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Abstract 

Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in 

the bone marrow that results in end-organ damage, including hypercalcemia, renal 

dysfunction, infection, anemia, and bone disease. Despite the introduction of novel 

therapeutics, MM remains an incurable disease mainly due to repeated relapses and 

resistance to current chemotherapies. The development of extramedullary multiple 

myeloma (EMM), an aggressive form of MM associated with the colonisation of soft 

tissues or organs by myeloma cells, is associated with a poor prognosis. There 

remains a critical unmet need for effective treatments for patients with refractory 

disease and aggressive extramedullary disease. Given the potential of predictive 

biomarker panels to optimise treatment regimens, a phosphoproteomic analysis 

based on ex vivo drug responses to a selection of drug classes was performed. 

Results showed an increased abundance of proteins and phosphoproteins associated 

with cell adhesion and a decreased abundance of proteins and phosphoproteins 

associated with protein translation in multi-drug resistant myeloma cells based on ex 

vivo drug response. Furthermore, a proteomic analysis of MM patient plasma 

stratified based on ex vivo drug responses identified circulating proteins, including 

interleukin-15, as potential predictive biomarkers of drug response. Using label-free 

mass spectrometry, distinct alterations in the proteomic profile of bone marrow 

mononuclear cells from EMM patients compared to MM patients were identified. 

Bioinformatic analysis revealed an increased abundance of proteins linked to a poor 

prognosis in MM, and potential cellular mechanisms, including leukocyte 

transendothelial migration, associated with EMM. Proteomic and metabolomic 

evaluation of plasma samples from MM patients with and without extramedullary 

spread confirmed a distinct phenotypic change in EMM patients. Three proteins, 

namely, vascular cell adhesion molecule 1, hepatocyte growth factor activator, and 

pigment epithelium derived factor, were verified as promising biomarkers of EMM. 

Overall, this thesis provides novel insights into aggressive phenotypes of MM and 

identifies promising biomarkers for future validation studies. 
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1.1  Multiple Myeloma 

1.1.1 Introduction to Multiple Myeloma 

Cancer is one of the leading causes of death worldwide. In Ireland, approximately 

30% of deaths each year are caused by cancer (Cancer in Ireland 1995-2021:Annual 

statistical report of the National Cancer Registry 2023). The malignant 

transformation of cells occurs through a multi-stage process whereby genetic 

abnormalities promote the constitutive proliferation and survival of cancerous cells. 

Cancer can occur anywhere throughout the body and is typically classified based on 

the cell of origin or location of the tumour. Hematological malignancies refer to 

cancers that originate in the blood or bone marrow, and include leukemia, 

lymphoma, and multiple myeloma (Rahman and Mansour 2019).  

Plasma cells are terminally differentiated B lymphocytes that play a central role in 

the healthy functioning of the immune system through the production of antibodies 

(D’Souza and Bhattacharya 2019). Multiple myeloma (MM) is a malignancy of 

plasma cells characterized by their uncontrolled proliferation within the bone 

marrow. Myeloma cells produce a high level of abnormal monoclonal (M) protein 

that can be detected in the blood or urine to aid diagnosis (Hideshima et al. 2007). 

MM is a complex, heterogenous malignancy initiated by various complex 

cytogenetic abnormalities and supported by signals within the bone marrow niche 

(Giannakoulas et al. 2021). The overall survival of myeloma patients has 

significantly improved in recent years in concordance with the introduction of novel 

therapeutics. Despite this, MM remains an incurable cancer mainly due to the 

development of drug resistance and repeated relapses.  

1.1.2 Incidence and epidemiology 

Although MM is considered a rare disease as it makes up only 1% of all cancers, it is 

the second most common type of blood cancer behind non-Hodgkins lymphoma 

(Siegel et al. 2019). Globally, the incidence of MM was over 160,000 and mortality 

was over 105,000 in 2020 (Ludwig et al. 2020; Huang, Chan, et al. 2022). In Ireland, 

over 350 people are diagnosed each year (Cancer in Ireland 1995-2021:Annual 

statistical report of the National Cancer Registry 2023). Following the introduction 
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of novel treatments including proteasome inhibitors and immunomodulatory drugs in 

recent years, the five year survival rate of MM patients has significantly improved, 

from 24.6% in 1976 to 53.7% in 2016 (Howlader et al. 2019). MM most often 

occurs in people over the age of 65 and is very rarely diagnosed in individuals under 

30 (Kazandjian 2016). Males, as well as people of African descent, are more likely 

to be diagnosed with MM (Landgren and Weiss 2009). A family history of 

hematologic malignancies can increase the risk of an MM diagnosis (VanValkenburg 

et al. 2016). Additional risk factors include pesticide exposure, obesity, and chronic 

inflammation (van de Donk et al. 2021). 

Almost all cases of MM are preceded by premalignant plasma cell disorders, 

progressing from monoclonal gammopathy of undetermined significance (MGUS) to 

smouldering multiple myeloma (sMM) and finally to active multiple myeloma. In 

certain cases, active MM can progress to extramedullary multiple myeloma; an 

aggressive subtype of myeloma associated with a poor prognosis (Pinto et al. 2020). 

MGUS, sMM, and MM have specific diagnostic criteria defined by the International 

Myeloma Working Group (IMWG), as outlined in Table 1.1 (Rajkumar 2020). A 

diagnosis of active MM requires >10% malignant plasma cells in the bone marrow 

upon bone marrow biopsy and the presence of one or more myeloma-defining events 

(MDEs). MDE include evidence of end organ damage, which is often defined by the 

acronym, CRAB. CRAB features are common clinical manifestations of multiple 

myeloma which specifically refer to hypercalcemia, renal dysfunction, anemia, and 

lytic bone lesions. Hypercalcemia occurs mainly due to bone destruction, while 

excess abnormal M protein can accumulate in and damage the kidneys. The 

proliferation of myeloma cells in the bone marrow affects normal hematopoiesis, 

often resulting in a lack of red blood cells. Lytic bone lesions occur as myeloma cells 

stimulate the activation of bone-destroying osteoclasts and the inhibition of bone-

forming osteoblasts, resulting in bone disease (Padala et al. 2021). The three other 

MDEs are malignant plasma cells >60% in the bone marrow, involved: uninvolved 

serum free light chain ratio >100 and >1 focal lesion detected by magnetic resonance 

imaging (MRI) (Rajkumar 2018, 2020).  

Previous approaches to the management of MGUS and sMM mainly involved 

continued observation to detect signs of end organ damage. However, recent phase 3 
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clinical trials demonstrating delayed progression to active MM have led hematology 

experts to recommend the treatment of patients with high-risk sMM, as described in 

Table 1.1, with lenalidomide or a lenalidomide and dexamethasone drug 

combination (Mateos et al. 2016; Lonial, Jacobus, et al. 2020; Lonial et al. 2022; 

Rajkumar 2022). In the case of MGUS or low-risk sMM, continued observation of 

indicators of disease progression, such as elevated monoclonal protein, are 

recommended (Rajkumar 2022).  

Table 1.1: Criteria for the diagnosis of MGUS, sMM, high-risk sMM, and MM. 

*Adapted from (Rajkumar 2022). 

Monoclonal 

Gammopathy 

of 

Undetermined 

Significance 

Smouldering 

Multiple Myeloma 

High-Risk 

Smouldering 

Multiple Myeloma 

Multiple Myeloma 

• Serum 

monoclonal 

protein 

<3g/dL 

 

• Clonal bone 

marrow 

plasma cells 

<10% 

 

• No end-organ 

damage 

• Serum 

monoclonal 

protein ≥ 3g/dL 

OR Urinary 

monoclonal 

protein ≥ 500mg 

per 24hr OR 

Clonal bone 

marrow plasma 

cells between 10-

60% 

 

• No end-organ 

damage 

Presence of 2 or 3 of 

the following: 

• Serum monoclonal 

protein ≥ 3g/dL 

 

• Involved: 

uninvolved serum 

free light chain 

ratio > 20 

 

• Clonal bone 

marrow plasma 

cells >20% 

• Clonal bone marrow 

plasma cells ≥10% 

OR 

Presence of bony or 

extramedullary 

plasmacytoma 

 

The presence of one or 

more myeloma defining 

events: 

• Hypercalcemia 

• Renal dysfunction 

• Anemia 

• Bone lesions 

• Clonal bone marrow 

plasma cells ≥60% 

• Involved: uninvolved 

serum free light chain 

(FLC) ratio ≥ 100 

• >1 focal lesion larger 

than 5mm on 

magnetic resonance 

imaging (MRI) 

1.2  Risk stratification of MM  

Once a diagnosis of MM is confirmed, patients undergo risk stratification to 

determine prognosis and aid therapeutic decision-making. A combination of 

laboratory tests, imaging tests, and genetic tests are used to evaluate the disease 

characteristics of individual patients. Laboratory tests measuring serum albumin 
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levels, beta-2-microglobulin (B2M) levels, and serum lactate dehydrogenase (LDH) 

levels contribute to risk stratification. Imaging technologies such as positron 

emission tomography/computed tomography (PET/CT) are used to detect bone 

lesions and/or extramedullary plasmacytomas. Genetic tests, including karyotyping 

and fluorescent in situ hybridization (FISH), are used to detect hyperdiploidy, 

immunoglobulin translocations, and deletions or gains of distinct chromosomal 

regions (Hagen et al. 2022). The use of the high-throughput genomic technology, 

next generation sequencing (NGS), is becoming more common in clinical settings 

with the hope of advancing precision medicine in multiple myeloma (Castaneda and 

Baz 2019; Bolli et al. 2020).  

Prognostic evaluation of MM was traditionally performed using the Durie-Salmon 

staging system (Durie and Salmon 1975). This system was replaced by the 

International Staging System (ISS), which has since been replaced by the Revised 

ISS (RISS) (Greipp et al. 2005; Palumbo et al. 2015) (Figure 1.1). The Durie-

Salmon staging system stratified patients into three stages based on laboratory tests 

for hemoglobin, calcium, immunoglobulins, monoclonal protein and the presence or 

number of bone lesions. Subsequently, the ISS incorporated serum levels of β2-

microglobulin and albumin. In 2015, a revision of the ISS included the high-risk 

cytogenetic abnormalities, t(4;14), t(14;16), and del(17p), and elevated serum lactate 

dehydrogenase (LDH) as factors associated with stage III MM.  In an effort to 

further risk stratify the highly heterogenous intermediate stage, a second revision of 

the ISS (R2ISS) recently described by the European Myeloma Network considers, in 

addition to the factors included in the RISS, the newly identified poor prognostic 

indicators, gain of chromosome 1q and more than one high-risk cytogenetic 

abnormality present (D’Agostino et al. 2022). Elevated serum B2M and LDH levels, 

reduced albumin levels, and the presence of the high-risk cytogenetics t(4;14), 

t(14;16), or del(17p), are associated with high-risk multiple myeloma (Rajkumar 

2022). Furthermore, extramedullary multiple myeloma presents as an independent 

poor prognostic factor (Stork et al. 2022). 
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Figure 1.1: Developments in the risk stratification of multiple myeloma patients. 

Several different staging systems have been introduced for the risk stratification of MM 

patients over the last 50 years. *This  risk stratification approach has not yet been globally 

implemented. 

1.3  Genetic factors associated with multiple myeloma 

The genetics of MM is inherently complex with no single genetic alteration 

underlying the initiation and progression of this malignancy. Instead, a multitude of 

genetic abnormalities including chromosomal translocations, aneuploidy, structural 

variants, and single nucleotide variants contribute to MM pathogenesis (Morgan et 

al. 2012). Primary genetic events including chromosomal translocations, which often 

involve the immunoglobulin heavy chain (IGH) gene locus, and aneuploidy, 

contribute to the evolution of MGUS and sMM to active myeloma. Interestingly, 

hyperdiploidy rarely co-occurs with IGH translocations, and MM is sometimes 

categorized into hyperdiploid and non-hyperdiploid MM (Chng et al. 2007). 

Secondary genetic events including copy-number abnormalities and gene mutations 

contribute to MM progression and the development of drug resistance (Castaneda 

and Baz 2019). Table 1.2 shows the approximate frequencies of various cytogenetic 

abnormalities in MM. 
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Translocations involving IGH have been reported to occur in up to 50% of MM 

patients. These translocations juxtapose various oncogenes, depending on the 

involved loci, with the transcriptionally active enhancers of the IGH gene, resulting 

in oncogene overexpression. The five most common IGH translocations are t(11;14), 

t(4;14), t(6;14), t(14;16), and t(14;20), which affect the oncogenes, cyclin D1 

(CCND1), fibroblast growth factor receptor 3/ multiple myeloma SET domain-

containing protein (FGFR3/MMSET), cyclin D3 (CCND3), transcription factor Maf 

(MAF), and transcription factor MafB (MAFB), respectively (Kim et al. 2014). 

T(4;14), t(14;16), and t(14;20) are high-risk translocations associated with a poor 

prognosis, whereas t(11;14) and t(6;14) are considered standard-risk translocations 

(Abdallah et al. 2020).  

Hyperdiploid genetic events typically involve trisomies of the odd-numbered 

chromosomes 3, 5, 7, 9, 11, 15, 19 and 21, and indicate a favourable outcome in 

MM. Despite one study suggesting a possible abrogation of the poor prognostic 

implications of t(4;14) in the presence of trisomies 3 and 5, this was contradicted by 

a subsequent study reporting that the co-existence of hyperdiploidy does not 

abrogate the poor prognostic value of high-risk cytogenetic abnormalities (Chretien 

et al. 2015; Pawlyn et al. 2015). Regarding non-hyperdiploid genetic events, a 

hypodiploid karyotype (<44 chromosomes) is associated with an adverse prognosis 

and the presence of more aggressive abnormalities such as deletions of 1p and 17p 

(Qazilbash et al. 2007).  

IGH translocations and hyperdiploidy are early-stage oncogenic events commonly 

detected in MGUS and sMM prior to progression to active MM (Lionetti et al. 2021; 

Oben et al. 2021). In contrast, secondary oncogenic events often occur later in the 

course of the disease and contribute to MM progression. More complex structural 

variants including MYC translocations, gain of chromosome 1q (+1q), and deletions 

of chromosomes 1p, 11q, 12p, 13q, 14q, 16q, and 17p, have been identified as 

secondary genetic events in MM (Castaneda and Baz 2019). Gain of function 

mutations in oncogenes including NRAS, KRAS, and CCND1, loss of function 

mutations in tumour suppressor genes such as p53 and retinoblastoma 1 (RB1), and 

various mutations in genes associated with the nuclear factor kappa beta (NFκB) 

pathway promote MM progression (Chesi and Bergsagel 2013). 
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Table 1.2: Approximate frequency of cytogenetic abnormalities in MM. 

Cytogenetic Abnormality Frequency in MM Reference 

Primary cytogenetic abnormalities 

IGH Translocations   

t(11;14) 15-20% 
(Manier et al. 2017; Corre, 

Munshi, et al. 2021) 

t(4;14) ~15% 

(Manier et al. 2017; 

Cardona-Benavides et al. 

2021; Corre, Munshi, et al. 

2021) 

t(14;16) 2-5% 
(Goldman-Mazur et al. 

2021; Rajkumar 2022) 

t(6;14) 1-2% (Manier et al. 2017) 

t(14;20) ~1% 

(Manier et al. 2017; 

Cardona-Benavides et al. 

2021) 

Hyperdiploidy 50-60% (Clarke et al. 2024) 

Hypodiploidy 13-20% (Jurczyszyn et al. 2021) 

Secondary cytogenetic abnormalities 

1q gain 35-40% 
(Manier et al. 2017; 

Hanamura 2021) 

1p deletion ~30% 
(van Nieuwenhuijzen et al. 

2018; Hanamura 2022) 

17p deletion 5-10% (Hanamura 2022) 

MYC translocations 15-40% (Clarke et al. 2024) 

1.4  Treatment of Multiple Myeloma 

A breakthrough in the treatment of MM occurred in the 1960s with studies reporting 

a significant improvement in MM patients treated with the alkylating agent, 

melphalan, and corticosteroid, prednisone (Mass 1962; Hoogstraten et al. 1967). The 

combination regimen of melphalan and prednisone (MP) became the standard 

treatment for MM for decades until autologous stem cell transplantation (ASCT) was 

introduced in the 1980s (Barlogie et al. 1987; Kyle and Rajkumar 2008). ASCT in 

combination with high dose chemotherapy (HDT) significantly improved response 

rates of MM patients and remains the mainstay treatment for transplant-eligible 

patients today. ASCT involves collecting and storing the patient’s own stem cells 

prior to HDT. Following treatment with HDT, the stem cells are administered to the 

patient to aid immune reconstitution (Minnie and Hill 2021). As MM is characterised 

by clonal heterogeneity and drug resistance, drug combinations that include 

therapeutics with distinct mechanisms of action have been widely adopted as the 

standard of care (Brioli et al. 2014). In the past two decades, the approval of novel 

therapeutics including proteasome inhibitors, immunomodulatory drugs, histone 
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deacetylase inhibitors (HDACi), monoclonal antibodies, chimeric antigen receptor 

T-cell (CAR-T) therapy, and bispecific antibodies have been central to the improved 

survival outcome of MM patients. 

1.4.1 Current treatment options 

Following an MM diagnosis, the treatment regimen is decided based on ASCT 

eligibility and risk stratification, as outlined in Figure 1.2. Historic clinical trials 

evaluating the efficacy of ASCT excluded patients over the age of 65, however, 

recent data has shown that patients over 65 can benefit from ASCT, with frailty and 

the presence of comorbidities being better predictors of ASCT efficacy (Child et al. 

2003; Sharma et al. 2014; Parrondo et al. 2020). Prior to ASCT, 3-4 cycles of 

induction therapy is recommended, which often consists of the triplet combination of 

bortezomib, lenalidomide, and dexamethasone (VRd) for standard-risk MM, with the 

potential addition of daratumumab to the regimen in high-risk MM (Rajkumar 

2022). As outlined in Figure 1.2, longer cycles of VRd or daratumumab, 

lenalidomide, and dexamethasone are recommended for the initial treatment of 

transplant-ineligible patients. Treatment-related toxicities also dictate therapeutic 

decision-making, especially in older adults who are often more susceptible to 

treatment-related toxicities (Mehta et al. 2010). For example, bortezomib-based 

regimens may need to be altered during the course of treatment due to the emergence 

of treatment-related peripheral neuropathy (Argyriou et al. 2008). The major 

treatment-related toxicity of concern in the era of immune cell activating bispecific 

antibodies and CAR-T cell therapies is cytokine release syndrome, a potentially life-

threatening toxicity that occurs due to the rapid immune cell activation and the 

release of large amounts of pro-inflammatory cytokines (Hu, Li, et al. 2022; Moreau 

et al. 2022). 
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Figure 1.2: Guidance for the treatment of multiple myeloma. Treatment approaches for 

transplant eligible and transplant ineligible newly diagnosed multiple myeloma and multiple 

myeloma patients at first relapse as outlined in the 2022 Multiple Myeloma update. ASCT, 

autologous stem cell transplantation; VRd, bortezomib, lenalidomide, dexamethasone; Dara, 

daratumumab; DRd, daratumumab, lenalidomide, dexamethasone; KRd, carfilzomib, 

lenalidomide, dexamethasone; ERd, elotuzumab, lenalidomide, dexamethasone; IRd, 

ixazomib, lenalidomide, dexamethasone; DKd, daratumumab, carfilzomib, dexamethasone; 

Isa-Kd, isatuximab, carfilzomib, dexamethasone; DPd, daratumumab, pomalidomide, 

dexamethasone; Isa-Pd, isatuximab, pomalidomide, dexamethasone; KCd, carfilzomib, 

cyclophosphamide, dexamethasone; KPd, carfilzomib, pomalidomide, dexamethasone; VCd, 

bortezomib, cyclophosphamide, dexamethasone; EPd, elotuzumab, pomalidomide, 

dexamethasone. *Adapted from (Rajkumar 2022). 

*Figure adapted from (Rajkumar 2022) 
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1.4.2 Proteasome inhibitors 

Myeloma cells produce large amounts of M protein, making them susceptible to 

drugs targeting protein degradation pathways (Manasanch et al. 2014). The first-in-

class proteasome inhibitor, bortezomib, was approved for the treatment of MM in 

2003 and has since become the backbone of various clinically used combination 

regimens (Richardson et al. 2003). The second and third generation proteasome 

inhibitors (PIs), carfilzomib and ixazomib, respectively, have since been approved as 

MM treatments. PIs target the 26S proteasome, inhibiting protein degradation and 

exerting their anti-myeloma activity by triggering the terminal unfolded protein 

response, blocking the degradation of tumour suppressing proteins such as p53, and 

inhibiting the NFκB pathway (Berenson et al. 2001; Obeng et al. 2006; Halasi et al. 

2014). The multiprotein 26S proteasome is made up of two components: the 20S 

proteolytic core which consists of two outer α-subunit rings and two inner β-subunit 

rings, and 19S regulatory complexes which cap one or both ends of the 20S core 

(Bard et al. 2018). Proteolytic cleavage occurs in the 20S core and is mediated by the 

chymotrypsin-like activity, trypsin-like activity, and caspase-like activity of the β5, 

β2 , and β1 subunits, respectively. Initial studies reported the β5 subunit as the rate-

limiting protease of proteolysis; hence, bortezomib, carfilzomib, and ixazomib 

primarily target the β5 subunit of the proteasome (Arendt and Hochstrasser 1997; 

Heinemeyer et al. 1997). However, recent studies have found that at high 

concentrations, these PIs also co-inhibit β1 and/or β2 subunits, and co-inhibition of 

β5 and β2 by carfilzomib exhibits the highest cytotoxicity, even in PI-resistant MM 

(Kraus et al. 2015; Besse et al. 2019). PIs remain a crucial component of therapeutic 

regimens for MM patients. 

1.4.3 Immunomodulatory drugs 

The finding that MM is associated with increased bone marrow angiogenesis led to 

the evaluation of the anti-angiogenic agent, thalidomide, in relapsed refractory MM 

in 1999 (Singhal et al. 1999; Vacca et al. 1999). Thalidomide, along with the more 

recently developed lenalidomide and pomalidomide, are considered 

immunomodulatory drugs (IMiD), due to their augmentation of the immune system 

response. In MM, IMiDs, have been found to modulate immune cells via co-

stimulating T-cells, augmenting NK cell cytotoxicity, suppressing T regulatory cells, 
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and inhibiting the production of pro-inflammatory cytokines including tumour 

necrosis factor – alpha (TNF-α) (Muller et al. 1996; Davies et al. 2001; LeBlanc et 

al. 2004; Galustian et al. 2009). A landmark article published in 2010, identified 

Cereblon (CRBN), the substrate recognition component of the DCX (DDB1-CUL4-

X-box) E3 protein ligase complex, as a primary target of IMiDs (Ito et al. 2010). The 

expression of CRBN was subsequently found to be required for the anti-myeloma 

activity of IMiDs (Zhu, Braggio, et al. 2011). IMiDs bind to CRBN and modulate its 

substrate specificity, resulting in the degradation of the transcription factors Ikaros 

(IKZF1) and Aiolos (IKZF3), that have been widely reported to be essential for 

myeloma cell survival (Krönke et al. 2014). Maintenance therapy has become a 

crucial aspect of MM treatment in the last decade. Less intensive maintenance 

therapies after frontline treatment increase the depth of response and progression-

free survival (PFS) (Alonso et al. 2020). The second generation IMiD, lenalidomide 

is currently the standard of care for maintenance therapy, as evaluated by various 

phase 3 clinical trials (Holstein et al. 2017; McCarthy et al. 2017).  

1.4.4 Immunotherapy 

In the last decade, the treatment of MM has moved into the new era of 

immunotherapy. Since the approval of rituximab for the treatment of 

relapsed/refractory non-Hodgkins B cell lymphoma, over 20 unconjugated 

monoclonal antibodies (mAbs) have received FDA approval as targeted cancer 

therapies (Zahavi and Weiner 2020). The introduction of mAbs as anticancer agents 

revolutionized cancer treatment through their ability to target tumour-specific or 

overexpressed antigens on the surface of cancer cells. MAbs exert their anti-cancer 

effects by direct blockage of ligand-receptor binding and/or indirect activation of the 

immune system via antibody-dependent cellular cytotoxicity (ADCC) and 

complement-dependent cytotoxicity (CDC) (Lyu et al. 2022). Several overexpressed 

MM-specific surface proteins have emerged as promising mAb-directed targets. The 

anti- cluster of differentiation 38 (CD38) monoclonal antibodies, daratumumab and 

isatuximab, and the anti- signaling lymphocytic activation molecule family member 

7 (SLAMF7) monoclonal antibody, elotuzumab, have been approved for the 

treatment of MM (Gormley et al. 2017; Moreau et al. 2019; Ishida et al. 2022). 

CD38 is a cell surface protein highly expressed on myeloma cells that acts as an 
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adhesion molecule and ectoenzyme (Costa et al. 2019). SLAMF7 is a homotypic 

surface receptor that is highly expressed on plasma cells and expressed on other 

immune cells including NK cells (Wang, Sanchez, et al. 2016). SLAMF7 receptor 

engagement can have activating or inhibitory effects depending on the presence or 

absence of the adaptor protein Ewing's sarcoma-associated transcript-2 (EAT-2), 

respectively (Cruz-Munoz et al. 2009). As NK cells express high amounts of EAT-2, 

elotuzumab triggers SLAMF7 on NK cells, leading to NK cell activation and 

enhanced NK cytotoxicity (Collins et al. 2013). Elotuzumab also possesses anti-

myeloma activity via ADCC and disrupting myeloma cell interactions with bone 

marrow stromal cells (Tai et al. 2008). 

Developing on the success of the unconjugated mAbs described above, antibody-

drug conjugates and bispecific antibodies have recently shown impressive efficacy in 

clinical trials in RRMM (Lonial, Lee, et al. 2020; Moreau et al. 2022). Antibody-

drug conjugates (ADCs) are composed of a monoclonal antibody with specificity for 

a target antigen attached to a cytotoxic drug via a chemical linker. The mechanism of 

action of ADCs depends on their endocytosis by the cancer cell and subsequent 

lysosomal degradation to release the cytotoxic agent and cause cell death (Hartley-

Brown and Richardson 2022). Various surface antigens including CD38, that are 

highly expressed on myeloma cells have been evaluated as targets for ADCs. The 

first ADC to receive FDA approval for the treatment of MM was belantamab 

mafodotin (Bela), which targets B cell maturation antigen (BCMA). BCMA is a 

member of the TNF superfamily that is expressed in normal B-lymphocytes and 

myeloma cells. Due to its almost exclusive presence on the surface of plasma cells, 

BCMA has become a key target for MM treatment (Mikhael 2020). Phase I and 

phase II clinical trials evaluating Bela in RRMM patients demonstrated promising 

overall response rates above 30% in a heavily pretreated patient population, many of 

whom were triple- or penta-refractory to several drug classes including anti-CD38 

monoclonal antibodies (Trudel et al. 2018; Lonial, Lee, et al. 2020). The 

DREAMM-9 trial is evaluating Bela in combination with bortezomib, lenalidomide, 

and dexamethasone for the treatment of ASCT-ineligible newly diagnosed MM is 

ongoing (Usmani et al. 2021). Sixteen clinical trials evaluating ADCs in MM are 

currently active or recruiting participants.  
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Researchers developed on monoclonal antibodies to create bispecific molecules 

capable of targeting two unique epitopes on target antigens (Ma et al. 2021). 

Bispecific molecules include bispecific antibodies and bispecific T cell engagers 

(BiTEs) which differ only based on the BiTEs lack of an Fc domain. The majority of 

bispecifics developed for the treatment of MM bind to the tumour-specific antigens, 

BCMA or CD38, and the T cell co-receptor CD3 to directly stimulate T cell 

activation and subsequent myeloma cell death (Cho et al. 2022). The first bispecific 

antibody for the treatment of MM, teclistamab, was approved in early 2022 based on 

results from the phase 1/2 MajesTEC-1 trial (Moreau et al. 2022). Teclistamab 

simultaneously targets BCMA on myeloma cells and CD3 on T cells to induce MM 

cell death. Various bispecific antibodies are currently in clinical trials for the 

treatment of myeloma (Granger et al. 2023). 

The introduction of chimeric antigen receptor T (CAR-T) cells was a major 

breakthrough in the treatment of hematological malignancies. CAR-T cell therapy 

involves the genetic engineering of the T cell receptor to redirect specificity for a 

target tumour antigen (Huang, Huang, et al. 2022). Two CAR-T cell therapies, 

idecabtagene vicleucel and ciltacabtagene autoleucel, targeting BCMA have been 

approved for the treatment of RRMM (Munshi et al. 2021; Martin et al. 2023). The 

remarkable efficacy demonstrated by immunotherapeutics in the treatment of MM 

suggests a central role for this class of biologics in future MM therapeutic regimens.  

1.5  The bone marrow microenvironment in MM 

1.5.1 The bone marrow microenvironment and B cell development 

The bone marrow microenvironment (BME) is a complex cellular system comprising 

of hematopoietic and non-hematopoietic cells along with soluble factors and matrix 

proteins that interact to sustain hematopoiesis (Sánchez-Lanzas et al. 2022). The 

highly vascularized and innervated architecture of the bone marrow supports the 

production of hematopoietic cells. The complexity of the BME is heightened by the 

presence of multiple specialized niches which coordinate to regulate hematopoietic 

stem cell (HSC) maintenance, self-renewal, differentiation into myeloid and 

lymphoid lineages, and proliferation (Ayhan et al. 2021).  The composition of these 
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niches remains poorly understood although the BM can largely be classified into the 

endosteal and vascular niches (Ashok et al. 2022).  

B lymphocytes originate in the bone marrow, developing from HSCs in a multistep 

maturation process. Early B cell development in the bone marrow results in the 

generation of IgM-expressing immature B cells which migrate from the bone 

marrow to secondary lymphoid organs for maturation where they become mature B 

cells (Tsai et al. 2019). Upon activation, mature B cells enter a highly specialized, 

transient structure known as the germinal centre. Within the germinal centre, B cells 

undergo class switching, somatic hypermutation, and clonal expansion facilitating 

the differentiation of B cells with receptors of high affinity for the activating antigen 

into memory B cells or terminally differentiated plasma cells. Antibody-secreting 

plasma cells return to the bone marrow where they become long-lived plasma cells 

persisting within specialized regions of the bone marrow for extended periods of 

time (Roth et al. 2014). The sustained survival of plasma cells is considered 

dependent on cellular interactions and soluble factors within the BME (Cassese et al. 

2003). This observation affirms the central role of the bone marrow niche in MM 

development and myeloma cell survival. 

1.5.2  Cellular and soluble interactions in MM 

The impact of the tumour microenvironment in cancer progression has long been 

established and reviewed (Anderson and Simon 2020; Baghban et al. 2020). In MM, 

the composition of the BME is altered to create a pro-tumorigenic milieu in which 

cell-to-cell interactions and secreted cytokines and growth factors promote MM cell 

proliferation and survival (García-Ortiz et al. 2021). The interaction between 

myeloma cells and cells of the BME including mesenchymal stromal cells, bone 

marrow stromal cells (BMSCs), osteoclasts, osteoblasts, adipocytes, myeloid cells, 

and lymphoid cells activates/suppresses various signalling pathways regulating the 

immune response, angiogenesis, and cell adhesion (Hou et al. 2019). 

Within the BME, myeloma cells adhere to bone marrow stromal cells (BMSCs) 

stimulating pro-tumorigenic signalling pathways which directly or indirectly 

promote myeloma progression (Xu et al. 2018). The cell-to-cell interaction between 

myeloma cells and BMSCs is mediated via the expression of adhesion molecules 
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including vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion 

molecule 1 (ICAM1) on BMSCs and integrins such as integrin alpha 4 (ITGA4) and 

integrin beta 1 (ITGA1) on myeloma cells (Uchiyama et al. 1992, 1993). Physical 

cell contact between BMSCs and myeloma cells has been widely reported to 

contribute to the development of cell-adhesion mediated drug resistance (CAM-DR) 

(Nefedova et al. 2003). In addition, this cellular interaction activates signalling 

pathways which stimulate the secretion of soluble factors into the tumour 

microenvironment which provide growth and survival signals to MM cells (Huang et 

al. 2021).  

Bone formation is tightly regulated by a balancing crosstalk between bone-resorbing 

osteoclasts and bone-forming osteoblasts (Roodman 2009). In MM, this crosstalk is 

dysregulated leading to lytic bone lesions which increase disease burden and 

morbidity. Cellular interactions between myeloma cells and osteoclasts 

simultaneously stimulate osteoclast activation while promoting myeloma cell growth 

and survival (Garrett et al. 1987; Abe et al. 2004; Lee et al. 2004).  A key pathway 

implicated in MM-associated bone disease is the receptor activator of NFκB 

(RANK)/ receptor activator of NFκB ligand (RANKL)/ osteoprotegerin (OPG) 

system. RANK binding to RANKL promotes osteoclastogenesis whereas OPG acts 

as an antagonist for RANKL, preventing binding to RANK (Sezer et al. 2003). Cell-

to-cell contact between myeloma cells and bone marrow stromal cells stimulates 

BMSCs expression of RANKL while simultaneously inhibiting OPG secretion 

(Giuliani et al. 2001; Pearse et al. 2001). In addition, syndecan 1 (CD138), which is 

highly expressed on myeloma cells, can bind OPG leading to its internalization and 

lysosomal degradation (Standal et al. 2002).  This activation of osteoclasts creates a 

positive feedback loop, whereby increased osteoclast activation subsequently 

promotes myeloma cell proliferation, immunosuppression, and angiogenesis (Hecht 

et al. 2008; Tai et al. 2018).  

Two of the most important soluble mediators contributing to MM survival and 

proliferation in the bone marrow are B-cell-activating factor (BAFF) and A 

proliferation-inducing ligand (APRIL). BAFF and APRIL are members of the 

tumour necrosis factor (TNF) superfamily, that are predominantly expressed by 

osteoclasts within the BME (Abe et al. 2006). The binding of these factors to 
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abundantly expressed receptors on MM cells such as BCMA, a common target of 

current immunotherapeutics, triggers the activation of nuclear factor- kappaB (NF-

κB), protein kinase B (AKT), and mitogen activated protein kinase (MAPK) 

pathways to promote MM growth and survival (Moreaux et al. 2004). Interleukin-6 

(IL6) is a cytokine with a well-established role as a proliferative and survival factor 

in MM. IL6 is mainly secreted by cells within the BME, notably BMSCs, but is also 

produced by MM cells in some cases (Kawano et al. 1988; Klein et al. 1989). Other 

soluble factors within the BME with roles in MM pathogenesis include stromal cell-

derived factor-1 (SDF-1), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-

17), vascular endothelial growth factor (VEGF) insulin-like growth factor-1 (IGF-1). 

1.6  Drug resistance in Multiple Myeloma 

The FDA approval of over ten new myeloma treatments since 2010 has seen 

improvements in progression free survival (PFS) and overall survival for MM 

patients. However, multiple myeloma remains an incurable malignancy mainly due 

to repeated relapses as patients develop resistance to current therapeutics. Intrinsic 

and extrinsic mechanisms play a role in the drug resistance of MM cells (Figure 1.3) 

(Solimando et al. 2022). Furthermore, the inherent intratumoral heterogeneity 

associated with MM contributes to the selection of resistant subclones which 

subsequently become the dominant myeloma clone in a process known as clonal 

evolution (Salomon-Perzyński et al. 2021). 



18 

 

Figure 1.3: Mechanisms of drug resistance in multiple myeloma. Intrinsic mechanisms 

include mutations of target genes, upregulation of efflux transporters, secretion of target 

proteins, and NFκB pathway activation. Extrinsic mechanisms include cell adhesion 

mediated drug resistance and soluble factors within the bone marrow microenvironment. 

The persistence of myeloma stem cells which are intrinsically resistant to many 

chemotherapeutics can also lead to drug resistance. PSMB5, proteasome 20S subunit beta 5; 

CRBN, cereblon; IL6, interleukin 6; IGF, insulin growth factor 1. 

1.6.1 General mechanisms of drug resistance 

The overexpression of drug efflux pumps, which remove chemotherapeutic drugs 

from cancer cells, is a common multidrug resistance mechanism (Gottesman and 

Pastan 2015). This abnormal transport of drugs occurs due to the overexpression of 

ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), ATP-

binding cassette sub-family G member 2 (ABCG2) and major vault protein (MVP) 

(Grogan et al. 1993; Rimsza et al. 1999; Turner et al. 2006). Drugs targeting drug 

efflux pumps have been developed and have demonstrated some promise in re-

sensitizing drug-resistant myeloma cells, however none have been approved for the 

treatment of MM (Muz et al. 2017; Besse et al. 2018). Moreover, a study evaluating 

the efficacy of combining proteasome inhibitors and P-gp inhibitors in PI-resistant 

MM cell lines indicated no increase in the efficacy of bortezomib and carfilzomib 

(Mynott and Wallington-Beddoe 2021). Thus, other mechanism of resistance may 

contribute more to PI resistance in MM. 
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1.6.2 Resistance to proteasome inhibitors 

Genetic mutations in drug target genes or signalling pathways constitutes intrinsic 

mechanisms of resistance to MM therapeutics. Mutations in the PSMB5 gene which 

encodes the proteolytically active β5 proteasome subunit and is the main target of the 

proteasome inhibitors, bortezomib and carfilzomib, have been identified in 

bortezomib-resistant cell lines (Oerlemans et al. 2008). In addition, a recent study 

validated the presence of four somatic mutations associated with bortezomib 

resistance in the PSMB5 gene of an MM patient undergoing prolonged bortezomib 

treatment, while also highlighting the process of clonal evolution in MM by 

identifying an increased incidence of PSMB5 mutations in a relapsed MM patient 

who had received prolonged bortezomib treatment (Barrio et al. 2019).  

Another intrinsic mechanism of PI resistance is compensatory via the activation of 

the aggresomal protein pathway, which provides an alternative mechanism to the 

proteasome for the clearance of proteins (Kumar and Rajkumar 2008). The histone 

deacetylase (HDAC), HDAC6, facilitates aggresomal degradation by recruiting 

ubiquitinated proteins and transporting them to aggresomes where they are 

subsequently subjected to lysosomal degradation (Kawaguchi et al. 2003). The 

combination of panobinostat, a pan-HDAC inhibitor, with bortezomib and 

dexamethasone as a treatment for MM received FDA approval based on the 

PANORAMA-1 trial (San-Miguel et al. 2016). Combining panobinostat and 

bortezomib blocks proteasomal degradation and the activation of the 

aggresome/autophagy pathway by inhibiting the HDAC6-mediated transportation of 

ubiquitinated proteins to aggresomes, resulting in a synergistic effect and improved 

efficacy (Hideshima et al. 2016; Vogl et al. 2017). Heat shock proteins (HSPs) act as 

molecular chaperones that facilitate protein folding and maintain cellular protein 

homeostasis (Hu, Yang, et al. 2022). The upregulation of HSPs has been reported to 

contribute to bortezomib resistance by increasing the tumour cells’ ability to deal 

with misfolded proteins. Several HSPs including glucose-regulated protein 78 

(GRP78), heat shock protein 90 (HSP90), and heat shock protein 27 (HSP27), have 

been implicated in bortezomib resistance in MM (Mitsiades et al. 2002; Chauhan et 

al. 2003; Malek et al. 2014).  



20 

The bone marrow microenvironment can promote drug resistance via CAM-DR and 

the secretion of soluble factors that contribute to drug resistance (Meads et al. 2009). 

BMSC binding to MM cells stimulates the production and secretion of IL6 from 

BMSCs which subsequently promotes bortezomib resistance through STAT3 

pathway activation (Chauhan et al. 1996; Chong et al. 2019). BMSCs have also been 

reported to increase NF-κB activity in MM cells which induces PI-resistance through 

the activation of pro-survival signalling (Markovina et al. 2008a). Interestingly, 

exosomes derived from BMSCs have also been found to promote survival and 

induce drug resistance (Wang, Hendrix, et al. 2014). 

1.6.3 Resistance to immunomodulatory drugs 

As described above, immunomodulatory drugs have immune-modulating functions 

in addition to the ability to alter the substrate specificity of CRBN. As CRBN is 

required for IMiD activity against MM cells, decreased expression of CRBN in cell 

lines has been associated with reduced response to IMiDs (Zhu, Braggio, et al. 2011; 

Huang et al. 2014). CRBN mutations have also been implicated as mechanisms of 

IMiD resistance. Recent comprehensive genomic analyses have identified various 

genetic abnormalities within the CRBN gene in MM patients refractory to IMiDs 

(Kortüm et al. 2016; Gooding et al. 2021). Another mechanism of IMiD resistance 

involves the interaction of the substrate binding competitors, RUNX1 and RUNX3, 

with CRBN which blocks the CRBN-IKZF1/3 interaction and subsequent 

degradation of IKZF1 and IKZF3 (Zhou et al. 2019). 

Resistance to IMiDs can also develop independently of abnormalities associated with 

CRBN. Similarly to PI-resistance, increased IL6 expression and STAT3 pathway 

activation contribute to IMiD resistance (Zhu et al. 2019). A recent proteomic 

analysis discovered a link between cyclin dependent kinase 6 (CDK6) upregulation 

and IMiD resistance, providing a rationale for the inhibition of CDK6 in IMiD 

resistance MM (Ng et al. 2022). The immune cell activating mechanism of IMiDs 

can also be obstructed due to immune cell exhaustion within the BME (Neri et al. 

2018; Lucas et al. 2020).  
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1.6.4 Resistance to monoclonal antibodies 

The introduction of monoclonal antibodies as MM therapeutics has resulted in 

improved clinical outcomes – however, resistance remains an issue. As mAbs target 

cell surface receptors, a common mechanism of resistance is the reduction of cell 

surface levels of the target protein by intrinsic downregulation of the target gene, 

target endocytosis, or releasing extracellular vesicles expressing the target (Saltarella 

et al. 2020). Low expression of the target of daratumumab and isatuximab, CD38, is 

associated with a poor clinical response (Nijhof et al. 2016). However, a significant 

reduction in CD38 expression has been observed upon exposure to daratumumab, 

indicating the involvement of other mechanisms in daratumumab resistance (Krejcik 

et al. 2017). The expression of CD38 on other immune cells, including NK cells, can 

lead to off-target effects whereby NK cells are depleted within the BME which may 

impact NK-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), 

although this has not been proven (Casneuf et al. 2017). Indeed, the phenotype of 

NK cells seems to have more of an impact on the development of daratumumab 

resistance as a recent study reported a higher proportion of NK cells with an 

exhausted/activated phenotype (TIM-3+, HLA-DR+ NK cells) in MM patients not 

responding to daratumumab (Verkleij et al. 2023). Similar drug resistance 

mechanisms have been reported for other targeted immunotherapies (Li, Zhang, Cao, 

et al. 2023). 

1.6.5 Ex vivo screening methods for assessing drug resistance 

With drug resistance representing a serious unmet need in MM, functional precision 

medicine has garnered increasing attention as a method to evaluate drug resistance 

and guide clinical decision making in a personalized manner. Functional precision 

medicine in oncology often refers to the use of an ex vivo drug screening approach to 

evaluate the therapeutic efficacy of numerous drugs on primary tumour cells (Letai 

2022). This technique is often combined with molecular analyses in an effort to 

identify molecular phenotypes linked to drug response. Various ex vivo drug 

screening methods have been developed in recent years.  

Ex vivo drug testing has commonly been performed using bulk viability-based assays 

which quickly generate large amounts of data in a robust and efficient manner. 
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However, bulk viability-based assays are limited in their inability to identify small 

resistant sub-clones and their endpoint measurement whereby responding or non-

responding cells may be missed due to timings (Cetin et al. 2017; Kimmerling et al. 

2018; Rosenquist et al. 2023). Therefore, more advanced technologies including 

single-cell analysis have been developed to evaluate therapeutic susceptibility in 

blood cancers. For example, Spinner and colleagues developed an high-throughput 

flow cytometry-based ex vivo drug sensitivity screening platform that facilitates the 

assessment of both cytotoxicity and cell differentiation (Spinner et al. 2020). Further 

research using this platform found that ex vivo drug sensitivity correlates with the 

clinical response of paediatric AML patients who received conventional 

chemotherapy (Strachan et al. 2022). A recent study reported a single-cell image-

based ex vivo drug testing approach, termed pharmacoscopy, as a clinically relevant 

strategy to improve treatment decision-making in MM (Kropivsek et al. 2023). This 

technique represents a fast, high-throughput, automatable approach to evaluate drug 

response by combining single-cell, spatial and morphologic resolution (Heinemann 

et al. 2022). 

The area of precision medicine in haematological malignancies is rapidly evolving. 

Functional precision medicine approaches are currently being evaluated in the 

clinical setting and developments in downstream omics technologies has improved 

our ability to analyse the molecular phenotype of treatment refractory patients 

(Rosenquist et al. 2023). 

1.7  Extramedullary Multiple Myeloma 

Extramedullary multiple myeloma (EMM) is a less frequent, but aggressive subtype 

of MM, driven by the ability of a sub-clone to grow independently of the BM 

microenvironment, and is often characterised by increased clonal proliferation, 

evasion of cell death, and resistance to treatment, leading to a poor prognosis 

(Bhutani et al. 2020) (Figure 1.4). There has been some confusion surrounding the 

nomenclature of extramedullary multiple myeloma or extramedullary disease 

(EMD), with some studies including paraskeletal lesions, which arise from the 

expansion of tumour masses from the bone into the soft tissue of the parasketetal 

area, within the definition of EMD (Wu et al. 2009; Gagelmann et al. 2018; Jagosky 

and Usmani 2020). Other studies have defined EMM as solely the presence of distal 
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organ or soft-tissue lesions resulting from the hematogenous spread of myeloma 

cells from the bone marrow (Short et al. 2011; Bladé et al. 2022a). However, the 

general consensus, with the support of a recent expert review, defines two types of 

EMD: paraskeletal involvement derived from bone lesions and EMM of soft tissues 

derived from hematogenous spread (Rosiñol et al. 2021). Despite the presence of 

malignant plasma cells outside the bone marrow, solitary plasmacytomas and plasma 

cell leukemia are considered distinct entities and are not considered EMM (Bhutani 

et al. 2020). 

 

Figure 1.4: Extramedullary multiple myeloma. Schematic illustrating the development of 

extramedullary multiple myeloma via the migration of myeloma cells into the circulatory 

system followed by extravasation into soft tissue or organs where myeloma cells proliferate 

and develop into extramedullary lesions. 

1.7.1 Incidence 

The true incidence of EMM which arises from hematogenous spread (known as 

EMM from here on) is difficult to ascertain as studies often use varying definitions 

of EMM and varying diagnostic methods (Short et al. 2011). The incidence of EMM 

was reported to increase in the era of novel agents, leading to speculation that 

combined PI and IMiD-based therapeutic regimens inadvertently select for 

aggressive MM clones with a higher capacity for extramedullary spread (Varettoni et 

al. 2010). However, a comprehensive study by Varga et al., revealed no evidence of 

increased risk of EMM following front-line treatment with lenalidomide and 

bortezomib combinations (Varga et al. 2015). The increased incidence is likely due 
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to improvements in the sensitivity of imaging technologies as well as the longer 

survival rates of MM patients (Bansal et al. 2021). EMM can be detected at 

diagnosis (primary EMM) or at relapse (secondary EMM), with a higher incidence 

of secondary EMM compared to primary EMM (Bladé et al. 2022a). In a review of 

over 1000 patients with NDMM in 2003, only 4 patients (0.4%) presented with 

extramedullary lesions whereas a 2011 study of 174 patients, found 3 patients  

(1.7%) presented with EMD at diagnosis whereas 13 patients (7.5%) developed 

EMD during the course of treatment (Kyle et al. 2003; Short et al. 2011). The 

incidence of EMM at diagnosis ranges from 0.4% to 4.8%, while the incidence in 

RRMM ranges from 3.4% to 14% (Kyle et al. 2003; Pour et al. 2014; Deng, Xu, et 

al. 2015).  

1.7.2 Diagnosis, prognosis, and treatment of EMM 

Whole body magnetic resonance imaging (MRI) and positron emission 

tomography/computed tomography (PET/CT) have been recommended as imaging 

technologies capable of detecting extramedullary lesions (Mesguich et al. 2022). A 

recent consensus statement from the IMWG recommends the use of flourine-18 

fluorodeoxyglucose PET/CT (¹⁸F-FDG PET/CT) during the diagnostic work-up of 

MM patients with suspected extramedullary or solitary plasmacytomas (Cavo et al. 

2017). One of the main advantages of ¹⁸F-FDG PET/CT is the ability to discriminate 

metabolically active extramedullary sites from metabolically inactive lesions. 

Following the detection of an extramedullary plasmacytoma, an EMM diagnosis is 

confirmed by biopsy (Touzeau and Moreau 2016).  

The presence of extramedullary lesions is an independent poor prognostic factor 

associated with significantly shorter PFS and OS (Usmani et al. 2012; Kraeber-

Bodéré et al. 2022). Several studies have reported a worse prognosis in patients with 

soft tissue EMM when compared to MM patients with paraskeletal involvement 

(Zhou et al. 2020; Jiménez-Segura et al. 2022). Varying PFS and OS rates have been 

reported for EMM over the years (Bladé et al. 2022a). A comprehensive, 

retrospective study by the European Society for Blood and Marrow Transplantation 

(EBMT) found 139 of the 3744 NDMM patients identified presented with EMM. 

The 3-year PFS and OS for EMM patients was significantly worse at 39.9% and 

58%, respectively, compared to 50% and 77.7%, respectively, for patients with 
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paraskeletal involvement, and 47.9% and 80.1%, respectively, for MM patients 

without extramedullary involvement. Gagelmann et al. also reported that EMM 

patients with multiple sites of extramedullary involvement showed a significantly 

reduced 3-year PFS when compared to those with single site involvement 

(Gagelmann et al. 2018). In RRMM, a multicenter retrospective study evaluating the 

outcome of MM patients with extramedullary and paraskeletal involvement found 

that patients diagnosed with EMM at relapse had the worst prognosis with a PFS of 

13.6 months and OS of 11.4 months. Patients presenting with EMD at diagnosis 

have an improved PFS and OS of 38.9 and 46.5 months, respectively, compared to 

EMD diagnosed at relapse (Beksac et al. 2020). 

Several reviews and recommendations focusing on how best to treat patients with 

extramedullary lesions agree that an aggressive treatment approach is required 

(Touzeau and Moreau 2016; Li, Ji, et al. 2022; Li, Sun, et al. 2022). As of the time 

of writing, no prospective clinical trials focusing specifically on EMM patients have 

been published. Therefore, there are currently no specific, targeted therapeutic 

regimens for the treatment of EMM. Current literature points to poor responses to 

current MM therapeutics, and the lack of prospective studies specific to EMM 

patients hampers a clinician’s ability to make strong treatment recommendations. In 

addition, despite the success of immunotherapies for the treatment of MM, 

preliminary studies indicate that the long-term efficacy of these treatments is 

significantly worse in patients with EMM compared to MM patients without 

extramedullary spread (Jelinek et al. 2022; Li, Liu, et al. 2022a). It is clear that novel 

therapeutic strategies are required to improve the outcome of EMM patients. 

Despite the poor prognosis associated with EMM, a literature review of EMD in 

MM patients revealed a lack of articles focused on the molecular pathogenesis of 

extramedullary transition. Due to the rarity of EMM and the heterogeneous locations 

of extramedullary lesions, case studies are often published (Xie et al. 2015; 

Markovic et al. 2019; Tyczyńska et al. 2023). Therefore, little is known about the 

molecular mechanisms that underly the development of EMM. Section 5.1 provides 

further information on current literature related to the molecular mechanisms 

associated with EMM. 
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1.8  Precision medicine using proteomics techniques 

Developing precision medicine approaches has become an objective of many 

scientists and clinicians who strive for a more personalized approach to the treatment 

of cancer. Precision medicine uses molecular information from genomics, 

proteomics, transcriptomics, in addition to lifestyle and environmental information 

from an individual to improve health outcomes by preventing, diagnosing, and 

treating disease (Lancet 2021). In recent years, there have been major technological 

improvements in the proteomics field with the availability of various competent 

technologies and more robust workflows which are consistently bringing us closer to 

bridging the gap between laboratory-based research and clinical applications (Figure 

1.5). Over 20 drugs are FDA approved for the treatment of multiple myeloma; and 

with the high likelihood of patients becoming resistant to various drugs, it is crucial 

patients receive an appropriate treatment course that provides the best chance of a 

long-term response. Unfortunately, MM is still treated empirically with conventional 

myeloma therapies, and despite various cytogenetic variants of MM being identified, 

no targeted therapies are currently approved for the treatment of these subgroups. 

The biggest challenge facing the implementation of precision medicine approaches 

in MM is the inherent heterogeneity within the tumour microenvironment which 

often cultivates various sub-clones with distinct molecular characteristics that may 

become dominant over the course of the disease (Pan and Richter 2022).  
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Figure 1.5: Proteomic techniques contributing to precision medicine. This figure 

highlights the process for applying proteomic-based precision medicine approaches in a 

clinical setting. Proteins can be detected and quantified in various biological samples by 

competent proteomic technologies. The data generated from these studies can be analysed 

and integrated with clinical data and other “omic” technologies to contribute to clinical 

applications.  

 

 

*Figure was adapted from (Correa Rojo et al. 2021). 

1.8.1 Biomarkers 

Biomarkers are measurable indicators that can identify a specific physiological or 

pathological process. In the era of precision medicine, biomarkers are required to 

help tailor treatment regimens and improve clinical outcomes for individual patients. 

Protein biomarkers can serve as diagnostic indicators, prognostic indicators, markers 

for monitoring disease progression, and as predictive markers to predict patients’ 
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response to treatment (Ou et al. 2021). Evaluating protein biomarkers in patient 

samples has the potential to improve health outcomes by contributing to an earlier 

diagnosis, an accurate prognosis, a disease monitoring regimen, and the selection of 

therapeutic regimens that individual patients are most likely to respond to. Valuable 

protein biomarkers can be identified in tissues and biofluids, although biofluids such 

as plasma, serum, saliva, and urine, are often preferred due to the ease of 

longitudinal sampling, low cost, and minimally invasive nature of sample collection 

in comparison to tissue biopsies (Marrugo-Ramírez et al. 2018). Notably, MM 

patients must undergo a highly invasive and painful bone marrow biopsy procedure 

to obtain tumour tissue, thus highlighting the need for biofluid-based biomarkers in 

MM. The discovery of novel proteomic biomarkers in biofluids can be challenging 

due to highly dynamic protein concentration ranges, particularly in serum and 

plasma, which can hinder the detection of low abundant proteins. Therefore, 

depending on the biofluid being analysed, the proteomic target, and the analytical 

technique being used, additional sample preparation steps may be required to 

improve the likelihood of detecting clinically relevant biomarkers (Figure 1.6) 

(Dunphy, O’Mahoney, et al. 2021).  
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Figure 1.6: The process of biomarker discovery in biofluids and their clinical 

applications. Biomarker discovery involves selecting an appropriate biofluid, adapting sample 

preparation to optimise the detection of protein targets, choosing an appropriate screening 

platform and validation of the results in an independent cohort of samples. HAP, high-

abundance protein; LAP, low-abundance protein; CTC, circulating tumour cell; ELISA, 

enzyme-linked immunosorbent assay; EpCAM, epithelial cell adhesion molecule; CK, 

cytokeratin. * Dynamic range of corresponding biofluid. Created using BioRender.  

*Image taken from (Dunphy, O’Mahoney, et al. 2021) 

An ideal biomarker is disease-specific, has high specificity and sensitivity in all 

patients, is indicative of the severity of the disease, easily distinguishable from 

disease-free patients and demonstrates reversibility during treatment of the disease 

(Wong 2011). Despite progress in the field of biomarker discovery, no such ideal 

biomarkers exist, and few protein biomarkers have made it into the clinic. This stems 

from difficulties translating biomarkers from the “benchtop” to clinical use due to 

low reproducibility, a lack of method standardisation, and the need for clinical-grade 

technologies to be used for biomarker detection in the clinic (Kearney et al. 2018). 

Recent studies have focused more on sequential validation in large cohorts of 

samples and the use of biomarker panels, incorporating multiple markers to improve 

the accuracy of a clinical test. Furthermore, technological improvements have led to 

more robust proteomic platforms for biomarker discovery which will undoubtedly 
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lead to the clinical application of proteomic biomarkers to improve the diagnostic, 

prognostic, and predictive power in clinical settings (Dunphy, O’Mahoney, et al. 

2021). 

1.8.2 Proteomics 

Proteins are the functional products of gene expression and are required for basically 

all cellular activities. Proteomics involves the characterization and mapping of 

proteins, a complex task due to the dynamic nature of the proteome. There are 

various proteomic applications which aim to decipher the complex proteome 

including structural and spatial proteomics, analysing protein-protein interactions, 

and evaluating post translational modifications (PTMs). Each of these applications 

can provide valuable information to aid scientists elucidate disease-related 

mechanisms, discover novel diagnostic/prognostic biomarkers, and identify 

therapeutic targets (Kwon et al. 2021). Improvements in the analytical sensitivity of 

proteomics technologies in recent years has seen significant breakthroughs in 

identifying protein biomarkers and therapeutic targets in various diseases. The field 

of proteomics is constantly developing, and as single cell RNA sequencing has taken 

centre stage in the last decade, the emerging field of single cell proteomics has made 

considerable technological advancements in recent years and holds promise to 

unravel the heterogeneity of complex cellular samples (Bennett et al. 2023). 

1.8.3 Mass spectrometry 

One of the most powerful analytical techniques applied in proteomic studies is mass 

spectrometry (MS), which facilitates large-scale quantitative profiling of proteins. 

Untargeted proteomics, or discovery proteomics, is often performed using liquid 

chromatography – tandem mass spectrometry (LC-MS/MS) to quantify thousands of 

proteins in a single sample. The “bottom-up” proteomics approach is often applied 

for LC-MS/MS whereby proteins in a biological sample are cleaved by a protease 

prior to MS (Doll et al. 2019). Sample preparation requires the isolation, 

denaturation, reduction, and alkylation of proteins followed by protein digestion 

using the appropriate enzyme, often trypsin. Depending on the type of samples being 

analysed, additional sample preparation techniques, such as immunodepletion of 

plasma or serum, or peptide fractionation of complex samples, may be required to 
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increase the likelihood of identifying proteins of low abundance. The digested 

samples are then injected into the LC-MS/MS system for analysis. As the peptides 

enter the LC, they will bind to the non-polar stationary phase proportionally to their 

hydrophobicity, resulting in hydrophilic peptides eluting from the column before 

hydrophobic peptides. This improves accuracy by separating peptides before they 

enter the mass spectrometer. LC eluent is transferred to the ion source of the mass 

spectrometer where peptides are ionized via ionization technologies such as matrix-

assisted laser desorption/ionization (MALDI) or electro-spray ionization (ESI). 

Following ionization, peptide precursor ions are fragmented using one of several 

fragmentation techniques, most commonly collision-induced dissociation (CID) or 

high-energy collision dissociation (HCD). The resulting product ions are 

characterized based on their mass-to-charge (m/z) ratios and relative abundance to 

produce MS/MS spectra which are matched to theoretical MS/MS spectra available 

on databases for peptide identification (Sinha and Mann 2020).  

1.8.3.1 Label-free quantitation 

Quantitative proteomics is particularly useful for precision medicine as it facilitates 

the comparison of protein levels in different patient cohorts, thus aiding in the 

detection of novel biomarkers and therapeutic targets. Quantitative data can be 

obtained during MS analyses using label-free or label-based techniques. These 

techniques have strengths and limitations, each of which may be more suitable for 

certain analyses or laboratories. Label-free quantitation (LFQ) refers to the use of 

peak intensity analysis or spectral counting for quantitation. For peak intensity 

analysis, the intensities of the chromatographic peptide peaks are extracted 

(extracted-ion chromatogram) based on the peptide precursor m/z ratio and compared 

between LC-MS/MS datasets (Ball et al. 2023). Spectral counting enables protein 

quantitation by counting the number of MS/MS spectra derived from peptides from 

the same protein in each LC-MS/MS dataset (Drabovich et al. 2013). Both label-free 

quantitation approaches are reliant on efficient sample preparation and reproducible 

liquid chromatography and mass spectrometry parameters between LC-MS/MS runs. 

However, LFQ is often chosen due to the relative simplicity of sample preparation, 

lower costs, and a higher proteome coverage (Li et al. 2012; Megger et al. 2014; 

Anand et al. 2017). 
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1.8.3.2 Label-based quantitation 

During label-based quantitation, proteins or peptides are enzymatically or chemically 

labelled using differential mass tags, such as tandem mass tag (TMT) or isobaric tag 

for relative and absolute quantification (iTRAQ), which facilitates multiplexing of 

samples (Dunphy, Dowling, et al. 2021). The metabolic labelling technique, stable 

isotope labelling of amino acids in cell culture (SILAC), involves the in vitro 

labelling of peptides by growing cells in cultures with an isotopically defined 

medium, which can be differentiated during MS analysis. Heavy isotopic versions of 

naturally occurring elements, such as 15N and 13C, are used followed by mixing the 

samples and MS analysis. A drawback of SILAC is the need for metabolically active 

sample sources which can limit the use of this technique in clinical proteomics (Ong 

and Mann 2006). The isobaric labelling technologies, TMT and iTRAQ, overcome 

this limitation by labelling target compounds using chemical tags with identical 

masses. During LC-MS/MS analysis, peptide fragmentation reveals reporter ions of 

variable molecular weights each corresponding to a specific sample (Anand et al. 

2017). Label-based quantitation overcomes the issue of missing values associated 

with LFQ, however, labelling samples often requires more complex sample 

preparation protocols, is more costly than LFQ, and is limited by the number of 

samples that can be multiplexed in a single experiment (Bantscheff et al. 2012).  

1.8.4 Affinity-based proteomics 

The field of affinity-based proteomics has seen significant improvements with the 

emergence of new technologies including the proximity extension assay (PEA)-

based Olink platform and aptamer-based SomaScan assays (Smith and Gerszten 

2017). The Olink platform uses antibody pairs conjugated to unique DNA 

oligonucleotides which hybridize to the matched antibody when in close proximity. 

This results in the generation of a unique DNA receptor sequence which can be 

quantified by quantitative polymerase chain reaction (qPCR) or NGS (Petrera et al. 

2021). The recent introduction of the Olink Explore HT platform facilitates the 

measurement of over 5,000 proteins in a few microliters of sample. In contrast, the 

SomaLogic technology can measure up to 7,000 proteins by using modified single-

stranded nucleotide aptamers known as SOMAmers, which bind specifically to 

target proteins present in a biological sample. The antibody-based Luminex platform 
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has also demonstrated considerable improvements with the capacity to detect up to 

500 proteins in a single experiment (Shami-Shah et al. 2023). Affinity proteomic 

platforms are particularly powerful for the analysis of the complex serum/plasma 

proteome, which has a large dynamic range that hinders the ability of LC-MS/MS to 

detect low abundant proteins (Palstrøm et al. 2022). Plasma samples are often 

immunodepleted to remove high abundant proteins prior to MS analysis to improve 

proteome coverage (Woo and Zhang 2023).  

1.8.5 Post translational modifications 

Post translational modification (PTM) refers to the biochemical modification of 

proteins following protein synthesis, or post-translationally. PTMs are found 

throughout the cell and play roles in the regulation of almost all biological processes 

including the cell cycle, degradation, apoptosis, cell signalling, and transcription. 

Over 200 PTMs have been reported in eukaryotes with the most studied being 

phosphorylation, glycosylation, ubiquitination, sumoylation, acetylation and 

methylation (Yakubu et al. 2019). Different PTMs can stimulate different protein 

responses such as the activation or inhibition of enzymatic activity, interactions with 

other proteins, or a change in localisation (Figure 1.7). Aberrant post translational 

modification of proteins, without a change in protein abundance, can alter the normal 

functioning of signalling pathways and have been implicated in pathogenesis of a 

variety of diseases (Dunphy, Dowling, et al. 2021).  
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Figure 1.7: Different post translational modifications (PTMs) and their roles in the 

mammalian cell. PTMs are essential to maintain cellular physiology. They play a role in 

almost all cellular processes. 

*Image from (Dunphy, Dowling, et al. 2021). 

1.8.6 Bioinformatics 

Mass spectrometry studies generate large amounts of proteomic data, with 

quantitative information on thousands of proteins. These large datasets require 

rigorous analysis using various automated programs to convert the mass 

spectrometer raw data into biologically meaningful results (Lavallée-Adam et al. 

2015). Various sophisticated software such as the Mascot and Sequest search 

engines, are used to annotate mass spectra with peptides using protein sequence 

databases and spectral libraries (Brosch et al. 2009). Computational proteomics 

platforms such as Proteome Discoverer and MaxQuant simplify data analysis of 

mass spectrometry data by streamlining peptide identification, peptide quantitation 

and the assignment of peptides to their parent proteins (Palomba et al. 2021). 

Software such as Perseus also simplify the interpretation of proteomics data and 
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statistical analysis to identify proteins of differential abundance between groups 

(Tyanova and Cox 2018). Downstream data analysis of statistically significant 

differentially abundant (SSDA) proteins can include functional annotation and 

enrichment tools such as the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) and G:profiler. Evaluating the protein-protein interactions 

between proteins identified in an MS experiment using specific tools such as the 

Search Tool for the Retrieval of INteracting Genes/Proteins (STRING), can aid the 

interpretation of proteomics data (Sinitcyn et al. 2018). 

1.9  Aims of the project 

Despite decades of research and the approval of numerous therapeutics, multiple 

myeloma remains an incurable malignancy. MM patients face a high symptom 

burden with end organ damage resulting in physical pain, prolonged treatment 

affecting mental wellbeing, and mortality (Ramsenthaler et al. 2016). A significant 

amount of research has focused on improving our understanding of myeloma 

pathogenesis and identifying mechanisms of drug resistance and novel biomarkers.  

Proteins represent the functional unit of the cell and are the target of almost all FDA-

approved targeted therapies. Many diagnostic tools, clinical tests and some 

therapeutics are protein-based, signifying the importance of proteomics data in 

identifying novel biomarkers and therapeutic targets. Major technological 

improvements in the proteomics field have led to more robust workflows which are 

continuously bring us closer to establishing clinical applications. Mass spectrometry 

represents a powerful analytical tool that facilitates large-scale, quantitative profiling 

of proteins. This allows the comparison of proteomic profiles from distinct 

populations to identify alterations in protein signatures. This research project aimed 

to use mass spectrometry-based discovery proteomics to identify aberrant protein 

signatures in primary multiple myeloma samples.  

Chapter 3 

Drug resistance remains one of the most significant barriers to the effective treatment 

and survival of MM patients. To determine proteomic and phosphoproteomic 

changes in drug sensitive and drug resistance MM, we combined ex vivo drug 
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sensitivity resistance testing (DSRT) and mass spectrometry. 20 primary MM patient 

CD138+ samples were tested using a panel of approximately 141 FDA-approved and 

investigational drugs. A label-based phosphoproteomic analysis was performed to 

evaluate the proteomic and phosphoproteomic alterations between those considered 

most and least sensitive to a variety of selected drug classes. 

Chapter 4 

Invasive and painful bone marrow biopsies remain the gold standard for diagnostic 

and prognostic applications in MM. Therefore, there is an urgent need for minimally 

invasive protein biomarkers of MM to predict and monitor therapeutic response. 

Blood-based biomarkers can easily be implemented in a clinical setting for 

monitoring prior to and during treatment with minimal discomfort for patients. Thus, 

blood plasma was obtained from patients with corresponding ex vivo DSRT data for 

proteomic analysis to identify plasma-derived markers of drug resistance/sensitivity.  

Chapter 5 

Extramedullary multiple myeloma is associated with a poor prognosis yet limited 

molecular studies have been published in the literature. At the time of writing, only 

one proteomics-focused study has been performed, with no mass spectrometry 

analyses identified in the literature. To address this research gap, a mass 

spectrometry-based proteomics analysis was conducted to compare the proteomic 

profiles within the bone marrow niche of MM patients with and without 

extramedullary spread.  

Chapters 6 and 7 

Blood-based markers of EMM may help clinicians detect extramedullary spread or 

aggressive disease at an earlier stage. Incorporating testing for blood-based EMM 

markers during routine visits could lead clinicians to perform appropriate imaging 

tests, such as an MRI or 18F-FDG PET/CT, to detect extramedullary lesions at an 

earlier stage. To identify novel markers of EMM, a quantitative mass spectrometry 

analysis was performed on plasma samples from MM patients with and without 

extramedullary spread. In addition, a targeted metabolomics analysis of these plasma 

samples was performed to identify soluble metabolite biomarkers of EMM. 
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In summary, the overall aim of this thesis was to use quantitative mass spectrometry 

to provide in-depth proteomic profiling of MM patients stratified based on drug 

response and the presence of extramedullary lesions. Identifying protein signatures 

associated with drug resistance/sensitivity can improve our understanding of 

molecular mechanisms and signalling pathways that govern individual drug 

responses. Identifying protein signatures associated with EMM can help researchers 

decipher the molecular mechanisms that facilitate the escape of myeloma cells from 

the bone marrow and subsequent survival and proliferation of myeloma cells at 

extramedullary sites. Antibody-based validation methods were used to confirm 

changes in protein abundance and identify potential biomarkers for future validation 

in a larger cohort of patients, with the ultimate goal being the implementation of 

testing for these biomarkers in a clinical setting. 
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Chapter 2 

 

Materials and Methods 
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2.1  General chemicals and reagents 

Deionized H2O (dH2O) was obtained following purification of distilled water using a 

Millipore Milli-Q apparatus. A list of general chemicals and reagents, buffer 

solutions, antibodies, commercial kits, and equipment used throughout the project 

are provided in the tables below, respectively (Table 2.1, Table 2.2, Table 2.3, 

Table 2.4, Table 2.5). 

Table 2.1: List of chemicals, reagents and consumables used throughout this project. 

Name of Chemical/Reagent Company Identifier 

Ammonium Bicarbonate Sigma Cat# A6141 

Anhydrous acetonitrile Sigma Cat# 271004 

Bovine serum albumin (BSA) Sigma Cat# A3156 

Dithiothreitol (DTT) Sigma Cat# D9163 

Dried skimmed milk Marvel N/A 

Ethylenediaminetetraacetic acid (EDTA) Sigma Cat# ED 

Glycine Sigma Cat# G7126 

HEPES Sigma Cat# H3375 

Hydrochloric acid (HCl) Sigma Cat# 258148 

Iodoacetamide (IAA) Sigma Cat# I1149 

Ionic detergent compatibility reagent 
Thermo Fisher 

Scientific Inc. 
Cat# 22663 

Laemmli buffer Sigma Cat# S3401 

LC-MS grade water 
Thermo Fisher 

Scientific Inc. 
Cat# 51140 

Methanol Fisher Scientific Cat# 10675112 

MOPS Sigma Cat# M1254 

Normal goat serum R&D Systems Cat# DY005 

Pierce™ ECL Western Blotting 

Substrate 

Thermo Fisher 

Scientific 
Cat# 32106 

Protease inhibitors 
Cell Signaling 

Technology 
Cat# 5871 

Sodium Dodecyl Sulfate (SDS) Sigma Cat# L3771 

Sodium hydroxide (NaOH) Sigma Cat# S8045 

Triethylammonium bicarbonate (TEAB) 
Thermo Fisher 

Scientific Inc. 
Cat# 90114 

Trifluoroacetic Acid Sigma Cat# T6508 

Trizma® Base Sigma Cat# T6066 
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Name of Chemical/Reagent Company Identifier 

Tween® 20 Sigma Cat# P1379 

Urea Sigma Cat# U0631 

Consumables   

Corning™ Costar™ 96-well, cell 

culture-treated, flat-bottom microplate 
Fisher Scientific Cat# 3595 

Eppendorf® DNA LoBind tubes, 1.5ml Sigma Cat# EP0030108051 

Eppendorf® DNA LoBind tubes, 2ml Sigma Cat# EP0030108078 

Qubit™ assay tubes Invitrogen Cat# Q32856 

Vivacon 500, 30,000 MWCO Hydrosart Sartorius Cat# VN01H22 

NuPAGE™ 10%, Bis-Tris, 1.0–1.5 mm, 

Mini Protein Gels (10-well or 12-well) 
Invitrogen 

Cat# NP0301BOX 

Cat# NP0302BOX 

PageRuler™ Plus Prestained Protein 

Ladder, 10 to 250 kDa 

Thermo Fisher 

Scientific Inc. 
Cat# 26619 
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Table 2.2: Composition of buffer/solutions used throughout this project. 

Experiment Buffer/Solution Composition 

Filter aided sample 

preparation for mass 

spectrometry 

0.1M Tris/HCl, pH 8.5 

8M UA 

50mM IAA 

50mM ABC 

50mM HEPES, pH 8.5 

 

LC/MS sample buffer 

In dH2O 

In 0.1M Tris/HCl, pH 8.5 

In 8M UA 

In dH2O 

In dH2O, pH adjusted using 

NaOH. 

20% ACN, 2% TFA in dH2O 

Tandem mass tag (TMT) 

labelling 

100mM TEAB 

 

5% hydroxylamine 

From 1M TEAB stock solution 

diluted in LC/MS grade H2O   

In 100mM TEAB 

C18 sample clean-up 

Activation solution 

 

Equilibration solution/ 

Wash solution 

Elution buffer 

50% ACN, 50% LC/MS grade 

H2O 

2.5% ACN, 0.25% TFA made 

up in LC/MS grade H2O  

80% ACN in LC/MS grade 

H2O 

Phosphopeptide enrichment 

(IMAC) 

Binding/ wash buffer 

Elution buffer 

0.1% TFA, 80% ACN 

5% ammonium hydroxide 

(NH4OH) in water 

Western blotting 

Laemmli buffer 

 

 

1x Running buffer  

 

1x Transfer buffer 

 

Blocking buffer 

4% SDS, 20% glycerol, 10% 

2-mercaptoethanol, 0.004% 

bromphenol blue, 0.125 M 

Tris HCl, pH approx. 6.8 

12.12g Tris, 20.92g MOPS, 2g 

SDS, 0.3g EDTA made up to 

2L with dH2O 

25mM Tris, 192 mM Glycine, 

20% Methanol in dH2O 

4% non-fat dry milk, 0.05% 

Tween, made up in PBS 
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Table 2.3: List of antibodies and enzymes used throughout this project. 

Name of Antibody/Enzyme Company Identifier 

α-Actinin (D6F6) XP® Rabbit mAb 
Cell Signalling 

Technology 
Cat# 6487 

Anti-mouse IgG, HRP-linked Antibody 
Cell Signalling 

Technology 
Cat# 7076 

Anti-phospho Bad (Ser99) Antibody Sigma Cat# AB10424 

Anti-rabbit IgG, HRP-linked Antibody 
Cell Signalling 

Technology 
Cat# 7074 

Phospho-Filamin A (Ser2152) Polyclonal 

Antibody 
Invitrogen Cat# PA5-40239 

Phospho-SRC (Ser17) Polyclonal Antibody  Invitrogen Cat# PA5-105147 

ProteaseMax™ Surfactant, lyophilized Promega Cat# V207A 

Sequencing Grade Modified Trypsin Promega Cat# V5111 

Trypsin Gold, Mass Spectrometry Grade Promega Cat# V5280 
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Table 2.4: Commercial kits used throughout this project. 

Name of Kit Company Identifier 

Pierce™ 660nm Protein Assay Kit 
Thermo Fisher 

Scientific 
Cat# 22662 

Pierce™ Bovine Serum Albumin Standard 

Pre-Diluted Set 

Thermo Fisher 

Scientific 
Cat# 23208 

High-Select™ Fe-NTA Phosphopeptide 

Enrichment Kit 

Thermo Fisher 

Scientific 
Cat# A32992 

TMT10plex Isobaric Label Reagent Set 
Thermo Fisher 

Scientific 
Cat# 90111 

Cell Death Detection ELISAPLUS Roche Diagnostics 
SKU 

#11774425001 

Proteome Purify 12 Human Serum Protein 

Immunodepletion Resin 
R&D Systems Cat# IDR012 

DuoSet ELISA Ancillary Reagent Kit 2 R&D Systems Cat# DY008B 

DuoSet ELISA Ancillary Reagent Kit 3 R&D Systems Cat# DY009B 

Human VCAM-1/CD106 DuoSet ELISA R&D Systems Cat# DY809 

Human Aminopeptidase N/CD13 DuoSet 

ELISA 
R&D Systems Cat# DY3815 

Human Butyrylcholinesterase/BCHE DuoSet 

ELISA 
R&D Systems Cat# DY6137 

Human HGF Activator DuoSet ELISA R&D Systems Cat# DY1514 

Human alpha 2-Macroglobulin DuoSet 

ELISA 
R&D Systems Cat# DY1938 

Human Serpin F1/PEDF DuoSet ELISA R&D Systems Cat# DY1177 

Human Syndecan-1 DuoSet ELISA R&D Systems Cat# DY2780 

Human S100A8/S100A9 Heterodimer 

DuoSet ELISA 
R&D Systems Cat# DY8226 

Human Neutrophil Elastase/ELA2 DuoSet 

ELISA 
R&D Systems Cat# DY9167 

Qubit™ Protein Assay Kit Invitrogen Cat# Q33211 
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Table 2.5: Technical and analytical equipment used throughout this project. 

Equipment Name of Device Company 

Centrifuge Eppendorf 5417 R centrifuge Eppendorf 

Liquid Chromatography Ultimate 3000 NanoLC system Dionex Corporation, 

USA 

Mass Spectrometers Q-Exactive 

 

 

Orbitrap Fusion Tribrid Mass 

Spectrometer 

Thermo Fisher 

Scientific 

 

Thermo Fisher 

Scientific 

Chemiluminescent 

Detector 

G:BOX Chemi XRQ Syngene 

Other Thermomixer Comfort 

 

Genevac™ miVac Centrifugal 

Concentrator 

 

Sonoplus HD 2200 

 

Electrophoresis System 

 

Eppendorf Biophotometer 

 

Qubit® fluorometer version 2.0 

Eppendorf 

 

Genevac (11574604) 

 

 

Bandelin 

 

Invitrogen 

 

Eppendorf 

 

Thermo Fisher 

Scientific 

2.2  Patient samples 

Different patient cohorts were analysed for specific sections of this thesis. Ethical 

approval was granted by the Mater Misericordiae University Hospital Research 

ethics committee (1/378/1158). For the phosphoproteomic analysis (Chapter 3), 20 

bone marrow aspirates were collected from 7 diagnostic and 13 relapsed MM 

patients. Ethical approval was obtained from the participating hospitals in 

compliance with the Declaration of Helsinki. These samples were obtained from 

collaborators at the Institute for Molecular Medicine Finland (FIMM), University of 

Helsinki, Finland.   

For our proteomic analysis of plasma samples stratified based on ex vivo drug 

response (Chapter 4), 44 etheylenediaminetetraacetic acid (EDTA) plasma samples 

were obtained from the Finnish Hematology Registry and Clinical Biobank (FHRB) 

with full ethical approval. 
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For our EMM study (Chapter 5), bone marrow mononuclear cells (BMNCs) and 

EDTA treated plasma from 17 patients were obtained from the FHRB. The FHRB is 

authorized and approved by the Finnish National Supervisory Authority for Welfare 

and Health (Valvira) and Finnish National Medical Ethics Committee, respectively. 

4 additional serial EDTA plasma samples were obtained from the FHRB. Table 2.6 

details which patient cohorts were used in each chapter. Patient details are provided 

in the experimental design and methods section of subsequent chapters. 

Table 2.6: Patient cohorts evaluated in each chapter of this thesis. 

Chapter Samples evaluated  

3. Phosphoproteomic profiling of multiple 

myeloma based on ex vivo drug sensitivity 

resistance testing identifies distinct 

phosphorylation signatures associated with 

drug response 

20 MM bone marrow aspirate samples with 

associated ex vivo drug response data 

4. Using untargeted and targeted plasma 

proteomics to identify plasma biomarkers of 

therapeutic response based on ex vivo drug 

sensitivity resistance testing 

44 MM EDTA plasma samples with 

associated ex vivo drug response data 

5. Proteomic profiling of bone marrow 

mononuclear cells in extramedullary 

multiple myeloma 

• 17 bone marrow mononuclear cell 

samples from MM and EMM 

patients 

• 17 EDTA plasma samples from MM 

and EMM patients 

6. Proteomic profiling of blood plasma from 

multiple myeloma patients with and without 

extramedullary spread 

• 17 EDTA plasma samples from MM 

and EMM patients 

• 44 samples of EDTA plasma with 

associated ex vivo drug response 

data  

7. Targeted metabolomic analysis of blood 

plasma from multiple myeloma patients with 

and without extramedullary spread 

17 EDTA plasma samples from MM and 

EMM patients 

2.3  Bone marrow mononuclear cell isolation and cell lysis 

BMNCs cryopreserved in 10% DMSO/90% serum were shipped on dry ice and 

stored at -80°C for 5 days. The BMNCs were thawed quickly in a 37°C water bath. 

Approximately 2,000,000 BMNCs were removed and washed twice with 1X 

phosphate-buffered saline (PBS). Cells were pelleted by centrifuging at 400 x g for 5 

minutes. The supernatant was removed, and cell pellets were solubilized in 200μl of 

lysis buffer (4% SDS, 100mM Tris/HCl pH 7.6, 0.1M DTT, protease inhibitors). The 

samples were incubated at 95°C for 3 minutes, then incubated on ice for 30-60 
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minutes. Heating is performed to promote denaturation, reduction, and subsequent 

inactivation of the proteases. Samples must also be cooled prior to sonication due to 

the excess amount of heat created during this process. Sonication was used to disrupt 

the cellular membrane and shear DNA to reduce DNA interference during 

downstream processing. Sonication was performed using a sonication probe 

(Bandelin Sonopuls, Bandelin electronic, Berlin), on low power (20kHz). Samples 

were sonicated for 10 seconds then placed on ice for 45-60 seconds. This process 

was repeated three times. Samples were kept on ice for 5 minutes followed by 

centrifugation at 10,000 x g for 20 minutes at 4°C. The supernatant was collected in 

a new tube and stored at -80°C. 

2.4  Protein quantitation using Pierce™ 660nm protein assay 

The Pierce™ 660nm protein assay was used for protein quantitation. As samples 

contained greater than 0.0125% SDS, 1g of ionic detergent compatibility reagent 

(IDCR) was first added to 20ml of Pierce™ 660nm protein assay reagent and mixed 

thoroughly. A standard curve ranging from 125µg-2000µg was produced using pre-

diluted bovine serum albumin (BSA) standards. 10µl of sample, pre-diluted 

standards and an appropriate blank were added in triplicate to separate microplate 

wells of a 96 well plate. 150µl of the IDCR-Pierce™ 660nm protein assay reagent 

mixture was added to each well. The plate was covered and mixed using the 

Thermomixer comfort (Eppendorf) for 1 minute at 300rpm. The plate was incubated 

at room temperature for 5 minutes. Absorbance readings at λ=660nm were recorded. 

An online ELISA Analysis tool (https://www.myassays.com/) was used to create a 

four-parameter logistic regression standard curve, which was subsequently used to 

determine the protein concentration of the unknown samples.  

2.5  Protein quantitation using the Qubit™ protein assay 

The Qubit™ protein assay was also used for protein quantitation. All reagents were 

brought to room temperature before starting the protocol. The Qubit® working 

buffer was prepared away from direct light via a 1:200 dilution of the Qubit® protein 

assay reagent in Qubit® protein assay buffer followed by thorough mixing. 10µl of 

each standard (Qubit® Protein Standard #1, #2, and #3) was added to 190µl of the 

Qubit® working buffer. Samples were diluted as required. Between 1-20µl of 
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sample was added to 180-199µl of Qubit® working buffer to make a total volume of 

200μl. The resulting solutions were thoroughly mixed and incubated in the dark at 

room temperature for 15 minutes. Protein concentration was measured using the 

Qubit® fluorometer version 2.0 and results were multiplied by the appropriate 

dilution factor, if applicable. 

2.6  Immunodepletion of blood plasma 

EDTA plasma obtained from the FHRB was shipped on dry ice, aliquoted and stored 

at -80°C. Twelve highly abundant plasma proteins (alpha 1-acid glycoprotein, alpha 

1-antitrypsin, alpha 2-macroglobulin, albumin, apolipoprotein A-I, apolipoprotein A-

II, fibrinogen, haptoglobin, IgA, IgG, IgM, and transferrin) were depleted using the 

Proteome Purify 12 Human Serum Protein Immunodepletion Resin (R&D Systems). 

Briefly, 10μl of plasma was mixed with 1ml of immunodepletion resin for 60 

minutes using a rotary shaker. The mixture was transferred to Spin-X filter units and 

centrifuged at 1500 x g for 2 minutes. The protein concentration of the resulting 

eluate was determined using the Pierce™ 660nm protein assay or the Qubit™ 

protein assay. 

2.7  Filter-Aided Sample Preparation (FASP) 

Buffer exchange and proteolytic digestion for each mass spectrometry experiment 

was performed using the FASP technique (Wiśniewski et al. 2009). Samples were 

subject to a series of centrifugal steps using 8M Urea (UA) and 50mM IAA to 

facilitate detergent removal, buffer exchange and protein alkylation. Initially, a 

specific concentration of protein from each sample (specified in each experimental 

chapter) was mixed with 200μl or 400μl of 8M UA in the spin filter unit and 

centrifuged at 14,000 x g for 30 minutes. 200μl of UA was added and centrifuged at 

14,000 x g for 15 minutes. Flow-through was discarded. 100μl of 50mM IAA was 

added to each filter unit, mixed at 600rpm for 1 minute in a thermomixer and 

incubated at room temperature for 20 minutes. Samples were incubated in the dark as 

IAA is a light-sensitive compound. Samples were centrifuged at 14,000 x g for 10 

minutes followed by two subsequent centrifugation steps with 100μl of 8M UA. 

100μl of the digestion buffer (50mM HEPES, pH 8.5 or 50mM ABC) was added to 

all filter units and centrifuged at 14,000 x g for 10 minutes. This step was repeated 
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twice. Trypsin digestion was carried out using either Sequencing Grade Modified 

Trypsin (V5111, Promega) or Trypsin Gold, Mass Spectrometry Grade (V5280, 

Promega) with ProteaseMax™ Surfactant (V207A, Promega). For trypsin digestion, 

an enzyme-to-protein ratio specific to each mass spectrometry analysis, was 

determined and made up in digestion buffer. The samples were mixed at 600rpm in a 

thermo-mixer for 1 minute followed by overnight incubation in a wet chamber at 

37ºC. The filter units were transferred to new collection tubes and centrifuged. 40μl 

of digestion buffer was added to all samples, followed by centrifugation at 14,000 x 

g for 10 minutes. The resulting eluate contained the tryptic peptides. Specific protein 

concentrations, enzyme-to-protein ratios and digestion buffers used are outlined 

within the experimental design and methods section of each experimental chapter. 

2.8  Tandem Mass Tag (TMT) Labelling 

Peptide eluates from the FASP protocol were subject to isobaric labelling using two 

TMT10plex Isobaric Label Reagent Sets (Thermo Fisher Scientific Inc.). The two 

sets of TMT label reagents were brought to room temperature. 41μl of anhydrous 

acetonitrile was added to each 0.8mg TMT Label Reagent tube. The tubes were 

occasionally vortexed over 5 minutes to allow the reagents to dissolve. To prevent 

under- or over-labelling of peptides, a TMT label reagent to protein ratio of ~8:1 was 

used. 10μl of the appropriate TMT Label Reagent was added to each protein digest. 

The isobaric tag corresponding to each sample was recorded. The reaction was 

incubated at room temperature for 1hr with occasional vortexing. 2μl of 5% 

hydroxylamine was added to each sample and incubated for 15 minutes to quench 

the reaction. 90μl from each sample was combined resulting in two sample 

preparations each containing 10 labelled samples. Both pooled samples were 

partially dried, and the remaining sample in each was acidified at a 1:7 ratio (1-part 

acidic sample buffer, 7 parts sample) using 2% TFA, 20% ACN. The sample 

preparations were stored at -20°C. 

2.9  C18 Sample Clean-Up 

Pierce C18 Spin Columns (Thermo Fisher Scientific Inc.) were used to remove 

interfering contaminants from each sample preparation. To equilibrate the desalting 

resin, the spin columns were placed in a receiver tube and 200μl of Activation Buffer 
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(50% ACN) was added and centrifuged at 1500 x g for 1 minute. The flowthrough 

was discarded, and this step was repeated once. 200μl of Equilibration Solution 

(0.25% TFA in 2.5% ACN) was added to the column and centrifuged at 1500 x g for 

1 minute. The flowthrough was discarded, and this step was repeated once. The 

labelled sample preparations were added to the equilibrated C18 spin columns. The 

columns were added to fresh receiver tubes and centrifuged at 1500 x g for 1 minute. 

The flowthrough was recovered, and this step was repeated once. 200μl of Wash 

Solution (0.25% TFA in 2.5% ACN) was added to each column and centrifuged at 

1500 x g for 1 minute. The flowthrough was discarded, and this step was repeated 

once. The columns were placed in a fresh tube, 20μl of Elution Buffer (80% ACN) 

was added and centrifuged at 1500 x g for 1 minute. This step was repeated once. 

The sample was dried in a speed vacuum concentrator and stored at -80°C. 

2.10 Immobilized Metal Affinity Chromatography (IMAC) 

Phosphopeptide Enrichment 

Phosphopeptides were enriched using the High-Select™ Fe-NTA Phosphopeptide 

Enrichment Kit (Thermo Fisher Scientific Inc.). The dried-out labelled peptide 

samples were resuspended in 200μl of Binding/Wash Buffer. To equilibrate the 

columns, they were placed in a 2ml microcentrifuge collection tube and centrifuged 

at 1000 x g for 30 seconds to remove storage buffer. 200μl of Binding/Wash Buffer 

was added to the columns and centrifuged at 1000 x g for 30 seconds. The flow-

through was discarded and this step was repeated once. A white Luer plug was used 

to cap the bottom of the columns and they were placed in empty microcentrifuge 

tubes. 200μl of each suspended peptide sample was added to each equilibrated 

column. The screw caps were closed, and the resin was mixed with the sample by 

carefully tapping the bottom plug until the resin was in suspension (15-20 seconds). 

The samples were incubated for 30 minutes with gentle mixing every 10 minutes. 

The columns were placed in a microcentrifuge tube, centrifuged at 1000 x g for 30 

seconds and the flow-through was recovered. The columns were washed by adding 

200μl of Binding/Wash Buffer followed by centrifugation at 1000 x g for 30 

seconds. This step was repeated for a total of 3 washes and the flow-through 

recovered. The columns were washed by adding 200μl of LC-MS/MS grade water, 

centrifuging at 1000 x g for 30 seconds and discarding the flow-through. To elute the 
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phosphopeptides, 100μl of Elution Buffer was added to the column and centrifuged 

at 1000 x g for 30 seconds. This step was repeated once. The eluate (phosphorylated 

fraction) was dried immediately in a speed vacuum, resuspended in 0.25% TFA, 

2.5% ACN, and stored at -20°C. The unphosphorylated fraction (flow-through) was 

acidified at a 1:8 ratio of acidification buffer (2% TFA, 20% ACN) to sample and 

stored at -20°C. 

2.11 Mass Spectrometry Analysis 

Mass spectrometry analyses were performed using two mass spectrometers; the Q-

Exactive mass spectrometer (Thermo Fisher Scientific) located in the Proteomics 

Suite at Maynooth University and the Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Fisher Scientific) located in the proteomics facility of the National Institute 

of Cellular Biotechnology, Dublin City University. The analysis of EMM plasma 

samples (Chapter 3) was conducted using the Q-Exactive at Maynooth University. 

All other proteomic and phosphoproteomic analyses were conducted using the 

Orbitrap Fusion Tribrid. 

2.11.1 Label-free mass spectrometry analysis using Q-Exactive 

Proteomic analysis was performed using the Ultimate 3000 NanoLC system (Dionex 

Corporation, Sunnyvale, CA, USA) coupled with a Q-Exactive mass spectrometer 

(Thermo Fisher Scientific). The maximum loading volume is 14μl. Samples were 

loaded onto a C18 trap column (C18 PepMap, 300 µm id × 5 mm, 5 µm particle size, 

100 Å pore size; Thermo Fisher Scientific) and resolved on an analytical Biobasic 

C18 Picofrit column (C18 PepMap, 75 µm id × 500 mm, 2 µm particle size, 100 Å 

pore size; Dionex). Peptides generated were eluted over a 120-minute binary 

gradient as follows: solvent A [2% (v/v) ACN and 0.1% (v/v) formic acid in LC-MS 

grade water] and 0-90% solvent B [80% (v/v) ACN and 0.1% (v/v) formic acid in 

LC-MS grade water]. The column flow rate was set to 0.3μl/min. A data dependent 

acquisition strategy was used, and the mass spectrometer was externally calibrated. 

Full-scan spectra were collected in positive mode at a fixed resolution of 140,000 

and a mass range of 300-1700 m/z. Fragmentation spectra were acquired by 

collision-induced dissociation (CID) of the fifteen most intense ions per scan, at a 

resolution of 17,500. A dynamic exclusion window was applied within 30s. 
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Precursor ions were isolated based on an isolation window of 2 m/z and one micro-

scan were used to collect suitable tandem mass spectra. 

2.11.2 Label-free mass spectrometry analysis using Orbitrap Fusion Tribrid 

Mass spectrometry analysis was performed using the Thermo UltiMate RSLC3000 

nano system directly coupled in-line with the Thermo Orbitrap Fusion Tribrid™ 

mass spectrometer. The maximum loading volume is 6.4μl. Samples were loaded 

onto the trapping column (PepMap100, C18, 300 μm × 5 mm, 5 μm particle size, 

100 Å pore size; Thermo Fisher Scientific) for 3 minutes at a flow rate of 25 μL/min 

with 2% (v/v) ACN, 0.1% (v/v) TFA. Peptides were resolved on an analytical 

column (Acclaim PepMap 100, 75 μm × 50 cm, 3 μm bead diameter column; 

Thermo Fisher Scientific) using the following binary gradient; solvent A (0.1% (v/v) 

formic acid in LC-MS grade water) and solvent B (80% (v/v) ACN, 0.08% (v/v) 

formic acid in LC-MS grade water) using 2–32% B for 75 minutes, 32–90% B in 5 

minutes and holding at 90% for 5 minutes at a flow rate of 300 nL/min. A data 

dependent acquisition strategy with MS1 full scans in the 380–1500 m/z range was 

performed with a resolution of 120,000 at 200 m/z, targeted automatic gain control 

(AGC) set to accumulate 4 × 105 ions, and a maximum injection time of 50ms. A 

top-speed approach with a cycle time of 3s was used for tandem MS analysis, with 

selected precursor ions isolated with an isolation width of 1.6 Da. The intensity 

threshold for fragmentation was set to 5000 and included peptides with charge states 

of 2+ to 7+. A higher energy collision dissociation (HCD) approach was applied 

with a normalized collision energy of 28% and tandem MS spectra were acquired in 

the linear ion trap with a fixed first m/z of 110, and a dynamic exclusion of 50 s was 

applied. AGC was set to 2 × 104 with a maximum injection time set at 35ms.  

2.11.3 Label-based mass spectrometry analysis using Orbitrap Fusion Tribrid  

Mass spectrometry analysis was performed using the Thermo UltiMate RSLC3000 

nano system directly coupled in-line with the Thermo Orbitrap Fusion Tribrid™ 

mass spectrometer. For both the phospho-enriched and non-enriched samples, 

volumes equivalent to 1µg of digested peptides were loaded onto the trapping 

column (PepMap100, C18, 300 μm × 5 mm; Thermo Fisher Scientific) for 3 minutes 

at a flow rate of 25 μL/min with 2% (v/v) ACN, 0.1% (v/v) TFA. Peptides were 
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resolved on an analytical column (Easy-Spray C18 75 μm × 250 mm, 2 μm bead 

diameter column) using the following gradient: 98% solvent A (0.1% (v/v) formic 

acid in LC-MS grade water) to 35% solvent B (80% (v/v) ACN, 0.08% (v/v) formic 

acid in LC-MS grade water) over 120 min at a flow rate of 300 nL/min. The mass 

spectrometer was operated in data dependent acquisition (DDA) mode with multi-

notch synchronous precursor selection MS3 scanning for TMT tags. The scan 

sequence for the Orbitrap Fusion Tribrid began with the acquisition of MS1 spectra 

over 400 – 1,400 m/z in the Orbitrap at a resolution of 120,000 at 200 m/z. 

Automatic gain control (AGC) was set to accumulate 4 x 105 ions with a maximum 

injection time of 100ms and 50ms for the unenriched and phospho-enriched samples, 

respectively. MS2 analysis was performed in the ion trap using a top-speed approach 

with 3 second cycles. For the unenriched samples, an intensity threshold of 5,000 

was used and charge states 2+ to 7+ were included. For the phosphor-enriched 

samples, an intensity threshold of 10,000 was used and charge states 2+ to 6+ were 

included. Collision induced dissociation (CID) fragmentation was applied and 

normalised collision energy was optimised at 35%. A dynamic exclusion of 50s was 

applied with a mass tolerance of 10 ppm and the AGC target was set at 104. For MS3 

analysis (synchronous precursor selection), precursors within the mass range 400-

1200 m/z were selected, an isolation window of 2 m/z was used, and isobaric tag loss 

exclusion set for TMT. Selected precursors were fragmented by higher energy 

collisional dissociation (HCD) (65% collisional energy) and detected using the 

Orbitrap over 100-500 m/z at a resolution of 60,000 at 200 m/z. The AGC target was 

set to 105 and the maximum injection time set at 105ms. 

2.11.4 Quantitative analysis of mass spectrometric data using MaxQuant and 

Perseus 

Quantitative analysis of raw mass spectrometry files from Chapter 3 was performed 

in MaxQuant (version 1.6.1.0), which has an in-built Andromeda search engine that 

was used to search the detected features against the UniProtKB-SwissProt Homo 

Sapiens reference database. The following search parameters were used: i) PTM set 

to true, ii) first search peptide tolerance of 20 ppm, ii) main search peptide tolerance 

of 4.5 ppm, iii) cysteine carbamidomethylation set as a fixed modification, iv) 

methionine oxidation and phospho STY set as variable modifications, v) a maximum 
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of two missed cleavage sites and vi) a minimum peptide length of seven amino acids. 

Match between runs was selected. A target-decoy-based false discovery rate (FDR) 

approach set to 1% for both peptides and proteins was used (Grassl et al. 2016). The 

“Phospho.(STY)Sites.txt” file produced by MaxQuant was further analysed using 

Perseus (version 1.6.14.0). Phosphopeptides that matched to the reverse database, or 

a contaminants database were removed. Phosphopeptides were stringently filtered 

based on localization probability > 0.95. To eliminate peptides that were identified in 

one plex and not the other, phosphopeptides with values above the minimum reporter 

intensity value in eleven samples were included in the analysis. To normalize data 

for sample loading and batch effects, the internal reference scaling method was used 

(Plubell et al. 2017). Following normalization, the data was re-imported into Perseus 

(version 1.6.14.0) for statistical analysis. Reporter ion intensities were log2 

transformed. Analysis of variance (ANOVA) and two sample t-tests were performed 

to identify statistically significant differentially abundant proteins and 

phosphorylation sites. 

2.11.5 Quantitative analysis of mass spectrometric data using Proteome 

Discoverer 2.5 

Raw files were searched using Proteome Discoverer 2.5 (Thermo Fisher Scientific). 

Protein identification and label-free quantitation (LFQ) was performed. Precursor 

and fragment ion mass tolerances were set to 10ppm and 0.6 Da, respectively. The 

enzyme was set as Trypsin with a maximum of 2 cleavages permitted.  For 

SEQUEST searches, the UniProtKB-SwissProt Homo Sapiens reference database 

was used. Carbamidomethylation was set as a fixed modification while methionine 

oxidation was set as a dynamic modification. Default settings were used for the 

remaining parameters. Only high confidence proteins were retained for subsequent 

statistical analysis. The resulting dataset was imported into Perseus (version 

1.6.14.0) for statistical analysis.  

2.11.6 Quantitative analysis of mass spectrometric data using Progenesis QI for 

Proteomics Software 

Progenesis QI for Proteomics was used to analyse raw label-free data generated from 

the Orbitrap Fusion Tribrid mass spectrometer. After importation of raw files, data 
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alignment was performed based on the LC retention time of each sample, with the 

use of a reference run selected based on the sample run which yielded the most 

peptide ions. Retention times were aligned based on this reference run and peak 

intensity normalisation performed. The resulting data was filtered based on peptide 

features with ANOVA p-value < 0.05 between experimental groups, mass peaks 

with charge states from +1 to +5, and greater than one isotope per peptide. Following 

filtering, the data was exported (mgf file) to Proteome Discoverer 2.2 where protein 

identification was performed using Mascot and Sequest HT search engine algorithms 

and Percolator. To ensure confident protein identification, a number of criteria were 

applied: (i) peptide mass tolerance set to 10 ppm, (ii) MS/MS mass tolerance set to 

0.02 Da, (iii) an allowance of up to two missed cleavages, (iv) carbamidomethylation 

set as a fixed modification and (v) methionine oxidation set as a variable 

modification (Murphy et al., 2017b). Only high confidence peptides and those with 

XCorr scores greater than 1.5 were re-imported back into the Progenesis QI for 

Proteomics platform. Differentially abundant proteins were identified based on an 

ANOVA p-value  ≤0.05 between experimental groups, and proteins with ≥2 peptides 

matched. 

2.11.7 Bioinformatics analysis and in silico data analyses 

Several freely available bioinformatic softwares were used throughout this project to 

interrogate proteomics data and derive biological meaning from large datasets. To 

evaluate protein-protein interactions between differentially abundant proteins, the 

Search Tool for the Retrieval of INteracting Genes/Proteins (STRING) database 

(version 11.5) (http://string-db.org/) which incorporates direct physical interactions 

as well as functional associations, was used. Unless otherwise stated, the minimum 

required interaction score was set to high confidence (>0.7). Protein networks were 

constructed online using STRING and exported to Cytoscape (version 3.10.0) for 

visualization.  

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene 

ontology (GO) enrichment analysis was performed by submitting Uniprot accession 

IDs to the G:profiler online bioinformatics tool (https://biit.cs.ut.ee/gprofiler/gost) 

(Raudvere et al. 2019). Electronic GO annotations were excluded, and the term size 

was set to between 5 and 2000. Cytoscape (version 3.10.0) was used to visualize 



55 

protein networks and functional networks. KEGG pathways of significant interest 

were examined further using the “KEGG Mapper” section of the KEGG database 

(https://www.genome.jp/kegg/mapper/). Uniprot accession IDs were converted to 

KEGG identifiers using the “Convert ID” tool within the KEGG database. The 

KEGG identifiers were subsequently inputted into the “Color Pathway” tool to 

highlight the proteins found in our dataset within KEGG pathways. 

2.12 In silico analysis of the MMRF CoMMpass dataset 

The Multiple Myeloma Research Foundation (MMRF) Relating Clinical Outcomes 

in MM to Personal Assessment of Genetic Profile (CoMMpass) dataset was used to 

obtain clinical information and RNA-seq data from primary MM patient samples 

(Settino et al. 2020). Gene expression profiles and survival data of patients with MM 

(n = 784) were obtained and analysed using UCSC Xena (Goldman et al. 2020) 

(https://xena.ucsc.edu/)(accessed on 17/11/2022). Raw count values and clinical data 

were downloaded from the Xena website and normalised using the R package 

“deseq2”. Survival analysis was performed using the “survival” and “RegParallel” 

packages and survival curves were illustrated using the Kaplan Meier method.  

2.13 Targeted metabolomics  

2.13.1 Sample Preparation and Analysis 

Targeted metabolomics analysis of plasma was performed at the UCD Conway 

Metabolomic Facility using a SCIEX QTRAP 6500+ LC/MS instrument. Plasma 

samples were prepared based on the MxP® Quant 500 assay manual (Biocrates Life 

Sciences, Innsbruck, Austria) for a targeted metabolomic analysis according to the 

manufacturer’s instructions.  10µL of plasma was loaded on a 96 well plate and the 

samples were dried and derivatized by adding 50µL of 5% phenyl isothiocyanate 

derivatization solution in ethanol/water/pyridine (volume ratio 1/1/1).  The plate was 

then dried under nitrogen. After derivatization, 300µL of ammonium acetate in 

methanol (5 mM) was added into each well and the plate was left to shake for 30 

mins. In the next step, the plate was centrifuged at 500g for 2 mins, and the elute was 

diluted for two analysis methods. 150μL of elute was mixed with 150μL of high-

performance liquid chromatography (HPLC)-grade water for liquid chromatography 

https://www.genome.jp/kegg/mapper/
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tandem mass spectrometry (LC-MS/MS) analysis. Additionally, 10μL of eluate was 

diluted with 490μL of methanol running solvent for flow injection analysis tandem 

mass spectrometry (FIA-MS/MS) analysis. For both LC-MS/MS and FIA-MS/MS 

method, the multiple reaction monitoring (MRM) scan type, which was optimized by 

Biocrates Life Sciences were applied to identify and quantify/semi-quantify the 

metabolites. 

2.13.2 Data processing and metabolite quantification 

MetIDQ software provided by Biocrates Life Sciences was applied to process data. 

Amino acids and part of amino acid related metabolites and biogenic amines were 

quantified using isotopically labelled internal standards and seven-point calibration 

curves. All other metabolites were semi-quantified by using internal standards. Data 

quality was assessed by investigating the accuracy and reproducibility of QC sample, 

provided with Quant 500 assay. The metabolite concentrations in micromoles were 

exported, and any metabolites above the limit of detection (LOD) in > 75% of 

samples were included for further statistical analyses. 

2.13.3 Statistical analysis of metabolomics data 

Data was imported into MetaboAnalyst 5.0 for statistical analysis. Feature filtering 

was performed based on relative standard deviation (RSD) and the resulting data was 

log-transformed. Metabolites of interest were identified using a student’s t-test based 

on p-value < 0.05 between experimental groups. Supervised statistical approaches 

including orthogonal projection to latent structure (OPLS) modelling were used to 

further interrogate the data. 

2.14 Enzyme-linked immunosorbent assays 

ELISAs were used to verify changes in the abundance of soluble markers identified 

in our mass spectrometry analysis. The DuoSet ELISA Ancillary Reagent Kit 2 

(R&D Systems) containing supplemental reagents was used for all ELISAs 

performed. ELISAs were performed as per the manufacturers protocol. Prior to each 

experimental ELISA, an optimisation ELISA was performed to determine the 

optimal sample dilution. Firstly, all reagents were equilibrated to room temperature. 

Microtiter wells were coated with 100µl of the appropriate capture antibody, sealed, 
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and incubated overnight at room temperature. Wells were aspirated and washed three 

times with wash buffer (0.05% Tween® 20 in PBS, pH 7.2-7.4). To reduce non-

specific binding, plates were blocked for a minimum of one hour by adding 300µl of 

reagent diluent (1% BSA in PBS) to each well. Plates were again washed three 

times. 100µl of samples or standards, at the appropriate dilution, were added and the 

plate was sealed and incubated at room temperature for two hours. Following 

binding of the protein of interest to the capture antibody, the plates were washed 

three times. 100µl of biotinylated detection antibody was added to each well and the 

plate was incubated for two hours. The plates were again washed three times, 

followed by the addition of 100µl of streptavidin conjugated to horseradish 

peroxidase (HRP). To produce a colorimetric signal, 100µl of substrate solution was 

added and the plates were incubated for approximately 20 minutes in the dark. 

Following colour development, 50µl of stop solution (2N H2SO4) was added to stop 

the reaction. Finally, absorbance values were determined by reading the plates on a 

microplate reader set at 450nm. The online software MyAssays (myassays.com) was 

used to generate a four-parameter logistic (4-PL) curve to calculate the 

concentrations of each protein analysed. 

2.14.1 Quantitation of mono- and oligonucleosomes in plasma 

A commercially available ELISA-based assay was used to quantify the levels of 

mono- and oligonucleosomes in patient plasma. The Cell Death Detection 

ELISAPLUS kit (#11 774 425 001) was purchased from Roche Diagnostics. The 

ELISA was performed as per the manufacturer’s guidelines, with slight deviations. 

20µl of plasma and incubation buffer was added to each well of the streptavidin-

coated microplate at a 1:1 ratio. 80µl of the immunoreagent, made up of 1:20 volume 

of anti-DNA-POD, 1:20 volume of anti-histone-biotin, and 18:20 volume of 

incubation buffer, was added to each well. The microplate was sealed and incubated 

on a thermomixer set to 300rpm for 2 hours at room temperature. The plate was 

washed three times with incubation buffer followed by the addition of 100µl of 

ABTS (2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt) 

substrate solution into each well. The microplate was incubated on a thermomixer set 

to 300rpm until colour development occurred (20-30 minutes). 100µl of the ABTS 

Stop Solution was added to each well and the absorbance was measured at 405nm. 
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The blank value (100µl ABTS Stop Solution only) was subtracted from the final 

absorbance values for each well. 

2.14.2 Quantitation of nucleosomal citrullinated histone H3 in plasma 

An ELISA-based assay previously described by Thalin et al., was used to quantify 

the neutrophil extracellular trap marker, nucleosomal citrullinated histone H3 

(H3Cit), in patient plasma (Thålin et al. 2020). Reagents were equilibrated to room 

temperature. A high-bind clear polystyrene microplate (R&D Systems, #DY990) 

was coated with anti-histone H3 (citrulline R8) antibody (Abcam, #ab232939) at a 

concentration of 5µg/ml. Primary antibody was diluted accordingly in sterile PBS 

(R&D Systems, #DY006). The microplate was incubated overnight at 4ºC. The plate 

was washed three times with wash buffer (R&D Systems, #WA126). The plate was 

blocked with 300µl of reagent diluent (1% BSA in PBS) (R&D Systems, #DY995) 

for 1.5 hrs at room temperature. The plate was washed three times. 20µl of plasma 

and incubation buffer (Cell Death Detection ELISAPLUS kit, #11 774 425 001) at a 

1:1 ratio was added to each well with 80µl of the detection antibody anti-DNA-POD 

(Cell Death Detection ELISAPLUS kit, #11 774 425 001) at a 1:20 dilution. The plate 

was incubated at room temperature for 2 hrs with shaking (300rpm) using a 

thermomixer. The plate was washed three times and 100µl of 3,3′,5,5′-

Tetramethylbenzidine (TMB) substrate solution (R&D Systems, #DY999B) was 

added to each well. The plate was incubated out of direct light until a dark blue 

colour developed (approximately 10 min). The reaction was stopped by adding 50µl 

of stop solution (R&D Systems, # DY994) to each well and the optical density (OD) 

was determined by reading the plates on a microplate reader set at 450nm.  

2.14.3 Statistical analysis of immunoassay results 

Statistical analysis of immunoassay results was performed using Graphpad Prism 

(8.0.2.263) and MedCalc (version 20.118). Normality was determined using the 

D’Agostino and Pearson test unless otherwise stated. Based on the results of 

normality testing, a student’s t-test or a Mann Whitney rank test was performed to 

determine statistical significance based on a p-value<0.05. Graphs illustrating these 

results were created using GraphPad Prism. Receiver-operating characteristic (ROC) 

curve analysis was performed using MedCalc to evaluate the discriminatory ability 
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of potential biomarkers. ROC plots were created in MedCalc by plotting all 

sensitivity values (true positive fraction) on the y-axis against their  equivalent (100-

specificity) values (false positive fraction) for all available thresholds on the x-axis. 

Optimal cut-off points were determined using Youden’s index. The area under the 

curve (AUC) was calculated to summarise the accuracy of the classification. Logistic 

regression analysis was performed in MedCalc using the Enter method. Throughout 

this thesis, we consider AUC values ranging from 0.5 to 0.7 as poor, 0.7–0.8 as 

average, 0.8–0.9 as good and > 0.9 as excellent. 

2.15 Immunoblotting 

Immunoblotting analysis was performed to verify selected proteins and 

phosphorylation sites identified by LC-MS/MS analysis. Immunoblotting was 

performed as described previously, with slight alterations. Unless otherwise stated, 

5µg of protein was loaded per lane. Cell lysates were incubated with Laemmli buffer 

at a 1:1 ratio and heated at 95ºC for 3 minutes. Invitrogen Bolt 4–12% Bis-Tris gels 

were used for protein separation. 5µl of molecular weight markers were loaded into 

the first lane followed by 5µg of protein per lane. The gel rig was filled with SDS 

running buffer and electrophoresis was performed at 180V. Electrophoresis was 

terminated once the bromophenol blue tracking dye reached the end of the gel. Gels 

were carefully removed from the gel cassette and placed in transfer buffer for 

subsequent transfer onto nitrocellulose membranes. Protein transfer was performed 

based on the method described by Towbin and colleagues (Towbin et al. 1979). 

Proteins were transferred onto nitrocellulose membranes in a Trans-Blot cell from 

Bio-Rad laboratories by wet transfer at 100 V for 60 min at 4℃. Transfer efficiency 

was assessed using Ponceau reversible stain (0.1% Ponceau, 5% acetic acid). To 

prevent non-specific binding, membranes were blocked for 1 hr at room temperature 

using a milk protein blocking buffer (4% w/v fat-free milk powder, 0.05% Tween 20 

made up in PBS), followed by incubation with appropriately diluted primary 

antibodies overnight at 4℃ with gentle agitation. On the second day, the membranes 

were washed in blocking buffer for 10 min, and then incubated with appropriately 

diluted HRP-conjugated secondary antibodies for 1 hr at room temperature with 

gentle agitation. Membranes were twice washed with blocking buffer for 10 min 

each and twice washed with PBS for 10 min each. The membrane was incubated 
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with enhanced chemiluminescence (ECL) western blotting substrate for ~5 min for 

visualisation of the target protein bands. Densitometric scanning and statistical 

analysis of immunoblots was performed using a HP PSC-2355 scanner and ImageJ 

software (NIH, Bethesda, MD, USA) along with Graphpad Prism software (version 

8.0.2.263) (San Diego, CA, USA). Normality was determined using the D’Agostino 

and Pearson test, and student t-test or Mann Whitney rank test was performed 

whereby a p value ≤ 0.05 was deemed to be statistically significant. 

2.16 Measurement of plasma cytokine levels using Proximity 

Extension Assay (PEA) 

A targeted proteomic analysis was performed on 40 plasma samples. 9 EMM plasma 

samples and 31 MM plasma samples with corresponding ex vivo drug response data 

were analysed using Olink proteomics’ (Olink, Uppsala, Sweden) PEA technology. 

The Olink® Target 48 Cytokine panel was used to quantify the levels of 45 cytokines 

in plasma (Supp. File 2.1). The Olink technology is based on the proximity 

extension assay (PEA), which uses antibody pairs, labelled with DNA 

oligonucleotides. The antibody pairs bind to their respective proteins in the samples 

which brings the DNA oligonucleotides into proximity, resulting in hybridization 

and extension catalysed by DNA polymerase. The resulting DNA barcode is 

amplified by polymerase chain reaction (PCR) and quantified by microfluidic 

quantitative (qPCR). Further details on the assay protocol and validation data are 

available on the manufacturer’s website (https://olink.com/products-services/target/). 

Samples were sent to Randox Laboratories (Antrim, UK) on dry ice for analysis. 

Samples were randomly plated in a 96-well plate. Three internal quality controls, 

namely the incubation control, extension control and detection control were added to 

each sample. After the run, quality control checks were performed, and quantitative 

results were obtained for 33 plasma samples. Protein concentrations were expressed 

in pg/ml. The non-parametric Mann Whitney and Kruskal-Wallis tests were used to 

determine statistically significant (p < 0.05) differences in cytokine plasma levels as 

the data did not follow a normal distribution. 

  

https://olink.com/products-services/target/
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3.1  Introduction 

Protein phosphorylation is one of the most extensively studied post translational 

modifications due to the key role it plays in almost all cellular processes, particularly 

in signal transmission. Phosphorylation occurs when a phosphoryl group is added to 

an amino acid residue, resulting in the formation of a phosphodiester bond (Ardito et 

al. 2017). The majority of phosphorylation events occur on serine residues (~90%), 

followed by threonine residues (~9%), and a small percentage on tyrosine residues 

(<1%). Phosphorylation has also been reported to occur on histidine, arginine, lysine, 

and cysteine residues, although these are less studied (Adam and Hunter 2018). The 

process of amino acid phosphorylation is reversible whereby protein kinases catalyse 

and protein phosphatases reverse phosphorylation. Alterations in the function or 

abundance of kinases and phosphatases can alter the extent of protein 

phosphorylation, which can impact protein functionality through changes in protein 

localisation, signal transduction or other biological processes.  

Signalling pathways often rely on phosphorylation cascades catalysed by various 

kinases for signal transduction. These signalling pathways are often implicated in the 

initiation and development of disease. Therefore, unsurprisingly, abnormal phospho-

signalling contributes to the onset and progression of cancer. Numerous signal 

transduction pathways including the phosphoinositide 3-kinase 

(PI3K)/AKT/mammalian target of rapamycin (mTOR) signalling pathway and the 

Ras/MAPK signalling pathway, are known to be aberrantly activated in various 

cancers. The activation of these cascades promotes tumour growth and survival (Yip 

and Papa 2021). Other signalling pathways such as the VEGF pathway which 

stimulates angiogenesis, play key roles in tumour progression. Due to the central role 

of kinases in signalling pathways, they are often the targets of FDA-approved and 

investigational therapeutics. For example, receptor tyrosine kinases are key signal 

transduction mediators that when activated by binding of their cognate ligand, 

stimulate downstream signalling. Receptor tyrosine kinases with well-known roles in 

cancer initiation and progression include FMS-like tyrosine kinase 3 (FLT3) and 

VEGF receptor. Tyrosine kinase inhibitors represent a large class of targeted 

therapeutics used in the treatment of solid and liquid cancers including breast cancer 

and chronic myeloid leukemia (Natoli et al. 2010). 
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The study of protein phosphorylation, termed phosphoproteomics, can help reveal 

key phosphoproteins and phosphorylation sites in signalling pathways. Mass 

spectrometry remains the most powerful analytical technique applied in 

phosphoproteomic studies, facilitating large-scale, high resolution, quantitative 

profiling of phosphorylated proteins. Despite being the most comprehensively 

studied post translation modification, MS-based analysis of phosphorylation events 

remains challenging mainly due to substoichiometric phosphorylation, referring to 

the inherent underrepresentation of phosphopeptides when compared to their 

unmodified peptide counterpart in complex peptide mixtures (Steen et al. 2006). 

This substoichiometry can hamper phosphopeptide identification, however, the use 

of phosphopeptide enrichment methods and highly sensitive, high-resolution mass 

spectrometers have improved the robustness of phosphoproteomics studies leading to 

the identification of greater numbers of phosphopeptides. The electrophoresis and 

antibody-based method, Western blotting, is commonly used for targeted analyses of 

phosphorylation sites, whereby the separated proteins are exposed to 

phosphorylation site specific antibodies, followed by signal development and 

detection of the phosphorylated protein. A limitation of antibody-based targeted 

analyses is the limited availability of high quality, highly specific antibodies against 

many phosphorylation sites. 

In cancer research, phosphoproteomic analyses contribute to precision medicine 

through the identification of phosphorylation sites and associated 

kinases/phosphatases that serve as biomarkers and therapeutic targets. The 

application of phosphoproteomic techniques has led to fundamental advances in the 

understanding of cancer signalling dynamics. Several studies have identified 

phosphorylation events as promising biomarkers of therapeutic response and 

prognosis (Carter et al. 2020; Parada et al. 2020). In addition, phosphorylation 

signatures associated with distinct cancer subtypes or mutational profiles can 

contribute to precision medicine (Mertins et al. 2016; Lin et al. 2019). In this study, 

a TMT-based LC-MS/MS analysis was performed on primary MM plasma cell 

lysates stratified based on their ex vivo drug response profiles to specific classes of 

FDA-approved and investigational therapeutics. The phosphoproteomic profiles 

associated with response to five drug classes, namely, proteasome inhibitor (PI), 

immunomodulatory drug (IMiD), heat shock protein 90 (HSP90) inhibitor, proline-
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rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK) inhibitor, and a 

cyclin dependent kinase 9 (CDK9) inhibitor, were investigated to identify key 

phosphorylation sites, proteins and signalling pathways associated with drug 

sensitivity/resistance.  

3.2  Experimental design and methods 

Multiple myeloma remains an incurable malignancy as patients face repeated 

relapses mainly due to the development of drug resistance. The combination of ex 

vivo DSRT with ‘omics’ technologies is a promising approach to elucidate 

mechanisms of drug resistance and identify novel biomarkers of drug response. 

Furthermore, the field of functional precision medicine is emerging as an effective 

tool in clinical oncology, as highlighted by interim results of a prospective clinical 

trial demonstrating the ability of ex vivo venetoclax sensitivity testing to predict in 

vivo treatment response in acute myeloid leukemia (AML) (Kuusanmäki et al. 2022). 

3.2.1 Patient samples and clinical information 

Patient samples were collected after informed consent with ethical approval from the 

participating hospitals in compliance with the Declaration of Helsinki. Bone marrow 

aspirates were collected from 20 MM patients at various stages of disease. Patient 

characteristics are outlined in Table 3.1, along with treatment regimen information 

as outlined in Table 3.2. Cytogenetic information from each patient at the sampling 

date was recorded (Figure 3.1). 
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Table 3.1: Clinical characteristics of patient cohort. Table illustrating the patient ID, age 

at sample date, gender, heavy chain composition, and light chain composition of each 

patient. 

Patient ID Age at Sample Date Gender Heavy Chain Light Chain 

D_MM_7276 65 Female Not detected kappa 

D_MM_7281 77 Female IgA kappa 

D_MM_7396 50 Male IgG kappa 

D_MM_7746 67 Female IgG lambda 

D_MM_7983 63 Male IgG lambda 

D_MM_8095 77 Male IgA kappa 

D_MM_8597 53 Male IgG lambda 

R_MM_1193 74 Male IgA lambda 

R_MM_1878 69 Male IgA kappa 

R_MM_1913 69 Female IgG kappa 

R_MM_2662 62 Male IgG kappa 

R_MM_3792 68 Male IgG kappa 

R_MM_3823 71 Female IgA lambda 

R_MM_4263 58 Female IgG kappa 

R_MM_587 72 Female IgG kappa 

R_MM_6211 64 Female Not detected kappa 

R_MM_6261 53 Male IgG kappa 

R_MM_6385 76 Male IgA lambda 

R_MM_7171 70 Male Unknown Unknown 

R_MM_8291 71 Male Unknown kappa 
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Table 3.2: Details of treatment course of each patient within the cohort. Table 

illustrating the disease stage at the time of sampling, the 1st next line of treatment, all lines 

of treatment, and the deepest response in next line of treatment. Bor, bortezomib; Dxm, 

dexamethasone; Cpm, cyclophosphamide; HD-Cyc, high-dose cyclophosphamide; 

AutoHSCT, autologous hematopoietic stem cell transplantation; HD-Mel, high-dose 

melphalan; Mel, melphalan; Pred, prednisone; Len, lenalidomide; Dara, daratumumab; 

VGPR, very good partial response; PR, partial response; PD, progressive disease; SD, stable 

disease. 

Patient ID 

Disease 

stage at 

sample 

date 

Name of 1st next 

line treatment 

Names of all next line 

treatments 

Deepest 

response in 

next line 

treatment 

D_MM_7276 Diagnosis Bor/Dxm 

Bor/Dxm 

Bor/Cpm/Dxm 

Mobilisation (HD-Cyc) 

Bor/Cpm/Dxm 

AutoHSCT (HD-Mel) 

VGPR 

D_MM_7281 Diagnosis Bor/Mel/Pred Bor/Mel/Pred VGPR 

D_MM_7396 Diagnosis Bor/Cpm/Dxm 

Bor/Cpm/Dxm 

Mobilisation (Cpm) 

AutoHSCT (HD-Mel) 

Bor/Dxm/Len 

Len 

PR 

D_MM_7746 Diagnosis Ixazomib/Len/Dxm Ixazomib/Len/Dxm PR 

D_MM_7983 Diagnosis NA NA  

D_MM_8095 Diagnosis Bor/Dxm 
Bor/Dxm 

Radiation therapy 
VGPR 

D_MM_8597 Diagnosis Ixazomib/Len/Dxm 
Ixazomib/Len/Dxm 

AutoHSCT (HD-Mel) 
VGPR 

R_MM_1193 Relapse Carfilzomib/Dxm Carfilzomib/Dxm PD 

R_MM_1878 Relapse 
Carfilzomib/ 

Elotuzumab/Dxm 

Carfilzomib/Elotuzumab 

/Dxm 
VGPR 

R_MM_1913 Relapse 
Carfilzomib/ 

Elotuzumab/Dxm 

Carfilzomib/Elotuzumab 

/Dxm 
PR 

R_MM_2662 Relapse 
Carfilzomib/ 

Elotuzumab/Dxm 

Carfilzomib/Elotuzumab 

/Dxm 
VGPR 

R_MM_3792 Relapse NA NA NA 

R_MM_3823 Relapse NA NA NA 

R_MM_4263 Relapse Len/Dxm Len/Dxm NA 

R_MM_587 Relapse 
Treatment related 

to a study 

Treatment related to a 

study 
SD 

R_MM_6211 Refractory Bor/Dxm/Len Bor/Dxm/Len PD 

R_MM_6261 Relapse Dara/Bor/Dxm Dara/Bor/Dxm PD 

R_MM_6385 Relapse 
Treatment related 

to a study 

Treatment related to a 

study 
VGPR 

R_MM_7171 Relapse NA NA NA 

R_MM_8291 Relapse 
Carfilzomib/ 

Elotuzumab/Dxm 

Carfilzomib/Elotuzumab 

/Dxm 
VGPR 
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Figure 3.1: Cytogenetic data associated with the patient cohort. Cytogenetic analysis 

was performed on the sampling date. 

3.2.2 Label-based mass spectrometry analysis of primary CD138+ myeloma 

cells 

The mononuclear cell fraction of bone marrow aspirates collected from 20 MM 

patients were subject to CD138+ plasma cell enrichment using the EasySep Human 

CD138 Positive Selection kit (StemCell Technologies, Grenoble, France) at FIMM. 

Drug sensitivity scoring was performed at FIMM as described previously (Pemovska 

et al. 2013; Majumder et al. 2017; Tierney, Bazou, Majumder, et al. 2021). Briefly, 

the CD138+ cells collected from the 20 myeloma patients were tested against a panel 

of compounds (>300 small molecule inhibitors) that were pre-plated on 384-well 

plates in 5 concentrations covering a 10,000-fold concentration range. CD138+ cells 

were added to the plates in conditioned medium prepared from the HS5 human bone 

marrow stromal cell line. The plates were incubated in a humidified environment at 

37 °C and 5% CO2 for 72 hours, followed by measurement of cell viability using the 

CellTiter-Glo assay (Promega). Drug sensitivity data was calculated by comparing 

readouts between drug treated and negative control (DMSO only) treated cells. Drug 

sensitivity scores (DSS) were calculated as previously described (Yadav et al. 2014). 

Isolated CD138+ plasma cells were lysed in RIPA buffer (25mM Tris, pH 7–8; 150 

mM NaCl; 0.1% SDS; 0.5% sodium deoxycholate and 1% NP-40). Protein 

quantitation was performed using the Pierce™ 660nm protein assay (Thermo Fisher 
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Scientific). FASP was applied for proteolytic digestion, as described in Chapter 2 

(Wiśniewski et al. 2009). 30μg of protein from each sample was digested. For this 

mass spectrometry analysis, 50mM HEPES, pH 8.5 was used as the digestion buffer 

instead of 50mM ABC to ensure no interference with TMT reagents. Following 

buffer exchange, overnight trypsin digestion was performed at a 1:30 enzyme-to-

protein ratio using Sequencing Grade Modified Trypsin (V5111, Promega), in 

50mM HEPES, pH 8.5. Following overnight digestion, the filter units were 

transferred to new collection tubes and centrifuged at 14,000 x g for 10 minutes. 

40μl of 50 mM HEPES, pH 8.5 was added to all samples, followed by centrifugation 

at 14,000 x g for 10 minutes to obtain ~80μl of peptide eluate. 

TMT labelling was performed immediately after the FASP protocol, as described in 

Chapter 2. Two TMT10plex Isobaric Label Reagent Sets (Thermo Fisher Scientific 

Inc.) were used at a TMT label reagent to protein ratio of ~8:1. Following labelling, 

the pooled samples were partially dried, and acidified at a 1:7 ratio (1-part acidic 

sample buffer, 7 parts sample) using 2% TFA, 20% ACN. Sample clean-up to 

remove interfering contaminants was performed using Pierce C18 Spin Columns 

(Thermo Fisher Scientific Inc.), followed by sample drying using a speed vacuum. 

Dried labelled peptides were resuspended in 200μl of Binding/Wash Buffer for 

phosphopeptide enrichment using the High-Select™ Fe-NTA Phosphopeptide 

Enrichment Kit (Thermo Fisher Scientific Inc.). Phosphopeptide enrichment, as 

described in Chapter 2, resulted in a phosphorylated and unphosphorylated fraction 

for each TMTplex of 10 pooled samples. Mass spectrometry analysis was performed 

using the Thermo UltiMate 3000 nano system directly coupled in-line with the 

Thermo Orbitrap Fusion Tribrid mass spectrometer. The maximum loading amount, 

6.4 µl, was loaded onto the system. The mass spectrometry analysis was performed 

as described previously (Chapter 2). 

3.2.3 Data analysis and bioinformatic analysis of mass spectrometry results 

To identify differentially abundant proteins and phosphorylation sites, statistical 

analysis was performed using ANOVA or two-sided t-test with permutation-based 

FDR statistics. Statistically significant differentially abundant (SSDA) proteins and 

phosphorylation sites between the chemosensitivity groups were identified based on 

an FDR threshold < 0.05 (s0 = 0.1) and fold change > 1.5. For the analysis of 
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individual drugs, SSDA proteins were identified based on an FDR threshold < 0.05 

(s0 = 0.1) and fold change > 1.5, while phosphorylation sites were identified based 

on an FDR threshold < 0.1 (s0 = 0.1) and fold change > 1.5. To identify the 

biological functions of SSDA proteins and phosphoproteins, the SRPlot online 

platform (http://www.bioinformatics.com.cn/srplot) which is based on the 

“clusterProfiler” and “pathview” R packages, and  g:Profiler gGOst 

(https://biit.cs.ut.ee/gprofiler/gost) were used. The SRPlot online tool was used to 

visualize the gene ontology results. Kinase-substrate enrichment analysis (KSEA) 

was performed using the KSEA App website (https://casecpb.shinyapps.io/ksea/) 

using PhosphoSitePlus and NetworKIN databases according to a NetworKIN cutoff 

of 1.5 and p-value cutoff of p < 0.05. Only kinases with a substrate count ≥ 3 are 

displayed on bar plots. To identify variant sequence motifs, the ±31 amino acid 

sequence windows of the significantly regulated phosphorylation sites were 

evaluated using the online software tool, MoMo (v5.5.3) (accessed November 2023) 

(Cheng et al. 2019). A 31-residue motif width, 15 occurrences, and a p-value of 

<0.000001 were set as the parameters for motif prediction. 

3.2.4 Western blotting verification 

Comparative immunoblot analyses were performed to verify the altered abundance 

of selected proteins and phosphorylation sites between chemosensitivity groups. 

Western blotting was performed as described in Chapter 2. 5μg of protein was 

loaded per lane. Primary antibodies were diluted in 5% BSA according to guidance 

from the manufacturer. Following overnight incubation with the primary antibody, 

nitrocellulose membranes were subject to a number of washing steps followed by 

incubation with the appropriate peroxidase-conjugated secondary antibodies. 

Immuno-decorated protein bands were visualized using the G:BOX Chemi XRQ or 

x-ray film. Densitometric analysis of each blot was performed using ImageJ 

software, followed by statistical analysis and graphical analysis in GraphPad Prism. 

http://www.bioinformatics.com.cn/srplot
https://biit.cs.ut.ee/gprofiler/gost
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3.3  Results 

3.3.1 Stratification of plasma samples based on ex vivo drug sensitivity 

resistance testing 

Following ex vivo DSRT, CD138+ myeloma cell samples were stratified into one of 

four groups: Group 1, very sensitive; Group 2, sensitive; Group 3, resistant; and 

Group 4, very resistant, as described previously (Majumder et al., 2017; Tierney et 

al., 2021). The groups are listed in Table 3.3. 

Table 3.3: Sample groupings based on drug sensitivity/resistance. Samples were grouped 

based on ex vivo DSRT results, as described in (Majumder et al., 2017). 

Group 1 Group 2 Group 3 Group 4 

R_MM_6261 R_MM_1878 R_MM_3823 R_MM_1913 

R_MM_7171 R_MM_6385 D_MM_7396 D_MM_7281 

R_MM_3792 D_MM_7276 D_MM_7983 R_MM_1193 

R_MM_2662 D_MM_7746 D_MM_8095 R_MM_587 

R_MM_4263 R_MM_6211 D_MM_8597 R_MM_8291 

3.3.2 Quantitative phosphoproteomics of CD138+ myeloma cell lysates 

Our quantitative phosphoproteomic mass spectrometry analysis identified a total of 

1,473 proteins and 2,945 phosphorylation sites on 2,232 phosphopeptides from 690 

phosphoproteins. A stringent phosphorylation site localization probability (>0.95) 

was used to ensure the inclusion of high confidence phosphorylation sites in 

downstream statistical analyses. The phosphopeptide and phosphosite residue 

distribution was similar to previous studies (Francavilla et al. 2013, 2017; Zhang et 

al. 2020) (Figure 3.2). As expected, the majority of phosphorylation sites identified 

involved serine residues (81.2%).  
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Figure 3.2: Visualization of phosphorylated peptides and sites distribution. (A) 

Distribution of serine (phS), threonine (phT), and tyrosine (phY) phosphorylation sites 

identified in this mass spectrometry analysis. (B) Distribution of phosphopeptides with one, 

two, or greater than two phosphorylation sites identified in this study. 

3.3.2.1 Analysis of the proteome of CD138+ myeloma cell lysates stratified into 

four chemosensitivity groups 

Firstly, the proteomic changes between the four chemosensitivity groups was 

analysed. Principal component analysis (PCA) of the intensity values of all 1,473 

identified proteins revealed a clear cluster of Group 1 samples separate from the 

three other chemosensitivity groups. Groups 2 and 3 have some overlap, indicating a 

degree of similarity between the samples in these groups. Group 4 samples also form 

a separate cluster which also contains one sample from the ‘resistant’ Group 3 

(Figure 3.3A). The second PCA of only Group 1 and Group 4 samples highlights the 

clear separation between the two chemosensitivity groups with a large total 

explained variance of 61.5% (Figure 3.3B). As expected, this suggests larger 

proteomic changes occur in myeloma cells considered ‘very sensitive’ and ‘very 

resistant’, whereas the proteomic changes occurring between Groups 2 and 3 are 

more ambiguous.  
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Figure 3.3: Principal component analysis (PCA) of reporter ion intensity values from 

proteins identified in the four chemosensitivity groups. (A) PCA of proteins identified in 

groups 1, 2, 3, and 4. The total explained variance for this PCA is 43.4%. (B) PCA of 

proteins identified in groups 1 and 4 highlighting the clear distinction between the very 

sensitive and very resistant groups. The total explained variance for this PCA is  61.5%. 

To evaluate the proteomic changes in myeloma cells of the four chemosensitivity 

groups, we compared protein abundance across the four groups by ANOVA. Of the 

1,473 proteins identified, 253 were found to be statistically significantly 

differentially abundant between the four chemosensitivity groups (ANOVA q-value 

< 0.05) (Supp. File 3.1). A Student’s t-test was also performed to identify proteins 

associated with the ‘very sensitive’ and ‘very resistant’ phenotypes. A total of 320 

SSDA proteins were identified (FDR q-value < 0.05, FC > 1.5) (Supp. File 3.1). Of 

the 320 SSDA proteins,  144 proteins were increased in abundance in Group 4 and 

176 proteins were decreased in abundance in Group 4. Hierarchical clustering was 

performed on z-scored intensity values to illustrate the change in abundance of the 

SSDA proteins identified by ANOVA and Student’s t-test (Figure 3.4).  

Proteins found to be SSDA between the Group 1 and Group 4 were subject to gene 

ontology enrichment analysis. Proteins were separated into those increased in 



73 

abundance in Group 4 and those increased in abundance in Group 1. Group 4, which 

consisted of samples with a ‘very resistant’ chemosensitivity profile, had a high 

abundance of proteins associated with neutrophil activation, actin filament 

organization, and focal adhesions (Figure 3.5). Group 1, which consisted of samples 

with a ‘very sensitive’ chemosensitivity profile, had a high abundance of proteins 

associated with  RNA binding, translation, and the proteasome complex (Figure 3.6) 

(Supp. File 3.2). The increased abundance of cytoskeletal-associated proteins in 

Group 4 may contribute to the development of CAM-DR, whereas the reduced 

abundance of proteasomal proteins in Group 4 may limit susceptibility to proteasome 

inhibitors.
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Figure 3.4: Hierarchical clustering analysis of statistically significant differentially abundant (SSDA) proteins. (A) Hierarchical clustering analysis of 

z-scored normalised intensity values of the 253 SSDA proteins across the four chemosensitivity groups. (B) Hierarchical clustering analysis of z-scored 

normalised intensity values of the 372 SSDA proteins identified from Student t-test analysis of Group 1 and 4.  
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Figure 3.5: Gene ontology enrichment analysis of proteins found to be statistically significantly increased in Group 4. Graph highlights the top 10 

most significantly enriched biological processes (orange), cellular components (green), and molecular functions (purple).    
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Figure 3.6: Gene ontology enrichment analysis of proteins found to be statistically significantly increased in Group 1. Graph highlights the top 10 

most significantly enriched biological processes (orange), cellular components (green), and molecular functions (purple).    
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Figure 3.7: Principal component analysis (PCA) of reporter ion intensity values from 

phosphopeptides identified in the four chemosensitivity groups. (A) PCA of 

phosphopeptides identified in groups 1, 2, 3, and 4. (B) PCA of phosphopeptides identified 

in groups 1 and 4 highlighting the clear distinction between the very sensitive and very 

resistant groups. 

3.3.2.2 Analysis of the phosphoproteome of CD138+ myeloma cell lysates 

stratified into four chemosensitivity groups 

PCA on the phosphopeptide intensity values revealed a clear separation between 

Group 1 and 4, highlighting a change in the phosphoproteome between these groups. 

Similarly to the proteomic PCA seen above, Groups 2 and 3 demonstrated some 

overlap, indicating a degree of similarity between the samples in these groups, 

whereas samples from Groups 1 and 4 have notably different phosphoproteomic 

profiles (Figure 3.7).  

To evaluate the phosphoproteomic changes in myeloma cells of the four 

chemosensitivity groups, we compared phosphopeptide abundance across the four 

groups by ANOVA. Of the 2,945 phosphorylation sites identified, 152 
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phosphorylation sites were SSDA between the four chemosensitivity groups 

(ANOVA q-value < 0.05) (Supp. File 3.3). A Student’s t-test was also performed to 

identify phosphorylation sites associated with the ‘very sensitive’ and ‘very resistant’ 

phenotypes. A total of 212 SSDA phosphorylation sites were identified (FDR q-

value < 0.05, FC > 1.5) (Supp. File 3.3). Hierarchical clustering was performed on 

z-scored intensity values to illustrate the change in abundance of the SSDA 

phosphopeptides identified by ANOVA and Student’s t-test (Figure 3.8). Two 

distinct clusters representing phosphorylation sites increased in abundance in Group 

1 and Group 4 are clearly visible. SSDA phosphoproteins were separated into those 

increased in abundance in Group 4 and those increased in abundance in Group 1 and 

subject to gene ontology enrichment analysis. As depicted in Figure 3.9 and Figure 

3.10, phosphoproteins increased in abundance in Group 4 and Group 1 show similar 

functional enrichments to the proteomic analysis above with phosphoproteins 

increased in abundance in Group 4 being associated with cytoskeletal organization 

whereas phosphoproteins increased in abundance in Group 1 are associated with 

RNA binding and translation (Supp. File 3.4). KSEA was used to predict potential 

kinase activity based on the phosphorylation levels of known substrates. This 

analysis showed significant enrichment of 11 kinases in drug resistant (Group 4) 

samples and significant enrichment of 4 kinases in drug sensitive (Group 1) samples 

(Figure 3.11A). Phosphorylation events are dependent on the action of protein 

kinases which recognise specific short (~5-15 amino acids) sequence motifs 

surrounding the serine, threonine or tyrosine residues which are subsequently 

phosphorylated. A motif analysis was performed using MoMo and the motif-x 

algorithm to better understand the upstream processes of the phosphopeptides 

identified in this study (Figure 3.11B). One motif, namely, S*P (* denotes 

phosphorylated residue), was significantly increased in both Group 4 and Group 1 

phosphopeptides. The motif, RxxS*, was uniquely increased in phosphopeptides 

increased in abundance in Group 4 samples, while the motif, S*xxE, was uniquely 

increased in phosphopeptides increased in abundance in Group 1. The RxxS* motif 

is a phosphorylation site of protein kinase A (PKA) whose catalytic subunit 

(PRKACA) was significantly enriched in Group 4 samples from the KSEA (Pinna 

and Ruzzene 1996). Interestingly, the S*xxE motif is a consensus sequence motif of 

casein kinase 2 (CK2) whose catalytic subunit (CSNK2A1) was significantly 

enriched in Group 1 samples from the KSEA. 
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Figure 3.8: Hierarchical clustering analysis of statistically significantly differentially abundant (SSDA) phosphorylation sites. (A) Hierarchical 

clustering analysis of z-scored normalised intensity values of the 152 SSDA phosphosites across the four chemosensitivity groups. (B) Hierarchical clustering 

analysis of z-scored normalised intensity values of the 217 SSDA phosphosites. 
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Figure 3.9: Gene ontology enrichment analysis of phosphoproteins found to be statistically significantly increased in Group 4. Graph highlights 

the top 10 most significantly enriched biological processes (orange), cellular components (green), and molecular functions (purple).    
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Figure 3.10: Gene ontology enrichment analysis of phosphoproteins found to be statistically significantly increased in Group 1. Graph highlights 

the top 10 most significantly enriched biological processes (orange), cellular components (green), and molecular functions (purple).    
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Figure 3.11: Bioinformatic analysis of phosphorylation motifs and upstream kinases. (A) Kinase-substrate enrichment analysis (KSEA) was performed 

to characterize kinase regulation based on drug resistance/sensitivity. Kinases with a p-value < 0.05 are highlighted as red and blue bars. Red bars indicate 

kinases predicted to be activated in drug resistant (Group 4) myeloma cells whereas blue bars indicate kinases predicted to be activated in drug sensitive 

(Group 1) myeloma cells. (B) Significantly enriched phosphorylation motifs from the phosphopeptides significantly increased in abundance in Group 4 

samples. (C) Significantly enriched phosphorylation motifs from the phosphopeptides significantly increased in abundance in Group 1 samples. 
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3.3.3 Evaluation of MM patient response to individual drugs based on ex vivo  

drug sensitivity scores. 

To identify phosphoproteomic events within myeloma cells that are associated with 

response to individual drugs, patient samples were stratified into “most sensitive” 

and “most resistant” groups based on the results of ex vivo DSRT. Patient samples 

with a low drug sensitivity score (DSS) are considered “most resistant” whereas 

those with high DSS are considered “most sensitive” to the individual drug being 

evaluated. The therapeutics evaluated in this study were selected to incorporate drugs 

from a variety of drug classes, including FDA-approved therapeutics and 

investigational targeted therapies. The individual drugs selected for this study are as 

follows: bortezomib (proteasome inhibitor), lenalidomide (immunomodulatory 

drug), luminespib (HSP90 inhibitor), PF 431396 (PYK2 and FAK inhibitor), and 

alvocidib (CDK9 inhibitor) (Figure 3.12 and Figure 3.13). 

 

Figure 3.12: Sample stratification into “Most Resistant” and “Most Sensitive” groups 

for each of the five individual therapeutics analysed. Samples were stratified into “Most 

Resistant” and “Most Sensitive” groups based on DSS values. To investigate the samples 

considered most resistant or most sensitive, samples were separated into quartiles with those 

samples falling into the first quartile generally being considered “Most Resistant” and those 

in the fourth quartile generally being considered “Most Sensitive”. 
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Figure 3.13: Comparison of drug sensitivity scores in “most sensitive” and “most 

resistant” groups associated with each individual drug. Normality was determined using 

the Shapiro-Wilk test. Statistical significance was evaluated by unpaired t-test with Welch 

correction. Significance is marked as follows:   P ≤ 0.05 ‘*’, P≤ 0.01 ‘**’, P≤ 0.001 ‘***’, P 

≤ 0.0001 ‘****’. 

3.3.3.1 Phosphoproteomic analysis of CD138+ myeloma cells based on 

sensitivity/resistance to proteasome inhibitors. 

The proteomic and phosphoproteomic profiles of MM patient samples considered 

most sensitive and most resistant to bortezomib, were compared to identify proteins 

and phosphorylation sites associated with response to proteasome inhibitors (PIs). 

Volcano plot analysis identified 42 proteins increased in abundance in samples 

considered most resistant and 61 proteins increased in abundance in samples 

considered most sensitive to bortezomib (FDR q-value < 0.05, FC > 1.5) (Figure 

3.14A)(Supp. File 3.5). 41 phosphorylation sites were increased in abundance in 

most resistant samples and 50 phosphorylation sites were increased in abundance in 

most sensitive samples (FDR q-value < 0.1, FC > 1.5) (Figure 3.14B)(Supp. File 

3.5). To analyse the phosphoproteomic data set, the Cytoscape app, “Omics 
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Visualizer” was used to visualize site-specific information on a STRING network 

(Figure 3.15A). The minimum required interaction score was set to high confidence 

(0.7) and unconnected nodes were removed. Two clusters clearly separate the 

phosphoproteins associated bortezomib sensitivity, which are linked to RNA 

processing, and bortezomib resistance, which include proteins linked the 

cytoskeleton and integrin-mediated signalling. GO analysis of the combined protein 

and phosphoprotein results demonstrated an increase in adhesion and motility-linked 

biological processes in bortezomib resistant myeloma cells whereas protein 

translation and protein folding-associated biological processes were increased in 

bortezomib sensitive myeloma cells (Figure 3.15B)(Supp. File 3.6). KSEA was 

used to predict potential kinase activity based on the phosphorylation levels of 

known substrates. This analysis showed significant enrichment of 8 kinases in 

bortezomib resistant samples and 1 kinase in bortezomib sensitive samples (Supp. 

Figure 3.1). The NF-κβ signalling pathway associated kinases IKBKB and CHUK, 

which make up the catalytic subunits of the multimeric I kappa B kinase (IKK) 

complex, showed higher activity in bortezomib resistant samples, whereas the 

catalytic subunit of CK2, CSNK2A1, showed higher activity in bortezomib sensitive 

samples. Lists of the top 10 phosphorylation sites associated with bortezomib 

resistance and sensitivity are described in Table 3.4 and Table 3.5, respectively. 
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Figure 3.14: Volcano plots of CD138+ myeloma cells considered ‘Most Sensitive’ and 

‘Most Resistant’ to bortezomib. (A) Volcano plot depicting SSDA proteins. (B) Volcano 

plot depicting SSDA phosphorylation sites. Purple points represent proteins/phosphosites 

increased in abundance in samples considered most sensitive to bortezomib. Red points 

represent proteins/phosphosites considered most resistant to bortezomib. 
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Figure 3.15: Bioinformatic analysis of phosphorylation sites associated with bortezomib sensitivity and resistance. (A) Protein-protein interaction (PPI) 

network of phosphorylation sites upregulated in MM samples considered most sensitive (blue) and most resistant (red) to bortezomib. (B) g:Profiler analysis of 

proteins and phosphoproteins upregulated in myeloma cells most resistant (red bars) and most sensitive (purple bars) to bortezomib. GO terms represent enriched 

biological processes highlighted as key terms in the g:Profiler analysis. 
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Table 3.4: Top 10 phosphorylation sites with significantly increased abundance in MM 

samples considered most resistant to bortezomib. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

Heat shock protein 

beta-1 
HSPB1 

Molecular 

chaperone 
S65 0 5.41 

Proto-oncogene 

tyrosine-protein kinase 

Src 

SRC Cell adhesion S17 0.013 4.60 

Zyxin ZYX Cell adhesion S281 0.038 4.19 

Filamin-A FLNA Actin binding S2152 0.051 4.42 

Transmembrane 

protein 40 
TMEM40 

Membrane 

protein 
S137 0.057 1.75 

Tyrosine-protein 

kinase Fyn 
FYN 

Adaptive 

immunity 
S21 0.057 2.08 

Serine/arginine 

repetitive matrix 

protein 2 

SRRM2 RNA binding S1179 0.057 1.74 

Zinc finger protein 609 ZNF609 
Promoter-specific 

chromatin binding 
S576 0.057 1.94 

Zyxin ZYX Cell adhesion S344 0.059 6.71 

Sorting nexin-17 SNX17 Protein transport S421 0.059 2.18 

 

Table 3.5: Top 10 phosphorylation sites with significantly increased abundance in MM 

samples considered most sensitive to bortezomib. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

Treacle protein TCOF1 
Regulation of 

translation 
S381 0.011 2.38 

Coiled-coil domain-

containing protein 86 
CCDC86 RNA binding S18 0.016 3.40 

Major vault protein MVP Protein transport S445 0.018 3.02 

Lupus La protein SSB RNA binding S366 0.027 2.07 

DNA fragmentation 

factor subunit alpha 
DFFA 

Deoxyribonuclease 

inhibitor activity 
S315 0.036 2.08 

Serine/arginine-rich 

splicing factor 11 
SRSF11 RNA binding S449 0.041 4.76 

Nuclease-sensitive 

element-binding protein 

1 

YBX1 
Nucleic acid 

binding 
S165 0.041 5.53 

Tyrosine-protein kinase 

BAZ1B 
BAZ1B 

Transcription 

regulation 
S1468 0.051 6.04 

Suppressor of SWI4 1 

homolog 
PPAN RNA binding S359 0.052 1.98 

Cyclin-dependent kinase 

12 
CDK12 

Serine/threonine 

protein kinase 
S423 0.054 2.11 
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3.3.3.2 Phosphoproteomic analysis of CD138+ myeloma cells based on 

sensitivity/resistance to immunomodulatory drugs. 

The proteomic and phosphoproteomic profiles of MM patient samples considered 

most sensitive and most resistant to lenalidomide were compared to identify proteins 

and phosphorylation sites associated with response to immunomodulatory drugs 

(IMiDs). Volcano plot analysis identified 42 proteins increased in abundance in 

samples considered most resistant and 23 proteins increased in abundance in samples 

considered most sensitive to lenalidomide (FDR q-value < 0.05, FC > 1.5) (Figure 

3.16A)(Supp. File 3.7). 35 phosphorylation sites were increased in abundance in 

most resistant samples and 3 phosphorylation sites were increased in abundance in 

most sensitive samples (FDR q-value < 0.1, FC > 1.5) (Figure 3.16B)(Supp. File 

3.7)). STRING network analysis using “Omics Visualizer” identified a single cluster 

of upregulated phosphosites in lenalidomide resistant myeloma cells associated with 

actin filament organization (Figure 3.17A). The minimum required interaction score 

was set to high confidence (0.7) and unconnected nodes were removed. KSEA 

analysis did not yield significant kinase enrichments. GO analysis of the combined 

protein and phosphoprotein results demonstrated an increase in adhesion and 

motility-linked biological processes in lenalidomide resistant myeloma cells whereas 

protein translation and metabolism-associated biological processes were increased in 

lenalidomide sensitive myeloma cells (Figure 3.17B)(Supp. File 3.8). We compiled 

a list of the phosphorylation sites most significantly increased in lenalidomide 

resistant and lenalidomide sensitive samples (Table 3.6, Table 3.7).  
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Figure 3.16: Volcano plots of CD138+ myeloma cells considered ‘Most Sensitive’ and 

‘Most Resistant’ to lenalidomide. (A) Volcano plot depicting SSDA proteins. (B) Volcano 

plot depicting SSDA phosphorylation sites. Purple points represent proteins/phosphosites 

increased in abundance in samples considered most sensitive to lenalidomide. Red points 

represent proteins/phosphosites considered most resistant to lenalidomide. 
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Figure 3.17: Bioinformatic analysis of phosphorylation sites associated with 

lenalidomide sensitivity and resistance. (A) Protein-protein interaction (PPI) network of 

phosphorylation sites upregulated in MM samples considered most resistant (red) to 

lenalidomide. Phosphorylation sites associated with lenalidomide sensitivity did not show 

connectivity. (B) g:Profiler analysis of proteins and phosphoproteins upregulated in 

myeloma cells most resistant (red bars) and most sensitive (purple bars) to lenalidomide. GO 

terms represent enriched biological processes highlighted as key terms in the g:Profiler 

analysis. 
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Table 3.6: Top 10 phosphorylation sites with significantly increased abundance in MM 

samples considered most resistant to lenalidomide. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR 

q-value 
FC 

Kalirin KALRN 
Guanine-nucleotide 

releasing factor 
S1799 0.002 5.32 

LIM domain and 

actin-binding protein 1 
LIMA1 Actin binding S490 0.003 6.15 

Spectrin beta chain, 

non-erythrocytic 1 
SPTBN1 Actin binding T2187 0.004 5.72 

Protein FAM63A 
FAM63

A 

Cysteine-type 

deubiquitinase 

activity 

S441 0.004 4.13 

Bridging integrator 2 BIN2 Cell chemotaxis S259 0.004 2.48 

Neurobeachin-like 

protein 2 
NBEAL2 

Protein kinase 

binding 
S2739 0.005 2.32 

Filamin-A FLNA Actin binding S2152 0.005 4.98 

Serum deprivation-

response protein 
SDPR 

Phosphatidylserine 

binding 
S293 0.006 7.88 

Zyxin ZYX Cell adhesion S281 0.006 5.28 

Epidermal growth 

factor receptor 

substrate 15 

EPS15 Cadherin binding S796 0.006 2.64 

 

Table 3.7: Phosphorylation sites with significantly increased abundance in MM 

samples considered most sensitive to lenalidomide. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

ADP-ribosylation factor-like 

protein 6-interacting protein 

4 

ARL6IP

4 

RNA 

binding 
S332 0.018 3.71 

Cytoskeleton-associated 

protein 4 
CKAP4 

RNA 

binding 
S26 0.073 2.39 

Nuclease-sensitive element-

binding protein 1 
YBX1 

Nucleic acid 

binding 
S165 0.071 1.98 

3.3.3.3 Phosphoproteomic analysis of CD138+ myeloma cells based on 

sensitivity/resistance to a HSP90 inhibitor. 

The proteomic and phosphoproteomic profiles of MM patient samples considered 

most sensitive and most resistant to the investigational HSP90 inhibitor, luminespib, 

were compared to identify proteins and phosphorylation sites associated with 

chemosensitivity. Volcano plot analysis identified 51 proteins increased in 

abundance in resistant myeloma cells and 57 proteins increased in abundance in 

samples considered most sensitive to lenalidomide (FDR q-value < 0.05, FC > 1.5) 

(Figure 3.18A)(Supp. File 3.9). 38 phosphorylation sites were increased in 

abundance in most resistant samples and 32 phosphorylation sites were increased in 

abundance in most sensitive samples (FDR q-value < 0.1, FC > 1.5) (Figure 
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3.18B)(Supp. File 3.9). STRING network analysis using “Omics Visualizer” 

identified two distinct clusters. The minimum required interaction score was set to 

high confidence (0.7) and unconnected nodes were removed. One cluster largely 

consisting of phosphoproteins increased in abundance in luminespib resistant 

myeloma cells was associated with actin filament organization. A smaller cluster 

largely consisting of phosphoproteins increased in abundance in luminespib sensitive 

myeloma cells was associated with the regulation of translation initiation (Figure 

3.19)(Supp. File 3.10). KSEA revealed a significant enrichment of 2 kinases, 

PRKACA and calcium/calmodulin-dependent protein kinase II alpha (CAMK2A), in 

myeloma cells most resistant to luminespib (Supp. Figure 3.2).  The top ten 

phosphorylation sites significantly increased in myeloma cells most resistant and 

most sensitive to luminespib are listed in Table 3.8 and Table 3.9, respectively.  
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Figure 3.18: Volcano plots of CD138+ myeloma cells considered ‘Most Sensitive’ and 

‘Most Resistant’ to luminespib. (A) Volcano plot depicting SSDA proteins. (B) Volcano 

plot depicting SSDA phosphorylation sites. Purple points represent proteins/phosphosites 

increased in abundance in samples considered most sensitive to luminespib. Red points 

represent proteins/phosphosites considered most resistant to luminespib. 
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Figure 3.19: Bioinformatic analysis of phosphorylation sites associated with luminespib sensitivity and resistance. (A) Protein-protein interaction (PPI) 

network of phosphorylation sites upregulated in MM samples considered most resistant (red) and most sensitive (blue) to luminespib. (B) g:Profiler analysis of 

proteins and phosphoproteins upregulated in myeloma cells most resistant (red bars) and most sensitive (purple bars) to luminespib. GO terms represent 

enriched biological processes highlighted as key terms in the g:Profiler analysis. 
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Table 3.8: Top 10 phosphorylation sites with significantly increased abundance in MM 

samples considered most resistant to luminespib. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

LIM domain and 

actin-binding protein 

1 

LIMA1 Actin binding S490 0.048 5.75 

Protein tyrosine 

phosphatase receptor 

type C-associated 

protein 

PTPRCAP Defence response S99 0.049 5.47 

FYN-binding protein FYB Immune response S558 0.055 5.32 

RAS guanyl-

releasing protein 2 
RASGRP2 

Guanine-nucleotide 

releasing factor 
S576 0.064 31.16 

Receptor-type 

tyrosine-protein 

phosphatase C 

PTPRC 
B cell 

differentiation 
S973 0.071 5.53 

Serum deprivation-

response protein 
SDPR 

Phosphatidylserine 

binding 
S293 0.075 5.82 

Protein kinase C beta 

type 
PRKCB 

Serine/threonine 

protein kinase 
T642 0.075 2.34 

Linker for activation 

of T-cells family 

member 1 

LAT 
Protein kinase 

binding 
S224 0.076 5.57 

Dematin DMTN Actin binding S16 0.078 2.73 

Histone-lysine N-

methyltransferase 

SETD1A 

SETD1A 
DNA damage 

response 
S1103 0.079 1.98 

 
Table 3.9: Top 10 phosphorylation sites with significantly increased abundance in MM 

samples considered most sensitive to luminespib. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR q-

value 
FC 

Protein PRRC2A PRRC2A RNA binding S1219 0.036 2.86 

Transformer-2 protein 

homolog beta 
TRA2B RNA binding T201 0.061 2.20 

Plasminogen activator 

inhibitor 1 RNA-

binding protein 

SERBP1 RNA binding S234 0.062 2.68 

Large proline-rich 

protein BAG6 
BAG6 

HSP70 protein 

binding 
S1081 0.063 2.19 

DNA fragmentation 

factor subunit alpha 
DFFA 

Deoxyribonuclease 

inhibitor activity 
S315 0.077 2.20 

Telomeric repeat-

binding factor 2-

interacting protein 1 

TERF2IP 
Telomeric DNA 

binding 
S203 0.081 1.90 

Uncharacterized 

protein C7orf50 
C7orf50 RNA binding S175 0.082 1.53 

Nucleoprotein TPR TPR Chromatin binding S2155 0.083 2.36 

Calcium-dependent 

secretion activator 2 
CADPS2 Protein transport S58 0.083 2.41 

RNA-binding protein 

NOB1 
NOB1 

RNA endonuclease 

activity 
S201 0.083 3.01 
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3.3.3.4 Phosphoproteomic analysis of CD138+ myeloma cells based on 

sensitivity/resistance to a PYK2 and FAK inhibitor. 

The proteomic and phosphoproteomic profiles of MM patient samples considered 

most sensitive and most resistant to the investigational PYK2 and FAK inhibitor, PF 

431396, were compared to identify proteins and phosphorylation sites associated 

with chemosensitivity. Volcano plot analysis identified 38 proteins increased in 

abundance in resistant myeloma cells and 43 proteins increased in abundance in 

samples considered most sensitive to lenalidomide (FDR q-value < 0.05, FC > 1.5) 

(Figure 3.20A)(Supp. File 3.11). 20 phosphorylation sites were increased in 

abundance in most resistant samples and 12 phosphorylation sites were increased in 

abundance in most sensitive samples (FDR q-value < 0.1, FC > 1.5) (Figure 

3.20B)(Supp. File 3.11). STRING network analysis using “Omics Visualizer” 

showed limited interactions between the significant phosphoproteins. The minimum 

required interaction score was set to high confidence (0.7) and unconnected nodes 

were removed. PTPN12, FLNA, and GP1BB, SERBP1 and RPLP2, and FYB and 

LAT showed connections with an interaction score > 0.7 (Figure 3.21)(Supp. File 

3.12). KSEA analysis did not yield significant kinase enrichments. The top ten 

phosphorylation sites significantly increased in myeloma cells most resistant and 

most sensitive to PF 431396 are listed in Table 3.10 and Table 3.11, respectively. 
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Figure 3.20: Volcano plots of CD138+ myeloma cells considered ‘Most Sensitive’ and 

‘Most Resistant’ to PF 431396. (A) Volcano plot depicting SSDA proteins. (B) Volcano 

plot depicting SSDA phosphorylation sites. Purple points represent proteins/phosphosites 

increased in abundance in samples considered most sensitive to PF 431396. Red points 

represent proteins/phosphosites considered most resistant to PF 431396. 
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Figure 3.21: Bioinformatic analysis of phosphorylation sites associated with PF 431396 

sensitivity and resistance. (A) Protein-protein interaction (PPI) network of phosphorylation 

sites upregulated in MM samples considered most resistant (red) and most sensitive (blue) to 

PF 431396. (B) g:Profiler analysis of proteins and phosphoproteins upregulated in myeloma 

cells most resistant (red bars) and most sensitive (purple bars) to PF 431396. GO terms 

represent enriched biological processes highlighted as key terms in the g:Profiler analysis. 
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Table 3.10: Top 10 phosphorylation sites with significantly increased abundance in 

MM samples considered most resistant to PF 431396. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

Filamin-A FLNA Actin binding S2152 0.060 5.36 

Stromal interaction 

molecule 1 
STIM1 Calcium transport S575 0.067 3.13 

Zyxin ZYX Cell adhesion S344 0.069 7.31 

RAS guanyl-

releasing protein 2 
RASGRP2 

Guanine-

nucleotide 

releasing factor 

S576 0.070 18.26 

Zinc finger protein 

609 
ZNF609 

Promoter-specific 

chromatin binding 
S576 0.071 1.96 

Linker for activation 

of T-cells family 

member 1 

LAT 
Protein kinase 

binding 
S224 0.072 4.75 

LIM domain and 

actin-binding protein 

1 

LIMA1 Actin binding S490 0.073 4.39 

FYN-binding protein FYB Immune response S558 0.074 4.10 

Dematin DMTN Actin binding S16 0.075 3.01 

Polyhomeotic-like 

protein 3 
PHC3 DNA binding S263 0.075 2.16 

 
Table 3.11: Top 10 phosphorylation sites with significantly increased abundance in 

MM samples considered most sensitive to PF 431396. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

High mobility group 

protein HMG-I/HMG-

Y 

HMGA1 DNA binding S44 0.045 3.73 

Eukaryotic translation 

initiation factor 4 

gamma 1 

EIF4G1 RNA binding S1231 0.058 3.14 

60S acidic ribosomal 

protein P2 
RPLP2 Ribosomal protein S86 0.068 3.89 

High mobility group 

protein HMG-I/HMG-

Y 

HMGA1 DNA binding S9 0.069 5.48 

Protein PRRC2A PRRC2A RNA binding S1219 0.070 2.51 

Thyroid hormone 

receptor-associated 

protein 3 

THRAP3 mRNA processing S211 0.071 3.89 

Nucleoprotein TPR TPR Chromatin binding S2155 0.072 1.98 

Surfeit locus protein 6 SURF6 RNA binding S138 0.073 2.32 

Protein LYRIC MTDH RNA binding S298 0.074 3.24 

Plasminogen activator 

inhibitor 1 RNA-

binding protein 

SERBP1 RNA binding S234 0.074 2.41 
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3.3.3.5 Phosphoproteomic analysis of CD138+ myeloma cells based on 

sensitivity/resistance to a CDK9 inhibitor. 

The proteomic and phosphoproteomic profiles of MM patient samples considered 

most sensitive and most resistant to the investigational CDK9 inhibitor, alvocidib, 

were compared to identify proteins and phosphorylation sites associated with 

chemosensitivity. Volcano plot analysis identified 37 proteins increased in 

abundance in resistant myeloma cells and 49 proteins increased in abundance in 

samples considered most sensitive to alvocidib (FDR q-value < 0.05, FC > 1.5) 

(Figure 3.22A)(Supp. File 3.13). 30 phosphorylation sites were increased in 

abundance in most resistant samples and 15 phosphorylation sites were increased in 

abundance in most sensitive samples (FDR q-value < 0.1, FC > 1.5) (Figure 

3.22B)(Supp. File 3.13). KSEA analysis did not yield significant kinase 

enrichments. STRING analysis revealed a single cluster of 7 phosphorylation sites 

upregulated in myeloma cells considered resistant to alvocidib (Figure 3.23A). GO 

biological processes (GOBPs) enriched in the most sensitive and most resistant 

groups showed a similar trend to those described above, with an increase in 

cytoskeletal organization and adhesion-linked biological processes in alvocidib 

resistant myeloma cells whereas protein translation-linked biological processes were 

increased in alvocidib sensitive myeloma cells (Figure 3.23B)(Supp. File 3.14). The 

phosphorylation sites most significantly upregulated in alvocidib resistant and 

alvocidib sensitive samples are outlined in Table 3.12 and Table 3.13, respectively. 
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Figure 3.22: Volcano plots of CD138+ myeloma cells considered ‘Most Sensitive’ and 

‘Most Resistant’ to alvocidib. (A) Volcano plot depicting SSDA proteins. (B) Volcano plot 

depicting SSDA phosphorylation sites. Purple points represent proteins/phosphosites 

increased in abundance in samples considered most sensitive to alvocidib. Red points 

represent proteins/phosphosites considered most resistant to PF alvocidib. 
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Figure 3.23: Bioinformatic analysis of phosphorylation sites associated with alvocidib 

sensitivity and resistance. (A) Protein-protein interaction (PPI) network of phosphorylation 

sites upregulated in MM samples considered most resistant (red) and most sensitive (blue) to 

alvocidib. (B) g:Profiler analysis of proteins and phosphoproteins upregulated in myeloma 

cells most resistant (red bars) and most sensitive (purple bars) to alvocidib. GO terms 

represent enriched biological processes highlighted as key terms in the g:Profiler analysis. 
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Table 3.12: Top 10 phosphorylation sites with significantly increased abundance in 

MM samples considered most resistant to alvocidib. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

RAS guanyl-

releasing protein 2 
RASGRP2 

Guanine-

nucleotide 

releasing factor 

S576 0.040 14.31 

LIM domain and 

actin-binding 

protein 1 

LIMA1 Actin binding S490 0.043 5.72 

N-acetyl-D-

glucosamine kinase 
NAGK 

N-

acetylglucosamine 

kinase activity 

S76 0.047 2.56 

Linker for 

activation of T-cells 

family member 1 

LAT 
Protein kinase 

binding 
S224 0.054 4.92 

Proto-oncogene 

tyrosine-protein 

kinase Src 

SRC Cell adhesion S17 0.054 4.47 

Serine/arginine 

repetitive matrix 

protein 2 

SRRM2 RNA binding S1179 0.055 1.88 

Serum deprivation-

response protein 
SDPR 

Phosphatidylserine 

binding 
S293 0.058 5.92 

Dematin DMTN Actin binding S16 0.058 3.14 

Protein kinase C 

beta type 
PRKCB 

Serine/threonine 

protein kinase 
T642 0.063 2.65 

Filamin-A FLNA Actin binding S2152 0.065 3.93 

 
Table 3.13: Top 10 phosphorylation sites with significantly increased abundance in 

MM samples considered most resistant to alvocidib. 

Protein Name 
Gene 

Name 

Biological 

Function 

Phospho- 

Site 

FDR  

q-value 
FC 

Coiled-coil domain-

containing protein 86 
CCDC86 RNA binding S18 0.039 3.79 

Large proline-rich 

protein BAG6 
BAG6 

HSP70 protein 

binding 
S1081 0.062 2.29 

Cyclin-dependent 

kinase 12 
CDK12 

Serine/threonine 

protein kinase 
S423 0.062 2.18 

Protein PRRC2A PRRC2A RNA binding S1219 0.065 2.83 

Nuclear-interacting 

partner of ALK 
ZC3HC1 

Protein kinase 

binding 
S62 0.069 3.08 

Histone H1.5 HIST1H1B DNA binding S18 0.071 1.90 

Chromatin complexes 

subunit BAP18 
BAP18 DNA binding S96 0.075 3.32 

Ribosome-binding 

protein 1 
RRBP1 RNA binding S583 0.082 3.18 

SWI/SNF-related 

matrix-associated 

actin-dependent 

regulator of chromatin 

subfamily E member 1 

SMARCE1 Chromatin binding S314 0.085 3.86 

Myb-binding protein 

1A 
MYBBP1A RNA binding S1163 0.086 2.68 
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3.3.4 Western blotting verification of mass spectrometry results 

Comparative immunoblotting was performed to verify the increased abundance of 

selected proteins and phosphorylation sites in myeloma cell lysates. The availability 

of high quality commercially available antibodies specific for the phosphorylation 

sites identified as potential markers of resistance was limited. Our MS proteomics 

results found the cytoskeletal protein, α-actinin, to be increased in abundance in 

Group 4 compared to Group 1 myeloma cells. This result was verified by western 

blotting, as depicted in Figure 3.24. Our MS phosphoproteomics analysis revealed 

an increased abundance of serine 2152 (S2152) phosphopeptide derived from filamin 

A (FLNA) in Group 4 compared to Group 1 myeloma cells. Intense bands 

corresponding to phosphorylated S2152 were seen in Group 4 samples while no 

bands were visible in Group 1 samples (Figure 3.25). Phosphorylated FLNA at 

S2152 was significantly increased in abundance in Group 4 samples (n=4) compared 

to Group 1 samples (n=4). Another blot measuring phosphorylated FLNA S2152 in 

Group 2 and 3 did not yield any detectable signal, indicating the presence of this 

phosphorylation event only in myeloma cells considered very drug resistant. Other 

phospho-specific antibodies were used in an attempt to verify additional 

phosphorylation sites; however, results were limited due to a lack of detectable 

signals. Furthermore, it is important to note that there are no loading controls for the 

western blots shown below. Despite attempting to use standard loading controls such 

as actin and GAPDH, the concentrations of these proteins varied likely due to the 

heterogeneity of the samples and role of the cytoskeleton in drug resistance in 

myeloma. This was further supported by altered concentrations of these proteins 

being detected in our mass spectrometry data. Although no loading controls were 

available, equal protein concentrations were visually confirmed using the Ponceau 

stain. However, as there are no loading controls to reflect this, the reliability of the 

results are affected. This may have been caused by dephosphorylation during 

freeze/thaw or sample processing, limited antibody quality, or simply a lack of the 

target within the samples being analysed. KSEA and motif analysis predicted a 

potential increase in the activity of PKA in Group 4 samples. Comparative 

immunoblotting found PRKACA levels to be increased in Group 4 samples 

compared to Group 1 samples, highlighting the potential of phosphoproteomics in 
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combination with ex vivo DSRT in identifying kinases involved in drug 

resistance/sensitivity (Figure 3.26). 

 

Figure 3.24: Comparative western blot analysis of α-actinin abundance in Group 4 and 

Group 1 myeloma cell lysates. (A) Representative immunoblot with bands labelled with 

antibodies to α-actinin clearly visible in Group 4 samples. (B) Densitometric analysis using 

ImageJ software followed by statistical analysis comparing band intensity between Group 1 

and Group 4 samples. Significance was determined using a Student’s t-test (** p≤0.01). 

 

Figure 3.25: Comparative western blot analysis of FLNA S2152 abundance in Group 4 

and Group 1 myeloma cell lysates. (A) Representative immunoblot with bands labelled 

with antibodies to FLNA S2152 phosphorylation clearly visible in Group 4 samples. (B) 

Densitometric analysis using ImageJ software followed by statistical analysis comparing 

band intensity between Group 1 and Group 4 samples. Significance was determined using a 

Mann-Whitney test (* p≤0.05). 
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Figure 3.26: Comparative western blot analysis of PRKACA abundance in Group 4 

and Group 1 myeloma cell lysates. (A) Representative immunoblot with bands labelled 

with antibodies to PRKACA clearly visible in Group 4 samples. (B) Densitometric analysis 

using ImageJ software followed by statistical analysis comparing band intensity between 

Group 1 and Group 4 samples. Significance was determined using a Student’s t-test (* 

p≤0.05). 

3.4  Discussion 

Phosphoproteomics represents an important ‘omics’ approach to provide insight into 

the post-translational events involved in the pathogenesis of various diseases and 

cancers. As recent studies have demonstrated the clinical applicability of ex vivo 

DSRT, downstream molecular analyses investigating novel therapeutic targets and 

surrogate markers of drug sensitivity/resistance have clinical relevance (Kuusanmäki 

et al. 2022; Kropivsek et al. 2023). In this chapter, we have identified proteins and 

phosphorylation sites in myeloma cells that are associated with sensitivity/resistance 

to a selection of drugs based on ex vivo DSRT. This highlights the ability to combine 

‘omics’ technologies with ex vivo DSRT to investigate mechanisms of drug 

resistance, identify predictive markers of drug response and identify potential targets 

to overcome drug resistance. Primary myeloma cells are also considered more 

biologically representative of MM than cell lines, thus enhancing the clinical 

relevance of results derived from ex vivo DSRT in combination with ‘omics’ 

approaches.  

Our label-based mass spectrometry analysis identified a clear distinction in the 

proteomic and phosphoproteomic profiles of myeloma cells in the very sensitive and 

very resistant chemosensitivity groups. Functional enrichment analysis revealed an 
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increased abundance of proteins and phosphoproteins associated with cell adhesion 

and cytoskeletal organisation in drug resistant samples, re-emphasizing the link 

between cell adhesion molecules and drug resistance in MM (Lu et al. 2018; Bou 

Zerdan et al. 2022). The reduced levels of proteins involved in protein translation 

and the ribosome also indicate a slower cycling rate than drug sensitive myeloma 

cells, a process that reduces the susceptibility of these myeloma cells to 

chemotherapies such as bortezomib (Ge et al. 2021). These results corroborate with 

known mechanisms of drug resistance, namely, CAM-DR and the persistence of 

quiescent cancer cells (Huang et al. 2021; Lindell et al. 2023). Furthermore, western 

blot verification of selected MS results confirmed the differential abundance of α-

actinin, a protein found to be increased in Group 4 samples, S2152 FLNA 

phosphorylation, a site found to hyperphosphorylated in Group 4 samples, and 

PRKACA, a protein kinase whose substrates were significantly enriched in Group 4 

samples according to KSEA. Mass spectrometry analysis revealed an almost nine-

fold increase in the abundance of the actin binding protein, α-actinin (ACTN1), in 

drug resistant myeloma cells. This result was verified by immunoblotting, 

highlighting the role of cytoskeletal organisation in drug resistance. Previous 

research found ACTN1 to be to be overexpressed in the PI-resistant cell line, KMS-

20 (Tsubaki et al. 2021).  

KSEA analysis revealed an enrichment of substrates of a number of kinases 

including PKA and protein kinase C beta (PRKCB). Although PKA was not detected 

in our mass spectrometry analysis, western blotting analysis revealed an increased 

abundance in PRKACA protein levels in chemoresistant myeloma cells. PKA is 

known to phosphorylate FLNA at S2152 and increased activity may contribute to 

resistance mechanisms in MM (Peverelli et al. 2018). Hyperphosphorylation at 

threonine 642 of PRKCB, a phosphorylation event that is essential for enzymatic 

activity, was identified in Group 4 samples, suggesting an association between 

increased PRKCB activity and chemoresistance in MM (Zhang et al. 1994). 

Interestingly, studies have reported synergistic activity between bortezomib and the 

protein kinase C inhibitor, enzastaurin, whose main target is PRKCB, in lymphoma 

cell lines (Cosenza et al. 2015). This, in combination with our findings, indicates that 

reduced PRKCB activity may enhance the chemosensitivity of myeloma cells. 

Determining the phosphoproteomic changes across chemosensitivity groups 
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highlights proteins, phosphorylation sites, and predicted kinases that may play roles 

in general drug resistance mechanisms. Furthermore, of the five classes of drugs 

evaluated in this work, phosphorylation sites commonly altered in abundance across 

these drugs can provide insight into the general mechanisms of resistance in 

myeloma cells. 

While evaluating the proteomic and phosphoproteomic profiles of myeloma cells 

grouped based on their ex vivo sensitivity to hundreds of drugs provides important 

information on general or prominent resistant mechanisms, examining the molecular 

profiles of MM cells considered resistant/sensitive to individual drugs can identify 

resistance mechanisms and predictive biomarkers specific to the individual drugs 

being investigated. As described in Chapter 1, proteasome inhibitors (PIs) are a 

mainstay treatment of MM. The approval of bortezomib almost two decades ago 

dramatically improved patient outcomes, however, resistance remains a challenge. 

Our proteomic analysis identified seven 20S proteasome subunits as increased in 

abundance in bortezomib sensitive myeloma cells. Increased expression of the 20S 

proteasome has previously been proposed as a predictor of bortezomib sensitivity 

(Matondo et al. 2010; Walter et al. 2019). HSPB1 (also known as heat shock protein 

27 (HSP27)), a small chaperone protein involved in preventing protein misfolding, 

was significantly increased in abundance in bortezomib resistant myeloma cells. In 

addition, phosphorylation events on serine 65 (S65) and serine 82 (S82) of HSP27 

were increased in abundance in bortezomib resistant myeloma cells. HSP27 

phosphorylation results in the formation of smaller oligomers with enhanced 

chaperone activity which prevents protein aggregation (Hayes et al. 2009). A recent 

study revealed a central role of HSP27 in the mechanism of action of bortezomib. 

MM patients who responded to a bortezomib-based treatment regimen had 

significantly lower expression of HSP27 compared to those who did not respond to 

bortezomib treatment. Furthermore, treatment of myeloma cell lines with the HSP27 

inhibitor, OGX-427, resulted in similar apoptosis rates and expression patterns of 

HSP27, BCL-2 and Bax (Li, Zhang, et al. 2019). Blockade of HSP27 has been 

reported to restore sensitivity in bortezomib resistant cells, while ectopic expression 

of HSP27 rendered bortezomib sensitive cells resistant to bortezomib treatment 

(Chauhan et al. 2003). This highlights the ability of combining ex vivo DSRT with 



110 

phosphoproteomics to identify key proteins and phosphorylation sites associated 

with drug resistance. 

Filamin A is an actin binding protein which acts as a scaffold for various protein 

partners including transmembrane proteins such as integrins. Phosphorylation of 

FLNA at S2152 is well-documented with several studies reporting that this 

phosphorylation event prevents cleavage of full length (280kDa) FLNA by calpains 

at the hinge region to the 110kDa fragment that is further cleaved into a 90kDa 

fragment (Chen and Stracher 1989; Bedolla et al. 2009). Western blotting analysis 

identified S2152 phosphorylation at ~110kDa indicating fragmentation of full length 

FLNA. As S2152 phosphorylation prevents FLNA cleavage, this result may be due 

to proteolysis during sample storage, however further investigations should be 

performed to confirm this. Full length FLNA is typically found in the cytoplasm 

whereas the 90kDa fragment is translocated into the nucleus, although some studies 

have reported the presence of full-length FLNA within the nucleolus (Deng et al. 

2012). A study on prostate cancer reported differential pathological functions of 

cytoplasmic and nuclear FLNA, whereby cytoplasmic FLNA was linked to 

metastasis while nuclear FLNA prevented cell invasion, highlighting the role of 

FLNA cleavage and thus S2152 phosphorylation in cancer (Bedolla et al. 2009). 

Protein levels of FLNA were also increased in bortezomib resistant samples, 

however, the phosphorylation status of S2152 may provide more insight into the 

biological function and cellular location of FLNA in drug resistant myeloma. 

Interestingly, nuclear FLNA supresses the transcription of ribosomal RNA by 

preventing the recruitment of RNA polymerase I to the rDNA promoter. Ribosomal 

RNAs are required for ribosome biogenesis and protein production; thus, depletion 

of FLNA which results in increased rRNA levels was found to increase cell 

proliferation rates (Deng et al. 2012). The susceptibility of myeloma cells to 

proteasome inhibition is largely based on the high protein biosynthetic rate of 

myeloma cells which results in dependence on the proteasome to remove misfolded 

proteins. Therefore, one of the resistance mechanisms of bortezomib has been 

proposed to be a reduction in protein synthesis and proteasome workload (Bianchi et 

al. 2009; Cenci et al. 2012). Increased levels of FLNA may contribute to reducing 

the rate of protein synthesis in bortezomib-resistant cells, although more studies are 

required to confirm this hypothesis. 



111 

Interestingly, hypophosphorylation of serine 381 (S381) of TCOF1 was identified in 

bortezomib resistant myeloma cells while protein levels of TCOF1 were unchanged 

across the two groups. TCOF1 encodes the treacle phosphoprotein which is known 

to have roles in ribosome biogenesis and the DNA damage response (Lin and Yeh 

2009; Larsen et al. 2014). Limited studies have investigated the effects of S381 on 

the function of TCOF1, however this site has been found to be hyperphosphorylated 

in various cancers including breast, colon, and ovarian (Deb et al. 2020). KSEA 

analysis revealed an enrichment of substrates of CK2 in Group 1 samples and those 

considered most sensitive to bortezomib. CK2 has diverse roles in carcinogenesis, 

and myeloma cells have been reported to rely on the activity of CK2 for survival 

(Piazza et al. 2006). CK2 stimulates the transcription of RNA polymerases which are 

required for rRNA synthesis and subsequent protein translation to support cell 

growth and proliferation (Hockman and Schultz 1996; Lin et al. 2006). Increased 

cell proliferation via CK2-based regulation of signalling pathways such as NF- κB 

and PI3K/AKT/mTOR, and increased protein synthesis stimulated by CK2, may 

increase the sensitivity of myeloma cells to various drugs due to the increased 

activity of drug targets. However, CK2 inhibition has demonstrated enhanced 

cytotoxicity in combination with bortezomib in MM (Manni et al. 2012, 2013; Xu, 

Ma, et al. 2019). Therefore, further investigation into the link between CK2 activity 

and drug response in MM is required.   

KSEA analysis of bortezomib resistant myeloma revealed an enrichment of 

substrates of IKBKB and CHUK kinases, which constitute the two catalytic subunits 

of the IKK complex which acts as a central regulator for the activation of NF-κB 

signalling (Israël 2010). Activation of the IKK complex results in the 

phosphorylation of IκB, leading to its proteasomal degradation which releases NF-

κB dimers, enabling their translocation to the nucleus where they stimulate the 

transcription of various genes involved in the inflammatory response, cell growth, 

and survival (Hinz and Scheidereit 2014). An important rationale for the use of PIs 

in the treatment of MM is to inhibit a key signalling pathway in MM pathogenesis, 

the NF-κB pathway. However, since the introduction of PIs, studies have found that 

bortezomib also induces the activation of the canonical NF-κB pathway via the 

downregulation of IκB. Signalling via IKBKB has been found to play a key role in 

bortezomib-induced NF-κB activation and the combination of bortezomib with an 
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IKBKB inhibitor has been reported to enhance bortezomib-induced cytotoxicity 

(Hideshima et al. 2009, 2014). Several studies have implicated NF-κB activity in 

bortezomib-resistance (Markovina et al. 2008b; Xie et al. 2020). Increased activity 

of IKBKB and CHUK kinases may contribute to bortezomib resistance and warrant 

further investigation as targets in bortezomib-resistant MM. 

The activating phosphorylation site of tyrosine-protein kinase Fyn, S21, was 

hyperphosphorylated in Group 4 samples, and those considered most resistant to 

bortezomib, alvocidib, and luminespib, while phosphorylation of S558 on Fyn-

binding protein was hyperphosphorylated in Group 4 samples, and those considered 

most resistant to luminespib and PF 431396. Fyn S21 is also a target of PKA (Yeo et 

al. 2011). Interestingly, CD45 has also been implicated in the activation of Fyn and 

other Src family kinases (SFKs) through the dephosphorylation of negative 

regulatory tyrosine phosphorylation sites. Hyperphosphorylation of CD45 and 

CD45-associated protein on serine 973 and serine 99, respectively, was identified in 

Group 4 samples compared to Group 1 samples. Previous studies have reported that 

IL-6 signalling leads to the activation of SFKs including Fyn in MM (Hallek et al. 

1997). IL-6 has also been reported to induce CD45 expression which is required for 

the activation of Fyn in myeloma cell lines (Kawano et al. 2002). CD45 positive 

expression is typically associated with immature myeloma cells which have been 

linked to a more drug-resistant phenotype (Okikawa et al. 2004; Descamps et al. 

2006; Iriyama et al. 2017; Ferguson et al. 2022). Fyn activation has been linked to 

drug resistance in a number of cancers including contributing to tamoxifen resistance 

in breast cancer and imatinib resistance in chronic myeloid leukemia (Elias et al. 

2015; Irwin et al. 2015). Another member of the SFKs, Src, demonstrated 

hyperphosphorylation on serine 17 in drug resistant myeloma cells. Phosphorylation 

of Src at this site by PKA has been implicated in the activation of the small GTPase 

Rap1 which is involved in cell adhesion and extracellular signal-regulated kinases 

(ERKs) (Obara et al. 2004). The role of Rap1 in regulating integrin activation has 

resulted in studies suggesting the targeting of Rap1 to combat CAM-DR (Shain and 

Dalton 2001; de Bruyn et al. 2002; Emmons et al. 2011). Rap1 levels, which showed 

a greater than 4-fold increase in Group 4 samples compared to Group 1 samples, 

have also been linked to chemotherapy response in breast cancer whereby increased 

Rap1 levels predict a poor response (Khattar et al. 2019). Therefore, PKA-mediated 



113 

Src phosphorylation and subsequent activation of Rap1 may represent a mechanism 

of drug resistance in MM. 

Certain phosphorylation sites were uniquely hypo- or hyper-phosphorylated based on 

response to individual drugs. For example, phosphorylation of S9 and S44 on 

HMGA1 was increased in samples considered most sensitive to the PYK2 and FAK 

inhibitor, PF-431396. One study reported a role of HMGA1 in regulating the 

urokinase plasminogen activator system in the secretome of breast cancer cells. 

Interestingly, silencing of HMGA1 resulted in a down-regulation of FAK, one of the 

main transducers of urokinase plasminogen activator system signalling (Resmini et 

al. 2017). Furthermore, a long non-coding RNA regulated by FAK, LINC01614, was 

found to promote colorectal cancer via the modulation of the miR-217-5p/HMGA1 

axis and subsequently increased abundance of HMGA1 (Vishnubalaji et al. 2019; Jia 

et al. 2023). These findings suggest a link between HMGA1 abundance and FAK 

activation; therefore, increased abundance of phosphorylated HMGA1 may indicate 

increased FAK activity, and consequently increased susceptibility to FAK inhibitors 

such as PF 431396.  

Of the phosphorylation sites found to be hypo- or hyper-phosphorylated in this 

study, the impact of many of these phosphorylation events on protein function is 

poorly understood. Our study identifies phosphorylation sites that warrant further 

investigation to determine their effect on protein function and their potential role in 

drug resistance or MM pathogenesis. For example, tyrosine protein kinase BAZ1B 

phosphorylation at S1468 was increased in bortezomib-sensitive myeloma cells. An 

RNA interference screen identified the BAZ1B gene as a bortezomib sensitizer in 

MM, however, the effect of S1468 phosphorylation on the function of BAZ1B is 

unknown (Zhu, Tiedemann, et al. 2011). Although phosphorylation events including 

dematin S16, large proline-rich protein BAG6 S1081, and kalirin S1799, are listed in 

the PhosphoSitePlus database, many have only been identified in large scale mass 

spectrometry phosphoproteomic analyses with limited information on their roles in 

protein function and biological processes.  

This study used ex vivo drug sensitivity resistance testing to stratify patients based on 

their response to a panel or individual drugs. However, it is important to note that ex 

vivo chemosensitivity assays have limitations that must be considered when 
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interpreting results. Only plasma cells are incubated and assessed as part of this 

approach. Although the cells were incubated with stromal cell conditioned media, 

cell-to-cell contact and contact with the extracellular matrix could not be recreated 

which likely influence the ex vivo drug responses observed during the assay. 

Furthermore, in this assay, only drugs that act directly on the tumour cells can be 

evaluated and not those that target the microenvironment (Zhang, Ji, et al. 2022). 

Nevertheless, a comparison of in vitro data with clinical outcomes has shown a 

predictive accuracy of 50%-80% for drug sensitivity and over 90% for drug 

resistance (Volm and Efferth 2015). Furthermore, this assay facilitates the rapid 

assessment of the impact of hundreds of drugs at several concentrations on 

individual patient samples (Majumder et al. 2017). 

Our discovery phosphoproteomics analysis to predict drug response in MM patients 

provides a dataset with valuable information for future predictive biomarker studies 

and mechanistic studies. As depicted in Figure 3.11, bioinformatic analysis of 

phosphoproteomic datasets can identify central kinases and motifs involved in drug 

response which represent valid therapeutic targets to restore drug sensitivity in MM 

patients. Ex vivo drug sensitivity platforms are not widely available and require 

additional resources, instrumentation, and adapted protocols to be established in new 

locations. As few clinical research groups have access to ex vivo drug screening 

platforms, the integration of molecular profiling strategies such as 

phosphoproteomics to establish predictive biomarker panels that act as surrogate 

markers of ex vivo drug sensitivity resistance testing is crucial to expand the 

application of this precision medicine approach. A limitation of the ex vivo drug 

screening approach used in this study is that monoclonal antibodies cannot be 

evaluated on this platform. As immunotherapies have become key players in MM 

treatment regimens, the investigation of sensitivity/resistance to immunotherapies 

would be beneficial. Furthermore, evaluation of molecular biomarkers associated 

with sensitivity/resistance to combination therapies such as 

bortezomib/lenalidomide/dexamethasone, which are commonly used in a clinical 

setting will help to identify the most clinically relevant biomarkers for future 

validation. To validate our findings, large scale studies with sufficient statistical 

power are required to translate these preclinical findings into clinically relevant 

predictive assays. A large-scale comprehensive study combining extensive clinical 
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data on outcomes and cytogenetics with DSRT and downstream omics technologies 

would undoubtedly aid in the translation on the results presented in this chapter to 

the clinical setting 

3.5  Conclusion 

In conclusion, this work confirms that the combination of phosphoproteomics and ex 

vivo DSRT can provide insight into the biological mechanisms associated with drug 

resistance/sensitivity. Several well-documented mechanisms of resistance were 

identified in this study, reaffirming our confidence in the use of this approach to 

detect novel resistance mechanisms and predictive biomarkers of drug response. Our 

results indicate an increase in cell-adhesion associated processes and a decrease in 

cell growth via decreased protein translation in multi-drug resistant myeloma cells 

based on ex vivo DSRT. Phosphorylation sites and kinases associated with drug 

resistance were identified and further studies should investigate the potential 

involvement of these kinases in the development of resistance to the individual drugs 

analysed in this study. Although information on the biological functions of many of 

the phosphorylation sites identified in this study are limited, it is hoped that future 

studies evaluating the impact of these phosphorylation events on biological 

processes will provide insight into the potential links between these phosphorylation 

patterns and drug resistance. 
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4.1  Introduction 

Drug resistance remains one of the biggest challenges facing the effective treatment 

of multiple myeloma patients. Although some patients achieve a prolonged response 

following treatment, many patients successively relapse and become refractory to 

current myeloma therapeutics. Many MM patients receive 5 or more lines of therapy, 

and the length of remission is often reduced following each sequential relapse 

(Kumar et al. 2004; Rajkumar and Kumar 2020). This highlights the need for 

biomarkers of therapeutic response in MM to ensure patients receive a drug 

combination that they are most likely to respond to. Biofluids represent an ideal 

source of predictive markers of therapeutic response and markers to monitor drug 

response during treatment. Specifically, collecting serum and plasma is inexpensive 

and minimally invasive when compared to the collection tumour cells from the bone 

marrow of MM patients. In addition, monitoring plasma-derived biomarkers of drug 

sensitivity or resistance is easily implementable in clinical settings (Dunphy, 

O’Mahoney, et al. 2021).  

With the current availability of over 20 FDA-approved MM therapies, it is crucial to 

be able to determine which drug or drug combination a patient will respond best to in 

order to prolong the duration of remission and improve patient outcomes. Functional 

precision medicine has garnered increasing attention in recent years as a method to 

guide clinical decision making in a personalized manner. Functional precision 

medicine in oncology often refers to the use of an ex vivo drug screening approach to 

evaluate the therapeutic efficacy of numerous drugs on live tumour cells (Letai 

2022). The use of ex vivo DSRT has shown promise in a variety of hematological 

malignancies. A recent clinical trial investigating the usability of ex vivo drug 

sensitivity testing for selecting acute myeloid leukemia (AML) patients who are 

responsive to venetoclax therapy yielded excellent results with venetoclax sensitivity 

testing being successful in 38 of the 39 AML patients evaluated (Kuusanmäki et al. 

2022). This highlights the clinical usability of this approach to guide personalized 

therapeutic decision-making.  

Studies have used ex vivo drug screening to evaluate mechanisms of drug resistance 

and to identify biological markers of drug sensitivity/resistance using genomics, 

transcriptomics, and proteomics (Tierney, Bazou, Majumder, et al. 2021; Ntafoulis 
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et al. 2023). In MM, numerous molecular biology techniques have been combined 

with ex vivo drug screening approaches to investigate drug response. A recent study 

reported a single-cell image-based ex vivo drug testing approach as a clinically 

relevant strategy to improve treatment decision-making in MM. The data obtained 

from this approach, termed pharmacoscopy, can be used to detect novel biomarkers 

of drug response and facilitates patient stratification (Kropivsek et al. 2023). Another 

ex vivo drug sensitivity screening found that a gain(1q21) cytogenetic abnormality 

was associated with decreased sensitivity to the BCL-2 inhibitor, venetoclax, while 

the presence of a t(11;14) translocation was associated with increased sensitivity to 

venetoclax (Giliberto et al. 2022). Tierney and colleagues identified protein 

signatures associated with drug response to five drugs from different drug classes 

based on ex vivo DSRT (Tierney, Bazou, Majumder, et al. 2021). A high-throughput 

drug screening of 25 RRMM patients identified genetic mutations in 12 genes linked 

to ex vivo sensitivity or resistance to 21 drugs. Furthermore, differential expression 

of over 100 genes was correlated with the in vitro cytotoxicity of numerous drugs 

analysed as part of the high-throughput drug screen (Coffey et al. 2021). Using an ex 

vivo drug testing approach, increased expression of aminopeptidases in MM plasma 

cells has been linked to melflufen sensitivity (Miettinen et al. 2021). In addition to 

detecting markers of drug response, ex vivo DSRT has also proved to be a valuable 

method in the identification of synergistic drug combinations in MM (Sudalagunta et 

al. 2020; Giliberto et al. 2022). 

Although meaningful efforts are being made to apply a functional precision medicine 

approach to clinical settings, there are many challenges that must first be addressed. 

Firstly, ex vivo DSRT assays require fresh, viable tumour biopsies which must be 

evaluated in a timely manner to ensure limited biological variation and cell death 

during storage and transportation. Thus, adequate sample handling protocols must be 

established in a clinical setting to facilitate ex vivo DSRT. A sufficient number of 

tumour cells must be obtained from patients to perform the assay.  Furthermore, 

results of the ex vivo DSRT assay must be communicated to clinicians within an 

adequate time frame to ensure these results can contribute to the clinical decision-

making process (Letai et al. 2022). The studies described above have focused on 

evaluating biopsied tumour tissues and isolated tumour cells to identify drug 

sensitivity/resistance mechanisms and biomarkers of drug response. As these studies 
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have successfully identified potential biomarkers, we hypothesized that blood plasma 

collected on the same date as tumour biopsies subjected to ex vivo DSRT could be 

analysed to identify potential circulating markers of drug sensitivity or resistance. As 

the limitations associated with ex vivo DSRT may affect widespread clinical 

application, the identification of surrogate markers in blood may constitute a method 

of predicting drug response that can be easily implemented in a clinical setting. 

Thus, in this pilot study, an untargeted mass spectrometry-based analysis and a 

targeted proximity extension assay-based analysis was performed to identify 

potential surrogate markers of ex vivo DSRT in MM plasma. 

4.2  Experimental design and methods 

The development of drug resistance remains the most prominent issue facing the 

successful treatment of MM patients. To improve risk classification and treatment 

decision-making, a precision medicine approach is required with robust and sensitive 

biomarkers to predict the likelihood of an individual patient responding to specific 

drugs or drug classes. As the process of obtaining bone marrow biopsies from 

patients is invasive and painful, identifying minimally invasive biomarkers in 

biological fluids is preferred (Aberuyi et al. 2020).  

4.2.1 Patient samples 

A total of 44 EDTA plasma samples were obtained from the FHRB in Finland. 

Samples were collected from MM patients (n=41) on the same date as bone marrow 

aspirates which were subject to ex vivo drug sensitivity resistance testing at FIMM. 

Therefore, corresponding ex vivo drug sensitivity data is available for all 44 samples. 

Longitudinal samples were collected from three patients. Sample collection, with 

informed consent, took place between 2013 and 2019. Patient characteristics are 

summarised in Table 4.1. The median age of the cohort is 65 and it includes 20 

males and 21 females. No exclusion criteria were applied to the patients. Details 

surrounding the treatment course of the patient cohort are outlined in Table 4.2. 

Cytogenetics found on the sampling date are illustrated in Figure 4.1. No 

cytogenetics data was available for patients MM_6931, MM_7171_01, 

MM_7171_05, MM_6948, MM_4691, MM_7904, and MM_4774. One sample 

(sMM_6369) was collected at the time of diagnosis of smouldering MM. 
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Table 4.1: Clinical characteristics of patient cohort. Table illustrating patient ID, age at 

sample date, gender, heavy chain composition, and light chain composition of each patient. 

Patient ID Age at Sample Date Gender Heavy chain Light chain 

MM_1910 63 Female IgG Kappa 

MM_6931 61 Male IgA Lambda 

MM_7171_01 69 Male Unknown Unknown 

MM_7171_05 70 Male Unknown Unknown 

MM_1926 67 Female IgG Kappa 

MM_3792 68 Male IgG Kappa 

MM_1878_03 67 Male IgA Kappa 

MM_1878_10 67 Male IgA Kappa 

MM_6948 26 Female Unknown Kappa 

MM_6261 51 Male IgG Kappa 

MM_7276 64 Female Unknown Kappa 

MM_7281 76 Female IgA Kappa 

MM_7396 50 Male IgG Kappa 

MM_7566 54 Male IgG Kappa 

MM_4534 65 Female Unknown Lambda 

MM_4691 70 Female IgG Kappa 

MM_7904 53 Female Unknown Unknown 

MM_8095 77 Male IgA Kappa 

MM_7968 63 Male IgG Kappa 

MM_7983 65 Male IgG Lambda 

MM_6211 63 Female Unknown Kappa 

MM_8694 75 Female IgG Kappa 

MM_8728 73 Male IgG Lambda 

MM_1152 54 Female IgA Lambda 

MM_933 74 Male IgA Lambda 

MM_5207 83 Female IgA Lambda 

MM_4981 65 Female Unknown Kappa 

MM_4865 66 Male Unknown Kappa 

MM_4783 53 Male Unknown Kappa 

MM_4774 78 Male IgA Kappa 

MM_156 67 Female IgA Kappa 

MM_921 64 Female Unknown Lambda 

MM_3767 54 Female IgA Lambda 

MM_917 63 Male IgG Kappa 

MM_8825 69 Female IgA Lambda 

MM_3717 53 Male Unknown Kappa 

MM_3586 60 Male Unknown Kappa 

MM_1994 68 Female IgG Lambda 

MM_911_13 68 Female IgA Lambda 

MM_911_14 69 Female IgA Lambda 

MM_4312 65 Female IgG Lambda 

sMM_6369 60 Female IgA Lambda 

MM_6463 76 Male IgA Kappa 

MM_3129 64 Male IgG Kappa 
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Table 4.2: Details of treatment course of each patient within the cohort. Table 

illustrating the disease status at the time of sampling, the 1st next line of treatment, all lines 

of treatment, and the deepest response in next line of treatment. 

Patient ID 

Disease 

status 

at 

sample 

date 

Name of 1st 

next line 

treatment 

Names of all next line 

treatments 

Deepest 

response in 

next line 

treatment 

MM_1910 PD Drug study 

treatment 

Pom/Dxm 

Pom/Cpm/Dxm 

PR 

MM_6931 PD NA NA NA 

MM_7171_01 PD Radiotherapy Drug study treatment PD 

MM_7171_05 PD 
  

Exitus 

MM_1926 PD Drug study 

treatment 

Drug study treatment 

Pom/Dxm 

Pom/Cpm/Dxm 

Minimal 

response 

MM_3792 PD NA NA NA 

MM_1878_03 PD NA NA NA 

MM_1878_10 PD NA NA NA 

MM_6948 PR Bor/Cpm/Dxm Bor/Cpm/Dxm 

Cpm 

Car/Dxm 

HD-Melphalan (ASCT) 

Bor/Cpm/Dxm 

Len 

Len/Dxm 

Len 

Len/Dxm 

PR 

MM_6261 PD Dara/Dxm/Len

/Bor 

Dara/Dxm/Len/Bor 

Cis/Cpm/Dxm/Dox/Eto/Len 

Cis/Cpm/Dxm/Dox/Eto/Pom 

VGPR 

MM_7276 Dg Bor/Dxm Bor/Dxm 

Bor/Cpm/Dxm 

Mobilization (Cpm) 

HD-Melphalan (ASCT) 

VGPR 

MM_7281 Dg Bor/Mel/Pred Bor/Mel/Pred 

Len/Dxm 

Len 

Len/Dxm 

PR 

MM_7396 Dg Bor/Cpm/Dxm Bor/Cpm/Dxm 

Mobilization (Cpm) 

HD-Melphalan (ASCT) 

Bor/Dxm/Len 

Len 

PR 

MM_7566 Dg Ixa/Len/Dxm Ixa/Len/Dxm 

HD-Melphalan (ASCT) 

Ixa/Len/Dxm 

Len 

PR 

MM_4534 Clinical 

relapse 

Bor/Dxm/Len Bor/Dxm/Len 

Pomal/Cpm/Dxm 

Car/Dxm 

VGPR 

MM_4691 PD Car/Len/Dxm Car/Len/Dxm 

Len/Dxm 

Dxm 

sCR 
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Patient ID 

Disease 

status 

at 

sample 

date 

Name of 1st 

next line 

treatment 

Names of all next line 

treatments 

Deepest 

response in 

next line 

treatment 

Dara/Dxm/Len 

MM_7904 Dg NA NA NA 

MM_8095 Dg Bor/Dxm Bor/Dxm 

Radiotherapy 

Len/Dxm 

Len 

VGPR 

MM_7968 Dg Ixa/Len/Dxm Ixa/Len/Dxm 

Mobilization (Cpm) 

HD-Melphalan (ASCT) 

Ixa/Len/Dxm 

Len 

Car/Len/Dxm 

Drug study treatment 

VGPR 

MM_7983 NA NA NA NA 

MM_6211 PD Bor/Dxm/Len Bor/Dxm/Len 

Dara/Dxm/Len 

HD-Melphalan (ASCT) 

Dara/Dxm/Len 

Dara 

Car/Dxm 

PD 

MM_8694 Dg Bor/Dxm/Len Bor/Dxm/Len 

Len/Dxm 

Len 

VGPR 

MM_8728 Dg NA NA NA 

MM_1152 Clinical 

relapse 

Len/Dxm Len/Dxm 

Radiotherapy 

Len/Dxm 

Len 

Len/Dxm 

Dxm 

Car/Dxm 

Pom/Cpm/Dxm 

VGPR 

MM_933 PD Bor/Cpm/Dxm Bor/Cpm/Dxm 

Bor/Dxm 

Venetoclax 

Benda/Pred 

Car/Dxm 

SD 

MM_5207 Dg Bor/Dxm Bor/Dxm 

Mel/Pred 

PR 

MM_4981 Dg Bor/Dxm Bor/Dxm 

Radiotherapy 

Bor/Cpm/Dxm 

Mobilization (Cpm) 

HD-Melphalan (ASCT) 

Dara/Dxm/Len 

Dara 

Dara/Bor/Dxm 

Pom/Cpm/Dxm 

Pom/Dxm 

Ixa/Dxm/Pom 

PR 
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Patient ID 

Disease 

status 

at 

sample 

date 

Name of 1st 

next line 

treatment 

Names of all next line 

treatments 

Deepest 

response in 

next line 

treatment 

Radiotherapy 

Car/Dxm 

Radiotherapy 

MM_4865 Dg Bor/Cpm/Dxm Bor/Cpm/Dxm 

Mobilization (Cpm) 

Len/Dxm 

HD-Melphalan (ASCT) 

VGPR 

MM_4783 Dg Bor/Cpm/Dxm Bor/Cpm/Dxm 

Radiotherapy 

Cpm/Dxm 

Mobilization (Cpm) 

HD-Melphalan (ASCT) 

Len 

Dara/Dxm/Car 

Len/Dxm 

Dara/Dxm/Car 

Dara/Dxm 

Len/Dxm 

VGPR 

MM_4774 PD Cis/Cpm/Dxm

/Dox/Eto/Len 

Cis/Cpm/Dxm/Dox/Eto/Len PR 

MM_156 PD Radiotherapy Radiotherapy 

Bor/Dxm/Len 

Len/Dxm 

Len/Dxm 

Len/Dxm 

Cpm/Pred 

Len/Dxm 

PD 

MM_921 PD Len/Dxm Len/Dxm 

Dxm 

DLI (x2) 

Len/Dxm 

Len 

Car/Len/Dxm 

Len/Dxm 

Dara 

PR 

MM_3767 Dg Bor/Dxm/Len Bor/Dxm/Len 

Mobilization (G-CSF) 

Bor/Cpm/Dxm 

HD-Melphalan (ASCT) 

PR 

MM_917 PD Bor/Dxm Bor/Dxm 

Bor/Dxm/Len 

SD 

MM_8825 Dg Ixa/Len/Dxm Ixa/Len/Dxm 

Mobilization (Cpm) 

HD-Melphalan (ASCT) 

VGPR 

MM_3717 Dg Bor/Dxm Bor/Dxm 

Mobilization (Cpm) 

Bor/Dxm/Len 

HD-Melphalan (ASCT) 

AlloHSCT(Flud/Treo) 

VGPR 

MM_3586 Dg Bor/Dxm/Len Bor/Dxm/Len PR 
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Patient ID 

Disease 

status 

at 

sample 

date 

Name of 1st 

next line 

treatment 

Names of all next line 

treatments 

Deepest 

response in 

next line 

treatment 

Mobilization (G-CSF) 

HD-Melphalan (ASCT) 

Len 

Bor/Dxm 

Bor/Cpm/Dxm 

Bor/Dxm 

Benda/Pred 

Benda/Pred 

MM_1994 PD Bor/Cpm/Dxm Bor/Cpm/Dxm 

Bor/Dxm/Len 

Bor/Cpm/Dxm/Len 

Dxm 

PD 

MM_911_13 PD Bor/Dxm Bor/Dxm 

Bor/Dxm/Len 

Len/Dxm 

Bor/Dxm/Len 

Radiotherapy 

Cis/Cpm/Dxm/Dox/Eto/Len 

PR 

MM_911_14 PD Bor/Dxm/Len Bor/Dxm/Len 

Len/Dxm 

Bor/Dxm/Len 

Radiotherapy 

Cis/Cpm/Dxm/Dox/Eto/Len 

VGPR 

MM_4312 PD Bor/Dxm/Len Bor/Dxm/Len 

Ven 

Ven/Bor/Dxm 

Benda/Pred 

Radiotherapy 

PR 

sMM_6369 Dg Ixa/Len/Dxm Ixa/Len/Dxm 

Mobilization (Cpm) 

HD-Melphalan (ASCT) 

Ixa/Len/Dxm 

Len 

Bor/Cpm/Dxm 

Bor/Dxm 

Dara/Pom/Dxm 

PR 

MM_6463 Dg Dxm Dxm 

Radiotherapy 

Len/Dxm 

Bor/Dxm/Len 

Car/Len/Dxm 

Car/Pom/Dxm 

Car/Cpm/Pom/Dxm 

Benda/Pred 

Benda/Dxm/Len 

PR 

MM_3129 PD Benda/Bor/Pre

d 

Benda/Bor/Pred 

Bor/PegDoxo/Dxm 

Pom/Dxm 

SD 
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Abbreviations: PD, progressive disease; Pom, pomalidomide; Dxm, dexamethasone; 

Cpm, cyclophosphamide; PR, partial response; Bor, bortezomib; Car, carfilzomib; 

HD-Melphalan, high-dose melphalan; ASCT, autologous stem cell transplantation; 

Len, lenalidomide; Dara, daratumumab; Cis, cisplatin; Dox, doxorubicin; Eto, 

etoposide;  VGPR, very good partial response; Dg, diagnosis; Mel, melphalan; Pred, 

prednisone; Ixa, ixazomib; sCR, stringent complete response; Benda, bendamustine; 

SD, stable disease; G-CSF, granulocyte-colony stimulating factor; DLI, donor 

lymphocyte infusion; AlloHSCT, allogeneic hematopoietic stem cell transplantation; 

Flud, fludarabine; Treo, treosulfan; Ven, venetoclax; PegDoxo, pegylated liposomal 

doxorubicin. 

 

 

Figure 4.1: Cytogenetic data from sampling date of patient cohort. Cytogenetics 

data was available for 37/44 samples collected.  

4.2.2 Label-free mass spectrometry analysis of MM plasma 

To reduce ion suppression, high abundant plasma proteins were depleted prior to 

mass spectrometry analysis using the Proteome Purify 12 Human Serum Protein 

Immunodepletion Resin (R&D Systems, Minneapolis, MN, USA), as described in 

Chapter 2. Briefly, 10 μL of plasma was mixed with 1 mL of immunodepletion resin 

for 60 min on a rotary shaker. The mixture was transferred to Spin-X filter units and 

centrifuged. Protein concentration of the immunodepleted plasma was determined 
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using the Qubit protein assay. Protein digestion was performed using the FASP 

protocol, as described in Chapter 2. A total of 6µg of protein was digested at a 1:25 

enzyme-to-protein ratio. The tryptic digest was acidified at a 1:8 ratio using 2% 

TFA, 20% ACN. 

Mass spectrometry analysis was performed using the Thermo UltiMate 3000 nano 

system directly coupled in-line with the Thermo Orbitrap Fusion Tribrid mass 

spectrometer. The maximum loading amount, equivalent to ~400ng of protein was 

loaded onto the system. Peptides were resolved on an analytical column using a 

binary gradient. The mass spectrometry analysis was performed as described 

previously (Chapter 2). 

4.2.3 Data analysis of mass spectrometry results 

Raw files containing quantitative information from the mass spectrometry analysis 

were analysed using Progenesis QI for Proteomics (version 2.0). Proteome 

Discoverer 2.2 was employed for peptide and protein identification using a recently 

downloaded UniProtKB-SwissProt Homo Sapiens reference database. Search 

parameters for protein identification are described in Chapter 2. Contaminating 

keratins were removed from the analysis. Protein identifications were deemed to be 

of differential abundance based on an ANOVA p-value of ≤ 0.05 between 

experimental groups, fold change ≥ 1.3 between experimental groups, proteins with 

≥ 2 unique peptides contributing to the identification, and quantification data in ≥  

70% of samples. Perseus v.1.5.6.0 was used for visualisation of heatmaps. To 

generate STRING protein-protein interaction networks, the accession numbers of 

significant proteins were inputted into the online STRING platform. The interaction 

score was set to high confidence (>0.7) and protein networks were exported to 

Cytoscape (version 3.10.0) for visualization and functional enrichment using the 

stringApp. 

4.2.4 Targeted proteomic analysis using the Olink Target 48 panel 

Plasma concentrations of 45 cytokines in MM (n=26) with varying drug response 

profiles based on ex vivo DSRT were evaluated using the Olink Target 48 panel, as 

described in Chapter 2. As the resulting data was not normally distributed, a 

Kruskal-Wallis test and two-sided Wilcoxon rank sum tests were performed using 
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the R package, Olink® Analyze. Graphs were generated using Graphpad Prism 

(8.0.2.263). Spearman rank correlation analysis was performed using MedCalc 

(version 20.118). 

4.3  Results 

4.3.1 Stratification of plasma samples based on ex vivo drug sensitivity 

resistance testing 

Based on the results of ex vivo drug sensitivity resistance testing on matched CD138+ 

myeloma cells, plasma samples were stratified into one of four groups: Group 1, 

very sensitive; Group 2, sensitive; Group 3, resistant; and Group 4, very resistant, as 

described previously (Majumder et al. 2017; Tierney, Bazou, Majumder, et al. 

2021). The groups are listed in Table 4.3. To determine the relationship between the 

chemosensitivity groups and overall survival, a log-rank test was performed and 

demonstrated a significant change in overall survival (OS) between the groups (Log-

rank = 9.511, p = 0.023) (Figure 4.2). Despite being associated with drug sensitivity, 

OS was shortest in Group 1 patients. This is in line with previous publications 

reporting decreased OS in Group 1 patients (Majumder et al. 2017; Tierney, Bazou, 

Majumder, et al. 2021). Previous work has shown that Group 1 patients displayed a 

higher mutational load with elevated expressions of genes involved in DNA 

replication and self-renewal. This indicated highly proliferative disease and may 

explain the decreased OS associated with Group 1 patients (Majumder, 2018). 
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 Table 4.3: Sample groupings based on ex vivo drug sensitivity/resistance. Samples were 

grouped based on ex vivo DSRT results, as described in (Majumder et al. 2017). 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Clinical information on the overall survival of the four chemosensitivity 

groups. Survival graph illustrating the difference in overall survival between Group 1, 

Group 2, Group 3, and Group 4. The log-rank test was applied to compare the trend in 

overall survival between the four groups. 

Group 1 Group 2 Group 3 Group 4 

MM_3792 MM_4783 MM_7904 MM_1152 

MM_6931 MM_7171_01 sMM_6369 MM_1994 

MM_911_13 MM_7276 MM_917 MM_3767 

MM_4691 MM_4981 MM_156 MM_3717 

MM_8095 MM_6211 MM_3586 MM_6948 

MM_4534 MM_8825 MM_921  

MM_4312 MM_1926 MM_4865  

MM_7983 MM_7396 MM_7281  

MM_6261 MM_5207 MM_7566  

MM_7171_05 MM_911_14 MM_7968  

MM_4774  MM_6463  

  MM_933  

  MM_1910  

  MM_8694  

  MM_8728  

  MM_1878_03  

  MM_1878_10  

  MM_3129  
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4.3.2 Plasma proteomic analysis using label-free LC-MS/MS 

4.3.2.1 Statistical analysis reveals a change in the plasma proteome between the 

four chemosensitivity groups 

To evaluate the plasma proteomic changes between the four chemosensitivity 

groups, we compared the abundance of plasma proteins identified by LC-MS/MS. A 

total of 45 plasma proteins were SSDA across the four groups (ANOVA p-value < 

0.05, FC > 1.3) (Table 4.4). As Groups 1 and 2 are linked to drug sensitivity while 

Groups 3 and 4 are associated with drug resistance, we compared the proteomic 

profile of Groups 1 and 2 combined versus Group 3 and 4 combined to identify 

proteins with a clear trend of upwards or downwards abundance across the 

chemosensitivity groups (Table 4.5). A total of 16 SSDA proteins were identified 

between the sensitive group (1&2) and resistant group (3&4). 

Table 4.4: Proteins of differential abundance between the four chemosensitivity 

groups. Statistically significantly differentially abundant proteins are defined by the criteria: 

ANOVA p-value < 0.05, FC > 1.3. 

Protein name 
Gene 
name 

Protein 
ID 

Highest 
mean 

condition 

Lowest 
mean 

condition 

Max fold 
change 

P-value 

Complement C5 C5 P01031 Group 1 Group 4 1.43 0.026 

Fibrinogen beta 
chain 

FGB P02675 Group 1 Group 2 1.82 0.026 

Fibrinogen gamma 
chain 

FGG P02679 Group 1 Group 2 1.75 0.018 

von Willebrand 
factor 

VWF P04275 Group 1 Group 2 4.34 0.009 

Alpha-1B-
glycoprotein 

A1BG P04217 Group 1 Group 4 1.9 0.025 

Serum amyloid A-2 
protein 

SAA2 P0DJI9 Group 1 Group 2 7.54 0.045 

Plasminogen PLG P00747 Group 1 Group 4 1.95 0.048 

Fibronectin FN1 P02751 Group 1 Group 4 3.7 0.002 

Beta-Ala-His 
dipeptidase 

CNDP1 Q96KN2 Group 1 Group 4 4.31 0.016 

Apolipoprotein B-
100 

APOB P04114 Group 2 Group 1 1.38 0.043 

Heparin cofactor 2 SERPIND1 P05546 Group 2 Group 1 1.34 0.013 

Apolipoprotein A-IV APOA4 P06727 Group 2 Group 4 1.76 0.041 

Ficolin-3 FCN3 O75636 Group 2 Group 4 2.03 0.0002 

Transthyretin TTR P02766 Group 3 Group 4 1.73 0.0005 

Selenoprotein P SELENOP P49908 Group 3 Group 1 1.77 0.022 

Vitamin D-binding 
protein 

GC P02774 Group 3 Group 4 2.08 0.018 
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Protein name 
Gene 
name 

Protein 
ID 

Highest 
mean 

condition 

Lowest 
mean 

condition 

Max fold 
change 

P-value 

Complement C3 C3 P01024 Group 4 Group 3 1.57 0.028 

Fibrinogen alpha 
chain 

FGA P02671 Group 4 Group 2 1.67 0.006 

Ceruloplasmin CP P00450 Group 4 Group 1 2.06 0.0001 

Apolipoprotein A-I APOA1 P02647 Group 4 Group 1 1.61 0.008 

Complement C4-A C4A P0C0L4 Group 4 Group 3 2.29 0.024 

Gelsolin GSN P06396 Group 4 Group 1 1.45 0.004 

Complement factor B CFB P00751 Group 4 Group 3 2.13 0.0009 

Corticosteroid-
binding globulin 

SERPINA6 P08185 Group 4 Group 1 1.53 0.002 

Albumin ALB P02768 Group 4 Group 1 2.78 0.018 

Alpha-2-antiplasmin SERPINF2 P08697 Group 4 Group 3 1.76 0.0002 

Complement C1s 
subcomponent 

C1S P09871 Group 4 Group 2 1.94 0.0008 

Thyroxine-binding 
globulin 

SERPINA7 P05543 Group 4 Group 3 2.38 0.003 

Plasma kallikrein KLKB1 P03952 Group 4 Group 1 2.4 0.0005 

Apolipoprotein L1 APOL1 O14791 Group 4 Group 1 2.08 0.001 

Attractin ATRN O75882 Group 4 Group 1 2.16 0.001 

C4b-binding protein 
alpha chain 

C4BPA P04003 Group 4 Group 3 1.34 0.024 

Complement 
component C9 

C9 P02748 Group 4 Group 2 1.97 0.003 

Alpha-2-HS-
glycoprotein 

AHSG P02765 Group 4 Group 1 2.02 0.002 

Complement C2 C2 P06681 Group 4 Group 1 2.11 0.0003 
Alpha-1-
antichymotrypsin 

SERPINA3 P01011 Group 4 Group 2 2.15 0.033 

Complement 
component C8 alpha 
chain 

C8A P07357 Group 4 Group 1 2.23 0.005 

Complement C1r 
subcomponent-like 
protein 

C1RL Q9NZP8 Group 4 Group 1 2.65 0.0007 

Serotransferrin TF P02787 Group 4 Group 1 4.45 0.021 

Pregnancy zone 
protein 

PZP P20742 Group 4 Group 3 4.75 0.040 

Prothrombin F2 P00734 Group 4 Group 3 1.5 0.016 

Apolipoprotein A-II APOA2 P02652 Group 4 Group 1 1.98 0.025 

Carboxypeptidase N 
catalytic chain 

CPN1 P15169 Group 4 Group 1 2.16 0.006 

Lumican LUM P51884 Group 4 Group 1 2.55 0.012 

Complement C1q 
subcomponent 
subunit C 

C1QC P02747 Group 4 Group 3 3.15 0.018 

 



131 

Table 4.5: Proteins of differential abundance between sensitive (Group 1&2) and 

resistant (Group 3&4) groups. Statistically significantly differentially abundant proteins 

are defined by the criteria: ANOVA p-value < 0.05, FC > 1.3. 

Protein name 
Gene 
name 

Protein 
ID 

Highest 
mean 

condition 

Lowest 
mean 

condition 

Fold 
Change 

P-value 

Gelsolin GSN P06396 Group 3&4 Group 1&2 1.32 0.001 

Alpha-2-HS-
glycoprotein  

AHSG P02765 Group 3&4 Group 1&2 1.37 0.001 

Fibrinogen alpha 
chain  

FGA P02671 Group 3&4 Group 1&2 1.6 0.009 

Alpha-2-
macroglobulin  

A2M P01023 Group 3&4 Group 1&2 1.98 0.011 

Attractin  ATRN O75882 Group 3&4 Group 1&2 1.56 0.002 

Antithrombin-III  SERPINC1 P01008 Group 3&4 Group 1&2 1.57 0.002 

Kininogen-1  KNG1 P01042 Group 3&4 Group 1&2 1.42 0.006 

Serotransferrin  TF P02787 Group 3&4 Group 1&2 1.6 0.028 

Apolipoprotein B-
100 

APOB P04114 Group 1&2 Group 3&4 3.68 0.002 

Haptoglobin  HP P00738 Group 1&2 Group 3&4 4.25 0.018 

Complement C4-A  C4A P0C0L4 Group 1&2 Group 3&4 1.48 0.043 

Fibrinogen beta 
chain  

FGB P02675 Group 1&2 Group 3&4 1.35 0.035 

Apolipoprotein C-IV  APOC4 P55056 Group 1&2 Group 3&4 2.4 0.000 

Apolipoprotein E  APOE P02649 Group 1&2 Group 3&4 1.34 0.009 

Mannan-binding 
lectin serine 
protease 2  

MASP2 O00187 Group 1&2 Group 3&4 1.46 0.010 

von Willebrand 
factor  

VWF P04275 Group 1&2 Group 3&4 1.93 0.032 

4.3.2.2 Plasma samples can be stratified based on drug sensitivity scores related 

to individual drugs 

To identify plasma proteomic changes associated with response to individual drugs, 

samples were stratified into “most sensitive” and “most resistant” groups based on ex 

vivo DSRT of CD138+ myeloma cells collected on the same sampling date as the 

plasma samples in this study (Figure 4.3). Patient samples with low DSS are 

considered “most resistant” whereas those with high DSS are considered “most 

sensitive” to the individual drug being evaluated. The therapeutics evaluated in this 

study were selected based on the desire to incorporate drugs from a variety of drug 

classes. The individual drugs analysed were selected independently of Chapter 3 and 

include: bortezomib (proteasome inhibitor), lenalidomide (IMiD), dinaciclib (CDK 

inhibitor), PF-04691502 (PI3K and mTOR inhibitor), quisinostat (HDAC inhibitor), 

venetoclax (BCL2 inhibitor) and navitoclax (BCL2, BCLxL inhibitor) (Figure 4.4). 
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Figure 4.3: Sample stratification into “Most Resistant” and “Most Sensitive” groups for each of the seven individual therapeutics analysed. 

Samples were stratified into “Most Resistant” and “Most Sensitive” groups based on DSS values. To investigate the samples considered most resistant or 

most sensitive, samples were separated into quartiles with those samples falling into the first quartile being considered “Most Resistant” and those in the 

fourth quartile being considered “Most Sensitive”. 
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Figure 4.4: Comparison of drug sensitivity scores in “most sensitive” and “most 

resistant” groups associated with each individual drug. All statistical comparisons for 

each group yielded p-values < 0.0001. p ≤ 0.0001, ‘****’. 

4.3.2.3 Proteomic analysis of plasma based on sensitivity/resistance to 

bortezomib 

Proteomic analysis of plasma samples considered “most sensitive” and “most 

resistant” to bortezomib revealed 37 proteins of differential abundance between the 

two groups (ANOVA p-value < 0.05, FC > 1.3) (Supp. File 4.1). Of these proteins, 

16 were increased in abundance and 21 proteins were decreased in abundance in 

plasma from patients highly resistant to bortezomib. Hierarchical  clustering was 

performed on all identified SSDA proteins. LFQ intensity values were Z-score 

normalised followed by clustering of the proteins using Euclidean distance and 

average linkage (Figure 4.5A). Protein-protein interactions between the SSDA 

proteins were evaluated using STRING analysis. As depicted in Figure 4.5B, many 

of the SSDA proteins showed strong interactions with the identification of two 

protein clusters associated with complement activation and lipid metabolism. This 

indicates a potential change in the abundance of plasma proteins involved in 

complement activation and lipid metabolism in MM patients with varying responses 

to bortezomib. 
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Figure 4.5: Label-free quantitative proteomic analysis of plasma samples “most sensitive” 

and “most resistant” to the proteasome inhibitor, bortezomib. (A) Hierarchical clustering of 

z-scored normalised LFQ intensity values for 37 SSDA proteins illustrating the alterations in 

plasma protein abundance. (B) String enrichment analysis on SSDAs identified via Student’s t-

test comparison of “most sensitive” and “most resistant” bortezomib groups. Red nodes represent 

proteins increased in abundance in the “most resistant” group, whereas blue nodes represent 

proteins decreased in abundance in the “most resistant” group. Nodes representing proteins 

associated with complement activation are circled in yellow. Nodes representing proteins 

associated with lipid metabolism are circled in green. Unconnected nodes were removed from the 

figure. 

4.3.2.4 Proteomic analysis of plasma based on sensitivity/resistance to 

lenalidomide 

Proteomic analysis of plasma samples considered “most sensitive” and “most 

resistant” to lenalidomide revealed 16 proteins of differential abundance between the 

two groups (ANOVA p-value < 0.05, FC > 1.3) (Supp. File 4.2). Of these proteins, 

11 were increased in abundance and 5 were decreased in abundance in plasma from 

patients highly resistant to lenalidomide. Hierarchical clustering of SSDA proteins 

was performed as described above (Figure 4.6A). Of the 16 proteins of differential 

abundance between the two groups, 13 proteins are linked to vesicle-mediated 

transport (Figure 4.6B).   
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Figure 4.6: Label-free quantitative proteomic analysis of plasma samples “most 

sensitive” and “most resistant” to the immunomodulatory drug, lenalidomide. (A) 

Hierarchical clustering of z-scored normalised LFQ intensity values for 16 SSDA proteins 

illustrating the alterations in plasma protein abundance. (B) String enrichment analysis on 

SSDAs identified via Student’s t-test comparison of “most sensitive” and “most resistant” 

lenalidomide groups. Red nodes represent proteins increased in abundance in the “most 

resistant” group, whereas blue nodes represent proteins decreased in abundance in the “most 

resistant” group. Nodes representing proteins associated with vesicle-mediated transport are 

circled in pink.  

4.3.2.5 Proteomic analysis of plasma based on sensitivity/resistance to dinaciclib 

Proteomic analysis of plasma samples considered “most sensitive” and “most 

resistant” to dinaciclib revealed 30 proteins of differential abundance between the 

two groups (ANOVA p-value < 0.05, FC > 1.3) (Supp. File 4.3). Of these proteins, 

16 were increased in abundance and 14 were decreased in abundance in plasma from 

patients highly resistant to dinaciclib. As depicted in Figure 4.7A, there is a clear 

change in the abundance of the 30 significant plasma proteins across the two 

chemoresistance groups. STRING analysis found a highly connected protein network 

including proteins associated with phosphatidylcholine binding being increased in 

abundance in those most resistant to dinaciclib and proteins linked to extracellular 

matrix structural constituents being decreased in abundance in the plasma of those 

most sensitive to dinaciclib (Figure 4.7B). 
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Figure 4.7: Label-free quantitative proteomic analysis of plasma samples “most 

sensitive” and “most resistant” to the cyclin dependent kinase (CDK) inhibitor, 

dinaciclib. (A) Hierarchical clustering of z-scored normalised LFQ intensity values for 30 

SSDA proteins illustrating the alterations in plasma protein abundance. (B) String 

enrichment analysis on SSDAs identified via Student’s t-test comparison of “most sensitive” 

and “most resistant” dinaciclib groups. Red nodes represent proteins increased in abundance 

in the “most resistant” group, whereas blue nodes represent proteins decreased in abundance 

in the “most resistant” group. Nodes representing proteins associated with 

phosphatidylcholine binding are circled in purple. Nodes representing proteins linked to 

extracellular matrix structural constituents are circled in green. Unconnected nodes were 

removed from the figure. 

4.3.2.6 Proteomic analysis of plasma based on sensitivity/resistance to PF-

04691502 

Proteomic analysis of plasma samples considered “most sensitive” and “most 

resistant” to PF-04691502 revealed 24 proteins of differential abundance between the 

two groups (ANOVA p-value < 0.05, FC > 1.3) (Supp. File 4.4). Of these proteins, 

14 were increased and 10 were decreased in abundance in the “most resistant” to PF-

04691502 group. The change in abundance of these proteins is illustrated in Figure 

4.8A. Protein-protein interaction analysis revealed a highly interconnected network 

across all SSDAs. Proteins associated with cell-substrate adhesion were decreased in 

abundance and those associated with cholesterol metabolism were increased in 

abundance in the “most resistant” chemosensitivity group (Figure 4.8B). 
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Figure 4.8: Label-free quantitative proteomic analysis of plasma samples “most 

sensitive” and “most resistant” to the PI3K and mTOR inhibitor, PF-04691502. (A) 

Hierarchical clustering of z-scored normalised LFQ intensity values for 24 SSDA proteins 

illustrating the alterations in plasma protein abundance. (B) String enrichment analysis on 

SSDAs identified via Student’s t-test comparison of “most sensitive” and “most resistant” 

PF-04691502 groups. Red nodes represent proteins increased in abundance in the “most 

resistant” group, whereas blue nodes represent proteins decreased in abundance in the “most 

resistant” group. Nodes representing proteins associated with cell-substrate adhesion are 

circled in bright blue. Nodes representing proteins linked to cholesterol metabolism are 

circled in red. Unconnected nodes were removed from the figure. 

4.3.2.7 Proteomic analysis of plasma based on sensitivity/resistance to 

quisinostat 

Proteomic analysis of plasma samples considered “most sensitive” and “most 

resistant” to quisinostat revealed 15 proteins of differential abundance between the 

two groups (ANOVA p-value < 0.05, FC > 1.3) (Supp. File 4.5). Of these proteins, 

11 were increased and 4 were decreased in abundance in the “most resistant” to 

quisinostat group. The change in abundance of these proteins is illustrated in Figure 

4.9A. Protein-protein interaction analysis revealed a highly interconnected network 

across all SSDAs. Four unconnected nodes were removed from the figure. Proteins 

associated with cholesterol efflux were increased in abundance in the “most 

resistant” to quisinostat group (Figure 4.9B). 
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Figure 4.9: Label-free quantitative proteomic analysis of plasma samples “most sensitive” 

and “most resistant” to the pan-HDAC inhibitor, quisinostat. (A) Hierarchical clustering of z-

scored normalised LFQ intensity values for 15 SSDA proteins illustrating the alterations in plasma 

protein abundance. (B) String enrichment analysis on SSDAs identified via Student’s t-test 

comparison of “most sensitive” and “most resistant” quisinostat groups. Red nodes represent 

proteins increased in abundance in the “most resistant” group, whereas blue nodes represent 

proteins decreased in abundance in the “most resistant” group. Nodes representing proteins 

associated with cholesterol efflux are circled in yellow. Unconnected nodes were removed from 

the figure. 

4.3.2.8 Proteomic analysis of plasma based on sensitivity/resistance to 

venetoclax 

Proteomic analysis of plasma samples considered “most sensitive” and “most 

resistant” to venetoclax revealed 17 proteins of differential abundance between the 

two groups (ANOVA p-value < 0.05, FC > 1.3) (Supp. File 4.6). Of these proteins, 9 

were increased and 8 were decreased in abundance in the “most resistant” to 

venetoclax group. The change in abundance of these proteins is illustrated in Figure 

4.10A. Protein-protein interaction analysis revealed a highly interconnected network 

across all SSDAs. Three unconnected nodes were removed from the figure. Proteins 

associated with cell activation were decreased in abundance in the “most resistant” to 

venetoclax group group (Figure 4.10B). 
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Figure 4.10: Label-free quantitative proteomic analysis of plasma samples “most 

sensitive” and “most resistant” to the BCL2 inhibitor, venetoclax. (A) Hierarchical 

clustering of z-scored normalised LFQ intensity values for 17 SSDA proteins illustrating the 

alterations in plasma protein abundance. (B) String enrichment analysis on SSDAs identified 

via Student’s t-test comparison of “most sensitive” and “most resistant” venetoclax groups. 

Red nodes represent proteins increased in abundance in the “most resistant” group, whereas 

blue nodes represent proteins decreased in abundance in the “most resistant” group. Nodes 

representing proteins associated with cell activation are circled in purple. Unconnected nodes 

were removed from the figure. 

4.3.2.9 Proteomic analysis of plasma based on sensitivity/resistance to navitoclax 

Proteomic analysis of plasma samples considered “most sensitive” and “most 

resistant” to navitoclax revealed 9 proteins of differential abundance between the two 

groups (ANOVA p-value < 0.05, FC > 1.3) (Supp. File 4.7). Of these proteins, 4 

were increased and 5 were decreased in abundance in the “most resistant” to 

navitoclax group. The change in abundance of these proteins is illustrated in Figure 

4.11A. Protein-protein interaction analysis revealed a highly interconnected network 

across all SSDAs (Figure 4.11B). 



140 

 

Figure 4.11: Label-free quantitative proteomic analysis of plasma samples “most 

sensitive” and “most resistant” to the BCL-2 and BCL-xL inhibitor, navitoclax. (A) 

Hierarchical clustering of z-scored normalised LFQ intensity values for 9 SSDA proteins 

illustrating the alterations in plasma protein abundance. (B) String enrichment analysis on 

SSDAs identified via Student’s t-test comparison of “most sensitive” and “most resistant” 

navitoclax groups. Red nodes represent proteins increased in abundance in the “most 

resistant” group, whereas blue nodes represent proteins decreased in abundance in the “most 

resistant” group. 

4.3.3 Plasma proteomic analysis using targeted proximity extension assay 

technology 

Plasma proteomics by mass spectrometry is well-known to be complicated due to the 

high dynamic range of protein abundance whereby high abundance proteins make up 

over 90% of the plasma proteome. Despite the application of immunodepletion, 

immunoenrichment, and/or fractionation methods to remove high abundance 

proteins, it is extremely difficult to detect low abundance proteins such as cytokines 

in an MS-based plasma proteomic experiment. Therefore, we performed a targeted 

analysis to detect the plasma concentrations of 45 cytokines in MM plasma patients 

(n=26) stratified based on ex vivo drug responses. The same individual drugs 

analysed as part of our mass spectrometry analysis were evaluated. Statistical 

analysis of cytokine concentrations in MM patients considered most sensitive and 

most resistant to bortezomib did not yield any significant alterations (Supp. File 4.1). 
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4.3.3.1 Targeted analysis of cytokine concentrations across four 

chemosensitivity groups 

Across the four chemosensitivity groups, five cytokines were found to be statistically 

significantly differentially abundant (Kruskal-Wallis p-value < 0.05) (Table 4.6) 

(Supp. File 4.8). Fms-related tyrosine kinase 3 ligand (FLT3LG), granulocyte-

macrophage colony-stimulating factor (CSF2), lymphotoxin-alpha (LTA), 

interleukin-10 (IL-10), and interleukin-15 (IL-15) demonstrated increased 

concentrations in Group 1 MM patients when compared to the other chemosensitivity 

groups (Figure 4.12). As Group 1 MM patients typically have a reduced overall 

survival, we evaluated whether increased levels of these five cytokines are associated 

with reduced OS in this MM cohort. Patients were binarized into high and low 

expression of the five cytokines, however survival analysis did not yield significant 

changes in the OS of the high and low expression groups. 

Table 4.6: List of significantly differentially abundant cytokines across the four MM 

chemosensitivity groups. Statistical analysis was performed using non-parametric Kruskal-

Wallis tests followed by Wilcoxon post-hoc analysis with Benjamini-Hochberg p-value 

adjustment. Significance is marked as follows: P ≤ 0.05 ‘*’, ns ‘not significant’. 

Protein name 
Gene 

name 

Kruskal-

Wallis p-

value 

G1 v 

G2 

G1 v 

G3 

G1 v 

G4 

G2 v 

G3 

G2 v 

G4 

G3 v 

G4 

Fms-related 

tyrosine kinase 

3 ligand 

FLT3LG 0.014 * * * ns ns ns 

Granulocyte-

macrophage 

colony-

stimulating 

factor 

CSF2 0.025 * * ns ns ns ns 

Lymphotoxin-

alpha 
LTA 0.025 * * * ns ns ns 

Interleukin 10 IL-10 0.025 0.054 * ns ns ns ns 

Interleukin 15 IL-15 0.029 ns 0.075 0.053 ns ns ns 
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Figure 4.12: Plasma concentrations of differentially abundant cytokines across 

chemosensitivity groups. Kruskal-Wallis statistical analysis identified FLT3LG, CSF2, 

LTA, IL-10, and IL-15 as significantly differentially abundant (p-value < 0.05). Significance 

is based on Wilcoxon post-hoc analysis with Benjamini-Hochberg p-value adjustment. 

Significance is marked as follows: p-value ≤ 0.05 ‘*’. 

4.3.3.2 Evaluation of cytokine concentrations in MM plasma stratified based on 

drug sensitivity/resistance to individual drugs 

Targeted analysis of plasma samples considered “most sensitive” and “most 

resistant” to lenalidomide revealed five cytokines of differential abundance between 

the two groups (Wilcoxon p-value < 0.05) (Figure 4.13) (Supp. File 4.2). All five of 

the cytokines were significantly increased in patients considered most sensitive to 

lenalidomide. Regarding dinaciclib, two cytokines, namely LTA and IL-15, were 

identified as SSDA between the “most sensitive” and “most resistant” groups 

(Figure 4.14) (Supp. File 4.3). LTA and IL-15 were significantly increased in the 

plasma of patients considered most sensitive to dinaciclib. Targeted analysis of the 

investigational PI3K/mTOR dual inhibitor, PF-04691502, revealed CSF2, IL-15, and 

FLT3LG as differentially abundant in the plasma of MM patients considered “most 

sensitive” and “most resistant” to PF-04691502 (Figure 4.15) (Supp. File 4.4). All 

three cytokines were significantly increased in most sensitive MM patient plasma. 
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MM patients most sensitive to quisinostat were found to have increased plasma 

concentrations of IL-15 (p = 0.008) (Supp. File 4.5). Two BCL2 inhibitors, namely 

venetoclax and navitoclax were evaluated to identify plasma cytokines associated 

with drug response. Increased plasma concentrations of interleukin-1β (IL-1β) and 

matrix metalloproteinase 12 (MMP12) were associated with sensitivity to venetoclax 

(Figure 4.16A) (Supp. File 4.6). For the dual BCL-2 and BCL-xL inhibitor, 

navitoclax, increased levels of interleukin-6 and colony stimulating factor 1 (CSF1) 

were associated with sensitivity (Figure 4.16B) (Supp. File 4.7). 

 
Figure 4.13: Plasma concentrations of cytokines identified as differentially abundant 

between groups considered ‘most sensitive’ and ‘most resistant’ to lenalidomide. 

Wilcoxon rank sum analysis identified LTA, CCL13, FLT3LG, IL-10, and CXCL8 as 

significantly differentially abundant (p-value < 0.05). Significance is marked as follows: p-

value ≤ 0.05 ‘*’, p-value ≤ 0.001 ‘***’. 
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Figure 4.14: Plasma concentrations of cytokines identified as differentially abundant 

between groups considered ‘most sensitive’ and ‘most resistant’ to dinaciclib. Wilcoxon 

rank sum analysis identified LTA and IL-15 as significantly differentially abundant (p-value 

< 0.05). Significance is marked as follows: p-value ≤ 0.05 ‘*’, p-value ≤ 0.01 ‘**’. 

 

 

Figure 4.15: Plasma concentrations of cytokines identified as differentially abundant 

between groups considered ‘most sensitive’ and ‘most resistant’ to PF-04691502. 

Wilcoxon rank sum analysis identified LTA and IL-15 as significantly differentially 

abundant (p-value < 0.05). Significance is marked as follows: p-value ≤ 0.05 ‘*’. 
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Figure 4.16: Plasma concentrations of cytokines identified as differentially abundant 

based on ex vivo drug response to venetoclax and navitoclax. (A) IL-1β and MMP12 

were identified as differentially abundant between groups considered ‘most sensitive’ and 

‘most resistant’ to venetoclax. (B) IL-6 and CSF1 showed differential abundance between 

groups considered ‘most sensitive’ and ‘most resistant’ to navitoclax. Significance is marked 

as follows: p-value ≤ 0.05 ‘*’, p-value ≤ 0.01 ‘**’. 

 

 

 

 

 

 

 

 

 

 

  

 

4.3.3.3 Increased plasma levels of interleukin-15 correlate with sensitivity to 

MEK inhibitors 

As outlined above, IL-15 was found to be increased in the plasma of MM patients 

most sensitive to PF-04691502, quisinostat, and dinaciclib, which target 

PI3K/mTOR, HDACs, and CDKs, respectively. IL-15 is known to activate 

PI3K/mTOR and RAS/Raf/MEK/ERK pathways and modulate the expression of 

HDACs in immune cells (Mishra et al. 2016; Hawke et al. 2020). Therefore, we 

investigated whether increased plasma IL-15 levels were also associated with 

sensitivity to MEK inhibitors. Indeed, plasma IL-15 concentrations were 

significantly increased in MM patients considered most sensitive to the MEK 
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inhibitors, pimasertib, trametinib, selumetinib and refametinib (Supp. Figure 4.1). 

Incorporating the full cohort (n=26), we identified a positive correlation between IL-

15 levels and sensitivity to PF-04691502, quisinostat, dinaciclib, pimasertib, 

refametinib, and trametinib (Table 4.7). 

Table 4.7: Spearman rank correlation analysis between individual drug sensitivity 

scores and plasma concentrations of IL-15. Significant correlations are marked with an 

asterisk (*). 

Drug Mechanism/Target 
Spearman's 

rho 

95% Confidence 

Interval 
p-value 

PF-04691502 PI3K/mTOR inhibitor 0.44 0.0635 - 0.707 0.025* 

Quisinostat Pan-HDAC inhibitor 0.543 0.197 - 0.769 0.004* 

Dinaciclib Pan-CDK inhibitor 0.601 0.279 - 0.802 0.001* 

Pimasertib MEK 1/2 inhibitor 0.489 0.126 - 0.737 0.011* 

Trametinib MEK 1/2 inhibitor 0.496 0.134 - 0.741 0.01* 

Selumetinib MEK 1/2 inhibitor 0.345 0.0492 - 0.646 0.085 

Refametinib MEK 1/2 inhibitor 0.448 0.0736 - 0.712 0.022* 

 

4.4  Discussion 

As the number of approved treatment options for MM patients increases, there is a 

growing need for precision medicine approaches to ensure patients receive the most 

effective therapeutic regimen and avoid unnecessary toxicities from ineffective 

treatments. Many clinical trials evaluating targeted therapeutics show efficacy in a 

limited number of patients, highlighting the need to identify markers that predict 

which patients will respond to these therapies. Studies focusing on the identification 

of circulating predictive biomarkers in MM are limited. The measurement of 

circulating protein biomarkers of therapeutic response represents a rapid, 

inexpensive, and clinically implementable precision medicine approach. In this 

chapter, we have used targeted and untargeted proteomic approaches to identify 

plasma-derived proteins associated with drug response based on ex vivo DSRT of 

CD138+ cells from MM patients. The circulating proteins identified in this pilot 

study represent potential surrogate markers of ex vivo DSRT that are easily 

measurable in a clinical setting. 

Our untargeted mass spectrometry analysis identified numerous high abundance 

plasma proteins that are differentially abundant across general chemosensitivity 

groups and individual drug sensitivity/resistance. Evaluating plasma proteomic 
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changes across chemosensitivity groups aids in the identification of plasma proteins 

associated with general resistance to a wide range of drugs and/or drug classes. 

Furthermore, defining patients into chemosensitive or chemoresistance groups based 

on ex vivo response to a selection of drugs holds relevance for assessing response to 

combination treatment regimens. However, evaluating plasma proteins linked to 

sensitivity/resistance to individual drugs can provide insight into drug-specific 

resistance mechanisms. Prior proteomic analysis of myeloma cells in combination 

with ex vivo DSRT, revealed similar protein signatures associated with drug response 

to bortezomib, quizinostat and PF-04691502, while a distinct protein signature was 

associated with response to navitoclax (Tierney, Bazou, Majumder, et al. 2021). Our 

study reveals a similar trend in plasma, with many statistically significant proteins 

commonly identified across sensitivity to bortezomib, quisinostat, PF-04691502, and 

dinaciclib. Lenalidomide and venetoclax show some common statistically significant 

proteins while of the few statistically significant proteins associated with response to 

navitoclax, only three proteins were commonly identified as significant in 

bortezomib, quisinostat, PF-04691502, and/or dinaciclib analyses. 

Gelsolin is an actin-binding protein which can be found as an 80kDa cytosolic 

protein or can be secreted into circulation as an 83kDa isoform called plasma 

gelsolin (pGSN). GSN plays a multifunctional role in tumorigenesis and has been 

reported to function as a tumour suppressor in certain cancers such as lung cancer 

and leukemias, and as an oncogene in other cancers including oral cancer and 

osteosarcoma (Sagawa et al. 2003; Shirkoohi et al. 2012; Deng, Hao, et al. 2015; Ma 

et al. 2016; Hsieh and Wang 2022). Here, plasma GSN was significantly increased in 

Group 4 (very resistant) MM patients and in those considered most resistant to 

bortezomib, lenalidomide, PF-04691502, dinaciclib, quisinostat, and venetoclax. 

Interestingly, previous research from our group found GSN to be significantly 

increased in myeloma cells from MM patients considered most resistant to 

bortezomib, quisinostat, and PF-04691502 based on ex vivo DSRT (Tierney, Bazou, 

Majumder, et al. 2021). Limited published studies have explored the role of GSN in 

MM, however, various studies have reported a link between plasma GSN and 

chemoresistance. Increased pGSN has been associated with cisplatin resistance in 

head and neck cancer and ovarian cancer (Wang, Abedini, et al. 2014; Asare-

Werehene et al. 2022). In contrast, circulating levels of pGSN were recently reported 
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to be reduced in chemoresistant ovarian cancer patients while small extracellular 

vesicle-derived pGSN was significantly increased in chemoresistant ovarian cancer 

patients (Gerber et al. 2023).  More research is needed to determine the localized role 

of pGSN within the myeloma BME and the role of circulating pGSN in drug 

resistance in MM. 

Alpha-2-Heremans Schmid-glycoprotein (AHSG), also known as fetuin-A, is a 

multifunctional glycoprotein known to play roles in calcium metabolism, 

endocytosis, and bone remodelling (Dabrowska et al. 2015). Circulating AHSG is an 

important chemoattractant in serum and has been reported to stimulate chemotaxis 

synergistically with CXCL12 in tumour cells (Nangami et al. 2013). Initial studies 

reported reduced levels of AHSG in the serum of MM patients compared to healthy 

controls, while a recent study reported an increase in serum AHSG levels in MM 

patients compared to controls (Bíró et al. 1998; Salman et al. 2020). In our study, 

AHSG was found to be increased in Group 4 MM patients as well as in those 

considered most resistant to PF-04691502 and quisinostat. Studies investigating the 

role of AHSG in cancer have reported a link between AHSG expression and 

chemoresistance. In hepatocellular carcinoma, AHSG has been reported as a 

potential predictive marker of drug resistance following a study reporting an 

upregulation of AHSG in multi-drug resistant (MDR) cell lines and enhanced 

sensitivity to several anticancer drugs in AHSG knockdown MDR cell lines (Xiang 

et al. 2015). AHSG was also identified as hub gene in sorafenib-resistant 

hepatocellular carcinoma, further highlighting a potential role of AHSG in drug 

resistance. Several studies have described the involvement of AHSG in regulating 

the TGF-β signalling pathway by sequestering TGF-β, thus preventing binding to its 

receptor, TGF-β II receptor. This has been reported to promote tumour progression 

by impeding the tumour suppressive TGF-β pathway (Demetriou et al. 1996; 

Guillory et al. 2010; Dong et al. 2022). The role of AHSG in regulating the TGF-β 

signalling pathway in MM has not yet been elucidated.  

Several complement proteins were found to be of differential abundance across the 

chemosensitivity groups. Complement C3, a central component of the complement 

proteolytic cascade, was increased in the plasma of patients considered most 

sensitive to bortezomib, lenalidomide, PF-04691502 and dinaciclib. In contrast, C3 
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was increased in the plasma of patients considered most resistant to navitoclax. 

Following activation of the complement system, C3 is cleaved into two 

anaphylatoxins termed C3a and C3b, which induce inflammation and opsonization, 

respectively (Revel et al. 2020). In MM, serum complement C3 levels are increased 

compared to healthy controls, and positively correlate with myeloma bone disease 

(Li, Xia, et al. 2019). Renal injury due to excessive immunoglobulin in the 

bloodstream is a common symptom in MM. MM has also been linked to the 

deposition of complement C3 in glomeruli, known as C3 glomerulonephritis, due to 

dysregulated complement activation (Xu et al. 2021). Interestingly, increased C3 

deposition negatively correlated with plasma levels of C3 in gastric cancer with high 

C3 deposition in tumour tissue and reduced plasma C3 levels associated with a poor 

prognosis (Yuan et al. 2020). Several studies have reported a link between high C3 

expression levels and drug resistance (Zha et al. 2019). A pan-cancer analysis found 

high expression of C3 to be associated with drug resistance based on the Genomics 

of Drug Sensitivity in Cancer database (Lawal et al. 2021). Furthermore, C3 was 

significantly increased in the pre-treatment serum of MM patients who responded 

(VGPR or PR) to a bortezomib-based therapeutic regimen (Ting et al. 2017). 

Two hemoglobin subunits, hemoglobin subunit beta (HBB) and hemoglobin alpha 2 

(HBA2), were uniquely increased in plasma from MM patients considered most 

sensitive to BCL-2 inhibitors, venetoclax and navitoclax. Interestingly, a study 

correlating the expression of BCL-2, BCL-2 associated X (BAX), and P-glycoprotein 

with clinical factors in AML with normal karyotype patients, found patients with 

increased BCL-2 expression had higher hemoglobin levels (Pravdic et al. 2023). 

Treatment with venetoclax and navitoclax has also been linked to a reduction in 

plasma hemoglobin levels, further highlighting the association between BCL-2 levels 

and hemoglobulin levels (Scherr et al. 2020; Abdel-Samad and Sughayar 2021). 

BCL-xL is required for erythroid cell survival and plays a key role in erythroid 

maturation and heme synthesis (Motoyama et al. 1995; Hafid-Medheb et al. 2003). A 

more recent study found that the expression of BCL2L1 (BCL-xL) regulates the 

expression of hemoglobin genes including HBG, HBB and HBA. Treatment with a 

BCL-xL inhibitor led to a significant reduction in HBG and HBB expression (Dai et 

al. 2019). Increased levels of hemoglobin subunits may indicate increased expression 
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of BCL-2 and/or BCL-xL, and consequently, increased sensitivity to BCL-2 

inhibitors. 

While several plasma proteins were commonly significantly differentially abundant 

across individual drug sensitivities, proteins uniquely differentially abundant to 

specific drug responses were also identified. For example, zinc alpha 2-glycoprotein 

(AZGP1 or ZAG) was uniquely increased in MM patients considered most resistant 

to lenalidomide. ZAG is a 41kDa secreted protein that plays roles in lipid 

mobilization, immunoregulation and cell adhesion (Araki et al. 1988; Russell et al. 

2004; Liu, Han, et al. 2018). ZAG has been identified as a tumour suppressor in 

certain cancers and a tumour promoter in others such as colorectal cancer (Kong et 

al. 2010; Ji et al. 2019). Increased expression of ZAG has been implicated in cancer 

cachexia and has been suggested as a potential therapeutic target in individuals with 

cachexia (Mracek et al. 2011; Elattar et al. 2018). A single-cell transcriptomic 

analysis found ZAG to be significantly increased in triple-negative breast cancer 

patients who did not respond to neoadjuvant chemotherapy (Vishnubalaji and Alajez 

2021). Furthermore, pre-treatment serum concentrations of ZAG were significantly 

increased in MM patients that did not respond to a thalidomide-based induction 

therapy, highlighting increased circulating ZAG levels as a potential biomarker of 

reduced response to immunomodulatory drugs (Rajpal et al. 2011). Two other 

proteins uniquely increased in abundance in MM patient plasma considered most 

resistant to lenalidomide, polymeric immunoglobulin receptor (PIGR) and alpha-1-

microglobulin/bikunin precursor (Protein AMBP), have been implicated in 

chemoresistance in solid cancers (Huang, Han, et al. 2013; Ohkuma et al. 2020). 

Investigating the plasma proteome is a difficult task that often requires the 

combination of analytical techniques to improve proteome coverage. Untargeted 

mass spectrometry approaches are limited by their diminished ability to identify and 

quantify low abundance proteins. Therefore, combining untargeted LC-MS/MS 

plasma proteomics with targeted proximity extension assays enables in-depth 

exploration of the plasma proteome (Petrera et al. 2021). With the understanding that 

many of the proteins identified in our untargeted mass spectrometry analysis were 

high abundant plasma proteins whose abundance may be influenced by biological 

and pathological conditions, we also performed a targeted proteomic analysis to 
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quantify low abundance cytokines in plasma. FLT3LG was significantly increased in 

the plasma of Group 1 MM patients and those considered most sensitive to 

lenalidomide and PF-04691502. FLT3LG is the ligand for the receptor tyrosine 

kinase, fms-like tyrosine kinase receptor 3 (FLT3), and upon binding, induces 

autophosphorylation and the initiation of multiple signalling pathways which mediate 

cell proliferation and survival in hematopoietic cells (Kazi and Rönnstrand 2019). 

Overexpression of FLT3 in a subgroup of MM patients has been associated with a 

shorter PFS in MM, corroborating with our results as Group 1 patients have a 

reduced overall survival when compared to other groups (Steiner et al. 2020). Plasma 

levels of FLT3LG have been linked to disease progression in MM, whereby plasma 

concentrations increase from MGUS to NDMM to RRMM (Steiner et al. 2017). 

FLT3LG plays a key role in hematopoiesis and the expansion of FLT3+ early 

hematopietic progenitors (Wodnar-Filipowicz 2003). Disruption of FLT3LG 

expression in mice resulted in a reduction in the number of myeloid and lymphoid 

progenitors in the bone marrow and natural killer cells and dendritic cells in 

secondary immune organs (McKenna et al. 2000). Due to its role in the generation of 

conventional and plasmacytoid dendritic cells, FLT3LG has been explored as a 

potential therapeutic to enhance T cell immunity in various cancers including colon 

cancer and breast cancer (Morse et al. 2000; Disis et al. 2002). A recent editorial 

proposed the measurement of serum FLT3LG as a potential biomarker of  immune 

activation by immunogenic cell death-inducing chemotherapeutics (Pol et al. 2020). 

This followed on from several studies reporting that patients with increased FLT3LG 

levels after oxaliplatin-based neoadjuvant therapy had improved long-term outcomes 

in colorectal cancer patients with liver metastases and high-risk rectal cancer 

(Kalanxhi et al. 2018; Abrahamsson et al. 2020). Measurement of serum FLT3LG 

during induction therapy in AML has also been proposed to be predictive of response 

to therapy. Increased levels of FLT3LG were seen in patients who achieved 

morphological complete response, while patients who did not respond to 

chemotherapy had undetectable levels of FLTLG (Milne et al. 2019). Furthermore, 

FLT3LG has been shown to mediate the abscopal effect of ionizing radiation by 

triggering T-cell antitumour responses and FLT3LG release from NK cells improves 

response to radioimmunotherapy in a mouse model of head and neck squamous cell 

carcinoma (Demaria et al. 2004; Bickett et al. 2021). Altogether, increased levels of 

circulating FLT3LG can indicate a “beneficial” antitumour immune response that 
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may enhance the sensitivity of chemotherapeutics that invoke an immune response as 

part of their mechanism of action. The relationship between FLT3LG levels and 

response to immunomodulatory drugs has yet to be explored. 

CSF2, or granulocyte-macrophage colony stimulating factor (GM-CSF), is a 

monomeric glycoprotein that acts as a growth factor by stimulating the activation, 

proliferation and survival of immune cells (Huang et al. 2020). In this work, plasma 

CSF2 was increased in Group 1 MM patients and in those considered most sensitive 

to PF-04691502. RNA sequencing and immunohistochemistry analysis found 

increased expression of CSF2 to be associated with drug resistance in small-cell lung 

cancer and colorectal cancer (Xu, Zhang, et al. 2019; Li, Zhong, et al. 2022). In MM, 

CSF2 has been investigated as a means to mobilize hematopoietic stem cells for 

collection prior to high-dose chemotherapy and ASCT, however, CSF3 showed 

similar efficacy with reduced toxicity and is commonly used for mobilization in MM 

(Demuynck et al. 1995; Luo et al. 2022). Similarly to FLT3LG, CSF2 has been 

investigated as an adjuvant to cancer vaccine studies to prime the immune system 

and enhance antigen presentation (Ji et al. 2005). A recent proof-of-principle clinical 

trial which treated 15 patients with an allogeneic multiple myeloma GM-CSF-

secreting vaccine in combination with lenalidomide, reported prolonged clinical 

responses in MM patients in near complete remission (Biavati et al. 2021). Increased 

plasma levels of CSF2 may indicate immune response, however, the link between 

plasma CSF2 levels and drug resistance in MM has not been investigated. 

Lymphotoxin alpha (LTA) is a member of the TNF superfamily and exists as a 

soluble homotrimer or as a heterotrimeric form with membrane-bound lymphotoxin 

beta (Browning et al. 1995). Serum levels of LTA were reduced in late-stage 

pancreatic ductal adenocarcinoma (PDAC) compared to early-stage PDAC (Mellby 

et al. 2018). In MM, polymorphisms that enhance the production of LTA have been 

linked to an increased risk of developing MGUS and MM and LTA has growth-

stimulating effects on myeloma cell lines (Hjorth-Hansen et al. 1999; Davies et al. 

2000). Our study found plasma LTA levels to be significantly increased in Group 1 

MM patients and those considered most resistant to lenalidomide and dinaciclib. 

Two interleukins, IL-10 and IL-15 were increased in the plasma of Group 1 MM 

patients. IL-10 is a multifunctional cytokine reported to have both anti-inflammatory 
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and immune-stimulatory properties. Although IL-10 has strong immunosuppressive 

effects on monocytes, macrophages, and dendritic cells, it is a stimulator of B 

lymphocytes, NK cells, and mast cells (Carlini et al. 2023). A pan-cancer meta-

analysis revealed that high serum IL-10 is associated with worse clinical outcome in 

the majority of cancers (Zhao et al. 2015). Indeed, increased levels of serum IL-10 

are associated with a poor prognosis and advanced disease in MM (Wang, Wang, et 

al. 2016; Shekarriz et al. 2018). Increased IL-10 levels have also been identified in 

extramedullary MM patients, however the link between serum IL-10 and drug 

resistance in MM has yet to be elucidated. IL-15 is an essential cytokine involved in 

the activation of immune cells including T cells and NK cells. IL-15 has become a 

key factor in NK cell-mediated cancer immunotherapy as it is required for the 

persistence and proliferation of primary NK cells. Cord-blood NK cells genetically 

engineered to express CAR-CD19 and IL-15 rather than CAR-CD19 alone, showed 

enhanced proliferation, persistence and anti-tumour activity (Liu, Tong, et al. 2018). 

A first-in-class engineered T cell receptor natural killer cell therapy (NY-ESO-1 

TCR/IL-15 NK) has recently been cleared by the FDA for a Phase I study in RRMM, 

which is expected to begin in late 2023. IL-15 agonists in combination with 

chemotherapy have also been explored to enhance anti-tumour activity (Robinson 

and Schluns 2017). Studies combining IL-15 with chemotherapies such as 

cyclophosphamide and 5-fluoracil have demonstrated that IL-15 potentiates their 

anti-tumour activity (Evans et al. 1997; Cao et al. 1998). IL-15 has also shown 

promise in combination with immunotherapies such as anti-PD-L1 (Waldmann et al. 

2020; Shi et al. 2023). These studies highlight the ability of IL-15 to enhance the 

anti-tumour immune response. A study investigating lymphoma remission following 

CD19 CAR-T cell therapy also reported significantly higher IL-15 serum levels in 

patients who achieved remission than those who did not. Interestingly, increased 

serum IL-10 was also associated with lymphoma remission (Kochenderfer et al. 

2017). In this study, we have reported an increase in plasma IL-15 levels in Group 1 

MM patients and those considered most sensitive to dinaciclib, quisinostat, PF-

04691502, and MEK inhibitors. The increased plasma levels of IL-15 in drug 

sensitive MM patients may indicate patients that can stimulate a stronger anti-tumour 

immune response following chemotherapy. On the other hand, the increased levels of 

circulating IL-15 may indicate an increased activation of PI3K/mTOR and 

RAS/Raf/MEK/ERK pathways in tumour cells, thus increasing the susceptibility of 
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the tumour cells to PI3K/mTOR, MEK, and CDK inhibitors. Monitoring IL-15 

levels, or IL-15 levels in combination with other immunostimulatory cytokines 

identified in this study, may identify MM patients most likely to respond to specific 

chemotherapeutic drugs. As the intermittent IL-15 administration in non-human 

primates has been reported to be safe, patients exhibiting low levels of circulating IL-

15 may benefit from treatments which increase endogenous IL-15 concentrations 

(Berger et al. 2009). 

Cytokines significantly increased in abundance in the plasma of MM patients 

considered most sensitive to BCL-2 inhibitors were unique to venetoclax and 

navitoclax. IL-1β and MMP12 were significantly increased in the plasma of 

venetoclax-sensitive patients. IL-1β is not typically expressed by plasma cells but is 

abnormally expressed by myeloma cells (Lacy et al. 1999). Proinflammatory 

cytokines including IL-1β and TNF-α, stimulate the canonical NF-κB signalling 

pathway in MM which subsequently increases the expression of anti-apoptotic 

proteins including BCL-2 and BCL-xL (Yu et al. 2020). The implication of increased 

plasma IL-1β and MMP12 in sensitivity to venetoclax is unknown. Regarding 

navitoclax, increased plasma levels of IL-6 and CSF1 were associated with 

sensitivity. Like IL-1β, IL-6 is a key cytokine involved in activating NF-κB 

signalling in MM. Increased serum IL-6 levels have been linked to disease 

progression and a poor prognosis in MM (Ludwig et al. 1991; Nachbaur et al. 1991). 

Increased serum concentrations of CSF1 are also linked to reduced survival in MM 

patients (Kowalska et al. 2011). CSF1 has been reported to increase the expression of 

BCL-xL, the target of navitoclax, in osteoclasts, however this has not been further 

investigated in other cell types ((Woo et al. 2002). Further research is required to 

determine whether circulating IL-6 and CSF1 are associated with sensitivity to 

navitoclax. 

The results presented in this study show huge potential and it is hoped that validation 

studies will yield promising predictive biomarkers with broad clinical usability. It is 

not feasible to repeatedly perform full clinical workups with bone marrow biopsy 

collection throughout the disease course of MM patients. Therefore, there is a need to 

identify easily measurable, minimally invasive biomarkers in the blood. Plasma 

proteins can be quantified using immunoassays that are already standard in clinical 
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laboratories which simplifies the translation of these results to clinical use. This 

chapter demonstrates that there are plasma-derived proteins that can aid in the 

prediction of sensitivity/resistance to various drugs that are active against MM. As 

MM is an extensively heterogeneous disease, it is unlikely a single biomarker will 

accurately predict patient response to individual drugs clinically approved for the 

treatment of MM. Therefore, I believe a panel of biomarkers has the best potential to 

have sufficient sensitivity and specificity to accurately predict patient response to 

individual drugs. Additional studies validating the most promising biomarkers 

identified in this study may aid in developing clinically meaningful predictive 

biomarker panels. 

It is important to note that some of the MM patient cohort analysed in this study have 

been exposed to bortezomib and lenalidomide prior to this analysis which may 

impact plasma protein levels. Furthermore, changes in protein levels are often 

detected during the disease course from NDMM to RRMM. Therefore, future studies 

with a larger cohort of samples should evaluate protein levels at different stages of 

disease, incorporating factors such as the extent of bone disease to identify clinical 

factors that may influence protein concentrations and confound the predictive ability 

of the surrogate markers described in this study. As described in Chapter 3, the ex 

vivo DSRT approach has limitations that must be considered when interpreting the 

results of this study. Nonetheless, our study highlights the potential of identifying 

easily measurable plasma-derived surrogate markers of ex vivo DSRT using 

proteomics. Although the ex vivo DSRT approach used in this study is limited to 

small molecule inhibitors, the combination of untargeted and targeted plasma 

proteomics could be applied to identify protein markers of response to other 

therapeutic groups, such as immunotherapies. 

4.5  Conclusion 

This chapter demonstrates the potential of combining ex vivo DSRT with targeted 

and/or untargeted proteomics to identify circulating proteins which may serve as 

surrogate markers of ex vivo drug sensitivity/resistance. Although further research is 

needed to confirm the clinical application of ex vivo DSRT in MM, significant 

developments in other hematological malignancies, such as AML, highlight the 

capacity of this functional precision medicine approach to yield clinically relevant 
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results. Future clinical trials testing the clinical usability of ex vivo DSRT may 

benefit from collecting plasma/serum samples to evaluate the presence of circulating 

surrogate markers. 
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5.1  Introduction 

Extramedullary multiple myeloma (EMM) is an aggressive sub entity of multiple 

myeloma. Despite being considered a rare manifestation, the incidence of EMM is 

thought to be increasing as the sensitivity of imaging technologies improve and MM 

patients exhibit prolonged survival due to the introduction of novel therapeutics 

(Bansal et al. 2021). The presence of extramedullary disease is associated with a 

poor prognosis with patients having a significantly shorter progression free survival 

and overall survival when compared with MM patients without EMD (Usmani et al. 

2012). Little is known about the molecular pathogenesis of EMM and no bone 

marrow-derived or blood-derived markers have been identified for the diagnosis of 

EMM or to predict EMM transition. 

Cytogenetic factors and dysregulation of adhesion molecules and pathways have 

been implicated in the pathogenesis of EMM (Billecke et al. 2013; Janjetovic et al. 

2021). Neural cell adhesion molecule (NCAM or CD56) is a membrane glycoprotein 

well known to be expressed on natural killer (NK) cells but has also been detected on 

other immune cells such as dendritic cells and T cells (Roothans et al. 2013; 

Almehmadi et al. 2014; Van Acker et al. 2017). CD56 is not typically expressed on 

plasma cells but has been reported to be expressed on between 70-80% of malignant 

myeloma cells (Mateo et al. 2005). Several studies have linked a lack of CD56 

expression on myeloma cells to a more plasmablastic phenotype, a poor prognosis, 

and extramedullary transformation (Dahl et al. 2002; Sahara et al. 2002; Koumpis et 

al. 2021). CD56 plays a key role in binding malignant plasma cells to each other and 

to other components of the bone marrow. The exact mechanism by which CD56 

promotes extramedullary transformation is unknown, however the downregulation of 

CD56 could weaken myeloma cell interactions with the bone marrow 

microenvironment to stimulate intravasation (Zhang, Huang, et al. 2022). 

Furthermore, CD56 was previously found to attenuate the secretion of matrix 

metalloproteinase 9 (MMP9), which suggests a decrease in CD56 expression may 

stimulate MMP9 secretion and degradation of the extracellular matrix to facilitate 

migration (Edvardsen et al. 1993). 

The adhesion molecule, CD44, is significantly increased on the surface of malignant 

plasma cells in EMM (Dahl et al. 2002; Ning et al. 2021). CD44 is a ubiquitously 
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expressed hyaluronan receptor, that has been implicated in a variety of tumorigenic 

processes including metastasis (Misra et al. 2015). Hyaluronan-mediated CD44 

activation modulates various downstream cellular processes including cytoskeletal 

rearrangement, Rho signalling, and Ca2+ mobilization (Bourguignon 2008). Using a 

bone marrow metastatic model, one study found that CD44 binding to hyaluronan on 

bone marrow endothelial cells (BMECs) played a key role in migration and 

transendothelial invasion (Okada et al. 1999). Furthermore, a recent study implicated 

hyaluronan-induced homophilic myeloma cell interactions through CD44 variants as 

an initiating factor of EMM development (Kikuchi et al. 2022). Platelet/endothelial 

cell adhesion molecule-1 (PECAM1 or CD31) is an adhesion molecule whose gene 

expression has previously been reported to be increased in tumour cells derived from 

extramedullary plasmacytomas (Hedvat et al. 2003). Furthermore, through 

immunohistochemical staining, CD31 protein was detected on the membranes of 

malignant plasma cells and endothelial cells at extramedullary sites (Govender et al. 

1997; Hedvat et al. 2003).  

The heterodimer of integrin α4 and integrin β1, known as very late antigen 4 (VLA-

4), plays a prominent role in MM cell adhesion, migration, and drug resistance 

(Hosen 2020). Cells of the bone marrow, including bone marrow stromal cells, 

express the primary ligands of VLA-4; vascular cell adhesion molecule 1 (VCAM1) 

and fibronectin (FN) (Sanz-Rodríguez et al. 1999). The binding of VLA-4 to its 

ligands on other cells in the BME promotes myeloma cell retention in the bone 

marrow, as well as the activation of various downstream signalling pathways 

(Damiano and Dalton 2000; Bou Zerdan et al. 2022). The knockdown of VLA-4 in 

myeloma cells revealed a reduced medullary tumour burden, while simultaneously 

stimulating the formation of extramedullary lesions (Hathi et al. 2022). Thus, the loss 

of VLA-4 has been widely reported to contribute to the evolution of EMM due to the 

loss of myeloma cell adhesion to the bone marrow stroma (Gupta et al. 2022).  

Various cytogenetic, genomic and transcriptomic studies have provided insight into 

genetic events that occur during the progression of MM to EMM (Bhutani et al. 

2020). As mentioned previously, MM is a highly heterogenous malignancy, whereby 

sequential genetic events contribute to MM pathogenesis and patient prognosis 

(Chng et al. 2007). Sites of EMD have been associated with complex cytogenetic 
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abnormalities, highlighting clonal evolution as a factor in EMM development. As 

expected, high-risk genetic abnormalities including del(17), t(4;14), and 1q gain have 

been linked to EMM transformation (Billecke et al. 2013; Qu et al. 2015; Besse et al. 

2016). Furthermore, abnormalities in chromosome 1 in bone marrow myeloma cells 

have been linked to MM progression to EMM (Kriegova et al. 2021). NRAS and 

KRAS mutations which drive MAPK signalling and TP53 mutations have been 

implicated in EMM (de Haart et al. 2016; Long et al. 2020; Ryu et al. 2020). The 

precise influence of these genomic abnormalities on the pathogenesis of EMM 

remain unknown (McAvera et al. 2023). 

Neutrophils are the most abundant immune cell and play a key role in the innate 

immune response. Initially discovered as an innate immune response mechanism, the 

web-like structures generated by neutrophils known as neutrophil extracellular traps 

(NETs), have been implicated in the progression of various diseases including cancer 

and autoimmune diseases (Brinkmann et al. 2004; Zhao and Jin 2022; Wigerblad and 

Kaplan 2023). NETs contribute to the innate immune response by immobilizing 

pathogens including bacteria, fungi, and viruses, to prevent dissemination and kill 

microbes. NETs are extracellular structures composed of decondensed chromatin 

decorated with histones, proteinases, and cytosolic proteins. The NET proteome 

varies in response to the stimulus but includes common proteins that are present 

irrespective of the stimulus. These common proteins include core histones, the 

granular proteins neutrophil elastase (ELA2), cathepsin G, and proteinase-3, 

myeloperoxidase (MPO), calprotectin and catalase (Urban et al. 2009). Following 

binding of a NET stimulant to its respective receptor, downstream signalling 

involving the Raf-MEK-ERK pathway, calcium mobilization, NADPH oxidase 

activation, and ROS generation contributes to the activation and translocation of 

PAD4, ELA2, and MPO into the nucleus (Figure 5.1) (Hakkim et al. 2011; Keshari 

et al. 2012). An association between NETs and metastasis has been reported in recent 

years (Yang and Liu 2021). 
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Figure 5.1: Overview of neutrophil extracellular trap (NET) formation. Neutrophils are 

triggered to release NETs by various stimuli including pathogenic organisms and cytokines 

released from surrounding cells. These factors bind to their respective receptors on the 

neutrophil surface, activating downstream signalling pathways which increase cytoplasmic 

calcium (Ca2+) levels leading to the activation of  protein-arginine deiminase type-4 (PAD4). 

The protein kinase C (PKC) and Raf-MEK-ERK signalling pathways also lead to the 

activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, resulting in 

the generation of reactive oxygen species (ROS) and subsequent release of neutrophil 

elastase (ELA2) and myeloperoxidase (MPO) from neutrophil granules. Following 

translocation to the nucleus, PAD4 catalyses the citrullination of histones which causes 

chromatin decondensation. ELA2 and MPO also translocate to the nucleus where they 

contribute to chromatin decondensation. Decondensed chromatin decorated with ELA2, 

MPO, and other neutrophilic proteins are subsequently released to for NETs. CitH3, 

Citrullinated histone 3; SYK, Tyrosine-protein kinase SYK; TLR, Toll-like receptor; CXCR, 

C-X-C motif chemokine receptor; PSGL-1, prostaglandin-1; PMA, phorbol 12-myristate 13-

acetate; IL-8, interleukin-8; G-CSF, granulocyte-colony stimulating factor; HMGB1, high 

mobility group box 1; TNFα, tumour necrosis factor alpha; IL-1β, interleukin-1 beta. 

Despite the identification of various proteins and genetic factors associated with 

migration and invasion in MM, the molecular phenotype of EMM has not been 

widely reported. As proteins are often used as biomarkers of disease and therapeutic 

targets, we hypothesized that a proteomic analysis of bone marrow mononuclear 

cells (BMNCs) from patients with EMM would reveal molecular characteristics 

associated with EMM pathogenesis. Thus, we performed a label-free mass 
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spectrometric analysis of BMNCs from MM patients with and without 

extramedullary spread. It is important to note that throughout this thesis, EMM refers 

to patients with soft tissue plasmacytomas outside of the bone marrow and not those 

with paraskeletal plasmacytomas (Weinstock and Ghobrial 2013).  

5.2  Experimental design and methodology 

Recent reports suggesting an increase in the incidence of EMM as the overall 

survival of MM patients improves highlights the need for further research on this 

aggressive subtype of MM (Bansal et al. 2021). The limited proteomics analyses 

focused on EMM in the literature meant it was of interest to investigate the potential 

proteomic changes between MM patients with and without extramedullary spread. 

Furthermore, identifying novel potential markers of EMM and potential cellular 

processes associated with extramedullary transition may help guide validation studies 

and novel drug development strategies. 

5.2.1 Patient samples and clinical information 

Bone marrow mononuclear cells (BMNCs) and EDTA blood plasma was obtained 

from the Finnish Hematology Registry and Clinical Biobank (FHRB) in Helsinki, 

Finland. The FHRB is authorised and approved by the Finnish National Supervisory 

Authority for Welfare and Health (Valvira) and Finnish National Medical Ethics 

Committee, respectively. BMNCs were collected from age- and gender-matched MM 

(n = 8) and EMM patients (n = 9, 1 serial sample). Sample collection, with informed 

consent, took place between 2013 and 2020 across several Finnish university 

hospitals and other hematology units. The median age was 65, and 2 females and 6 

males were present in each group. Patient characteristics are summarised in Table 

5.1. Samples were stored at −80 °C. 
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Table 5.1: Clinical and demographic characteristics of patient cohort. Characteristics 

include diagnosis, status at diagnosis, sex, age, and overall survival in months. 

Sample ID Diagnosis Status Sex Age 

OS (mo) 

from 

diagnosis 

D_EMM_2689 
Myeloma, 

extramedullary 
Diagnostic Male 65 80 

D_EMM_3497 
Myeloma, 

extramedullary 
Diagnostic Male 65 87 * 

D_EMM_3674 
Myeloma, 

extramedullary 
Diagnostic Male 58 8 

D_EMM_4296 
Myeloma, 

extramedullary 
Diagnostic Male 65 22 

D_EMM_1994 
Myeloma, 

extramedullary 
Diagnostic Female 67 16 

D_EMM_40725 
Myeloma, 

extramedullary 
Diagnostic Male 49 2 

PD_EMM_874 
Myeloma, 

extramedullary 

Progressive 

disease 
Male 72 31 

PD_EMM_1994 † 
Myeloma, 

extramedullary 

Progressive 

disease 
Female 68 16 

PD_EMM_40795 
Myeloma, 

extramedullary 

Progressive 

disease 
Female 69 7 

D_MM_5215 
Myeloma, no 

extramedullary 
Diagnostic Male 65 61 * 

D_MM_4314 
Myeloma, no 

extramedullary 
Diagnostic Male 65 53 

D_MM_5187 
Myeloma, no 

extramedullary 
Diagnostic Male 59 62 * 

D_MM_4317 
Myeloma, no 

extramedullary 
Diagnostic Male 65 65 

D_MM_40141 
Myeloma, no 

extramedullary 
Diagnostic Male 49 43 * 

PD_MM_899 
Myeloma, no 

extramedullary 

Progressive 

disease 
Male 72 124 

PD_MM_1579 
Myeloma, no 

extramedullary 

Progressive 

disease 
Female 68 83 

PD_MM_40301 
Myeloma, no 

extramedullary 

Progressive 

disease 
Female 70 129 * 

* Patient was alive at last follow-up. † D_EMM_1994 and PD_EMM_1994 were collected 

from the same patient. PD_EMM_1994 sample was collected approximately 1 year after 

D_EMM_1994. 

5.2.2  Label-free mass spectrometry analysis of BMNCs using Thermo Orbitrap 

Fusion Tribrid mass spectrometer. 

Bone marrow mononuclear cells (BMNCs) were isolated and lysed as described 

previously. Protein quantitation was performed using the Pierce™ 660nm protein 

assay (Thermo Fisher Scientific). Filter aided sample preparation (FASP) was 

applied for proteolytic digestion (Wiśniewski et al. 2009). 15μg of protein from each 

sample was digested. Following buffer exchange, overnight trypsin digestion was 
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carried out using a 1:25 enzyme-to-protein ratio using trypsin gold in 50mM 

ammonium bicarbonate digestion buffer and 0.05% ProteaseMax. The tryptic digest 

was acidified at a 1:10 ratio using 2% TFA, 20% ACN. Mass spectrometry analysis 

was performed using the Thermo UltiMate 3000 nano system directly coupled in-line 

with the Thermo Orbitrap Fusion Tribrid mass spectrometer. The maximum loading 

amount, equivalent to ~800ng of protein was loaded onto the system. The mass 

spectrometry analysis was performed as described previously (Chapter 2). 

5.2.3 Data analysis and bioinformatic analysis of mass spectrometry results 

Peptide and protein identification was performed using Proteome Discoverer 2.2. 

Sequest HT (Thermo Fisher Scientific). A recently downloaded UniProtKB-

SwissProt Homo Sapiens database (June, 2021) was used as the reference database. 

Progenesis QI for Proteomics (version 2.0; Nonlinear Dynamics, Waters, Newcastle 

upon Tyne, UK) was used for quantitative data analysis. Datasets were imported into 

Progenesis QI software. Protein identifications were deemed to be differentially 

expressed when specific criteria were met: ANOVA p-value of ≤ 0.05 between 

experimental groups, fold change ≥ 1.5 between experimental groups, proteins with 

≥ 2 unique peptides contributing to the identification, and quantification data in > 

60% of samples. Proteins significantly altered in abundance between MM patients 

with and without extramedullary spread were subject to pathway enrichment and GO 

enrichment analysis. Proteins significantly increased or decreased in EMM were 

analysed separately. GOBP and KEGG pathway analysis results were obtained by 

submitting unique protein IDs to the g:Profiler online bioinformatics tool 

(https://biit.cs.ut.ee/gprofiler/gost) with term size set to between 5 and 2000 

(Raudvere et al. 2019). GOBP results were visualized using the EnrichmentMap 

package in Cytoscape (version 3.10.0) based on a published protocol (Reimand et al. 

2019). KEGG pathways were visualized using the ‘KEGG Mapper—Colour 

Pathway’ tool. For GOMF and GOCC analysis, SRplot 

(http://www.bioinformatics.com.cn/srplot), an online platform for data analysis and 

visualization, was used to visualize the results on bubble plots. 

http://www.bioinformatics.com.cn/srplot
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5.2.4 Gene expression analysis using the MMRF CoMMpass dataset 

The MMRF CoMMpass dataset – accessed through the UCSC Xena browser - was 

used to analyse RNA-seq data from primary MM patient samples (Settino et al. 

2020). Specifically, mRNA expression data from the MMRF CoMMpass study was 

used to determine the association between specific gene expression and MM 

prognosis. Using the R packages “deseq2”, “survival” and “RegParallel”, survival 

curves were illustrated using the Kaplan Meier method. Proteins significantly 

changed between EMM BMNCs and MM BMNCs were analysed to identify the 

prognostic relevance of the gene expression of these proteins. Median expression 

values were used to binarise the genes. Gene expression results with log-rank p-

values < 0.05 were considered significantly associated with MM survival. 

5.2.5 Evaluation of neutrophil extracellular traps in EMM plasma 

EDTA plasma samples collected on the same date as the BMNC samples analysed by 

mass spectrometry were evaluated for the presence of neutrophil extracellular traps 

(NETs). The concentrations of three proteins (neutrophil elastase (ELA2), 

myeloperoxidase (MPO), and calprotectin (S100A8/S100A9)) in blood plasma were 

measures by ELISA (DuoSet ELISA kits, R&D Systems), as described in Chapter 2. 

Circulating citrullinated histone 3 was measured using a modified ELISA protocol 

described in Chapter 2. Circulating nucleosomes were quantified using the 

commercially available Cell Death Detection ELISAPLUS kit (Roche Diagnostics, 

Mannheim, Germany), as described in Chapter 2.  

5.3  Results 

5.3.1 Comparison of clinical information from MM patients with and without 

extramedullary spread 

Clinical data from eight patients with MM and eight patients with EMM was 

obtained as part of this study. Cytogenetic information from each patient at the 

sampling date was recorded (Figure 5.2A). Overall survival (OS) was statistically 

significantly decreased in patients with EMM compared to MM patients without 

extramedullary spread (Log-rank = 3.977, p = 0.046) (Figure 5.2B). The median OS 
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of patients with EMM and those without extramedullary spread was 19 months and 

83 months, respectively.  

 

Figure 5.2: Clinical information of the patient cohort. (A) Cytogenetics of patient 

cohort at the time of sampling. (B) Survival graph illustrating the difference in 

overall survival between the EMM group (n=8) and medullary MM group (n=8). 

5.3.2 Identification of differentially abundant proteins in the bone marrow of 

MM patients with and without extramedullary spread 

To examine proteomic changes in the bone marrow of MM patients with and without 

EMM, BMNCs were isolated and proteolytically digested. 9 EMM samples – 

including one serial sample – and 8 MM without extramedullary spread samples 

were analysed by LC-MS/MS. A total of 4589 proteins were identified with 225 

proteins found to be statistically significantly differentially abundant based on 

ANOVA p-value < 0.05 and fold change >1.5 (Figure 5.3A, Supp. File 5.1).  Of 

these, 139 proteins were increased in abundance and 86 proteins were decreased in 

abundance in EMM BMNCs compared to MM BMNCs (Table 5.2, Table 5.3). 

Hierarchical clustering of protein abundance and PCA demonstrated a clear change 

in the proteomic profile of mononuclear cells from MM patients with extramedullary 

spread and those without (Figure 5.3A, B). 
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Figure 5.3: Proteomic profile of BMNCs from EMM patients and medullary MM 

patients. (A) Hierarchical clustering analysis of the statistically significant differentially 

abundant proteins between MM and EMM groups. The colours from blue to red represent 

the relative protein levels between the two groups. (B) Principal component analysis (PCA) 

illustrating a clear distinction between MM patients with EMM and those without. Each dot 

represents a patient sample with EMM samples highlighted in red and MM samples 

highlighted in blue. 
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Table 5.2: List of 25 proteins most significantly increased in abundance in EMM 

BMNCs compared to MM BMNCs. Proteins were selected based on the lowest p-values. A 

comprehensive list of significant proteins is provided in Supp. File 5.1. 

Uniprot 

ID 
Description Gene Name 

Fold 

Change 
p-value 

P00918 Carbonic anhydrase 2 CA2 4.42 0.0001 

Q8NBJ5 
Procollagen galactosyltransferase 

1 
COLGALT1 1.77 0.0003 

P09382 Galectin-1 LGALS1 1.94 0.0005 

Q5JRX3 
Presequence protease, 

mitochondrial 
PITRM1 3.05 0.0006 

P37802 Transgelin-2 TAGLN2 4.65 0.0006 

P17301 Integrin alpha-2 ITGA2 34.90 0.0009 

Q86WV6 
Stimulator of interferon genes 

protein 
TMEM173 3.02 0.0009 

Q32MZ4 
Leucine-rich repeat flightless-

interacting protein 1 
LRRFIP1 2.13 0.0009 

Q15833 Syntaxin-binding protein 2 STXBP2 2.26 0.0011 

P62328 Thymosin beta-4 TMSB4X 8.64 0.0011 

P08567 Pleckstrin PLEK 5.45 0.0015 

Q9UGT4 
Sushi domain-containing protein 

2 
SUSD2 53.35 0.0017 

O60610 Protein diaphanous homolog 1 DIAPH1 2.21 0.0018 

P08758 Annexin A5 ANXA5 7.68 0.0018 

P07951 Tropomyosin beta chain TPM2 3.45 0.0019 

Q7LDG7 RAS guanyl-releasing protein 2 RASGRP2 3.54 0.0019 

Q14019 Coactosin-like protein COTL1 2.38 0.0020 

P18054 
Polyunsaturated fatty acid 

lipoxygenase ALOX12 
ALOX12 26.46 0.0020 

Q9NYL9 Tropomodulin-3 TMOD3 2.90 0.0020 

P63000 
Ras-related C3 botulinum toxin 

substrate 1 
RAC1 2.73 0.0025 

P37840 Alpha-synuclein SNCA 18.57 0.0025 

Q9HBI1 Beta-parvin PARVB 12.09 0.0026 

P18206 Vinculin VCL 5.78 0.0028 

Q15942 Zyxin ZYX 4.93 0.0029 

P06753 Tropomyosin alpha-3 chain TPM3 2.07 0.0030 
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Table 5.3: List of 25 proteins most significantly decreased in abundance in EMM 

BMNCs compared to MM BMNCs. Proteins were selected based on the lowest p-values. A 

comprehensive list of significant proteins is provided in Supp. File 5.1. 

Uniprot 

ID 
Description 

Gene 

Name 

Fold 

Change 
 p-value 

P22087 
rRNA 2′-O-methyltransferase 

fibrillarin 
FBL 1.65 0.0003 

P16402 Histone H1.3 HIST1H1D 2.89 0.0007 

Q8NBS9 
Thioredoxin domain-containing 

protein 5 
TXNDC5 4.33 0.0008 

Q99798 Aconitate hydratase, mitochondrial ACO2 1.61 0.0012 

Q9NSE4 
Isoleucine--tRNA ligase, 

mitochondrial 
IARS2 2.22 0.0014 

Q9Y320 
Thioredoxin-related transmembrane 

protein 2 
TMX2 5.92 0.0014 

Q13263 
Transcription intermediary factor 1-

beta 
TRIM28 2.19 0.0015 

P30837 
Aldehyde dehydrogenase X, 

mitochondrial 
ALDH1B1 8.19 0.0015 

Q9BY50 
Signal peptidase complex catalytic 

subunit SEC11C 
SEC11C 5.19 0.0016 

Q13813 
Spectrin alpha chain, non-

erythrocytic 1 
SPTAN1 2.10 0.0023 

Q3SY69 

Mitochondrial 10-

formyltetrahydrofolate 

dehydrogenase 

ALDH1L2 7.33 0.0033 

P08240 
Signal recognition particle receptor 

subunit alpha 
SRPR 2.48 0.0035 

P30044 Peroxiredoxin-5, mitochondrial PRDX5 1.77 0.0037 

Q7KZF4 
Staphylococcal nuclease domain-

containing protein 1 
SND1 2.91 0.0042 

P49257 Protein ERGIC-53 LMAN1 2.44 0.0043 

Q9Y4P3 Transducin beta-like protein 2 TBL2 4.53 0.0045 

P09874 Poly [ADP-ribose] polymerase 1 PARP1 2.67 0.0047 

Q01105 Protein SET SET 3.29 0.0054 

Q92506 Estradiol 17-beta-dehydrogenase 8 HSD17B8 3.37 0.0054 

P12235 ADP/ATP translocase 1 SLC25A4 4.43 0.0055 

Q13310 Polyadenylate-binding protein 4 PABPC4 4.47 0.0056 

P53992 Protein transport protein Sec24C SEC24C 38.68 0.0057 

Q16706 Alpha-mannosidase 2 MAN2A1 6.43 0.0058 

Q01082 
Spectrin beta chain, non-erythrocytic 

1 
SPTBN1 1.96 0.0060 

P54886 
Delta-1-pyrroline-5-carboxylate 

synthase 

ALDH18A

1 
10.26 0.0072 
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5.3.3 Evaluating the association of significantly increased proteins in EMM 

BMNCs with MM prognosis using MMRF CoMMpass study data 

MM patients with extramedullary lesions have a poor prognosis compared to those 

without extramedullary spread. We, therefore, hypothesized that the expression of 

proteins significantly increased in abundance in EMM BMNCs may be linked to 

MM prognosis. To examine this, we performed a Kaplan–Meier gene expression 

analysis on the 25 proteins most significantly increased in abundance in EMM 

BMNCs using RNAseq data from the MMRF CoMMpass dataset. Expression data 

was binarized into “high expression” and “low expression” for each gene based on 

the median value. Increased expression of seven genes was associated with a 

significantly worse prognosis in MM (Figure 5.4). These included genes associated 

with focal adhesion and actin regulation, transgelin 2 (TAGLN2), integrin alpha 2 

(ITGA2), the tropomyosin beta chain (TPM2) and the tropomyosin alpha-3 chain 

(TPM3), in addition to carbonic anhydrase 2 (CA2), galectin-1 (LGALS1) and 

tropomodulin-3 (TMOD3). To evaluate the association between the abundance of 

these proteins and prognosis in our cohort, we divided the samples into high and low 

abundance groups for each of the seven biomarkers based on the median intensity 

value. Survival analysis revealed a trend towards decreased overall survival in those 

with high expression of six (TAGLN2, CA2, ITGA2, LGALS1, TPM2, TMOD3) out 

of the seven proteins analysed. The high expression of TMOD3 was significantly 

associated with a poorer overall survival compared to those with a low expression of 

TMOD3 (Figure 5.5). Thus, the increased abundance of these proteins is associated 

with the aggressive EMM phenotype, as well as poorer overall survival in MM. 
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Figure 5.4: Kaplan–Meier curves illustrating genes whose expression (high/low) is 

significantly associated with survival in MM using the MMRF CoMMpass RNASeq 

dataset. (A) TAGLN2, (B) CA2, (C) ITGA2, (D) LGALS1, (E) TPM2, (F) TMOD3, (G) 

TPM3. 
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Figure 5.5: Survival graphs illustrating the difference in OS between patients with high 

expression and low expression of the seven proteins identified as potential prognostic 

biomarkers in the CoMMpass dataset. Samples were divided based on median expression 

levels. (A) TAGLN2 (B) CA2 (C) ITGA2 (D) LGALS1 (E) TPM2 (F) TMOD3 (G) TPM3. 
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5.3.4 Bioinformatics of differential proteins in EMM bone marrow 

mononuclear cells versus MM bone marrow mononuclear cells 

To identify biological processes or pathways associated with the EMM phenotype in 

the bone marrow, proteins found to be increased or decreased in abundance in EMM 

were characterized based on GO enrichment and KEGG pathway enrichment using 

g:profiler. Enrichment analysis of the 139 proteins increased in abundance in EMM 

mononuclear cells based on gene ontology annotations for biological processes was 

performed. The resulting significant (p <0.05) GO terms were imported to Cytoscape 

and visualized using the EnrichmentMap application. As the enrichment map clusters 

similar GO terms, the AutoAnnotate Cytoscape application was used to summarize 

each cluster based on the word frequency within the GO terms (Reimand et al. 

2019). The summarized terms highlight the association of proteins increased in 

abundance in the EMM bone marrow with adhesion and migratory biological 

processes including “actin filament polymerization”, “assembly substrate junction”, 

“cell junction organization”, and “integrin mediated signalling” (Figure 5.6). 

Enrichment analysis was also performed on the 86 proteins decreased in abundance 

in EMM mononuclear cells based on gene ontology annotations for biological 

processes, followed by visualization of significant (p <0.05) GO terms using the 

EnrichmentMap application. The key biological processes linked to proteins 

decreased in abundance EMM bone marrow (blue nodes) were associated with 

metabolic process, namely “tricarboxylic acid cycle” and “oxoacid metabolic 

process” (Figure 5.6). Similar to the biological process analysis, proteins increased 

in abundance in EMM BMNCs are enriched in molecular functions associated with 

adhesion and motility including cadherin binding, integrin binding, and extracellular 

matrix binding (Figure 5.7A). Proteins significantly increased in MM BMNCs 

compared to EMM BMNCs are enhanced in small nucleolar RNA (snoRNA) binding 

and oxidoreductase activity, in relation to molecular functions (Figure 5.7B). In 

addition, in terms of the cellular component, many proteins increased in abundance 

in EMM BMNCs are derived from the cell-cell junction, cell-substrate junction, and 

focal adhesions (Figure 5.8A). In contrast, proteins decreased in abundance in EMM 

BMNCs are largely derived from secretory vesicles and the mitochondrial matrix 

(Figure 5.8B). 
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Figure 5.6: Enrichment map of proteins increased (red) and decreased (blue) in abundance in EMM highlights the functional clusters associated with EMM. 

Nodes represent GO biological process terms (Q-value < 0.01 (red) Q-value < 0.05 (blue)) and lines illustrate the connectivity between nodes. Clusters of similar GO 

terms are circled and named based on a summary of the nodes present in the cluster. Red nodes represent enriched GO biological process terms for the proteins 

increased in abundance in EMM BMNCs. Blue nodes represent enriched GO biological process terms for the proteins decreased in abundance in EMM BMNCs. 

Darker red or blue node colouring indicate lower q-values. 
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Figure 5.7: Bubble maps for GOMF analyses of differentially abundant proteins. (A) 

GOMF analysis on proteins increased in abundance in EMM BMNCs. (B) GOMF analysis 

on proteins decreased in abundance in EMM BMNCs. 
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Figure 5.8: Bubble maps for GOCC analyses of differentially abundant proteins. (A) 

GOCC analysis on proteins increased in abundance in EMM BMNCs. (B) GOCC analysis 

on proteins decreased in abundance in MM BMNCs. 
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KEGG pathway enrichment analysis (adjusted p-value < 0.05) of 139 proteins 

increased in abundance in EMM identified 21 statistically significant pathways, 

whereas KEGG pathway enrichment analysis of the 86 proteins decreased in 

abundance in EMM identified 5 statistically significant pathways (Table 5.4, Table 

5.5). As seen in the gene ontology analysis, proteins increased in abundance in EMM 

mononuclear cells were associated with various migratory pathways, including focal 

adhesion, tight junction, Rap1 signalling pathway and leukocyte endothelial 

migration, whereas proteins decreased in abundance in EMM BMNCs were 

associated with metabolic pathways, including the tricarboxylic acid (TCA) cycle. 

As depicted in the KEGG map, eight proteins involved in leukocyte transendothelial 

migration were increased in abundance in EMM (PECAM1, ITGB1, ACTB, 

ACTN1, VASP, VCL, RAP1B, RAC1, ROCK2) and may indicate a potential 

mechanism by which specific MM clones exit the bone marrow niche during 

extramedullary transition ( 

Figure 5.9). Additional significantly enriched pathways linked to cancer cell 

migration, including the Rap1 signalling pathway, focal adhesion pathway, and 

neutrophil extracellular trap formation pathway are depicted in KEGG maps (Figure 

5.10, Figure 5.11, Figure 5.12). The clear change in the functional clusters 

associated with EMM and MM highlights the phenotypic changes that occur within 

the bone marrow in EMM. GO and pathway enrichment analysis suggest an increase 

in proteins associated with adhesion and migration and a decrease in proteins 

associated with certain metabolic pathways including the TCA in the bone marrow 

of EMM patients.   
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Table 5.4: KEGG enrichment analysis of proteins significantly increased in abundance 

in EMM BMNCs. Table highlights the number of differentially abundant proteins identified 

in this study that are associated with each KEGG pathway, alongside an adjusted p-value. 

KEGG Pathway 

Number of 

genes in 

pathway 

Number of 

differentially 

abundant proteins 

Adjusted 

p-value 

Platelet activation 124 18 2.76 x 1013 

Focal adhesion 202 19 1.40 x 1010 

Regulation of actin cytoskeleton 227 18 1.03 x 108 

Rap1 signaling pathway 210 15 1.78 x 106 

Hypertrophic cardiomyopathy 90 10 7.78 x 106 

Dilated cardiomyopathy 95 10 1.31 x 105 

ECM-receptor interaction 88 9 7.26 x 105 

Tight junction 169 11 0.00039 

Leukocyte transendothelial 

migration 
114 9 0.00064 

Phagosome 147 10 0.00074 

Pathogenic Escherichia coli 

infection 
196 11 0.0016 

Malaria 49 6 0.0019 

Proteoglycans in cancer 205 11 0.0025 

Shigellosis 246 12 0.0027 

Bacterial invasion of epithelial 

cells 
77 7 0.0028 

Hematopoietic cell lineage 95 7 0.011 

Adherens junction 71 6 0.016 

Fluid shear stress and 

atherosclerosis 
138 8 0.019 

Arrhythmogenic right 

ventricular cardiomyopathy 
77 6 0.025 

Cholesterol metabolism 51 5 0.028 

Neutrophil extracellular trap 

formation 
187 9 0.031 
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Table 5.5: KEGG enrichment analysis of proteins significantly decreased in abundance 

in EMM BMNCs. Table highlights the number of differentially abundant proteins identified 

in this study that are associated with each KEGG pathway, alongside an adjusted p-value. 

 

 

Figure 5.9: KEGG map highlighting proteins associated with leukocyte 

transendothelial migration. A number of proteins significantly increased in abundance in 

EMM BMNCs (red) are involved in the leukocyte transendothelial migration pathway.  

KEGG Pathway 

Number of 

genes in 

pathway 

Number of 

differentially 

abundant proteins 

Adjusted 

p-value 

Citrate cycle (TCA cycle) 30 6 7.001 x 106 

Protein processing in endoplasmic 

reticulum 
168 10 4.28 x 105 

Carbon metabolism 115 8 0.0002 

Biosynthesis of amino acids 74 5 0.021 

2-Oxocarboxylic acid metabolism 19 3 0.032 
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Figure 5.10: KEGG map highlighting proteins associated with the RAP1 signalling 

pathway. A number of proteins significantly increased in abundance in EMM BMNCs (red) 

are involved in the RAP1 signalling pathway. 

 

Figure 5.11: KEGG map highlighting proteins associated with the focal adhesion 

pathway. A number of proteins significantly increased in abundance in EMM BMNCs (red) 

are involved in focal adhesions. 



181 

 

Figure 5.12: KEGG map highlighting proteins associated with neutrophil extracellular 

trap formation. A number of proteins significantly increased in abundance in EMM 

BMNCs (red) are associated with neutrophil extracellular traps. 

5.3.5 Evaluating the heparanase/CD138 axis in EMM patients 

The results of our mass spectrometry analysis identified a significant increase in 

heparanase (HPSE) levels in the bone marrow of EMM patients (Figure 5.13A). A 

recent study found that HPSE promotes an invasive phenotype in MM through the 

cleavage of CD138 from the surface of MM cells. Shed CD138 subsequently binds 

to vascular endothelial cell growth factor receptor-2 (VEGFR2) and VLA-4 which 

triggers the polarised migration of MM cells (Jung et al. 2016). Interestingly, CD138 

levels were decreased in abundance in the bone marrow of EMM patients (Figure 

5.13B). Due to the potential shedding of CD138 by HPSE in the EMM bone marrow, 

we hypothesized that plasma levels of shed CD138 may be increased. Indeed, the 

evaluation of CD138 levels in plasma showed a trend towards increased abundance 

in EMM plasma, highlighting a potential role of HPSE-induced CD138 shedding in 

the development of EMM (Figure 5.13C,D).  
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Figure 5.13: Alterations in heparanase, CD138, and circulating CD138 levels in bone 

marrow and plasma of EMM and MM patients. (A) Heparanase was significantly 

increased in abundance in EMM BMNCs, while (B) CD138 levels were significantly 

decreased in EMM BMNCs compared to MM BMNCs. (C) Circulating CD138 levels (no 

outlier removal) were increased in EMM plasma, although this did not reach significance. 

(D) CD138 levels with outlier removal (ROUT method, Q=1%) were significantly increased 

in EMM plasma compared to MM plasma. 
 

 

 

 

5.3.6 Evaluation of “neutrophil extracellular trap formation” in EMM 

plasma. 

The list of proteins statistically significantly increased in abundance in EMM 

BMNCs was enriched in proteins associated with neutrophil extracellular trap 

formation according to KEGG pathway analysis. Recent studies have highlighted the 

role of neutrophil extracellular traps (NETs) in promoting cancer metastasis 

(Kaltenmeier et al. 2021; Yang and Liu 2021). Blood and plasma-based markers of 

NETs are commonly quantified to evaluate NET formation in various diseases (Oklu 

et al. 2017; Thålin et al. 2017; Matta et al. 2022; Fedorov et al. 2023). As biofluid-

derived biomarkers are more clinically useful, we evaluated NET formation in 

corresponding plasma samples collected on the same date as the BMNCs. To assess 

NET formation in EMM, markers of neutrophil formation including neutrophil 
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elastase (ELA2), myeloperoxidase (MPO), calprotectin (S100A8/A9 heterodimer), 

citrullinated histone H3 bound to cell-free DNA and circulating nucleosomes, were 

evaluated in EMM patient plasma compared to MM patient plasma. Plasma levels of 

ELA2 were significantly increased in EMM patient plasma compared to MM patient 

plasma, whereas MPO and calprotectin plasma levels showed a trend towards 

increased concentrations in EMM patient plasma, although this did not reach 

significance (p = 0.175 and p = 0.139, respectively) (Figure 5.14). 

Figure 5.14: Plasma concentrations of neutrophil elastase (ELA2), myeloperoxidase 

(MPO), and calprotectin in MM patient plasma compared to EMM patient plasma 

using ELISA. Normality was determined using the D’Agostino and Pearson test. For non-

normal distributions, values were log-transformed. Statistical significance was evaluated by 

unpaired students t-test. ‘**’ represents p-value < 0.01. 

Neutrophil extracellular traps are composed of decondensed chromatin decorated 

with proteins including histones, ELA2, and MPO. Citrullination of histone H3 by 

peptidyl arginine deaminase 4 (PAD4) occurs during the production of NETs – 

known as NETosis. Thus, citrullinated histone H3 bound to cell-free DNA (CitH3) is 

considered a hallmark of NETs. Cell-free nucleosomes have also been reported as a 

surrogate marker of NETs, however, it is important to note that levels of cell-free 

nucleosomes may also partially reflect other cell death mechanisms such as necrosis 

(Ebrahimi et al. 2018). Neither CitH3 nor circulating nucleosomes were significantly 

increased in EMM plasma, although CitH3 demonstrated a slight trend towards 

increased concentrations in EMM plasma (Figure 5.15) 
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Figure 5.15: Plasma levels of citrullinated histone H3 and nucleosomes in MM patient 

plasma compared to EMM patient plasma. Normality was determined using the 

D’Agostino and Pearson test. For non-normal distributions, values were log-transformed. 

Statistical significance was evaluated by unpaired students t-test. OD, optical density. 

 

5.4 Discussion 

The molecular mechanisms driving EMM development remain unclear. Few studies 

have been conducted to elucidate the molecular pathogenesis of EMM, more than 

likely due to rarity of this MM manifestation. Case studies are often published which 

provide valuable information on the clinical course of patients with EMM but 

provide little information on the biological processes contributing to EMM 

pathogenesis. Recent genomic and transcriptomic analyses have provided some 

valuable insights into EMM; however, a quantitative proteomics analysis using mass 

spectrometry had not yet been applied for the study of EMM (Ryu et al. 2020; 

Kriegova et al. 2021). Examining changes at the protein level provides a 

comprehensive insight into the molecular events underlying disease pathogenesis. 

We used a label-free mass spectrometry approach to effectively quantify the 

proteomic differences in the bone marrow of MM patients with and without 

extramedullary involvement. In this work, we identified 225 statistically 

significantly differentially abundant proteins in BMNCs from EMM and MM 

patients. Bioinformatic analysis revealed biological processes and pathways 

significantly enriched in BMNCs from EMM patients compared to MM patients. 



185 

Furthermore, using the MMRF CoMMpass dataset, proteins linked to EMM and a 

poor overall survival in MM were identified.  

Studies have implicated genetic factors, changes in the bone marrow 

microenvironment, the differential expression of adhesion molecules, and immune 

evasion in the pathogenesis of EMM (Ryu et al. 2020; Kriegova et al. 2021; Bou 

Zerdan et al. 2022; Gregorova et al. 2022). In this work, cell adhesion associated 

pathways were enriched in EMM BMNCs, while metabolism and protein processing 

associated pathways were enriched in MM BMNCs. The increased abundance of 

proteins linked to motility-associated pathways including the focal adhesion 

pathway, Rap1 signalling pathway, integrin-mediated signalling, and leukocyte 

transendothelial migration, suggests the presence of clones with a higher migratory 

capacity than in the bone marrow mononuclear fraction of MM patients without 

extramedullary involvement. Eight proteins involved in leukocyte transendothelial 

migration were increased in abundance in EMM (PECAM1, ITGB1, ACTB, 

ACTN1, VASP, VCL, RAP1B, RAC1, ROCK2) and may indicate a potential 

mechanism by which specific MM clones exit the bone marrow niche during 

extramedullary transition. Further research should be performed to evaluate the 

presence of these potentially pro-migratory MM sub-clones in the bone marrow. The 

dynamic regulation of adhesion proteins during the intravasation of MM cells from 

the bone marrow has not yet been fully elucidated, however, the increased presence 

of these motility-associated proteins in the bone marrow of EMM patients indicates 

their potential involvement in the intravasation of myeloma cells into the 

bloodstream. One study reported that the loss of VLA4 (integrin α4 and integrin β1) 

increases extramedullary disease burden, whereas a recent transcriptomic analysis 

found that integrin α4 and integrin β1 are co-expressed on EMM cells, highlighting 

the uncertainty surrounding the role of adhesion proteins in myeloma cell migration 

(Ryu et al. 2020; Hathi et al. 2022). Although ITGA4 was not detected in our 

analysis, ITGB1 was significantly increased in EMM BMNCs. PECAM1 (CD31) 

was also found to be significantly increased in abundance in EMM BMNCs, which 

corroborates with a previous study whereby PECAM1 was expressed at higher levels 

in extramedullary plasmacytomas compared to primary MM cells (Hedvat et al. 

2003). 
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Focal adhesions (FAs) are dynamic protein structures that act as molecular bridges 

by connecting the cytoskeleton of a cell with the extracellular matrix. The 

association between FAs and cell migration is well-known, however, the complete 

mechanism by which FAs influence migration is not fully understood (Nagano et al. 

2012; De Pascalis and Etienne-Manneville 2017). Gene expression of focal adhesion 

kinase (FAK), a nonreceptor tyrosine kinase that plays a central role in FA 

signalling, was previously found to be significantly increased in bone marrow-

derived myeloma cells from patients with EMM compared to MM patients without 

extramedullary spread (Wang et al. 2012). KEGG enrichment analysis revealed an 

increase in proteins associated with FAs in EMM BMNCs. One important FA 

protein is integrin linked kinase (ILK), a multifunctional serine/threonine kinase with 

reported kinase-dependent and kinase-independent roles (Hannigan et al. 2011; 

Górska and Mazur 2022). In cancer, ILK has been found to contribute to cell 

proliferation, survival, migration, and angiogenesis (Attwell et al. 2000; Tan et al. 

2004; Rhee et al. 2013; Qu et al. 2017). ILK can interact with LIM and senescent 

cell antigen-like-containing domain protein 1 (LIMS1/PINCH1) and Parvins, such as 

β-Parvin, to form the ILK-PINCH-Parvin (IPP) complex (Zhang et al. 2002; Górska 

and Mazur 2022). ILK and the IPP complex have been reported to contribute to 

metastasis by promoting a variety of cellular processes, including epithelial 

mesenchymal transition (EMT) and cell motility (Greco et al. 2021; Kilinc et al. 

2021; McDonald and Dedhar 2022).  

All three components of the IPP complex and another binding partner of PINCH1, 

Ras suppressor protein 1 (RSU1), were significantly increased in EMM BMNCs 

(Supp.File 5.1). A recent study reported that ILK promotes lung adenocarcinoma 

progression and metastasis through the regulation of KRAS, the IPP complex and 

RSU1. Interestingly, all components of the IPP complex and RSU1 were increased 

in KRAS-mutant compared to non-KRAS-mutant lung adenocarcinomas (Nikou et 

al. 2020). Although RSU1 was initially identified as a suppressor of Ras-dependent 

oncogenic transformation, current literature indicates a role of RSU1 in linking RAS 

activation with the IPP complex and cell migration (Cutler et al. 1992; Dougherty et 

al. 2008; Barbazán et al. 2012). Several studies have hypothesized that there is a link 

between RAS mutations and EMM development (Rasmussen et al. 2005; de Haart et 

al. 2016). This potential link between RAS activation and the IPP complex may 
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explain the mechanism by which RAS-mutated myeloma cells stimulate migration, 

however, further studies are required to elucidate the role of the IPP complex, RSU1, 

and RAS in extramedullary myeloma. Research focused on the role of ILK in MM is 

somewhat limited, potentially because ILK is considered dispensable for myeloma 

cell survival. A study investigating the silencing of ILK in MM cell lines and 

primary samples, found no effects on the viability of MM cells (Steinbrunn et al. 

2012).  However, a small molecule inhibitor of ILK has previously been shown to 

reduce the invasive capabilities of MM cell lines, suggesting a possible role in 

myeloma cell migration (Wang et al. 2011). The increased abundance of numerous 

components of the ILK signalling pathway in EMM BMNCs indicates a potential 

role of this signalling pathway in the migration of myeloma cells to extramedullary 

sites. 

Proteins involved in the tricarboxylic acid (TCA) pathway were decreased in EMM 

BMNCs compared to MM BMNCs, indicating a potential metabolic change during 

extramedullary transition. In contrast, hydrogen peroxide and reactive oxygen 

species (ROS) metabolic processes were enriched based on GOBP analysis of 

proteins increased in abundance in EMM BMNCs, indicating a potential increase in 

ROS within the EMM bone marrow microenvironment. Interestingly, hypoxic 

conditions, which paradoxically increase ROS levels in MM, promote the 

dissemination of myeloma cells into peripheral blood via the stabilization of  

hypoxia-inducible factor 1-alpha (HIF1α) and subsequent activation of EMT-related 

proteins (Azab et al. 2012; Abe et al. 2023). In addition, a recent transcriptomic 

study described an upregulation of HIF1α in EMM (Ryu et al. 2020). HIF1α affects 

cell metabolism by suppressing the TCA cycle and enhancing the rate of glycolysis 

(Kim et al. 2006; Lum et al. 2007). Transcriptional downregulation of mitochondrial 

phosphoenolpyruvate carboxykinase (PCK2) by HIF1α has been reported to 

contribute to the attenuation of the TCA cycle and growth of breast cancer cells 

(Tang et al. 2019). An almost 5-fold decrease in PCK2 abundance in EMM BMNCs 

was identified in this study. Increased levels of HIF1α in EMM may explain the 

decreased levels TCA cycle-associated proteins and increased levels of ROS 

metabolism-associated proteins seen in EMM BMNCs.  
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Three glycolytic enzymes, namely phosphofructokinase (PFKP), aldolase, and 

pyruvate kinase (PKM2) were significantly increased in abundance in EMM 

BMNCs. Previous transcriptomic analysis reported the emergence of a metabolic 

cluster involving pyruvate kinase (PKM2) during extramedullary transition (Ryu et 

al. 2020). PKM2 has previously been linked to myeloma proliferation and adhesion, 

with one study showing that the silencing of PKM2 promoted cell adhesion in cell 

lines (He et al. 2015). Interestingly, PKM2 is a target gene of HIF1α, and 

participates in a positive feedback loop by acting as a co-activator of HIF1α under 

hypoxic conditions (Luo et al. 2011). Secreted forms of PKM2 have also been found 

to contribute to metastasis in certain cancers through interaction with integrin β1, 

which was also found to be increased in EMM BMNCs (Kim et al. 2020; Wang et 

al. 2020). The roles of glycolytic and mitochondrial metabolism in the progression 

of MM to EMM remains unclear. A recent study found that primary tumours and 

distant metastases have unique metabolic requirements, highlighting the potential 

metabolic change between MM cells and EMM cells (Bennett et al. 2022). Our 

results indicate a change in the metabolic phenotype within the bone marrow 

microenvironment during extramedullary transition. Further research on the 

metabolic pathways active within the bone marrow of MM patients and at 

extramedullary sites of EMM patients may identify specific metabolic targets for the 

treatment of EMM. 

Various clinical and morphological characteristics have been linked to EMM. An 

immature or plasmablastic morphology is often associated with EMM (Touzeau and 

Moreau 2016; Dah et al. 2021). Interestingly, several of the cytoskeletal proteins 

increased in EMM BMNCs included proteins associated with a plasmablastic 

morphology (CNN2, PFN1, TMOD3, VASP, TLN1, TMSB4X, PLEK, ZYX) (Qi et 

al. 2007). Hypoxic conditions have also been found to promote an immature 

phenotype in MM through the decreased expression of terminal differentiation 

markers such as syndecan 1 (CD138), which was decreased in abundance in EMM 

BMNCs (Kawano et al. 2013; Muz et al. 2014). Myeloma cells expressing CD138 at 

low levels are more motile with a higher propensity for dissemination and egress 

from the bone marrow into blood vessels more often than those with high expression 

of CD138 (Akhmetzyanova et al. 2020). Heparanase is a promoter of myeloma 

stemness and a key metastatic enzyme that was significantly increased in EMM 
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BMNCs compared to MM BMNCs (Tripathi et al. 2020). As described, heparanase 

has been reported to promote an invasive phenotype in MM via CD138 cleavage 

from the MM cell surface (Jung et al. 2016). The increased abundance of heparanase 

in EMM bone marrow mononuclear cells supports previous research findings that 

heparanase is a key determinant of myeloma cell dissemination. Increased levels of 

circulating CD138 in EMM plasma support the hypothesis of increased HPSE-

induced shedding in EMM bone marrow. Although it is not known if this increase in 

CD138 plasma levels is a direct result of HPSE activity, further research exploring 

the HPSE/CD138 axis may yield promising therapeutic targets for the treatment of 

EMM. An increase in heparanase levels may contribute to the creation of a pro-

migratory niche within the bone marrow. Further investigations should be performed 

to elucidate the roles of these proteins associated with the more aggressive, 

plasmablastic phenotype in extramedullary transition. 

As EMM is associated with a poor prognosis in MM, we hypothesized that certain 

proteins increased in abundance in EMM BMNCs may also be increased in MM 

patients with reduced overall survival. The MMRF CoMMpass dataset was used to 

evaluate the association between gene expression and overall survival of the 25 most 

significantly increased in abundance proteins in EMM. Increased gene expression of 

seven genes, namely TAGLN2, ITGA2, TPM2, TPM3, CA2, LGALS1, and 

TMOD3, were associated with a reduced overall survival in MM. Interestingly, 

TAGLN2, a protein involved in stabilizing the actin cytoskeleton, has been linked to 

high-risk MM and the development of plasma cell leukemia (Heuck et al. 2014; 

Schinke et al. 2020; Bruinink et al. 2022), This suggests a potential role for 

TAGLN2 in the migration of myeloma cells from the bone marrow into blood. 

Galectin-1 (LGALS1) is homodimeric β-galactoside binding protein, that is involved 

in a myriad of malignant cellular processes including survival, drug resistance, 

angiogenesis, and metastasis (Storti et al. 2017). In MM, galectin-1 is upregulated 

under hypoxic conditions and has been identified as a potential target of 

angiogenesis as galectin-1 inhibition led to the downregulation of pro-angiogenic 

genes, and upregulation of anti-angiogenic genes (Storti et al. 2016). Furthermore, 

LGALS1 is overexpressed in circulating tumour cells when compared to matched 

bone marrow-derived myeloma cells (Garcés et al. 2020).  Although few studies 

have evaluated the role of ITGA2, TPM2, TPM3, CA2, and TMOD3 in multiple 



190 

myeloma, an association between these proteins and metastasis have been identified 

in other cancers (Annan et al. 2019; Ren et al. 2019; Zheng et al. 2019; Chen, Shen, 

et al. 2021; Mele et al. 2022). 

More focus has been placed on the role of the tumour microenvironment in cancer 

progression and metastasis in recent years. Tumour-associated neutrophils (TANs) 

have been found to accelerate metastasis via the secretion of various cytokines and 

inflammatory factors (Li, Cong, et al. 2019; Yan et al. 2022). Furthermore, NETs 

have garnered increased attention as potential instigators of metastatic dissemination 

(Yang and Liu 2021).  KEGG pathway analysis revealed an enrichment of proteins 

involved in neutrophil extracellular trap formation in EMM BMNCs. The enriched 

proteins included the tyrosine kinases, proto-oncogene tyrosine-protein kinase Src 

(SRC) and spleen tyrosine kinase (SYK), which showed a 3-fold and 4-fold increase 

in EMM BMNCs compared to MM BMNCs. Inhibition or deletion of SYK results in 

defects in NET formation in response to various stimuli, including β-glucans, 

lipopolysaccharides and plasma from patients hospitalized with coronavirus disease 

2019, highlighting the key role SYK plays in NET formation (Nanì et al. 2014; 

Strich et al. 2020, 2023). Despite SYK being considered a less relevant target in MM 

compared to other hematological malignancies such as CLL, SYK inhibitors have 

been found to reduce viability and hinder migration in a selection of MM cell lines. 

Furthermore, while SYK is relatively lowly expressed in primary myeloma cells, an 

increased level of total and phosphorylated SYK has been identified in plasma cell 

leukemia patients, suggesting a potential link between SYK expression and myeloma 

cell migration from the bone marrow (Koerber et al. 2015; Lorenz et al. 2016). 

To investigate NETs, we evaluated plasma concentrations of the main NET markers, 

ELA2, MPO, CitH3, and circulating nucleosomes in EMM. Significant elevations in 

the abundance of plasma ELA2 in EMM was identified. A non-significant increase 

in MPO, calprotectin, and citH3 plasma levels in EMM was identified, while no 

significant change in circulating nucleosome levels were identified. While ELA2 and 

MPO are major components of NETs suggesting a potential link between EMM and 

increased NET formation in EMM, the increased levels of ELA2 and MPO observed 

in EMM plasma may also be the result of a NET-independent cellular process 

associated with myeloma cell dissemination. Following neutrophil activation, MPO 
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catalyses the production of ROS which can directly or indirectly damage the 

extracellular matrix (ECM), thus facilitating cancer cell migration and invasion 

(Valadez-Cosmes et al. 2022). ELA2 also participates in the degradation of the ECM 

by digesting ECM proteins including elastin and laminin (Albrengues et al. 2018). A 

global deletion of ELA2 in a lung carcinoma mouse model reduced the number and 

size of metastatic lesions compared to those with wild-type ELA2, highlighting its 

role in the metastatic cascade, especially at pre-metastatic niches (Houghton et al. 

2010). NET formation has been implicated in myeloma progression. Myeloma cells 

incubated with neutrophils were found to stimulate NET formation, while inhibition 

of PAD4 significantly prolonged survival and reduced tumour burden in MM-

bearing mice (Li et al. 2020). NETs have also been suggested to contribute to 

hypercoagulability in MM (Ciepiela et al. 2021). Increased NET levels correlate 

with increased cell-free DNA (cfDNA) plasma concentrations (Henry et al. 2022). A 

recent study found MM patients with extramedullary multiple myeloma have 

significantly higher concentrations of plasma cfDNA when compared to MM 

patients without extramedullary spread (Long et al. 2020). Interestingly, the DNA 

sensing transmembrane receptor, CCDC25, has been found to sense NET-DNA and 

subsequently trigger the ILK-β-parvin pathway discussed above, to promote cancer 

metastasis (Yang et al. 2020). NET-DNA also acts as a chemotactic factor attracting 

tumour cells through CCDC25. It has been hypothesized that accumulating 

neutrophils can promote an inflammatory milieu which contributes to the formation 

of a pre-metastatic niche in distal organs (Jablonska et al. 2017). The chemotactic 

effects of NET-DNA at these sites may attract circulating tumour cells to these 

primed metastatic sites through CCDC25 (Liu et al. 2020). The enrichment of NET-

associated proteins and ILK-β-parvin pathway proteins within the EMM bone 

marrow mononuclear fraction compared to the MM bone marrow mononuclear 

fraction indicates a potential involvement of these signalling pathways in the 

development of EMM. Furthermore, the trend towards increased levels of NET 

markers in EMM plasma compared to MM plasma confirms the need for further 

research on a larger cohort of samples to determine the involvement of NETs in 

EMM development. 

It is important to note that this work contains a small sample size and lacks cellular 

proteomic verification which limits the generalization of these results across all 
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EMM patients. However, EMM is a rare manifestation of multiple myeloma which 

hinders our ability to collect samples from a large number of patients for initial 

analysis and subsequent validation. Studies including clinical samples from EMM 

patients are often published as case studies or have small sample sizes due to 

difficulties obtaining sufficient sample numbers (Vong et al. 2020; Kolagatla et al. 

2022; Chen et al. 2023). Furthermore, EMM represents an under-researched area of 

multiple myeloma, with few studies focusing on the molecular mechanisms that 

distinguish EMM from MM without extramedullary involvement. Our analysis 

represents a pilot study which confirms that there is a unique proteomic profile 

associated with EMM that is clearly distinct from MM without extramedullary 

involvement. The use of the MMRF CoMMpass dataset to determine the prognostic 

value of the most significantly increased proteins in EMM BMNCs provides some 

insight into the association of these proteins with more aggressive disease; however, 

validation in an independent cohort of EMM patients is required to confirm the 

association of significant proteins identified in this study with EMM. Furthermore, 

BMNCs from EMM and MM patients were used for proteomic analysis, which 

means that proteomic changes seen between the two groups are not solely associated 

with myeloma cells and are instead associated with changes in the mononuclear 

fraction. We postulated that the presence of extramedullary lesions is derived from 

clonal changes in the bone marrow microenvironment, and we evaluated the change 

in the proteomic profile of the bone marrow in the context of EMM by analysing 

BMNCs. However, this is a limitation of the study as it is difficult to differentiate 

molecular signals deriving from myeloma cells and those originating from cells in 

the mononuclear fraction. Further research isolating CD138+ myeloma cells from the 

mononuclear fraction would help decipher pro-migratory myeloma sub-clones in the 

bone marrow of EMM patients. Nonetheless, this study clearly identified a major 

change in the proteomic profile of bone marrow mononuclear cells in patients with 

and without extramedullary disease. 

5.5 Conclusion 

This chapter highlights the alterations in the proteomic profile within the bone 

marrow mononuclear fraction of EMM patients compared to MM patients without 

extramedullary spread. At the time of writing, our study represents the first LC-
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MS/MS study evaluating proteomic changes in EMM and MM patients. As 

mentioned previously, EMM remains an understudied, aggressive manifestation of 

MM with no targeted treatment options or therapeutic regimens specifically aimed at 

the treatment of EMM. Molecular analyses identifying genetic, epigenetic, 

transcriptomic, and/or proteomic targets in EMM are crucial to inform future clinical 

trials and improve patient outcome in EMM. Our characterisation of the BMNC 

proteome in EMM compared to MM, identified specific proteins and pathways 

which may contribute to the dissemination of myeloma cells to distal sites. Future 

studies validating the differential abundance of these proteins in EMM samples may 

have clinical relevance, whereby bone marrow aspirates from MM patients may be 

screened for these markers of EMM, and subsequently prompt more detailed patient 

evaluations when differential abundance of these markers are detected. We hope our 

results will inform future experimental designs to validate protein targets and 

translate these findings into clinically relevant biomarkers and therapeutic targets in 

EMM.  
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Proteomic profiling of blood plasma 

from multiple myeloma patients with 
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6.1  Introduction 

Extramedullary multiple myeloma (EMM) is an aggressive sub entity of multiple 

myeloma associated with a reduced overall survival. Currently, EMM is detected 

using imaging modalities including whole-body MRI and ¹⁸F-FDG PET/CT. The 

introduction of these imaging techniques with improved sensitivity and specificity 

has improved EMM detection, as highlighted by the increase in the incidence of 

EMM in the post PET/CT era (Bladé et al. 2022b). The International Myeloma 

Working Group (IMWG) recently recommended incorporating ¹⁸F-FDG PET/CT as 

part of diagnostic and prognostic investigations of patients with newly diagnosed 

multiple myeloma, as the availability of whole-body MRI remains limited. The use 

of ¹⁸F-FDG PET/CT during myeloma investigations has many advantages including 

the ability to accurately evaluate disease burden, identify metabolically active lesions 

and detect medullary and extramedullary lesions with high sensitivity (Figure 

6.1)(Cavo et al. 2017). Limitations associated with ¹⁸F-FDG PET/CT include the 

high cost, limited availability, and lack of imaging standardization which hinders the 

reproducibility of result interpretations. Furthermore, an estimated 10-30% of MM 

patients present with non-FDG-avid multiple myeloma which can lead to false 

negative results (Bartel et al. 2009; Zamagni et al. 2011; Ulaner and Landgren 

2020). A study comparing ¹⁸F-FDG PET/CT and diffusion-weighted whole-body 

MRI (WB-DWI) for detecting intramedullary and extramedullary lesions in multiple 

myeloma found that of 113 extramedullary lesions, 12 were not detected by ¹⁸F-FDG 

PET/CT and characterised as non-FDG-avid lesions. This highlights the need for 

additional clinical tests to detect EMM at an early stage. 
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Figure 6.1: Appearance of intra- and extra-medullary lesions in multiple myeloma by 

¹⁸F-FDG PET/CT. Left figure shows a sagittal image illustrating diffuse myelomatous 

infiltration in the spine and sternum. Right figure shows a coronal image illustrating 

metabolic activity at intra- and extra-medullary foci. 

 

 

 

 

 

 

 

 

 

 

 

 

*Image adapted from (Hanrahan et al. 2010). 

Biofluids, such as plasma and urine, remain the preferred sources of novel 

biomarkers due to the minimally invasive nature of sample collection. Proteomic 

analysis of biofluids is commonly used for biomarker discovery, with various studies 

identifying promising circulating markers of advanced disease stage in breast and 

ovarian cancer (Darlix et al. 2016; Tomás-Pérez et al. 2023). A major challenge in 

the analysis of biofluids, especially serum and plasma, is the large dynamic range 

between the proteins of highest and lowest abundance. A large proportion of the 

serum/plasma proteome (>90%) is made up of high abundance proteins (HAPs) such 

as albumin, immunoglobulins, fibrinogen, transferrin, and lipoproteins. During mass 

spectrometry analysis of serum or plasma, high abundance proteins can have a 

‘masking’ effect, whereby peptides originating from HAPs are repeatedly selected 

for fragmentation, thus hindering the detection and quantitation of low abundance 

proteins (Borberg et al. 2021). To overcome this limitation, additional sample 
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preparation steps including the enrichment of low abundant proteins (e.g., ENRICH-

iST kit), immunodepletion of HAPs (e.g., Proteome Purify™ Immunodepletion Kits, 

R&D Systems) and sequential fractionation, are often performed to reduce sample 

complexity and improve proteome coverage (Lee et al. 2019). 

The ability to quantify highly sensitive circulating protein markers that are indicative 

of extramedullary lesions during routine check-ups would help inform clinicians on 

the need for follow-up imaging tests and may guide prognostication and therapeutic 

decision-making. At the time of writing, no published studies have evaluated 

proteomic changes in the plasma or serum of MM patients with and without 

extramedullary lesions. One study analysed the abundance of various cytokines in 

the bone marrow plasma of EMM and MM patients, identifying 8 cytokines as 

significantly differentially abundant (Gregorova et al. 2022). Namely, epidermal 

growth factor (EGF) and brain-derived neurotrophic factor (BDNF) were decreased 

in abundance whereas neutrophil activating peptide 2 (NAP-2), adiponectin 

(ADIPOQ), C-reactive protein (CRP), tumour necrosis factor ligand superfamily 

member 13B (BAFF), C-X-C motif chemokine 9 (CXCL9), and thrombospondin 1 

(THBS1), were increased in abundance in EMM bone marrow plasma. In this 

chapter, an untargeted label-free mass spectrometry analysis was conducted on blood 

plasma from MM and EMM patients to identify circulating markers of 

extramedullary disease. Verification of selected SSDA proteins was performed using 

targeted ELISAs to identify promising plasma-derived markers of extramedullary 

multiple myeloma. A targeted PEA-based immunoassay was also performed to 

detect changes in plasma cytokine levels between MM and EMM patients. 

6.2  Experimental design and methods 

Oncology researchers are continuously searching for minimally invasive biomarkers 

that provide clinicians with reliable information to aid diagnosis, prognosis, and risk 

stratification. Plasma is an ideal source of molecular biomarkers which can be 

routinely tested during follow-up. Extramedullary multiple myeloma has been 

reported to occur due to the hematogenous spread of myeloma cells from the bone 

marrow, further highlighting plasma as a promising source of EMM biomarkers. 
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6.2.1 Patient samples and clinical information 

A total of 17 EDTA plasma samples were obtained from the FHRB biobank. Plasma 

samples were collected from MM patients (n=8) and EMM patients (n=9, one serial 

sample). FHRB is authorized and approved by the Finnish National Supervisory 

Authority for Welfare and Health (Valvira) and Finnish National Medical Ethics 

Committee, respectively. Samples were stored at -80ºC. Full patient details are 

outlined in Chapter 5. Four EMM patients with two serial samples at different stages 

of disease were obtained from the FHRB for this analysis. A second independent 

cohort of MM plasma samples (n=44) with corresponding ex vivo drug sensitivity 

resistance testing data was analysed as part of this work. Full patient details for this 

cohort are outlined in Chapter 4.  

6.2.2 Label-free mass spectrometry analysis of EMM and MM plasma 

samples using a Q-Exactive mass spectrometer. 

Prior to mass spectrometry analysis, high abundant plasma proteins were depleted 

using the Proteome Purify 12 Human Serum Protein Immunodepletion Resin (R&D 

Systems, Minneapolis, MN, USA), as described in Chapter 2. Briefly, 10 μL of 

plasma was mixed with 1 mL of immunodepletion resin for 60 min on a rotary 

shaker. The mixture was transferred to Spin-X filter units and centrifuged. Protein 

digestion was performed using the FASP protocol, as described in Chapter 2. A total 

of 10 μg of protein was digested at a 1:25 enzyme-to-protein ratio. The tryptic digest 

was acidified at a 1:8 ratio using 2% TFA, 20% ACN. 

LC-MS/MS was performed using the Ultimate 3000 NanoLC system (Dionex 

Corporation, Sunnyvale, CA, USA) coupled with a Q-Exactive mass spectrometer 

(Thermo Fisher Scientific). A total of 14 μL, containing ~1μg of digested protein 

was loaded. Samples were loaded onto a C18 trap column (C18 PepMap, 300 µm id 

× 5 mm, 5 µm particle size, 100 Å pore size; Thermo Fisher Scientific) and resolved 

on an analytical Biobasic C18 Picofrit column (C18 PepMap, 75 µm id × 50 cm, 2 

µm particle size, 100 Å pore size; Dionex). Peptides generated were eluted over a 

120 min 2-40% acetonitrile gradient. The Q-Exactive was operated in positive, data-

dependent acquisition (DDA) mode and externally calibrated using HeLa digest 

(300ng), as described in Chapter 2. 
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6.2.3 Data analysis of mass spectrometry results 

Raw files containing quantitative information from the mass spectrometry analysis 

were searched using the proteomics analysis software, Proteome Discoverer 2.5 

(Thermo Fisher Scientific). Protein identification and label-free quantitation (LFQ) 

was performed. The resulting dataset was imported into Perseus (1.6.14.0). Proteins 

identified by ≥2 peptides and quantitative values in >70% samples were retained for 

downstream analysis. Missing values were replaced by imputation using a width of 

0.3 and a down-shift of 1.8. Statistically significantly differentially abundant proteins 

were identified by performing a two-sample t-test with a FDR-adjusted p-value < 0.1 

and fold change >1.5 between experimental groups. 

6.2.4 Verification of results using enzyme-linked immunosorbent assays 

(ELISAs) 

The concentrations of six proteins (vascular cell adhesion protein 1 (VCAM1), 

aminopeptidase N (CD13), butyrylcholinesterase (BCHE), hepatocyte growth factor 

activator (HGFA), alpha 2-macroglobulin (A2M) and pigment epithelium-derived 

factor (PEDF)) in blood plasma were measured by ELISA (DuoSet ELISA kits, 

R&D Systems). The following plasma dilutions were used: VCAM1 (1:1500), CD13 

(1:75), BCHE (1:2000), HGFA (1:2000), A2M (1:100,000) and PEDF (1:8000). The 

plasma concentrations of VCAM1, PEDF and HGFA, at the same dilutions, were 

also analysed in the second MM patient cohort (n = 44).  

6.2.5 Statistical analysis of ELISA results 

The statistical analysis of ELISA results, receiver-operating characteristic (ROC) 

curve analysis and correlation analyses were performed using Graphpad Prism 

(8.0.2.263) and MedCalc (version 20.118). Parametric t-tests were used to evaluate 

statistical significance. Outliers were removed using the ROUT method (Q = 1%). 

ROC curve analysis was used to determine the discriminatory performance of the 

verified SSDA plasma proteins. The ROC curves evaluated the specificity (false 

positive fraction) and sensitivity (true positive fraction) of the potential protein 

biomarkers. Optimal cut-off points were selected using Youden’s index. The area 

under the curve (AUC) was calculated to summarise the accuracy of the 
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classification. Logistic regression analysis was performed in MedCalc using the 

Enter method. 

6.2.6 Targeted proteomic analysis using the Olink Target 48 panel 

Plasma concentrations of 45 cytokines in EMM (n=8) and MM (n=25) were 

evaluated using the Olink Target 48 panel, as described in Chapter 2.  

6.3 Results 

6.3.1 Identification of significantly differentially abundant proteins in the 

plasma of EMM and MM patients 

Blood plasma samples from MM (n = 8) and EMM (n = 9, 1 serial sample) patients 

were analysed using label-free LC-MS/MS to identify changes in the plasma 

proteome of patients with and without extramedullary lesions. A total of 524 proteins 

and 22 SSDA proteins were identified based on an FDR corrected p-value < 0.1 and 

fold change >1.5 (Figure 6.2, Table 6.1). All 22 significant proteins were increased 

in abundance in EMM plasma samples compared to MM patient plasma without 

extramedullary spread. STRING with functional enrichment analysis was used to 

visualize the plasma proteomic changes. The minimum required interaction score 

was set to medium confidence (0.4) and two unconnected nodes (OAF, APMAP) 

were removed. Proteins associated with complement activation were enriched in 

EMM plasma (Figure 6.3). 
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Figure 6.2: Differential abundance analysis of quantitative proteomics data from EMM 

and MM plasma. (A) Hierarchical clustering of z-scored normalised intensity values of SSDA 

proteins. The colours from blue to red represent the relative protein levels between the two 

groups. (B) Volcano plot illustrating the distribution of identified proteins based on false 

discovery rate (FDR) p-value and fold change. Red points represent proteins significantly 

increased in abundance in EMM plasma. Green points indicate proteins with a fold change >1.5 

but FDR p-value > 0.1. Blue points indicate proteins with an FDR p-value < 0.1 but fold 

change <1.5. Black points indicate proteins with FDR p-values > 0.1 and fold change > 1.5. 
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Table 6.1: List of statistically significantly differentially abundant proteins in the 

plasma of EMM patients compared to MM patients without extramedullary spread.  

Uniprot 

ID 
Description Gene Name 

Fold 

Change 

FDR-

Adjusted 

p-value 

Q9NZP8 
Complement C1r 

subcomponent-like protein 
C1RL 1.58 0.012 

P02747 
Complement C1q 

subcomponent subunit C 
C1QC 2.45 0.030 

P36955 
Pigment epithelium-derived 

factor 
PEDF 1.56 0.031 

P23470 
Receptor-type tyrosine-

protein phosphatase gamma 
PTPRG 2.87 0.035 

P02745 
Complement C1q 

subcomponent subunit A 
C1QA 2.33 0.038 

Q04756 
Hepatocyte growth factor 

activator 
HGFA 2.09 0.038 

P05062 
Fructose-bisphosphate 

aldolase B 
ALDOB 2.31 0.039 

P02746 
Complement C1q 

subcomponent subunit B 
C1QB 2.66 0.041 

P22891 
Vitamin K-dependent protein 

Z 
PROZ 1.83 0.042 

P06276 Cholinesterase BCHE 1.88 0.056 

Q9HDC9 
Adipocyte plasma 

membrane-associated protein 
APMAP 1.85 0.058 

P02760 Protein AMBP AMBP 1.69 0.062 

P07359 
Platelet glycoprotein Ib alpha 

chain 
GP1BA 2.40 0.070 

P19320 
Vascular cell adhesion 

protein 1 
VCAM1 2.23 0.078 

P01023 Alpha-2-macroglobulin A2M 2.50 0.079 

P00736 
Complement C1r 

subcomponent 
C1R 1.63 0.079 

P15144 Aminopeptidase N ANPEP 2.65 0.081 

P01871 Ig mu chain C region IGHM 4.84 0.083 

P04114 Apolipoprotein B-100 APOB 1.54 0.083 

Q86UD1 Out at first protein homolog OAF 2.24 0.085 

P0C0L5 Complement C4-B C4B 1.88 0.085 

Q12913 
Receptor-type tyrosine-

protein phosphatase eta 
PTPRJ 1.79 0.095 
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Figure 6.3: STRING analysis with functional enrichment of significantly differentially 

abundant proteins in EMM versus MM plasma. Information on protein-protein 

interactions were obtained from the STRING database (minimum interaction score > 0.4). 

Each node represents a protein, and each connecting line indicates an interaction. The thicker 

the connecting line, the higher the interaction score. FC, fold change. 

 

 

 

 

 

 

6.3.2 ELISA verification analysis of differentially abundant plasma proteins 

in EMM plasma 

ELISA analysis was used to verify a selection of the SSDA proteins identified by 

LC-MS/MS. Six proteins (ANPEP, VCAM1, BCHE, HGFA, PEDF, A2M) found to 

be increased in abundance in the blood plasma of EMM patients were verified via 

ELISA. Box and whisker plots were constructed to visualize the results of the 

ELISA assays, and include the range, median and quartiles for each protein analysed 

(Figure 6.4). Three of the six proteins analysed, namely VCAM1, HGFA, and 

PEDF, were verified as significantly increased in abundance in EMM plasma with p-

values of 0.045, 0.014, and 0.0005, respectively. ANPEP, BCHE and A2M did not 

reach statistical significance, yielding p-values of 0.959, 0.488, and 0.112, 

respectively. Despite the large p-value regarding ANPEP, a trend towards increased 

abundance in EMM plasma can be observed as a single high ANPEP concentration 

value in the MM group largely contributes to the overall increase in the mean 

ANPEP concentration. Therefore, ANPEP and A2M warrant further investigation in 

a larger cohort of samples.  
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Figure 6.4: Plasma levels of statistically significantly differentially abundant proteins 

measured by ELISA. (A) ANPEP, (B) VCAM1, (C) BCHE, (D) HGFA, (E) PEDF and (F) 

A2M plasma levels in the EMM and medullary MM groups. Significance is marked as 

follows: not significant ‘ns’, p ≤ 0.05 ‘*’, p ≤ 0.001 ‘***’. 

To determine the capacity of VCAM1, HGFA, and PEDF to distinguish MM 

samples from EMM samples, we performed individual ROC curve analyses and a 

multivariate analysis. In chapter 5, as part of the evaluation of neutrophil 

extracellular trap formation, the plasma concentration of neutrophil elastase 2 

(ELA2) was found to be significantly increased in EMM plasma compared to MM 

plasma. Here, we also evaluated the potential of ELA2 as a plasma-based biomarker 

of EMM using ROC curve analysis. ROC curves were constructed and the area 

under the curve (AUC) values were calculated (Figure 6.5). VCAM1 was found to 

have good predictive power showing a sensitivity of 66.67, specificity of 87.5, and 

AUC value of 0.806 (p = 0.0057). HGFA also displayed good predictive power with 

a sensitivity of 100, specificity of 75, and AUC value of 0.847 (p = 0.0028). PEDF 

showed a sensitivity of 87.5, specificity of 100, and AUC value of 0.969 (p < 

0.0001), indicating excellent discriminatory power. ELA2 also showed excellent 
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Figure 6.5: Receiver operating characteristic (ROC) curve analysis of four potential 

EMM biomarkers. (A) VCAM1, (B) HGFA (C) PEDF and (D) ELA2 ROC curves. 

predictive power with a sensitivity of 88.89, specificity of 100, and an AUC value of 

0.965 (p < 0.0001).  

Clinical tests measuring multiple biomarkers typically outperform single biomarker 

tests. Therefore, logistic regression analysis was performed to determine the 

predictive power of the biomarkers combined. The combination of all four 

biomarkers resulted in a sensitivity of 100, specificity of 100, an AUC value of 1 and 

a 95% confidence interval of 0.794–1 (Figure 6.6). This highlights the promising 

potential of combining these plasma proteins into a biomarker panel to detect EMM. 
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Figure 6.6: Logistic regression analysis evaluating four-biomarker panel performance. 

ROC curve based on  illustrating the discriminatory power of combining VCAM1, HGFA, 

PEDF, and ELA2.  

 

 

 

 

 

 

 

 

 

 

6.3.3 ELISA analysis of serial EMM plasma samples 

Serial samples from four EMM patients at different disease stages were evaluated for 

plasma concentrations of VCAM1, HGFA, and PEDF to investigate whether plasma 

levels of these protein markers showed changes during the disease course (Figure 

6.7). Serial samples from two EMM patients were collected at diagnosis and at the 

time of disease progression, samples from one patient were collected at diagnosis 

and near complete response to treatment and samples from the fourth patient were 

collected at diagnosis and at complete response to treatment. Due to the low number 

of serial samples available for analysis, no statistical analyses could be performed. 

Plasma levels of VCAM1 and PEDF showed slight increases in progressive disease 

samples compared to diagnostic samples, with the exception of Patient 1, which 

showed a dramatic increase in VCAM1 levels at progressive disease. In contrast, 

HGFA levels were slightly decreased in progressive disease samples compared to 

diagnostic samples. Plasma levels of HGFA were slightly increased during response 
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Figure 6.7: Bar charts illustrating ELISA analysis of four serial EMM samples. (A) 

VCAM1, (B) HGFA, and (C) PEDF plasma concentrations detected in the plasma of four 

EMM serial samples. PD, progressive disease; nCR, near complete response; CR, complete 

response. 

to treatment when compared to diagnostic samples, whereas VCAM1 and PEDF 

levels showed varying concentrations across the two serial samples. A clear trend in 

VCAM1, HGFA, or PEDF levels at different disease stages could not be determined 

from this analysis. 

 

6.3.4 Evaluation of VCAM1, HGFA, PEDF, and ELA2 plasma concentrations 

in an independent MM patient cohort 

As EMM is often associated with drug resistance, we tested the plasma levels of 

VCAM1, HGFA, PEDF, and ELA2 in the MM patient cohort (n=44) with ex vivo 

DSRT data evaluated in Chapter 4. Firstly, VCAM1, HGFA, PEDF and ELA2 

plasma concentrations in this independent set of MM samples (n = 43, excluding 1 

EMM sample) were compared to EMM plasma concentrations. The plasma 

concentrations in this independent cohort showed a similar pattern to that observed 

in the MM group above. As described in Table 6.2, VCAM1, HGFA, and PEDF 

plasma concentrations were significantly increased in EMM plasma compared to this 

MM cohort. In addition, the median concentrations of VCAM1, HGFA and PEDF 
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observed in this MM sample set were considerably lower than the median 

concentrations observed in the EMM group above (VCAM1 = 634.7 ng/mL, HGFA 

= 3.068 µg/mL, PEDF = 18.77 µg/mL) supporting our findings that these three 

proteins are increased in abundance in EMM patient plasma. In addition, the single 

EMM plasma sample in this cohort showed the highest plasma concentration of 

VCAM1 and PEDF within the cohort. 

Table 6.2: Statistical comparison of VCAM1, HGFA, and PEDF plasma concentrations 

in second MM patient cohort and EMM patient cohort. Values within parentheses 

indicate the minimum and maximum values detected in the sample set. 

Protein 

Mean plasma 

concentration – MM 

N=43  

Mean plasma 

concentration – EMM 

N=9 

P-

value 

VCAM1 301 ng/ml 

(150.9 - 488.2 ng/ml) 

730.3 ng/ml 

(362.9 - 1159 ng/ml) 

0.0016 

HGFA 2.143 µg/ml 

(1.039 - 3.372 µg/ml) 

2.967 µg/ml 

(2.418 - 3.542 µg/ml) 

0.0002 

PEDF 13.39 µg/ml 

(8.901 - 19.22 µg/ml 

20.02 µg/ml 

(14.81 - 28.03 µg/ml) 

0.0017 

ELA2 15.54 ng/ml 

(5.1 – 32.98 ng/ml) 

13.67 ng/ml 

(8.699 – 20.31 ng/ml) 

0.4360 

6.3.5 Association of VCAM1, HGFA, PEDF and ELA2 plasma concentrations 

with clinical parameters 

Next, VCAM1, HGFA, PEDF, and ELA2 plasma concentrations were evaluated to 

determine whether there is an association with prognosis and/or high-risk disease. 

For our MM cohort (n=39, excluding samples without OS information and serial 

samples), samples were divided into high and low concentration groups based on the 

median value for each of the four biomarkers. Survival analysis revealed a clear 

trend towards decreased overall survival in those with a high plasma concentration of 

VCAM1 and ELA2, although this did not reach significance (Figure 6.8).  
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Figure 6.8: Survival analysis of MM patient samples to identify the prognostic potential 

of circulating plasma proteins. Kaplan–Meier curves illustrating the OS of MM patients 

with high/low plasma concentrations of (A) VCAM1, (B) HGFA, (C) PEDF, and (D) ELA2. 

Samples were divided based on median expression levels. 

Cytogenetic abnormalities are commonly used for risk stratification of MM patients. 

The presence of high-risk cytogenetic abnormalities (HRCAs) which include t(4;14), 

t(14;16), t(14;20), 1q gain, and del(17p), are well-established predictors of a poor 

prognosis. To determine whether the plasma concentrations of the four potential 

biomarkers were linked to HRCAs, plasma concentrations in MM patients with 

none, one or two or more HRCAs was compared (Figure 6.9). No significant 

changes were seen between the three groups for any of the four proteins evaluated, 

however, plasma concentrations of HGFA showed an almost significant increase in 

patients with two or more HRCAs when compared to those with zero or one HRCA. 

The association of plasma protein concentrations with the presence of individual 

HRCAs was also analysed. Interestingly, the presence of the HRCA, del(17p) which 

often results in the loss of the TP53 gene, was associated with a significant increase 

in VCAM1  and HGFA plasma levels, and an almost significant (p = 0.072) increase 

in PEDF plasma levels (Figure 6.9). 
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Figure 6.9: Association of VCAM1, HGFA, PEDF, and ELA2 plasma concentrations with high-risk cytogenetic abnormalities (HRCAs). The plasma 

levels of these four proteins were compared in MM patients with none, one, or two or more HRCAs. HRCAs include t(4;14), t(14;16), t(14;20), 1q gain, and 

del(17p). Significance is marked as follows: ns ‘not significant’, p ≤ 0.05 ‘*’, p ≤ 0.01 ‘**’. 
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6.3.6 Association of VCAM1, HGFA, PEDF, and ELA2 plasma concentrations 

with drug response 

Plasma levels of VCAM1, HGFA, and PEDF were evaluated in the MM patient 

cohort stratified into four groups based on ex vivo DSRT, Group 1 (most sensitive), 

Group 2 (sensitive), Group 3 (resistant), and Group 4 (very resistant). HGFA, PEDF 

and ELA2 plasma concentrations did not show a significant change between the four 

chemosensitivity groups. Results of the ANOVA test of VCAM1 concentrations 

across the four groups found a significant change (p = 0.045) in VCAM1 levels 

(Figure 6.10). The highest concentrations of VCAM1 were found in Group 1, a 

group considered to be very sensitive to drug treatment. Previous studies have 

reported that patients within Group 1 had a significantly lower OS when compared to 

Groups 2, 3, and 4 (Majumder et al. 2017; Tierney, Bazou, Majumder, et al. 2021). 

As increased plasma concentrations of VCAM1 correlate with advanced disease and 

poor survival, this may explain why we see the increase in VCAM1 plasma 

concentrations in Group 1 samples (Terpos et al. 2016). 
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Figure 6.10: Plasma concentrations of VCAM1, HGFA, PEDF, and ELA2 in MM 

patients stratified based on ex vivo drug sensitivity resistance testing (DSRT). (A) 

VCAM1, (B) HGFA, and (C) PEDF plasma concentrations across four chemosensitivity 

groups. Significance is marked as follows: ns ‘not significant’, p ≤ 0.05 ‘*’. 

Pearson’s correlation analysis was applied to evaluate whether plasma 

concentrations of VCAM1, HGFA, PEDF, and ELA2 correlated with patient 

sensitivity to individual drugs based on the individual DSS (Supp. File 6.1). 

Individual DSSs of 14 drugs significantly correlated with VCAM1 plasma 

concentrations, DSSs of 3 drugs significantly correlated with PEDF plasma 

concentrations and HGFA and ELA2 plasma concentrations did not show significant 

correlations with any individual DSSs (Table 6.3). Based on the DSSs of individual 

drugs found to significantly correlate with VCAM1 and PEDF plasma 

concentrations, samples were separated into quartiles with those samples falling into 

the first quartile being considered “Most Resistant” and those in the fourth quartile 

being considered “Most Sensitive”. Unpaired t-test analyses revealed circulating 

VCAM1 to be increased in the plasma of MM patients considered most sensitive to 

fedratinib, NMS-873, navitoclax, and venetoclax, while circulating PEDF was 
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increased in the plasma of MM patients considered most resistant to fedratinib, SGC-

CBP30, and TPCA-1 (Figure 6.11). Interestingly, increased plasma VCAM1 levels 

were associated with sensitivity to both BCL2 inhibitors, navitoclax and venetoclax. 

Higher levels of sVCAM1 weakly correlated with increased sensitivity to venetoclax 

and navitoclax (Pearson’s correlation coefficient r = 0.38 (p = 0.0116) and r = 0.44 

(p = 0.0026), respectively) (Figure 6.12A&B). Furthermore, one patient from this 

cohort had an EMM diagnosis at the time of sampling and therefore had 

corresponding DSS values available. As expected, this patient was found to be 

resistant to many of the drugs tested. Interestingly, this sample was highly sensitive 

to navitoclax and demonstrated some sensitivity to the other BCL-2 inhibitors tested, 

AT 101, venetoclax and obatoclax (Figure 6.12C). 

Table 6.3: Summary of significant correlations between individual drug sensitivity 

scores and plasma concentrations of VCAM1, HGFA, PEDF, and ELA2. Correlation 

coefficients were determined using Pearson correlation analysis. 

Drug Mechanism/Target 
Circulating 

protein 

Correlation 

coefficient 
p-value 

APR-246 p53 activator VCAM1 0.3142 0.0378 

BX-912 PDK1 inhibitor VCAM1 0.3544 0.0397 

Fedratinib JAK2 inhibitor VCAM1 0.5436 0.0009 

GSK-

1838705A 

IGF1R, INSR, ALK 

inhibitor 
VCAM1 0.4099 0.016 

Idasanutlin p53-MDM2 inhibitor VCAM1 0.3887 0.0231 

Navitoclax 
Bcl-2, Bcl-XL 

inhibitor 
VCAM1 0.443 0.0026 

NMS-873 p97/VCP inhibitor VCAM1 0.3977 0.0198 

Pimasertib MEK1/2 inhibitor VCAM1 0.3093 0.041 

Refametinib MEK1/2 inhibitor VCAM1 0.3227 0.0327 

Selumetinib MEK1/2 inhibitor VCAM1 0.3154 0.037 

Trametinib MEK1/2 inhibitor VCAM1 0.3471 0.021 

SGC-

CBP30 

CREBBP/EP300 

bromodomain 

inhibitor 

VCAM1 0.5019 0.0025 

Topotecan 
Topoisomerase I 

inhibitor 
VCAM1 0.316 0.0366 

Venetoclax Bcl-2 inhibitor VCAM1 0.3772 0.0116 

Fedratinib JAK2 inhibitor PEDF -0.4177 0.014 

SGC-

CBP30 

CREBBP/EP300 

bromodomain 

inhibitor 

PEDF -0.4203 0.0133 

TPCA-1 IKK-2 inhibitor PEDF -0.4782 0.0042 
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Figure 6.11: Association of plasma concentrations of VCAM1 and PEDF with drug 

response. Plasma concentrations of VCAM1 are increased in MM patients consider most 

sensitive to fedratinib, NMS-873, navitoclax and venetoclax based on ex vivo DSRT. Plasma 

concentrations of PEDF are increased in MM patients considered most resistant to fedratinib, 

SGC-CBP30 and TPCA-1 based on ex vivo DSRT. Significance is marked as follows: ns 

‘not significant’, p ≤ 0.05 ‘*’, p≤ 0.01 ‘**’. 
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Figure 6.12: Correlation of VCAM1 plasma concentrations with BCL2 inhibitor 

sensitivity. (A) Correlation between VCAM1 plasma concentration and venetoclax DSSs. 

(B) Correlation between VCAM1 plasma concentration and navitoclax DSSs. (C) Heatmap 

illustrating the varying DSS scores of an EMM patient. Drugs with DSS = 0 were removed 

from this figure. Drugs from the BCL2 inhibitor drug family are highlighted by the red 

boxes. 

6.3.7 Targeted proteomic analysis of EMM plasma using the PEA-based Olink 

Target 48 Cytokine panel 

Finally, we investigated the concentrations of 45 cytokines in EMM (n=8) and MM 

(n=25) plasma. Statistical analysis identified three statistically significantly 

differentially abundant proteins between EMM and MM plasma samples (Figure 

6.13)(Supp. File 6.2). Plasma levels of interleukin-10 (IL-10) and interleukin-6 (IL-

6) were significantly increased in EMM compared to MM plasma. An almost 14-fold 

and almost 2-fold increase in IL-10 and IL-6 were quantified in EMM plasma, 

respectively. Interleukin-17C was significantly decreased in EMM plasma compared 

to MM plasma, showing an almost 4-fold decrease. ROC curve analysis of IL-10, 
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Figure 6.13: Plasma concentrations of statistically significantly differentially abundant 

cytokines as determined by proximity extension targeted proteomics assay. Levels of 

interleukin-10 (IL-10) and interleukin-6 (IL-6) were significantly increased in EMM plasma 

compared to MM plasma. Interleukin-17C (IL-17C) was significantly decreased in EMM plasma 

compared to MM plasma. Statistical analysis was performed using a Mann Whitney U test (p < 

0.05). 

IL-6, and IL-17C was performed and found that these cytokines had the ability to 

discriminate between EMM and MM patients in this cohort (IL-10 AUC = 0.805, CI 

= 0.630-0.922; IL-6 AUC = 0.73; CI = 0.558-0.876; IL-17C AUC = 0.76, CI = 

0.580-0.891). A combination of IL-10, IL-6, and IL-17C as a panel revealed an 

improved AUC value of 0.915 (Supp. Figure 6.1). This analysis shows quite large 

variations in the plasma cytokine concentration within the EMM samples, suggesting 

that while IL-10, IL-6, and IL-17C show promise as potential markers of EMM, 

certain EMM patients may present with cytokine concentrations similar to those seen 

in the MM cohort.  

6.4 Discussion 

Blood-based biomarkers are of vital importance in the clinical evaluation of many 

diseases, including multiple myeloma. The levels of serum monoclonal protein, 

serum calcium, serum creatinine, and serum free light chains aid MM diagnosis. 

Furthermore, serum albumin, serum beta-2-microglobulin, and serum lactate 

dehydrogenase aid risk stratification of MM patients (Rajkumar 2022). 

Extramedullary lesions have been reported to develop via the hematogenous spread 

of MM cells to distal sites, highlighting the potential of serum/plasma as a source of 

EMM biomarkers (Bladé et al. 2011; Rosiñol et al. 2014). Enhanced sensitivities of 

imaging modalities have improved EMM diagnosis, resulting in an increased 

incidence of EMM in recent years. However, current imaging techniques have 
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several drawbacks including high cost, limited availability and lack of imaging 

standardization (Moreau et al. 2017; Filho et al. 2019). Novel blood-based protein 

markers for EMM that demonstrate high sensitivity and specificity are required to 

detect the emergence of EMM clones at an early stage. In this chapter, mass 

spectrometry analysis, immunoassays, and PEA-based assays have identified 

alterations in the plasma proteome of MM patients with and without extramedullary 

lesions, highlighting a phenotypic change occurring between these disease states. 

Particularly, VCAM1, HGFA, and PEDF were identified as promising markers of 

extramedullary multiple myeloma as they were found to be significantly elevated in 

abundance in EMM plasma by two orthogonal methods: LC-MS/MS and ELISA. 

VCAM1 (also known as CD106) is a 90kDa glycoprotein and member of the IgG 

immunoglobulin family (Okugawa et al. 2010). VCAM1 is expressed primarily in 

endothelial cells but also in other cell types including bone marrow stromal cells, 

thymic epithelial cells, and certain populations of dendritic cells (Osborn et al. 1989; 

Rice and Bevilacqua 1989; Koopman et al. 1991; Salomon et al. 1997). VCAM1 is 

an inducible transmembrane protein that mediates leukocyte adhesion and migration, 

particularly during periods of high inflammation (Kong et al. 2018). Numerous 

studies have established VCAM1 as a contributor to inflammatory diseases, such as 

rheumatoid arthritis, and various cancers, including breast cancer, ovarian cancer, 

and multiple myeloma (Wilkinson et al. 1993; Michigami et al. 2000; Chen et al. 

2011; Huang, Zhang, et al. 2013). The most studied VCAM1 binding partner is 

integrin α4β1 (also known as very late antigen-4, VLA4), although VCAM1 has 

shown some affinity for integrins α4β7, αMβ2, α9β1, and αDβ2 (Walsh et al. 1996; 

Grayson et al. 1998; Barthel et al. 2006; Kon et al. 2011). The interaction between 

VCAM1 and VLA4 has been widely implicated in cancer metastasis through the 

mediation of adhesion and vascular extravasation of tumour cells (Okahara et al. 

1994; Sökeland and Schumacher 2019). In MM, the VCAM1-VLA4 interaction 

mediates the attachment of MM cells to bone marrow stromal cells within the BME, 

contributing to cell adhesion-mediated drug resistance in MM (Sanz-Rodríguez et al. 

1999).  

The extracellular domain of VCAM1 can be cleaved by certain members of the 

disintegrin and metalloproteinase protease family, including tumor necrosis factor-α-
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converting enzyme (TACE, also known as ADAM17) (Garton et al. 2003). This 

cleavage process is regulated by tissue inhibitor of metalloproteinase (TIMP)-3 

(Singh et al. 2005). The soluble form of VCAM1 (sVCAM1) can be detected in the 

serum or plasma and has been reported to be significantly increased in abundance in 

a number of malignancies (Banks et al. 1993). Furthermore, increased  circulating 

VCAM1 levels have been proposed as promising prognostic markers in pancreatic 

cancer, prostate cancer, bladder cancer, ovarian cancer and multiple myeloma 

(Coskun et al. 2006; De Cicco et al. 2008; Takahashi et al. 2020; Song et al. 2023). 

Levels of sVCAM1 are increased in MM patients with advanced disease, with ISS-3 

patients demonstrating higher levels of circulating VCAM1 when compared to ISS-1 

and ISS-2 patients. Furthermore, increased sVCAM1 levels were associated with an 

inferior OS (Terpos et al. 2016). Our results also demonstrate the association of high 

circulating VCAM1 levels with an aggressive MM phenotype and show a trend (p = 

0.175) towards a poorer overall survival in MM patients with high plasma VCAM1 

concentrations.  

C-X-C chemokine receptor type 4 (CXCR4) is a pleiotropic receptor widely reported 

to regulate extramedullary myeloma, albeit with contradicting results whereby 

certain studies have reported an increased expression of CXCR4 in EMD-prone 

myeloma cells which induces an EMT-like signature whereas others have reported a 

decreased expression of CXCR4 in EMD mouse models and in EMM patients which 

disrupts cell adhesion and homing in the bone marrow (Stessman et al. 2013; 

Roccaro et al. 2015; Weinstock et al. 2015; Marchica et al. 2017). Interestingly, 

CXCR4 was found to induce VCAM1 cleavage, thus increasing sVCAM1 levels, in 

non-small cell lung cancer via the regulation of the metalloproteinase, ADAM17 

(Liao et al. 2018). The ablation of VLA4, the main binding partner of VCAM1, in 

MM cells has been reported to increase extramedullary disease burden, suggesting 

that a reduction in VLA4 or the VLA4-VCAM1 interaction may induce the egress of 

B cells into circulation (Hathi et al. 2022). Furthermore, an association between 

increased sVCAM1 levels and metastasis has been identified in numerous cancers 

(Silva et al. 2006; Okugawa et al. 2010; Tas et al. 2014). The mechanism by which 

circulating VCAM1 is linked to metastatic progression is unknown, however 

sVCAM1 has been identified as a chemotactic agent which induces the migration of 

several immune cells (Kitani et al. 1998; Tokuhira et al. 2000). In our study, the 
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origin of increased levels of circulating VCAM1 in EMM plasma is unknown and 

may derive from the shedding of VCAM1 from the surface of MM cells or from 

other cells known to express VCAM1, such as activated endothelial cells. 

Nonetheless, sVCAM1 represents a promising marker of EMM and warrants further 

investigation in a larger cohort of samples.  

This work also found a link between plasma VCAM1 concentrations and response to 

selected drugs based on ex vivo DSRT. Increased sVCAM1 concentrations were 

associated with increased sensitivity to the JAK2 inhibitor, fedratinib, the valosin-

containing protein (VCP) inhibitor, NMS-873, and the BCL2 inhibitors, navitoclax 

and venetoclax. IL-6/JAK/STAT signalling results in the downstream activation of 

the PI3K-AKT signalling pathway, the MAPK signalling pathway, and an 

upregulation of anti-apoptotic proteins in MM (Puthier et al. 1999; Harmer et al. 

2019). Despite this, no JAK inhibitors have been approved for the treatment of MM. 

A study describing the biomarker profile of JAK2 inhibitors found that exposure to 

fedratinib resulted in a decrease in inflammation-linked proteins including VCAM1, 

eotaxin 3 and MIG (Singer et al. 2019). Combined with our results, this may indicate 

that tumour microenvironments with high expression of VCAM1 may be more 

susceptible to fedratinib treatment. Interestingly, increased levels of sVCAM1 

correlated with increased sensitivity to two BCL-2 inhibitors, venetoclax and 

navitoclax, indicating a potential correlation with BCL-2 expression. VCAM1 and 

BCL2 are target genes of the NF-κB signalling pathway (Catz and Johnson 2001; 

Astarci et al. 2012). High NF-κB activity in MM may be stimulated by intrinsic and 

extrinsic processes. Activating mutations in the NF-κB pathway have been suggested 

to be late progression events which result in autonomous NF-κB pathway activation 

and reduced dependence on the bone marrow microenvironment (Demchenko et al. 

2010; Cippitelli et al. 2023). Enhanced NF-κB activation may increase sVCAM1 and 

BCL2 levels, leading to increased susceptibility to BCL2 inhibitors, and making 

sVCAM1 a potential surrogate plasma-based biomarker of response to BCL-2 

inhibitors. However, studies have reported an association between NF-κB pathway 

activation and venetoclax resistance in chronic lymphocytic leukemia (CLL) 

(Thijssen et al. 2022). Further studies in a larger cohort of patients are required to 

evaluate the link between sVCAM1 concentrations and response to BCL2 inhibitors. 
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Furthermore, the link between EMM and the constitutive activation of the NF-κB 

has yet to be evaluated. 

Hepatocyte growth factor (HGF) is initially synthesized as an inactive precursor 

protein which is subsequently converted to its active form by proteolytic cleavage. 

Active HGF binds to its specific ligand receptor tyrosine kinase (MET), transducing 

pleiotropic signals that promote cell growth, survival, and migration in the target cell 

(Bottaro et al. 1991; Kataoka et al. 2018). HGF is a well-known tumour-promoting 

growth factor which contributes to tumorigenesis and disease progression by 

promoting proliferation, invasion, and the survival of tumour cells. Several proteases 

including HGFA, matriptase and hepsin have been identified as HGF activating 

proteases (Kataoka et al. 2003; Owen et al. 2010). HGFA is a trypsin-like serine 

endopeptidase, initially synthesized as an inactive zymogen which is subsequently 

catalysed to its active form via limited proteolysis (Shimomura et al. 1993). 

Increased serum/plasma levels of HGF and HGFA have been identified in various 

cancers including prostate cancer and multiple myeloma (Nagakawa et al. 2005; 

Wader et al. 2008; Sugie et al. 2016). Interestingly, breast cancer patients with 

lymph node involvement showed higher HGFA levels than those without lymph 

node involvement, indicating some link between HGFA expression and cancer 

metastasis (Parr et al. 2004). 

Previous studies have found that serum and plasma HGF concentrations are elevated 

in MM patients compared to healthy controls, and are linked to an unfavourable 

prognosis in MM. (Seidel et al. 1998; Iwasaki et al. 2002; Rampa et al. 2014). 

Myeloma cell lines and primary MM cells have been reported to secrete HGFA 

which catalyses the activation of HGF secreted in an autocrine manner by MM cells 

or in a paracrine manner by stromal cells within the BME (Borset et al. 1996; Takai 

et al. 1997; Tjin et al. 2004). In contrast, a 2013 study found no expression of the 

HGFA gene in bone marrow biopsies from healthy volunteers, MGUS or MM 

patients. Interestingly, the MM cell line and primary MM cells analysed in the 

former study were derived from extramedullary lesions, suggesting a possible 

production of HGFA at extramedullary sites but not within the bone marrow 

microenvironment (Kristensen et al. 2013). This may explain the increase in 
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circulating HGFA levels in EMM patients compared to MM patients, although 

further studies are required to confirm this.  

PEDF, or Serpin family F member 1 (SERPINF1), is a 50 kDa monomeric 

glycoprotein with neuroprotective, antiangiogenic, metabolic, and osteogenic 

biological properties (Apte et al. 2004; Rauch et al. 2012; Carnagarin et al. 2015; 

Bürger et al. 2020). Despite being a member of the serine protease inhibitor (serpin) 

superfamily, PEDF does not exhibit serine protease inhibitory activity. Various 

studies and reviews have described the antitumorigenic, antimetastatic, and 

antiangiogenic roles of PEDF in retinoblastoma, prostate cancer, pancreatic cancer, 

gastric cancers and others (Yang et al. 2009; Hirsch et al. 2011; Zhang et al. 2011; 

Ansari et al. 2019). PEDF binding to its putative receptors, adipose triglyceride 

lipase (ATGL) and laminin receptor (LR), has been reported to trigger 

antitumorigenic mechanisms including reduced angiogenesis via downregulation of 

VEGF, reduced proliferation, and the induction of apoptosis (Guan et al. 2007; Yang 

and Grossniklaus 2010; Tsuruhisa et al. 2021). Interestingly, the tumour-suppressive 

role of PEDF has stimulated studies evaluating PEDF as a cancer therapy (Hase et 

al. 2005; Honrubia-Gómez et al. 2019; Bao et al. 2020). However, several papers 

have reported PEDF as an oncogene and contributor to cancer progression, 

highlighting the complex and bidirectional functions of PEDF in different cancers 

(Hou et al. 2017; Tang et al. 2020; Ueno et al. 2022). Regarding circulating PEDF, 

low serum levels of PEDF were associated with various cancers, and found to 

correlate with a poor overall survival in colorectal cancer (Becerra and Notario 2013; 

Ji et al. 2013; Rivera-Pérez et al. 2018). However, increased circulating PEDF 

concentrations have been reported in hepatocellular cancer and gastric cancer when 

compared to healthy controls (Kawaguchi et al. 2010; Aksoy et al. 2019). 

In MM, PEDF was found to inhibit VEGF-induced proliferation of U266 myeloma 

cell via the suppression of p22phox, a membrane protein and component of the ROS-

generating NADPH oxidase system. PEDF reduced ROS generation, prevented 

VEGF-reduced apoptosis and inhibited VEGF-induced proliferation of  U266 

myeloma cells (Seki et al. 2013). In this chapter, we found a significant increase in 

plasma PEDF levels in EMM patients compared to MM patients, indicating a 

potential association between PEDF levels and the migration of myeloma cells from 
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the bone marrow and colonization of distal sites. A recent review highlighted the 

contradictory reports on the role of PEDF in metastasis, suggesting a link between 

PEDF function and tissue type (Abooshahab et al. 2021). Two studies investigating 

hepatocellular carcinoma and oesophageal squamous cell carcinoma found that 

elevated levels of PEDF promoted metastasis and an EMT phenotype, as illustrated 

by the downregulation of E-cadherin and upregulation of N-cadherin, through the 

activation of MAPK/ERK signaling (Hou et al. 2017; Chen, Che, et al. 2021). In 

EMM, CXCR4 has been reported to regulate EMM through the transcriptional 

activation of an EMT-like signature including the downregulation of E-cadherin and 

upregulation of Snail, Slug, and Twist (Roccaro et al. 2015). PEDF may play a role 

in promoting an EMT-like signature in the context of EMM. Interestingly, a recent 

study found that overexpression of PEDF in osteosarcoma promoted mesenchymal-

to-epithelial transition (MET) which can stimulate the development of metastatic 

lesions. Despite promoting MET, PEDF overexpression was also found to induce 

extravasation (Kuriyama et al. 2022). Given the complex and often contradictory 

functions of PEDF, an in-depth, focused investigation is required to determine the 

specific role of PEDF in the extramedullary transition of MM. 

Although not identified in our mass spectrometry analysis of EMM plasma, ELA2 

was evaluated in EMM plasma as a marker of NETs in Chapter 5. ELA2 was 

significantly increased in EMM plasma and ROC curve analysis found ELA2 had 

excellent discriminatory power (AUC =0.965) and represented a potential marker of 

EMM. In addition to its role in relation to NETs, ELA2 has independently been 

linked to tumorigenesis in a variety of cancers (Ho et al. 2014; Lerman and Hammes 

2018; Ardi et al. 2020; Taya et al. 2020). As described previously, neutrophils play a 

role in carcinogenesis and metastasis. Studies focusing on ELA2, a neutrophil 

protease, have highlighted the role of ELA2 in promoting the metastatic potential of 

various cancers (Doi et al. 2002; Houghton et al. 2010). Interestingly, tumours 

supplemented with active ELA2 demonstrated increased angiogenesis, tumour cell 

intravasation and liver metastasis in a modified chorioallantoic membrane model. 

ELA2 enhanced chemotactic migration of tumour cells, in an enzymatic activity-

dependent process and was required for the retention of vascular-arrested tumour 

cells in the lungs of mice (Deryugina et al. 2020). However, whether ELA2 

participates in this early metastatic process in EMM remains unclear. The role of 
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ELA2 in NET-mediated metastasis has been described in Chapter 5. Interestingly, 

ELA2 has been shown to cleave VCAM1 from the surface of bone marrow stromal 

cells (BMSCs) during the mobilization of hematopoietic progenitor cells following 

G-CSF treatment, highlighting a potential link between ELA2 and VCAM1 shedding 

during metastasis (Lévesque et al. 2001). 

Another interesting finding in this study was the association between increased 

plasma levels of VCAM1, HGFA, and PEDF and the high-risk cytogenetic 

abnormality, del(17p). The loss of the short arm of chromosome 17, detected by 

FISH, is found in approximately 10-15% of NDMM and RRMM patients (Liu et al. 

2017). The well-known tumour suppressor, TP53, is located within this deleted 

region, leading to its monoallelic deletion (Flynt et al. 2020). A recent study found 

that biallelic inactivation of TP53 due to combined del(17p) and TP53 mutation 

exhibits an extremely poor prognosis, while isolated del(17p) also exhibits a poor 

prognosis in MM (Corre, Perrot, et al. 2021). P53 is a key tumour suppressing 

protein which promotes cell cycle arrest or apoptosis following DNA damage. 

Several studies have reported an association between the deletion of 17p and 

extramedullary involvement in MM (Chang et al. 2004; López-Anglada et al. 2010; 

Billecke et al. 2013; Besse et al. 2016). In addition, del(17p) is a common 

cytogenetic abnormality in plasma cell leukemia (PCL), occurring in up to 50% of 

primary PCL tumours and up to 75% of secondary PCL tumours (Tiedemann et al. 

2008). Combined with our results, this suggests that myeloma subclones with 

del(17p) may have a higher propensity for dissemination from the bone marrow, 

increasing the likelihood of developing aggressive, advanced forms of MM (Zeissig 

et al. 2020). The association between increased plasma concentrations of VCAM1, 

HGFA, and PEDF, del(17p), and extramedullary multiple myeloma, is unknown and 

warrants further research. 

The evaluation of the plasma cytokine profile of EMM patients compared to MM 

patients identified IL-10, IL-6, and IL-17C as being differentially abundant between 

the two groups. IL-10 is a pleiotropic, anti-inflammatory cytokine reported to have 

immunosuppressive effects within the tumour microenvironment (Musolino et al. 

2017). IL-10 is a proliferation factor in MM and has been found to correlate with 

angiogenic and proliferation markers (Alexandrakis et al. 2015). High levels of 



 

224 

circulating IL-10 in NDMM patients have been associated to a worse PFS and 

overall OS (Wang, Wang, et al. 2016). Furthermore, a recent study evaluating the 

link between serum IL-10 levels and MM disease progression reported IL-10 levels 

to be significantly increased in EMM patients compared to MM patients without 

extramedullary involvement, supporting our results that IL-10 is increased in EMM 

plasma. Within the tumour microenvironment, IL-10 is known to induce M2 

macrophages, specifically the M2c subset of M2 macrophages which have been 

implicated in process of tumour immunosuppression and tumour invasion in cancer 

(Mantovani et al. 2004; Yuan et al. 2015). Circulating IL-6 levels have also been 

reported to correlate with disease progression in MM (Bataille et al. 1989; Nachbaur 

et al. 1991). Despite these early studies highlighting the involvement of IL-6 in MM 

progression, the inhibition of IL-6 in advanced MM patients with EMM or PCL did 

not yield prolonged therapeutic efficacy (Bataille et al. 1995). Interestingly, IL-6 has 

been reported to induce M2 macrophage differentiation resulting in increased levels 

of IL-10 (Fu et al. 2017). IL-17C is a pro-inflammatory cytokine that has been 

implicated in carcinogenesis and tumour progression (Jungnickel et al. 2017; Brevi 

et al. 2020). Studies relating circulating IL-17C levels to cancer development and 

progression are limited. In addition, the role of IL-17C in MM is unknown 

highlighting the need for further research on IL-17C in the MM field.  

The combination of HGFA, VCAM1, PEDF, and ELA2 as a four-marker panel 

demonstrated excellent ability to distinguish between EMM and MM patients. As 

biomarker panels tend to perform better in terms of specificity and sensitivity, this 

panel of EMM markers warrants validation as a method to detect EMM at an early 

stage. Furthermore, the identification of IL-10, IL-6, and IL-17C as differentially 

abundant cytokines in EMM plasma highlights a potential change in the plasma 

cytokine profile of EMM patients compared to those without extramedullary 

involvement. Despite the small sample size, the potential protein biomarkers 

identified in our study provides a basis for future studies with larger sample sizes to 

validate their clinical applicability. Many recent studies highlight the need for 

clinical trials specific for EMM, which presents a potential source of a large cohort 

of EMM patients for validation. In addition, future mechanistic studies involving 

these proteins will provide insight into the cellular processes that may contribute to 
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the differential levels of the proteins and cytokines identified in this study in EMM 

plasma. 

6.5 Conclusion 

To the best of my knowledge, this study using label-free mass spectrometry to 

identify novel markers of extramedullary multiple myeloma in blood plasma is the 

first of its kind. This body of work contributes to our understanding that EMM is a 

phenotypically distinct form of MM. Furthermore, evaluating the concentrations of 

the plasma proteins, VCAM1, HGFA, PEDF, and ELA2, may distinguish MM 

patients with and without extramedullary lesions. Monitoring these plasma-based 

biomarkers represents a low-cost, minimally invasive approach to quantify markers 

of extramedullary spread at follow-up appointments using minimal resources. Upon 

detection of high levels of EMM markers, patients may be further evaluated using 

imaging tests to confirm the presence of extramedullary lesions and treated 

accordingly. Incorporating the measurement of these blood plasma biomarkers in 

future EMM specific trials to monitor response to therapy may yield clinically 

relevant findings. As more EMM specific therapeutic regimes hopefully become 

available, the ability to switch between effective and ineffective treatments quickly 

based on monitoring biomarker profiles will be important. 
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7.1 Introduction 

Metabolomics refers to the identification and quantitation of metabolites with a 

molecular weight <1500 Da in cells, tissues and/or biofluids. Almost a century ago, 

Otto Warburg first discovered the link between cancer and metabolism by describing 

the increased consumption of glucose by cancer cells to support sustained 

proliferation (Warburg et al. 1927). Since then, additional hallmarks of cancer cell 

metabolism have been identified including the deregulation of glucose and amino 

acid uptake, use of TCA cycle intermediates for the synthesis of macromolecules, 

and metabolic interactions with the tumour microenvironment (Hosios et al. 2016; 

Anderson et al. 2018; Dey et al. 2021; Pavlova et al. 2022). Metabolomics 

investigates the downstream products of the genome, transcriptome, and proteome, 

highlighting the key role of this “omic” technology in identifying phenotypic 

alterations. The complete set of metabolites in a biological sample is referred to as 

the metabolome. The presence/absence and concentration of these metabolites reflect 

the biochemical events occurring in an organism at a given time, thus providing a 

valuable source to analyse metabolic changes in various physiological or 

pathological conditions (Schmidt et al. 2021).  

In recent years, metabolomics has garnered increasing attention as a promising 

technology in precision medicine (Clish 2015). Improvements in diagnostics, 

prognostics and treatment decision-making are possible through the identification of 

metabolic signatures or phenotypes associated with specific disease characteristics. 

Recent studies have highlighted the contribution of metabolomics to the goal of 

precision medicine by identifying metabolic signatures associated with various 

pathological conditions including coronary disease, breast cancer, type 2 diabetes, 

and coronavirus disease (Tam et al. 2017; Jiang et al. 2020; Julkunen et al. 2021; 

Xiao et al. 2022; Shah, Steffen, et al. 2023). As metabolites are frequently involved 

in or produced by disease pathways, they represent promising diagnostic, prognostic, 

and predictive biomarkers (Qiu et al. 2023). Biochemical assays are commonly 

employed for the measurement of specific proteins and metabolites in a clinical 

setting. Cholesterol and triglycerides are classic metabolite biomarkers evaluated to 

determine an individual’s risk of adverse cardiovascular events (Kannel et al. 1971). 

Clinical metabolic testing has proved particularly useful in the detection of inborn 
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errors of metabolism (IEMs), a large group of inherited neurometabolic disorders. 

For example, diagnosis of the rare IEM, adenylosuccinate lyase deficiency, is based 

on the detection of succinylaminoimidazole carboxamide riboside and 

succinyladenosine in the plasma, urine, or cerebrospinal fluid of affected individuals 

(Donti et al. 2016).  

Similar to proteomics, metabolomic technologies are unable to detect all metabolites 

in a given sample, a process hampered by the chemical similarities of metabolites in 

the form of isomeric and isobaric compounds (Tolstikov et al. 2020). Nevertheless, 

metabolomic techniques have been developed and improved in recent years into 

powerful, high-throughput methods capable of analysing a wide variety of biological 

sources including tissue, blood, and urine. Analytical techniques commonly used in 

metabolomic analyses include the spectroscopic technique, nuclear magnetic 

resonance (NMR), and mass spectrometry coupled with chromatographic techniques. 

These techniques can be broadly categorized into untargeted and targeted 

approaches. Untargeted metabolomics is an unbiased, comprehensive method that 

aims to measure all detectable analytes in a sample, however, this approach can be 

encumbered by the large number of unidentifiable peaks. Targeted metabolomics 

measures a defined set of metabolites, but has the disadvantage of potentially 

missing the detection of physiologically relevant metabolites (Roberts et al. 2012).  

In addition to proteins, biofluids also represent an abundant source of metabolites. 

Furthermore, the collection of biofluids such as serum, plasma, saliva, and urine are 

minimally invasive, which increases the likelihood of analytical tests on biofluids 

being adopted in a clinical setting (Marchand et al. 2018). Plasma provides a global 

view of the systemic metabolic state of an individual, which can be dysregulated in 

pathological conditions such as cancer. Another reason blood-based biofluids 

represent valuable sources of biomarkers in the context of multiple myeloma and 

extramedullary multiple myeloma, is the close spatial association between the 

tumour cells and whole blood.  Metabolic profiling has yielded promising results in 

blood cancer research. Recent studies have highlighted the value of metabolomic 

profiling using 1H NMR as a diagnostic and predictive tool for a number of 

hematological malignancies including acute lymphoblastic leukemia (ALL), AML 

and follicular lymphoma (Banoei et al. 2022; Morad et al. 2022). A recent review 
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article has also provided guidance on potential applications of single-cell 

metabolomics as a method to improve our understanding of hematological 

malignancies (Zuo et al. 2022). 

Changes in the plasma metabolite profile of MM patients at premalignant, newly 

diagnosed, and relapsed/refractory stages of disease have previously been reported 

(Steiner et al. 2018). However, at the time of writing, no metabolomics studies have 

been published investigating plasma metabolomic changes in extramedullary 

multiple myeloma compared to medullary multiple myeloma. EMM develops due to 

the hematogenous spread of myeloma cells to distant sites. These circulating 

myeloma cells and the impact of tumour development in soft-tissue or organs may 

contribute to changes in the plasma metabolome. The quantitation of metabolite 

levels in the plasma of EMM and MM patients could indicate metabolic changes 

derived from the tumour tissue itself, generating potential plasma-based markers of 

EMM.  

In this chapter, metabolites were isolated from EMM patients (n=9, one serial 

sample) and MM patients (n=8) plasma and evaluated by mass spectrometry using a 

targeted metabolomic approach. The aim of this study was to identify metabolic 

changes in the plasma of MM patients with and without extramedullary spread and 

evaluate metabolites as potential markers of EMM. 

7.2 Experimental design 

As highlighted in previous chapters, we have identified proteomic alterations in the 

bone marrow and plasma of patients with EMM compared to MM patients with 

extramedullary spread. Our study and research from other groups indicate a change 

in metabolism in malignant plasma cells from EMM patients (Sun et al. 2023). 

Evaluating alterations in the abundance of plasma metabolites may provide insight 

into systemic metabolism changes in EMM. Furthermore, the plasma metabolome 

may yield potential markers of extramedullary spread in MM patients.  

7.2.1 Patient samples 

A total of 17 EDTA plasma samples were obtained from the FHRB biobank. Plasma 

samples were collected from MM patients (n=8) and EMM patients (n=9, one serial 
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sample), as described previously. Samples were stored at -80ºC. Full patient details 

are outlined in Chapter 5. 

7.2.2 Targeted metabolomics analysis of MM and EMM patient plasma  

Targeted metabolomic analysis of MM and EMM blood plasma samples was 

performed using the MxP® Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, 

Austria) with a SCIEX QTRAP 6500plus mass spectrometer, as described in Chapter 

2. The MxP® Quant 500 kit is capable of quantifying more than 600 metabolites 

from 26 compound classes. QC samples were employed to monitor the performance 

of the analysis with metabolite concentration in each sample normalised based on 

these QC samples. Isotopically labelled internal standards and seven-point 

calibration curves were used in the quantitation of amino acids and biogenic amines. 

Semi-quantitative analysis of other metabolites was performed using internal 

standards. Data quality was evaluated by checking the accuracy and reproducibility 

of QC samples. Metabolites were included only when the concentrations of the 

metabolites were above the LOD in >75% of plasma samples. Data was imported 

into MetaboAnalyst 5.0 for further analysis. Feature filtering was performed based 

on relative standard deviation and the resulting data was log-transformed. Supervised 

statistical approaches were used to interrogate the data. Metabolites of interest were 

identified based on p-value < 0.05 between experimental groups, variable 

importance in the projection (VIP) > 1, and FC >1.2 or < 0.833. Metabolite sums and 

ratios were evaluated using Graphpad prism. ROC curves were plotted using 

MedCalc (MedCalc® Statistical Software version 22.006, Ostend, Belgium) with 

sensitivity values (true positive fraction) on the y-axis and the equivalent specificity 

values (false positive fraction) on the x-axis. AUC values with corresponding 95% 

confidence intervals were calculated to evaluate overall classifier effectiveness. As a 

general consensus, AUC values ranging from 0.5 to 0.7 are classified as poor, 0.7 to 

0.8 as average, 0.8 to 0.9 as good and >0.9 as outstanding. 
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Figure 7.1: Metabolite coverage across chemical classes. Pie chart indicating the number of 

metabolites quantified across 22 chemical classes. 

 

7.3 Results 

7.3.1 Data collection and cleaning 

Using a targeted metabolomic/lipidomic technique, we compared the metabolic 

profile of age and gender-matched MM and EMM patient plasma. A total of 630 

metabolites were measured using the MxP® Quant 500 kit. Initial filtering of 

metabolites was performed based on the LOD, whereby metabolites were included if 

concentrations were above the LOD in >75% of plasma samples. As a result, 509 

metabolites remained for further analysis. The distribution of these metabolites 

across the chemical classes are displayed in Figure 7.1. To illustrate changes in the 

metabolomic profiles between EMM and MM plasma samples, Spearman correlation 

analysis was performed on the log-transformed metabolite concentrations to create 

correlation matrices, as depicted in Figure 7.2. Stronger metabolite-metabolite 

correlations are evident in MM plasma compared to EMM plasma. Specifically, 

there is strong clustering of triacylglycerols in MM plasma compared to EMM 

plasma.  
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Figure 7.2: Metabolite-metabolite correlation analysis. (A) Correlation matrix of 

the 509 metabolites quantified in MM plasma. (B) Correlation matrix of the 509 

metabolites quantified in EMM plasma. Positive correlations are shown in red. 

Negative correlations are shown in blue.  

7.3.2 Comparison of metabolomic profiles identifies a trend towards increased 

lipid levels in EMM compared to MM plasma. 

To obtain a broad overview of the distribution of metabolite and lipid classes in 

EMM and MM plasma, we evaluated the sum of quantified metabolites in individual 

chemical classes (Figure 7.3). A significant increase in the abundance of aromatic 

amino acids (phenylalanine, tryptophan, tyrosine, and histidine) was observed in 

EMM plasma.  Although no significant changes were identified between the other 

compound classes illustrated in this figure, a clear trend towards an increase in lipids 

in EMM plasma can be seen. Total lipids, hexosylceramides, triacylglycerols, and 

monounsaturated fatty acids (MUFA) (phosphatidylcholine (PC)), are increased in 

abundance in EMM plasma (p-value < 0.1), however, this did not reach significance. 

The sum of the amino acid related class of metabolites showed a slight decrease in 

EMM plasma compared  to MM plasma (p = 0.068). 

7.3.3 Evaluation of biologically relevant metabolite ratios in EMM and MM 

plasma 

Metabolite ratios have proven biologically relevant in various pathologies with 

several ratios currently being evaluated as part of clinical assessments in healthcare 
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settings  (Fischer and Baldessarini 1971; Merritt and Chang 1993; Ishikawa 2012; 

Couce et al. 2013). Certain ratios can act as indicators of enzyme activity or 

inhibition as the metabolite ratio is directly altered as a result of enzyme action. This 

provides valuable insight into the enzymatic reactions occurring in pathological 

conditions or at the time of sampling (Badawy and Guillemin 2019). We compared  

a number of biological ratios with varying biological implications, as shown in 

Table 7.1. Only two of the ratios evaluated reached p-values below 0.1. Despite 

seeing no significant change in the sum of sphingolipids between MM and EMM 

plasma, the ratio of hydroxylated to non-hydroxylated sphingomyelins was 

significantly decreased in EMM plasma (p=0.024). In contrast, the ratio of L-

Ornithine (Orn) to unmodified arginine, which acts as an indicator of arginase 

activity, was increased in EMM plasma compared to MM plasma (p=0.093).  



 

 

234 

Figure 7.3:  Comparison of plasma levels of various metabolite classes in EMM and MM patients.  Plots indicate the sum of all metabolite concentrations within 

each chemical class. Normality was determined using the D’Agostino and Pearson test. Statistical significance was evaluated by unpaired t-test with Welch correction. 

Non-normally distributed datasets were log-transformed, tested for normality, and evaluated using the same method. P-values for each dataset are illustrated on the plots. 

MUFA, monounsaturated fatty acids; PC, phosphatidylcholine; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; AA, amino acid. 



 

 

235 

Table 7.1: Statistical analysis of metabolite ratios in MM and EMM plasma. The 

D’Agostino and Pearson normality test and histograms revealed a non-normal dataset. Log 

transformation failed to yield a normally distributed dataset. Therefore, Mann-Whitney rank 

tests were applied to assess significance. Metabolite ratios with p-values < 0.1 are bolded 

and italicized. The biological significance of the metabolite ratios with p-values< 0.1 are 

listed. 

Metabolite 

Ratio 
Description 

Fold Change 

(EMM/MM) 
P-value 

(C2+C3) / C0 
Ratio of short chain acylcarnitines to 

free carnitine 
0.97 0.481 

ADMA / Arg 
Fraction of asymmetrically dimethylated 

Arg of the unmodified Arg pool 
1.896 0.114 

C2 / C0 Ratio of acetylcarnitine to free carnitine 0.999 0.481 

Cit / Arg Ratio of Cit to Arg 1.514 0.167 

Cit / Orn Ratio of Cit to Orn 0.984 0.963 

Kynurenine / 

Trp 
Ratio of Kynurenine to Trp 1.648 0.606 

MUFA (PC) / 

SFA (PC) 

Ratio of mono-unsaturated to saturated 

glycerophosphocholines 
1.018 0.481 

Orn / Arg Ratio of Orn to Arg 1.369 0.093 

PUFA (PC) / 

MUFA (PC) 

Ratio of poly-unsaturated to mono-

unsaturated glycerophosphocholines 
0.88 0.37 

PUFA (PC) / 

SFA (PC) 

Ratio of poly-unsaturated to saturated 

glycerophosphocholines 
0.903 0.277 

Putrescine / Orn Ratio of putrescine to Orn 1.136 0.743 

SDMA / Arg 
Fraction of symmetrically dimethylated 

Arg of the unmodified Arg pool 
1.382 0.963 

Total AC / C0 Ratio of esterified to free carnitine 0.989 0.37 

Total AC-DC / 

Total AC 

Fraction of dicarboxyacylcarnitines of 

the total acylcarnitines 
0.661 0.481 

Total DMA / 

Arg 

Fraction of dimethylated Arg of the 

unmodified Arg pool 
1.593 0.321 

Total lysoPC / 

Total PC 

Ratio of lysoglycerophosphocholines to 

glycerophosphocholines 
0.925 0.673 

Total SM-OH / 

Total SM-non 

OH 

Ratio of hydroxylated to non-

hydroxylated sphingomyelins 
0.831 0.036 

Tyr / Phe Ratio of Tyrosine to Phenylalanine 1.261 0.167 

 

Significant Ratio Description Biological significance 

Total SM-OH / Total 

SM-non OH 

Ratio of hydroxylated to non-

hydroxylated sphingomyelins 

Indicator of sphingolipid 

hydroxylation 

Orn / Arg Ratio of Ornithine to Arginine Indicator of arginase activity 
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7.3.4 Orthogonal projection to latent structure discriminant analysis (OPLS-

DA) and identification of metabolites contributing to MM and EMM 

group distinction. 

To remove metabolites that are unlikely to contribute to data modelling, feature 

filtering was performed based on the relative standard deviation. The remaining 381 

metabolite concentrations were log-transformed and used for further analysis. 

Metabolites included for subsequent analysis comprised of 8 acylcarnitines, 1 

alkaloid, 1 amine oxide, 5 amino acids, 18 amino acid-related metabolites, 14 bile 

acids, 1 biogenic amine, 1 carboxylic acid, 15 ceramides, 10 cholesterol esters, 1 

cresol, 10 diacylglycerols, 9 fatty acids, 6 lysophosphatidylcholines, 37 

phosphatidylcholines, 5  dihexosylceramides, 5 trihexosylceramides, 16 

hexosylceramides, 3 hormones, 3 indole derivatives, 1 nucleobase-related, 5 

sphingomyelins, and 206 triacylglycerols. PCA is a commonly used multivariate 

method of dimensionality reduction in metabolomic studies. However, clear 

separations between groups can only be visualized on PCA score plots if the intra-

group variability is considerably lower than the inter-group variability. As plasma 

metabolic profiles can vary based on numerous environmental and dietary factors, 

supervised clustering approaches, such as partial least squares-discriminant analysis 

(PLS-DA) and orthogonal projection to latent structure discriminant analysis (OPLS-

DA), which incorporate group classification are also used to optimize separation 

(Worley and Powers 2012; Ivanisevic and Want 2019). OPLS-DA is an upgraded 

version of PLS-DA which uses an orthogonal signal correction to separate the 

systematic variation in the X variable into components that are correlated to Y and 

those that are unique to X but uncorrelated to Y (Blasco et al. 2015). The ability of 

OPLS-DA to identify features that define experimental group separations, makes this 

approach popular for identifying biomarker candidates. Principal component analysis 

demonstrated no clear separation between the EMM patient group and the medullary 

MM patient group (Figure 7.4A), whereas OPLS-DA clustering identified a distinct 

separation between the two groups (Figure 7.4B). To validate the OPLS-DA model 

and ensure minimal overfitting of the data, a random permutation test was performed 

using 2000 permutations. In the OPLS-DA model, R2 refers to the explained 

variance between the components, whereas Q2 is calculated by full cross validation 

to indicate the goodness of prediction. R2 and Q2 values closer to 1 indicate a better 



 

 

237 

predictive model. Permutation analysis results (Q2 = 0.444, p = 0.048; R2Y = 0.99, p 

= 0.0365) demonstrated that the model was not overfitted (Figure 7.4C). In our 

analysis, the Q2 value of 0.444 indicated weak predictive power, however, due to the 

heterogeneity of human samples and the small sample size, a Q2 value > 0.4 is 

acceptable (Godzien et al. 2013; An et al. 2022). A scatter plot, known as an S-plot, 

which displays the modelled covariance versus the modelled correlation allows the 

visualization of important features within the OPLS-DA model (Gao et al. 2023). 

Metabolites with high p(corr) values as depicted in the upper right and lower left 

corners of the S-plot represent influential metabolites in the OPLS model 

classifications (Figure 7.4D). 
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Figure 7.4: Metabolomics pattern recognition using multivariate approaches. (A) 

Principal component analysis (PCA) and (B) orthogonal projection to latent structure 

discriminant analysis (OPLS-DA) scores plots on plasma samples from EMM and MM 

patients. (C) Validation of the OPLS-DA model using a permutation test between one 

predictive (p1) and three orthogonal (o1, o2, and o3) components based on 2000 

permutations. (D) S-plot with variables influencing the OPLS-DA separation labelled. 

7.3.5 Identification of differentially abundant metabolites in MM and EMM 

plasma. 

In addition to S-plot visualization, discriminatory variables responsible for group 

separation can be identified using the OPLS-DA VIP score. A total of 141 

metabolites were identified as important discriminatory variables (VIP > 1). Figure 

7.5A depicts the 20 metabolites with the highest VIP scores ranging from 1.8 to 2.5. 
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For univariate statistical analysis, volcano plot analysis was conducted to determine 

the distribution of metabolites from MM and EMM patient plasma. From this 

analysis, a total of 31 metabolites were SSDA with a fold change threshold set to > 

1.3 (Figure 7.5B). Of the 31 SSDA metabolites, 28 were increased in abundance in 

EMM plasma whereas 3 were increased in abundance in MM plasma. The 28 

metabolites increased in abundance in EMM included twenty triacylglycerols, two 

diacylglycerols, three hexosylceramides, one bile acid (GUDCA), one amino acid 

(Tyrosine), and one phosphatidylcholine (PC ae C44:4). The 3 metabolites increased 

in abundance in MM included two amino acid-related metabolites (Taurine, 

PheAlaBetaine) and one phosphatidylcholine (PC aa C38:1). Differentially abundant 

metabolites were identified based on the following criteria: VIP scores greater than 

1, p-value ≤ 0.05, and FC > 1.3 or < 0.7 (Figure 7.5C). The full list of differentially 

abundant metabolites with corresponding fold changes, VIP scores, and p-values are 

listed in Table 7.2. 
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Figure 7.5: Identification of differentially abundant metabolites. (A) Top 20 important 

metabolites with highest variable importance in projection (VIP) scores obtained from 

OPLS-DA model. (B) Volcano plot showing statistically significantly differentially 

abundant (SSDA) metabolites between MM and EMM groups (p ≤ 0.05, FC > 1.3). Each 

point represents a metabolite. Red points indicate metabolites increased in abundance in 

EMM plasma. Blue points indicate metabolites decreased in abundance in EMM. Grey 

points indicate non-significance. (C) Venn diagram illustrating the stepwise procedure of 

identifying 31 differentially abundant metabolites in EMM compared to MM patient plasma. 
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Table 7.2: Metabolites of differential abundance in the plasma of MM and EMM 

patients. Statistically significantly differentially abundant metabolites (p ≤ 0.05, FC > 1.3 or 

< 0.7, VIP > 1). 

Metabolite Compound Class 
Fold Change 

(EMM/MM) 
VIP P-value 

TG(22:4_32:0) Triacylglycerol 2.341 2.500 0.001 

TG(16:0_34:2) Triacylglycerol 1.701 2.301 0.003 

HexCer(d18:1/20:0) Hexosylceramide 1.732 2.261 0.004 

TG(18:2_32:0) Triacylglycerol 1.658 2.252 0.005 

Taurine Amino acid - related 0.547 2.235 0.006 

TG(16:0_34:1) Triacylglycerol 1.813 2.120 0.008 

TG(20:2_32:0) Triacylglycerol 1.860 2.145 0.008 

HexCer(d16:1/24:0) Hexosylceramide 1.843 2.124 0.009 

PC aa C38:1 Phosphatidylcholine 0.486 1.989 0.011 

TG(18:1_32:0) Triacylglycerol 1.680 1.987 0.014 

TG(22:4_34:2) Triacylglycerol 1.534 1.971 0.015 

DG(16:0_16:1) Diacylglycerol 1.743 1.915 0.018 

TG(18:3_32:0) Triacylglycerol 1.605 1.921 0.020 

TG(17:2_34:3) Triacylglycerol 1.818 1.761 0.026 

TG(16:1_32:0) Triacylglycerol 2.429 1.839 0.027 

TG(16:1_34:1) Triacylglycerol 1.552 1.808 0.028 

PheAlaBetaine Amino acid - related 0.673 1.838 0.030 

DG(16:0_18:1) Diacylglycerol 1.481 1.800 0.031 

TG(16:0_34:0) Triacylglycerol 1.845 1.781 0.033 

TG(16:0_34:4) Triacylglycerol 1.472 1.822 0.033 

TG(16:1_34:0) Triacylglycerol 1.693 1.750 0.034 

TG(18:0_34:2) Triacylglycerol 1.448 1.752 0.036 

TG(20:4_32:0) Triacylglycerol 2.010 1.752 0.037 

GUDCA Bile acid 3.623 1.855 0.037 

HexCer(d18:1/22:0) Hexosylceramide 1.437 1.820 0.037 

PC ae C44:4 Phosphatidylcholine 1.489 1.769 0.041 

TG(16:0_35:2) Triacylglycerol 1.377 1.726 0.042 

TG(16:0_33:2) Triacylglycerol 1.499 1.769 0.043 

TG(20:2_32:1) Triacylglycerol 1.389 1.706 0.044 

TG(20:0_32:3) Triacylglycerol 1.528 1.559 0.046 

Tyr Amino acid 1.432 1.815 0.048 
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7.3.6 Evaluation of differentially abundant metabolites/metabolite ratios as 

plasma-based markers of extramedullary myeloma. 

To test the clinical utility of plasma-based metabolites in EMM diagnostics, we 

evaluated the discriminatory power of the significantly differentially abundant 

metabolites and metabolite sums/ratios in MM versus EMM plasma (Table 7.3). The 

Biocrates nomenclature for triglycerides (TGs) lists one fatty acid and the sum of the 

other two, meaning that more than one triglyceride fits the description. Therefore, 

specific TGs were not included in the following ROC curve analyses. Typically, 

biomarkers with an AUC value greater than 0.8 and p-value below 0.05 are 

considered to have good discriminatory power. From our analysis, 10 metabolites or 

metabolite sums/ratios (HexCer(d18:1/20:0),  HexCer(d16:1/24:0), 

HexCer(d18:1/22:0), Tyr, Taurine, DG(16:0_16:1), PC aa C38:1, PC ae C44:4, sum 

of aromatic AAs, and Total SM-OH / Total SM-non-OH) have been identified as 

potential plasma-derived metabolite markers of EMM . Of the significant 

metabolites, HexCer(d18:1/20:0) and PC aa C38:1 had the highest AUC values of 

0.875 (p-value < 0.0001), whereas HexCer(d18:1/22:0) and Tyr had the lowest AUC 

values of 0.806 (p-value = 0.0122) (Figure 7.6). In recent years, it has become 

widely accepted that identifying a single biomarker with adequate sensitivity and 

specificity  for disease diagnosis or prediction is rare. As a result, combining 

multiple biomarkers into a diagnostic/predictive panel with statistical evaluation 

using a multivariate model has become increasingly popular. It is important to note 

that although adding many features to a metabolite panel can significantly improve 

prediction accuracy, the practicality and feasibility of analysing a larger number of 

features in a clinical setting must also be considered. Combining multiple promising 

biomarkers can improve discriminatory power and yield a higher AUC value. As 

illustrated in Figure 7.7, multivariate logistic regression analyses combining 2, 3, 4, 

and 5 metabolites were performed. Combining the two metabolites with the highest 

individual AUC values (PC aa C38:1 and HexCer(d18:1/20:0)) gave an improved 

AUC value of 0.972 (95% confidence interval = 0.759 – 1). Combining the three 

metabolites with the highest individual AUC values (PC aa C38:1, 

HexCer(d18:1/20:0), and Taurine) once again  generated an improved AUC value of 

1 (95% confidence interval = 0.805 – 1). Increasing the number of metabolites in the 
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model to four or five does not improve the discriminatory power of the models when 

compared to the three-metabolite combination. 
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Table 7.3: Receiver operating characteristic curve analysis of differentially abundant metabolites in MM and EMM plasma. Summary statistics for 

each metabolite in MM and EMM groups with the corresponding AUC value, p-value and 95% confidence interval. 

 MM EMM MM vs EMM  

Metabolite Mean SD Mean SD AUC p-value 
95% Confidence 

Interval 
↑/↓ EMM 

HexCer(d18:1/20:0) 0.203 0.07263 0.3516 0.0958 0.875 <0.0001 0.627 to 0.983 ↑ 

HexCer(d16:1/24:0) 0.01538 0.004406 0.02833 0.012 0.833 0.0014 0.577 to 0.966 ↑ 

HexCer(d18:1/22:0) 1.638 0.7273 2.3536 0.6853 0.806 0.0122 0.545 to 0.953 ↑ 

GUDCA 0.03938 0.05216 0.1427 0.1823 0.792 0.013 0.530 to 0.946 ↑ 

Tyr 51 21 72 18 0.806 0.0122 0.545 to 0.953 ↑ 

Taurine 75 27 41 14 0.861 0.0001 0.610 to 0.978 ↓ 

DG(16:0_16:1) 0.4228 0.1588 0.7368 0.267 0.875 0.0001 0.627 to 0.983 ↑ 

DG(16:0_18:1) 3.6931 1.1841 5.4711 1.8212 0.778 0.0167 0.515 to 0.939 ↑ 

PC aa C38:1 0.4503 0.2076 0.2189 0.1232 0.875 <0.0001 0.627 to 0.983 ↓ 

PC ae C44:4 0.1694 0.04454 0.2521 0.08194 0.861 0.0013 0.610 to 0.978 ↑ 

PheAlaBetaine 0.00925 0.003012 0.006222 0.002386 0.799 0.0081 0.538 to 0.950 ↓ 

Sum of Aromatic AAs 151 35 190 23 0.861 0.0015 0.610 to 0.978 ↑ 

Total SM-OH / Total SM-non-

OH 
0.1265 0.01507 0.1051 0.01972 0.806 0.0056 0.545 to 0.953 ↓ 

Total TAG 3644 1184 4633 1124 0.722 0.1048 0.457 to 0.907 ↑ 
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Figure 7.6: Plasma concentration [µM] of metabolites with AUC values > 0.8 plotted as boxplots. Significance is marked as follows:   P ≤ 0.05 

‘*’, P≤ 0.01 ‘**’. 
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Figure 7.7: Multivariate receiver operating characteristic (ROC) curves indicating the 

discriminatory power of plasma metabolite combinations. (A) ROC curve computed based on 

the combination of PC aa 38:1 and HexCer(d18:1/20:0). (B) ROC curve computed based on the 

combination of PC aa 38:1, HexCer(d18:1/20:0), and Taurine. (C) ROC curve computed based on 

the combination of PC aa 38:1, HexCer(d18:1/20:0), Taurine, and PC ae C44:4. (D) ROC curve 

computed based on PC aa 38:1, HexCer(d18:1/20:0), Taurine, PC ae C44:4, and the sum of 

aromatic AAs. 95% confidence intervals are depicted in parentheses next to the AUC value. 

 

 

7.3.7 Integration of plasma metabolomics and proteomics using correlation 

analysis 

Multi-omics techniques can provide more comprehensive insights when compared to 

single-omics technologies. We integrated our mass spectrometry-based plasma 

proteomics analysis (Chapter 6) with this targeted metabolomics analysis by 

performing a correlation analysis of the metabolites/lipids and proteins identified in 

the plasma of EMM patients by Spearman’s rank correlation (Figure 7.8). Taurine 

and phosphatidylcholine with diacyl residue sum C38:1 (PC aa C38:1) were 

negatively correlated with the proteins whereas all other metabolites identified were 
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positively correlated with the plasma proteins identified in our proteomics analysis. 

Integrating proteomic and metabolomic analyses can help to identify the most 

promising biomarkers for addition to a biomarker panel. Correlation analyses are 

valuable to investigate collinearity between potential biomarkers. Markers that have 

a strong correlation may indicate a dependency between these variables which can 

inflate standard errors in the model (Li et al. 2015). Feature selection methods, such 

as Least Absolute Shrinkage and Selection Operator (LASSO) regression, are often 

used to address collinearity issues (Huang, He, et al. 2022). A joint pathway analysis 

was performed using MetaboAnalyst 5.0, on the significant metabolites and proteins 

identified, however, no significant metabolic pathway changes were identified. 

Figure 7.8: Spearman’s correlation matrix between differential metabolites and 

proteins in EMM plasma. Blue colour indicates negative correlation; Red colour indicates 

positive correlation. Significant correlations regions were marked by stars (*P < 0.05, **P < 

0.01, ***P < 0.001). 
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7.4 Discussion 

The rewiring of cellular metabolism during carcinogenesis highlights the need for 

more research in cancer metabolomics. Recent studies focusing on breast cancer and 

gastric cancer have demonstrated the ability of metabolomic studies to enhance 

precision medicine by detecting disease subgroups with specific metabolic features 

(Wang et al. 2022; Xiao et al. 2022). Extramedullary lesions arise due to the 

hematogenous spread of myeloma cells combined with an unknown mechanism 

which facilitates myeloma cell intravasation and growth at soft-tissue sites. 

Therefore, we hypothesized that this may result in a change in the plasma metabolic 

profile of EMM patients compared to medullary MM patients. 

Numerous studies have reported a metabolic change in the bone marrow and plasma 

of patients with multiple myeloma when compared to healthy controls. One of the 

earlier metabolomics studies on MM found that metabolite levels in the bone marrow 

and blood plasma quantified by 1H-NMR spectroscopy and ultra-high performance 

LC-MS, respectively, could strongly differentiate between MM patients and healthy 

controls, whereas MGUS and MM patients had similar metabolic compositions that 

could only be weakly differentiated (Ludwig et al. 2020). Many of the differentially 

abundant compounds between MM plasma and healthy controls were classed as 

lipids suggesting a potential link between dysregulated lipid metabolism and 

myelomagenesis. A more recent study combining untargeted and targeted 

metabolomics/lipidomics of bone marrow plasma successfully differentiated patients 

with MGUS from those with active MM,  reporting a decrease in BCAA levels and 

summed lipid species (phosphatidylethanolamines (PE), lactosylceramides (LCER) 

and phosphatidylinositols (PI)) in MM bone marrow plasma compared to MGUS 

bone marrow plasma (Gonsalves et al. 2020). Targeted metabolomics of peripheral 

blood plasma from healthy controls and patients with MGUS, NDMM, and RRMM 

supported previous studies by identifying a clear change in the plasma metabolic 

profile of healthy controls compared with those with plasma cell dyscrasias. 

Additionally, fewer significant changes were detected between MGUS, NDMM, and 

RRMM plasma (Steiner et al. 2018). Combined, this suggests a significant change 

occurs in the metabolome of the bone marrow niche and systemically at an early or 
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premalignant stage of MM, with smaller, less significant changes occurring during 

MGUS to MM transformation. 

Studies deciphering the metabolic profiles related to drug resistant phenotypes and 

treatment response in MM have yielded promising results (Maekawa et al. 2019; Wei 

et al. 2022). The evaluation of serum metabolites in MM patients pre- and post-

therapy identified abnormal levels of metabolites involved in the arginine, proline 

and glycerophospholipid pathways (Wei et al. 2022). Increased serine synthesis and 

enhanced activity of the pentose phosphate pathway was previously reported to 

sustain bortezomib resistance, with the increased expression of phosphoglycerate 

dehydrogenase facilitating increased serine synthesis (Zaal et al. 2017). Thus, there 

is a range of applications for metabolomics in deciphering the molecular mechanism 

associated with MM pathogenesis. Obesity has been defined as a risk factor for the 

progression of MGUS to active MM (Chang et al. 2017). However, the impact of 

obesity on survival outcomes and progression of MM is more controversial, with 

studies reporting conflicting results (Calle et al. 2003; Wallin and Larsson 2011; 

Marques-Mourlet et al. 2023). A recent study evaluating the link between obesity 

and survival outcomes in MM demonstrated that a lower overall survival was only 

associated with underweight and severely obese patients and not overweight or 

moderately obese patients, whereas a previous meta-analysis revealed increased body 

mass index as being associated with increased MM mortality (Wallin and Larsson 

2011; Shah, Whiting, et al. 2023).  

In this chapter, we demonstrated a trend towards increased lipid and triglyceride 

concentrations in the plasma of patients with EMM. Aberrant lipid metabolism has 

been linked to various cancers in recent years (Cheng et al. 2022). Interestingly, 

recent evidence found that individuals using statins for 48-72 months prior to 

diagnosis had a reduced a reduced risk of MM, and MM patients using statins had a 

21% and 24% reduction in all-cause and MM-specific mortality, respectively 

(Sanfilippo et al. 2016; Epstein et al. 2017). In addition, statins have recently been 

reported to act as metastasis inhibitors in colorectal cancer via the inhibition 

metastasis associated in colon cancer 1 transcription (Juneja et al. 2017). 

Investigations into the preventative effects of statins in the progression of MM to 

advanced disease states such as EMM, may yield a new therapeutic approach to 
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prevent or slow MM disease progression. Increased abundance of the fatty acid 

binding protein (FABP), FABP5 has been linked to a poor prognosis and MM 

disease progression (Tierney, Bazou, Lê, et al. 2021; Farrell et al. 2023). Etomoxir 

and orlistat, which inhibit carnitine palmitoyl transferase I (CPT-1) and fatty acid 

synthase (FASN), respectively, reduce the proliferation of myeloma cells, 

highlighting the association between aberrant lipid metabolism and MM 

pathogenesis (Tirado-Vélez et al. 2012). Within the bone marrow microenvironment, 

bone marrow adipocytes (BMA) contribute to myeloma growth, survival, and 

migration (Caers et al. 2007; Liu et al. 2015, 2019). Furthermore, myeloma cells 

have been found to induce lipolysis in adipocytes resulting in the release of stored 

triglycerides and subsequent hydrolysis to yield free fatty acids and glycerol. These 

fatty acids can be taken up by myeloma cells through fatty acid transporter proteins 

and may be used to produce energy through fatty acid oxidation (Panaroni et al. 

2022). Additionally, suppression of CD8+ T cell function within the MM BME has 

been linked to an increased uptake of long-chain fatty acids by CD8+ T cells. MM-

induced lipolysis may contribute to creating an immunosuppressive environment 

within the bone marrow niche (Gudgeon et al. 2023).  

Dyslipidemia is a component of metabolic syndrome, which has been reported to 

have a higher occurrence in MM compared to healthy controls (Markus et al. 2020). 

Reports of hyperlipidemic myeloma have been published since the 1960s, although 

the underlying incidence and mechanisms of this rare form of MM are unknown 

(Cohen et al. 1966; Aubert et al. 1967). Interestingly, several EMM case studies have 

reported hyperlipemia as part of the clinical presentation (Shimokihara et al. 2018; 

Ilyas et al. 2022). Furthermore, a review of cases of hyperlipidemic myeloma found 

that it occurs more predominantly in MM patients with IgA myeloma, which has also 

been linked to a higher risk of future EMM development (Misselwitz et al. 2010; 

Stork et al. 2022). Therefore, the increased lipid levels observed in EMM plasma 

may indicate a link between dysregulated lipid metabolism and EMM although 

further studies are required to confirm this.  

The total sum of aromatic amino acids (phenylalanine, tryptophan, and tyrosine) was 

significantly increased in abundance in EMM plasma. Alterations in aromatic amino 

acid biosynthesis pathways have been reported in a number of cancers (Akbari et al. 
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2021; Di Cesare et al. 2023). Increased expression of aromatic amino acids in breast 

cancer tissue compared to healthy tissue has been identified as a potential diagnostic 

marker (Contorno et al. 2021). Serum levels of phenylalanine and tyrosine were 

found to be increased in MM patients compared to healthy controls (Puchades-

Carrasco et al. 2013). Of the three aromatic amino acids, univariate analysis 

identified tyrosine as being significantly increased in EMM plasma, indicating that 

circulating levels of tyrosine may also be increased in MM patients with advanced 

disease. Dysregulation of tyrosine catabolism has been noted in several cancers, 

although limited research has been published in this area in MM (Kurup et al. 2003; 

More et al. 2017; Tong et al. 2021). Although evaluating the overall abundance of 

metabolite classes provides a broad overview of the plasma metabolome, examining 

the metabolome at the individual metabolite level provides in-depth information and 

may lead to the identification of strong disease-specific biomarkers. Combining 

powerful metabolite and protein indicators into a diagnostic, prognostic, or predictive 

biomarker panel can improve the overall specificity and sensitivity of the panel. 

Metabolite ratios can act as indicators for molecular processes with biological and 

clinical relevance. For example, the kynurenine/tryptophan ratio which  reflects the 

activity of indoleamine 2,3-dioxigenase 1 (IDO1), a rate-limiting enzyme involved in 

tryptophan catabolism, is a well-known metabolite ratio with relevance to various 

cancers (Badawy and Guillemin 2019). In this study, the ratio of hydroxylated to 

non-hydroxylated sphingomyelins was significantly decreased in EMM plasma, 

while a trend towards increased arginase activity (Orn/Arg) was observed in EMM 

plasma. Although no significant change in sphingolipid concentrations between MM 

and EMM plasma was identified, the decreased ratio of hydroxylated to non-

hydroxylated sphingomyelins may indicate dysregulation in sphingolipid 

hydroxylation. As hydroxylation is an oxygen-dependent process, the extent of 

sphingomyelin hydroxylation may be affected by hypoxic conditions within the bone 

marrow. Arginase is an enzyme that catabolizes the production of ornithine from 

arginine. Ornithine can then be broken down into polyamines by ornithine 

decarboxylase (ODC) (Bednarz-Misa et al. 2020). Overexpression of arginase has 

been linked to a poor prognosis in various cancers including colorectal cancer and 

Hodgkin lymphoma (Romano et al. 2016; Ma, Lian, et al. 2019). In MM, inhibition 

of arginase was found to reduce tumour growth in vivo and has been suggested to 
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contribute to drug resistance (Romano et al. 2018; Ramji et al. 2022). The role of 

arginase in EMM has yet to be evaluated, however, our results indicate increased 

arginase activity in EMM compared to MM. Taurine, phenylalanine betaine and PC 

aa C38:1 were decreased in abundance in EMM plasma. Few studies have been 

published on the roles of these metabolites in cancer, however, several studies have 

suggested a strong anti-tumorigenic role of taurine; although this has not been 

thoroughly analysed in MM (Baliou et al. 2020; Ma et al. 2022). The integration of 

omics technologies is becoming an important aspect of precision medicine, whereby 

disease biomarkers and therapeutic targets are identified at different molecular levels 

providing a more comprehensive view of MM pathophysiology. Incorporating 

metabolite measurements into protein-based biomarker panels can enhance the 

sensitivity and specificity of the panel, as demonstrated previously in pancreatic 

cancer (Fahrmann et al. 2018). This approach is likely to be central to future 

biomarker research, where panels will be composed of proteins, metabolites, genetic 

features, and/or individual patient characteristics. 

As outlined in previous chapters, a limitation of the study is the small sample size 

due to the rarity of EMM. Without validation of metabolite abundance in an 

independent cohort, it is difficult to conclusively state a role of the differentially 

abundant metabolites identified in EMM. Nevertheless, this pilot study does 

demonstrate a change in the plasma metabolome of EMM patients compared to 

medullary MM patients, highlighting the molecular alterations that distinguish EMM 

from MM. This study provides a starting point for future studies to assess the local 

and systemic metabolic changes in EMM to validate markers of disease identified in 

this study or reveal novel therapeutic targets. The impact of dysregulated lipid 

metabolism on EMM development warrants further investigation in a larger cohort of 

samples. 

7.5 Conclusion 

In conclusion, the findings reported in this chapter serve as a reference for future 

studies evaluating the metabolic signature that differentiates extramedullary multiple 

myeloma from medullary multiple myeloma. Increased levels of various lipid species 

in EMM plasma indicate a potential dysregulation of lipid metabolism that may 

contribute to the development of the more aggressive EMM phenotype. Specific 
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metabolites of differential abundance in EMM plasma compared to MM plasma were 

identified, however, validation of the results in a larger cohort of samples is required. 

This metabolomics analysis builds on the results reported in previous chapters by 

highlighting EMM as a phenotypically distinct condition when compared to 

medullary myeloma, and as such warrants a different therapeutic approach with 

novel drug targets and drug combinations to improve survival rates. 
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Chapter 8 

 

General Discussion 
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8.1 Discussion 

Multiple myeloma accounts for approximately 2% of all cancer diagnoses and 

cancer-related deaths (Padala et al. 2021). As with most cancers, early detection is 

associated with an improved prognosis (Li, Wang, et al. 2019). However, myeloma 

patients have some of the longest diagnostic intervals of all cancer patients, likely 

due to a lack of symptoms or vague symptoms such as fatigue, bone pain, and back 

pain, which can often be attributed to other diseases or conditions (Lyratzopoulos et 

al. 2012; Smith et al. 2022). Individuals diagnosed with the common myeloma 

precursor condition, MGUS, are monitored for myeloma biomarkers, but only 

approximately 1% progress to MM annually. Patients with sMM have an increased 

risk of progressing to active MM, and ongoing studies are aiming to determine the 

best time to begin treatment of sMM to improve long-term outcomes (Mateos et al. 

2022; Vaxman and Gertz 2022). Delayed diagnosis of MM increases disease burden 

and many patients face repeated relapses and progression to more aggressive 

phenotypes including relapsed/refractory MM or extramedullary multiple myeloma 

(Carmichael et al. 2023). These aggressive MM phenotypes often progress quickly 

after treatment and novel therapeutic approaches are needed to improve outcomes of 

this patient cohort. 

A number of analytical approaches including untargeted mass spectrometry, targeted 

proximity extension assays, and targeted immunoassays, were utilised throughout 

this thesis to identify protein, phosphorylation and metabolite signatures associated 

with drug-resistant MM and EMM. Protein abundance can reflect the dynamic 

downstream consequences of genomic and transcriptomic alterations, and examining 

changes in protein levels provides a comprehensive insight into the molecular events 

underlying MM pathogenesis (Boys et al. 2023). Investigating post translational 

modifications provides further insight into malignant phenotypes due to their 

influence on the spatial localization, structure, and biological functions of proteins. 

Finally, the evaluation of metabolite levels addresses another layer of complexity 

within the disease phenotype.  

Discovery proteomics using mass spectrometry and a data-dependent acquisition 

(DDA) approach, are often used initially to quantify changes in protein abundance in 

biological samples. Limitations of DDA include precursor ion selection being biased 



 

256 

towards high abundant proteins and the stochastic nature of ion selection which 

hinders reproducibility (Barkovits et al. 2020). The data independent acquisition 

(DIA) approach for untargeted MS-based proteomics has garnered increased 

attention in recent years as it overcomes the under-sampling limitations of DDA. 

However, DDA remains the most widely used approach within the proteomics 

community, mainly due to its flexibility and ease of setup and data analysis (Hu et al. 

2016). Following mass spectrometry analyses using DDA, targeted proteomic 

approaches are typically applied to narrow down potential biomarkers for further 

validation (Sobsey et al. 2020). Many proteomic studies have been conducted with 

the aim of identifying novel biomarkers or biomarker panels in MM (Dytfeld et al. 

2016; Zhao et al. 2020; Setayesh et al. 2023). In fact, several well-established 

protein-based diagnostic and risk stratification biomarkers including B2M, LDH, and 

albumin, are currently used in the clinical work-up of MM patients (Rajkumar 2022). 

However, novel biomarkers are needed to unravel the clinical complexities of MM, 

especially regarding patient response to treatment. With the introduction of novel 

therapeutics with specific targets, detecting target expression in myeloma cells can 

help determine the likelihood of response to treatment. Many FDA-approved MM 

immunotherapies, including elranatamab, and investigational immunotherapies target 

BCMA on myeloma cells (Cho et al. 2020). Studies on BCMA CAR-T cells and 

bispecific T-cell engagers have identified soluble BCMA levels as a potential 

biomarker of response to BCMA-targeted treatment (Topp et al. 2020; Li, Xu, et al. 

2023).  

The work presented in this thesis sought to (1) identify phosphoproteomic changes in 

myeloma cells based on ex vivo drug response to a selection of drug classes, (2) 

identify plasma proteomic changes based on ex vivo drug response to a selection of 

drug classes, (3) compare the bone marrow proteome of MM patients with and 

without extramedullary spread, (4) identify and verify potential plasma-derived 

biomarkers of extramedullary multiple myeloma, and (5) assess metabolomic 

changes in the plasma of MM patients with and without extramedullary spread. 

Few studies have used ‘omic’ approaches in combination with ex vivo DSRT to 

decipher resistance mechanisms and identify novel predictive biomarkers of 

therapeutic response in MM. Previous work from our research group utilised a label-
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free quantitation (LFQ)-based MS approach in combination with ex vivo DSRT to 

identify proteomic changes that may inform therapeutic decision making in MM 

(Tierney, Bazou, Majumder, et al. 2021). The work presented in Chapter 3 aimed to 

expand on this work by utilising a label-based MS approach in combination with ex 

vivo DSRT to identify phosphoproteomic changes associated with drug response to a 

selection of FDA-approved and investigational therapeutics. Specifically, 

synchronous precursor selection (SPS)-MS3-based quantitation of TMT-labelled 

peptides was performed. Label-based quantitation using TMT labels facilitates 

sample multiplicity and reduces the number of missing quantitation values when 

compared to LFQ. Furthermore, the use of SPS-MS3 technology overcomes the issue 

of reporter ion interference, caused by co-isolated peptide ions, that is common in 

MS2-based TMT experiments (Ting et al. 2011). Several large scale 

phosphoproteomic studies have used TMT-SPS-MS3 methods and successfully 

measured global changes in protein phosphorylation (McAlister et al. 2014; Jiang et 

al. 2017; Babur et al. 2020).  

Myeloma cells that demonstrated resistance to a large number of FDA-approved and 

investigational therapeutics had a distinct phosphoproteomic profile when compared 

to those that demonstrated sensitivity to the majority of drugs evaluated. 

Corroborating with previous research from our research group, proteins involved in 

cell adhesion and cytoskeletal organisation were associated with drug resistant 

myeloma cells, while proteins involved in protein synthesis and RNA processing 

were associated with drug sensitive myeloma cells. These findings translated to the 

phosphoproteome with functional enrichment analyses identifying an enrichment of 

similar biological processes in drug resistant and drug sensitive myeloma cells. The 

SSDA proteins and phosphorylation events identified between Group 1 and Group 4 

samples likely promote resistance to a wide range of therapeutics through general 

resistance mechanisms including CAM-DR, slow cycling rates, and the avoidance of 

apoptosis. Increased abundance of α-actinin, phosphorylated FLNA (S2152), and 

PRKACA, were verified by immunoblot analysis, confirming the trends seen in our 

mass spectrometry analysis and subsequent KSEA. This highlights the proteins, 

phosphorylation sites and predicted kinases identified in this study as potential 

resistance markers for future investigation and validation. 
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Unique proteins and phosphorylation events identified as differentially abundant in 

myeloma cells with resistance/sensitivity to individual drugs may be linked to 

resistance mechanisms associated with a specific drug or drug class. The overlap of 

proteins and phosphorylation events found to be SSDA across the drug groups are 

visualized in Figure 8.1. Seven phosphorylation sites, namely, LAT S224, LIMA1 

S490, ZYX S281, RASGRP2 S576, FLNA S2152, SDPR S293, DMTN S16, were 

commonly differentially abundant across the five individual drugs investigated. 

Phosphorylation sites and proteins demonstrating differential abundance unique to 

specific drugs represent interesting targets for more in-depth analyses into potential 

drug-specific resistance mechanisms. For example, increased levels of HMGA1 in 

PF-431396-sensitive myeloma cells, as described in Chapter 3, may be involved in 

enhancing the sensitivity of myeloma cells to this therapeutic. 

 

Figure 8.1: Cross-comparison of phosphoproteomics data across different drug 

sensitivities. (A) Venn diagram illustrating the common and unique phosphorylation sites 

found to be differentially abundant in Chapter 3. (B) Venn diagram illustrating the common 

and unique proteins found to be differentially abundant in Chapter 3. Venn diagrams were 

generated using an online tool from the Bioinformatics & Evolutionary Genomics website 

(https://bioinformatics.psb.ugent.be/webtools/Venn/). 

This pilot study recommends the combination of phosphoproteomics with ex vivo 

DSRT to unravel signalling pathways associated with drug sensitivity/resistance. We 

have identified common and unique phosphorylation events associated with drug 

resistance to individual drugs that warrant further investigation. Future work focused 

on the validation of the results of this study will undoubtedly identify key proteins 
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and phosphorylation events associated with drug resistance in MM. This approach 

also has broad applications in other cancers that are suitable for ex vivo DSRT. 

Moreover, studies with a larger sample size and possibly a more in-depth 

phosphoproteomic analysis incorporating fractionation prior to MS analysis, hold 

potential to generate a large database specifying the differentially abundant proteins 

and phosphorylation events associated with sensitivity/resistance to a large number 

of FDA-approved and investigational drugs. This could provide valuable information 

to the broader cancer research community, especially as drug repurposing has 

emerged as a promising approach to identify novel therapeutics (K W To and Cho 

2022).   

In Chapter 4, a plasma proteomics analysis in combination with ex vivo DSRT was 

performed to identify potential circulating biomarkers of therapeutic response. 

Previous studies combining ‘omics’ approaches with ex vivo drug screening have 

focused on identifying molecular alterations within the malignant cells. To the best 

of my knowledge, this study is the first to evaluate changes in the plasma proteome 

based on ex vivo DSRT. Prior to LFQ-based MS, plasma samples were 

immunodepleted to remove high abundant proteins and improve the likelihood of 

detecting biologically relevant low abundant proteins. The detection of disease-

specific biomarkers in MS-based plasma proteomic studies is more difficult than 

cellular proteomics due to the low number of proteins quantified when compared to 

the high protein composition of cells. Furthermore, despite significant improvements 

in the sensitivity and specificity of proteomic technologies, detecting and quantifying 

a protein produced by myeloma cells, secreted into the circulatory system in 

sufficient quantities and with an adequate half-life to facilitate detection, remains a 

significant challenge (Veenstra et al. 2005). However, establishing biomarker panels 

that are detectable in biofluids is crucial in the era of precision medicine. This is 

especially true in MM research as an invasive and painful lumbar puncture is 

required to collect tumour cells from the bone marrow of MM patients. Huge efforts 

have been made to characterise the plasma proteome to aid future biomarker 

discovery studies (Omenn 2004). In MM, circulating tumour cells (CTCs) are 

garnering increased attention as a source of minimally invasive, easily accessible 

biomarkers (Li, Zhang and Cai 2023). Evaluating the percentage of CTCs in the 

peripheral blood of myeloma patients has prognostic value, with greater than 0.01% 



 

260 

CTCs indicating an adverse prognosis (Garcés et al. 2022). Several studies have 

evaluated proteomic biomarkers in serum/plasma of MM patients versus healthy 

controls and in MM patients with differential response to treatment (Rajpal et al. 

2011; Ma, Piao, et al. 2019; Chanukuppa et al. 2021). 

Too many sets of drugs were analysed in Chapter 4 to visualize overlapping proteins 

from the mass spectrometry analysis on a Venn diagram, however, the full list is 

available in Supp. File 8.1. No protein was differentially abundant across all 7 drugs, 

however, two proteins, namely, Inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1) 

and gelsolin (GSN), were SSDA across 6 of the 7 drugs analysed. Unique proteins 

linked to drug sensitivity/resistance were identified for each of the drugs: bortezomib 

(15), lenalidomide (8), dinaciclib (5), PF-04691502 (3), quisinostat (2), venetoclax 

(4), and navitoclax (2). As in Chapter 3, this highlights the potential of this approach 

to identify markers associated with general resistance mechanisms and drug-specific 

markers of response that may be incorporated into a biomarker panel for the 

prediction of drug resistance/sensitivity. Evaluating plasma cytokine levels in MM 

patients with differential ex vivo response to various drugs also yielded interesting 

results. A noteworthy finding was the correlation between increased IL-15 levels and 

increased sensitivity to a range of drugs including MEK inhibitors, PI3K/mTOR 

inhibitor, CDK inhibitors and HDAC inhibitors. This supports currents studies into 

the use of  IL-15 agonists in combination with chemotherapies to enhance antitumour 

efficacy. Patients with higher circulating levels of IL-15 may exert a stronger anti-

tumour immune response resulting in a higher susceptibility to certain therapeutics. 

In contrast, patients presenting with reduced plasma levels of IL-15 may benefit from 

IL-15 agonists to enhance the anti-tumour response and potentially overcome 

resistance to certain chemotherapies (Allegrezza et al. 2016; Shi et al. 2023). 

Furthermore, the link between increased plasma FLT3LG and drug response 

demonstrated in this work and other studies, highlights the positive implications of 

specific cytokine profiles on response to therapy. These findings may guide future 

research validating circulating cytokine profiles associated with drug response. 

It is important to note that in Chapters 3 and 4, several drugs from different drug 

classes were selected for investigation. However, the ex vivo DSRT platform can 

evaluate the response of myeloma cells to hundreds of FDA-approved and 
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investigational drugs in a single experiment. Therefore, ex vivo DSRT in 

combination with ‘omics’ technologies can provide a huge amount of data on the 

molecular profiles of MM patients considered sensitive or resistant to hundreds of 

drugs. The small studies described in this thesis demonstrate the potential of larger 

studies with large sample sizes to define molecular drug response profiles to 

hundreds of drugs. This opens numerous avenues involving the use of this approach 

to discover novel mechanisms of resistance, especially against investigational 

therapeutics which may be in the early stages of clinical trials with limited data on 

the development of resistance in humans. Furthermore, as functional precision 

medicine approaches are now being evaluated in clinical trials, concomitant 

collection of additional myeloma cells and blood plasma for ‘omic’ analysis may 

identify predictive markers of drug response that can be easily measured in a clinical 

setting; for example, through the use of a multiplex ELISA panel that predicts 

response to specific therapeutics. These markers may also be valuable for monitoring 

drug response, however, longitudinal samples during treatment must be collected to 

evaluate this. 

Although Chapters 3 and 4 focus on the discovery aspect of biomarker development, 

it is hoped that validation studies with large cohorts will identify the most sensitive 

and specific biomarkers for potential translation to a clinical setting. As mentioned, 

there is a growing need for biomarkers to predict drug response to cancer 

chemotherapeutics. This need is even more pronounced for MM patients who 

repeatedly relapse, often receiving greater than 5 lines of therapy. It is crucial that 

MM patients receive therapeutic regimens that will result in a prolonged duration of 

remission, as this is directly linked to overall survival (Migkou et al. 2011). To do 

this, a precision medicine approach is required and the use of multiplexed protein 

biomarker panels to predict drug response offers a straightforward, easily 

implementable means of bringing precision medicine to the clinic (Figure 8.2). 
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Figure 8.2: Framework for the clinical application of ex vivo drug screening in 

combination with molecular profiling. DSRT, drug sensitivity resistance testing. 

Despite the fact that myeloma cells were collected from MM patients at diagnosis 

and relapse, a clear distinction can be seen between the very resistant and very 

sensitive chemosensitivity groups at both the proteomic and phosphoproteomic level. 

Although it will be necessary to adjust for these confounding factors in future 

validation phases, the distinct proteomic profiles identified in this study imply the 

presence of similar phosphoproteomic alterations linked to resistance both at 

diagnosis and relapse. The emergence of resistant myeloma subclones following 

treatment rather than intrinsic resistance is common in MM, and future studies with 

larger sample sizes should compare the phosphoproteomic changes in myeloma cells 

showing intrinsic resistance prior to treatment exposure, and those with acquired 

drug resistance following treatment exposure in a clinical setting. Furthermore, the 

analyses presented in Chapters 3 and 4 use ex vivo DSRT to stratify patients based on 

drug response. As outlined in Chapter 3, ex vivo DSRT has limitations including the 

inability to recreate the bone marrow microenvironment composition during the 

viability assay, which must be considered when evaluating the results of these 

chapters. Future studies combing large sample sizes, ex vivo DSRT, and downstream 

omics technologies should determine the accuracy of ex vivo drug responses by 
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comparing to patients’ clinical outcomes. Although this requires extensive resources, 

collaboration with physicians, and time, this approach would strengthen the 

reliability of the results presented in this pilot study. 

Chapters 5, 6, and 7 focus on deciphering the molecular phenotype of EMM. Our 

pilot studies using LFQ mass spectrometry to evaluate proteomic changes in the bone 

marrow and plasma of MM patients with and without extramedullary spread are the 

first of its kind. Chapter 7 builds on the results of Chapters 5 and 6 by identifying 

alterations in the plasma metabolome of MM patients with and without 

extramedullary spread. The combination of these chapters highlights the distinct 

molecular phenotype associated with EMM, while the individual chapters identify 

differentially abundant proteins and metabolites that warrant further validation as 

potential biomarkers of EMM. Proteomic analysis of bone marrow mononuclear cells 

from EMM and MM patients using LC-MS/MS had not previously been conducted. 

A clear shift in the proteome of the bone marrow mononuclear fraction in EMM 

compared to MM was identified. An enrichment of proteins linked to the focal 

adhesion pathway, ECM-receptor interactions, and leukocyte transendothelial 

migrations indicates cytoskeletal changes associated with alterations in cell adhesion 

and motility. Establishing protein signatures that are suggestive of cytoskeletal 

remodeling which favours cell motility may be informative for monitoring EMM 

development (Aseervatham 2020). An interesting pattern of increased abundance of 

proteins involved in the ILK signalling pathway was observed in EMM BMNCs, 

highlighting a potential role for this pathway in EMM development. Furthermore, a 

mechanism stimulating the emergence of subclones capable of extramedullary spread 

may involve the increased abundance of HPSE within the bone marrow which 

promotes dissemination via CD138 shedding. The results shown in Chapter 5 support 

this hypothesis. The main limitation of this study was the investigation of cells from 

the bone marrow and not myeloma cells from extramedullary sites. Unfortunately, 

samples from the site of extramedullary metastasis were unavailable for analysis. 

Therefore, it is important to remember the dynamic nature of protein expression, 

where decreased abundance of certain adhesion proteins in the bone marrow may 

facilitate intravasation, followed by re-expression of these proteins in circulation to 

facilitate tumour development at extramedullary sites. For example, there is evidence 

of dynamic surface expression of CD138 in myeloma cells where CD138-negative 
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cells promote dissemination while CD138-positive cells promote growth and 

survival. Evidence shows that CD138-negative cells can regain CD138 surface 

expression in circulation via unknown serum factors, which can promote 

extravasation to a new metastatic site (Akhmetzyanova et al. 2020). Furthermore, the 

evaluation of BMNCs instead of CD138+ myeloma cells affects the interpretation of 

the results presented in Chapter 5. It is important to remember that the proteomic 

changes identified may originate from other cells in the mononuclear fraction. 

Our plasma proteomics study (Chapter 6) identified plasma-derived markers of 

EMM that demonstrated excellent predictive power when used in combination. 

Although the mechanism that leads to increased levels of VCAM1, HGFA, and 

PEDF in EMM plasma is unknown, they represent promising biomarkers that can be 

easily quantified in patient plasma using immunoassays. Interestingly, VCAM1, 

HGFA, and PEDF levels were also increased in MM patients with del(17p), a 

cytogenetic abnormality linked to EMM development. It is hoped that future large-

scale studies or clinical trials will evaluate the levels of these markers in the plasma 

of EMM patients to validate these findings and progress the development of these 

proteins as biomarkers for clinical use. Although proteins are more established as 

clinical biomarkers than individual metabolites and the initial focus should be placed 

on the validation of the significant proteins identified in Chapter 6, the metabolomic 

analysis seen in Chapter 7 highlights metabolic alterations in EMM compared to MM 

and supports further research investigating changes in the metabolism of EMM cells.   

The limited efficacy of current MM therapeutics in the treatment of EMM is 

exemplified by the well-known poor prognosis of EMM patients (Lonial et al. 2021; 

Rosiñol et al. 2021). Despite the approval of novel MM therapeutics such as 

immunotherapies, preliminary studies have indicated that EMM patients do 

significantly worse in terms of the long-term efficacy of these treatments (Jelinek et 

al. 2022; Li, Liu, et al. 2022b). The research presented in this thesis illustrates a clear 

phenotypic change in the bone marrow niche and blood plasma of EMM patients 

compared to MM patients, suggesting a need for novel drug combinations or drug 

targets for the treatment of EMM to improve patient prognosis and treatment 

response (Figure 8.3). Several studies have reported the influence of the bone 

marrow microenvironment in myeloma cell dissemination (Forster and Radpour 
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2022; Gregorova et al. 2022). Targeting a pro-migratory BME may be a promising 

prophylactic approach to limit the emergence of myeloma subclones with capacity 

for extramedullary spread (Ho et al. 2022). Chapter 6 results show that sVCAM1 

levels are increased in EMM patient plasma and correlate with sensitivity to the 

BCL-2 inhibitors, venetoclax and navitoclax, highlighting the potential of BCL-2 

inhibitors for the treatment of EMM. Several proteins increased in abundance in 

EMM bone marrow mononuclear cells including LGALS1, HPSE, ROCK2, and ILK 

have specific inhibitors available that warrant investigation in the context of 

myeloma dissemination and EMM development. Monitoring heparanase levels 

within the BME to identify MM patients that may benefit from roneparstat treatment 

may represent a promising therapeutic option to prevent EMM progression. Table 

8.1 summarizes the protein targets that have been linked to EMM in the literature and 

in this thesis. This table also highlights specific inhibitors of these proteins that may 

represent promising therapeutics for the treatment of EMM. Crucially, large multi-

centre studies are required to incorporate satisfactory sample sizes to evaluate the 

efficacy of novel drug combinations in EMM. 
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Figure 8.3: Summary of the proteomic alterations identified in this thesis when 

comparing extramedullary multiple myeloma and multiple myeloma without 

extramedullary spread. HPSE, heparanase; TAGLN2, transgelin-2; CA2, carbonic 

anhydrase 2; ITGA2, integrin alpha 2; LGALS1, galectin-1; ILK, integrin-linked kinase; 

PINCH1, particularly interesting new Cys-His protein; PARVB, β-parvin; RSU1, Ras 

suppressor protein 1; PKM2, pyruvate kinase M2; SYK, spleen tyrosine kinase; PCK2,  

phosphoenolpyruvate carboxykinase 2; FBL, rRNA 2'-O-methyltransferase fibrillarin; 

ACO2, aconitate hydratase; TRIM28, tripartite motif-containing 28; SPTAN1, spectrin alpha 

chain, non-erythrocytic; HGFA, hepatocyte growth factor activator; VCAM1, vascular cell 

adhesion molecule 1; PEDF, pigment epithelium derived factor; ELA2, elastase 2; HexCer, 

hexosylceramide; DG, diglyceride; IL-17C, interleukin-17C; PC, phosphatidylcholine.
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Table 8.1: Potential targets/markers and associated therapeutics for the treatment of EMM patients based on the current literature.* This table 

provides a rationale for future studies focusing on the detection of drug targets in EMM.  

Protein 

Target/Marker 

Potential 

Therapeutic 
Method of Target Detection FDA Approval Reference 

Potential protein targets in extramedullary multiple myeloma (identified from the literature) 

BCL2 Venetoclax 
Immunohistochemistry, qPCR, flow 

cytometry 

Yes—Acute myeloid leukaemia, Chronic 

lymphocytic leukaemia 

(Ludwig et al. 2019; Sidiqi et al. 

2021) 

BCL2, BCL-XL Navitoclax 
Immunohistochemistry, qPCR, flow 

cytometry 
No 

(Ackler et al. 2010; Ludwig et al. 

2019) 

XPO1 Selinexor Immunohistochemistry Yes—Multiple myeloma (Bahlis et al. 2018; Yee et al. 2019) 

Aminopeptidase 

expression 
Melflufen RNA sequencing No 

(Miettinen et al. 2021; Richardson et 

al. 2021) 

MEK Trametinib Targeted sequencing for RAS mutations 

Yes (in combination with dabrafenib)–

Various metastatic solid tumours with 

BRAF V600 E mutation 

(Touzeau and Moreau 2016; 

Sriskandarajah et al. 2020) 

CD44v 4SCAR-CD44v6 Immunohistochemistry, flow cytometry No (Dahl et al. 2002; Gupta et al. 2022) 

BRAF V600E 

Vemurafenib, 

encorafenib, 

binimetinib 

Allele-specific PCR 
Yes–Metastatic melanoma with BRAF 

V600 E mutation 
(Mey et al. 2017; Giesen et al. 2023) 

Potential protein targets in extramedullary multiple myeloma (identified in this thesis) 

LGALS1 OTX008 Immunohistochemistry No 
(Storti et al. 2016, 2017; Mariño et 

al. 2023) 

HPSE Roneparstat Immunohistochemistry No (Galli et al. 2018) 

ROCK2 Belumosudil qPCR, immunohistochemistry Yes–Chronic graft-versus-host disease (Cutler et al. 2021) 

ILK 
QLT0267, 

Compound 22 
Immunohistochemistry No 

(Kalra et al. 2009; García-Marín et 

al. 2022) 

Lipids Statins Unknown Yes 
(Brånvall et al. 2020; Gohlke et al. 

2022) 

*This table was adapted from (Dunphy et al. 2023). 

Abbreviations: BCL2, B-cell lymphoma 2; qPCR, quantitative polymerase chain reaction; BCL-XL, B-cell lymphoma—extra large; XPO1, exportin 1; MEK, 

mitogen-activated protein kinase kinase; BRAF, B-Raf.
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8.2 Future work 

Despite decades of research on the pathogenesis of MM, it remains an incurable 

cancer with patients repeatedly relapsing over the course of the disease. Why is this? 

The treatment of chronic myeloid leukemia was revolutionized by the introduction of 

the tyrosine kinase inhibitor, imatinib (Hochhaus et al. 2017). Have we yet to 

identify the single molecular target that will facilitate curative treatment in MM? 

Maybe, however, as research methods have become more sophisticated and sensitive 

this possibility becomes unlikely. If this is the case, then how do we as scientists 

approach the study of a cancer as complex as MM to yield clinically relevant results 

that will directly improve the lives of MM patients? In my opinion, the stratification 

of MM patients based on risk or predictive drug response will need to include a 

combination of clinical data, genetic information, protein measurements, and 

potentially transcriptomic and/or metabolomic information to accurately predict the 

clinical course of MM patients and adapt therapeutic decision-making accordingly.  

This project was exploratory in nature as we set out to identify novel molecular 

signatures of drug response and extramedullary myeloma. Therefore, several aspects 

of this project need rigorous follow-up investigation using large sample sizes to 

validate our findings and begin the next step of translating these results into a clinical 

setting. Our studies combining phosphoproteomics and plasma proteomics with ex 

vivo DSRT identified promising protein signatures associated with drug 

sensitivity/resistance to drugs from a variety of drug classes. Validation studies 

incorporating ex vivo DSRT, clinical data, and protein measurements are required to 

confirm the value of these biomarker signatures as predictors of drug response. The 

ability of ex vivo DSRT to examine response to hundreds of drugs is a powerful 

approach to precision medicine. I believe a large-scale study combining ex vivo 

DSRT with genomics, transcriptomics, proteomics, and metabolomics, would 

provide a wealth of information that would help construct clear sensitivity/resistance 

profiles that could be utilised to construct biomarker panels of drug 

sensitivity/resistance or identify proteins or pathways that can be targeted to 

overcome drug resistance. The use of this approach to construct predictive biomarker 

panels of drug response to individual therapeutics would aid therapeutic decision-
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making and improve patient response to treatment, especially at late stages of disease 

as myeloma patients become refractory to a large number of therapeutics. 

Regarding EMM, an international, collaborative initiative is required to decipher the 

mechanisms associated with EMM development, identify biomarkers with clinical 

usability and detect potential therapeutic targets. Currently, there are no EMM-

specific treatment regimens and as response to current treatment options including 

immunotherapy remains poor, novel therapeutic targets must be identified to 

establish novel treatment regimens for EMM. In this work, we have identified a clear 

phenotypic change in the proteome of BMNCs and the plasma proteome and 

metabolome, highlighting EMM as a molecularly distinct form of MM. Thus, a novel 

therapeutic approach is required for the treatment of EMM. EMM can be diagnosed 

at diagnosis or relapse, and it is important to monitor the development of this 

aggressive sub-entity to inform clinical decision-making. In Chapter 6, we identified 

plasma-derived markers of EMM that warrant validation in a larger cohort of 

patients. These biomarkers can be longitudinally measured throughout the clinical 

course of MM patients, and if the levels of these markers are increased, advanced 

imaging tests can be performed to determine the presence of extramedullary lesions 

and adapt treatment accordingly. The use of these EMM markers will become 

increasingly important as EMM-specific clinical trials and standard treatment 

regimens become more common.  

As mentioned, changes in the bone marrow microenvironment can influence 

myeloma cell dissemination into circulation. Therefore, I believe that the 

development of a prophylactic approach may hold relevance in EMM. In Chapter 5, 

we identified hundreds of proteins of differential abundance within the bone marrow 

of EMM patients compared to MM patients. Of particular interest was the increased 

abundance of proteins linked to leukocyte transendothelial migration, the ILK-

PINCH-Parvin (IPP) complex, and the HPSE/CD138 axis. It is hoped that further 

validation of differential protein abundance will yield a protein signature that is 

indicative of a pro-migratory bone marrow microenvironment or EMM development. 

Subsequent longitudinal studies monitoring the abundance of these proteins 

throughout the disease course may identify a change to a pro-migratory phenotype 

within the bone marrow which promotes EMM development. Patients found to have 
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a pro-migratory bone marrow niche may benefit from treatment with therapeutics 

that target this niche to reduce myeloma cell dissemination and the establishment of 

lesions at extramedullary sites. Given the identification of HPSE as a key 

determinant of myeloma cell dissemination, the HPSE inhibitor, roneparstat, may 

benefit patients with increased likelihood of progression to EMM. As different 

clinical factors including the IgA immunoglobulin type, del(17p), and RAS 

mutations have been linked to EMM involvement, a risk prediction model 

incorporating these factors and the proteins identified in our study may accurately 

identify MM patients with increased risk of EMM progression. Although these 

statements represent my personal hypotheses on the future of EMM research, we 

believe that the research reported in Chapters 5, 6, and 7 provide a starting point for 

the future implementation of this approach in clinical settings. EMM-specific clinical 

trials are urgently needed to start the process of establishing standards for the clinical 

work-up and treatment of EMM patients.  

As outlined in Chapters 3 and 4, the use of ex vivo DSRT holds promise as a 

precision medicine approach. An ex vivo drug screening of myeloma cells from 

extramedullary sites may help determine the susceptibility of these cells to a wide 

range of therapeutics. However, ex vivo drug screening approaches typically need a 

large number of fresh cells, which can be limited due to the rarity of EMM. Another 

aspect of EMM pathology that must be elucidated is the reason why circulating 

myeloma cells extravasate into specific soft tissues or organs such as the lungs, skin, 

or central nervous system. As mentioned in Chapter 5, neutrophils and NETs have 

been linked to the formation of a pre-metastatic niche at sites prior to the arrival of 

tumour cells (Chen and Yu 2023). Furthermore, from our results and the literature, 

hypoxia and the generation of ROS may play a role in stimulating the intravasation 

of myeloma cells into the peripheral blood in MM. Whether this is based on an 

intrinsic mechanism which increases the activity of HIF-1α or the location of the 

myeloma cells in an oxygen poor part of the bone marrow is unknown. Further 

research into the role of neutrophils and hypoxia in the process of EMM 

development are needed.  
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8.3  Conclusion 

In conclusion, this thesis has used proteomic and metabolomic techniques to identify 

novel potential markers of the aggressive phenotypes of MM, drug-resistant MM and 

extramedullary multiple myeloma. This work has provided novel insight into the 

phosphoproteomic and proteomic alterations that are associated with drug response 

in myeloma cells and blood plasma, respectively. Furthermore, we have provided 

evidence of a distinct molecular phenotype associated with extramedullary multiple 

myeloma. The differentially abundant proteins and metabolites identified in Chapters 

5, 6, and 7 contribute to our understanding of EMM pathophysiology. As biofluid-

derived biomarkers are urgently required for rapid, non-invasive assessment of 

myeloma patients, proteomic profiling of blood plasma in drug-resistant MM and 

EMM identified promising protein biomarkers that warrant further validation in a 

large cohort of samples. Hepatocyte growth factor activator, vascular cell adhesion 

molecule 1 and pigment epithelium derived factor are significant biomarker 

candidates of interest for the detection of EMM. Throughout this work, overlapping 

biological processes, signalling pathways, and proteins were linked to drug-resistant 

MM and EMM, highlighting the need for novel therapeutic targets to combat these 

late-stage, aggressive phenotypes of MM. With further research expanding on the 

findings presented throughout this thesis, the molecular complexities associated with 

aggressive MM phenotypes can be elucidated and translated into clinical settings to 

improve patient outcomes. 
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Supp. Figure 3.1: Kinase substrate enrichment analysis (KSEA) based on response to 

bortezomib. KSEA was performed to characterize kinase regulation based on drug 

resistance/sensitivity to bortezomib. Kinases with a p-value < 0.05 are highlighted as red and 

blue bars. Red bars indicate kinases predicted to be activated in myeloma cells most resistant 

to bortezomib whereas blue bars indicate kinases predicted to be activated in myeloma cells 

most sensitive to bortezomib. 

Supp. Figure 3.2: Kinase substrate enrichment analysis (KSEA) based on response to 

luminespib. KSEA was performed to characterize kinase regulation based on drug 

resistance/sensitivity to luminespib. Red bars indicate kinases predicted to be activated in 

myeloma cells most resistant to luminespib. 
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Supp. Figure 4.1: Association between plasma concentrations of interleukin-15 and 

sensitivity to MEK inhibitors. Plasma levels of IL-15 were significantly increased in 

patients considered most sensitive to MEK inhibitors based on ex vivo drug sensitivity 

resistance testing. 
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Supp. Figure 6.1: Receiver operating characteristic (ROC) curve analysis of 

statistically significant differentially abundant cytokines in EMM plasma. (A) 

Interleukin-10 (IL-10) (B) Interleukin-6 (IL-6) (C) Interleukin-17C (IL-17C) (D) Combined 

ROC curve evaluating the ability of IL-10, IL-6, and IL-17C combined as discriminatory 

markers of EMM. 

 

 


