5
𝑧4
, 𝑃𝑚𝑚𝜀

1𝜀 = 𝑧8
𝑧7
, 𝑄𝜀𝑚𝜀

𝑒𝑚 = 1
𝑧3
, 𝑄𝑒𝑚𝜀

𝜀1 = 𝑧9
𝑧3
, 𝑄𝑚𝑚𝜀

1𝜀 = 𝑧6
𝑧3
,

𝑃𝜀𝑚𝑒
𝑒1 = 𝑧1

𝑧2
, 𝑃𝑒𝑚𝑒

𝜀𝑚 = 𝑧4
𝑧5
, 𝑃𝑚𝑚𝑒

1𝑒 = 𝑧7
𝑧8
, 𝑄𝜀𝑚𝑒

𝑒1 = 𝑧9
𝑧6
, 𝑄𝑒𝑚𝑒

𝜀𝑚 = 1
𝑧6
, 𝑄𝑚𝑚𝑒

1𝑒 = 𝑧3
𝑧6
,

𝑃𝜀𝑚𝑚
𝑒𝜀 = 1

𝑧3
, 𝑃𝑒𝑚𝑚

𝜀𝑒 = 1
𝑧6
, 𝑃𝑚𝑚𝑚

1𝑚 = 1
𝑧9
, 𝑄𝜀𝑚𝑚

𝑒𝜀 = 𝑧6
𝑧9
, 𝑄𝑒𝑚𝑚

𝜀𝑒 = 𝑧3
𝑧9
, 𝑄𝑚𝑚𝑚

1𝑚 = 1
𝑧9
.

We can observe some interesting features in this table, namely when all of the particles

are of the same type we find 𝑃𝑎𝑎𝑎 = 𝑄𝑎𝑎𝑎.

186

10.2.2.1 Four Particles

For four particles we have the following solutions.

Value of 𝑀 Value of 𝑀 Value of 𝑀

𝐴 𝐵 𝑋 𝑌 𝐴 𝐵 𝑋 𝑌 𝐴 𝐵 𝑋 𝑌

𝑀𝜀𝜀𝜀𝜀
1𝜀1 𝑧1 𝑧1 𝑧1 𝑧1 𝑀𝑒𝜀𝜀𝜀

𝑚𝑒𝑚
𝑧1
𝑧7

𝑧1
𝑧7

𝑧4 𝑧4 𝑀𝑚𝜀𝜀𝜀
𝑒𝑚𝑒

𝑧1
𝑧4

𝑧1
𝑧4

𝑧7 𝑧7
𝑀𝜀𝜀𝜀𝑒

1𝜀𝑚
𝑧2
𝑧3

𝑧4
𝑧7

𝑧2
𝑧3

𝑧4
𝑧7

𝑀𝑒𝜀𝜀𝑒
𝑚𝑒1

𝑧2𝑧9
𝑧3𝑧8

𝑧4
𝑧5
𝑧6

𝑧1
𝑧7

𝑀𝑚𝜀𝜀𝑒
𝑒𝑚𝜀

𝑧2𝑧6
𝑧3𝑧5

𝑧4
𝑧1

𝑧8
𝑧9

1
𝑧7

𝑀𝜀𝜀𝜀𝑚
1𝜀𝑒

𝑧3
𝑧2

𝑧7
𝑧4

𝑧3
𝑧2

𝑧7
𝑧4

𝑀𝑒𝜀𝜀𝑚
𝑚𝑒𝜀

𝑧3𝑧8
𝑧2𝑧9

𝑧7
𝑧1

𝑧6
𝑧5

1
𝑧4

𝑀𝑚𝜀𝜀𝑚
𝑒𝑚1

𝑧3𝑧5
𝑧2𝑧6

𝑧7
𝑧9
𝑧8

𝑧1
𝑧4

𝑀𝜀𝜀𝑒𝜀
1𝑒𝑚

𝑧4
𝑧7

𝑧2
𝑧3

𝑧2
𝑧3

𝑧4
𝑧7

𝑀𝑒𝜀𝑒𝜀
𝑚𝜀1 𝑧4

𝑧2𝑧9
𝑧3𝑧8

𝑧5
𝑧6

𝑧1
𝑧7

𝑀𝑚𝜀𝑒𝜀
𝑒1𝜀

𝑧4
𝑧1

𝑧2𝑧6
𝑧3𝑧5

𝑧8
𝑧9

1
𝑧7

𝑀𝜀𝜀𝑒𝑒
1𝑒1

𝑧5𝑧9
𝑧6𝑧8

𝑧5𝑧9
𝑧6𝑧8

𝑧1 𝑧1 𝑀𝑒𝜀𝑒𝑒
𝑚𝜀𝑚

𝑧5
𝑧6

𝑧5
𝑧6

𝑧4 𝑧4 𝑀𝑚𝜀𝑒𝑒
𝑒1𝑒

𝑧3𝑧5
𝑧2𝑧6

𝑧3𝑧5
𝑧2𝑧6

𝑧7 𝑧7
𝑀𝜀𝜀𝑒𝑚

1𝑒𝜀
𝑧6𝑧8
𝑧5𝑧9

𝑧6𝑧8
𝑧5𝑧9

1
𝑧1

1
𝑧1

𝑀𝑒𝜀𝑒𝑚
𝑚𝜀𝑒

𝑧6
𝑧5

𝑧3𝑧8
𝑧2𝑧9

1
𝑧4

𝑧7
𝑧1

𝑀𝑚𝜀𝑒𝑚
𝑒1𝑚

𝑧2𝑧6
𝑧3𝑧5

𝑧8
𝑧9

1
𝑧7

𝑧4
𝑧1

𝑀𝜀𝜀𝑚𝜀
1𝑚𝑒

𝑧7
𝑧4

𝑧3
𝑧2

𝑧3
𝑧2

𝑧7
𝑧4

𝑀𝑒𝜀𝑚𝜀
𝑚1𝜀

𝑧7
𝑧1

𝑧3𝑧8
𝑧2𝑧9

𝑧6
𝑧5

1
𝑧4

𝑀𝑚𝜀𝑚𝜀
𝑒𝜀1 𝑧7

𝑧3𝑧5
𝑧2𝑧6

𝑧9
𝑧8

𝑧1
𝑧4

𝑀𝜀𝜀𝑚𝑒
1𝑚𝜀

𝑧6𝑧8
𝑧5𝑧9

𝑧6𝑧8
𝑧5𝑧9

1
𝑧1

1
𝑧1

𝑀𝑒𝜀𝑚𝑒
𝑚1𝑒

𝑧3𝑧8
𝑧2𝑧9

𝑧6
𝑧5

1
𝑧4

𝑧7
𝑧1

𝑀𝑚𝜀𝑚𝑒
𝑒𝜀𝑚

𝑧8
𝑧9

𝑧2𝑧6
𝑧3𝑧5

1
𝑧7

𝑧4
𝑧1

𝑀𝜀𝜀𝑚𝑚
1𝑚1

𝑧5𝑧9
𝑧6𝑧8

𝑧5𝑧9
𝑧6𝑧8

𝑧1 𝑧1 𝑀𝑒𝜀𝑚𝑚
𝑚1𝑚

𝑧2𝑧9
𝑧3𝑧8

𝑧2𝑧9
𝑧3𝑧8

𝑧4 𝑧4 𝑀𝑚𝜀𝑚𝑚
𝑒𝜀𝑒

𝑧9
𝑧8

𝑧9
𝑧8

𝑧7 𝑧7
𝑀𝜀𝑒𝜀𝜀

𝑚𝑒𝑚
𝑧1
𝑧3

𝑧1
𝑧3

𝑧2 𝑧2 𝑀𝑒𝑒𝜀𝜀
1𝜀1

𝑧1𝑧9
𝑧3𝑧7

𝑧1𝑧9
𝑧3𝑧7

𝑧5 𝑧5 𝑀𝑚𝑒𝜀𝜀
𝜀1𝜀

𝑧1𝑧6
𝑧3𝑧4

𝑧1𝑧6
𝑧3𝑧4

𝑧8 𝑧8
𝑀𝜀𝑒𝜀𝑒

𝑚𝑒1 𝑧2
𝑧4𝑧9
𝑧6𝑧7

𝑧1
𝑧3

𝑧5
𝑧8

𝑀𝑒𝑒𝜀𝑒
1𝜀𝑚

𝑧2
𝑧8

𝑧4
𝑧6

𝑧4
𝑧6

𝑧2
𝑧8

𝑀𝑚𝑒𝜀𝑒
𝜀1𝑒

𝑧2
𝑧5

𝑧3𝑧4
𝑧1𝑧6

𝑧7
𝑧9

1
𝑧8

𝑀𝜀𝑒𝜀𝑚
𝑚𝑒𝜀

𝑧3
𝑧1

𝑧6𝑧7
𝑧4𝑧9

1
𝑧2

𝑧8
𝑧5

𝑀𝑒𝑒𝜀𝑚
1𝜀𝑒

𝑧3𝑧7
𝑧1𝑧9

𝑧3𝑧7
𝑧1𝑧9

1
𝑧5

1
𝑧5

𝑀𝑚𝑒𝜀𝑚
𝜀1𝑚

𝑧3𝑧4
𝑧1𝑧6

𝑧7
𝑧9

1
𝑧8

𝑧2
𝑧5

𝑀𝜀𝑒𝑒𝜀
𝑚𝜀1

𝑧4𝑧9
𝑧6𝑧7

𝑧2
𝑧1
𝑧3

𝑧5
𝑧8

𝑀𝑒𝑒𝑒𝜀
1𝑒𝑚

𝑧4
𝑧6

𝑧2
𝑧8

𝑧4
𝑧6

𝑧2
𝑧8

𝑀𝑚𝑒𝑒𝜀
𝜀𝑚𝑒

𝑧3𝑧4
𝑧1𝑧6

𝑧2
𝑧5

𝑧7
𝑧9

1
𝑧8

𝑀𝜀𝑒𝑒𝑒
𝑚𝜀𝑚

𝑧5
𝑧8

𝑧5
𝑧8

𝑧2 𝑧2 𝑀𝑒𝑒𝑒𝑒
1𝑒1 𝑧5 𝑧5 𝑧5 𝑧5 𝑀𝑚𝑒𝑒𝑒

𝜀𝑚𝜀
𝑧5
𝑧2

𝑧5
𝑧2

𝑧8 𝑧8
𝑀𝜀𝑒𝑒𝑚

𝑚𝜀𝑒
𝑧6𝑧7
𝑧4𝑧9

𝑧8
𝑧5

𝑧3
𝑧1

1
𝑧2

𝑀𝑒𝑒𝑒𝑚
1𝑒𝜀

𝑧6
𝑧4

𝑧8
𝑧2

𝑧6
𝑧4

𝑧8
𝑧2

𝑀𝑚𝑒𝑒𝑚
𝜀𝑚1

𝑧1𝑧6
𝑧3𝑧4

𝑧8
𝑧9
𝑧7

𝑧5
𝑧2

𝑀𝜀𝑒𝑚𝜀
𝑚1𝜀

𝑧6𝑧7
𝑧4𝑧9

𝑧3
𝑧1

1
𝑧2

𝑧8
𝑧5

𝑀𝑒𝑒𝑚𝜀
1𝑚𝑒

𝑧3𝑧7
𝑧1𝑧9

𝑧3𝑧7
𝑧1𝑧9

1
𝑧5

1
𝑧5

𝑀𝑚𝑒𝑚𝜀
𝜀𝑒𝑚

𝑧7
𝑧9

𝑧3𝑧4
𝑧1𝑧6

1
𝑧8

𝑧2
𝑧5

𝑀𝜀𝑒𝑚𝑒
𝑚1𝑒

𝑧8
𝑧5

𝑧6𝑧7
𝑧4𝑧9

𝑧3
𝑧1

1
𝑧2

𝑀𝑒𝑒𝑚𝑒
1𝑚𝜀

𝑧8
𝑧2

𝑧6
𝑧4

𝑧6
𝑧4

𝑧8
𝑧2

𝑀𝑚𝑒𝑚𝑒
𝜀𝑒1 𝑧8

𝑧1𝑧6
𝑧3𝑧4

𝑧9
𝑧7

𝑧5
𝑧2

𝑀𝜀𝑒𝑚𝑚
𝑚1𝑚

𝑧4𝑧9
𝑧6𝑧7

𝑧4𝑧9
𝑧6𝑧7

𝑧2 𝑧2 𝑀𝑒𝑒𝑚𝑚
1𝑚1

𝑧1𝑧9
𝑧3𝑧7

𝑧1𝑧9
𝑧3𝑧7

𝑧5 𝑧5 𝑀𝑚𝑒𝑚𝑚
𝜀𝑒𝜀

𝑧9
𝑧7

𝑧9
𝑧7

𝑧8 𝑧8
𝑀𝜀𝑚𝜀𝜀

𝑒𝑚𝑒
𝑧1
𝑧2

𝑧1
𝑧2

𝑧3 𝑧3 𝑀𝑒𝑚𝜀𝜀
𝜀1𝜀

𝑧1𝑧8
𝑧2𝑧7

𝑧1𝑧8
𝑧2𝑧7

𝑧6 𝑧6 𝑀𝑚𝑚𝜀𝜀
1𝜀1

𝑧1𝑧5
𝑧2𝑧4

𝑧1𝑧5
𝑧2𝑧4

𝑧9 𝑧9
𝑀𝜀𝑚𝜀𝑒

𝑒𝑚𝜀
𝑧2
𝑧1

𝑧4𝑧8
𝑧5𝑧7

1
𝑧3

𝑧6
𝑧9

𝑀𝑒𝑚𝜀𝑒
𝜀1𝑒

𝑧2𝑧7
𝑧1𝑧8

𝑧4
𝑧5

1
𝑧6

𝑧3
𝑧9

𝑀𝑚𝑚𝜀𝑒
1𝜀𝑚

𝑧2𝑧4
𝑧1𝑧5

𝑧2𝑧4
𝑧1𝑧5

1
𝑧9

1
𝑧9

𝑀𝜀𝑚𝜀𝑚
𝑒𝑚1 𝑧3

𝑧5𝑧7
𝑧4𝑧8

𝑧1
𝑧2

𝑧9
𝑧6

𝑀𝑒𝑚𝜀𝑚
𝜀1𝑚

𝑧3
𝑧9

𝑧2𝑧7
𝑧1𝑧8

𝑧4
𝑧5

1
𝑧6

𝑀𝑚𝑚𝜀𝑚
1𝜀𝑒

𝑧3
𝑧6

𝑧7
𝑧8

𝑧7
𝑧8

𝑧3
𝑧6

𝑀𝜀𝑚𝑒𝜀
𝑒1𝜀

𝑧4𝑧8
𝑧5𝑧7

𝑧2
𝑧1

1
𝑧3

𝑧6
𝑧9

𝑀𝑒𝑚𝑒𝜀
𝜀𝑚𝑒

𝑧4
𝑧5

𝑧2𝑧7
𝑧1𝑧8

1
𝑧6

𝑧3
𝑧9

𝑀𝑚𝑚𝑒𝜀
1𝑒𝑚

𝑧2𝑧4
𝑧1𝑧5

𝑧2𝑧4
𝑧1𝑧5

1
𝑧9

1
𝑧9

𝑀𝜀𝑚𝑒𝑒
𝑒1𝑒

𝑧5𝑧7
𝑧4𝑧8

𝑧5𝑧7
𝑧4𝑧8

𝑧3 𝑧3 𝑀𝑒𝑚𝑒𝑒
𝜀𝑚𝜀

𝑧5
𝑧4

𝑧5
𝑧4

𝑧6 𝑧6 𝑀𝑚𝑚𝑒𝑒
1𝑒1

𝑧1𝑧5
𝑧2𝑧4

𝑧1𝑧5
𝑧2𝑧4

𝑧9 𝑧9
𝑀𝜀𝑚𝑒𝑚

𝑒1𝑚
𝑧6
𝑧9

𝑧4𝑧8
𝑧5𝑧7

𝑧2
𝑧1

1
𝑧3

𝑀𝑒𝑚𝑒𝑚
𝜀𝑚1 𝑧6

𝑧1𝑧8
𝑧2𝑧7

𝑧5
𝑧4

𝑧9
𝑧3

𝑀𝑚𝑚𝑒𝑚
1𝑒𝜀

𝑧6
𝑧3

𝑧8
𝑧7

𝑧8
𝑧7

𝑧6
𝑧3

𝑀𝜀𝑚𝑚𝜀
𝑒𝜀1

𝑧5𝑧7
𝑧4𝑧8

𝑧3
𝑧1
𝑧2

𝑧9
𝑧6

𝑀𝑒𝑚𝑚𝜀
𝜀𝑒𝑚

𝑧2𝑧7
𝑧1𝑧8

𝑧3
𝑧9

𝑧4
𝑧5

1
𝑧6

𝑀𝑚𝑚𝑚𝜀
1𝑚𝑒

𝑧7
𝑧8

𝑧3
𝑧6

𝑧7
𝑧8

𝑧3
𝑧6

𝑀𝜀𝑚𝑚𝑒
𝑒𝜀𝑚

𝑧4𝑧8
𝑧5𝑧7

𝑧6
𝑧9

𝑧2
𝑧1

1
𝑧3

𝑀𝑒𝑚𝑚𝑒
𝜀𝑒1

𝑧1𝑧8
𝑧2𝑧7

𝑧6
𝑧5
𝑧4

𝑧9
𝑧3

𝑀𝑚𝑚𝑚𝑒
1𝑚𝜀

𝑧8
𝑧7

𝑧6
𝑧3

𝑧8
𝑧7

𝑧6
𝑧3

𝑀𝜀𝑚𝑚𝑚
𝑒𝜀𝑒

𝑧9
𝑧6

𝑧9
𝑧6

𝑧3 𝑧3 𝑀𝑒𝑚𝑚𝑚
𝜀𝑒𝜀

𝑧9
𝑧3

𝑧9
𝑧3

𝑧6 𝑧6 𝑀𝑚𝑚𝑚𝑚
1𝑚1 𝑧9 𝑧9 𝑧9 𝑧9

We can notice here again, when all of the particles are the same type the graph

braid symbols are equal, i.e. 𝑋𝑎𝑎𝑎𝑎 = 𝑌𝑎𝑎𝑎𝑎 = 𝐴𝑎𝑎𝑎𝑎 = 𝐵𝑎𝑎𝑎𝑎.

187

10.2.3 Solutions to the Lollipop Equations

10.2.3.1 Lollipop trijunction solutions

In contrast to the Ising model, demanding that 𝑃𝑎𝑏𝑐
𝑒𝑑 ≡ 𝑅𝑎𝑏

𝑒 does not necessarily im-

ply that the solutions must be planar. There are 32 solutions in total which can be

presented as follows:

𝑅22
1 = 𝜈1, 𝑅23

4 = 𝜈2, 𝑅24
3 = 𝜈1𝜈2, 𝑅32

4 = 𝜈3, 𝑅33
1 = 𝜈4,

𝑅34
2 = 𝜈3𝜈4, 𝑅42

3 = −1, 𝑅43
2 = 𝜈5, 𝑅44

1 = −𝜈5

and

Value of 𝑀 Value of 𝑀 Value of 𝑀

𝑃 𝑄 𝑃 𝑄 𝑃 𝑄

𝑀𝜀𝜀𝜀
1𝜀 𝜈1 𝜈1 𝑀𝑒𝜀𝜀

𝑚𝑒 𝜈3 −𝜈1 𝑀𝑚𝜀𝜀
𝑒𝑚 −1 𝜈1𝜈3

𝑀𝜀𝜀𝑒
1𝑒 𝜈1 −𝜈3 𝑀𝑒𝜀𝑒

𝑚𝜀 𝜈3 𝜈3 𝑀𝑚𝜀𝑒
𝑒1 −1 𝜈1𝜈3

𝑀𝜀𝜀𝑚
1𝑚 𝜈1 −𝜈3 𝑀𝑒𝜀𝑚

𝑚1 𝜈3 −𝜈1 𝑀𝑚𝜀𝑚
𝑒𝜀 −1 −1

𝑀𝜀𝑒𝜀
𝑚𝑒 𝜈2 𝜈2 𝑀𝑒𝑒𝜀

1𝜀 𝜈4 𝜈2𝜈5 𝑀𝑚𝑒𝜀
𝜀1 𝜈5 𝜈2𝜈4

𝑀𝜀𝑒𝑒
𝑚𝜀 𝜈2 𝜈4𝜈5 𝑀𝑒𝑒𝑒

1𝑒 𝜈4 𝜈4 𝑀𝑚𝑒𝑒
𝜀𝑚 𝜈5 𝜈2𝜈4

𝑀𝜀𝑒𝑚
𝑚1 𝜈2 𝜈4𝜈5 𝑀𝑒𝑒𝑚

1𝑚 𝜈4 𝜈2𝜈5 𝑀𝑚𝑒𝑚
𝜀𝑒 𝜈5 𝜈5

𝑀𝜀𝑚𝜀
𝑒𝑚 𝜈1𝜈2 𝜈1𝜈2 𝑀𝑒𝑚𝜀

𝜀1 𝜈3𝜈4 −𝜈1𝜈2𝜈5 𝑀𝑚𝑚𝜀
1𝜀 −𝜈5 𝜈1𝜈2𝜈3𝜈4

𝑀𝜀𝑚𝑒
𝑒1 𝜈1𝜈2 −𝜈3𝜈4𝜈5 𝑀𝑒𝑚𝑒

𝜀𝑚 𝜈3𝜈4 𝜈3𝜈4 𝑀𝑚𝑚𝑒
1𝑒 −𝜈5 𝜈1𝜈2𝜈3𝜈4

𝑀𝜀𝑚𝑚
𝑒𝜀 𝜈1𝜈2 −𝜈3𝜈4𝜈5 𝑀𝑒𝑚𝑚

𝜀𝑒 𝜈3𝜈4 −𝜈1𝜈2𝜈5 𝑀𝑚𝑚𝑚
1𝑚 −𝜈5 −𝜈5

where 𝜈𝑖 ∈ {−1, 1}. Demanding planarity then comes down to demanding that

𝜈1 = −𝜈3 and 𝜈2 = 𝜈4𝜈5. The loss of two binary degrees of freedom thus implies that

only one out of four solutions are planar. We find here again 𝑃𝑎𝑎𝑎 = 𝑄𝑎𝑎𝑎.

10.2.3.2 Circle Solutions

There are 128 solutions to the circle equations. They can be presented as follows:

𝐷1𝜀
𝜀 = 𝜇1, 𝐷1𝑒

𝑒 = 𝜇2, 𝐷1𝑚
𝑚 = 𝜇3, 𝐷𝜀𝜀

1 = 𝜇4, 𝐷𝜀𝑒
𝑚 = 𝜇5, 𝐷𝜀𝑚

𝑒 = 𝜇6,

𝐷𝑒𝜀
𝑚 = 𝜇3𝜇5, 𝐷𝑒𝑒

1 = 𝜇7, 𝐷𝑒𝑚
𝜀 = −𝜇1, 𝐷𝑚𝜀

𝑒 = 𝜇2𝜇6, 𝐷𝑚𝑒
𝜀 = −1, 𝐷𝑚𝑚

1 = 𝜇4𝜇7,
(10.9)

where 𝜇𝑖 ∈ {−1, 1}. The twist factors are the same as in the planar case.

188

10.2.3.3 Full Lollipop Solutions

In contrast to the Ising model, after fixing the 𝐹-symbols, there is a discrete ℤ2 gauge

symmetry left that has the following form:

𝑀𝜀𝑒
𝑚 ↦ −𝑀𝜀𝑒

𝑚 , 𝑀𝜀𝑚
𝑒 ↦ −𝑀𝜀𝑚

𝑒 , 𝑀𝑒𝜀
𝑚 ↦ −𝑀𝑒𝜀

𝑚 ,

𝑀𝑒𝑚
𝜀 ↦ −𝑀𝑒𝑚

𝜀 , 𝑀𝑚𝜀
𝑒 ↦ −𝑀𝑚𝜀

𝑒 , 𝑀𝑚𝑒
𝜀 ↦ −𝑀𝑚𝑒

𝜀 ,

for 𝑀 = 𝑅 and 𝑀 = 𝐷, and

𝑀𝜀𝑒𝑐
𝑚𝑑 ↦ −𝑀𝜀𝑒𝑐

𝑚𝑑 , 𝑀𝜀𝑚𝑐
𝑒𝑑 ↦ −𝑀𝜀𝑚𝑐

𝑒𝑑 , 𝑀𝑒𝜀𝑐
𝑚𝑑 ↦ −𝑀𝑒𝜀𝑐

𝑚𝑑 ,

𝑀𝑒𝑚𝑐
𝜀𝑑 ↦ −𝑀𝑒𝑚𝑐

𝜀𝑑 , 𝑀𝑚𝜀𝑐
𝑒𝑑 ↦ −𝑀𝑚𝜀𝑐

𝑒𝑑 , 𝑀𝑚𝑒𝑐
𝜀𝑑 ↦ −𝑀𝑚𝑒𝑐

𝜀𝑑 ,

for 𝑀 = 𝑃 and 𝑀 = 𝑄. For the solutions to the lollipop trijunction equations and

the circle equations, described in Section 10.2.3.1 and 10.2.3.2, this gauge symmetry

has been removed. To construct the full solution set to the lollipop equations one

should therefore re-introduce these gauge equivalent solutions, construct all products

between solutions to the trijunction lollipop equations and circle equations, and finally

remove this gauge symmetry again. This set has twice the size of the product set of

gauge-inequivalent solutions. It can be constructed by taking the product of the lol-

lipop trijunction solutions and the following set of non-reduced solutions to the circle

equations

𝐷1𝜀
𝜀 = 𝜇1, 𝐷1𝑒

𝑒 = 𝜇2, 𝐷1𝑚
𝑚 = 𝜇3, 𝐷𝜀𝜀

1 = 𝜇4, 𝐷𝜀𝑒
𝑚 = 𝜎𝜇5, 𝐷𝜀𝑚

𝑒 = 𝜎𝜇6,

𝐷𝑒𝜀
𝑚 = 𝜎𝜇3𝜇5, 𝐷𝑒𝑒

1 = 𝜇7, 𝐷𝑒𝑚
𝜀 = −𝜎𝜇1, 𝐷𝑚𝜀

𝑒 = 𝜎𝜇2𝜇6, 𝐷𝑚𝑒
𝜀 = −𝜎, 𝐷𝑚𝑚

1 = 𝜇4𝜇7,
(10.10)

where 𝜎 ∈ {−1, 1} reintroduces the ℤ2 gauge freedom.

10.3 Solutions for the TY(ℤ3) Model

The TY(ℤ3) fusion ring has 4 particles, 1,𝜓1, 𝜓2, 𝜎, where {1,𝜓1, 𝜓2} form a ℤ3 sub-

group, and

1 × 𝑎 = 𝑎 × 1 = 𝑎, ∀𝑎 ∈ {1,𝜓1, 𝜓2, 𝜎}, (10.11)

𝜎 × 𝑎 = 𝑎 × 𝜎 = 𝜎, ∀𝑎 ∈ {1,𝜓1, 𝜓2}, (10.12)

𝜎 × 𝜎 = 1 + 𝜓1 + 𝜓2. (10.13)

In the following sections we will list the solutions to the pentagon equations as well as

the circle equations. All other equations admit no solutions. We omit any well-defined

symbol equal to 1.

189

10.3.1 Solutions to the Pentagon Equations

There are four solutions to the pentagon equations which can be presented as follows:

[𝐹𝜎𝜎𝜓1
𝜓1

]1𝜎 = 𝜅1, [𝐹𝜎𝜎𝜓2
𝜓2

]1𝜎 = 𝜅1, [𝐹𝜎𝜓1𝜎
𝜓1

]𝜎𝜎 = 𝑒−
2
3 𝑖𝜋𝜅1𝜅2 ,

[𝐹𝜎𝜓1𝜎
𝜓2

]𝜎𝜎 = 𝑒
2
3 𝑖𝜋𝜅1𝜅2 , [𝐹𝜎𝜓1𝜓2

𝜎]𝜎1 = 𝜅1, [𝐹𝜎𝜓2𝜎
𝜓1

]𝜎𝜎 = 𝑒
2
3 𝑖𝜋𝜅1𝜅2 ,

[𝐹𝜎𝜓2𝜎
𝜓2

]𝜎𝜎 = 𝑒−
2
3 𝑖𝜋𝜅1𝜅2 , [𝐹𝜎𝜓2𝜓1

𝜎]𝜎1 = 𝜅1, [𝐹𝜓1𝜎𝜎
𝜓1

]𝜎1 = 𝜅1,

[𝐹𝜓1𝜎𝜓1
𝜎]𝜎𝜎 = 𝑒−

2
3 𝑖𝜋𝜅1𝜅2 , [𝐹𝜓1𝜎𝜓2

𝜎]𝜎𝜎 = 𝑒
2
3 𝑖𝜋𝜅1𝜅2 , [𝐹𝜓1𝜓1𝜓2

𝜓1
]𝜓2
1 = 𝜅1,

[𝐹𝜓1𝜓2𝜎
𝜎]1𝜎 = 𝜅1, [𝐹𝜓1𝜓2𝜓2

𝜓2
]1𝜓1

= 𝜅1, [𝐹𝜓2𝜎𝜎
𝜓2

]𝜎1 = 𝜅1,

[𝐹𝜓2𝜎𝜓1
𝜎]𝜎𝜎 = 𝑒

2
3 𝑖𝜋𝜅1𝜅2 , [𝐹𝜓2𝜎𝜓2

𝜎]𝜎𝜎 = 𝑒−
2
3 𝑖𝜋𝜅1𝜅2 , [𝐹𝜓2𝜓1𝜎

𝜎]1𝜎 = 𝜅1,

[𝐹𝜓2𝜓1𝜓1
𝜓1

]1𝜓2
= 𝜅1, [𝐹𝜓2𝜓2𝜓1

𝜓2
]𝜓1
1 = 𝜅1,

[𝐹𝜎𝜎𝜎
𝜎] =

1

√3

⎡⎢⎢⎢

⎣

𝜅1 1 1

1 𝑒𝑖𝜋(
𝜅1
6 + 1

2)𝜅2 𝑒−𝑖𝜋(𝜅1
6 + 1

2)𝜅2

1 𝑒−𝑖𝜋(𝜅1
6 + 1

2)𝜅2 𝑒𝑖𝜋(
𝜅1
6 + 1

2)𝜅2

⎤⎥⎥⎥

⎦

,

where 𝜅1, 𝜅2 ∈ {−1, 1} and the matrix indices of [𝐹𝜎𝜎𝜎
𝜎] range over (1, 𝜓1, 𝜓2).

10.3.2 Solutions to the Circle Equations

In contrast to the planar hexagon equations, we now find there are 48 solutions, per

set of 𝐹-symbols, to the circle equations. Let 𝜀𝑖 ∈ {−1, 1} and 𝜈 ∈ {0, 1, 2}, then they

can be presented as follows.

If (𝜅1, 𝜅2) = (−1,−1) then

𝐷1𝜎
𝜎 = 𝜀1𝑒

𝑖𝜋
12 (7−2𝜈(𝜈+1)), 𝐷1𝜓1

𝜓1
= 𝑒−

2𝑖𝜋
3 ,

𝐷1𝜓2
𝜓2

= 𝑒−
2𝑖𝜋
3 , 𝐷𝜎𝜎

1 = 𝜀2,

𝐷𝜎𝜎
𝜓1

= 𝑒𝑖𝜋(
𝜀3
2 + 1

6), 𝐷𝜎𝜎
𝜓2

= 𝑒𝑖𝜋(
𝜀4
2 + 1

6),

𝐷𝜎𝜓1
𝜎 = 𝑒

2𝑖𝜋
3 ((𝜈−1)2𝜀1−1), 𝐷𝜎𝜓2

𝜎 = 𝑒−
2𝑖𝜋
3 ((𝜈−1)2𝜀1+1),

𝐷𝜓1𝜎
𝜎 = 𝑒−

𝑖𝜋
12(2𝜈

2+2𝜈−9+2𝜀1(4𝜈
2−8𝜈+1)), 𝐷𝜓1𝜓1

𝜓2
= 𝑒

2𝑖𝜋
3 ,

𝐷𝜓2𝜎
𝜎 = 𝑒−

𝑖𝜋
12(2𝜈

2−10𝜈+3+𝜀1(4𝜈
2−8𝜈−2)), 𝐷𝜓2𝜓2

𝜓1
= 𝑒

2𝑖𝜋
3 .

If (𝜅1, 𝜅2) = (−1, 1) then

𝐷1𝜎
𝜎 = 𝜀1𝑒

𝑖𝜋
12 (5+2𝜈(𝜈+1)), 𝐷1𝜓1

𝜓1
= 𝑒

2𝑖𝜋
3 ,

𝐷1𝜓2
𝜓2

= 𝑒
2𝑖𝜋
3 , 𝐷𝜎𝜎

1 = 𝜀2,

𝐷𝜎𝜎
𝜓1

= 𝑒−𝑖𝜋(1
6−

𝜀3
2), 𝐷𝜎𝜎

𝜓2
= 𝑒−𝑖𝜋(1

6−
𝜀4
2),

𝐷𝜎𝜓1
𝜎 = 𝑒

2𝑖𝜋
3 (3−2𝜈), 𝐷𝜎𝜓2

𝜎 = 𝑒
2𝑖𝜋
3 (2𝜈−1),

𝐷𝜓1𝜎
𝜎 = 𝑒

𝑖𝜋
12(2𝜈

2−6𝜈−1+6𝜀1), 𝐷𝜓1𝜓1
𝜓2

= 𝑒−
2𝑖𝜋
3 ,

𝐷𝜓2𝜎
𝜎 = 𝑒

𝑖𝜋
12(2𝜈

2−2𝜈−5−6𝜀1(2𝜈
2−4𝜈+1)), 𝐷𝜓2𝜓2

𝜓1
= 𝑒−

2𝑖𝜋
3 .

190

If (𝜅1, 𝜅2) = (1,−1) then

𝐷1𝜎
𝜎 = 𝜀1𝑒

− 𝑖𝜋
12 (−1+2𝜈(𝜈+1)), 𝐷1𝜓1

𝜓1
= 𝑒−

2𝑖𝜋
3 ,

𝐷1𝜓2
𝜓2

= 𝑒−
2𝑖𝜋
3 , 𝐷𝜎𝜎

1 = 𝜀2,

𝐷𝜎𝜎
𝜓1

= 𝑒𝑖𝜋(
𝜀3
2 + 1

6), 𝐷𝜎𝜎
𝜓2

= 𝑒𝑖𝜋(
𝜀4
2 + 1

6),

𝐷𝜎𝜓1
𝜎 = 𝑒

2𝑖𝜋
3 ((𝜈−1)2𝜀1−1), 𝐷𝜎𝜓2

𝜎 = 𝑒
2𝑖𝜋
3 ((𝜈−1)2(−𝜀1)−1),

𝐷𝜓1𝜎
𝜎 = 𝑒−

𝑖𝜋
12(2𝜈

2−10𝜈−3−𝜀1(4𝜈
2−8𝜈−2)), 𝐷𝜓1𝜓1

𝜓2
= 𝑒

2𝑖𝜋
3 ,

𝐷𝜓2𝜎
𝜎 = 𝑒−

𝑖𝜋
12(2𝜈

2+2𝜈−15−2𝜀1(4𝜈
2−8𝜈+1)), 𝐷𝜓2𝜓2

𝜓1
= 𝑒

2𝑖𝜋
3 .

If (𝜅1, 𝜅2) = (1, 1) then

𝐷1𝜎
𝜎 = 𝜀1𝑒

𝑖𝜋
12 (−1+2𝜈(𝜈+1)), 𝐷1𝜓1

𝜓1
= 𝑒

2𝑖𝜋
3 ,

𝐷1𝜓2
𝜓2

= 𝑒
2𝑖𝜋
3 , 𝐷𝜎𝜎

1 = 𝜀2,

𝐷𝜎𝜎
𝜓1

= 𝑒−𝑖𝜋(1
6−

𝜀3
2), 𝐷𝜎𝜎

𝜓2
= 𝑒−𝑖𝜋(1

6−
𝜀4
2),

𝐷𝜎𝜓1
𝜎 = 𝑒

2𝑖𝜋
3 (3−2𝜈), 𝐷𝜎𝜓2

𝜎 = 𝑒
2𝑖𝜋
3 (2𝜈−1),

𝐷𝜓1𝜎
𝜎 = 𝑒

𝑖𝜋
12(2𝜈

2−6𝜈+5−6𝜀1), 𝐷𝜓1𝜓1
𝜓2

= 𝑒−
2𝑖𝜋
3 ,

𝐷𝜓2𝜎
𝜎 = 𝑒

𝑖𝜋
12(2𝜈

2−2𝜈+1+6𝜀1(2𝜈
2−4𝜈+1)), 𝐷𝜓2𝜓2

𝜓1
= 𝑒−

2𝑖𝜋
3 .

191

192

Bibliography

[1] Willie Aboumrad. Quantum computing with anyons: an 𝐹-matrix and braid cal-

culator. en. arXiv:2212.00831 [quant-ph]. Dec. 2022.

[2] S. M. Albrecht et al. “Exponential protection of zero modes in Majorana is-

lands”. en. In: Nature 531.7593 (Mar. 2016), pp. 206–209. doi: 10.1038/
nature17162.

[3] Max A. Alekseyev et al. Classification of modular data of integral modular fusion

categories up to rank 12. en. arXiv:2302.01613 [math-ph]. May 2023.

[4] ByungHeeAn andTomaszMaciazek. “Geometric Presentations of BraidGroups

for Particles on a Graph”. en. In: Communications in Mathematical Physics 384.2

(June 2021), pp. 1109–1140. doi: 10.1007/s00220-021-04095-x.

[5] Eddy Ardonne. alatc. May 2023.

[6] Eddy Ardonne and Joost Slingerland. “Clebsch–Gordan and 6j -coefficients for

rank 2 quantum groups”. en. In: Journal of Physics A: Mathematical and Theo-

retical 43.39 (Oct. 2010), p. 395205. doi: 10.1088/1751-8113/43/39/
395205.

[7] E. Artin. “Theory of Braids”. In: Annals of Mathematics 48.1 (1947). Publisher:

Annals of Mathematics, pp. 101–126.

[8] Bojko Bakalov and A.A. Kirillov. “Lectures on tensor categories and modular

functors”. In: Amer. Math. Soc. Univ. Lect. Ser. 21 (Jan. 2001).

[9] JohnW.Barrett andBruceW.Westbury. Invariants of Piecewise-Linear 3-Manifolds.

en. arXiv:hep-th/9311155. Aug. 1995.

[10] Parsa Hassan Bonderson. “Non-Abelian Anyons and Interferometry”. en. In:

(2007).

[11] B. Buchberger. “A theoretical basis for the reduction of polynomials to canon-

ical forms”. en. In: ACM SIGSAM Bulletin 10.3 (Aug. 1976), pp. 19–29. doi:

10.1145/1088216.1088219.

[12] Jacob C. Bridgeman. smallRankUnitaryFusionData. June 2023.

[13] FrankCalegari, ScottMorrison, andNoah Snyder. “Cyclotomic Integers, Fusion

Categories, and Subfactors”. en. In: Communications in Mathematical Physics

303.3 (May 2011), pp. 845–896. doi: 10.1007/s00220-010-1136-2.

193

https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1007/s00220-021-04095-x
https://doi.org/10.1088/1751-8113/43/39/395205
https://doi.org/10.1088/1751-8113/43/39/395205
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1007/s00220-010-1136-2

[14] H. O. H. Churchill et al. “Superconductor-nanowire devices from tunneling

to the multichannel regime: Zero-bias oscillations and magnetoconductance

crossover”. In: Phys. Rev. B 87.24 (June 2013). Publisher: American Physical

Society, p. 241401. doi: 10.1103/PhysRevB.87.241401.

[15] A. Conlon and J. K. Slingerland. “Compatibility of braiding and fusion on wire

networks”. In: Phys. Rev. B 108.3 (July 2023). Publisher: American Physical

Society, p. 035150. doi: 10.1103/PhysRevB.108.035150.

[16] Louis Crane, Louis H. Kauffman, and David N. Yetter. “State-Sum Invariants of

4-Manifolds”. In: Journal of Knot Theory and Its Ramifications 06.02 (1997). _-

eprint: https://doi.org/10.1142/S0218216597000145, pp. 177–234. doi: 10.
1142/S0218216597000145.

[17] Thomas Creutzig. “Fusion categories for affine vertex algebras at admissible

levels”. en. In: Selecta Mathematica 25.2 (June 2019), p. 27. doi: 10.1007/
s00029-019-0479-6.

[18] Shawn X. Cui and Zhenghan Wang. “State sum invariants of three manifolds

from spherical multi-fusion categories”. en. In: Journal of Knot Theory and Its

Ramifications 26.14 (Dec. 2017), p. 1750104. doi:10.1142/S0218216517501048.

[19] Orit Davidovich, Tobias Hagge, and Zhenghan Wang. On Arithmetic Modular

Categories. en. arXiv:1305.2229 [math]. May 2013.

[20] Colleen Delaney, Eric C. Rowell, and Zhenghan Wang. “Local unitary repre-

sentations of the braid group and their applications to quantum computing”.

en. In: Revista Colombiana de Matemáticas 50.2 (Jan. 2017), p. 211. doi: 10.
15446/recolma.v50n2.62211.

[21] Colleen Delaney et al. “Braided zesting and its applications”. en. In: Communi-

cations in Mathematical Physics 386.1 (Aug. 2021). arXiv:2005.05544 [math],

pp. 1–55. doi: 10.1007/s00220-021-04002-4.

[22] M.T.Deng et al. “Anomalous Zero-BiasConductance Peak in aNb–InSbNanowire–Nb

Hybrid Device”. en. In: Nano Letters 12.12 (Dec. 2012), pp. 6414–6419. doi:

10.1021/nl303758w.

[23] Lukas Devos. CategoryData. June 2024.

[24] Thomas W. Dubé. “The Structure of Polynomial Ideals and Gröbner Bases”. In:

SIAMJournal onComputing 19.4 (1990). _eprint: https://doi.org/10.1137/0219053,

pp. 750–773. doi: 10.1137/0219053.

[25] P. I. Etingof et al., eds. Tensor categories. en. Mathematical surveys and mono-

graphs volume 205. Providence, Rhode Island: American Mathematical Soci-

ety, 2015.

[26] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik. “Weakly group-theoretical

and solvable fusion categories”. en. In: Advances in Mathematics 226.1 (Jan.

2011), pp. 176–205. doi: 10.1016/j.aim.2010.06.009.

194

https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.108.035150
https://doi.org/10.1142/S0218216597000145
https://doi.org/10.1142/S0218216597000145
https://doi.org/10.1007/s00029-019-0479-6
https://doi.org/10.1007/s00029-019-0479-6
https://doi.org/10.1142/S0218216517501048
https://doi.org/10.15446/recolma.v50n2.62211
https://doi.org/10.15446/recolma.v50n2.62211
https://doi.org/10.1007/s00220-021-04002-4
https://doi.org/10.1021/nl303758w
https://doi.org/10.1137/0219053
https://doi.org/10.1016/j.aim.2010.06.009

[27] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik. On fusion categories. en.

arXiv:math/0203060. Apr. 2017.

[28] Pavel Etingof and Victor Ostrik. On semisimplification of tensor categories. 2019.

arXiv: 1801.04409 [math.RT].

[29] Pavel Etingof et al.Tensor categories. en.Mathematical surveys andmonographs

volume 205. Providence, Rhode Island: American Mathematical Society, 2015.

[30] David E. Evans and Terry Gannon. Near-group fusion categories and their dou-

bles. en. arXiv:1208.1500 [hep-th]. Aug. 2012.

[31] Daniel Farley andLucas Sabalka. “DiscreteMorse theory and graphbraid groups”.

en. In: Algebraic & Geometric Topology 5.3 (Aug. 2005), pp. 1075–1109. doi:

10.2140/agt.2005.5.1075.

[32] Daniel Farley and Lucas Sabalka. “Presentations of graph braid groups”. In: Fo-

rum Mathematicum 24.4 (2012), pp. 827–859. doi: doi:10.1515/form.
2011.086.

[33] JeanCharles Faugère. “ANewEfficientAlgorithm forComputingGröbner Bases

without Reduction to Zero (F5)”. In: Proceedings of the 2002 International Sym-

posium on Symbolic and Algebraic Computation. ISSAC ’02. event-place: Lille,

France.NewYork,NY,USA:Association forComputingMachinery, 2002, pp. 75–

83. doi: 10.1145/780506.780516.

[34] Jean-Charles Faugère. “A new e cient algorithm for computing Grobner bases

(F4)”. en. In: Journal of Pure and Applied Algebra (1999).

[35] Richard P. Feynman. “Simulating physics with computers”. In: International

Journal of Theoretical Physics 21.6 (June 1982), pp. 467–488. doi: 10.1007/
BF02650179.

[36] A. D. K. Finck et al. “Anomalous Modulation of a Zero-Bias Peak in a Hybrid

Nanowire-SuperconductorDevice”. en. In:Physical ReviewLetters 110.12 (Mar.

2013), p. 126406. doi: 10.1103/PhysRevLett.110.126406.

[37] Michael H. Freedman et al. Topological Quantum Computation. en. arXiv:quant-

ph/0101025. Sept. 2002.

[38] Jürg Fröhlich and Thomas Kerler. Quantum groups, quantum categories, and

quantum field theory. en. Lecture notes in mathematics 1542. Berlin : New York:

Springer-Verlag, 1993.

[39] Jürgen Fuchs. “Fusion Rules in Conformal Field Theory”. en. In: Fortschritte

der Physik/Progress of Physics 42.1 (1994), pp. 1–48. doi: 10.1002/prop.
2190420102.

[40] César Galindo. “On Braided and Ribbon Unitary Fusion Categories”. en. In:

CanadianMathematical Bulletin 57.3 (Sept. 2014), pp. 506–510. doi:10.4153/
CMB-2013-017-5.

195

https://arxiv.org/abs/1801.04409
https://doi.org/10.2140/agt.2005.5.1075
https://doi.org/doi:10.1515/form.2011.086
https://doi.org/doi:10.1515/form.2011.086
https://doi.org/10.1145/780506.780516
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1002/prop.2190420102
https://doi.org/10.1002/prop.2190420102
https://doi.org/10.4153/CMB-2013-017-5
https://doi.org/10.4153/CMB-2013-017-5

[41] Doron Gepner and Anton Kapustin. “On the classification of fusion rings”. en.

In: Physics Letters B 349.1-2 (Apr. 1995), pp. 71–75. doi: 10.1016/0370-
2693(95)00172-H.

[42] Google Quantum AI and Collaborators et al. “Non-Abelian braiding of graph

vertices in a superconducting processor”. en. In: Nature 618.7964 (June 2023),

pp. 264–269. doi: 10.1038/s41586-023-05954-4.

[43] Pinhas Grossman and Noah Snyder. “Quantum Subgroups of the Haagerup Fu-

sion Categories”. en. In: Communications in Mathematical Physics 311.3 (May

2012), pp. 617–643. doi: 10.1007/s00220-012-1427-x.

[44] PinhasGrossman et al.TheExtendedHaagerup fusion categories. en. arXiv:1810.06076

[math]. Oct. 2018.

[45] LovK.Grover. “QuantumMechanicsHelps in Searching for aNeedle in aHaystack”.

en. In: Physical Review Letters 79.2 (July 1997), pp. 325–328. doi: 10.1103/
PhysRevLett.79.325.

[46] Jutho Haegeman. TensorKit. ”DOI: 10.5281/zenodo.10574897”. July 2024.

[47] Tobias Hagge and Matthew Titsworth. Geometric Invariants for Fusion Cate-

gories. en. arXiv:1509.03275 [math]. Sept. 2015.

[48] André Henriques and David Penneys. Bicommutant categories from fusion cat-

egories. en. arXiv:1511.05226 [math]. Dec. 2016.

[49] Mohsin Iqbal et al. “Non-Abelian topological order and anyons on a trapped-

ion processor”. en. In: Nature 626.7999 (Feb. 2024), pp. 505–511. doi: 10.
1038/s41586-023-06934-4.

[50] Corey Jones and David Penneys. “Operator algebras in rigid 𝐶∗-tensor cate-

gories”. en. In: Communications in Mathematical Physics 355.3 (Nov. 2017).

arXiv:1611.04620 [math], pp. 1121–1188. doi: 10.1007/s00220-017-
2964-0.

[51] Vaughan F. R. Jones, Scott Morrison, and Noah Snyder. “The classification of

subfactors of index at most 5”. en. In: Bulletin of the American Mathematical So-

ciety 51.2 (Dec. 2013). arXiv:1304.6141 [math], pp. 277–327. doi: 10.1090/
S0273-0979-2013-01442-3.

[52] A. Joyal and R. Street. “Braided Tensor Categories”. In: Advances in Mathemat-

ics 102.1 (1993), pp. 20–78. doi: https://doi.org/10.1006/aima.
1993.1055.

[53] André Joyal and Ross Street. “The geometry of tensor calculus, I”. en. In: Ad-

vances in Mathematics 88.1 (July 1991), pp. 55–112. doi: 10.1016/0001-
8708(91)90003-P.

[54] Christian Kassel. Quantum Groups. en. Vol. 155. Graduate Texts in Mathemat-

ics. New York, NY: Springer New York, 1995. doi: 10.1007/978-1-4612-
0783-2.

196

https://doi.org/10.1016/0370-2693(95)00172-H
https://doi.org/10.1016/0370-2693(95)00172-H
https://doi.org/10.1038/s41586-023-05954-4
https://doi.org/10.1007/s00220-012-1427-x
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1038/s41586-023-06934-4
https://doi.org/10.1038/s41586-023-06934-4
https://doi.org/10.1007/s00220-017-2964-0
https://doi.org/10.1007/s00220-017-2964-0
https://doi.org/10.1090/S0273-0979-2013-01442-3
https://doi.org/10.1090/S0273-0979-2013-01442-3
https://doi.org/https://doi.org/10.1006/aima.1993.1055
https://doi.org/https://doi.org/10.1006/aima.1993.1055
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1007/978-1-4612-0783-2
https://doi.org/10.1007/978-1-4612-0783-2

[55] A.Yu. Kitaev. “Fault-tolerant quantum computation by anyons”. en. In: Annals

of Physics 303.1 (Jan. 2003), pp. 2–30. doi: 10.1016/S0003-4916(02)
00018-0.

[56] Alexei Kitaev. “Anyons in an exactly solved model and beyond”. en. In: Annals

of Physics 321.1 (Jan. 2006). arXiv:cond-mat/0506438, pp. 2–111. doi: 10.
1016/j.aop.2005.10.005.

[57] Liang Kong and Xiao-Gang Wen. Braided fusion categories, gravitational anoma-

lies, and the mathematical framework for topological orders in any dimensions. en.

arXiv:1405.5858 [cond-mat, physics:hep-th]. May 2014.

[58] Michaël Krajecki, Christophe Jaillet, and Alain Bui. “Parallel tree search for

combinatorial problems: a comparative study between openMP and MPI”. en.

In: (2005).

[59] Vitaliy Kurlin. “Computing braid groups of graphs with applications to robot

motion planning”. en. In: Homology, Homotopy and Applications 14.1 (2012),

pp. 159–180. doi: 10.4310/HHA.2012.v14.n1.a8.

[60] J. M. Leinaas and J. Myrheim. “On the theory of identical particles”. In: Il Nuovo

CimentoB (1971-1996) 37.1 (Jan. 1977), pp. 1–23. doi:10.1007/BF02727953.

[61] Michael A. Levin and Xiao-Gang Wen. “String-net condensation: A physical

mechanism for topological phases”. en. In: Physical Review B 71.4 (Jan. 2005),

p. 045110. doi: 10.1103/PhysRevB.71.045110.

[62] Zhengwei Liu, Scott Morrison, and David Penneys. “1-supertransitive subfac-

tors with index at most 6+1/5”. en. In: Communications in Mathematical Physics

334.2 (Mar. 2015). arXiv:1310.8566 [math], pp. 889–922. doi: 10.1007/
s00220-014-2160-4.

[63] Zhengwei Liu, Sebastien Palcoux, andYunxiangRen. “Classification ofGrothendieck

rings of complex fusion categories of multiplicity one up to rank six”. en. In:

Letters in Mathematical Physics 112.3 (June 2022). arXiv:2010.10264 [math],

p. 54. doi: 10.1007/s11005-022-01542-1.

[64] Zhengwei Liu, Sebastien Palcoux, and Yunxiang Ren. Triangular Prism Equa-

tions and Categorification. en. arXiv:2203.06522 [math-ph]. May 2023.

[65] Zhengwei Liu, Sebastien Palcoux, and JinsongWu.FusionBialgebras andFourier

Analysis. en. arXiv:1910.12059 [math]. June 2021.

[66] Seth Lloyd. “Universal Quantum Simulators”. en. In: Science 273.5278 (Aug.

1996), pp. 1073–1078. doi: 10.1126/science.273.5278.1073.

[67] Saunders Mac Lane. Categories for the Working Mathematician. en. Vol. 5. Grad-

uate Texts in Mathematics. New York, NY: Springer New York, 1978. doi: 10.
1007/978-1-4757-4721-8.

[68] Tomasz Maciazek et al. Extending the planar theory of anyons to quantum wire

networks. en. arXiv:2301.06590 [cond-mat, physics:math-ph, physics:quant-ph].

Jan. 2023.

197

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.4310/HHA.2012.v14.n1.a8
https://doi.org/10.1007/BF02727953
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1007/s00220-014-2160-4
https://doi.org/10.1007/s00220-014-2160-4
https://doi.org/10.1007/s11005-022-01542-1
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8

[69] Fabian Mäurer. “Developing a category theory framework in Julia”. MA thesis.

University of Kaiserslautern, Jan. 2021.

[70] Fabian Mäurer and Ulrich Thiel. An algorithm for computing the center of a fu-

sion category. In preparation.

[71] Fabian Mäurer and Ulrich Thiel. TensorCategories.

[72] Ernst W Mayr and Albert R Meyer. “The complexity of the word problems

for commutative semigroups and polynomial ideals”. en. In: Advances in Math-

ematics 46.3 (Dec. 1982), pp. 305–329. doi: 10.1016/0001-8708(82)
90048-2.

[73] Catherine Meusburger. “State sum models with defects based on spherical fu-

sion categories”. en. In: Advances in Mathematics 429 (Sept. 2023), p. 109177.

doi: 10.1016/j.aim.2023.109177.

[74] Roger Mong et al. “Fibonacci anyons and charge density order in the 12/5 and

13/5 quantum Hall plateaus”. In: Physical Review B 95 (Mar. 2017). doi: 10.
1103/PhysRevB.95.115136.

[75] Gregory Moore and Nathan Seiberg. “Classical and quantum conformal field

theory”. en. In: Communications in Mathematical Physics 123.2 (June 1989),

pp. 177–254. doi: 10.1007/BF01238857.

[76] V. Mourik et al. “Signatures of Majorana Fermions in Hybrid Superconductor-

SemiconductorNanowireDevices”. en. In: Science 336.6084 (May2012), pp. 1003–

1007. doi: 10.1126/science.1222360.

[77] Michael Müger. “From subfactors to categories and topology II: The quantum

double of tensor categories and subfactors”. en. In: Journal of Pure and Applied

Algebra 180.1-2 (May 2003), pp. 159–219. doi: 10.1016/S0022-4049(02)
00248-7.

[78] Deepak Naidu and Eric C. Rowell. “A Finiteness Property for Braided Fusion

Categories”. en. In:Algebras andRepresentationTheory 14.5 (Oct. 2011), pp. 837–

855. doi: 10.1007/s10468-010-9219-5.

[79] Chetan Nayak et al. “Non-Abelian Anyons and Topological Quantum Compu-

tation”. en. In: Reviews of Modern Physics 80.3 (Sept. 2008). arXiv:0707.1889

[cond-mat], pp. 1083–1159. doi: 10.1103/RevModPhys.80.1083.

[80] Siu-Hung Ng, Eric C. Rowell, and Xiao-Gang Wen. Classification of modular

data up to rank 11. en. arXiv:2308.09670 [cond-mat]. Aug. 2023.

[81] JiannisK. Pachos. Introduction toTopologicalQuantumComputation. Cambridge

University Press, 2012.

[82] John Preskill. “Lecture Notes for Physics 219: Quantum Computation”. In: (Jan.

1999).

198

https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/j.aim.2023.109177
https://doi.org/10.1103/PhysRevB.95.115136
https://doi.org/10.1103/PhysRevB.95.115136
https://doi.org/10.1007/BF01238857
https://doi.org/10.1126/science.1222360
https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.1016/S0022-4049(02)00248-7
https://doi.org/10.1007/s10468-010-9219-5
https://doi.org/10.1103/RevModPhys.80.1083

[83] N. Reshetikhin and V. G. Turaev. “Invariants of 3-manifolds via link polynomi-

als and quantum groups”. en. In: Inventiones Mathematicae 103.1 (Dec. 1991),

pp. 547–597. doi: 10.1007/BF01239527.

[84] N.Y. Reshetikhin andV.G. Turaev. “Ribbon graphs and their invaraints derived

from quantum groups”. en. In: Communications in Mathematical Physics 127.1

(Jan. 1990), pp. 1–26. doi: 10.1007/BF02096491.

[85] David Reutter. “Uniqueness of Unitary Structure for Unitarizable Fusion Cat-

egories”. en. In: Communications in Mathematical Physics 397.1 (Jan. 2023),

pp. 37–52. doi: 10.1007/s00220-022-04425-7.

[86] Leonid P. Rokhinson, Xinyu Liu, and Jacek K. Furdyna. “The fractional a.c.

Josephson effect in a semiconductor–superconductor nanowire as a signature

of Majorana particles”. en. In: Nature Physics 8.11 (Nov. 2012), pp. 795–799.

doi: 10.1038/nphys2429.

[87] E C Rowell. “An Invitation to the Mathematics of Topological Quantum Com-

putation”. en. In: Journal of Physics: Conference Series 698 (Mar. 2016), p. 012012.

doi: 10.1088/1742-6596/698/1/012012.

[88] Eric Rowell and Zhenghan Wang. “Mathematics of topological quantum com-

puting”. en. In: Bulletin of the American Mathematical Society 55.2 (Jan. 2018),

pp. 183–238. doi: 10.1090/bull/1605.

[89] Eric C. Rowell. From Quantum Groups to Unitary Modular Tensor Categories. en.

arXiv:math/0503226. Mar. 2006.

[90] Eric C. Rowell and Zhenghan Wang. “Degeneracy and non-Abelian statistics”.

In: Physical Review A 93.3 (Mar. 2016). doi: 10 . 1103 / physreva . 93 .
030102.

[91] Eric C. Rowell and Zhenghan Wang. Mathematics of Topological Quantum Com-

puting. en. arXiv:1705.06206 [cond-mat, physics:math-ph, physics:quant-ph].

Dec. 2017.

[92] Andrew Schopieray. Lie Theory for Fusion Categories: a Research Primer. en.

arXiv:1810.09055 [math]. Oct. 2018.

[93] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and

factoring”. In: Proceedings 35th Annual Symposium on Foundations of Computer

Science (1994), pp. 124–134.

[94] DaisukeTambara and ShigeruYamagami. “TensorCategorieswith FusionRules

of Self-Duality for Finite Abelian Groups”. en. In: Journal of Algebra 209.2 (Nov.

1998), pp. 692–707. doi: 10.1006/jabr.1998.7558.

[95] Josiah E Thornton. “Generalized near-group categories”. en. In: (2012).

[96] V. G. Turaev. Quantum invariants of knots and 3-manifolds. en. 2nd rev. ed. De

Gruyter studies in mathematics 18. Berlin ; New York: De Gruyter, 2010.

199

https://doi.org/10.1007/BF01239527
https://doi.org/10.1007/BF02096491
https://doi.org/10.1007/s00220-022-04425-7
https://doi.org/10.1038/nphys2429
https://doi.org/10.1088/1742-6596/698/1/012012
https://doi.org/10.1090/bull/1605
https://doi.org/10.1103/physreva.93.030102
https://doi.org/10.1103/physreva.93.030102
https://doi.org/10.1006/jabr.1998.7558

[97] V.G. Turaev and O.Y. Viro. “State sum invariants of 3-manifolds and quantum

6j-symbols”. en. In: Topology 31.4 (Oct. 1992), pp. 865–902. doi: 10.1016/
0040-9383(92)90015-A.

[98] Vladimir Turaev andAlexisVirelizier.Monoidal Categories andTopological Field

Theory. en. Vol. 322. Progress in Mathematics. Cham: Springer International

Publishing, 2017. doi: 10.1007/978-3-319-49834-8.

[99] Cumrun Vafa. “Toward classification of conformal theories”. en. In: Physics

Letters B 206.3 (May 1988), pp. 421–426. doi: 10.1016/0370-2693(88)
91603-6.

[100] Gert Vercleyen. Anyonica. ”DOI: 10.5281/zenodo.10686860”. Feb. 2024.

[101] GertVercleyen. “TheMathematical Structure of TensorNetworks”. en. In: (2018).

[102] GertVercleyen and Joost Slingerland.OnLowRankFusionRings. en. arXiv:2205.15637

[math-ph]. Mar. 2023.

[103] Zhenghan Wang. “Topological Quantum Computation”. en. In: (2010).

[104] Zhenghan Wang. “Topologization of electron liquids with Chern-Simons the-

ory and quantum computation”. en. In: Differential Geometry and Physics. Tian-

jin, China: WORLD SCIENTIFIC, Dec. 2006, pp. 106–120. doi: 10.1142/
9789812772527_0005.

[105] Shigeru Yamagami. “Frobenius duality in 𝐶∗-tensor categories”. en. In: (2004).

[106] Shigeru Yamagami. “Polygonal presentations of semisimple tensor categories”.

en. In: Journal of the Mathematical Society of Japan 54.1 (Jan. 2002). doi: 10.
2969/jmsj/1191593955.

200

https://doi.org/10.1016/0040-9383(92)90015-A
https://doi.org/10.1016/0040-9383(92)90015-A
https://doi.org/10.1007/978-3-319-49834-8
https://doi.org/10.1016/0370-2693(88)91603-6
https://doi.org/10.1016/0370-2693(88)91603-6
https://doi.org/10.1142/9789812772527_0005
https://doi.org/10.1142/9789812772527_0005
https://doi.org/10.2969/jmsj/1191593955
https://doi.org/10.2969/jmsj/1191593955

	I Introduction
	Anyons as Unitary Modular Fusion Systems
	Fusion Theory
	Fusion and Splitting of Two Anyons
	Fusion and Splitting of Multiple Anyons
	Vertical Bends and Removal of Vacuum Lines

	Unitary Modular Fusion Theory
	Braid Group Representations and Topological Quantum Computation
	Constructing Braid Group Representations
	Topological Quantum Computation

	From Fusion System to Unitary Modular Fusion System
	Fusion Systems
	From Fusion System to Modular Fusion System
	Unitary Fusion Systems
	The Landscape of Fusion Categories

	II Finding Fusion Categories
	Finding Fusion Rings
	Algorithm
	Reducing the Number of Variables
	Breaking Permutation Symmetry
	Backtracking
	Results

	Naming of Fusion Rings
	Characters and Modular Data of Commutative Fusion Rings
	Characters of Commutative Fusion Rings
	Modular Data
	Finding S-matrices
	Finding T-Matrices

	Some Comments on Non-commutative Fusion Rings
	Song Extensions of Groups
	Generic Non-commutative Fusion Rings
	Non-Commutative Fusion Rings Without Non-Trivial Subgroup

	Categorifying Fusion Rings: Solving Consistency Equations
	Solving Pentagon Equations
	Obstructions To Categorification
	Determining Which F-Symbols Could Be Zero
	Fixing the Gauge
	Solving Binomial Equations
	Reduction Via Linear Polynomials
	Incremental and Parallel Gröbner Bases
	Solving the Pentagon Equations
	Removing Equivalent Solutions
	Fixing a Unitary Gauge

	Solving Hexagon Equations
	Solving Pivotal Equations
	Results
	Correctness of the Results

	Naming of Fusion Categories
	Other Software to Work With Fusion Rings and Fusion Categories
	Predecessors
	Other Packages

	III Anyons on Graphs
	Anyons on Graphs
	Anyons on a Circle
	Anyons on a Trijunction
	Two Particles on a Trijunction
	Three Particles on a Trijunction
	Four Particles on a Trijunction

	Three Particles on a Lollipop Graph
	Solving Graph-Braid Equations
	Removing Equivalent Solutions
	Results

	IV Summary and Outlook
	Summary and Outlook
	Summary
	Outlook

	V Appendix
	The Mathematics of Anyons
	From Category to Modular Category
	From Category to Fusion Category
	From Fusion Category To Modular Category

	From Fusion System to Fusion Category and Back

	List of multiplicity-free fusion rings up to rank 9
	List of Multiplicity-free Fusion Categories up to Rank 7
	Solutions For Specific Graph-Braid Models
	Solutions for the Ising Model
	Solutions to the Pentagon Equations
	Solutions to the Planar Hexagon Equations
	Solutions to the Trijunction Equations
	Solutions to the Lollipop Equations

	Solutions for the Quantum Double of Z2
	Solutions to the Planar Hexagon Equations
	Solutions to the Trijunction Equations
	Solutions to the Lollipop Equations

	Solutions for the TY(Z3) Model
	Solutions to the Pentagon Equations
	Solutions to the Circle Equations

