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The topic of house price index modelling is one which is central to a significant

number of market stakeholders; governments, central banks, homeowners and busi-

nesses, among others. The impact which property price indices have on inflation,

economic growth and policy-making are profound, yet the methodology and pro-

cesses behind the generation of these statistics tools are rather opaque.

National statistical agencies will typically use one of two de-facto standard meth-

ods for modelling the housing market, those being hedonic regression and repeat-

sales. While these methods bring with them distinct advantages, they also suffer

from significant drawbacks. One of the most problematic of the these is the volume

of rich property data required by the model. These data requirements often neces-

sitate the use of non-public data sources, usually acquired through privileges as a

government agency. As such, it is difficult for end-users of these statistics to verify

the veracity, reliability and accuracy of the results.

Furthermore, these intensive data requirements induce a typical lag to publica-

tion in excess of two months. As a result, not only homeowners and businesses, but

even policy-makers are operating on stale information, which is a substantial limita-

tion given the critical influence exerted by the housing market on so many facets of

the economy.

Our proposal is a novel, geospatially stratified house price index model which

can be computed automatically on publicly available datasets. The algorithm does

not require additional, privately-held attribute data for each property, nor does it

necessitate a great deal of statistical expertise to implement, maintain and interpret,

as the existing standards do. In this thesis, we will outline our methodology and

demonstrate the performance of the index, initially on the Irish property market.

Following an initial study on Irish sale transactions, the model is extended to

a database of asking prices for homes online, thus demonstrating the flexibility of

the approach. This illustrates the accessibility of the model to operate on a variety

of data sources. Finally, our algorithm will be employed to create a property price

index for the United Kingdom, where the public dataset of sale transactions is sig-

nificantly more plentiful. The results of this demonstrate that our index is not only

as good as the official hedonic regression model produced by the ONS in the UK,

but far exceeds the smoothness and noise reduction achieved by said model, while
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maintaining a month-to-month correlation in excess of 85%. Moreover, our proposal

achieves this with a lag time from data publication in the order of hours, rather than

weeks, as per the ONS house price index.
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Chapter 1

Introduction

1.1 The role of price indices

Price indices are a critical tool in economics and policy-making; their primary pur-

pose being to measure changes in the cost of goods and services over time. The most

common formulations of price indices are the Laspeyres, Paasche and Fisher indices,

each of which will be outlined in this section, along with their distinct strengths and

weaknesses.

While these indices can be applied to any basket of goods and services (such as

the raw materials used by producers, for example), perhaps the most important use

of price indices is in deriving the rate of consumer price inflation (CPI): the annual

percentage change in a comprehensive, representative weighted basket of consumer

goods and services.

Measurement of the CPI is of interest to many stakeholders, for a wide variety of

reasons. Central bank policy makers keenly monitor the consumer inflation rate in

order to assess the state of the economy and inform their monetary policy. The rate

of inflation running too high erodes the purchasing power of consumers, leading to

a potential slump in demand and economic recession. Deflation, which is when the

annual inflation rate runs below zero, is also highly problematic, as it encourages

consumers to wait for non-essential goods and services to become cheaper before

purchasing them.

Price indices, such as the CPI, are often linked to contracts for pay and provision

of services. For example, public sector employment contracts and social benefits,
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such as pensions, are frequently directly linked to the rate of consumer price infla-

tion, i.e. are inflation-linked. As such, each year, the payments made under these

contracts are automatically up-rated by the inflation rate derived from the index.

Similarly, many long-term service contracts, such as rental agreements, are inflation-

linked, resulting in annual rent increases in-line with inflation.

These applications of economic price indices are also important in allowing accu-

rate measurement of other economic indicators. The change in nominal gross domestic

product (GDP), which is the monetary market value of all final goods and services

produced in a country (typically within a one-year period), is not an accurate mea-

sure of economic growth without adjusting for inflation (Brezina, 2011). Suppose,

for example, that inflation is running at a 2% annual rate, while the gross value of

all produced goods and services is also 2% higher than a year prior. Given that, in

this case, the increase in gross value is entirely due to price inflation, the change in

real gross domestic product is zero, indicating no economic growth.

The use of price indices to compute the rate of inflation, along with applying

inflation-adjustments to economic statistics, informs policy makers in how they should

adjust monetary policy in order to keep inflation in their target range and stimulate

or dampen economic growth. However, the price index methodology used to calcu-

late it varies internationally, with different nations adopting different index forms in

their methodology.

1.1.1 The Laspeyres index

The Laspeyres index was one of the earliest methodologies used in measuring the

changes in price of goods and services and is still widely used today. For example,

the consumer price indices produced by both the Office for National Statistics in the

United Kingdom and the Bureau of Labor Statistics in the United States employ a

Laspeyres-style index in their respective methodologies.

This index formulation measures the change in price of a basket of goods and ser-

vices by comparing the sampled prices in a given time period relative to the prices

of the same basket observed in a pre-determined base period. For example, if the base

period is chosen as January 2020, the price index would be constructed by taking

the quotient of the weighted-average price of the goods sampled in each subsequent
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month with the weighted-average of the base period prices, where the weights re-

main fixed to those set in the base period. Formally:

Lt =

∑
c∈C

pc,t ∗ qc,0

∑
c∈C

pc,0 ∗ qc,0

where:

Lt is the Laspeyres price index level in period t

C is the collection of goods and services in the price basket

pc,t is the price of component c in period t

pc,0 is the price of component c in the base period

qc,0 is the quantity, or weight, of component c in the base period

The Laspeyres index is a popular choice in measuring consumer price trends due

to its simplicity; the weights of the components need only be observed in the base pe-

riod and can be updated periodically, as desired. As a result, the data requirements

of this type of index are lower and thus, it can be computed and published in a more

efficient and timely manner than indices which require more frequent re-weighting.

One key drawback of this decision to fix the consumption weights to the base

period is known as substitution bias. In cases where the price of a particular compo-

nent increases substantially, a portion of consumers are likely to switch to a cheaper,

competing product. The static nature of the weights used in the Laspeyres index

means that this effect is not captured within the price index and, as such, the index

does not respond accurately to real price-demand market dynamics. This typically

results in some over-estimation of the inflation rate (Diewert and Fox, 2022).

1.1.2 The Paasche index

The Paasche index was introduced with the objective of solving the substitution bias

present in the Laspeyres index formulation. Similarly to the latter, the Paasche index
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takes the quotient of the weighted-average current price of the basket of compo-

nents with the weighted-average base period price of said components. The differ-

ence, however, is that the Paasche index uses weights from the current time period

in each weighted-average, effectively re-weighting the basket of components at each

re-calculation of the index. Formally:

Pt =

∑
c∈C

pc,t ∗ qc,t

∑
c∈C

pc,0 ∗ qc,t

where:

Pt is the Paasche price index level in period t

C is the collection of goods and services in the price basket

pc,t is the price of component c in period t

pc,0 is the price of component c in the base period

qc,t is the quantity, or weight, of component c in period t

With regards to addressing the most substantive limitation of the Laspeyres index,

the Paasche formulation succeeds; the substitution effect is accurately accounted for,

as the quantities, or weights, on each component update in every period of calcula-

tion. However, addressing this issue introduces two additional drawbacks.

Firstly, the Paasche index is far more data-intensive to compute. Given that current-

period weights are used in each calculation period, this means that these weights

must be observed and collected each time the index is due to update (e.g. on a

monthly basis). In many cases, it may be difficult to obtain up-to-date consump-

tion patterns on an equivalent frequency to the desired index computation schedule.

This is the primary reason why the Laspeyres index remains a popular choice for key

monthly publications in major nations, such as the consumer price index mentioned

previously.

A secondary effect of this re-weighting methodology is that the Paasche index

tends to do the converse of the Laspeyres index; it typically understates the rate of

inflation. The constant re-weighting of the index results in decreases in product
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consumption owing to price increases being immediately reflected by a drop in the

product weights. As such, the components of the basket which would be the largest

contributors to the inflation rate tend to be mechanically down-weighted before they

do so, owing to the natural effects of market dynamics (Braun and Lein, 2021).

1.1.3 The Fisher index

The Fisher index is widely considered to be the optimal price index, as it manages

to address the drawbacks of both the Laspeyres and Paasche indices simultaneously.

It does this by simply taking the geometric mean of both of these indices. As a

result, both of the methodologies are combined in an equally-contributory manner,

reducing the opposing biases which they exhibit. Formally:

Ft =
√

Lt ∗ Pt

where:

Ft is the Fisher price index level in period t

Lt is the Laspeyres price index level in period t

Pt is the Paasche price index level in period t

By using a geometric mean of the two formulations, the substitution bias is ac-

curately accounted for, as the Paasche-portion of the formula uses the component

weights from the current time period, which will account for consumers who switch

to a cheaper competitor product following a price hike. Despite this, the largest con-

tributors to the inflation rate will also not be entirely mechanically down-weighted,

as they would be in the Paasche index, as the Laspeyres-portion of the formula retains

the base period component weights (Braun and Lein, 2021).

Of course, the Fisher index comes with the inherent downside of requiring addi-

tional work to calculate, due to the fact that both the Laspeyres and Paasche indices

must be computed in order to derive it. This also means that comprehensive, up-

to-date consumption data is required in every time period in which the index is to
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be recalculated, as the components must be re-weighted each time it is updated.

For these reasons, the Laspeyres index generally remains the most popular choice for

consumer price indices internationally, despite acknowledgement that a Fisher-form

index would offer a superior measure of price change.

1.2 Challenges of building price indices for housing

One of the major challenges associated with property price indices, in comparison to

other price indices, is that the stock which the index is attempting to measure is sold

quite rarely and infrequently (Chandler and Disney, 2014). Only a small fraction

of the total stock of of housing is sold in each calendar year, meaning that there

are no guarantees of each year’s set of sale transactions constituting an unbiased,

representative sample of the entire housing market. The problem is exacerbated

when considering sale transactions on a month-by-month basis, which is generally

the minimum requirement of any property price index which aims to be useful to

market stakeholders (Maguire, Miller, et al., 2016).

This raises a key question: which house price indices are attempting to measure

the change in the average price of the housing market as a whole, as opposed to

measuring the typical price of the specific set of properties transacted in a period

of interest (Chandler and Disney, 2014). The former of the two concepts is a highly

desirable metric to housing market stakeholders who wish to track the price of the

asset class, while the latter is more akin to a measure of the mix of sales in each

month, i.e., was a more expensive set of properties sold in month X than in month

Y.

Many house price index models attempt to account for the issue of variations in

the property mix by allowing the typical mix of properties over a period of time to

dictate the weight for each type of property in the construction of the index for the

current month (Silver, 2016). This is a somewhat similar approach to that taken by

the Laspeyres index methodology, as discussed in Section 1.1.1. While this method

is successful in controlling the impact of variations in the mix over the short term,

the longer term effectiveness of this measure is not guaranteed; an arbitrary set of
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transactions remains the determining factor in the index weighting, albeit one which

is sampled over a longer period of time.

A phenomenon which could potentially impact the efficacy of this form of mix

adjustment is the starter home hypothesis. This theory proposes that smaller homes

with a lower value are likely to be sold more frequently than larger, more expen-

sive properties. The reasoning given for this hypothesis is that the owners of these

smaller homes tend to be younger and through career progression, become capable

of moving up the property ladder over time (Costello and Watkins, 2002; Dorsey,

Hu, et al., 2010; Jansen, Vries, et al., 2008; Ortalo-Magné and Rady, 2006). In con-

trast, those who have a larger, more valuable home tend to be more settled and

satisfied and thus are less likely to sell the property. Data on property sale transac-

tions over long periods of time supports the theory, demonstrating that these starter

homes are an over-represented subset of the total number of sale transactions, rela-

tive to the number of said homes in existence (Clapp and Giaccotto, 1992; Costello

and Watkins, 2002; Dorsey, Hu, et al., 2010; Jansen, Vries, et al., 2008).

As a result of the starter home hypothesis, any form of mix-adjustment based upon

the number of sale transactions over a period of time (e.g. one-to-five years) is likely

to suffer from bias towards these smaller homes, which are more affordable for first

time buyers. This leads to under-representation of more valuable properties, which

tend to remain off-market for very long periods of time.

Despite the critical importance of access to consistent, reliable indicators regard-

ing the state of the property market, these factors, among others, have prevented

experts agreeing on a consensus method of constructing a house price index and

thus, a number of distinct methodologies are actively used by various institutions

and national statistical agencies. Each of these methods comes with their own set

of benefits and drawbacks, which will be discussed in more detail later in the thesis

(Chandler and Disney, 2014; Maguire, Miller, et al., 2016).

The three most commonly studied and utilised methods of constructing a prop-

erty price index are hedonic regressions, repeat sales regressions and stratified, mix-

adjusted models (also known as central price tendency models) (Goh, Costello, and

Schwann, 2012; Maguire, Miller, et al., 2016). Hedonic regression models and re-

peat sales regression models are classical methods which are very frequently used
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by national statistical agencies around the globe, primarily due to their ability to ac-

cess large amounts of rich property data as a result of their status as a government

body (Hill, Scholz, et al., 2018; Scatigna, Szemere, and Tsatsaronis, 2014). Neither

of these methods have undergone a great deal of evolution and improvement since

their inception. Models which employ stratified, mix-adjusted methods, on the other

hand, are newer and tend to be more frequently constructed by data-limited private

entities who are producing their own property price indices, generally due to the

typical untimeliness associated with national statistical offices’ indices. Examples of

popular stratified, mix-adjusted models in the United Kingdom include those from

Acadata1, Hometrack2 and Rightmove3.

Other actively used methods for measuring property prices exist, however, they

are typically more simplistic measures which do not account for the variations in

the mix of properties and thus are not attempting to measure the change in the total

stock of properties, rendering them mostly irrelevant to the topic of research at hand.

1.3 Emerging research in the field

Given the importance of the property asset class to the economy and financial mar-

kets and the impact made by changes in the trend of said asset class, it is quite

surprising that comparatively little research is undertaken on constructing new, su-

perior modelling methods for the change in house prices. Rather, the majority of

modern literature has focused on addressing the drawbacks and imperfections as-

sociated with the de facto standard hedonic regression and repeat sales models.

A variation on the repeat sales methodology which allows for the straightfor-

ward construction of regional sub-indices has recently been proposed (Larson and

Contat, 2021). Previously, this was difficult to achieve, due to the data hungry na-

ture of the repeat sales methodology, as discussed in Section 2.2. The nature of the

methodology requires that all properties considered be sold at least twice in the sam-

ple period. Given that a relatively small number of properties will meet this criteria

1http://www.acadata.co.uk
2https://www.hometrack.com/uk/insight/uk-house-price-index/
3https://hub.rightmove.co.uk/latest-house-price-index/

http://www.acadata.co.uk
https://www.hometrack.com/uk/insight/uk-house-price-index/
https://hub.rightmove.co.uk/latest-house-price-index/
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on a month-to-month basis, generating sub-indices for a region generally results in

too small a sample size for the production of an accurate, reliable model.

One of the major issues with the currently popular methods of measuring the

change in property prices is timeliness. As stated previously, national statistical

agencies often tend to publish their first estimate of monthly change one-to-two

months after the fact. This makes it difficult for stakeholders to gain access to up-to-

date information, thus hindering their ability to make accurate decisions regarding

their stake in the market. It has been demonstrated that this untimeliness is unnec-

essary, as property listing data holds enough information about the market trends

to deliver a highly correlated model to its corresponding repeat sales index, which

is computed only on fully settled sales (Anenberg and Laufer, 2017). Such a change

in the handling of data would allow for the repeat sales index to be computed with

practically no lag.

An undesirable characteristic of hedonic regression models is the tendency for

prior-month figures to revise substantially in future months. This is due to a num-

ber of factors, the greatest of which being the late-reporting of many property sale

transactions, something which we have discussed with reference to the timeliness

of model publications. According to recent literature, adjustments can be made

to the initial model estimate based on analysis carried out on prior months, to re-

duce the impact of these revisions substantially (Sayag, Ben-hur, and Pfeffermann,

2022). This is a highly beneficial contribution, as the potential for large revisions

compounded with the usual untimeliness of hedonic regression models makes it ar-

duous to undertake important decisions based on the output of said models, leaving

the stakeholder highly vulnerable.

A frequently ignored factor in house price modelling is the change in the quality

or condition of dwellings over time. When houses are renovated in ways which do

not show up in the typically selected regression variables (number of rooms, floor

area, etc.), for example, by improving energy efficiency, installing solar panels, reno-

vating rooms, replacing roofing, etc., the increase in value afforded by those changes

may be misinterpreted by the hedonic regression model as genuine price growth.

A study carried out by Reusens, Vastmans, and Damen, 2023 demonstrated that a

novel way of incorporating the condition of a property into the hedonic regression
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resulted in an improvement in the measurement accuracy of the price trend. Their

analysis concluded that dwelling quality has been on an upward trend and the omis-

sion of this factor from models has resulted in overestimation of price growth.

Research into the data powering house price index models is another area of

critical importance in achieving more accurate and timely measures of price trend.

Detailed transaction data on housing is difficult to acquire, owing to property ex-

change still being a highly manual, administrative and protracted process. This is

even moreso the case when it comes to new-build properties, which are regularly

sold in advance of their construction being completed. Analysis by Hill, Pfeifer, et

al., 2024 found that the inclusion of new-build properties in house price index mod-

els results in significant distortion of the index. As mentioned previously, the sale

and, most importantly, sale price are frequently agreed upon for these new-builds

whilst they are still being built. However, the transaction only enters the index cal-

culation once the process has been legally completed and ownership has transferred

to the buyer, resulting in heavily lagged prices entering the index calculation.

Despite these contributions, the classical implementations of hedonic regression

and repeat sales models continue to be widely used by official, national indices,

seemingly without much consideration for potential alternatives or improvements

to said models and, in particular, their punctuality.

1.4 Modelling geospatial factors in housing

One avenue of research which has been somewhat neglected relative to the classi-

cal methodologies when it comes to house price indices is the field of geostatistics.

Housing inherently exhibits a high degree of spatial auto-correlation, i.e. the prices

of houses which are co-located tend to be highly correlated (Basu and Thibodeau,

1998; Cellmer, Cichulska, and Bełej, 2020). As such, properties located in the same

locality tend to see their values move in tandem over time.

The cause of this behaviour is quite intuitive; the value of a house is highly de-

pendant on environmental factors such as crime rates, the quality of local schools

and public transport infrastructure, amenities and green-space and proximity to eco-

nomic hubs, among others (Conway, Li, et al., 2010; Haurin and Brasington, 1996).
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Therefore, we can conclude that location offers strong explanatory power over the

value of a property.

Given that each of the aforementioned environmental factors would impact neigh-

bouring properties in a very similar manner, it is evident then why spatial auto-

correlation has been strongly observed in the housing market.

A common tactic employed in regression-based models which attempts to ac-

count for this spatial auto-correlation in house prices is the inclusion of dummy vari-

ables representing localities or neighbourhoods (Anselin and Lozano-Gracia, 2008).

While these variables pass the statistical significance test in terms of their explana-

tory power, they are a blunt tool. For example, if the localities are defined to be

very large, the ability for the variable to accurately capture local nuances will be di-

minished, as it is attempting to cover too many distinct environments. On the other

hand, if the neighbourhoods are defined to be very small, there will not be enough

samples on a month-to-month basis to achieve a sufficient goodness-of-fit, which

will then introduce noise.

Furthermore, these dummy variables are not capable of applying a higher weight-

ing to houses which are located closer than others in the locality. Assume two prop-

erties in the locality sell in a particular month: one property is at the furthest possi-

ble point away from a given house (without leaving the neighbourhood boundary),

while the other is the neighbouring property. Using the system of dummy variables,

both of these houses will have equal influence over the model estimate for the given

house, despite the likelihood that the neighbouring property will give a superior

estimate (Bala, Peeters, and Thomas, 2014).

As highlighted by Soltani, Zali, et al., 2023, property transaction data is, by na-

ture, a nested and hierarchical dataset. Given that some property characteristics

included in conventional hedonic regression models are specific to a given property

(e.g. the floor area), while other characteristics apply to all dwellings within a par-

ticular region (e.g. crime rates, proximity to a good school, etc.), the attributes can

be arranged in a hierarchy. Furthermore, co-located houses often share a common

set of characteristics and therefore, property connections within a locality are nested.

As their research concludes, these features of the dataset violate the independence
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condition of a conventional regression model and thus the standard errors of the co-

efficients will be underestimated (Soltani, Zali, et al., 2023) under this methodology.

Some attention has been given to alternative methods of incorporating spatial

factors into hedonic regressions. For example, a study by Cellmer, Cichulska, and

Bełej, 2020 demonstrated that applying a method of adjusting the weights of obser-

vations in the hedonic regression fitting process based on their spatial relationships

with other observations in the sample delivered a significantly higher goodness-of-

fit measure than the classic hedonic regression model.

Moreover, their geographically-weighted hedonic regression model indicated

that geospatial clusters where explanatory variables had the same or very similar

values were highly prevalent in the dataset. This is not a surprising discovery, given

the high degree of spatial autocorrelation present in housing, as discussed previ-

ously. However, this research indicates that many of the included explanatory vari-

ables may be unnecessary in order to achieve an accurate model, if this geospatial

clustering behaviour was to be exploited more effectively and explicitly in the model

construction.

Another variation of the geographically-weighted hedonic regression model which

adds a clustering overlay was proposed by Verbic and Korenčan, 2017. In their

research, they used a hierarchical clustering algorithm to group together areas in

which localised hedonic regression models had demonstrated similar coefficients;

indicating a certain degree of homogeneity. This allowed them to fit distinct he-

donic regression models across more sensible geographical groupings, versus the

common approach of using administrative regional boundaries. These boundaries

are usually arbitrary and offer poor levels of explanatory power for neighbourhood

quality in most hedonic regression models (Law, 2017).

The results of their clustering approach were a reduction in heteroskedasticity

in the hedonic regression model and regional coefficients which are statistically-

significantly different from the national model; indicating that the various charac-

teristics of each property hold somewhat different levels of explanatory power on

price in each of the homogeneous regional clusters. This is a plausible result; in a

city, one might find that floor area comes at more of a price premium than in the

countryside, therefore it would seem reasonable that the regression coefficient of
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that attribute is larger in the city, for example.

Developing upon these approaches of enhancing hedonic regression models with

geospatial data, recent research by Ding, Cen, et al., 2024 utilises a neural network in

determining the geographical weighting for the hedonic regression model. Whereas

Cellmer, Cichulska, and Bełej, 2020 used a simple Euclidean distance measure for

determining the weights, this study offers a multitude of distance measures and al-

lows a machine learning model to determine the optimal regression weighting. This

methodological enhancement leads to further out-performance over the classic he-

donic model specification.

Despite these geospatial enhancements, the majority of the studies discussed fo-

cus on applying an overlay to what is still a hedonic regression model at its core.

Once again, we might question whether the full set of explanatory variables used

in each hedonic regression model would be necessary if the geospatial effects were

better integrated within the core model itself, rather than overlaid atop traditional

methodology. Acquiring such a rich set of attribute data on each property transacted

in each month is challenging, timely and costly. Alternative methods which do not

rely on such an expansive dataset would likely be of great interest to many market

stakeholders, as we will discuss in greater detail in Section 2.4.

1.5 Objectives of the research

The key objective of this thesis is to outline an alternative methodology for construct-

ing a property price index model which does not rely on bolstering the shortcom-

ings of a hedonic regression model. The proposed index is designed to leverage the

inherent geospatial auto-correlation present in housing and will be built around a

number of key facets which are intended to deliver a model which is more scaleable,

automated, frugal and flexible than conventional methods. These critical features

are outlined in List 1.

Prior to presenting the delivery of the research objectives themselves, Chapter 2

will introduce in greater detail the conventional methods used to produce house

price indices, including their methodology, strengths and drawbacks. Furthermore,



Chapter 1. Introduction 14

LIST 1.1: Key GeoPrice index methodology features

□ The model must be able to ingest a property transaction dataset and compute
the house price index output without any human intervention, i.e. it must be
fully automated.

□ The model must be able to function with a bare minimum set of attributes; that
is, the sale date, the sale price and a set of GPS co-ordinates for the property.

□ The model should have the flexibility to operate on different types of property
datasets, for example, using asking price listings rather than completed sales.

□ The model should be capable of factoring in additional property attributes
(e.g. number of bedrooms) to improve the accuracy if they are available to the
user.

□ The model should be scaleable and performant enough to be able to produce a
high quality index on a region of any reasonable size, whether the number of
monthly transactions is in the order of thousands, or hundreds of thousands.

▷ This includes the ability to model sub-indices for partitions of the dataset,
e.g. by region, or by additional attributes such as property type, where
such attributes are available.

□ The model must be capable of producing an index rapidly once the transaction
data becomes available (i.e. within a day), to address the lengthy publication
lag associated with conventional models.

□ Despite these restrictions, the model must deliver equal or better performance
in terms of noise reduction and smoothness than conventional hedonic regres-
sion models, even when using the minimal set of attributes laid out above.

▷ The GeoPrice index should be highly correlated with the long term price
trend measured by the benchmark, i.e. it must be evident that both indices
are attempting to measure the value of the same asset class.

▷ The metrics by which the smoothness of the GeoPrice index and the bench-
mark index are measured must be defined and justified.



Chapter 1. Introduction 15

the importance of monitoring house price trend for a variety of key market stake-

holders including financial institutions, policy makers and asset owners will be ex-

plored, as well as the feasibility of each of these parties implementing one of the

conventional methodologies to produce a bespoke house price index.

Following on from this, Chapter 3 will introduce the initial version of the Geo-

Price model. Using a sparse and frugal transaction dataset of Irish property sales,

the baseline index methodology will be outlined, in addition to benchmarking the

results against the official national house price index of Ireland, which leverages a

standard hedonic regression model. While this foundational version of the GeoPrice

index succeeds in meeting the first two criteria outlined in List 1, it falls short on

scalability, timeliness and performance, owing to inefficiency and slow execution

time from the geospatial matching process.

The key focus of Chapter 4 will be to investigate methods of addressing these

efficiency concerns. The GeoTree is a bespoke tree-like data structure which stores

property sale transactions in nested, hierarchical clusters. At each level of the tree,

properties are broken up into buckets based on their proximity to one another. As

one traverses deeper down the tree, the size of the buckets become progressively

smaller, allowing the user to hone in on groupings of proximate houses which can

be used as points of comparison when leveraging the spatial auto-correlation effect

of neighbouring properties.

By introducing caching at each node of the tree, a collection of pointers to every

leaf node found within the sub-tree beneath that node allows for a rapid, O (1) enu-

meration of a collection of neighbouring properties within a certain distance bound

of any transaction in the dataset. The introduction of this data-structure gives the

GeoPrice model the technical ability to fulfill the scalability and timeliness goals set

out in List 1, with the execution time improving by multiple orders of magnitude;

completing the GeoPrice index calculation in a matter of minutes, rather than days.

With the efficiency bottleneck removed, Chapter 5 will add additional flexibility

through methodological enhancements. In addition to demonstrating the ability for

the model to compute an index on a bespoke dataset of asking prices from a property

listing platform, this chapter will augment the GeoPrice model with the ability to

incorporate data on the number of bedrooms in each property.
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Furthermore, a number of metrics by which the smoothness of the indices can be

measured and compared against one another will be outlined. These smoothness

metrics demonstrate that the combination of number of bedrooms with geospatial

matching significantly outperforms the geospatial-only index. The methodological

enhancements introduced alongside the use of an asking price dataset demonstrates

the capability of the GeoPrice model to meet the flexibility goals outlined in List 1.

Chapter 6 will expand the GeoPrice model to a much larger region: the United

Kingdom. Through the use of a publicly available dataset of sale transactions, this

chapter will illustrate the ability of the model to produce highly correlated results

to a hedonic regression model fit on the same transactions, without the need for the

additional, rich attribute data on each property used by said model. Furthermore,

it will also demonstrate that the GeoPrice model can achieve significantly greater

levels of smoothness and a less noisy house price index than the benchmark hedonic

regression model.

The ability of the index to outperform conventional models in distinct regions

with different property dynamics, transaction volumes and market behaviours demon-

strates its flexibility and scalability. Chapter 6 will also present regional sub-indices

for each administrative region of England, in addition to sub-indices for each dis-

tinct property type, thus achieving the final remaining key feature of those set out in

List 1.

Finally, the thesis will conclude with Chapter 7, which will discuss the delivery

of the model objectives set out in List 1 alongside future avenues of research and

potential applications of the thesis findings.

1.6 Chapter summary

Price indices are a critical tool for measuring a wide range of price trends in goods

and services, which feed into crucial econometric data releases such as consumer

price indices, gross domestic product and a wide range of other inflation-adjusted

metrics. A variety of methodological formulations of price indices exist, each with

their own distinct drawbacks.
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One important area of application of price indices with particularly unique mod-

elling characteristics is that of property price indices. Unlike most goods and ser-

vices, such as food, clothing, medical expenses, etc. where taking a monthly sample

of the cost is feasible, individual properties typically transact infrequently and their

value cannot be straightforwardly measured outside of these transactions. Given

that each house is unique, the set of houses sold in month X cannot be directly com-

pared to those sold in month X− 1 or X + 1, leading to modelling challenges.

This lack of comparability in property transaction samples has given rise to a

number of commonly used, specialised techniques for measuring house price growth,

which will be discussed in detail in the coming chapter. Furthermore, the impor-

tance of these models to various real-estate stakeholders will be analysed, along

with the viability of each of these parties implementing said models.
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Chapter 2

Background: Property price index

methodologies

As discussed in Chapter 1, there are a number of unique challenges associated with

modelling house price indices owing to their distinct market dynamics. In this chap-

ter, the most commonly used methods of computing house price indices will be out-

lined, along with each of their benefits and weaknesses.

Following on from this, the significance of accurate models of property prices

to various market stakeholders will be discussed, in addition to the feasibility of

each of these parties implementing the conventional methodologies discussed in

this chapter.

2.1 Hedonic regression models

Hedonic regression is a method for constructing a property price index whereby

each house is broken up into a large number of constituent characteristics (e.g. num-

ber of bedrooms, bathrooms, floor area etc.), each of which is given a weight accord-

ing to how much impact said attribute has on the sale price of the property (Kain

and Quigley, 1970; OECD, Eurostat, et al., 2013). These attribute weights are deter-

mined by fitting a regression using the sale transactions, with the characteristics of

each property serving as either categorical or continuous exogenous variables in the

regression, where appropriate.
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While the core methodology is similar within hedonic regression models, a num-

ber of variations in the method of use of the model for measuring house prices ex-

ist, the most common of which being: the characteristics approach, the imputation

approach and the time dummy regression approach (OECD, Eurostat, et al., 2013;

Silver, 2016).

Both the characteristics approach and the imputation approach fit separate re-

gressions across a range of successive time periods, typically monthly, with each of

these regressions being fit on the property sales transacted in the corresponding time

period. We denote these regressions as R0, R1, . . . , Rt, for time periods 0, . . . , t. Once

Rx has been fit, the coefficient attributed to each characteristic by the regression sig-

nifies the monetary amount which said characteristic contributes to the value of a

property, if it were to be sold in period x.

Suppose, for ease of example, that each of these regressions are fit using only the

number of bedrooms and square footage of each property as attributes. In reality, a

much larger set of attributes is typically used. Under the characteristics approach,

the average value of these attributes in time period 0 would then be determined

for the region in question; let’s assume that the average number of bedrooms is 3.2

and the average floor area is 1, 473 square feet. It is then possible to estimate the

value which would be attached to said typical property if it were to be sold in time

periods 0, . . . , t by using the coefficients determined by regressions R0, . . . , Rt. The

difference in the price level determined for each time period can then be used to

generate a property price index.

The imputation approach operates on a lower level than the characteristics ap-

proach, looking at individual properties, rather than a typical property. Where the

characteristics approach answers the question of what would a typical property be val-

ued at if sold in periods 0 through t, the imputation approach addresses the question of

what would a particular property (with its constituent attributes) sold in period 0 be worth

if revalued in periods 1 through t (Silver, 2016). In this system, a fixed basket of proper-

ties is revalued in each time period using R0, . . . , Rt, with the average of the imputed

prices of the basket being compared across time periods to generate the index. By

adjusting the fixed basket of properties used, this approach accounts for changes in

the mix of properties in a given month, such that an identical mix is compared across
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time periods.

The time dummy hedonic regression model differs from the other two approaches

such that only a single regression is used, rather than individual monthly regres-

sions. Each time period 0, . . . , t is given a dummy variable in the regression; effec-

tively capturing the temporal component of the price within a set of coefficients. The

variable takes on a value of 1 where the property in question was sold in the time

period corresponding to the variable, otherwise taking a value of 0. The result of this

is that the regression coefficients attributed to each of the attributes of the properties

in the sample are fixed across time periods 0, . . . , t, instead of being allowed to vary

as in the characteristics and imputation methods. Instead, the change in property

prices between time periods is implicitly captured in the coefficients attached to the

time dummy variables in the regression, as below (OECD, Eurostat, et al., 2013).

HPIs
0 = exp (δ̂s)

where δ̂s is the regression coefficient attached to the time dummy variable for the

time period s.

While simpler to implement, use of the time dummy variable method is, in a

sense, a double edged sword. On one hand, the fact that a single regression is used

for the entire time range leads to a high degree of stability and robustness, as the

regression has been fit on a much larger pool of property transactions (OECD, Eu-

rostat, et al., 2013). The result is a model which has been able to very precisely

determine the contribution of the various property characteristics to the sale price.

On the other hand, one could argue that it is unrealistic to assume that the charac-

teristics will retain the same weight over long periods of time, which is an implicit

assumption of the time dummy variable method (Silver, 2016). However, this issue

can be worked around by using techniques such as chained rolling time windows

for the regression, where the oldest time period drops out of the model each time a

new time period is added. As such, the size of the time period over which the regres-

sion ranges is fixed and thus the assumption becomes one of the attributes retaining

the same weight over said fixed period of time, rather than over the entire history of

the index.
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2.1.1 Strengths and drawbacks

Hedonic regression models are very popular due to a wide array of strengths. Accu-

racy is a key concern when it comes to constructing a property price index. Hedonic

regression models typically achieve an R2 goodness-of-fit score in the range of eighty

to ninety percent, assuming a sufficiently rich set of regressors are specified for each

property. This leads to a property price index which is consistent and reliable.

Another appealing attribute of hedonic regression models is their ability to gen-

erate imputed prices for combinations of characteristics which may not necessarily

trade during the period. For example, in cases where you have a region with a rela-

tively small number of properties trading in each time period, it may be the case that

you have certain combinations of attributes which do not appear in the sale trans-

actions for every time period, e.g. there may not be a 4 bedroom, 3 bathroom detached

property in a particular locality sold in each and every time period. Despite this, the

hedonic regression model can generate an imputed price for this type of property in

every time period, by drawing on the knowledge it has acquired from other proper-

ties with a subset of those characteristics (OECD, Eurostat, et al., 2013; Silver, 2016).

This ensures that a complete set of imputed prices can always be generated, regard-

less of the input sample, assuming that every potential attribute value has at least

one sale containing said value.

Finally, the ease of creating sub-indices without the need to fit a separate model

is a major draw to hedonic regression models, particularly the imputation approach.

By altering the fixed basket of properties to include only those in a certain region,

for example, one can generate a property price sub-index for said region. The same

principle can be applied to other attributes to generate any type of sub-index which

is desirable, e.g. an apartment index, a three-bedroom index, a new-build index etc.

(Gouriéroux and Laferrère, 2009).

Despite its strengths, the hedonic regression model also comes with some signif-

icant drawbacks, which makes it infeasible to use for many institutions and market

stakeholders. One of the most significant of these is the labour and experience re-

quired to apply the model. Due to the great deal of mathematical and computational

complexity in the methodology, hedonic regression models are usually produced
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by a team of full-time, experienced statisticians (Haan and Diewert, 2011; Maguire,

Miller, et al., 2016). It is highly important that outlier and erroneous values are re-

moved from the dataset in order to avoid contamination of the hedonic regression

model and a number of concerns regarding normality of the dataset must be ad-

dressed and mathematically corrected for if not present.

Another major issue with hedonic regression indices is the richness of data re-

quired to build an accurate model (Larson and Contat, 2021). At a minimum, the

regression would generally require data on the new build status, property type, number

of rooms, geographical locality and floor area (OECD, Eurostat, et al., 2013). However,

this set of explanatory variables could potentially expand to dozens of attributes

including information about garden size, neighbourhood quality, local educational

facility quality, public transport availability and any other data point which could

have a significant impact on the sale price (He, Wang, et al., 2010). For example,

according to Luttik, 2000, the presence of an attractive landscape next to a house

was responsible for a premium of 5-12% over a property located in a less pleasing

environment, with the other characteristics of the homes being otherwise the same.

This makes specification of a complete set of regressors extremely challenging

and the large number of free parameters available to tune in the model can lead to

over-fitting (Maguire, Miller, et al., 2016). This requirement for rich attribute data for

each and every property in the sample makes the model impractical to use for most

parties aside from national statistical agencies, as such data is typically not publicly

available. The solution employed in many applications of hedonic regression mod-

els is simply to ignore this issue, which likely results in distortion and noise among

the model coefficients.

A lack of timeliness is also a common issue with indices backed by hedonic re-

gression models. National statistical agencies typically publish these models with

a lag between one and two months, leading to information which is potentially out

of date by the time it is released (Maguire, Miller, et al., 2016). The main reason for

this lag is due to the complexity of the model, with the data requirements alongside

the complex methodology demanding a significant time investment before results

are available (Haan and Diewert, 2011). Property stakeholders who require up to
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date information on market movements thus may not be satisfied with the timeli-

ness of hedonic regression models and may need to look elsewhere to obtain up to

date guidance on the property markets.

Furthermore, a key flaw to consider in using hedonic regression models is the in-

herent spatial autocorrelation of properties. Homes are generally considered to have

some degree of spatial correlation, owing to the fact that common neighbourhood

characteristics, such as crime rate, quality of education, public transport links and

green-space, can have a substantial impact on the value of a given property (Con-

way, Li, et al., 2010; Ismail, 2006). These factors are frequently ignored by hedonic

regression models, as they are too difficult to model and observe from month-to-

month. However, disregarding this idiosyncrasy of the housing market may violate

one of the fundamental assumptions of a linear regression; that the residuals should

be independent of one-another (Cartern and Haloupek, 2000).

2.2 Repeat sales models

Repeat sales regression models measure the change in property price over long pe-

riods of time by using repeated sales of precisely the same property. Through this

methodology, the model no longer needs to consider any inherent or external price-

affecting attributes of the properties on which it is being fit, as matching only iden-

tical properties ensures that a like-for-like comparison is being made (OECD, Euro-

stat, et al., 2013).

In a sense, repeat sales represents the most authentic analogue of the matched

model method of measuring inflation in more liquid products, such as food, clothing

or car prices. As a result, only the sale date, address and sale price of each property

is required in order to use the repeat sales method on a dataset of property sale

transactions. Suppose that p is a property which has been sold multiple times in the

time period 0, . . . , t, over which the model is covering; call two such time periods x

and y, where x <time y. Then we can construct a repeat sales model where:

log
(

py

px

)
=

t

∑
i=0

βiDi(x, y) + ϵi



Chapter 2. Background: Property price index methodologies 24

In this case, the natural logarithm of the price ratio of property p in period y to

period x is equal to a linear combination of dummy variables Di, defined as:

Di(x, y) =





1, if i = y

−1, if i = x

0, otherwise

(2.1)

In other words, the dummy variables are given a value of 1 in the variable rep-

resenting the current sale period, y, and a value of −1 in the previous sale period, x.

The ϵi are error terms. In practice, a linear regression fit on the property sale trans-

actions is used to estimate the dummy coefficients, thus replacing the βi coefficients

with estimates β̂i, (OECD, Eurostat, et al., 2013).

Once the β̂i have been estimated for periods 0, . . . , t, the change in property

prices from month 0 to month s can be calculated using the exponent of the regres-

sion coefficient corresponding to month s:

HPIs
0 = exp

(
β̂s
)

2.2.1 Strengths and drawbacks

Undoubtedly the greatest strength of the repeat sales model is the simplicity it of-

fers. The model is conceptually very easy to understand; essentially measuring the

change in price of the same property over differing time periods. Difficult problems

which arise in other property price index models, such as controlling for variations

in the mix of properties over different time periods, need not be considered in the

repeat sales model (OECD, Eurostat, et al., 2013).

This methodology also requires a very frugal amount of information for each

individual property, unlike the hedonic regression model described in Section 2.1.

This frugality allows repeat sales models to be fit on publicly released property sale

data in many countries, making the model more accessible to entities without access

to the confidential information often afforded to national statistical agencies (Larson

and Contat, 2021).
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Furthermore, the use of a more conservative amount of data on each property

reduces the risk of the model being overfit. A repeat sales model does not need

to concern itself with the impact of green-space or attractive landscape not being

incorporated into the model, as it only analyses the price of the same property, sold

in multiple time periods. Granted, it is possible for these factors to change over time,

however, this is a considerably less prevalent tail risk than simply disregarding the

issue entirely, as hedonic regression models are often constrained to doing (Case,

Pollakowski, and Wachter, 1991).

Unfortunately, the repeat sales methodology also brings a number of major draw-

backs to the table. While there is a great deal of frugality in terms of attribute data

required for each property, the model requires a vast number of property transac-

tions to achieve accurate results, as properties which have not been sold more than

once must be disregarded. In fact, in many instances, as much as 96% of the dataset

may need to be discarded due to incompatibility with the repeat sales methodology

(Case, Pollakowski, and Wachter, 1991). While this is not an insurmountable issue

for a country the size of the United States of America, for example, it may leave

smaller countries unable to utilise the method due to not having a sufficient number

of repeated sales in each month of their dataset (Larson and Contat, 2021).

It has also been theorised that the sample of repeat sales is not representative of

the housing market as a whole. For example, in a study by (Jansen, Vries, et al., 2008),

only 7% of detached homes were resold in the study period, while 30% of apartments

had multiple sales in the same dataset. This is argued to be due to the starter home

hypothesis, previously discussed in Section 1.2 (Costello and Watkins, 2002; Dorsey,

Hu, et al., 2010; Jansen, Vries, et al., 2008). This leads to over-representation of inex-

pensive and poorer quality properties in the repeat sales method. Cheap houses are

also sometimes purchased for renovation or are sold quickly if the homeowner be-

comes unsatisfied with them, which contributes to this selection bias (Jansen, Vries,

et al., 2008). Furthermore, newly constructed houses are severely under-represented

in the repeat-sales model as a brand new property cannot be a repeat sale unless it

is immediately sold on to a second buyer (Costello and Watkins, 2002).

A further major issue with the repeat sales method is the inability to account for

depreciation of a property, nor renovations which occur between sales (McMillen
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and Thorsnes, 2006). It is possible that a house undergoes extensive renovations

after a sale, before eventually being resold at a profit. In the repeat sales model,

no distinction will be made between such a scenario, and a standard sale without a

renovation taking place. As such, the increase in value imparted by the renovation

will be considered to be a genuine appreciation in house prices, rather than value

being added to the property in question.

2.3 Mix-adjusted models

Models which employ mix-adjustment and stratification techniques are often sim-

pler and more accessible to implement for private entities, particularly those with

limited data. This class of methods spans a wide range of model complexity, stretch-

ing from the most basic indices constructed using a simple median of sales transac-

tions, to more complex models using detailed stratification methods in an attempt to

adjust for bias in the quality mix between time periods (Maguire, Miller, et al., 2016;

OECD, Eurostat, et al., 2013).

These models often rely on the law of large numbers, i.e., large sets of clustered

data often exhibit a noise-cancellation effect, where errors become small after aggre-

gation (Maguire, Miller, et al., 2016). As a result, a tolerance for approximation in

comparison of properties can be exploited to allow the use of the entire dataset, un-

like repeat sales, without requiring a rich suite of attribute data for each and every

property in the dataset, as needed in hedonic regression.

A commonly employed strategy for reducing the sample bias between time pe-

riods is a basic mix-adjustment. While a detailed stratification usually cannot be

carried out due to a lack of attribute data, location-based stratification alone offers

substantial benefits to the reliability of a mix-adjusted model, as will be demon-

strated in this thesis.

Suppose the dataset is split into buckets according to the town in which the prop-

erty fall; call these buckets Br
s for r ∈ R, the set of all towns, with properties from

time period s. We can construct a stratified mix-adjustment index using these strata

as follows:
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HPIs
0 = ∑

r∈R

µBr
s

µBr
0

where µBr
x

is the mean, median or any other desired aggregation method of the

bucket of properties in region r, sold in time period x. As such, these stratifica-

tion method compares properties on a region-by-region basis, before aggregating

the result.

This stratification method can be improved by adding weights according to the

prevalence of property sales for the region in question (Wood, 2005). If a lengthy

history of data is available to the model, weights can be computed for region r by

calculating the ratio of property sales in region r to the total number of property

sales across the same period of time. As such, we can define the regional weights:

ωr =

t
∑

i=0
|Br

i |

∑
x∈R

t
∑

i=0
|Bx

i |

where |Bx
i | is the size of the bucket of sale transactions for region x in time period i.

Using these geographically stratified weights, we can redefine the stratified property

price index model as:

HPIs
0 = ∑

r∈R
ωr

µBr
s

µBr
0

If more attributes are available to the model, such as property type, new build

status or year of build, these can be further incorporated to the stratification model,

with weights adjusted appropriately for each bucket (Wood, 2005).

2.3.1 Strengths and drawbacks

The mix-adjustment method’s greatest strength lies in the flexibility and adaptability

of the methodology. Where the hedonic regression model requires a great deal of rich

property data to deliver reliable results, mix-adjustment models with stratification

can be tailored to make the best of any level of data frugality. The method also

makes use of all transactions present in the sale data, unlike repeat sales, which must

disregard a large amount of the dataset. This makes the mix-adjustment method
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more suitable for smaller datasets or datasets which stretch over a relatively narrow

period of time (Prasad and Richards, 2008). Furthermore, this ability to operate on

the entire sample of transactions inherently reduces the risks of bias and overfitting

of the model (Babyak, 2004).

The simplicity of the concept is also a strong draw to mix-adjusted methods, sim-

ilar to the repeat sales method. Unlike hedonic regression, it is conceptually straight-

forward to understand and implement a basic mix-adjusted stratification model on

a rudimentary, publicly available dataset. The proficiency and resources available to

the user of the model can be used to add additional complexity, or to improve the

performance and stability of the model accordingly. This increases the accessibility

of the model to a broad set of use cases, rather than being restricted to those with

expertise in specific technical subject matters (Prasad and Richards, 2008).

Similarly to hedonic regression models, it is easy to produce sub-indices for any

of the strata in a mix-adjusted model. By simply excluding the strata which do not

match the desired sub-index criteria, one can generate a house price sub-index for

any desired subset of the property data, for example, an index for apartments or de-

tached houses. As discussed previously, the concept of mix-adjusted median house

price index models can be thought of as constructing sub-indices on a stratum-by-

stratum basis and adjusting the mix by altering the weighting of each stratum such

that the composition of strata remains comparable over time (Haan and Diewert,

2011).

While the method is less demanding than hedonic regression when it comes to

the need for rich attribute data for properties in the same, mix-adjusted and stratified

methods have tended to require a certain amount of data on each property, in order

to adequately separate properties into appropriate strata (OECD, Eurostat, et al.,

2013). This is in contrast to the repeat sales method, which requires no attribute data

and requires only the address, date of sale and sale price, yet over a considerably

longer window of time.

Another issue with this method is that stratification can result in very small sam-

ples per strata, if number of attributes used in the grouping is extensive. This could

potentially result in unrepresentative strata, due to an insufficient number of sam-

ples to generate an accurate average price for the group in question (Turner, 2003).
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This would pose less of an issue in cases where the total pool of properties in the

market is very large. However, for a smaller country like Ireland, this is an issue

which not only would plague a mix-adjusted median approach, but would hinder

any house price index model (O’Hanlon, 2011).

Similarly to the repeat sales method, stratification usually does not account for

depreciation or renovation of properties, unless particular attention is given to han-

dling this issue. This results in a similar scenario to that of repeat sales, where an

increase in value due to the reconditioning of a property will be considered by the

model as genuine property market inflation. This factor is highly difficult to account

for and is usually disregarded even in hedonic regression models (e.g. the Office for

National Statistics UK’s house price index) where it would theoretically be possible

to account for (Anderson, 2018).

2.4 Importance to real-estate stakeholders

Property price indices are understandably of great interest to financial institutions,

particularly banks who partake in mortgage lending and thus are exposed to a great

deal of asset risk through the collateral on these loans (Miller and Maguire, 2022).

However, property market trends are also closely watched by many other par-

ties, including home-owners, home-buyers, businesses, central banks and govern-

ments. In this section, we will outline the importance of these models to each of

these stakeholders, as well as exploring their feasibility of implementing each of the

models discussed in this chapter.

2.4.1 Financial institutions

While there are a multitude of stakeholders in the property market, perhaps the

greatest of these is the financial services sector, due to the risk taken on through

mortgage lending. For the majority of people, a house is the most valuable asset

they will own in their lifetime. Furthermore, almost one-third of British households

are actively paying a mortgage on their house, which collectively forms the greatest

source of debt for said group of people (Bank of England, 2018a).
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Mortgages are a key source of revenue for banks and financial bodies, due to their

long repayment length, which results in a considerable amount of interest accrued.

However, they also pose a substantial risk for said financial institutions, as they

involve the lending of a large principal which is often repaid over decades, during

which the financial circumstances and stability of the borrower are not guaranteed

to remain constant and indeed, are often influenced by the flux in property prices

as an indicator of general economic stability. This makes it difficult to predict the

number of borrowers who will struggle to meet their repayments during periods of

economic downturn (Bank of England, 2018b).

While an economic recession usually results in massive downward pressure on

commercial property prices and the equities market, such a sharp drop tends not to

be reflected quite as drastically in the residential property market. Rather, the num-

ber of sale transactions usually drops, as property owners no longer wish to sell their

house for a lower sum of money than they would have received before and many

will delay their decision to sell. It is likely that such a drop in residential property

sales volume is reflected in a reduction in new mortgage applications, hence result-

ing in a loss of revenue and profit for lenders. Furthermore, such an economic event

signals reduced financial stability for borrowers and thus default rates on mortgages

will rise, causing a greater amount of bad debt on the books (Bank of England, 2018b;

Zhu, 2005).

It is logical then that financial bodies are highly interested in tracking the move-

ments in property prices, to inform their lending policies and risk assessment meth-

ods. A more bullish property market may lead to banks taking on slightly more

risk, with a view that the property will appreciate and so too will the confidence of

the borrower. Conversely, a bearish market will likely result in a tightening of the

lending criteria, with institutions only taking on highly financially secure borrow-

ers who they judge to be capable of weathering the storm of further depreciation

of their newly-purchased property, in a worst-case scenario (Che, Li, et al., 2011;

Guerrieri and Uhlig, 2016). They might also be interested in comparing a mortgage

application to the average property price for that region, to judge whether the price

is excessively expensive when balanced with the financial circumstances of the ap-

plicant.
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The untimely manner in which government statistical offices tend to release in-

formation on market movements, with a lag of one to two months being typical,

may result in key policy decisions around lending being made later than is ideal.

As a result, larger financial institutions are often interested in creating their own

custom house price model which delivers up-to-date information, in order to better

inform their lending criteria (Miller and Maguire, 2022). We will present a suitable,

performant model meeting these criteria later in this thesis.

2.4.1.1 Modelling viability

Where a bank wishes to develop their own property price index model in order to get

more up-to-date market information, there are some key considerations when choos-

ing the appropriate methodology to employ. While the repeat sales method might

at first seem tempting due to the simplicity of implementation, further thought re-

veals that this method is unlikely to be suitable. This algorithm relies on comparing

multiple sales of the exact same house over long periods of time. If a financial body

is using their historical mortgage data to fit the model, it is unlikely that the past

sales of any given property were conducted using mortgages taken out at the same

bank by different buyers, resulting in a low match rate for what is already a wasteful

method in terms of data utilisation. Furthermore, historical data stretching back over

decades is generally necessary to generate a reliable result with this method, which

will likely be difficult for an institution to both source and convert into a clean, rich

digital format (De Vries, de Haan, et al., 2009).

The hedonic regression model may be a viable option, as these institutions will

have property characteristic data for the properties on their loan books, which is key

to the performance of this algorithm. However, the main drawback of using this

method is the complexity of the model. The process of creating a hedonic regression

model is very theoretically intense and generally requires the work of a number of

statisticians in order to implement and interpret the index on an ongoing, regular

basis. Furthermore, due to the human labour associated with maintaining a hedonic

regression model, as well as the reliance on rich, detailed and well filtered data, it

is difficult to produce the model on a more frequent time schedule than monthly
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or bi-monthly, particularly when this work must be repeated on a region-by-region

basis, where an institution wants more granular measures than a national model.

Overfitting is another possible avenue of concern with regard to hedonic regres-

sion indices, as mentioned in Section 2.1. As hedonic regression relies on having a

complete view of the property market, it may adapt poorly to financial institutions

who likely only have access to a biased sample of property sales which have used

their own lending products as the method of payment. If a particular bank was to

target the middle-class working family as their intended customer base, for exam-

ple, this may lead to a bias in the type of homes which are predominantly included

in the model’s data pipeline, thus not accurately capturing the trend in the broader

housing market, rather, only the movements in a subset of it.

Mix-adjusted median based property price index models may therefore prove

the most effective option for a financial institution to implement. The main advan-

tages of such an approach lie in the ease of implementation and flexibility to incor-

porate various data sources of differing densities. Firstly, a mix-adjusted median

algorithm can usually be computed in an entirely automated way, without a great

amount of tuning or manual processing, reducing the need for multiple statisticians

to spend time constantly tweaking the model to produce a monthly release, partic-

ularly where results are being produced for a number of different cities or regions.

This allows for the model to be recomputed very frequently; as often as daily or two-

to-three times per week, if sufficient live incoming data is available for the model.

This model also does not rely on specifying a complete set of price-affecting char-

acteristics and can work with as little as three attributes: the sale date, the address

and the price. Due to this, the algorithm can use the entire property sale transaction

data for greater accuracy and avoidance of overfitting, which is published publicly

in most countries; for example, by the Property Services Regulatory Authority in

Ireland (Property Services Regulatory Authority (IE), 2024), or by HM Land Reg-

istry in the United Kingdom (HM Land Registry, 2024). Furthermore, the flexibil-

ity of the methodology allows for additional core attributes, such as the number of

rooms, to be included for greater accuracy, as we will demonstrate later in this the-

sis. This means that the institution can mix their own highly detailed mortgage data
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together with general, unbiased but sparsely-detailed data for property sales, in or-

der to increase the model’s perspective of the market as a whole. As a result, the

mix-adjusted median model is a sensible option for large banking institutions who

wish to see very regular updates on the market in order to aid them in deciding on

their lending policies.

2.4.2 Homeowners and homebuyers

On the opposite side of the spectrum of stakeholders, you have active homeowners

and prospective homebuyers. Despite often being on opposing sides of a finan-

cial contract with the financial institutions discussed previously, homeowners share

much in common with their counter-parties in terms of the impact of moves in the

property market. An increase in the value of property prices is a positive outcome

for active homeowners, as their investment in property generates unrealised gains.

This makes the likelihood of defaulting lower, as it results in a lower incidence rate

of negative equity (i.e. the present market value of the home falling below the amount

owed to the lender on said home), which is correlated with mortgage defaults (Elul,

Souleles, et al., 2010; Labonte, 2007). This is a benefit to the lender, as they experience

less risk on their lending activity.

Furthermore, it is demonstrated that strong upward moves in the value of prop-

erties are correlated with increases in the incidence of turnover in the market, i.e.

there is a higher probability of existing homeowners looking to sell their home and

crystallise the gains associated with the investment according to the magnitude of

their unrealised returns (Tu, Ong, and Han, 2009). Thus, it stands to reason that

homeowners are interested in monitoring the state of the property market in real-

time, in order to estimate their return on investment and to judge their appetite to

sell.

Property prices are long understood to experience boom-bust cycles, i.e. a period

of strong increase in asset values, followed by an oftentimes protracted period of

price correction (Labonte, 2007; Nofsinger, 2012). A more timely property price in-

dex model would result in the ability for owners and prospective buyers to better

speculate on the transition from boom to bust and attempt to time their sale or pur-

chase, respectively. This kind of speculation is commonplace in every other asset
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class traded on the financial markets, however, the lack of accessible data and tools

makes it significantly more challenging in the property market. Conversely, home-

buyers may wish to attempt to time the market, in order to avoid purchasing near

the peak of a boom cycle and landing in negative equity, should they take out a

mortgage and subsequently experience a fall in the value of their newly acquired

asset.

2.4.2.1 Modelling viability

The implementation of any method of producing a house price index is generally

not feasible for the typical homeowner or prospective buyer. At present, these stake-

holders are typically at the mercy of the indices produced by the national statistical

offices of their respective country. As discussed prior, these statistics are published

with a lengthy publication lag and are difficult to verify for the layperson, due to

the complexity of the methodology and lack of availability of the data feeding the

models (Miller and Maguire, 2022).

On the other hand, a more simplistic mix-adjusted median property price index,

such as the one being proposed in this thesis, is theoretically reproducible by any

homeowner, due to the ability of the model to work solely with publicly available

datasets. While there are some limitations in terms of the technical complexity of

implementing the indices (e.g. via a programming language), this is the only signif-

icantly restrictive factor associated with use of this type of model.

The primary application of this research with respect to homeowners and home-

buyers is the opportunity for more providers to create their own property price in-

dex, which may either be public facing and directly available to said stakeholders,

or integrated into a system which directly or indirectly benefits them. For example,

more property portals such as MyHome 1, Zoopla 2 and Daft 3 may become capable of

implementing their own market index, using their in-house data, which could give

their customers a better indicator of the estimated value of listed properties, or their

own property, when buying or selling.

1https://www.myhome.ie/
2https://www.zoopla.co.uk/
3https://www.daft.ie/
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2.4.3 Businesses and the property development industry

Another key stakeholder in the property market lies in commercial business, for a

variety of reasons:

• A business may be considering the purchase of property as a business asset.

• A business may be considering the disposal of a property asset to increase

liquidity or target an alternative investment.

• A business may be operating in an industry directly impacted by property

price fluctuations, for example, property developers.

For many businesses, property is the largest asset (by value) on the balance sheet

(Liow and Ooi, 2004). This is even more apparent for property developers, whose

trading stock is also in the form of housing. It would stand to reason then that fluc-

tuations in the market have a significant impact on the majority of businesses and it

is important for said businesses to attempt to forecast and plan around these market

moves.

Property cycles often drive business cycles, with a sharp decline in asset prices

typically coinciding with an economic recession (Labonte, 2007). Given that reces-

sions result in a decrease in cash flow and a restriction of resources for the majority

of businesses, the management of property on the balance sheet is a key aspect of re-

cession preparation and business survival (Goldberg, Phillips, and Williams, 2009).

Firms, particularly those who may have invested in property using excess cash dur-

ing a boom cycle, may wish to sell and raise additional cash reserves to aid any

weathering of the storm which may be required in an uncertain economic environment

(II and Michael, 2006). If businesses wait until they run into cashflow problems, it is

likely that they will be forced to sell at a substantially lower value (potentially at a

loss), with a lower number of prospective buyers available delaying the completion

of the sale (De Wit, Englund, and Francke, 2013).

For property developers, the market becomes an even more crucial aspect of

business to consider. While for the typical business, the concern around property is

primarily focused on the value of their existing assets, for a property development

firm, they are faced with a situation where:
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• Their turnover will reduce substantially due to a lower incidence of purchases

during a property bust cycle (De Wit, Englund, and Francke, 2013).

• The final sale value of their active projects is likely to be considerably lower

than their initial projections, despite most of the costs already having been

fixed (Labonte, 2007).

• Future projects are likely to be cancelled and/or scaled back in order to protect

the business during the downturn (Jones and Evans, 2013).

• Developers who lease some of their property portfolio will experience a drop

in rent rates (Grover and Grover, 2013).

• Their assets on the balance sheet, be it commercial property or private homes,

will lose value (Grover and Grover, 2013).

Developers may wish to attempt to forecast the market in order to decide upon

projects to greenlight and the size of their active workforce, in addition to being able

to produce more accurate and up-to-date prospective sale values estimates when

performing profitability evaluations on project proposals.

2.4.3.1 Modelling viability

Neither the hedonic regression nor the repeat sales property price index models

would be a viable undertaking to implement for the vast majority of property devel-

opers. A bespoke hedonic regression model would be difficult to support without a

number of full-time statisticians and software engineers, which property developers

are unlikely to be capable of sustaining among their staff. Furthermore, hedonic re-

gression models require a detailed and varied dataset in order to achieve a good fit,

whereas the data available to developers is likely to be too narrow and similar, as it

will consist of new build property concentrated in a few key areas (Maguire, Miller,

et al., 2016).

The repeat-sales method, on the other hand, requires a considerably long history

of data which most developers are unlikely to have, given that most of those that

existed prior to the Global Financial Crisis went bankrupt (Jones, Cowe, and Trevil-

lion, 2018). However, even for those who are long established, they would only have
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data on the initial sale of each property, whereas the repeat sales method measures

the change in value of the same property, re-sold in different time periods. This rules

out the use of this model for property developers.

The mix-adjusted median model could be used on a combination of in-house

data and publicly available property sale records in order to produce a price index.

While this would likely require a software engineer, the human resources needed

would be considerably less than what would be required to fit and maintain a hedo-

nic regression model.

2.4.4 Governments and regulatory bodies

A change in the trend of house prices can have an extraordinary impact on the gen-

eral strength or weakness of an economy. When property prices are high, homeown-

ers feel secure in increasing both spending and borrowing, which in turn stimulates

economic activity and boosts exchequer receipts. However, when house prices are

falling, homeowners can reduce their spending as they begin to fear that their debt

burden from their mortgage will outsize the value of their property, thus restricting

economic activity (Bank of England, 2018a; Zhu, 2005). Given that these factors are

primary drivers in policy setting, it is logical then that governments, central banks

and other regulatory bodies are interested in monitoring the state of the market over

time.

The key role of government is to foster a sustainable, responsible and benefi-

cial economy for citizens and businesses in the country they govern. With shelter

being one of Maslow’s fundamental human physiological needs, it is critical that

governments ensure their citizens have access to safe, affordable housing, in order

to stimulate a healthy and stable economy (Maslow, 1943). In more recent times,

it has become increasingly difficult for young, first-time buyers to get a foot on the

property ladder (McKee, 2012). This is primarily due to a shortage of available hous-

ing driving prices to all-time highs, as demand increases with population (Conefrey,

Staunton, et al., 2019).

Governments around the world have been attempting to tackle this issue by
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stimulating homebuilding through grants, competitive loans and tax breaks for de-

velopers, and by offering tax-efficient vehicles and duty relief for first-time home-

buyers. It is critical that these policymakers keep a watchful eye on the state of

the property market, in order to judge the extent, balance and scale of the supports

they are putting in place. Increasing support on the buy side must be balanced with

property completions, otherwise the situation will only worsen through a widening

of the gap between supply and demand; increasing prices further.

Central banks also have a vital role in steering the economy, by setting monetary

policy. Their interest in property prices cannot be understated, given the consider-

able economic impact that property has on the economy, as discussed previously.

Home prices rising too quickly feeds into inflation, which most central banks are

mandated to control, while a housing crash generally leads to recession and subse-

quently, an increased unemployment rate (Bank of England, 2018a).

The primary tool used by central banks to ease or tighten monetary policy is

the overnight policy interest rate. This is the rate that a depository pays to bor-

row money overnight from another depository, in the domestic currency. While

the immediate pass-through impact of an increase in the policy rate on mortgage

rates varies by country, according to the mix of fixed-rate and floating-rate mort-

gages, it remains the primary determinant of residential mortgage rates (Hess and

Holzhausen, 2008). This strong relationship between residential mortgages and

monetary policy tools leads to central banks needing to be cautious in ensuring that

their actions do not result in a crash or a bubble and thus, the up-to-date monitoring

of market trends following a change in the policy rate is of keen interest to the policy

makers.

2.4.4.1 Modelling viability

Naturally, the primary set of statistics used by both governments and central banks

will be those produced by the national statistics board of the country in question.

For property prices, this will typically be either a hedonic regression model, or a

repeat-sales model, as discussed previously. Thus, the same key issues will apply;

namely that the house price index is produced with a considerable lag, which makes

it difficult to see the impact of monetary and fiscal policy in real-time.
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Central banks often turn to alternative, more timely measures of critical eco-

nomic indicators as a supplementary tool, while still viewing the indices published

by the statistics bureau as the gold standard. The Federal Reserve of the United States

of America, as an example, monitor a variety of different property price models to

obtain a diversified, aggregate view on the market (Rappaport et al., 2007). Each

of the models offer advantages and disadvantages, however, it demonstrates that

there is a use-case for alternative house price indices, even among the highest level

of market stakeholders.

Owing to their position of power and significance, these parties have the re-

sources to obtain the necessary data and implement any type of statistical model

they desire, however, like other market observants, they may have to accept a report-

ing delay, depending on what kind of information they require. All of the property

price models discussed are viable for both government and central banks and, as

shown, they typically tend to monitor a varied assortment of data sources, increas-

ingly including in-house statistical modelling and machine learning (Bholat, 2015).

2.5 Chapter summary

Property price models vary substantially in both their methodology and their com-

position, without any general consensus on which model produces the most ac-

curate or precise house price index. The commonly used hedonic regression and

repeat-sales models each have distinct benefits and drawbacks, and their viability

depends on data, resources and required timeliness. Mix-adjusted median models

offer a less resource-intensive method of generating a price index, however, they

have been given less attention and forethought than the methodologies mentioned

prior.

Due to the number of stakeholders in the housing market, each of which would

benefit from a more punctual view on housing trends, it is important to explore

viable alternatives to the status quo; notably those which can improve upon draw-

backs in the existing models. It is not necessarily the case that these novel method-

ologies must serve as a total replacement for the established tools, particularly given
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the lack of any convention; they could be adopted as complementary methods of

evaluating the state of the market.
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Chapter 3

Initial Work: A robust house price

index using sparse and frugal data1

As discussed in the previous chapters, property price index models are of keen in-

terest to a number of market stakeholders. Despite this, the most commonly used

house price index methodologies today have a number of unaddressed shortcom-

ings, which result in potential measurement inaccuracies, the need for an extremely

rich and expansive dataset and an untimely publication of the resulting index.

In this chapter, a new mix-adjusted property price index model will be intro-

duced, one which is designed to leverage the underutilised presence of spatial auto-

correlation in housing. The goal of this is to replace the need for a rich set of at-

tribute data on each property transacted over the period of interest, resulting in a

more transparent, reproducible and automated methodology.

By matching transacted properties to neighbours in prior time periods, it is posited

that the high likelihood of those neighbours sharing similar price-influencing char-

acteristics will result in them being broadly comparable across different time peri-

ods, thus allowing a measure of price trend to be calculated. This theory has strong

basis in existing literature, as discussed in Chapter 1.

The GeoPrice index will operate on a publicly available dataset which is both

sparse and frugal; the total number of transactions are low and there is only the

most minimal set of information on each property transacted. In order to benchmark

the performance of the model, comparisons will be made against the results of the

1 This chapter is adapted from A robust house price index using sparse and frugal data (Maguire, Miller,
et al., 2016), with additional contextual information added.
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official Irish Residential Property Price Index, produced by the Irish Central Statistics

Office (CSO).

3.1 The Irish Residential Property Price Index (RPPI)

The Irish Residential Property Price Index (RPPI) is produced by the Central Statis-

tics Office (CSO) on monthly data samples using a hedonic regression model. The

data driving this model is sparse; with a typical monthly transaction volume of ap-

proximately 2,200 in our sample period2. As a result of this, price indices are not

available on a county-by-county or regional level; the only geographic sub-indices

are Dublin and Rest of Ireland.

The primary data source leading into the production of the RPPI is mortgage

returns data. All lending agencies in Ireland must file a mortgage return for any

property sold in the country which is funded by a mortgage, whether wholly or

in-part. These returns must be reported by lenders on a monthly basis to the De-

partment of Housing, Local Government and Heritage, which makes this protected

dataset available to the CSO for the purposes of producing their house price index

(O’Hanlon, 2011). As a result, the reporting and administrative lag associated with

this process directly feeds through to the production of the RPPI.

The advantages of using mortgage return data in the production of the RPPI

is the ability to compare properties with a high level of similarity to one-another,

through the use of the rich data on each property included in the mortgage return;

number of bedrooms, number of bathrooms, floor area, total plot area, age of prop-

erty etc. However, the use of mortgage data comes with a number of key disadvan-

tages. The number of errors in mortgage returns is exceptionally high; estimated

at approximately 68% by the CSO, resulting in a need for imputation (O’Hanlon,

2011). Additionally, the reliance on mortgage returns for the provision of property

attributes means that cash sales must be excluded from the model entirely.

During times where the share of sales completed using a mortgage is very high,

this may have a negligible impact on the sample. However, in periods where lending

is restricted due to economic uncertainty and/or low levels of mortgage affordability

2 Data was sampled from 2010 to 2015, inclusive.
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in the population, the absolute number of mortgage approvals tend to fall, while the

number of cash transactions remain similar; leading to an increased share of cash

transactions in the monthly sale sample. For example, in the years succeeding the

Global Financial Crisis of 2008, the share of mortgage transactions plummeted from

88% to 50%, owing to the introduction of stricter regulatory controls on mortgages

(Dalton and Moore, 2014).

The primary issue with the varying share of cash sales not being accounted for in

the RPPI is the bias it introduces on the sample. If the distribution of cash sales and

mortgage sales were near identical, this issue could be disregarded, however, cash

transactions typically involve cheaper properties, whereas more expensive houses

are usually purchased via a mortgage, by necessity. This sample bias is not taken

into account by the model and thus the results may be somewhat skewed, as a result.

Furthermore, the variability in the share of cash transactions across different time

periods means that the bias is changing on a monthly basis and thus, the effect it has

on the index is not even consistent over time (Dalton and Moore, 2014).

3.1.1 Methodology

The Irish Residential Property Price Index uses a 12-month rolling time-dummy he-

donic regression model, the methodology of which is discussed in Section 2.1. How-

ever, due to the low volume of monthly transactions mentioned previously, the pub-

lished index takes a three month rolling average of the raw index values output by

the model (O’Hanlon, 2011). While this artificially increases the smoothness of the

index, it increases the amount of time needed for market changes to propagate to the

RPPI, which is already a significantly lagged publication. There is also a possibility

that this smoothing process could convey a false sense of conviction in the index,

given that the un-smoothed index is not made readily available to the public, and

this procedure is not plainly communicated to users of the data.

As mentioned previously, imputation is also used by the CSO to interpolate any

attributes from the mortgage return which are missing or deemed to be clearly and

obviously erroneous or implausible. While this is a reasonable approach which is
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utilised in many hedonic regression house price models3, there are a number of is-

sues in applying it to Irish mortgage returns data. Given the low transaction volume

mentioned previously, in addition to the fact that the majority of mortgage returns

have at least one error, the pool of valid data points from which imputation can be

derived is likely to be ∼1,000 to 1,500 per month. Even if the imputation pool is ex-

tended to a rolling one or two year dataset, the total volume is still relatively small

and the risk of stale data permeating through the index is heightened.

According to (O’Hanlon, 2011), the lack of the Residential Property Price Index

to account for "quality of neighbourhood analysis" and inability to leverage the "ex-

planatory power of location coefficients" through geospatial stratification of the hedonic

regression model is "undoubtedly the most serious weakness" of the index. The failure

to factor this characteristic of properties is due to insufficient and unreliable address

details provided through mortgage returns data, which makes proper segmentation

of localities infeasible.

3.2 GeoPrice: A sparse and frugal property price model

3.2.1 The Property Price Register dataset

As an alternative to mortgage returns data, stamp duty returns are maintained by

the Property Services Regulatory Authority (PSRA) and are publicly available online

via the Property Price Register (Property Services Regulatory Authority (IE), 2024).

This service contains details of every property sale transaction in the Republic of Ire-

land from January 1st, 2010 onward, however, the only attributes available for every

sale record are: date of sale, sale price and address. This dataset has the advantage of

a lower lag from reporting to publication time, with a typical lead time of ten days,

yet there are also a number of drawbacks. Aside from the frugality of the property

attributes, there are cases where the delay in reporting of a property sale can stretch

several months beyond the actual sale date. Furthermore, transactions where an

explicit sale does not occur, for example, an inheritance, are included within the

dataset without any reliable filtering method. These transactions may cause a small

3 e.g. in the Office for National Statistics UK House Price Index (ONS, 2023b)
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distortion in any analysis produced upon them, owing to the fact that these trans-

actions typically have a reported value significantly lower than the market value of

the property in question.

These drawbacks are not sufficiently problematic to rule out the potential use

of the dataset however; it seems reasonable to assume that the transactions with

delayed reporting are randomly distributed, such that this effect does not introduce

a bias on the monthly sample. The type of property being sold should not affect

the probability of the that sale being a delayed transaction, as delays are typically

due to administrative issues or human error. Furthermore, the scope of these delays

should be bounded by legal disincentives for late filing of stamp duty returns. By

law, filings which are late by more than forty-four days are subject to penalties, with

these increasing over time 4. As such, the number of buyers who do not comply with

these regulations should be small and thus the impact of delayed reporting on the

index should be limited.

A similar argument can be made with regard to the non-sale transactions; as

inheritance is typically associated with the passing of the property owner, there is

no reason to believe that this effect will be more pronounced in one time period than

another, or in one location than another. Given that these effects can be reasonably

expected to be random, they should cancel out across a sufficiently diverse dataset,

owing to the law of large numbers.

As an initial, basic analysis, we can look at the distribution of the monthly prop-

erty sale pools in the Property Price Register data (see Figure 3.1). The variability in

transaction volume from month to month is significant, as shown in Figure 3.2. This

inconsistency in the number of transactions likely means that months where vol-

umes are particularly low will be substantially more noisy than months where the

number of sales is ample. Prior to any filtration being performed, the month with

the lowest volume was January 2011, with 1,037 transactions, while the month with

the highest number of sales recorded was December 2014, with 7,523 transactions;

over 50% more than the next closest time period.

It is clearly evident from Figure 3.2 that transaction volumes are highly seasonal;

4 See: https://www.revenue.ie/en/property/stamp-duty/paying-the-duty/late-filing-
and-paying.aspx.

https://www.revenue.ie/en/property/stamp-duty/paying-the-duty/late-filing-and-paying.aspx
https://www.revenue.ie/en/property/stamp-duty/paying-the-duty/late-filing-and-paying.aspx
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FIGURE 3.1: Property Price Register Price Distribution from 01-2010
to 06-2015 (inclusive), grouped by month.

the number of sales tends to dramatically increase towards the end of each year, then

drops off sharply. Indeed, the seasonal analysis in Figure 3.3 shows that strong mul-

tiplicative seasonality with annual periodicity can be detected within the monthly

transaction buckets.

While neither the mean nor the median are particularly insightful tools in analysing

property prices, owing to the amount of volatility produced by unhandled shifts in

the housing stock of each monthly basket, they nevertheless can serve as a naive

benchmark and reference point for smoothness when comparing property price in-

dex models later in this chapter. A primitive house price index which takes the mean

and median price of each monthly bucket is shown in Figure 3.4.

Figure 3.5 also shows a potential correlation between the simple mean monthly

price and the transaction volume by month. As discussed, transaction volumes spike

towards the end of each year and rapidly drop off once the new year begins. This

idiosyncrasy of the Irish property market appears to permeate through to the mean

price, with a seasonal drop observed in the first three months of the year. Prices

also appear to spike in the middle of the summer, with a similar uptick in volume

measured in the transaction seasonality for the same period. Interestingly however,
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FIGURE 3.2: Property Price Register Data Volume from 01-2010 to 06-
2015 (inclusive), grouped by month.

FIGURE 3.3: Property Price Register Data Volume Seasonality from
01-2010 to 06-2015 (inclusive), grouped by month.

the large upturn in sale volumes observed towards the end of each year does not

materialise as a corresponding surge in the mean price.



Chapter 3. Initial Work: A robust house price index using sparse and frugal data 48

FIGURE 3.4: Property Price Register Mean/Median Price from 01-
2010 to 06-2015 (inclusive), grouped by month.

FIGURE 3.5: Property Price Register Mean Price Seasonality from 01-
2010 to 06-2015 (inclusive), grouped by month.
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3.2.1.1 Limitations

The primary challenge with using the Property Price Register data is inconsistent ad-

dress formatting. Currently, the Property Price Register makes the address available

via a single text field, with the address directly taken from the stamp duty return.

No constraints are enforced on the clarity and precision of the submitted address

and no validation, cleaning or formatting is done on the raw text; it is uploaded

as-is. Unfortunately, many addresses in Ireland are poorly described and difficult

to identify. In recent times, Ireland has adopted a unique postal code system, Eir-

code, and while this does exist on some of the newer property sale transactions in the

Property Price Register data, it does not exist historically and is not guaranteed to

be present. This makes this data field impossible to use when attempting to test a

model on a historical sample period.

In order to perform our analysis and fit our index model, we collected data from

January 2010 to June 2015 (inclusive). To adequately handle the address issue, we

used Google Maps mapping system, widely considered to be best in class, to match

the addresses in the Property Price Register dataset to precise GPS co-ordinates.

Due to the rate limits on the Google Maps geo-coding API, we were only capable

of querying 2,500 records per day. Thus, collection of co-ordinates for our sample

set had to be carried out over a total period of approximately two months. While it

was not possible to accurately match every address to a pair of GPS co-ordinates, we

were able to achieve a hit rate of approximately 90% of reported transactions, for a

total of 147,635 unique property sales. The data was split into monthly sets for our

model, to allow a direct comparison with the monthly RPPI publication.

The Central Statistics Office have claimed that the lack of property attributes in

the stamp duty data from the Property Price Register makes the dataset impractica-

ble for use in a property price model. According to O’Hanlon, 2011, this is due to

the vague data not offering any viable opportunity to perform mix-adjustment on

the sample set. However, our analysis will investigate the feasibility of producing a

house price index of equal-or-greater robustness to the RPPI using the public Prop-

erty Price Register data, without any supplementary property attribute information.
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3.2.2 Methodology

The GeoPrice index is designed to leverage the spatial auto-correlation effect of prop-

erties at each stage of the methodology. By capitalising on the inherent similarities

shared by neighbouring properties, the index intends to implicitly match similar

properties across multiple time periods by looking at their proximity to one-another.

As such, it is no longer essential to explicitly model and adjust for the attributes of

each property; the price trend of houses deemed likely to be homogenous through

being neighbours can serve as comparable samples across different periods of time,

thus allowing price trend to be estimated.

3.2.2.1 Stage One: Filtering

As an initial filtering stage, properties where additional transactions have been recorded

within 100 meters in a forty-eight hour time period (i.e. ± 24 hours) of the sale are

discarded from the dataset. The reasoning for this is two-fold; firstly, analysis of

the stamp duty returns data demonstrated that entire housing estates or apartment

blocks are frequently sold in bulk within the same time period, which significantly

distorts the average price of transactions in that given period of analysis. Secondly,

duplication errors were occasionally observed on the Property Price Register por-

tal, where the same property was entered multiple times. This filtration method

results in the stripping out of both of these data contaminants, ensuring less noise is

recorded in the final model output.

Algorithm 1 formalises the logic underpinning the stage one filtering process.

Applying this data purification process resulted in the loss of approximately 14.4%

of the dataset, reducing it to a total 126,444 transactions over our sample period.

3.2.2.2 Stage Two: Proximity Voting

As demonstrated in Section 3.2.1, property price index models which are based

around the median are subject to dramatic volatility due to fluctuations in the com-

position of the the monthly basket. As an example, if a locality such as Dublin was

to experience twice the typical number of sales in a given month, being a region in

5See: (Robusto, 1957) for the haversine distance formula.
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Algorithm 1 Sparse and Frugal Model: Stage One - Filtering

property_set: a set of all properties in the property data sample
records_to_remove: a placeholder set, for properties marked for deletion

THRESHDIST: 100
THRESHTIME: ONE_DAY

procedure EXCLUDE_NEIGHBOURS(properties, record)
for all pi in properties do

if TIME_DELTA(pi[sale_date], record[sale_date]) ≤ THRESHTIME then
if HAVERSINE_DIST(pi, record) ≤ THRESHDIST then

records_to_remove← records_to_remove ∪ {pi}
end if

end if
end for

end procedure

for all pi in property_set do
EXCLUDE_NEIGHBOURS(property_set, pi)

end for

property_set← property_set \ records_to_remove

▷ HAVERSINE_DIST is a procedure which computes the haversine distance 5 be-
tween two properties’ GPS co-ordinates, in meters.
▷ TIME_DELTA is a procedure which computes the absolute time difference be-
tween two timestamps.
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which the median price of the region is above the national median, this would drag

the national median upwards, despite not representing a genuine increase in price.

For example, Prasad and Richards, 2008 found that variations in the monthly ob-

served housing stock between higher and lower valued parts of cities led to substan-

tial volatility in the unadjusted median price of their dataset of 3.5 million property

sales in Australian cities. Furthermore, US realtors have reported that a seasonal

effect pushes American property prices higher in the summer, due to the purchas-

ing habits of families with children tending to buy during the school year holidays.

These homeowners typically purchase more expensive properties than the median,

thus exerting an upward pressure on median-based price indices in months affected

by this seasonal pattern (Prasad and Richards, 2008). Indeed, a similar summer

seasonal effect was observed in the Irish Property Price Register dataset, as seen in

Figure 3.5.

Thus, in order to design a robust house price index, it is necessary to develop

methods which can control for the mix of properties feeding into each monthly sam-

ple set. In other words, we wish to extract a subset of each monthly sample which

is more representative of the mix of housing stock in the market being studied, as a

whole. In this analysis, our focus is on the use of geospatial stratification to adjust

the mix, thus, we aim to select a sample which is maximally spatially autocorrelated

with the historical mix, ensuring that the distribution of transactions across different

regions of the country remain stable throughout each month of the data. This would

serve to minimise the bias contaminating the index and increase the comparability

of the monthly observations.

Spatial autocorrelation tends to be present in properties for a number of reasons.

Firstly, properties which lie near to each-other are often members of the same unit of

homes, or a component of a large development of contiguous housing (Mar Iman,

2001). As a result of this, homes in close proximity tend to have a number of charac-

teristics in common, for example, similar floor area, age of dwelling, design features

and property type (Ismail, 2006). The primary driver of this similarity is that blocks

of housing tend to be developed at the same time. These housing blocks are also

more representative of the typical house than, for example, a large, secluded de-

tached property which was developed as a single, custom unit (Gillen, Thibodeau,



Chapter 3. Initial Work: A robust house price index using sparse and frugal data 53

and Wachter, 2001). Therefore, these properties with high levels of spatial autocorre-

lation tend to compose a large share of the sample mix and thus exert more influence

on the house price index.

Additionally, an often understated advantage of leveraging geospatial proximity

in property modelling is an implicit handling of environmental factors. As discussed

in Section 2.1.1, environmental characteristics including quality of schools, public

transport links, green space and crime rates, among others, have notable influence

and explanatory power over a property’s value. Where the majority of housing mod-

els tend to omit these factors due to the difficulty of acquiring and integrating data

pertaining to them; geospatial proximity can be exploited to incorporate these fac-

tors, owing to the fact that proximate properties will share the same environmental

factors, to a high degree (Ismail, 2006).

In light of these motivations, we designed a system to increase the level of spa-

tial autocorrelation in our sample, by filtering out 10% of the dataset which were

deemed to be the least representative properties. In order to select this portion of

transactions, a single transferable voting system was introduced, where properties

in the historic sample set vote for their nearest neighbour in the set of transactions

for a given month. Algorithm 2 formalises this process.

As the votes for each month are cast based on the distribution of the entire his-

toric sample set, this should ensure that the number of properties from each region

remains broadly stable over time. For instance, if Dublin was to experience twice as

many sales as usual in a given month, a number of these sales would be stripped

from the dataset, as the voting system is based on the proportions set by the his-

toric data. As each property in the historic data can only cast one vote, it is not

possible for all of the additional sales in Dublin to be elected. Furthermore, this

method should increase the likelihood that homes with similar property type and

environmental factors remain generally proportional across months, owing to their

correlation among proximate properties.

As a worked example of this algorithm, assume month X is being used as the

electorate for candidates in month X + 1 (in practice, multiple months will be used

as a electorate, but we simplify here for the sake of example). Again, for the sake

of simple example, assume that month X has a total of 10, 000 property sales, while
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Algorithm 2 Sparse and Frugal Model: Stage Two - Proximity Voting

property_set: a set of all properties remaining following Stage One
elected: a placeholder mapping of months to their set of elected properties
votes: a placeholder mapping of properties to their total number of votes
trim_ratio: 0.1

Mi: the month i of the sample period
Pi: the properties in property_set for Mi

procedure VOTE(candidates, voters)
for all vn in voters do

cn ← NN(vn, candidates)
votes[cn]← votes[cn] + 1

end for
end procedure

procedure ELECT(candidates, Mi, voter_cardinality)
election_thresh← voter_cardinality

(1−trim_ratio)|candidates|
for all cn in candidates do

if votes[cn] ≥ election_thresh then
excess← votes[cn]− election_thresh
elected[Mi]← elected[Mi] ∪ {cn} ▷ Add cn to the set of elected for Mi
candidates← candidates \ {cn} ▷ Remove cn from candidates

ĉn ← NN(cn, candidates) ▷ Find the NN to cn in candidates
votes[ĉn]← votes[ĉn] + excess ▷ Add the excess to ĉn

end if
end for

end procedure

procedure ELIMINATE(candidates)
e← MIN(candidates) ▷ Get candidate with least votes
candidates← candidates \ {e} ▷ Remove e from candidates

ê← NN(e, candidates) ▷ Find the NN to e in candidates
votes[ê]← votes[ê] + votes[e] ▷ Redistribute e’s votes to ê

end procedure

for all Mi, Pi in property_set do ▷ Iterate over each month of transactions

historical_transactions←
i−1
∑

n=0
Pn ▷ ∑ here refers to set concatenation

historical_cardinality← |historical_transactions|

VOTE(Pi, historical_transactions)

while Pi ̸= ∅ do ▷ Repeat until all of Pi have been elected/eliminated
ELECT(Pi, Mi, historical_cardinality)
ELIMINATE(Pi)

end while
end for
▷ MIN is a procedure which returns the property p from the candidates argument
for which votes[p] is the minimum.
▷ NN is a procedure which returns the nearest neighbour to the first argument,
among the set of data points passed as the second argument.
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month X + 1 has a total of 1, 000 transactions. Given a 10% trim ratio, this will

result in each property needing a total of at least 11.1̇ votes to be elected to remain

within the sample for month X + 1. Firstly, each of the 10, 000 properties will cast

their vote for their nearest neighbour in the 1, 000 transactions within month X + 1.

Any properties which exceed the threshold of votes will be elected, and their excess

votes, if any, will be distributed to their nearest neighbour. Then, the property with

the least votes will be eliminated and their votes will be distributed to their nearest

neighbour. This process continues until all properties have been either eliminated or

elected.

3.2.2.3 Stage Three: Localised stratification

Although mix-adjustment aids substantially in increasing stability and lowering volatil-

ity in the median house price measure, there is scope for further improvement through

additional analysis of the transaction set. By solely considering the median of each

monthly sample, information on the distribution of prices above and below the me-

dian value is effectively ignored. If the shape of this distribution fluctuates between

months, this detail should be exploited in order to enhance index stability further.

In the case where the various regions present in the property data have distinct

medians, with diverging price action, this issue becomes even more pronounced.

As an example, the national mix-adjusted median house price at the start of 2015

was e180,000. Owing to the fact that capital cities tend to be more expensive to

buy property in, a substantial proportion of Dublin homes sold for a value above

this national median (circa 85% of Dublin transactions). If we were to solely look at

the median, any price action particular to Dublin would have scant impact on the

national median price, due to being mostly above it already.

On the contrary, localities in the data which share a median value which is very

similar to the national median price have a disproportionate effect on the national

index. Owing to their proximity to the median value, they contribute too much

information to this measure, while areas which are on each end of the price spectrum

contribute too little information, despite potentially having a generous share of the

property mix, particularly in the case of capital cities such as Dublin.
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As such, it is critical to disaggregate the transaction set geospatially in order

to construct a representative house price index, where areas with differing medians

are contributing information to the national index proportionally (Goh, Costello, and

Schwann, 2012). Evidence from the Australian housing market reveals a marked dif-

ference in house price behaviour between different metropolitan areas; information

which would be mostly lost through the application of the simple median (Costello,

Fraser, and Groenewold, 2011; Hatzvi and Otto, 2008).

Stratification is one potential method of achieving this. Prasad and Richards,

2008 proposed a novel algorithm for stratifying an Australian dataset. Suburbs were

grouped together based on the long-term average price level of dwellings in said

regions, with a weighted average of the medians of each stratum composed the na-

tional index. They concluded that this measure of property prices was a significant

improvement on the unstratified median measures, and achieved a high level of cor-

relation with hedonic regression models in the same region.

A similar case study was carried out by McDonald, Smith, et al., 2009 on New

Zealand property data; applying an analogous approach to that of Prasad and Richards,

2008. The results achieved by this investigation concurred with their conclusion;

their novel stratified measure of property prices was highly correlated with the

regression-based QV Quarterly House Price Index, one of the primary house price

indices observed in New Zealand 6. However, they further concluded that this mea-

sure of property prices was capable of reporting in a much more timely fashion; a

key problem faced by the commonly used housing models, which we discussed in

depth in Section 1.2.

A limitation of the model used in both of these studies is that the data has been

segmented into arbitrary strata; the boundary between a property being in one stra-

tum or another is entirely arbitrary. There is no guarantee that the strata chosen

for these studies are optimal for volatility reduction, nor is it certain that they are

the most representative delineations of the market in their respective regions. It is

possible that these strata may drift over time, due to environmental factors in a re-

gion changing, such as improvement in schools, or new green space developments

6See: https://www.qv.co.nz/price-index/
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increasing the value of properties in said locality (Luttik, 2000). This concern is not

factored into the technique proposed by Prasad and Richards, 2008.

In order to solve this issue, we propose removing the arbitrary boundaries be-

tween strata by giving each and every property its own local base. In order to illus-

trate, first assume that two months of properties have been selected, a stratification

base month, and a month where the price change is to be evaluated, called the cur-

rent month. The sale price of each property in the current month is divided by the

price of the nearest property in the base month; thereby giving a set of price ra-

tios. We then take the median of those price ratios, giving our stratified, filtered,

mix-adjusted median price index measure. Algorithm 3 formalises this process.

Algorithm 3 Sparse and Frugal Model: Stage Three - Localised Stratification

elected: a mapping of months to their set of selected properties from Stage Two
month_ratios: a placeholder mapping of months to a set of price ratios
month_changes: a placeholder mapping of months to their computed price change,
relative to the stratification base

MB: the chosen stratification base month
PB: the properties in elected for MB

Mi: the month i of the sample period
Pi: the properties in elected for Mi

procedure STRATIFIED_RATIOS(property_sales, Mi)
for all pn in property_sales do

p̂B
n ← NN(pn, MB) ▷ p̂B

n is pn’s nearest neighbour in MB

month_ratios[Mi]← month_ratios[Mi] ∪ { sale_price(pn)

sale_price( p̂B
n )
}

end for
end procedure

for all Mi, Pi in elected do
STRATIFIED_RATIOS(Pi, Mi)
month_changes[Mi]← MEDIAN(month_ratios[Mi])

end for

▷ NN is a procedure which returns the nearest neighbour to the first argument,
among the set of data points passed as the second argument.
▷ sale_price is a procedure which returns the sale price for the property passed as
an argument.

As a worked example, suppose a house is sold in Wicklow for e240,000, in Jan-

uary 2015. Suppose we select the stratification base month to be November 2014.
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Then we would find the nearest neighbour of the house sold in Wicklow, in Novem-

ber 2014’s sale records. Let’s assume this to be a house worth e200,000. Then, the

price ratio of these properties would be 240,000
200,000 = 1.2, which would imply a change

of +20%, from November 2014 to January 2015. We would take the median value of

all of these price ratios, in order to calculate the overall change from the base month

to the selected month.

Through this method, all areas contribute information to the price index, as we

have stripped out the oversized impact of properties close to the national median

on the index. By calculating our model on localised, stratified price ratios, market

data coming from any property in the transaction data has an equal opportunity to

impact the index as any other, reducing the model’s volatility.

3.2.2.4 Stage Four: Leveraging multiple base months to reduce volatility

To push our model even further, we can enhance the stability of the index by leverag-

ing multiple stratification base months, rather than just a single one. As an example,

the house price index for January 2015 could be derived by computing the price ra-

tios using December 2014, Novemeber 2014, October 2014 and so forth, each as the

stratification base month. Table 3.1 displays the results of running Stage Three of

the model on January 2015, using the prior six months as different stratification base

months.

In order to generate our final index, we calculate the monthly change using every

available historical stratification base and take the average monthly change implied

by each of those values. We will explore the results of each of these stages of the al-

gorithm in Section 3.4, including a comparison with the CSO’s RPPI index, however,

we first must explore methods of comparing the performance of distinct house price

index models.

3.3 Measuring robustness through smoothness

The measurement of robustness is of key importance to research in the area of prop-

erty prices, owing to the fact that no gold standard of measurement exists. Despite
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TABLE 3.1: Stage Three Model: Index change from December 2014 to
January 2015

Base Month Jul 2014 Aug 2014 Sept 2014 Oct 2014 Nov 2014 Dec 2014

Jan 2015 a +5.7% +3.9% +3.8% +2.7% +2.2% +6.0%

a Values represent the month-over-month change from Dec 2014 to Jan 2015, using
different stratification base months.

this, methodology surrounding evaluation of house price index robustness has re-

ceived little attention in the literature (Goh, Costello, and Schwann, 2012).

How does one distinguish a good house price index, from a bad house price in-

dex? Chandler and Disney, 2014 found that it was surprisingly difficult to identify

what a property price index is even intended to measure. The UK’s Office for Na-

tional Statistics states ’the aim of the ONS House Price Index is to measure the change

in the average house price for owner-occupied properties in the UK’. On the other hand,

Nationwide, a large British mortgage lender, produce their own mix-adjusted median

house price index. They state that their index measures "the price for a ‘typical’ house"

(Nationwide, 2024).

These house price models are therefore attempting to measure different things,

with the ONS seeking to measure the change in the average house price, while the

Nationwide index looks to measure the price movement of a typical house. This

subtle disparity is relevant to our prior discussion in Section 3.2.2.3, where an index

which only considers the median value is simply measuring the movements around

a typical property; largely ignoring the behaviour of the market behaviour above and

below what is considered typical.

However, in cases such as the ONS house price index, what does the average

house price actually mean? The subtle, yet significant differences between house

price index methodologies, definitions and objectives makes it difficult to assess the

accuracy and robustness across the various commonly used models. The gold stan-

dard of house price trend is unobservable, as it would require measurement of the

entire housing stock in every time period of interest (Goh, Costello, and Schwann,

2012). While the model produced by Wallace and Meese, 1997 assumes that the true
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house price trend can be proxied by observing the median house price, a large body

of literature argues against the use of the median alone (Case and Shiller, 1987; Goh,

Costello, and Schwann, 2012; Hansen, 2009).

Goodness-of-fit statistics are one of the tools commonly employed for assess-

ing the accuracy of models, used by Case and Szymanoski, 1995 and Prasad and

Richards, 2008 to assess their proposed house price indices, for example. On the

other hand, Sommervoll, 2006 argues that this metric can be highly misleading, due

to the risk of overfitting. This is particularly concerning in the case where indices are

disaggregated into a very granular level of detail, or when models are fit to sparse

datasets. It is possible for substantial inaccuracies in the measurement of market be-

haviour to occur despite a high R2 or t− value reading, as powerful models can be

easily tuned to produce highly convincing results when strata have a small number

of samples.

The main drawback in goodness-of-fit measures is the lack of penalisation for

model complexity. In other words, these metrics should take into account the num-

ber of free parameters which the model has available to tune. A given model is

theoretically capable of achieving an arbitrary goodness-of-fit measure on the sam-

ple set simply by dramatically increasing the number of model parameters available

to it. This is a particular issue in recent times, owing to the increasing prominence

of complex machine learning models which can have thousands, or even hundreds-

of-thousands of adjustable parameters (Domingos, 2012).

A potential alternative to goodness-of-fit, suggested by Goh, Costello, and Schwann,

2012, is cross-validation. They propose adopting a system whereby 75% of the trans-

actions are selected from the sample at random, and the other 25% of the sample

is used to verify how well the model has been fit. The closer the match between

the training set and the test set, the more robust the model. There are some issues

with this metric, however. Firstly, it cannot be said that a single instance of cross-

validation guarantees a good fit; it is possible that two random halves of a dataset

produce similar results by chance, where other partitions of the sample may have

given contradictory results. In order to ensure the accuracy of this metric, the cross-

validation would need to repeated a number of times, with the mean agreement of the

partitions in each test cycle taken as the benchmark for a good fit.
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Furthermore, the issue with this method of assessing model robustness is that

trivial models which ignore the input and produce near-identical values on every

run will generate a staggeringly strong result using this metric, as results will be

highly consistent, yet they hold no information whatsoever on what is being at-

tempted to be measured. In practice, the most robust house price index, is the

smoothest one. The driving nature behind this claim, is that the property market

is historically known to have a cyclical pattern; during times of market strength,

house values surge consistently upwards for months or years in succession (Agnello

and Schuknecht, 2011; Leung and Tsang, 2013). During recessionary periods, prices

begin to move the opposite direction, and will consistently drop month-to-month

for an extended period of time (Chen, Kawaguchi, and Patel, 2004). Indeed, En-

glund and Ioannides, 1997 found statistical evidence of strong autocorrelation in the

housing market of no less than fifteen OECD countries. This strong autocorrela-

tion suggests that price action in the current month should have predictive power

on price action in upcoming months, which has also been observed by Case and

Shiller, 1988, among others. In other words, the property market trend is expected

to be smooth and carry momentum forward, rather than oscillating up and down

between months.

In contrast, house price models experience various degrees of sampling errors,

which jump around and frequently flip direction on a month-to-month basis. These

sampling errors, unlike the housing market, don’t have a particular momentum or

trend. This would explain the reasoning behind the CSO utilising a three-month

smoothing technique to reduce the impact of these errors, as they tend to partially

cancel out in successive months. As a result of this divergence in frequency, smooth-

ness acts as a strong metric for robustness and reliability in property measurement.

House price indices which experience volatile swings; where the price is increas-

ing one month, decreasing the next, and returning to an increase the month after

that, should be penalised under this robustness system, with the magnitude of this

volatility taken into account. A model exhibiting this type of behaviour, by defini-

tion, would be anti-autocorrelated, violating extensive existing findings (Case and

Shiller, 1988; Englund and Ioannides, 1997).

Comparing these discrepancies in magnitude for successive months is similar to
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Goh, Costello, and Schwann, 2012’s approach of minimising discrepancies in a given

month using random sampling; models which strip out more noise should result in

a smoother index, which more closely and accurately captures the real behaviour of

the strongly cyclical property market. Thus, we will evaluate the various models ex-

plored in this chapter by looking at the absolute monthly change in the momentum

of the index. For example, an index which rises by the same relative amount each

month would have an average monthly change in momentum, or smoothness value

of 0%.

Wang and Zorn, 1997 posit that an index should be defined by its use in practice,

rather than being excessively influenced by the higher level concerns of extreme

statistical soundness and precision. They found in their analysis that much of the

disagreement and debate over the methodology of indices can be distilled to largely

unrecognised contention over the actual intended application of the models. In ac-

cordance with this, our mathematical concept of index smoothness can instead by

expressed as the most robust index being the one which investors would seek to

hold if house price indices were an openly traded market, as per the recommenda-

tions of Englund, Hwang, and Quigley, 2002; Shiller, 2003.

Investors seek to hold a maximally diversified portfolio of assets, which min-

imises risk and maintains return (Maguire, Moser, et al., 2014). It has been shown

that low-volatility portfolio investment produces the most reliable and consistent re-

turns over the a long period of time, contrary to what might seem logical (Maguire,

Kelly, et al., 2017). It may seem reasonable that, on average, the high risk investor,

if sufficiently skilled at trading, should accumulate a higher return on capital, ow-

ing to the outsized amount of risk they take through holding a more volatile posi-

tion. Despite this, the opposite effect has been statistically shown to be the reality;

low volatility portfolios perform best over a long time horizon (Baker, Bradley, and

Wurgler, 2011).

As such, there appears to be a strong link between portfolio diversification and

low volatility. It has been theorised that the level of diversification in a portfolio

can be measured by analysing how independent sources of information combine

in order to smooth the volatility of the portfolio as a whole (Choueifaty, Froidure,

and Reynier, 2013). Relating this to house price indices, suppose that a number
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of distinct models were published openly by a variety of organisations; investors

would naturally seek to hold the optimal combination of those sources, such that

the long term volatility of those portfolios is minimised (Kuo and Li, 2013). In other

words, they would seek to hold the smoothest composite index. In summation, we

conclude that, in practice, the optimal house price index is the smoothest house price

index.

3.4 Comparison of results

Table 3.2 shows the results of each stage of our proposed sparse and frugal GeoPrice

model, alongside the CSO’s raw RPPI model and the simple average and median

measures. As shown in the table, our stage four house price index managed to ex-

ceed the smoothness value of the RPPI, achieving a result of 2.83% versus the RPPI’s

3.35%. Across the entire sample period, the absolute maximum monthly percentage

change was a drop of 6.7% in January 2013, versus the RPPI’s largest change being

a gain of 8.1% in December 2012. However, the correlation between the monthly

changes of the models was relatively low, at r = 0.43. This would suggest that they

each contribute somewhat different pieces of information.

According to Quigley, 1995, hybrid models which aggregate the results of both

hedonic regression and repeat sales models tend to perform more robustly than ei-

ther of these models in isolation. We found a similar phenomenon in our data; com-

bining our frugal index with the RPPI as a composite index (with a 56.1% weight for

our frugal index and 43.9% weight on the RPPI) reduced volatility and increased the

smoothness metric to 2.51%.

Figure 3.6 shows the results of our frugal model, the RPPI and the composite

house price index on a plot. Despite our frugal index outperforming the CSO’s RPPI

index in robustness, the composite index is the superior index of the three. As dis-

cussed previously, this is the index which investors would choose to hold, if both

indices were available to trade on an open market.
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TABLE 3.2: Statistical results for a selection of price indices

Metric Mean (%) a Median (%) a Max (%) Min (%) St.Dev (%) Smooth (%)

Raw average 7.01 5.74 +31.1 -17.9 9.23 12.40

Raw median 5.06 4.07 +23.8 -15.2 6.79 8.42

Stage One 3.85 3.23 +11.1 -15.6 4.81 6.37

Stage Two 2.58 2.70 +9.19 -7.38 3.31 4.47

Stage Three 2.72 2.22 +7.33 -8.38 3.38 3.76

Stage Four 2.05 1.64 +5.41 -6.67 2.55 2.83

RPPI 2.16 1.61 +8.06 -5.50 2.73 3.35

a These metrics are applied to the absolute monthly percentage changes of the corresponding
index.
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FIGURE 3.6: RPPI, GeoPrice and composite indices from 01-2010 to 06-
2015 (inclusive)

3.4.1 Advantages of the GeoPrice model

Contrary to the claims of O’Hanlon, 2011, the frugal data available through stamp

duty returns is sufficient for constructing a house price index which not only matches,

but exceeds that of the CSO’s RPPI model. Admittedly, while the GeoPrice index does

not offer a vast improvement in smoothness over the existing RPPI, it does have a

major advantage in that it only makes use of the publicly available sale price, date

of sale and address, rather than requiring the large selection of property attributes

which the CSO must collect privately in order to produce the RPPI index.

This makes the proposed model highly flexible and easy to deploy. It is possible

for the algorithm to operate on any dataset which consists of no more than the three

attributes mentioned previously. It is constructed in such a way that it automatically

controls for noise, property mix bias and outlier data. The algorithm can be re-

computed at will, as soon as new data becomes available. As a result, the sparse

and frugal model can produce results in a matter of days following new data being

collected, rather than a matter of months, as is the case with most hedonic regression

models, as discussed previously.

Furthermore, the GeoPrice index could be expanded through application to ask-

ing prices for properties which have not yet been sold. This would potentially result

in a forecasting effect, whereby the changes in the coming three-to-six months could

be estimated, simply by using data collected from a property listing portal. An index
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could also be produced on any sub-region of the dataset, provided there is an ample

number of transactions to generate a reliable signal. These expanded use cases of

the algorithm are trivial to implement, once the data is available. We will explore

further applications and enhancements to the algorithm later in this thesis.

3.4.2 Limitations of the GeoPrice model

One of the main limitations of this sparse and frugal model is the time taken to

compute the index. Due to the heavy use of nearest neighbour searches across the

dataset, computation takes a significant amount of time (circa 14 hours on the dataset

presented in this thesis). While this doesn’t prevent frequent and rapid computation

of the index once new data is released, it does increase the difficult of computing

many variations of the index.

Furthermore, the nearest neighbour searches in stage four of the algorithm are of

quadratic complexity. This means that the execution time will increase quadratically

as more properties are added, limiting the expansion to much larger datasets. Meth-

ods of addressing and improving upon this drawback will be explored in Chapter 4,

which will be intended to make the GeoPrice model more scalable and performant.

3.5 Chapter Summary

Timely measurement of property market trends is of high importance to market

stakeholders, particularly policy makers, and is of critical importance to understand-

ing the behaviour of the housing market. Empirical evidence on the matter has the-

orised that introducing real estate derivative markets would bring large economic

benefits and aid in rapidly adjusting the valuation of properties towards an equi-

librium between supply and demand (Englund, Hwang, and Quigley, 2002). It has

also been suggested that these changes would result in lower rents and more timid

market movements owing to speculative investment (Iacoviello and Ortalo-Magne,

2003; Quigley, 1999). Our sparse and frugal method makes strides in supporting this

product, by dramatically reducing the publication lag on housing market statistical

measures. Further progress on this front will be made in the coming chapters of this

thesis.
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Critics of this model may argue that, over a long period of time, precisely cali-

brated statistical models provide a more transparent view of gradual changes in the

property market. This may well be true, however, it could also be argued that the

primary function of a house price index, or any model for that matter, is to commu-

nicate immediate and timely changes in the instrument it is intended to measure.

According to Wang and Zorn, 1997, there is little use in striving to achieve statisti-

cal accuracy or perfection if that goal does not translate to practical use, improved

decision making and better economic results.

Governments and policy makers will typically make decisions on the short-term

movements of key economic indicators, as their reaction function needs to be timely

in order to avoid any troublesome situation spiraling out of control. As such, hous-

ing market participants typically look to frequently updating, active measures, as

discussed in detail in Section 2.4.

The initial formulation and application of the GeoPrice index is a proof of con-

cept algorithm, built on public, parsimonious data with an accessible methodology,

aimed at filling this niche. The model, in its current state, has already been demon-

strated to be capable of outperforming, albeit mildly, the accuracy of a conventional

hedonic regression model, despite a vastly more sparse set of input data. Further-

more, this outperformance was achieved using a dataset which is entirely public,

leading to greater transparency and reproducibility of the index.

In future chapters, improvements to the efficiency, smoothness and performance

of the model will be explored, aiming to boost the accuracy and scalability of the

methodology. Applications of the model to datasets which are both larger and dis-

tinct in nature will be presented, in order to demonstrate the suitability of the model

to wider use.
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Chapter 4

GeoTree: A data structure for O (1)

geospatial search, enabling a

real-time property index 1

The GeoPrice model presented in Chapter 3 demonstrated the potential of leveraging

geospatial auto-correlation to construct a smooth, accurate house price index model

capable of outperforming a hedonic regression model, without the need to acquire a

rich set of descriptive attribute data on each property. Through the use of geospatial

matching with similar neighbours, the GeoPrice index demonstrated that the likeli-

hood of proximate properties sharing similar price-influencing characteristics was

enough to generate relevant comparables across different time periods, from which

a price index could then be generated.

One of the major drawbacks of this initial formulation of the GeoPrice index,

as discussed in Section 3.4.2, is the slow execution time of the computationally-

demanding methodology. Since the model is required to search for neighbours of

each property transacted in month X in every month prior to month X, an intensive,

nested nearest neighbour search must be performed across a significant number of

data points.

In order to improve upon this limitation of the model, this chapter will focus on

1 This chapter is adapted from GeoTree: A Data Structure for Constant Time Geospatial Search Enabling
a Real-Time Property Index (Miller and Maguire, 2021), which was expanded upon in the consolidated
journal article A real-time mix-adjusted median property price index enabled by an efficient nearest neighbour
approximation data structure (Miller and Maguire, 2022).
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introducing a more efficient method of determining neighbours of each given prop-

erty. A novel data structure, the GeoTree, will be outlined and applied to the dataset

used in Chapter 3, demonstrating a performance improvement of multiple orders of

magnitude. This result is achieved by replacing each O (n) neighbour search with

an O (1) search. The cost of this efficiency gain is a slight reduction in accuracy, due

to limitations of the encoding methodology, however, we will demonstrate that the

impact of this on the GeoPrice index is minor.

4.1 Complexity of high-volume geospatial search queries

Large scale datasets are a hot topic in computer science. Each one tends to present its

own problems and intricacies (Hand, 2013). The Nearest Neighbour (NN) problem

is a well known and vital facet of many data mining research topics. This involves

finding the nearest data point to a given point under some metric which measures

the distance between data points. In the context of geospatial data, the NN problem

often emerges in the form of geographical proximity search (Roussopoulos, Kelley,

and Vincent, 1995).

Real world geographic data is usually represented by a pair of GPS co-ordinates,

which pinpoint any location on Earth with unlimited precision. As a result of their

structure, computing the distance between pairs of points in order to find the nearest

neighbour can be extremely slow on large datasets, given the quadratic nature of

applying the naive nearest neighbour algorithm (Ramírez-Gallego, Krawczyk, et al.,

2017; Zhang, Mamoulis, et al., 2004).

This impediment often requires further expansion to finding the k nearest neigh-

bours (k-NN), or all neighbours within a certain range, which increases the compu-

tational complexity through requiring a sorting of the distance matrix, in order to

extract a ranking of points by proximity. It is extremely computationally expensive

to compute and rank these distances on large datasets Safar, 2005. A computation-

ally cheap method of solving this problem would vastly improve the scalability of

proximity based algorithms Roussopoulos, Kelley, and Vincent, 1995, particularly

including our sparse and frugal property price index model proposed in Chapter 3.
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4.2 Methods of geospatial search

4.2.1 Naive haversine search

The distance between two pieces of geospatial data defined using the GPS co-ordinate

system is computed using the haversine formula (Robusto, 1957). If we wish to find

the closest point in a dataset to any given point in a naive fashion, we must loop over

the dataset and compute the haversine distance between each point and the given,

fixed point. This is an O (n) computation. If the distances are to be stored for later

use, this also requires O (n) memory consumption. Thus, if the closest point to ev-

ery point in the dataset must be found, this requires an additional nested loop over

the dataset, resulting in O
(
n2) memory and time complexity overall (assuming the

distance matrix is stored). If such a computation is applied to a large dataset, such

as the 147,635 property transactions used in the house price index in Chapter 3, an

O
(
n2) algorithm can run extremely slowly even on powerful modern machines.

As GPS co-ordinates are multi-dimensional objects, it is difficult to prune and

cut data from the search space without performing the haversine computation. With

a considerable portion of big data being geospatial in nature, geospatial algorithms

and data structures are coming under increased research attention, with the amount

of personal location data available growing by approximately 20% year-on-year ac-

cording to the McKinsey Global Institute (Lee and Kang, 2015). As such, exploring

alternative methods of representing GPS co-ordinates is necessary to make algorith-

mic improvements and advance the feasibility of employing geospatial data in mod-

els and analysis.

4.2.2 GeoHashing

A geohash is a string encoding for GPS co-ordinates, allowing co-ordinate pairs to be

represented by a single string of characters. The publicly-released encoding method

was invented by Niemeyer in 2008 (Niemeyer, 2008). The algorithm works by as-

signing a geohash string to a square area on the earth, usually referred to as a bucket.

Every GPS co-ordinate which falls inside that bucket will be assigned that geohash.

The number of characters in a geohash is user-specified and determines the size of

the bucket. The more characters in the geohash, the smaller the bucket becomes,
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and the greater precision the geohash can resolve to. While geohashes thus do not

represent points on the globe, as there is no limit to the number of characters in a

geohash, they can represent an arbitrarily small square on the globe and thus can be

reduced to an exact point for practical purposes. Figure 4.1 demonstrates parts of

the geohash grid on a section of map.

FIGURE 4.1: GeoHash algorithm applied to a map

Geohashes are constructed in such a way that their string similarity signifies

something about their proximity on the globe. Take the longest sequential substring

of identical characters possible from two geohashes (starting at the first character of

each geohash) and call this string x. Then x itself is a geohash (ie. a bucket) with

a certain area. The longer the length of x, the smaller the area of this bucket. Thus

x gives an upper bound on the distance between the points. We will refer to this

substring as the smallest common bucket (SCB) of a pair of geohashes. We define the

length of the SCB as the length of the substring defining it. This definition can ad-

ditionally be generalised to a set of geohashes of any size. Furthermore, we define

the SCB of a single geohash g to be the set of all geohashes in the dataset which have

g as a prefix. We can immediately assert an upper bound of 123,264m for the dis-

tance between the geohashes in Figure 4.2, as per the table of upper bounds in the

pygeohash package (McGinnis, 2017).
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geohash 1: c1c2c3︸ ︷︷ ︸
SCB

x4 . . . xn

geohash 2: c1c2c3︸ ︷︷ ︸
SCB

y4 . . . yn

where: xi ̸= yi∀i ∈ {4 . . . n}
FIGURE 4.2: GeoHash precision example

4.2.3 Tree structures

Geohashing algorithms have, over time, improved in efficiency and have been put

to use in a wide variety of applications and research contexts (Moussalli, Srivatsa,

and Asaad, 2015; Moussalli, Asaad, and Srivatsa, 2015). As stated by Roussopoulos,

Kelley, and Vincent, 1995, the efficient execution of nearest neighbour computations

requires the use of niche spatial data structures which are constructed with the prox-

imity of the data points being a key consideration.

The method proposed by Roussopoulos, Kelley, and Vincent, 1995 makes use of

R − trees, a data structure very similar in nature to the geohash (Guttman, 1984).

They propose an efficient algorithm for the precise NN computation of a spatial

point, and extend this to identify the exact k-nearest neighbours using a sub-tree

traversal algorithm which demonstrates improved efficiency over the naive search

algorithm.

A comparison of some data structures for spatial searching and indexing was

carried out by Kothuri, Ravada, and Abugov, 2002, with a specific focus on com-

parison between the aforementioned R− trees and Quadtrees, including application

to large real-world GIS datasets. The results indicate that the Quadtree is superior

to the R − tree in terms of insertion time due to an expensive clustering technique

underpinning the methodology of the latter. As a trade-off, the R− tree has faster

query time. Both of these trees are designed to query for a very precise, user-defined

area of geospatial data. As a result they are still quite slow when making a very large

number of queries to the tree.

Beygelzimer, Kakade, and Langford, 2006 introduce another geospatial data struc-

ture, the cover tree. Here, each level of the tree acts as a "cover" for the level directly
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beneath it, which allows narrowing of the nearest neighbour search space to loga-

rithmic time in n, which would result in O (n. log n) complexity to find the nearest

neighbour of every point over the entire dataset; a significant improvement over the

O
(
n2) complexity of the naive search algorithm.

Research has also been carried out in reducing the searching overhead when the

exact k-NN results are not required, and a spatial region around each of the nearest

neighbours is sufficient for the use case. For example, Arya, Mount, et al., 1998

introduced an approximate k-NN algorithm called the kd− tree, which is a popular

variant of the R − tree algorithm, reducing the time complexity to O (kd log n) per

query, for any given value of k. This trades off some precision in order to deliver a

substantial boost in time performance.

It is often the case that ranged neighbour queries are performed as traditional

k-NN queries repeated multiple times, which results in a large execution time over-

head (Bao, Chow, et al., 2010). This is an inefficient method, as the lack of pinpoint

precision required in a ranged query can be exploited in order to optimise the search

process and increase performance and efficiency. This is a concept we leverage when

constructing the GeoTree, in order to increase the scalibility of our frugal algorithm.

Muja and Lowe, 2014 provide a detailed overview of more recently proposed

data structures such as partitioning trees, hashing based NN structures and graph

based NN structures designed to enable efficient k-NN search algorithms. Again,

they re-iterated the findings that ’exact search is too costly for many applications, so this

has generalised interest in approximate nearest-neighbor search algorithms’. The selection

of approximation methods they investigated offered a significant speed up, how-

ever, they were largely focused on building a number of randomised trees, which

resulted in substantial memory consumption in large datasets.

The suffix-tree, a data structure which is designed to rapidly identify substrings

in a string, has also had many incarnations and variations in the literature (Apos-

tolico, Crochemore, et al., 2016). The GeoTree follows a somewhat similar conceptual

idea and applies it to geohashes, allowing very rapid identification of groups of geo-

hashes with shared prefixes.

The problem can often extend to performing clustering in higher dimensional

spaces. Guo, Tierney, and Gao, 2021 have developed an algorithm which can filter
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out a large number of data points to deliver an implementation of sparse subspace

scattering which maintains near identical performance, with a reduction to linear

time and memory complexity on the nearest neighbour search.

The common theme within this existing body of work is the sentiment that meth-

ods of speeding up k-NN search, particularly upon data of a geospatial nature, re-

quire specialised data structures designed specifically for the purpose of proximity

searching (Roussopoulos, Kelley, and Vincent, 1995). As shown, these algorithms

vary in the level of speed up offered relative to their desired accuracy trade-off and

memory limits, according to the specific use case motivating their development. In a

similar vein, we will introduce a novel, approximate neighbourhood matching data

structure, which will allow us to quickly retrieve the approximate neighbours of any

property in our dataset.

4.3 The GeoTree data structure

The goal of our data structure is to allow efficient approximate ranged proximity

search over a set of geohashes. For example, given a database of house data, we

wish to retrieve a collection of houses in a small radius around each house without

having to iterate over the entire database. In more general terms, we wish to pool

all other strings in a dataset which have a maximal length SCB with respect to any

given string. Being able to perform these searches efficiently will offer a dramatic

speed up and improvement in scalability in stage two, stage three and stage four of

our sparse and frugal model, detailed in Algorithm 2 and Algorithm 3.

4.3.1 High-level description

A GeoTree is a general tree (a tree which has an arbitrary number of children at each

node) with an immutable fixed height h set by the user upon creation. Each level of

the tree represents a character in the geohash, with the exception of level zero - the

root node. For example, at level one, the tree contains a node for every character that

occurs among the first characters of each geohash in the database. For each node in

the first level, that node will contain children corresponding to each possible char-

acter present in the second position of every geohash string in the dataset sharing
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the same first character as represented by the parent node. The same principle ap-

plies from level three to level h of the GeoTree, using the third to hth characters of the

geohash respectively.

At any node, we refer to the path to that node in the tree as the substring of that

node, and represent it by the string where the ith character corresponds to the letter

associated with the node in the path at depth i.

The general structure of a GeoTree is demonstrated in Figure 4.3a. As can be seen,

the first level of the tree has a node for each possible letter in the alphabet. Only char-

acters which are actually present in the first letters of the geohashes in our dataset

will receive nodes in the constructed tree. We, however, include all characters in this

diagram for clarity. In the second level, the a node also has a child for each possible

letter. This same principle applies to the other levels of the tree. Formally, at the ith

level, each node has a child for each of the characters present among the (i + 1)th

position of the geohash strings which are in the SCB of the current substring of that

node. A worked example of a constructed GeoTree follows in Figure 4.3b.

Consider the following set of geohashes which has been created for the purpose

of demonstration:

{gc7j98, gc7j98, gd7j98, ac7j98, gc9aaj, gc7j9d, ac7j98, gd7jya, gc9aaj}

The GeoTree generated by the insertion of the geohashes above with a fixed height

of six would appear as seen in Figure 4.3b.

4.3.2 Data nodes

The data attributes associated with a particular geohash are added as a child of the

leaf node of the substring corresponding to that geohash in the tree, as shown in Fig-

ure 4.4. In the case where one geohash is associated with multiple data entries, each

data entry will have its own node as a child of the geohash substring, as demon-

strated in the diagram.

It is now possible to collect all data entries in the SCB of a particular geohash

substring without iterating over the entire dataset. Given a particular geohash in

the tree, we can move any number of levels up the tree from that geohash’s leaf
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nodes and explore all nearby data entries by traversing the sub-tree given by taking

that node as the root. Thus, to compute the set of geohashes with an SCB of length m

or greater with respect to the particular geohash in question, we need only explore

the sub-tree at level m along the path corresponding to that particular geohash. De-

spite this improvement, we wish to remove the process of traversing the sub-tree

altogether.

ROOT

a

a

. . .

{d1} {d2}

. . .

. . .

{d3}

z

. . .

{d4}

. . .

. . .

. . .

{d5}

FIGURE 4.4: GeoTree Structure with Data Nodes

4.3.3 sub-tree caching of data nodes

In order to eliminate traversal of the sub-tree we must cache all data entries in the

sub-tree at each level. To cache the sub-tree traversal, each non-leaf node receives

an additional child node which we will refer to as the list (ls) node. The list node

holds references to every data entry that has a leaf node within the same sub-tree as

the list node itself. As a result, the list node offers an instant enumeration of every

leaf node within the sub-tree structure in which it sits, removing the need to traverse

the sub-tree and collect the data at the leaf nodes. The structure of the tree with list

nodes added is demonstrated in Figure 4.5 (some nodes and list nodes are omitted

for the sake of brevity and clarity).

4.3.4 Retrieval of sub-tree data

Given any geohash, we can query the tree for a set of nearby neighbouring geo-

hashes by traversing down the GeoTree along some substring of that geohash. A

longer length substring will correspond to a smaller radius in which neighbours

will be returned. When the desired level is reached, the cached list node at that level
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ROOT

a

a

{d1} {d2} ls: {d1, d2}

. . . ls: {d1, d2, . . . }

ls: {d1, d2, d3, . . . } . . .

a

{d3} ls: {d3}

ls: {d3, . . . }

FIGURE 4.5: GeoTree Structure with List Nodes

can be queried for instant retrieval of the set of approximate k-NN of the geohash in

question.

As a result of this design, the GeoTree does not produce a distance measure for the

items in the GeoTree. Rather, it clusters groups of nearby data points and thus could

be considered to be a performant geospatial clustering data structure, rather than a

distance search algorithm, per se. Thus, while this does not allow for fine tuning of

the search radius, it enables for a set of data points which are in near proximity to a

specified geohash to be retrieved in constant time; which is our primary concern for

our particular use case of geospatial property stratification.

4.3.5 Time complexity

Building (Insertion)

As hash maps offer O (1) insertion, insertion of data at each level of the GeoTree is

O (1). Furthermore, insertion to the tree as a whole will take a total of h operations,

where h is the height of the tree. This height is constant and fixed at creation time,

thus insertion of entries to the GeoTree is an O (h) operation, resulting in no depen-

dence on n, the number of points in the dataset.

SCB Lookup

The O (1) lookup of hash maps also means that the tree can be traversed in steps of

O (1) time. As the list nodes hold the SCB of every geohash substring possible from

those in the dataset, and a maximum of h SCBs will need to be queried, it follows

that any SCB lookup is at worst O (h), but will generally be less than this, assuming
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the user wants to perform a query for neighbours. Again, the complexity avoids any

dependence on n.

4.3.6 Space complexity

As each geohash is associated with only one character at each level of the GeoTree,

only one node on each level will hold that geohash’s data entry in its list node. Thus,

each data entry is inserted into one single list node at every level of the tree. Given

a tree of height h, this means that the data will be stored in h different list nodes

in addition to the one leaf node which the data receives. If the dataset is of size

n, then there will be (h + 1) ∗ n data entries stored in the tree. Thus, the overall

memory requirement of the GeoTree is O (hn) in a naive implementation. However,

this can be further improved to O (n) complexity by collecting a set of the data once

in memory and filling the list nodes with a list of pointers to the data entries, rather

than duplicating them.

4.4 Comparison with the prefix tree (trie)

The GeoTree data structure shares a number of similarities with the prefix tree or trie

data structure De La Briandais, 1959. A trie is a search tree which utilises its ordering

and structure to increase searching efficiency across its inserted strings. Each branch

represents a character and thus as you traverse down the trie, you build the prefix

of a word, working toward an entire word at each leaf node.

This is very similar to the GeoTree, as the geohash encodings of properties take the

place of words in this use case and traversing the GeoTree builds prefixes of geohash

strings. Both data structures make use of structure to make search more efficient,

however, in the case of the GeoTree, the ordering has geographical significance rather

than the semantic meaning in the prefix tree.

One key difference between tries and the GeoTree lies in the sub-tree data caching

step. As the GeoTree relies on being able to query every entry in the sub-tree of a par-

ticular node, the caching is necessary to quickly return a large number of property

records. In the case of a prefix tree, it would be necessary to enumerate every path

in the sub-tree to retrieve all of the words. In the use case which the GeoTree is being
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applied to, this would result in a significant increase in execution time over a very

large dataset.

The GeoTree data structure could be thought of as a variant or augmentation of

the trie, one which is specifically designed to give a fast, approximate solution to

k-NN on geospatial datasets.

4.5 Comparison with the set enumeration tree (SE-tree)

The SE-tree, or set enumeration tree, is a power set data structure which creates a

branching tree of all possible subsets of a set of variables Rymon, 1992. While this

does share some basic similarities with the design of the GeoTree, some fundamental

differences between the data structures exist. The set enumeration tree is a structure

defined on sets which, by definition, do not consider the ordering of variables. While

the SE-tree contains all possible subsets of a set of variables, it does not contain all

possible ordered collections of those variables. For example, {A, B} will be con-

tained in the SE-tree of variables {A, B, C}, yet {B, A} will not appear in the tree.

In the case of the GeoTree, all possible combinations of characters must be con-

sidered, as geohashes are sensitive to ordering. The geohash gh1992a, for example,

corresponds to an entirely different geographical location than hg1992a, despite both

containing the same characters in slightly different order. The GeoTree is designed

to support this sensitivity to ordering, whereas the set enumeration tree is not. Fur-

thermore, the set enumeration tree has no provision for the cached list nodes of data,

which is perhaps the most crucial feature of the GeoTree. Although many interesting

algorithms for traversing the SE-tree are explored in Rymon, 1992, they are irrele-

vant to this particular application, as the data structure in question is not designed

for proximity search but for the purpose of classification.

4.6 Real-world application: the GeoPrice index

4.6.1 Integration with the model

In order to test the performance of GeoTree in practice, we applied it to the mix-

adjusted median GeoPrice model introduced in Chapter 3. As mentioned previously,
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the primary limitation of the algorithm was the algorithmic complexity and brute-

force nature of the geospatial search, which impinged on its scalability to larger

datasets, and restricted the introduction of further parameters.

The aim is to leverage the GeoTree data structure to improve the execution time,

scalability and robustness of the index methodology. For the purposes of algorith-

mic complexity calculation, we let n be the average number of house sales present in

one month of the dataset, and let t be the number of months of data in the dataset.

Stage two (Section 3.2.2.2) of the original algorithm is executed as follows:

⇒ Iterate over each month, m, of the dataset (t operations)

⇒ Iterate over each house, h, sold during m (n operations)

⇒ Iterate over houses sold in m to find the nearest to h (n operations*)

Stage four (Section 3.2.2.4) of the original algorithm is executed as follows:

⇒ Iterate over each month, m, of the dataset (t operations)

⇒ Iterate over each house, h, sold during m (n operations)

⇒ Iterate over each month prior to m, mp ( t−1
2 operations2)

⇒ Iterate over houses sold in mp to find the nearest to h (n opera-

tions*)

By introducing the GeoTree to the algorithm, the steps which formerly required

an O (n) iteration over all houses in the dataset to identify the nearest house (marked

by an asterisk) now become an O (1) GeoTree ranged proximity search operation.

There is, however, a mild trade-off. Rather than returning the closest property

to the house in question, the GeoTree structure instead returns everything in a small

area around the house (formally, it returns the maximal length non-empty SCB for

that house’s geohash). The bucket can then be iterated over to find the true closest

property, or an alternative strategy can be employed, such as taking the median price

of all houses within the small area.
2The number of iterations will be one less than the current month’s index. Given t months in total,

the number of iterations will run from 0 to t− 1 sequentially. The mean number of iterations is thus
t−1

2
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However, the algorithmic change of considering the median of a nearby group

of homes could be considered a diversification benefit, rather than a drawback, as

it reduces the potential impact of outliers which happen to be the absolute nearest

data record to the property undergoing proximity search.

4.6.2 Performance results

Table 4.1 compares the performance of the algorithms described previously with and

without the GeoTree data structure (on a database of 279,474 property sale records),

including both single threaded execution time and multi-threaded execution time

(running across eight CPU cores) on our test machine. The results using the GeoTree

are marked with a + symbol.

TABLE 4.1: Complexity and performance of the algorithms

Algorithm Complexity µ (1 core)a
σb µ (8 cores)a

σb

Voting O
(
n2t

)
233.54 secondsc 2.37% 46.73 secondsc 1.69%

Voting+ O (nt) 12.78 secondsc 1.68% 3.02 secondsc 0.69%

Stratify O
(

n2t(t−1)
2

)
29.03 hours 2.41% 4.19 hours 1.89%

Stratify+ O
(

nt(t−1)
2

) ∼0.05 hours
(163.89s) 1.71%

∼0.01 hours
(39.63s) 0.85%

Overall O
(

n2t(t+1)
2

)
29.11 hours 2.43% 4.21 hours 1.90%

Overall+ O
(

nt(t+1)
2

) ∼0.05 hours
(177.73s) 1.67%

∼0.01 hours
(43.71s) 0.79%

a Execution times reported are the mean (µ) of ten trials.
b Standard deviation (σ) reported as a percentage of the mean (µ).
c Includes build time for the dataset array / GeoTree on the dataset, as applicable.
d All algorithms computed using an AMD Ryzen 2700X CPU.
e All algorithms executed on the Irish Residential Property Price Register database of 279,474 prop-

erty sale records as of time of execution.

4.6.3 Correlation with the original model

Despite the algorithmic alteration of taking the median price of a group of geo-

hashed nearest neighbours, as opposed to the nearest neighbour per se, the house



Chapter 4. GeoTree: A data structure enabling a real-time property index 83

FIGURE 4.6: Sparse and Frugal House Price Index for Ireland (GeoTree
vs Original), from 02-2011 to 09-2018

price indexes produced by the original algorithm and the GeoTree-enhanced version

are very similar. Figure 4.6 shows both versions of the GeoPrice model superim-

posed. The two different versions yielded highly correlated outputs (Pearson’s r =

0.999, Spearman’s ρ = 0.997, Kendall’s τ = 0.966), revealing that GeoTree succeeded in

delivering an almost identical index to the original, though with major performance

gains in execution time.

4.6.4 Potential expansion of the model

The significant improvement to the execution time of our algorithm opens a large

number of avenues for expansion of our model. Firstly, the reduction in compu-

tational complexity allows us to consider applying the algorithm to much larger

datasets. As can be seen in Table 4.1, the computation time taken by the original al-

gorithm on a relatively small dataset (Irish property sales) would balloon to a highly

prohibitive runtime if applied to larger markets, such as the UK. Through utilising

the GeoTree, this is now a feasible endeavor, given the reduction to linear-time de-

pendence on the size of the dataset.
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Other potential enhancements we could make to our algorithm include offering

the ability to easily stratify a dataset beyond geospatial stratification alone. Given

that an encoding of co-ordinates is being leveraged to perform the stratification, it

would, in theory, be possible to encode further attributes alongside this informa-

tion, if such property characteristics were available to the user. We will explore the

potential of this improvement further in Chapter 5.

Furthermore, the possibility of using the index as a frequently updating source

of information for a derivative market for properties, discussed in Section 3.5, is no-

ticeably more feasible. Where the prior execution time would have been restrictive

in this sense, the enhanced model allows for an index which could be recomputed

on an hourly basis, for example.

4.7 Scalability testing

In order to verify the scalability of the GeoTree, we obtained a dataset comprising

2,857,669 property sale records for California, and evaluated both the build and

query time of the data structure. Table 4.2 shows mean build time and mean query

time on both 10% (∼285,000 records) and 100% (∼2.85 million records) of the dataset.

In this context, query time refers to the total time to perform 100 sequential queries,

as a single query was too fast to accurately measure.

The results demonstrate that the height of the tree has a modest effect on the

build time, while dataset size has a linear effect on build time, thus supporting the

claimed O (h) insertion per single record. Furthermore, query time is shown to re-

main constant regardless of both tree height and dataset size, with negligible differ-

ences in all instances, owing to the relatively small magnitude of h in any reasonable

use case of the structure.

4.8 Chapter Summary

The GeoTree data structure is a highly performant, approximate geospatial clustering

structure, which has been designed and tailored for the use case of a geospatially
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TABLE 4.2: Scalability Performance of GeoTree

Height h 4 5 6 7 8

Build Time
(10%)a

17.63s
(0.08s)

18.10s
(0.10s)

18.46s
(0.22s)

18.84s
(0.08s)

19.39s
(0.09s)

Build Time
(100%)b

179.67s
(0.58s)

183.80s
(0.57s)

183.99s
(0.52s)

192.06s
(0.60s)

194.31s
(0.94s)

Query Time
(10%)c

5.1ms
(0.3ms)

5.2ms
(0.4ms)

5.3ms
(0.9ms)

5.3ms
(0.4ms)

5.3ms
(0.5ms)

Query Time
(100%)c

5.4ms
(1.0ms)

5.3ms
(0.9ms)

5.5ms
(1.0ms)

5.7ms
(1.3ms)

5.6ms
(1.2ms)

a Build Time (10%) is the total time to insert 10% of dataset (∼285,000 records)
b Build Time (100%) is the total time to insert 100% of dataset (∼2.85m records)
c Query Time consists of total time to execute 100 sequential neighbour queries on 10% and

100% of the dataset respectively
d Times reported are in the format µ(σ) calculated over ten trials

stratified property price index. The development of this data structure was nec-

essary in order to deliver the performance-accuracy equilibrium required for our

specific goals, namely; scalability, ease of use, flexibility and frequent and regular

re-computation of the GeoPrice index.

While a small amount of resolution is lost by organising properties into the buck-

ets required to use the GeoTree, it is not necessary for the GeoPrice model to consider

the single nearest neighbour with pinpoint accuracy; the spatial auto-correlation of

properties extends to neighbourhoods and housing developments, rather than just

the property next door, as discussed in Section 3.2.2.2. As such, considering a basket

of multiple neighbours in close proximity is likely an equivalently sound, if not su-

perior method to our original nearest neighbour proposal, as demonstrated by the

correlation statistics and visible similarity of the indices when superimposed on a

chart.

The performance measures explored in this chapter demonstrate that the struc-

ture has succeeded in meeting the purposes for which it was designed. These effi-

ciency gains will allow the GeoPrice algorithm to be expanded beyond the bounds
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faced by the original model’s methodology, both in terms of dataset scale and strati-

fication granularity.

The application potential unlocked through lifting this algorithmic limitation

will be explored in the next two chapters through exposure of the GeoPrice model to

two new, distinct datasets. These additional use-cases are intended to demonstrate

that the GeoPrice model, in combination to the GeoTree clustering data structure, can

be flexibly applied to a number of different contexts, regions and dataset sizes, while

maintaining reliable and consistent performance.
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Chapter 5

Applying the GeoPrice model to

listed asking prices in the Irish

property market 1

With the performance limitations of the original formulation of the GeoPrice index

lifted through the introduction of the GeoTree data structure in Chapter 4, it is now

possible to apply the GeoPrice algorithm to a larger dataset. The property dataset

analysed in this chapter pertains to the same property market as the Property Price

Register used in Chapter 3, however, instead of transacted property sales, the model

will be fit on listed asking prices.

Furthermore, algorithmic enhancements will be introduced in this chapter in or-

der to meet the flexibility goals of the model discussed in List 1. These developments

will allow the GeoPrice algorithm to incorporate additional property attributes into

the geospatial matching process, if and when they are available to the user, with the

goal of further boosting the smoothness and accuracy of the model. Owing to the

tailored nature of the GeoTree’s design, integrating these additional characteristics is

straightforward and will not impact the performance nor complexity of the model.

1This chapter is adapted from A rapidly updating stratified mix-adjusted median property price index
model (Miller and Maguire, 2020), which was expanded upon in the consolidated journal article A real-
time mix-adjusted median property price index enabled by an efficient nearest neighbour approximation data
structure (Miller and Maguire, 2022).
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5.1 Introducing a new dataset: MyHome

MyHome Ltd., 2024 are a major player in property sale listings in Ireland. With data

on property asking prices being collected since 2011, MyHome have a rich database

of detailed data regarding houses which have been listed for sale. They have pro-

vided access to their dataset for the purposes of conducting this research.

5.1.1 Specification

The data provided by MyHome includes verified GPS co-ordinates, the number of

bedrooms, the type of dwelling and further information for most of its listings. It

consists of a total of 718,351 property listing records over the period February 2011

to March 2019 (inclusive). This results in 7,330 mean listings per month (with a

standard deviation of 1,689), however, this raw data requires some filtering for errors

and outliers.

It is important to note, however, that this dataset consists of asking prices, rather

than the sale prices featured in the less detailed Irish Property Price Register Data,

used in the initial incarnation of our house price index Section 3.2.

The study of modelling house prices based on asking prices, rather than on sale

prices, has rarely been studied in the literature (Falzon and Lanzon, 2013). Accord-

ing to Scatigna, Szemere, and Tsatsaronis, 2014, this is primarily due to systematic

differences between actual transacted sale prices and listed asking prices, owing to

the fact the houses can be listed at a significantly inflated rate, or fail to sell en-

tirely. However, as discussed in Section 3.3, Wang and Zorn, 1997 state that an

index should be defined around an intended practical application and usefulness

to market observers, rather than by overly stringent concerns of pinpoint statistical

perfection.

As such, Falzon and Lanzon, 2013 found considerable explanatory power in the

use of asking prices to model the housing market. Henneberry, 1998 also raised the

issue of systematic discrepancies between transacted prices and asking prices, yet

ultimately concluded that asking prices still offered statistically significant insight

on the market and held a number of advantages over sale transactions; namely the

inclusion of additional property characteristics in the former.
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Furthermore, one could theorise that the lag between a property being listed

and eventually being sold may give some forecasting power to asking prices, versus

traditional house price indices which use transaction data. Indeed, Anenberg and

Laufer, 2017 found that listing prices in the US forecasted the Case-Shiller repeat sales

index a number of months in advance and outperformed house price forecasting

methods which did not make use of asking price data.

5.1.2 Filtration of data

As with the majority of human collected data, some pruning must be done to the

MyHome dataset in order to remove outliers and erroneous data. Firstly, not all

transactions in the dataset include verified GPS co-ordinates or include data on the

number of bedrooms. These records will be instantly discarded for the purpose

of the enhanced version of the algorithm. They account for 16.5% of the dataset.

Furthermore, any property listed with greater than six bedrooms will not be consid-

ered. These properties are not representative of a standard house on the market as

the number of such listings amounts to just 1% of the entire dataset.

Any data entries which do not include an asking price cannot be used for house

price index calculation and must be excluded. Such records amount to 3.6% of the

dataset. Additionally, asking price records which have a price of less than e10,000

or more than e1,000,000 are also excluded, as these generally consist of data entry

errors (e.g. wrong number of zeroes in user-entered asking price), abandoned or di-

lapidated properties in listings below the lower bound and mansions or commercial

property in the entries exceeding the upper bound. Properties which meet these ex-

clusion criteria based on their price amount to only 2% of the dataset and thus are

not representative of the market overall.

In summation, 77% of the dataset survives the pruning process. This leaves us

with 5,646 filtered mean listings per month.

5.1.3 Characteristics

Prior to exploring the performance of our house price index on the MyHome asking

price dataset, it is useful to survey some of the fundamental characteristics of the



Chapter 5. Applying the GeoPrice model to asking prices in the Irish market 90

FIGURE 5.1: MyHome Listing Price Distribution from 02-2011 to 03-
2019 (inclusive), grouped by month.

dataset. Figure 5.1 shows the distribution of listed prices on a month-by-month

basis, across the entire dataset. It is clear that the raw asking prices are quite noisy,

with the median moving around wildly from one time period to the next. The width

of the interquartile range is also highly volatile, varying from a minimum range of

around e125,000, to a maximum range of approximately e300,000.

It is not surprising, then, that the naive house price index consisting of simply

taking the mean or the median asking price offers little-to-no insightful information

about the state of the property market, as shown in Figure 5.2. The index produced

by taking either of these aggregation methods frequently bounces around by high

double-digit percentage swings, which is not representative of the behaviour of the

market.

In terms of seasonality, the listing data does not appear to have highly influential

seasonal patterns. As seen in Figure 5.3, the seasonal component is highly noisy

and moves within a considerably tight range; indicative of a low impact on asking

prices. This, however, seems sensible upon further thought, as the listing price is

distinct from the final sale price. It is likely that the final sale price will exhibit some
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FIGURE 5.2: MyHome Mean/Median Listing Price from 02-2011 to
03-2019 (inclusive), grouped by month.

FIGURE 5.3: MyHome Mean Listing Price Seasonality from 02-2011
to 03-2019 (inclusive), grouped by month.
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seasonality due to changes in demand based on the time of year, as explored in

Section 3.2.1, however, a property can be listed for a considerable amount of time

before a sale is completed. As the homeowner does not know in advance on which

month their home will sell, it is logical then that the asking price should not contain

a particularly stable or reliable seasonal signal, which would explain the volatility

of the detected seasonal component.

As the MyHome dataset has been enriched with additional data on the number

of bedrooms per property, we can separate the sample based on that attribute, which

may reduce the volatility in looking at bucketed prices, compared to looking at the

data holistically. Figure 5.4 demonstrates the distribution of the asking prices within

each bucket, where buckets are based on the number of bedrooms in a given prop-

erty. While this aids in curtailing the volatility to some degree, particularly in the

most common categories (two and three bedrooms), it is clear that the median of

each group still moves far more than what would be considered reasonable to be a

reliable measure of the housing market. Even within the three bedroom bucket, for

example, the interquartile range frequently exceeds a width of e250,000 in a given

month.

This is reflected in Figure 5.5, which reveals that the naive median house price in-

dex still exhibits wild swings; particularly in the upper-half of the range of bedroom

counts, where the range of prices in the sample is broader, as per Figure 5.4. Again,

this unsophisticated price index is mostly uninformative, as the majority of infor-

mation conveyed by it is simple noise, due to the variability of the basket between

months.

5.1.4 Comparison with PPR dataset

The mean number of filtered monthly listings available in our dataset represents a

157% increase on the 2,200 mean monthly records used in the original algorithm’s

index computation (see Section 3.2.1). Furthermore, the dataset in question is signif-

icantly more precise and accurate than the PPR dataset, owing to the ability to more

effectively prune the dataset. The PPR dataset consists of address data entered by

hand from written documents and does not use the Irish postcode system, mean-

ing that addresses are often vague or ambiguous. This results in some erroneous
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FIGURE 5.4: MyHome Listing Price Distribution per bedroom cluster
from 02-2011 to 03-2019 (inclusive), grouped by month.

FIGURE 5.5: MyHome Median Listing Price per bedroom cluster from
02-2011 to 03-2019 (inclusive), grouped by month.
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data being factored into the model computation as there is no effective way to prune

this data, as discussed in Section 3.2.1.1. The MyHome dataset has been filtered to

include verified addresses only, as described previously.

The PPR dataset has no information on the number of bedrooms or any key

characteristics of the property. This can result in dilapidated properties, apartment

blocks, inherited properties (which have an inaccurate sale value which is used

for taxation purposes) and mansions mistakenly being counted as houses (see Sec-

tion 3.2.1). Our dataset consists of only single properties and the filtration process

described previously greatly reduces the number of such unrepresentative samples

making their way into the index calculation.

The "sparse and frugal" PPR dataset was capable of outperforming the CSO’s

hedonic regression model with a mix-adjusted median model, as demonstrated in

Section 3.4. With the larger, richer and more well-pruned MyHome dataset, further

algorithmic enhancements to our model are possible.

5.2 Performance metrics for smoothness

Property prices are generally assumed to change in a smooth, calm manner over

time (Clapp, Kim, and Gelfand, 2002; McMillen, 2003). As discussed in detail in

Section 3.3, the smoothest index is, in practice, the most robust index. As a result of

this, smoothness is considered to be one of the strong indicators of reliability for an

index. However, the ’smoothness’ of a time series is not well defined nor immedi-

ately intuitive to measure mathematically, therefore we wish to set out some clearer

metrics for smoothness.

5.2.1 Standard deviation

The standard deviation of the time series will offer some insight into the spread of

the index around the mean index value. A high standard deviation indicates that the

index changes tend to be large in magnitude. While this is useful in investigating

the "calmness" of the index (how dramatic its changes tend to be), it is not a reliable

smoothness measure, as it is possible to have a very smooth graph with sizeable

changes.
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FIGURE 5.6: Sample of a smooth index with a high standard deviation
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For an example, see the fictional index in Figure 5.6. In this case, the index varies

very smoothly overtime, observing a downtrend with a high level of momentum

(10% decrease per month), following by a bottoming (-5%, 0%, 5%), then an uptrend

cycle with the same magnitude as the prior downtrend. As a result, the mean of the

monthly changes is 0%, however, the standard deviation is 9.52%; almost the entire

magnitude of the absolute monthly change during the up and down trends. Thus,

the standard deviation is not a reliable measure for the smoothness of a time series.

5.2.2 Standard deviation of the differences

The standard deviation of the differences is a much more reliable measure of smooth-

ness. A high standard deviation of the differences indicates that there is a high de-

gree of variance among the differences ie. the change from point to point is unpre-

dictable and somewhat wild. A low value for this metric would indicate that the

changes in the graph behave in a more calm manner.

Referring once more to Figure 5.6, the differences of the monthly changes are

now 0 in every month, except for the three months where the index is bottoming

out. This results in a standard deviation of the differences score of 2.23%; which is

significantly more representative of the smoothness of the sample index.

5.2.3 Mean Spike Magnitude (MSM)

Finally, we present a metric which we have defined, the mean spike magnitude µ∆X

(MSM) of a time series X. This is intended to measure the mean value of the contrast

between changes each time the trend direction of the graph flips. In other words, it

is designed to measure the average size of the ’spikes’ in the graph.

Given DX = {d1, . . . , dn} is the set of differences in the time series X, we say that

the pair (di, di+1) is a spike if di and di+1 have different signs. For clarity, we define

zero as having a different sign to both a positive and negative number, meaning that

any pair containing one single zero alongside a positive or negative number would

be considered a spike. Then Si = |di+1 − di| is the spike magnitude of the spike

(di, di+1).

The mean spike magnitude of X is defined as:
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µ∆X =
1
|SX| ∑

S∈SX

S2

where:

SX = {S1, S2, ..., St} is the set of all spike magnitudes of X

Returning to our sample figure, there are two spikes identified in the dataset, each

of size 5.0%, where the downtrend becomes flat, and where the flat index returns to

an uptrend. Thus, the mean spike magnitude is simply 1
2 .(52 + 52) = 25, in this case.

If the second spike was to have magnitude 2.5%, for example, then our mean spike

magnitude would be 1
2 .(52 + 2.52) = 15.625. Thus, as intended, the metric measures

the mean magnitude of spikes in the graph, with more penalty being applied the

larger the spike. Of course, a graph could be smooth everywhere aside from one

large spike, so this metric should be taken into consideration alongside other mea-

sures, such as the absolute number of spikes relative to the number of points in the

dataset, or the standard deviation of the differences.

5.3 Methodological improvements

Our original central price tendency house price index was designed around a key

limitation; extremely frugal data. As discussed in Chapter 3, the only data available

for each property was location, sale date and sale price. The core concept of the al-

gorithm relies on using geographical proximity in order to match similar properties

historically for the purpose of comparing sale prices. While this method is likely to

match certain properties inaccurately, the key concept of central price tendency is

that these mismatches should average out over large datasets and cancel noise.

However, there is scope for expanding the model to include additional character-

istics where available; further segmenting the geospatial strata. In order to achieve

this, we must introduce a way to encode these additional attributes within a prop-

erty geohash, in order to leverage the GeoTree data structure.
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5.3.1 geohash+

Extended geohashes, which we will refer to as geohash+, are geohashes which have

been modified to encode additional information regarding the property at that lo-

cation. Additional parameters are encoded by adding a character in front of the

geohash. The value of the character at that position corresponds to the value of the

parameter which that character represents. Figure 5.7 demonstrates the structure of

a geohash+ with two additional parameters, p1 and p2.

geohash+: p1 p2︸︷︷︸
+

x1 . . . xn︸ ︷︷ ︸
geohash

FIGURE 5.7: geohash+ format

Any number of parameters can be prepended to the geohash. In the context

of properties, this includes the number of bedrooms, the number of bathrooms, an

indicator of the type of property (detached house, semi-detached house, apartment

etc.), a parameter representing floor size ranges and any other categorical variable

desired for comparison.

Alternative applications of geohash+ could extend to scenarios such as public

transport mapping lookups. Say, for example, a number of public transport stations

are included within a city center. Some of these may be bus stops, others train sta-

tions and a number may be underground stations. For the purpose of example, we

could encode the precise location of each of these with a geohash string, based on

their GPS co-ordinates. If a user was to request a list of all public transport hubs

nearby, the user’s live geohash location could be used with the GeoTree to rapidly

return all of these locations, with the size of the common bucket adjusted based on

their distance threshold preferences.

Suppose that the user then requested to filter on only underground stations. We

could give each type of station a particular encoding; say that bus stops are encoded

with B, train stations are encoded with T and underground stations are encoded

with U. Then, a geohash+ can be generated for each of the public transport hubs,

where the encoded type of the station is prepended to the geohash. These geohash+
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identifier could then be used with the GeoTree data structure to return all hubs of a

specific type, or types, within a close range around the user’s live location.

5.3.2 GeoTree integration with geohash+

Due to the design of the GeoTree data structure, a geohash+ will be inserted into

the tree in exactly the same manner as a regular geohash (see: Chapter 4). If the

original GeoTree had a height of h for a dataset with h-length geohashes, then the

GeoTree accepting that geohash extended to a geohash+ with p additional param-

eters prepended should have a height of h + p. However, both of these are fixed,

constant, user-specified parameters which are independent of the number of data

points, and hence do not affect the constant-time performance of the GeoTree, rela-

tive to the number of dataset points.

The major benefit of this design is that the ranged proximity search will interpret

the additional parameters as regular geohash characters when constructing the com-

mon buckets upon insertion, and also when finding the SCB in any search, without

introducing additional performance and complexity drawbacks.

5.3.3 Enhancing our model through bedroom factoring

In order to enhance our price index model, we prepend a parameter to the geohash

of each property representing the number of bedrooms present within that prop-

erty. As a result, when the GeoTree is performing the SCB computation, it will now

only match properties which are both nearby and share the same number of bed-

rooms. This allows the index model to compare the price of properties which are

more similar across the time series and thus should result in a smoother, more accu-

rate measure of the change in prices over time.

The technical implementation of this algorithmic enhancement is handled almost

entirely by the GeoTree automatically, due to its design. As described previously,

the GeoTree sees the additional parameter no differently to any other character in

the geohash and due to its placement at the start of the geohash, the search space

will be instantly narrowed to properties with matching number of bedrooms, x, by

taking the x branch in the tree at the first step of traversal.
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5.4 Results

We ran the algorithm on the MyHome data without factoring any additional param-

eters as a control step. We then created a GeoTree with geohash+ entries consisting

of the number of bedrooms in the house prepended to the geohash for the property.

5.4.1 Smoothness and time series comparison

Table 5.1 shows the performance metrics previously described applied to the algo-

rithms discussed in this paper: Original PPR, PPR with GeoTree, MyHome without

bedroom factoring and MyHome with bedroom factoring. While both the standard

deviation of the differences and the MSM show that some smoothness is sacrificed

by the GeoTree implementation of the PPR algorithm, the index running on My-

Home’s data without bedroom factoring approximately matches the smoothness of

the original algorithm. Furthermore, when bedroom factoring is introduced, the al-

gorithm produces by far the smoothest index, with the standard deviation of the dif-

ferences being 26.2% lower than the PPR (original) algorithm presented in Maguire,

Miller, et al., 2016, while the MSM sits at 58.2% lower.

If we compare the MyHome results in isolation, we can clearly observe that the

addition of bedroom matching makes a very significant impact on the index perfor-

mance. While the trend of each graph is observably similar, Figure 5.8 demonstrates

that month to month changes are less erratic and appear less prone to large, spon-

taneous dips. Considering the smoothness metrics, the introduction of bedroom

factoring generates a decrease of 26.8% in the standard deviation of the differences

and a decrease of approximately 48.4% in the MSM. These results show a clear im-

provement by tightening the accuracy of property matching and are promising for

the potential future inclusion of additional parameters such as bedroom matching

should such data become available.

Figure 5.8 corresponds with the results of these metrics, with the MyHome data

(bedrooms factored) index appearing the smoothest time series of the four which are

compared. It is important to note that the PPR data is based upon actual sale prices,

while the MyHome data is based on listed asking prices of properties which are up

for sale and as such, may produce somewhat different results.
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TABLE 5.1: Index Comparison Statistics

Algorithm St. Dev
St. Dev of

Differences
MSM

PPR (original) 16.524 2.191 23.30

PPR (GeoTree) 16.378 2.518 29.78

MyHome (without
bedrooms) 12.898 2.209 18.91

MyHome (with
bedrooms) 12.985 1.617 9.75

It is a well known fact that properties sell extremely well in spring and towards

the end of the year. Furthermore, the months towards late summer, as well as the

start of the year, tend to be the least busy periods in the year (Paci, Beamonte, et

al., 2017). We demonstrated that these findings were observed in the Property Price

Register data in Section 3.2.1.

These phenomena can be observed in Figure 5.8 where there is a dramatic in-

crease in the listed asking prices of properties in the spring months and towards

the end of each year, while the less popular months tend to experience a slump in

price movement. As such, the two PPR graphs and the MyHome data (bedrooms

not factored) graph are following more or less the same trend in price action and

their graphs tend to meet often, however, the majority of the price action in the My-

Home data graphs tends to wait for the popular selling months. The PPR graph does

not experience these phenomena as selling property can be a long, protracted pro-

cess and due to a myriad of factors such as price bidding, paperwork, legal hurdles,

mortgage applications and delays in reporting, final sale notifications can happen

outside of the time period in which the sale price is agreed between buyer and seller.
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FIGURE 5.8: Comparison of index on PPR and MyHome data sets,
from 02-2011 to 03-2019 [data limited to 09-2018 for PPR]
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5.5 Chapter Summary

The introduction of bedroom factoring as an additional parameter in the pairing of

nearby properties has been shown to have a profound impact on the smoothness

of the mix-adjusted median property price index, which was already shown to out-

perform a popularly used implementation of the conventional hedonic regression

model. This improvement was made possible due to the acquisition of a richer data

set and the development of the GeoTree structure, which greatly increased the per-

formance of the algorithm. There is future potential for the introduction of further

property characteristics (such as property type, for example) in the proximity match-

ing stage of the algorithm, should such data be acquired.

Furthermore, the bespoke design of the GeoTree data structure used ensures that

minimal computational complexity is added when considering the technical imple-

mentation of this algorithmic adjustment. As a result of this, the index can be com-

puted quickly enough that it would be possible to have real-time updates to the price

index, if a sufficiently rich stream of continuous data was available to the algorithm.

Large property listing websites, such as Zillow, likely have enough live, incoming

data that such an index would be feasible to compute at this frequency, however,

this volume of data is not publicly available for testing.

These enhancements and findings demonstrate that the GeoPrice algorithm meets

the generality and flexibility goals outlined in List 1, alongside its possession of

the the ability to incorporate additional information to improve modelling accuracy,

where such data is available.

In the coming chapter, the GeoPrice’s applicability to a wide range of property

modelling use-cases will be proven further through expansion of the model to a sale

transaction dataset from an entirely different region, one with a much larger pool of

properties and different market dynamics to those already analysed.
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Chapter 6

GeoPrice: Building a property price

index for the UK housing market

In the preceding chapters, the feasibility of applying the GeoPrice property price in-

dex model to both frugal sale transactions and listed asking prices in Ireland has

been demonstrated. However, Ireland’s property market is relatively small, with

the total size of the housing stock estimated to have been approximately 1.86 million

at most, as of 2019 (Kennedy and Myers, 2019). By contrast, the BRE reports that the

total number of residential households in the UK is approximately 27.83 million, as

of 2017 (Piddington, Nicol, et al., 2020).

As a result of this, the number of monthly sale transactions in the UK is much

larger than that of Ireland, as will be demonstrated later in this chapter. Apply-

ing the GeoPrice algorithm to UK property transaction data will allow the model to

benchmarked on a dataset which should be conducive to lower noise, in addition

to comparing the index against a more feature-rich and robust hedonic regression

model than that of the RPPI (Section 3.1): the Office for National Statistics (ONS)

house price index (HPI).

The viability of applying the GeoPrice methodology to this larger, more expansive

dataset is the result of the GeoTree data structure introduced in Chapter 4. The sheer

volume of monthly transacted property sales in the UK would render the original

index formulation (presented in Chapter 3) too slow to compute within a reasonable

amount of time, defeating one of the key purposes of the model, which is to be a

more timely measure of housing market trend.
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Furthermore, given the ample number of monthly transactions available, the po-

tential of generating various sub-indices for different regions in the UK by filtering

the strata used in the index computation can now be explored; a key advantage

of mix-adjusted median models discussed in Section 2.3. This analysis intends to

demonstrate that the index is capable of meeting the final of the unfulfilled method-

ology goals laid out in List 1.

6.1 The ONS hedonic regression House Price Index

Prior to setting out the dataset which we will be using for our house price model,

we will outline the benchmark which our index will be tested against. The Office

for National Statistics produce the de-facto standard house price index in the UK

jointly with HM Land Registry, Registers of Scotland and Land and Property Ser-

vices Northern Ireland. This section will set out the use cases of the index, the data

feeding into their model, the methodology used and the strengths and limitations of

the index.

According to the ONS, house price statistics are used for a wide variety of decision-

making purposes, many of which have wide-reaching impacts (ONS, 2023b). In-

deed, the key users of house price indices asserted by the ONS; central government,

financial institutions, local authorities, property developers and estate agents, res-

onates with our extensive discussion of housing market stakeholders in Section 2.4.

6.1.1 Dataset

The ONS house price index uses a variety of data sources to fit its hedonic regression

model, namely: sale transaction data from the land registries of the UK; property

attribute data provided by the Valuation Office Agency, who are responsible for or-

ganising properties into tax bands according to their value; and privately produced

neighbourhood quality data, provisioned by CACI Ltd.

These datasets combine to give a relatively rich set of property characteristics

for fitting the hedonic regression, which we will explore in more detail by outlining

each of the information sources independently.
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6.1.1.1 Property sale transaction data

Property sale transaction data is collected by HM Land Registry and published pub-

licly as the Price Paid Dataset, for all properties in England and Wales 1. The data is

updated on a monthly basis; typically on the final business day of each month, with

data pertaining to the month prior. Thus, there is a lag of just under one month from

the end of the period in question to the publication of the sale transactions for that

period.

While this dataset does not include a large number of attributes for each property,

it is significantly richer than the Property Price Register dataset which we used to fit

our initial sparse and frugal model in Section 3.2.1. The key attributes of interest are:

• Sale Price

• Sale Date

• Postcode

• Property Type (detached, apartment, etc.)

• New Build / Existing Build

• Assortment of Address Fields

• Private or Commercial Sale Indicator

As such, a significant amount of mix-adjustment could be carried out on this

dataset alone, which we will explore later in this chapter. While this dataset cov-

ers the universe of sale transactions which occur in England & Wales, transaction

data for Scotland is compiled separately by the Registers of Scotland, who make this

data available only as a costly paid service 2. The data attributes provided by the

Registers of Scotland sale data are almost identical to the Price Paid Dataset and

thus these sources are pooled by the ONS, to give a property sale transaction dataset

which covers the entirety of the United Kingdom.

1See: https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads.
2See: https://www.ros.gov.uk/data-and-statistics/data-reports

https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
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6.1.1.2 Property attribute data

The primary source of attribute data for properties in England & Wales is the Val-

uation Office Agency’s (VOA) council tax valuation list. According to the ONS, this

source of data contains robust attribute information on all residential properties in

England & Wales. The attributes in this dataset which are considered by the ONS

for the purpose of fitting their hedonic regression house price index model are:

• Number of habitable rooms

• Floor area, in m2

In the VOA data, a habitable room is defined to be any room aside from a bath-

room, conservatory, kitchen or utility room.

The alternative dataset used to supply equivalent attribute data for Scottish sale

transactions is the Energy Performance Certificate (EPC) database. Every property sold

in the United Kingdom since January 2009 requires an EPC, by law. Therefore, this

dataset offers a complete set of habitable room and floor area data for sales trans-

acted in Scotland. In the EPC dataset, a habitable room is defined to be a living room,

sitting room, dining room, bedroom, office/study or a non-separated conservatory

(ONS, 2023c).

The EPC dataset is also available in England & Wales, as an alternative to the

VOA data, however, the ONS have chosen to mix the two datasets for the different

regions, rather than using a single, unified data source for the entire model. The rea-

soning behind this decision is not communicated by the ONS in their methodology

documentation. Furthermore, according to the ONS, there are significant disagree-

ments in the data reported by each of these sources. They found that for houses, the

floor area reported by the VOA data is between 2% and 10% larger than the EPC

dataset, while in the case of apartments, the VOA data reports a floor size which

is around 40% smaller than the EPC dataset (ONS, 2023d). These discrepancies are

particularly concerning, considering that the measurement disagreement for houses

and apartments have opposite signs; increasing the risk that one may be overesti-

mated, while the other is underestimated.
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In terms of matching the Price Paid Data to the Valuation Office Agency data,

ONS achieve a robust match rate of around 95%, owing to the well-defined nature

of addresses in England & Wales, with their mature postcode system. On the other

hand, the Scottish EPC dataset does not realise quite as high a match rate with the

Registers of Scotland transaction data; sitting at around 70% (ONS, 2023c). However,

this should not have a significant impact on the explanatory power of the model,

assuming that the missing records have no discernible patterns.

6.1.1.3 Neighbourhood quality data

The final major data input for the ONS hedonic regression model is neighbourhood

quality data, which is sourced from a private company, CACI 3. The Acorn dataset

was primary designed to classify consumers into different types based on the neigh-

bourhood they live in, in order to allow businesses to better market to the demo-

graphics and typical behaviours of each postcode.

The ONS has decided to use this dataset to capture information about the neigh-

bourhood as a regressor in their hedonic regression model, as they posit that this

should impact the value of a property (ONS, 2023a). Indeed, our discussion in Sec-

tion 3.2.2.2 established grounds behind the theory of why geospatial stratification

works, with some of the effect stemming from co-located houses having similar en-

vironmental factors and resident behaviours.

The hedonic regression used by the ONS includes a total of eighteen Acorn groups

as categorical variables, with each property taking on a value of one in the corre-

sponding Acorn group for its postcode and zero in all other groups. Figure 6.1 lists

the Acorn groups and their corresponding identifiers, which feed into the house

price index.

One potential factor to keep in mind is, although these groups are included with

property sale transactions in the hedonic regression, they are technically a classifi-

cation of people (and their typical behavioural patterns) based on factors such as

ethnicity profiles, age of residents, rate of benefit claimants, population density and

a great number of other factors (CACI, 2019). As such, they are not a classification of

3See: https://acorn.caci.co.uk/
4 See: https://acorn.caci.co.uk/downloads/Acorn-User-guide.pdf
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A Lavish Lifestyle

B Executive Wealth

C Mature Money

D City Sophisticates

E Career Climbers

F Countryside Communities

G Successful Suburbs

H Steady Neighbourhoods

I Comfortable Seniors

J Starting Out

K Student Life

L Modest Means

M Striving Families

N Poorer Pensioners

O Young Hardship

P Struggling Estates

Q Difficult Circumstances

R Not Private Household

FIGURE 6.1: CACI Acorn Classification used by the ONS Hedonic
Regression 4

properties, but a categorisation of the people expected to be living in those proper-

ties. They were included in the ONS house price index on account of being found to

have some explanatory power over the value of properties in the data (ONS, 2023a).

While the CACI Acorn attribute has a match rate in excess of 99% on existing

properties, the match rate for new build properties is only 40%. This is due to the

fact that the Acorn dataset provided to ONS is only updated once per year, thus

many new builds which are allocated newly generated postcodes have not yet been

classified into an Acorn group. This may lead to increased volatility in producing

the ONS house price index on new build properties (ONS, 2023a).
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6.1.2 Methodology

The ONS house price index is built on a hedonic regression imputation model (see

OECD, Eurostat, et al., 2013), which uses a semi-log form:

log(pi) = k + ∑
j

β jXi
j + ϵi

where:

xi
j takes the value 1 if pi has characteristic j, otherwise taking 0 5

β j is the coefficient associated with characteristic j

pi is the price of property i

ei is the statistical error for pi

k is a constant

Unlike the RPPI which uses a single twelve-month rolling time dummy hedo-

nic regression model (see Section 3.1), the ONS house price index fits a separate

regression for each month of the dataset, where property transactions in the current

month are used to estimate the β j coefficients. The goodness-of-fit statistic achieved

is typically in the region of 80%, however, this is not always a reliable metric for the

reliability of a given model, as discussed in Section 3.3.

The majority of the variables fed to the ONS house price index model are cate-

gorical dummy variables; the only exception being the floor area variable, which is

a continuous value. This means that separate regressors are fit to estimate the value

of having one room, two rooms, three rooms and so forth. As a result of the discrep-

ancies between the definition of a habitable room discussed in Section 6.1.1.2, distinct

categorical variables must be allowed for Scottish properties and homes in England

& Wales, as well (ONS, 2023c).

The full list of variables included in the hedonic regression model are as follows:

5 This is with the exception of floor area, where the value in square meters is used as the value of xi
j
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• Local Authority District (a total of 374, representing the number in the UK) 6

• CACI Acorn Classification (a total of 18)

• Property Type (a total of 4) 7

• Floor Area (a total of 1 continuous variable)

• Habitable Rooms [England & Wales] (a total of 8) 8

• Habitable Rooms [Scotland] (a total of 8) 9

• New or Existing Build (a total of 2)

Thus, we estimate that the ONS hedonic regression models contains approxi-

mately 415 regressors 10, each of which are fit on a monthly basis and acquire a fresh

set of weights, according to the properties transacted in that month. The monthly

house price index is then estimated by taking a fixed basket of properties, typically

the entire set of properties from the year prior, and evaluating those properties on

each monthly regression. This gives an estimate of what each property would be

worth if sold in any given month of the time period being studied. A geometric

mean is then taken of these estimates, in order to give an average property price for

each month, which can be used to derive the index level values and the monthly

percentage changes.

The mix-adjustment is somewhat implicit in the fact that, given the entire set of

sales for the prior year are being used to impute prices in each time period of interest,

the mix is fixed to the proportions transacted for each variable from that prior year.

As stated by ONS, 2023b:

The process of mix-adjustment requires that, in each January, a fixed bas-

ket of properties is updated to reflect changes in the composition of prop-

erties being sold. This basket is then used to produce modelled prices for

6 See: https://geoportal.statistics.gov.uk/datasets/ons::local-authority-districts-december-2022-
boundaries-uk-bfc/explore

7 Detached, Semi-detached, Terraced and Apartment
8 Ranging from one room up to a maximum of eight rooms (ONS, 2023b)
9 Ranging from one room up to a maximum of eight rooms (ONS, 2023b)

10 In practice, one variable will be omitted from each category, given that a zero in all other values
implies presence of the excluded value. Thus, the total number of fittable coefficients will be 409.
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the year, before the basket is then updated again in the subsequent Jan-

uary. This means that the average prices produced from a fixed basket in

2016 are not directly comparable with the average price produced using

the 2017 basket as they will reflect a different mix of properties.

In order to create a continuous, comparable index, the ONS calculate an ad-

justment factor which represents the impact of changing the mix in the month of

changeover. The average house price output by the model is then scaled by that ad-

justment factor, giving a homogeneous time series.

To deal with the issue of missing or unmatched attributes, the ONS includes

these records in the hedonic regression fitting process by imputing the missing value

using a nearest neighbour approach. However, the weight of records which contain

imputed values will be downweighted during the coefficient estimation, in propor-

tion with the judged significance of the variable(s) they are missing. For example,

assume that ONS have determined that the number of rooms is responsible for 20%

of the explanatory power of the value of a property, then any record which is missing

this value will be down-weighted to 0.8 when the regression is being fit.

6.1.3 Strengths and limitations

According to the ONS, one of the key strengths of their hedonic regression house

price index is that it has wide coverage of the entire set of sale transactions, both

cash and mortgage sales, through use of the real land registry dataset (ONS, 2023b).

Indeed, most other privately produced house price indices in the UK utilise a limited

dataset; for example, Nationwide and Halifax both produces indices based on their

own mortgage approvals. This has the potential of introducing bias to the model,

given the lenders may have specific selection criteria for the type of customer they

typically approve, something discussed in Section 2.4.

Another strength of the model is the ability to break down to a highly granular

level, for example, down to the local authority district level. This is due to ONS using

the entire land registry transaction set, meaning many local authority strata have

enough transactions per month to generate a somewhat reliable signal, however,

this varies heavily from location to location.
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One of the biggest drawbacks which the ONS House Price Index suffers from is

a lengthy publication lag. According to ONS, their HPI is typically published with

a lag in the region of two months, e.g. December’s index is not published until the

latter part of February (ONS, 2023b). Other house price indices in the UK which

make use of private lender data or listed asking prices, such as Rightmove 11 offer

a more timely publication, typically being able to publish within a few weeks of the

end of the time period of interest.

Another key issue with this house price model lies in the handling of new build

properties. Sale transactions which involve a new property necessitate the creation

of a new register by the land registry, rather than a transfer of registry. As a result,

they typically have a lengthier lag before appearing in the Price Paid Data or Regis-

ters of Scotland dataset. As such, ONS, 2023b found that their initial estimate for the

house price index was consistently overestimating the value of new build properties

for this reason. This was causing a distortion in the index, whereby the index would

always be revised downward in subsequent months. ONS have determined that,

despite accounting for around 10% of the total number of transactions, new builds

were the driver of 80% of the monthly revisions.

In order to handle this, ONS made the decision to exclude new build transac-

tions from the initial release of each month of the index. This would be achieved by

calculating the change in the model output without new builds from month t− 1 to

month t and applying that change to the model output with new builds for month

t − 1. New builds are then returned to the month t model value in each subse-

quent month. The results of this change are shown in Figure 6.2. While the updated

methodology produces a somewhat closer result to the final estimate, it is still rather

volatile.

This issue with new builds has become a larger concern since the index was re-

sumed following the COVID-19 pandemic, as the processing of new build transac-

tions has slowed down. As a result, the ONS have needed to pool new build transac-

tions across multiple months, effectively smoothing the new build component of the

house price index, as the Central Statistics Office did with the entire RPPI (discussed

11See: https://www.rightmove.co.uk/news/house-price-index/
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FIGURE 6.2: Comparison of ONS index with new build methodology
change

in Section 3.1.1). The pooling mechanism as described in the most recent house price

index report as of the time of writing is as follows 12:

• June 2022 includes new build transactions from May 2022 and June 2022

• July 2022 includes new build transactions from June 2022 and July 2022

• August 2022 includes new build transactions from July 2022 and August 2022

• September 2022 includes new build transactions from August 2022 and Septem-

ber 2022

• October 2022 includes new build transactions from September 2022 and Octo-

ber 2022

• November 2022 includes new build transactions from October and November

2022
12See: https://www.gov.uk/government/collections/uk-house-price-index-reports
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6.2 Applying our stratified model to the UK Price Paid Dataset

In this section, we will explore the Price Paid Data in more depth, as this is the

dataset which we will be using in order to test our stratified, mix-adjusted median

model on the UK. Furthermore, we will outline a tweak to our methodology which

is intended to deliver additional smoothness over our previous incarnation of the

stratified index algorithm.

6.2.1 Dataset

6.2.1.1 Specification

As mentioned previously, the Price Paid Dataset is made publicly available on a

monthly basis by HM Land Registry. In addition to our geospatial stratification

model, we also have the property type at our disposal, which can be used as an

additional variable to encode in the geohash+, allowing more granular stratification.

We do not have access to any additional, explicit characteristics of the property such

as the number of bedrooms, floor area or neighbourhood quality, as the ONS hedonic

regression model does.

Unfortunately, we also do not have access to the paid Registers of Scotland data

for this analysis. However, we expect this omission to have only a minor impact

on the ability of our model to achieve robust performance, given that Scotland only

accounts for around 13.5% of the total number of sales in the UK per annum (as of

the time of writing) 13.

6.2.1.2 Characteristics: Transaction Volume

As with our prior analyses, before assessing the performance of our house price

index algorithm, it is useful to survey some of the basic characteristics of the Price

Paid Data, in order to get a baseline view on the dataset. In terms of transaction

volume, the Price Paid Dataset offers a much richer monthly sample for our model

to exploit than the datasets we have looked at previously. Figure 6.3 shows the

monthly transaction volume over a period in excess of ten years, with the stacks on

13See: https://www.gov.uk/government/statistics/uk-house-price-index-for-december-2022/uk-
house-price-index-summary-december-2022
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FIGURE 6.3: Price Paid Data: Volume from 01-2012 to 09-2022 (inclu-
sive), broken down by region

each monthly bar illustrating the regional breakdown within each month, for Wales

and the nine regions of England. The monthly sales volume ranges from a low of

around 30,000 in April 2020, to a high of around 175,000 transactions in June 2021.

Table 6.1 shows that even the region with the lowest mean number of transac-

tions per month, the North East, has approximately 3,460 sales. This is substantially

higher than the total average monthly transaction count for the entirety of Ireland,

meaning that our model should have ample sale record volume to produce a signal

for every sub-region of England & Wales.

Furthermore, seasonal analysis on the transaction volumes in Figure 6.4 reveals

that a seasonal pattern in transaction volume was detected (with stable residuals) for

the majority of our sample period, however, this has broken down since the onset

of the COVID-19 pandemic in March 2020. Prior to that, it was clear that home
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TABLE 6.1: Price Paid Data: Transaction Volumes per region

Region Mean Median St.Dev

North East 3,459 3,513 841

Wales 3,975 4,050 981

East Midlands 6,812 6,693 1,664

West Midlands 7,213 7,081 1,813

Yorkshire And The
Humber

7,271 7,219 1,767

South West 8,806 8,789 2,314

East Of England 9,015 9,004 2,351

London 9,396 9,293 2,717

North West 9,825 9,818 2,545

South East 13,355 13,124 3,557

buying was most popular from Easter onward, through summer; experiencing a

sharp drop each January and March. It appears that this fall in January transactions

is due to a slowdown in sales approaching the holiday season in December, owing to

the typical one-month lag to a sale settling (Norman Mille and Pampulov, 2013). A

possible explanation for the spike in transactions each February then, is the clearing

of backlogged sales which did not complete prior to people taking holidays, most of

which would then be settled by HM Land Registry during February.

We can also analyse the transaction volumes separated by property type. Fig-

ure 6.5 demonstrates the monthly sale volume, with the bar stacks representing each

of the four property types in the Price Paid Data; detached, semi-detached, terraced

and apartment. Again, we can see that the mix of properties is such that our model



Chapter 6. GeoPrice: Building a property price index for the UK market 118

FIGURE 6.4: Price Paid Data: Volume Seasonality from 01-2012 to 09-
2022 (inclusive)

FIGURE 6.5: Price Paid Data: Volume from 01-2012 to 09-2022 (inclu-
sive), broken down by property type
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TABLE 6.2: Price Paid Data: Transaction Volumes per property type

Property Type Mean Median St.Dev

Apartment 14,519 14,481 3,910

Detached 18,444 18,232 5,372

Semi-Detached 20,760 21,238 4,901

Terraced 22,307 22,244 5,092

will have an ample transaction set to calculate sub-indices for each property type. Ta-

ble 6.2 shows that the typical volume in the smallest category, apartments, is over six

times the total monthly transaction pool from our original sparse and frugal model

(see Chapter 3).

The final potential attribute for stratification in the Price Paid Data is the build

type: new build or existing. The share of new build properties is quite small, relative

to the number of existing properties; taking up around 10% of the total pool, as seen

in Table 6.3. Figure 6.6 demonstrates the monthly sale records with the bar stacks

representing the build type. Despite composing a comparatively low share of the

total number of transactions, it is still considerably in excess of the data volume

used in our original model.

However, evidence from recent months supports the difficulty which the ONS

have had in handling new build regression estimation; necessitating their method-

ological change of pooling of multiple months of sales (as discussed in Section 6.1.3).

Indeed, Table 6.4 demonstrates that new build volumes since April 2022 have dropped

by 93.3%, from a mean of 7,581 transactions per month over our entire sample pe-

riod, to a mean of 507 per month from April 2022 to September 2022 (inclusive). This

number has deteriorated further in even more recent months, with an average of 273

sales per month in the last three months of the sample. We will explore the impact

of this in greater depth when analysing our results.
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FIGURE 6.6: Price Paid Data: Volume from 01-2012 to 09-2022 (inclu-
sive), broken down by build type
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TABLE 6.3: Price Paid Data: Transaction Volumes per build type

Build Type Mean Median St.Dev

New Build 7,581 7,599 3,719

Existing 68,449 67,160 17,042

TABLE 6.4: Price Paid Data: Transaction Volumes per build type
(since April 2022)

Build Type Mean Median St.Dev

New Build 507 478 276

Existing 61,262 59,701 3,897

6.2.1.3 Characteristics: Sale Price Distribution

In order to set some baseline expectations for the volatility of the data, we can ex-

plore the sale price distribution of the Price Paid Data across a number of strata.

First, looking at a regional breakdown, Figure 6.7 shows a considerable difference

in the median price level across different parts of the UK. Thus, if a mix-adjusted

national median was taken without stratification, much of the behaviour of the price

distribution of more expensive regions such as London and cheaper regions such as

Wales would have suppressed influence on the overall price index, as discussed in

Section 3.2.2.3.

Figure 6.8 demonstrates the difference in distribution between the four distinct

property types. Interestingly, the distribution would suggest that apartments have

been growing in value more slowly than other types of properties, which coincides

with London’s growth appearing to stall in Figure 6.7, given that London has a high

share of apartments 14. The chart also shows that the interquartile range for each

kind of property is rather broad, with every property type showing a range in excess

of £200,000 in recent times. As a result, we would expect significant volatility pass-

through to basic mean and median price indices.

14See: Appendix A - Figure A.3
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FIGURE 6.7: Price Paid Data: Price Distribution from 01-2012 to 09-
2022 (inclusive), broken down by region
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FIGURE 6.8: Price Paid Data: Price Distribution from 01-2012 to 09-
2022 (inclusive), broken down by property type

Additional transaction price distribution charts are included in Appendix A,

demonstrating the dispersion of prices across the dataset as a whole and broken

down by build type.
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FIGURE 6.9: Price Paid Data: Mean/Median Price from 01-2012 to 09-
2022 (inclusive)

6.2.1.4 Mean and Median Price Indices

We can generate naive, un-adjusted mean and median price indices across the var-

ious strata, in order to assess the level of noise captured by these simple measures.

One would expect that the noise should be somewhat lower on this dataset when

compared with the Property Price Register data (explored in Section 3.2.1), due to

the larger number of samples in a typical monthly sample.

Despite this, Figure 6.9 still shows an unrealistic amount of volatility in both

the mean and median national indices, versus what would be expected from nat-

ural property market behaviour. The mean price index shows an average absolute

monthly change of 3.05%, with a standard deviation of 4.60% (on the absolute val-

ues), while the median index averages 2.56%, with 4.90% standard deviation. We

will explore our previously proposed smoothness metrics (see: Section 5.2) further
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FIGURE 6.10: Price Paid Data: Mean/Median Price from 01-2012 to
09-2022 (inclusive), broken down by region

when analysing index results later in this chapter. The year of 2021 was particu-

larly volatile, showing a surge of 26% in June, followed by a drop of 36.4% in July,

rounded out with a jump of 22.5% in August. According to Agnello and Schuknecht,

2011; Leung and Tsang, 2013, typical housing market behaviour consists of long-run

cycles where prices move smoothly with momentum. Thus, price action of these ex-

treme magnitudes is clearly not indicative of housing market dynamics and is likely

due to noise or sample bias in the transactions reported during the periods in ques-

tion.

Figure 6.10 demonstrates the median price index on a region-by-region basis. As

expected, this stratification of the sample aids somewhat in reducing noise on the

naive, un-adjusted median index, however, the volatility present is still significant,

particularly in certain regions.

Interestingly, the wild behaviour of the index during 2021 observed previously
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appears to be more subdued in the regions with a lower median value, even in rel-

ative terms. Table 6.5 shows the average absolute monthly percentage change on

both the mean and median index, broken down by region, alongside the standard

deviation of the monthly changes.

TABLE 6.5: Mean and Median Index: Average Absolute Monthly
Change, by region

Region Mean Indexa St.Devb Median Indexa St.Devb

EAST MIDLANDS 2.53 137.67 2.9 123.17

EAST OF
ENGLAND 2.2 154.75 2.07 165.48

LONDON 3.51 89.55 2.38 145.8

NORTH EAST 3.55 123.94 3.82 102.08

NORTH WEST 2.9 168.51 2.85 143.95

SOUTH EAST 2.42 128.87 2.13 166.66

SOUTH WEST 2.68 131.94 2.24 155.13

WALES 2.49 109.64 2.79 114.63

WEST
MIDLANDS

2.76 133.92 2.82 138.42

YORKSHIRE AND
THE HUMBER

2.88 146.96 2.92 141.79

a Values quoted are the mean of the absolute monthly percentage changes of
each index

b Standard deviation is reported as a percentage of the quoted average index
values

Section A.3 includes some additional mean and median price indices, with strat-

ification by property type and by build type.
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6.2.2 Methodological alterations and improvements

6.2.2.1 Adjustment of neighbour weights

As discussed in Section 3.2.2.3, the primary issue with any approach of modelling

property prices which solely focuses around the median, is ignorance towards the

behaviour of the distribution above and below said median. As such, properties

with values which sit further away from the median have little influence on the

median level, while those near it have a disproportionate impact.

In order to solve this, we introduced a new model whereby each property re-

ceives a distinct stratification base, allowing each individual property to have an

equal contribution to the aggregate index. In Section 4.6.1, we introduced the GeoTree,

which allowed us to speed up our nearest neighbour searches dramatically, by in-

stead querying a bucket of approximate neighbours of each property. As a result

of this, we had a number of potential stratification bases per property, rather than a

single base.

Previously, we took the median of the neighbours to be the stratification base

and used the price change ratio generated by that property as the value passed to

the aggregation stage of the index computation. However, there is a methodolog-

ical improvement which can be made, whereby we use the additional information

available to reduce the noise in the model further. Referring back to our prior dis-

cussion, we now have a scenario whereby we are taking the median neighbour as

a stratification base, while ignoring all of the information about the distribution of

neighbours of said property. This is an identical argument to our basis for introduc-

ing localised stratification on the monthly transaction level, just on a deeper level in

the algorithm.

Formally, our original methodology was such that the change ratio for each prop-

erty was calculated as:

R(pi) =

(
price(pi)

MEDIAN({price(pn) | pn ∈ N(pi)})

)
− 1

where R(pi) is the price change ratio for pi and N(pi) is the set of approximate
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neighbours of pi, given by the GeoTree. However, we can include each of the neigh-

bours in the model aggregation stage by returning the change ratio of every neigh-

bour of pi, scaled by a corresponding weight factor according to the total number of

neighbours.

As such, our weighted change ratios for pi are defined as:

R(pi) =

{
1

|N(pi)|
.
(

price(pi)

price(pn)
− 1

) ∣∣∣∣ pn ∈ N(pi)

}

The price ratios for pi will be aggregated with a set of price ratios from every

other property in the monthly sample before the weighted average of all price ratios

will be computed. This methodological change allows us to account for the price ac-

tion of every neighbour around each property returned by the GeoTree, rather than

solely considering the median neighbour; applying our concept of accounting for

the behaviour of the entire price distribution a layer deeper in the model algorithm,

in order to reduce noise further.

6.3 Stratifying our GeoPrice index using geospatial data

Initially, we will perform the stratification process of our GeoPrice model only using

geospatial matching on the geohashes associated with each property. Each property

in the dataset has been matched with GPS co-ordinates using the public postcode

mapping dataset, maintained by the Office for National Statistics 15. Once matched

with a pair of GPS co-ordinates, each property has then been allocated a correspond-

ing geohash, as described in Section 4.3.1.

Further to fitting our model on the national level, we will assess our ability to

generate regional sub-indices for each of the previously mentioned regions of Eng-

land, plus Wales.

15See: https://www.ons.gov.uk/methodology/geography/geographicalproducts/postcodeproducts
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6.3.1 National index

6.3.1.1 Time series analysis

Figure 6.11 shows our GeoPrice house price index with the ONS hedonic regression

model superimposed on the chart. As evident from the chart, both of the indices

follow a highly similar trend over our sample period of over ten years. However,

the ONS house price index experiences significantly more month-to-month volatil-

ity throughout the entire data history. We will quantify this more formally when

assessing our smoothness metrics in Section 6.3.1.2.

The volatility differential is better illustrated through Figure 6.12, which shows

the monthly percentage changes of each index superimposed. In terms of index

similarity, our model shows a Pearson’s r correlation coefficient of 0.8588 with the

ONS hedonic regression on the monthly change values, corroborating the findings

of McDonald, Smith, et al., 2009; Prasad and Richards, 2008; sufficiently stratified

models can achieve high levels of congruence with hedonic regression models.

As discussed in Section 6.2.1.3, the middle of 2021 exhibited some highly volatile

behaviour in the naive un-adjusted mean and median price indices. In the ONS

House Price Index, we can see that this noise was suppressed, with June 2021 surg-

ing 5.73%, July 2021 dropping 4.79% and August 2021 increasing 2.95%, for a com-

pounded change of 3.63% over the three month period. Our GeoPrice house price in-

dex improved significantly on this noisy signal, posting +1.91%, -0.59% and +1.23%

on the three respective months, for a compounded change of 2.56%. As evident in

Figure 6.11, the ONS index overshoot of this cumulative increase came back in line

with the GeoPrice index in the following three months, however, the ONS index has

increasingly diverged beyond that time. We will explore the reasoning behind this

disparity in greater depth in Section 6.3.2.

6.3.1.2 Smoothness metrics

In Table 6.6, we demonstrate a variety of smoothness metrics for the naive mean,

naive median, ONS and GeoPrice house price indices. By every metric, the GeoPrice

house price index exhibits a significantly smoother index profile than the ONS house

price index, while achieving a high degree of correlation and reporting a very similar
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FIGURE 6.11: ONS vs GeoPrice House Price Index [UK] from 01-2012
to 09-2022
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FIGURE 6.12: ONS vs GeoPrice House Price Monthly Change (%) [UK]
from 01-2012 to 09-2022
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level of total price appreciation across the sample period of over ten years. The

standard deviation of the differences is 72.15% lower in the GeoPrice Index versus

the ONS, while the mean spike magnitude is 92.7% smaller.

The naive mean and median indices show highly volatile performance and only

serve to add contextual background to the GeoPrice and ONS house price index re-

sults.

TABLE 6.6: Smoothness Metrics for Mean, Median, ONS and GeoPrice
Indices [UK]

Model Meana Mediana St. Devb Minb Maxb St. Dev
of Diffs

MSM

GeoPrice c 0.44 0.41 0.32 -0.6 1.92 0.44 0.82

ONS HPI 0.75 0.54 1.0 -4.79 5.73 1.58 11.24

MEAN 3.05 1.99 5.5 -36.44 26.09 9.63 444.95

MEDIAN 2.57 1.32 5.51 -38.56 30.2 9.66 462.45

a Values quoted are the mean of the absolute monthly percentage changes of each index
b Values are reported in percent
c GeoPrice algorithm is run with geospatial stratification, only

6.3.2 Issues with New Build transactions

A number of issues with new build transactions has caused the ONS to alter method-

ology in an attempt to work around the matter, as discussed in Section 6.1.3 and our

analysis of transaction volumes in Section 6.2.1.2. The pooling of new build trans-

actions across multiple months in recent times is a significant issue. Firstly, if the

small sample of new build properties in each month happen to show a strong move-

ment in either direction, this will be broadcast across multiple months through this

pooling method. Furthermore, it is unclear whether ONS have made adjustments to

the fitting or weighting process, in order to account for the fact that these new build

transactions are being repeated.

It is curious then that the recent, larger divergence in the GeoPrice and ONS in-

dices observed in Section 6.3.1 began to occur around the same time period in which

the pooling of these new build transactions commenced. In order to judge whether
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FIGURE 6.13: ONS vs GeoPrice House Price Index (excluding new
builds) [UK] from 01-2012 to 09-2022

this could be attributed wholly or partly to this pooling behaviour, we ran our model

on the subset of national transactions which consist only of existing property sales.

Thus, new builds are excluded. In order to set a comparable benchmark, the ONS

house price index used in this comparison is also the index which excludes new

builds.

TABLE 6.7: Smoothness Metrics for ONS and GeoPrice Indices (ex-
cluding new builds) [UK]

Model Meana Mediana St. Devb Minb Maxb St. Dev
of Diffs

MSM

GeoPrice c 0.45 0.41 0.33 -0.59 1.96 0.45 0.87

ONS HPI 0.77 0.59 1.08 -5.41 6.0 1.68 13.61

a Values quoted are the mean of the absolute monthly percentage changes of each index
b Values are reported in percent
c GeoPrice algorithm is run with geospatial stratification, only



Chapter 6. GeoPrice: Building a property price index for the UK market 134

As Figure 6.13 demonstrates, the house price indices consisting of only existing

properties have reduced divergence during the period in question. Furthermore,

this variant of the GeoPrice index is highly similar to the previously presented ver-

sion, which included new builds. Thus, it seems likely that the recent ONS method-

ological changes related to pooling new builds are one of the drivers behind the re-

cently observed increased divergence in the models. In the interest of completeness,

Table 6.7 shows the smoothness metrics of each of the restricted models.
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6.3.3 Regional sub-indices

(A) East Midlands Index (B) East Of England Index

(C) London Index (D) North East Index

(E) North West Index (F) South East Index

FIGURE 6.14: ONS vs GeoPrice House Price Index from 01-2012 to 09-
2022, per region
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(G) South West Index (H) Wales Index

(I) West Midlands Index (J) Yorkshire and the Humber Index

FIGURE 6.14: ONS vs GeoPrice House Price Index from 01-2012 to 09-
2022, per region (continued)

6.3.3.1 Time series analysis

Figure 6.14 demonstrates the sub-index generated by the GeoPrice model for each

region of England & Wales, superimposed with the corresponding ONS hedonic re-

gression index for the respective region. Again, we see a pattern of similar trend

across all of the regions, perhaps with the exception of the North East. Indeed, Ta-

ble 6.8 demonstrates a high degree of correlation in the monthly change values of

most of the sub-indices. Interestingly, the two lone sub-indices with a poor level of

correlation happen to be Wales and the North East, which are also the two regions

with the lowest count of typical monthly transactions, as per Table 6.1. The next
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lowest region, East Midlands, has over 70% more transactions than these sparsely

transacted areas.

Further illustrations of the sub-index performance, including monthly change

charts, can be found in Section A.4.1.1.

TABLE 6.8: Correlation of GeoPrice to ONS HPI, per region

Region Pearson’s r:

East Midlands 0.65

East Of England 0.75

London 0.67

North East 0.4

North West 0.69

South East 0.74

South West 0.65

Wales 0.24

West Midlands 0.73

Yorkshire and the Humber 0.66

6.3.3.2 Smoothness metrics

Corroborating the smoothness illustrated in the sub-index charts, Table 6.9 indicates

the smoothness statistics of each sub-index, versus the ONS HPI equivalent. The

mean spike magnitude is at least 75% lower in each region, with the majority of the

regions seeing a reduction of over 85%. On the other hand, the standard deviation

of the differences is at least 50% improved on every region in the sample, with most

dropping by over 65%.



Chapter 6. GeoPrice: Building a property price index for the UK market 138

As discussed in the previous section, the lone two regions which were poorly

correlated with the ONS house price index were the two regions with the lowest

number of typical transactions; Wales and the North East. While the Wales index re-

tains a similar trend over a long period, with the deviation coming from short-term

monthly changes; the North East index looks significantly different. As the smooth-

ness metrics show, this region is by far the most volatile of the ONS regional indices,

with the standard deviation of the differences being over 25% worse than the next-

worst region, while the mean spike magnitude is over 62% poorer. It thus appears

that this volatility in the ONS index for North East is the driver of the low correlation

in that region, potentially due to a poor regression fit on the lower monthly samples.
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TABLE 6.9: Smoothness Metrics for ONS and GeoPrice Indices, in each
region [UK]

Model Meana Mediana St. Devb Minb Maxb St. Dev
of Diffs

MSM

East Midlands /
GeoPrice

0.53 0.49 0.48 -0.92 1.73 0.79 2.62

East Midlands /
ONS HPI

0.85 0.7 1.12 -5.67 6.16 1.84 14.11

East Of England
/ GeoPrice 0.54 0.46 0.5 -2.03 2.44 0.78 2.62

East Of England
/ ONS HPI 0.82 0.59 1.02 -4.32 4.87 1.61 11.25

London /
GeoPrice

0.52 0.45 0.47 -0.8 1.93 0.58 1.44

London / ONS
HPI

0.99 0.83 1.16 -1.75 4.03 1.72 12.55

North East /
GeoPrice

0.49 0.41 0.53 -0.75 2.12 0.87 3.14

North East /
ONS HPI

1.45 1.17 2.1 -7.32 8.87 3.48 53.76

North West /
GeoPrice

0.47 0.39 0.44 -0.6 2.25 0.71 2.25

North West /
ONS HPI 1.12 0.88 1.65 -8.1 8.32 2.77 32.92

South East /
GeoPrice

0.49 0.43 0.44 -1.6 2.25 0.63 1.92

South East / ONS
HPI

0.8 0.66 0.97 -3.99 4.79 1.48 9.26

South West /
GeoPrice

0.5 0.41 0.45 -1.0 2.18 0.69 1.99

South West /
ONS HPI

0.96 0.65 1.46 -8.24 7.8 2.46 28.79

Wales / GeoPrice 0.52 0.39 0.54 -1.51 2.1 0.89 3.56

Wales / ONS HPI 1.15 1.01 1.41 -4.67 5.69 2.26 20.7

West Midlands /
GeoPrice

0.5 0.42 0.5 -1.52 2.35 0.8 2.69

West Midlands /
ONS HPI

0.94 0.8 1.27 -6.16 6.57 2.15 18.25

Yorkshire Hc/
GeoPrice

0.48 0.4 0.47 -0.68 2.25 0.76 2.48

Yorkshire Hc/
ONS HPI 1.14 0.81 1.64 -8.07 7.69 2.74 33.05

a Values quoted are the mean of the absolute monthly percentage changes of each index
b Values are reported in percent
c Yorkshire H refers to the Yorkshire and the Humber region
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6.4 Additional stratification through property type

The Price Paid Data exposes another variable on which we can perform stratification:

property type. Through the use of geohash+ (see: Section 5.3.1), we can encode the

property type as an additional variable by prefixing it to the geohash string for each

property. Thus, each geohash will now begin with a D, S, T or F, according to their

respective type.

Through this encoding method, the GeoTree will only return properties which

share the same property type prefix as the property being searched for, within a

small area of the home in question.

6.4.1 National index

6.4.1.1 Time series analysis

Figure 6.15 demonstrates our GeoPrice index with additional property type strati-

fication against the ONS house price index. The index generated by the GeoPrice

algorithm is very similar to the original result, which did not include property type

matching. This seems to suggest that the addition of this supplementary stratifica-

tion parameter does not add a great deal of value to the index.

On deeper thought, this seems rational. Consider that the first variant of the

algorithm presented was using geospatial proximity alone to perform the stratifi-

cation process. It would typically be the case that properties of the same type are

co-located. For example, an apartment is always part of a block, terraced houses

always come in a row and detached houses are usually secluded, with the nearest

neighbours also having detached properties. The lone exception to this may be the

case of a semi-detached house sharing a border with a terraced house. However,

in these cases, the value of the properties typically trend together, as the valuations

will be very similar, with the semi-detached home attracting a small premium. Thus,

even in this instance, it is likely that excluding the terraced neighbours does not sig-

nificantly reduce model noise.

These results add credence to our argument of why geospatial stratification works

(see: Section 3.2.2.2); the strong autocorrelation effect exhibited by housing seems to

be such that our model is capturing the explanatory power of property type on the
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FIGURE 6.15: ONS vs GeoPrice (w/property type) House Price Index
[UK] from 01-2012 to 09-2022

value through geospatial autocorrelation alone, without the need to explicitly know

the property type. This is a highly encouraging finding in terms of the confidence

behind our model’s core conceptual design.

TABLE 6.10: Smoothness Metrics for ONS and GeoPrice Indices [UK]

Model Meana Mediana St. Devb Minb Maxb St. Dev
of Diffs

MSM

GeoPrice c 0.45 0.42 0.34 -0.58 1.96 0.45 0.87

ONS HPI 0.75 0.54 1.0 -4.79 5.73 1.58 11.24

a Values quoted are the mean of the absolute monthly percentage changes of each index
b Values are reported in percent
c GeoPrice algorithm is run with geospatial and property type stratification
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FIGURE 6.16: ONS vs GeoPrice (w/property type) House Price
Monthly Change (%) [UK] from 01-2012 to 09-2022
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6.4.1.2 Smoothness metrics

The smoothness metrics in Table 6.10 corroborate our prior findings. Neither the

standard deviation of the differences nor the mean spike magnitude are improved

by the addition of property type stratification. Despite this, the model retains com-

parable performance with the geospatial-only variant of the index, with negligible

differences across all of the statistics shown.

In terms of correlation with the ONS hedonic regression model, Pearson’s r coef-

ficient is marginally higher at 0.8644.

6.4.2 Regional sub-indices

Similarly to the results for the national index, regional sub-indices are not signifi-

cantly changed through the introduction of property type as an additional, explicit

attribute. The index level and monthly change results for the regional sub-indices

with property type included can be found in Section A.5.

Smoothness metrics for the regional sub-indices where the property type has

been encoded as an explicit variable are shown in Table A.1.

6.4.3 Property type sub-indices

A tangible benefit of having the property type variable as an explicit value is the

ability for use to construct sub-indices for each of the property types. While, as

discussed, it did not add any additional smoothness to our aggregated indices, it

does allow us to filter our strata and run the GeoPrice algorithm on each subset.

Figure 6.17 demonstrates the sub-indices for each distinct property type, super-

imposed with the ONS house price index for the equivalent property type. The

trend of all sub-indices is very similar between both models, across the majority of

the sample period.

Recently, the detached home index has started to drift further from the corre-

sponding GeoPrice index. It is interesting to note that the transaction volume for

detached homes has substantially reduced versus the historical norm over the same

time period that this divergence has been observed, as shown in Figure 6.5. Perhaps

this change in the transaction sample has caused increased volatility and the surge
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in value for this particular type of property recently, in the ONS hedonic regression

model. This disparity is likely another driver behind the previously discussed drift

in the national index across the same time period.

Table 6.11 demonstrates the robustness of the GeoPrice house price index across

every property type. The standard deviation of the differences has been reduced

by at least 59.75% in all four sub-indices versus the ONS house price index. The

mean spike magnitude, on the other hand, is over 84.8% lower in each case. Inter-

estingly, the two sub-indices with the most volatile performance in the ONS model,

terraced houses and apartments, are the least noisy sub-indices in the GeoPrice al-

gorithm. This coincides with the correlation results; the terraced homes and apart-

ments monthly change values have a Pearson’s r coefficient of approximately 0.6.

On the other hand, the detached home sub-index has a correlation of 0.8 with the

ONS equivalent, while the semi-detached index has the greatest similarity, at 0.84.

TABLE 6.11: Smoothness Metrics for ONS and GeoPrice Indices, on
each property type [UK]

Model Meana Mediana St. Devb Minb Maxb St. Dev
of Diffs

MSM

Detached /
GeoPrice

0.46 0.36 0.41 -1.57 2.0 0.64 1.88

Detached / ONS
HPI

0.76 0.5 1.02 -4.29 5.35 1.59 12.36

Apartment /
GeoPrice

0.44 0.43 0.39 -0.91 1.63 0.57 1.31

Apartment /
ONS HPI

0.91 0.78 1.12 -3.1 4.8 1.8 14.15

Semi-detached /
GeoPrice

0.47 0.39 0.4 -0.74 2.26 0.57 1.45

Semi-detached /
ONS HPI

0.77 0.6 1.0 -4.58 5.45 1.59 10.63

Terraced /
GeoPrice

0.48 0.48 0.36 -0.45 1.72 0.46 0.92

Terraced / ONS
HPI

0.91 0.64 1.28 -6.52 6.98 2.06 19.09

a Values quoted are the mean of the absolute monthly percentage changes of each index
b Values are reported in percent
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(A) Detached home indices (B) Semi-detached home indices

(C) Terraced home indices (D) Apartment indices

FIGURE 6.17: ONS vs GeoPrice House Price Index [UK] from 01-2012
to 09-2022, per property type
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(A) Detached home monthly changes (B) Semi-detached home monthly changes

(C) Terraced home monthly changes (D) Apartment monthly changes

FIGURE 6.18: ONS vs GeoPrice House Price Monthly Change (%) [UK]
from 01-2012 to 09-2022, per property type
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6.5 Chapter Summary

The methodological tweak of considering the entire distribution of neighbours near

a given property, rather than just the median neighbour, clearly pays dividends on

application to a large dataset, such as the UK’s Price Paid Data. Indeed, the GeoPrice

model achieved only a modest improvement in smoothness on the Irish market (rel-

ative to the RPPI), the results of applying the enhanced algorithm to the UK market

are a marked improvement. The GeoPrice index maintains a high level of correlation

with the national hedonic regression model for the UK, while achieving a consider-

ably greater degree of smoothness.

Furthermore, the algorithm is entirely automated and can be recomputed rapidly

and at high frequency, owing to the performance benefit delivered through use of

the GeoTree. With this data structure in hand, it is possible to recompute the index

within one hour of a new release of the Price Paid Data. The ONS hedonic regression

model, on the other hand, is released on a lag of several weeks from the publication

schedule of the Price Paid Data and requires substantial human effort to produce on

a monthly.

These results extend to the various sub-indices; both regional and by property

type. Once again, the GeoPrice model produces a very similar trend over the long

term to the ONS house price index, while delivering near an order of magnitude

less noise. Moreover, the GeoPrice model realises these advances without the intro-

duction of any of the additional attribute data or neighbourhood quality data which

the ONS hedonic regression invokes. Our index is based solely on public facing sale

transaction data and thus could be reproduced by any interested party, at will.
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Chapter 7

Conclusion

To conclude this thesis, the original key goals and objectives of the GeoPrice model

will be discussed, with an evaluation of the extent to which those aims were achieved.

Furthermore, potential applications of the model, along with future research which

could be undertaken to advance the methodology further will be outlined.

7.1 Analysis of objectives

Section 1.5 outlined the primary objectives of this research project, with List 1 indi-

cating the desired attributes and features of the property price index methodology

being proposed. The overarching goal of the work was to introduce an efficient,

scalable and flexible property price index model, which could be utilised by a wide

number of stakeholders in the property market. As discussed in Chapter 2, it is chal-

lenging for market participants, aside from perhaps governments and central banks,

to gain access to alternative sources of information on the housing market, or ver-

ify the statistical veracity of the official models produced by the national statistical

offices.

In many instances, these models, often produced through a conventional hedo-

nic regression, are the only generally available metric on the state of the house price

index for a given region. The concept of other econometric areas of interest such as

inflation, economic strength or labour market dynamics only being measurable via

a single data release produced by a single party seems absurd. Similarly, it would

seem irrational to measure the trend of any other asset class, such as bonds or equi-

ties via a single, irreproducible metric. Thus, when one compares the housing mar-

ket to any other econometric data release or large asset class, this makes the housing
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a highly unusual and isolated case.

The house price index model introduced in this thesis has been created with the

goal of solving these issues. The core conceptual framework of the model is simple

to understand and based on the demonstrable geospatial auto-correlation exhibited

naturally by housing. Thus, a large amount of expertise is not needed to understand

and utilise the proposed methodology. Furthermore, the thesis has demonstrated the

ability for the model to deliver not only equivalent, but superior results to hedonic

regression models. In each use-case of the GeoPrice index explored in the thesis, this

has been achieved despite the use of a significantly more sparse and frugal dataset,

including publicly available datasets for the United Kingdom and the Republic of

Ireland, respectively.

Key Goal 1: The model must be fully automated

The first goal outlined in List 1 asserted that the GeoPrice model needed to be capa-

ble of ingesting a dataset of property transactions (or asking prices) and compute

the house price index without any human intervention, i.e. the index must be com-

pletely automated.

In each of the applications of the model demonstrated throughout Chapter 4,

Chapter 5 and Chapter 6, the model needed only to be fed with an updated dataset

and the GeoPrice index could be reproduced at will, without any human involve-

ment in the process. Indeed, all that would be necessary to generate a fully au-

tomated model which automatically updates upon new data releases is to build a

web-scraping script which pulls the raw transaction data from the public source and

saves it into any suitable format (e.g. file, database, etc.) and to setup a scheduled

job to run the GeoPrice index as frequently as desired.

The importance of this goal is two-fold. Firstly, as discussed as length in Chap-

ter 2, many market stakeholders do not have the resources nor the expertise to regu-

larly produce a house price indicates which requires heavy domain knowledge, hu-

man oversight and regular maintenance. Introducing an entirely automated model

reduces the barrier to entry, allowing any interested parties with a dataset in hand

to fit an accurate, performant house price index to that data with low resource cost.
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Secondly, a notable drawback of the conventional hedonic regression models

produced by national statistics offices is the lack of transparency and reproducibility

around their house price index models, as discussed in Chapter 1. If the GeoPrice

model were to require human expertise and intervention in the production of the

output index, this would defeat the purpose of making house price index method-

ology more accessible and corroborable. The transparency gained by introducing an

index which can operate on publicly available data would be lost if the methodology

is not straightforward to the layperson.

Key Goal 2: The model must be capable of operating on a minimal set of

attributes

The second objective of the GeoPrice index was to ensure that the model required

nothing more than a minimal set of data on each transaction in order to produce an

accurate index, namely: the sale date, the sale price and a set of GPS co-ordinates

(or an address which could be geocoded to such). This was a relevant goal as most

publicly available property transaction datasets, such as the Property Price Register

used in the initial application of the model in Chapter 3 include no data on any

characteristics of the property.

An index methodology which requires more than these attributes to achieve a

robust index breaches the goal to deliver a model which is more accessible to market

stakeholders, as sourcing this additional data is typically time-consuming, expen-

sive and oftentimes outright impossible for the majority of stakeholders. Further-

more, the GeoPrice was designed to leverage the spatially auto-correlated nature of

housing; if it were not possible to derive a usable index from this factor alone, the

basis of the model would be somewhat flawed.

Both Chapter 3 and Chapter 4 demonstrate that the GeoPrice index is capable of

outperforming a conventional hedonic regression model while only using a mini-

mal set of explanatory data on the characteristics of the property. Furthermore, the

analysis in Chapter 6 indicates that this minimal set of attribute data was sufficient

to significantly outperform the ONS’ widely used hedonic regression house price

index, which requires a plethora of exogenous attribute variables from multiple pri-

vate data sources.
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Key Goal 3: The model should be flexible enough to operate on different

types of datasets

Another key aim of the GeoPrice index was to ensure methodological flexibility. In

other words, the model should be flexible enough to be capable of producing a house

price index on a variety of different kinds of datasets, e.g. transacted prices, asking

prices etc. As discussed at length in Chapter 3, various market stakeholders may

have distinct property datasets, including both bespoke and public data, available

to them and thus it is critical that the methodology is pliable enough to cater for

these varied cases.

Chapter 5 demonstrated the results of applying the index to a dataset of Irish

listed asking prices, which was compared against the results of Chapter 3, where

the model was fit on real sale transactions in the same region. The total number of

samples and timespans of each of these datasets differed from one-another, however,

the GeoPrice model was capable of producing an informative and accurate model on

each of them.

This flexibility is not a given with all house price index methodologies. For ex-

ample, the repeat sales methodology outlined in Chapter 3 would not be amenable

to an asking price dataset in the majority of cases. Typically, asking price data is

only available over the time a particular online property portal is operating. Fur-

thermore, property portals are chosen at the discretion of the seller; a given portal is

not guaranteed to have every house on the market listed on it.

As a repeat sales model relies on comparing multiple sales of precisely the same

property, it is unlikely that a sufficient number of houses would i) appear multi-

ple times within the lifespan of a particular portal and ii) have multiple successive

homeowners select the same portal to host the listing. For these reasons, applying

this particular methodology to asking prices is challenging and often times infeasi-

ble.

Given that the GeoPrice model could be considered, in some ways, to be a more

generalised evolution of the repeat sales model, whereby each particular property is

matched with a comparable record in each preceding sale period, it does not suffer

from this same limitation and does not require the extensively lengthy history of
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samples which a repeat sales model does. These characteristics of the model make it

suitable for application to asking prices.

These applications have illustrated the potential for our model to generalise to

distinct markets in different countries, as well as the capability of modelling asking

prices, as well as transacted prices. These findings offer substantial evidence that we

have achieved our goal of introducing an accessible and adaptable model.

Key Goal 4: The model must be capable of incorporating additional at-

tribute data, if it is available

While the GeoPrice model has been designed with a conservative and frugal dataset

in mind, retaining the optionality to factor in additional property attributes was an

important aspiration. In some potential applications of the GeoPrice model, data

which would assist in further improving the accuracy of the comparable matching

process is likely to be available to the user. It would be foolish if this data was not

incorporated into the model and used to attempt to boost the performance.

Indeed, Chapter 5 demonstrated that the inclusion of number of bedrooms along-

side the geospatial matching offered a significant increase in the smoothness of the

output index. This was achieved with minimal additional complexity and no loss in

model efficiency. This is not a surprising outcome; as discussed in Chapter 1, many

of the factors impacting the valuation of a given property will be shared by those

in its proximity. However, while there is some likelihood that neighbours may often

share a similar number of bedrooms, there will be many exceptions and violations of

this rule. As such, one would expect that combining the number of bedrooms with

the geospatial matching should deliver noteworthy performance gains; something

which was proven to the be the case.

By contrast, in Chapter 6, the GeoPrice model was armed with the property type

of each sale transaction, which was again used alongside the geospatial proximity

matching process. However, in this particular instance, the performance gains were

near negligible; the geospatial matching process alone appeared to be sufficient to

infer the impact of this attribute. Upon thought, this is not a particularly surprising

result; it is highly typical for properties of the same type to be located near to one

another. Apartments, for example, will always come as part of a block.
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In both of these cases, the GeoPrice index was capable of ingesting additional data

on the characteristics of the properties being fed to the model. In the former case,

this additional context was leveraged to improve the performance by a considerable

amount. In the latter case, where the attribute in question was mostly inferrable

through the spatial auto-correlation effect, the data did not significantly improve the

model, but also did not cause any notable distortion nor did it hinder the index in

any manner.

Key Goal 5: The model should be scalable and performant enough to op-

erate on datasets of different sizes

Chapter 4 illustrated some of the challenges in performing geospatial proximity

searches and geospatial clustering on large datasets. Indeed, the performance bot-

tlenecks of the initially proposed GeoPrice methodology in Chapter 3 rendered it

unsuitable for expansion to larger datasets with a greater volume of transactions, as

the execution time grew quadratic with the number of the samples.

The introduction of the GeoTree in Chapter 4 succeeded in removing this bot-

tleneck, through speeding up the efficiency of the model computation by multiple

orders of magnitude. This was achieved with a negligible reduction in model accu-

racy when compared against the initial formulation of the index. Furthermore, the

scalability of the GeoTree was demonstrated, showing the reduction from quadratic

complexity to linear complexity and, as a result, achieving the stated performance

objective.

Chapter 6 leveraged this scalability by applying the GeoPrice model to a dataset

with monthly transaction volumes around twenty times larger than the original in-

dex analysis. Despite the large increase in dataset size, the GeoPrice model retained

the capability to compute the index from start to finish within fifteen minutes.

Despite these variations in data sample size, the model demonstrated its ability

to produce a high-quality, accurate index on all applications. This was further estab-

lished in Chapter 6, where sub-indices were generated for each region in England

and Wales. The GeoPrice model significantly outperformed the smoothness and the

robustness of the ONS hedonic regression model on all of these regions, proving its

ability to deliver an accurate, scalable and efficient house price index regardless of
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the input sample size. Moreover, this is achieved while maintaining high levels of

month-on-month correlation to the benchmark, indicating similar behaviour is being

captured, but with materially less noise contamination in our proposed model.

Key Goal 6: The index should be capable of updating rapidly once new

transaction data becomes available

As discussed previously, the delivery of scalability objective has resulted in the Geo-

Price index being capable of computing within a matter of minutes, even on large

datasets such as the one used in Chapter 6. As such, there are no bottlenecks re-

maining which would prevent the index rapidly updating upon being fed with new

transaction data, bar the availability of the data itself.

Thus, the GeoPrice model is capable of automatically updating, on a schedule,

within hours of a data release from any source of regularly updating property val-

uation data, be it asking prices or sale prices. The delivery of this goal supports

the aim to reduce the lead time from the data becoming available, to house price

indices based on this data being published. Typically, this lead time is in the or-

der of months for popular conventional models, leading to the propagation of stale

information, which is less conducive to an efficient market.

In order to more explicitly demonstrate that this goal has been met, later in this

chapter a proof-of-concept automated house price index web-platform will be pre-

sented, operating on both of the transaction datasets introduced in Chapter 3 and

Chapter 6, respectively.

Key Goal 7: Despite the restrictions outlined, the minimal index must de-

liver equal or better performance than conventionally used models on rich

datasets

In each application of the GeoPrice model where a conventional benchmark was

available, the ability for the index to outperform in both accuracy and smoothness,

while retaining high levels of correlation, was proven. While this admittedly ranged

from a slight improvement in Chapter 3 to a substantial improvement in Chapter 6,
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in both cases, it was achieved under a significantly more restrictive set of conditions

than the benchmark was subjected to.

In both cases, the conventional benchmark hedonic regression models were equipped

with a range of explanatory attribute variables, a team of expert statisticians and am-

ple lead time in the order of several weeks from the release of the transactions to the

publication of the model results. By contrast, the GeoPrice index was given a mini-

mal set of data on each transaction, the restriction of complete automation and the

goal of publishing the index results on the same day that the transactions became

available.

As such, it has been demonstrated that the GeoPrice model has met the most

critical objective of outperforming the benchmark models in accuracy, while being

subjected to significantly harsher conditions, concluding the final of the research

goals which were set out in List 1.

7.2 Thesis contributions

The thesis objectives of building credible evidence behind the viability of a novel

method of stratifying property price transactions have been addressed thoroughly,

indicating probable merit and convincing advantages in adopting this methodology

as a tool for measuring and monitoring the housing market generally. The analysis

undertaken has identified a number of key findings in the field of property price

research.

Key Finding 1: Spatial auto-correlation alone is sufficient to derive an ac-

curate house price index

Perhaps the most vital conclusion of the research undertaken is the validation of the

claim that the spatially auto-correlated nature of the housing market alone is enough

to produce a performant house price index model.

An unsubstantiated claim had earlier been made by O’Hanlon, 2011 that the

Property Price Register dataset used in Chapter 3, containing sale transactions for
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the Republic of Ireland, was an “impractical” dataset for use in house price mod-

elling, owing to the lack of any attribute data. They concluded that the dataset of-

fered no viable method of mix-adjusted and thus could not be used to generate an

accurate house price index.

As demonstrated through Chapter 3 and Chapter 4, this claim is evidently false.

Not only has this dataset, in tandem with the GeoPrice model, been proven to be suffi-

cient for the purpose of creating a performant house price index; the resulting house

price index outperforms the hedonic regression model formalised and adopted by

O’Hanlon, 2011 and the Central Statistics Office of Ireland in the original research

piece where said claim had been made.

The basis of the GeoPrice model was further bolstered in Chapter 6, where the in-

dex generated purely through the premise of spatially auto-correlated matching was

again capable of outperforming a widely-used, popular hedonic regression model.

Furthermore, as discussed prior, the addition of the property type attribute did not

make any significant difference to index performance; indicating once again that

spatial auto-correlation was capable of inferring the vast majority of the explanatory

power that this variable has on property value.

These findings suggest that the widely observed, yet under-leveraged impact

of spatial auto-correlation on properties can be a powerful tool in analysis of the

housing market and the potential to garner insight from frugal property datasets

should not be dismissed without thorough investigation; it is not necessary to have

a rich, perfect dataset of attributes in order to achieve compelling and useful results.

Key Finding 2: Further research should be undertaken on novel method-

ologies beyond bolstering the shortcomings of existing, conventionally

used models

As discussed in Chapter 1, a great deal of research has been done on attempting to

address the most significant drawbacks of hedonic regression models; one of which

is the frequent lack of accounting for geospatial effects in the model specification. Re-

cent additions to the literature have explored methods of modifying and augmenting

the hedonic model formulation to better incorporate these geospatial effects, which

has shown encouraging benefits and improvements to model accuracy.
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A key finding of this thesis has been to illustrate that hedonic regression models

should not necessarily be the default go-to model for all house price index analysis.

These is demonstrable merit in investigating and formulating alternative method-

ologies, such as the GeoPrice index introduced in this thesis. Not only has this novel

model indicated that it is possible to outperform conventional hedonic regression

models through leveraging their “greatest weakness”, according to O’Hanlon, 2011,

but this has also been achieved with a publicly accessible dataset and methodology,

and no publication lag nor lead time.

Further research should be undertaken in investigating novel methods of mea-

suring house price trend, particularly those which are capable of incorporate spatial

auto-correlation, which has been verified to hold strong explanatory power over

housing valuations. The value and potential of automated, performant, timely and

transparent methodology over that which is opaque, lagged and resource-intensive

should not be underestimated.

Key Finding 3: If sufficient, timely input data were to be available, it

would be possible to compute a near real-time house price index

As has been discussed at length throughout the thesis, one of the problematic lim-

itations of existing, conventional house price indices is the significant delay with

which they are published. Furthermore, given that they generally cannot be repro-

duced by third parties due to lack of access to the input data, it is often not possible

for stakeholders to produce a more timely model privately.

Given the importance of house price indices across a wide range of use cases, as

discussed in Chapter 2, this lead time to publication should be a significant concern.

The results of these models are used in monetary policy, fiscal, lending and planning

decisions, among others; some of the most critical decisions in terms of influence

over the broader economy. The fact that these models are currently being used with

a lag of typically around two months means that stale, out-of-date information is

being factored into said key economic decisions.

With the research presented in this thesis, one of the findings which potentially

has the most broad-reaching impact is the proof-of-concept demonstration that it

would be possible to compute a near real-time house price index, if sufficient raw
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input transaction data were to be made available to the model in real-time. The final

formulation of the GeoPrice index presented in Chapter 6 illustrates that a house

price index can be produced and published end-to-end within a matter of fifteen

minutes on a large region.

Aside from the saved resources that this rapid, automated calculation offers, hav-

ing a more timely and up-to-date index available when making policy decisions

would likely be of great use to central banks and governments. It is not unusual for

these parties to seek faster measures of other economic indicators, such as inflation

and labour market dynamics, to get a more reactive measure of market changes than

that provided by what is considered to be their benchmark or gold-standard metric.

While transaction data availability still remains something of a bottleneck at

present, the several week delay typically added by conventional index calculation

itself has been removed entirely by the GeoPrice model. Furthermore, Chapter 5

demonstrated that the model is also capable of being applied directly to listed ask-

ing prices. These would be available from multiple sources as a real-time dataset,

leading to the potential of launching a real-time house price index, albeit one with

the limitations of using asking prices rather than actual sales, which result in differ-

ent, yet correlated econometric measures.

Key Finding 4: Some attribute data remains relevant and performance-

enhancing, even when spatial auto-correlation is accounted for

Despite the clear evidence that spatial auto-correlation is a sufficiently explanatory

feature in order to outperform conventional hedonic regression models, our findings

in Chapter 5 demonstrate that there is still value in incorporating some attribute data

into price index construction, if said data is available to the end-user.

In the application of the GeoPrice model to a dataset of asking prices in Chap-

ter 5, two variants of the index were produced; one with geospatial matching alone,

the other with a combination of number of bedrooms and geospatial matching. The

results confirmed that the inclusion of the number of bedrooms offered a significant

boost to the smoothness of the output model, while remaining highly correlated.

As discussed previously, this is not a surprising outcome, given that the number of
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bedrooms would be one of the attributes which is more likely to differ among neigh-

bouring properties and thus spatial auto-correlation would be expected to have only

partial explanatory power over this particular price-impacting variable.

This finding justifies the inclusion of the flexibility goal outlined in List 1 and Sec-

tion 7.1, which was aimed to address such scenarios. Although the primary aim of

the goal was to introduce a new type of house price model which could function on

minimal public data, the capability to retain compatibility with richer datasets was

crucial desired functionality. These findings suggest that further research should

be undertaken to combine geospatial matching methods alongside the property at-

tributes which are less spatially auto-correlated, which may result in further perfor-

mance enhancements.

7.3 Uses of the GeoPrice model

As discussed in Section 2.4, a large number of stakeholders hold an interest in the

property market. Any one of these categories of stakeholders could employ our

proposed model as a method of analysing property prices. Governments and central

banks, as discussed, rely heavily on housing market statistics and analysis for their

policy and budgetary decisions. The interest rate set by the central bank has a high

correlation with mortgage interest rates, resulting in the need to carefully balance

this with households’ affordability. These parties are currently working with stale,

slowly updating data in taking their views on the market, which is a significant issue

when considering the impact of the decisions being made. It is not necessarily the

case that this proposal must serve as a full replacement for existing, long-trusted

methodologies, however, it may have meaningful use in providing a more up-to-

date view than the formerly mentioned tool, given the lower lead time.

Letting agents and property portals would likely also have a keen interest in al-

ternative property price index measurements. Indeed, these stakeholders often have

large databases of listed properties and their respective asking prices, in addition to

further attributes which could be explored for deeper stratification, as we explored
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in Chapter 5. Through use of their own asking price datasets, these market partici-

pants could generate bespoke property price indices for their clients, better inform-

ing them of local trends in the property market. Furthermore, given their dataset

is being constantly updated with new listings, the potential exists for them to roll

this out as a novel daily updating service, which may help keep homeowners and

prospective buyers logging on to their platform to check the latest trends; boosting

engagement metrics and improving their sell-through rate on listings.

Finally, lenders are another party who may have a strong interest in producing

their own, custom house price index. Mortgage lenders take on a great deal of risk,

given that a house is the most expensive asset owned by most typical citizens. This

risk fluctuates in magnitude according to the housing market behaviour, economic

environment and interest rate set by the central bank. If these lenders could produce

a more up-to-date house price index with their own database of mortgage returns

completed by their customers, this may give greatly enhanced visibility on the mar-

ket and better inform their lending practices. For example, rather than waiting two

months delay for the official house price index, lenders could spot a potential turn in

the market one day after the data is collected by running their own model and take

action to reduce their risk on upcoming approvals and the interest rates being set.

As such, there are many potential users of the GeoPrice house price index and

possibly many more which we have not mentioned. Due to the enormous size of

the housing market, there are sure to be countless observers taking a keen interest in

this asset class and thus the research conducted in this thesis is conceivably relevant

to any of them.

One potential drawback which remains in the proposal is that it relies on GPS

co-ordinates or, more specifically, geohash encodings of GPS co-ordinates in order to

perform the voting and stratification periods. While these were not readily available

on a property-by-property basis in Ireland, we were able to source them through

geocoding API services. In our analysis of the UK data, GPS co-ordinates were made

freely and publicly available by the ONS.

If the model is to be applied to any market, the user must ensure the ability
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to obtain these from the home addresses. Nevertheless, these are typically signifi-

cantly easier to acquire than the detailed property characteristics required by hedo-

nic regression, owing to the prominence of automated geocoding and mapping APIs

available on the open market. As such, the barrier to entry for the model remains or-

ders of magnitude lower than that of a conventional hedonic regression model and

this limitation can typically be easily worked around.

7.4 Future work

While the thesis has succeeded in meeting the initially outlined research objectives

and desired functionality for the GeoPrice house price index model, the findings pre-

sented leave the door open to a great deal of prospective future work which could

be undertaken. These potential directions include both practical applications of the

model and more theoretical avenues of analysis which may result in further im-

provements and evolutions of the GeoPrice methodology.

7.4.1 Application-based extensions

There are many potential practical applications of the model, which would serve to

demonstrate the use-cases and contribution of the research. In order to further vali-

date the flexibility and adaptability of the model, it would be desirable to continue to

benchmark the model in different regions versus their official national counterparts.

Automated GeoPrice indices could be built for countries across the world, includ-

ing the United States, European Union nations and countries in Asia and Oceania.

Each of these countries will likely have different standards and formats of available

sale transaction data, some of which will likely be private or charged, while others

will be open, public datasets. Morphing all of these datasets into a clean, unified

format for ingestion by the GeoPrice model would be the most time consuming com-

ponent of this task.

The target vision for the GeoPrice model would be to launch an online web-

platform which is free and public facing. This platform would offer GeoPrice-powered

indices for a palette of countries and regions across the world, allowing for differ-

ent levels of regional granularity in different countries. Furthermore, a suite of tools
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could be made available to users which perform analysis of cross-nation correla-

tions and patterns in property prices, while also indicating the countries which have

a strongly trend housing market.

The platform would be designed to update automatically once new data for each

country becomes available; scrapers or feeds would be set up to automatically poll,

pull, clean and store data from the relevant source in a single, unified database for-

mat. Once this has completed, a signal could be sent for the index to re-compute for

that particular region, with the results becoming available for users within a matter

of minutes.

It would also be possible to connect different property price data feeds to the

platform for each regions where they are available, which could be transactions,

mortgage data, asking prices, etc., depending on what is available in the region in

question. This project would be an ambitious undertaking to build and maintain,

however, the fundamental methodology to support it has been laid out in this thesis

and the GeoPrice index should be robust, accurate and performant enough to enable

the creation of such a resource in its current state.

A basic proof-of-concept demo of this application has been launched, in order to

demonstrate the practical use of the work undertaken in this thesis. The web plat-

form contains an automatically updating house price index for the Ireland and the

UK, based on the same two datasets explored in Chapter 3 and Chapter 6. Each

month, once new data becomes available, a scheduled job pulls the data and recom-

putes the GeoPrice indices, publishing their output to the platform for the user to

view. This is achieved with little-to-no lag and no human intervention, rendering

the system completely automated.

Furthermore, the tool illustrates the ability of the model to generate sub-indices

for smaller localities within the region in question, as shown in Figure 7.1. Using the

interface, users can drag and select a specific area on the map and a bespoke index

will immediately be generated and displayed, focusing on the price trends within

the area they selected. While this is a basic prototype of the more advanced platform

described previous, it nonetheless demonstrates the viability of such a tool being

developed and expanded with additional regions and analytical tools.

https://property.dltcapital.ie/
https://property.dltcapital.ie/


Chapter 7. Conclusion 163

FIGURE 7.1: Proof of concept GeoPrice web platform demo

7.4.2 Theoretical advances

A number of potential theoretical advances could be explored, in order to build upon

the foundations set by the GeoPrice model. These range from ideas for methodolog-

ical enhancements to improve the performance of the index, to alternative formu-

lations of the core conceptual framework which could allow the application of the

idea to a distinct use case. Below, some suggestions for further research projects

involving the GeoPrice model will be briefly outlined.

Enhancing how attribute data is incorporated into the model

In Chapter 5, the thesis explored how additional attribute data (the number of bed-

rooms, in that specific example) could be incorporated into the model specification

in order to improve the accruacy of the comparable matching process. While this

was successful in significantly boosting the performance of the model, there are po-

tential limitations of the current specification, if pushed to an extreme use-case.

For example, if a user decided to use several attributes as part of the matching

process, it is possible that the number of strata would then become so large as to

result in time periods where there is no proximate neighbour in the sample. For

example, it is not guaranteed that there will be a six-bedroom, three-bathroom, de-

tached property with a floor area range of X - Y square meters which is located

in a reasonable vicinity of a transacted property in every prior month over which

comparable sample is being drawn. While this is an extreme case involving a very

large number of attributes in addition to somewhat of an outlier on the upper-end of
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the property distribution, it demonstrates a limitation of the matching system and a

drawback of mix-adjusted models in general, as discussed in Chapter 2.

Research could be undertaken into using the results from similar strata to im-

prove the matching accuracy and sample size in cases such as these. For example,

the model could intelligently look at slight variations to the matching criteria; five-

bedroom and seven-bedroom neighbours could also be incorporated, with an adjust-

ment factor applied to their prices based on a longer term analysis of the difference

between those strata and the optimal stratum.

This could also be extended to not only be applied to attributes, but to the geospa-

tial component as well. While the GeoPrice currently looks at a collection of nearby

neighbouring properties sold in prior time periods, it would be interesting to explore

the effect of taking a weighted average of larger and larger neighbourhood vicinities.

For example, the price comparison could be based 70% on neighbours within a few

blocks, 20% on the next GeoTree level up from that, and the final 10% on another level

up from that. This experiment could reveal some interesting insights into how far

the spatial auto-correlation effect reaches and whether there is an identifiable point

at which the performance begins to deteriorate.

Combining transactions and asking prices into a single model to add forecasting

abilities

As demonstrated in the thesis, the GeoPrice model is capable of generating an in-

dex on both transacted properties and property listings. An evolution of the model

which could potentially be of great use to market stakeholders would be to attempt

to combine this two distinct sources into a single model, in order to forecast the

upcoming movements in property prices.

Very few robust forward-looking indicators of property price trends exist in the

industry. The reasoning for this is likely the same reason that alternative, privately

produced house price index models are rarely seen; acquiring the data and fitting

a conventional model to is challenging and resource-intensive. However, with the

more straightforward, frugal and automated methodology offered by the GeoPrice

index, there is renewed potential to conduct more exploratory analysis on creating

forecasts for housing through the combination of sale transactions and asking prices.
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As listed asking prices are a leading indicator of upcoming sales, it should the-

oretically be possible to gain a forecasting advantage through their application. Al-

most all sales which eventually appear in the transacted property dataset will have

been listed for sale many months prior on a property listing platform of some de-

scription. While it is possible for the prices to change based on negotiations, the

trend of the initial listed price and any updates made to it by the seller after listing

should be sufficient to offer some predictive power over the upcoming move in the

market.

Analysis would need to be undertaken in order to determine what type of lag

should be applied to the listed price when combining the datasets. In other words,

a forecast of when the listed property would be expected to land in the transacted

properties dataset would need to be determined. One would expect that the optimal

solution lies in spreading the projected sale date over multiple months with a weight

applied to that sample based on the predicted likelihood that the transaction settles

within that period.

A great deal of research could be explored for this particular topic, however, any

promising results yielded by such an investigation would likely be a significantly

impactful contribution to the literature. A novel property price index model which is

fully automated, is rapidly-computing, operates on frugal data and additionally has

the ability to forecast future housing market moves with a high degree of accuracy

would likely be considered state-of-the-art, given the rarity of such models available

in practice today.

Applying the methodology for the use-case of valuation

A further potential adaptation of the model which could be considered is to employ

the same core concept to property valuation. While this is a related field to house

price index modelling, they diverge in several ways. Firstly, a house price index has

the luxury of averaging across a great deal of samples in the dataset when producing

the final result; cancelling out noise and errors. On the other hand, a valuation

pertains to one particular property and thus must be considerably more accurate.

The problem of assigning individual valuations to property remains a painfully
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manual process today; mortgage lenders frequently send a human surveyor to prop-

erties to assess the value which, aside from the resources required, is by no means

an exact science. In other cases, lenders typically accept a valuation from the buyer

and may cross reference against other recently sold properties in the vicinity to de-

cide whether their valuation is reasonable. Ironically, this is effectively employing

the GeoPrice index’s core methodology to a single case, manually.

It would be interesting to explore whether the GeoPrice spatial matching process,

potentially in combination with some attribute data, could be used to derive accu-

rate valuations for properties in an automated fashion. Such a system which could

produce property valuations automatically within seconds would be of great interest

to both lenders and property listing platforms, the former of whom take great risk in

conducting their appraisals in such an inexact manner, particularly considering the

large size of a typical mortgage.

Another prospective use-case of such a system would be in property taxation.

In many nations, property taxes have been proposed as a method to prevent the

hoarding of housing. Given that demand far outstrips supply in most nations at

present, governments are under pressure to introduce new legislation which disin-

centivises holding large amounts of property as a speculative asset. At present, this

is extremely challenging to do, as the systems to automatically obtain up-to-date val-

uations on properties are simply non-existent and thus, the administrative burden

of attempting to set tax rates is too high a bar to clear.

7.5 Concluding remarks

The examples outlined above are a small selection of the future theoretical research

projects which could be undertaken using the GeoPrice methodology as a founda-

tion for further investigation. These complement the more practical applications

presented earlier in this chapter, which could be launched based on the current state

of the model’s functionality. Future research will hopefully build on this core facet

of spatial auto-correlation further, in order to improve the transparency, timeliness

and performance of house price modelling and make these models more accessible

and widely available for market stakeholders.
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Appendix A

GeoPrice: Building a property price

index for the UK market (Further

Analysis)

A.1 Price Paid Data: Characteristics

Figure A.1 shows the price distribution of the Price Paid Dataset as a whole, over

our sample period, while Figure A.2 demonstrates the difference in distribution of

transacted prices for new builds and existing properties.

Figure A.3 demonstrates the distribution of each property type within the regions

studied, across our sample period.
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FIGURE A.1: Price Paid Data: Price Distribution from 01-2012 to 09-
2022 (inclusive)
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FIGURE A.2: Price Paid Data: Price Distribution from 01-2012 to 09-
2022 (inclusive), broken down by build type
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FIGURE A.3: Price Paid Data: Proportion of sales by property type in
each region
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FIGURE A.4: Price Paid Data: Price Seasonality from 01-2012 to 09-
2022 (inclusive)

A.2 Price Paid Data: Seasonality

Figure A.4 demonstrates the seasonality of transacted prices in the Price Paid Data.

There appears to be a relatively robust seasonal pattern detected, with prices peak-

ing in the late summer and dropping off early in the new year. The residual is highly

stable aside from during the extreme volatility period in 2021, indicating a good de-

composition of the mean price into trend and seasonal components.
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FIGURE A.5: Price Paid Data: Mean/Median Price from 01-2012 to
09-2022 (inclusive), broken down by property type

A.3 Price Paid Data: Mean and Median Indices

Figure A.5 demonstrates the mean and median price index per distinct property

type, while Figure A.6 shows a separate index for new builds and existing proper-

ties.
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FIGURE A.6: Price Paid Data: Mean/Median Price from 01-2012 to
09-2022 (inclusive), broken down by build type
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A.4 GeoPrice with geospatial stratification

A.4.1 Regional sub-indices

A.4.1.1 Monthly Changes

Figure A.7 demonstrates the month on month percentage changes for the GeoPrice

index versus the ONS house price index, on a region-by-region basis.
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(A) East Midlands Index (B) East Of England Index

(C) London Index (D) North East Index

(E) North West Index (F) South East Index

FIGURE A.7: ONS vs GeoPrice House Price Monthly Change from
01-2012 to 09-2022, per region
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(G) South West Index (H) Wales Index

(I) West Midlands Index (J) Yorkshire and the Humber Index

FIGURE A.7: ONS vs GeoPrice House Price Monthly Change from
01-2012 to 09-2022, per region (continued)
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A.5 GeoPrice with additional property type stratification

A.5.1 Regional sub-indices

A.5.1.1 Index Levels

Figure A.8 illustrates the region-by-region breakdown of our GeoPrice house price

index versus the ONS hedonic regression index, where the property type has been

encoded as an additional stratification attribute in the geohash+ for each sale trans-

action.

A.5.1.2 Monthly Changes

Figure A.9 shows the region-by-region breakdown of the monthly changes of the

GeoPrice house price index versus the ONS hedonic regression index, where the

property type has been encoded as an additional stratification attribute in the geohash+

for each sale transaction.

A.5.1.3 Smoothness Metrics

Table A.1 demonstrates the smoothness metrics of the regional sub-indices of both

the GeoPrice and ONS house price indices, where the property type has been en-

coded as an additional stratficiation attribute in the geohash+ for each sale transac-

tion.
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(A) East Midlands Index (B) East Of England Index

(C) London Index (D) North East Index

(E) North West Index (F) South East Index

FIGURE A.8: ONS vs GeoPrice House Price Index (w/property type)
from 01-2012 to 09-2022, per region
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(G) South West Index (H) Wales Index

(I) West Midlands Index (J) Yorkshire and the Humber Index

FIGURE A.8: ONS vs GeoPrice House Price Index (w/property type)
from 01-2012 to 09-2022, per region (continued)
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(A) East Midlands Index (B) East Of England Index

(C) London Index (D) North East Index

(E) North West Index (F) South East Index

FIGURE A.9: ONS vs GeoPrice House Price Monthly Change
(w/property type) from 01-2012 to 09-2022, per region
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(G) South West Index (H) Wales Index

(I) West Midlands Index (J) Yorkshire and the Humber Index

FIGURE A.9: ONS vs GeoPrice House Price Monthly Change
(w/property type) from 01-2012 to 09-2022, per region (continued)
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TABLE A.1: Smoothness Metrics for ONS and GeoPrice (w/property
type) Indices, in each region [UK]

Model Meana Mediana St. Devb Minb Maxb St. Dev
of Diffs

MSM

East Midlands /
GeoPrice

0.51 0.47 0.44 -0.65 1.6 0.68 2.09

East Midlands /
ONS HPI

0.85 0.7 1.12 -5.67 6.16 1.84 14.11

East Of England
/ GeoPrice 0.55 0.46 0.52 -1.86 2.41 0.78 2.66

East Of England
/ ONS HPI 0.82 0.59 1.02 -4.32 4.87 1.61 11.25

London /
GeoPrice

0.54 0.49 0.49 -0.61 1.83 0.58 1.43

London / ONS
HPI

0.99 0.83 1.16 -1.75 4.03 1.72 12.55

North East /
GeoPrice

0.49 0.36 0.54 -1.03 2.01 0.89 3.51

North East /
ONS HPI

1.45 1.17 2.1 -7.32 8.87 3.48 53.76

North West /
GeoPrice

0.48 0.45 0.46 -0.88 2.66 0.74 2.44

North West /
ONS HPI 1.12 0.88 1.65 -8.1 8.32 2.77 32.92

South East /
GeoPrice

0.5 0.43 0.47 -1.68 2.22 0.65 1.95

South East / ONS
HPI

0.8 0.66 0.97 -3.99 4.79 1.48 9.26

South West /
GeoPrice

0.51 0.44 0.47 -1.1 2.26 0.71 2.12

South West /
ONS HPI

0.96 0.65 1.46 -8.24 7.8 2.46 28.79

Wales / GeoPrice 0.49 0.44 0.49 -0.63 1.98 0.78 2.54

Wales / ONS HPI 1.15 1.01 1.41 -4.67 5.69 2.26 20.7

West Midlands /
GeoPrice

0.53 0.47 0.5 -1.28 2.43 0.8 2.72

West Midlands /
ONS HPI

0.94 0.8 1.27 -6.16 6.57 2.15 18.25

Yorkshire Hc/
GeoPrice

0.47 0.44 0.45 -0.72 2.07 0.69 2.11

Yorkshire Hc/
ONS HPI 1.14 0.81 1.64 -8.07 7.69 2.74 33.05

a Values quoted are the mean of the absolute monthly percentage changes of each index
b Values are reported in percent
c Yorkshire H refers to the Yorkshire and the Humber region
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ABSTRACT

In this article, we describe a house price index algorithm which
requires only sparse and frugal data, namely house location, date
of sale and sale price, as input data. We aim to show that our
algorithm is as effective for predicting price changes asmore complex
models which require detailed or extensive data. Although various
methods are employed for determining house price indexes, such
as hedonic regression, mix-adjusted median or repeat sales, there is
no consensus on how to determine the robustness of an index, and
hence no agreement onwhichmethod is the best to use.We formalise
an objective criterion for what a house price index should achieve,
namely consistency between time periods. Using this criterion, we
investigate whether it is possible to achieve strong robustness using
frugal data covering only 66months of transactions on the Irish
propertymarket.Wedevelopa simplemulti-stagealgorithmandshow
that it is more robust than the complex hedonic regression model
currently employed by the Irish Central Statistics Office.
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1. Introduction

House price indexes play a critical role in top-level decision-making, and have impacts
on investment decisions by both the private and public sectors (Plakandaras, Gupta,
Gogas, & Papadimitriou, 2015). House owners, bankers and policy-makers all pay close
attention to relative price levels and the magnitude and direction of price changes in both
regional and localmarkets (Costello &Watkins, 2002; Leishman, 2009;Munro, 1987). This
information can be useful in forecasting inflation, economic output and real GDP growth
(Case, Quigley, & Shiller, 2005; Forni, Hallin, Lippi, & Reichlin, 2003; Gupta & Hartley,
2013; Gupta & Kabundi, 2010; Stock &Watson, 2004)

House price indexes are also important for academic research aimed at understanding
the dynamics of the market, and for investigating issues of societal relevance, such as
housing affordability and price bubbles (Bourassa, Hoesli, & Sun, 2006). The study of
index robustness is particularly relevant in the contemporary financial environment, given
the recent price volatility in international housing markets and the prominence of housing
market debt instruments as a primary cause of the global financial crisis (Goh, Costello, &
Schwann, 2012). The possibility of hedging against housing risk (e.g. Englund, Hwang, &
Quigley, 2002; Shiller, 2003) depends on access to extremely accurate price indexes.

CONTACT Phil Maguire pmaguire@cs.nuim.ie
© 2016 Informa UK Limited, trading as Taylor & Francis Group
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Most house prices indexes require either extensive data which stretch back decades or
else detailed data, which describe numerous features of each home. Our aim in this article
is to develop an algorithm which requires only a few months of transactions (sparse data)
and the barest of details (frugal data).We hope to show that such algorithms canmatch the
robustness of more complex data-intensive methods. If feasible, such techniques would
have numerous advantages over the systems currently in use. For a start, they would be
less labour-intensive, relying on information scraped automatically from webpages, with
no need for the input of expert statisticians. Second, they would bemore responsive, giving
consistent up-to-date information about house price changes. At the moment, statistics
offices, such as the Irish Central Statistics Office (CSO), release information only once
a month, with nearly a month of delay. An automatic algorithm could recompute the
changes every few minutes, using not only sale prices, but also asking prices gleaned from
online property websites, thus capturing immediate shifts in market sentiment.

2. House price index approaches

We begin by providing an overview of existing strategies for determining house price
indexes. Given the importance of house price movements and the voluminous associated
literature (see Hansen, 2009, for an overview), it is perhaps surprising that no consensus
exists on how an index should be constructed.When comparing house price indexmodels,
researchers are faced with numerous data and methodological issues which stand in the
way of constructing an accurate index (Goh et al., 2012). First of all, housing markets are
highly illiquid. Due to substantial search, transaction and relocation costs, only a fraction
of the total housing stock is sold each year. The 2008 financial crisis and subsequent Irish
property crash led to a much lower number of transactions than usual for this period (see
Lyons, 2015). For example, according to the stamp duty returns maintained by the Irish
Property Services Regulatory Authority (PSRA), in the period January 2010–July 2015 less
than 150,000 properties were transacted, out of a total of 1.65million (9.1%), implying that
the average house is transacted once every 60 years.

Another problem is that the properties being sold have varying characteristics which are
affected by geographical and temporal factors, introducing potential bias into the sample
selection. Houses are also subject to quality change over time, which can also vary by area.

To overcome the problem of small sample size, data are often pooled arbitrarily into
broad representations of time and geography. The assumption here is that the pooled
sample will produce price indexes that are statistically equivalent to those that would
have been obtained from the smaller constituent subsamples. This must be done carefully,
as excessive pooling of data for house price index construction can lead to biased price
index estimates (Englund et al., 2002; Goh et al., 2012). Developing and maintaining
an unbiased index according to best international practice is a complex and demanding
process (see deHaan&Diewert, 2011). In the following sections,wedescribe the threemain
techniques used for deriving house price indices, namely hedonic regression, repeated sales
and adjusted-mix median.
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2.1. Hedonic regression

The hedonic modelling method is used to construct house price indexes in Ireland and
in the UK. The central idea, originally introduced by Kain and Quigley (1970), is that
of determining the quality of a given house by decomposing it into its constituent char-
acteristics, then estimating the contributory value of each characteristic (e.g. number of
bedrooms, distance to city centre, plot size, etc.). The results of the regression indicate the
changes in property values for a unit change in each characteristic, assuming that all the
other characteristics are held constant.

The advantage of the hedonic approach is that physical attributes such as location, age
and size are introduced into the regressionmodel, and their net contribution to themarket
price is estimated (Bourassa, Hoesli, & Sun, 2006). Although hedonic regression is found in
the literature to provide a good fit with the data (e.g. Goh et al., 2012; Shimizu, Nishimura,
& Watanabe, 2010; Wallace & Meese, 1997), the disadvantage is that it requires a lot of
data, which are not always available, or can be impractical to obtain. Many of the attributes
that can be expected to influence the price of a property, particularly neighbourhood and
location variables, are often not available, and other relevant attributes may go undetected
(Case, Pollakowski, &Wachter, 1991). Hedonic models are relatively complex to interpret,
and require a high level of statistical knowledge and expertise (Bourassa et al., 2006). The
fact that there are many free parameters available to be tuned also increases the risk of
overfitting (see Heene, Coyne, Francis, Maguire, & Maguire, 2014).

2.2. Repeat-sales

The repeat-sales method is another popular house price index technique that controls
for the heterogeneity of properties. The method, originally developed by Bailey, Muth,
and Nourse (1963), and further enhanced by Case & Shiller (1987), holds house quality
constant by measuring the same asset in two different periods. As a result, there is no need
to include the property attributes in the model; transaction prices and property address
are sufficient. This index methodology has evolved into the most widely used and reported
US house price index.

One drawback of this approach is that, because repeat-sales models consider only
dwellings with multiple transactions, they require large amounts of data stretching back
in time (de Vries, de Haan, van der Wal, & Marin, 2009). Only a fraction of transactions
at any given time period will have matching historical sales, and this sample may not be
representative of the market as a whole, leading to aggregation biases (Dombrow, Knight,
& Sirmans, 1997).

For example, frequently transacted houses may have some idiosyncratic characteristics
that make the owner eager to sell (Sommervoll, 2006). In contrast, frequent transactions
might equally indicate that a property has some characteristics that make it easy to resell.
Further complicating matters, an analysis carried by Case, Pollakowski, and Wachter
(1997) suggests that frequently resold houses tend to appreciate more than those that
are less transacted. Short holding periods may indicate significant renovation activity has
occurred between sales, therefore violating the assumption of constant quality. Costello
(2000) demonstrates that the accuracy of repeat-sales indexes improves significantly when
long holding periods (more than one year) are used in estimation of repeat-sales indexes.
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There are a number of other weaknesses associated with repeat-sales indexes. One of
the most serious is revision, which means that past values of the index are perturbed and
revised by present-day information (Baroni, Barthélémy, & Mokrane, 2005). Additional
sales reverberate on the index values because new sales pairings provide information on
price movements which go beyond the information originally available.

2.3. Central-price tendencymethods

The idea of central-price tendency models is that, by aggregating large amounts of data,
random noise will naturally tend to cancel out following the law of large numbers, leaving
a reliable signal. This approach is far less data-intensive than either hedonic regression
or repeat-sales, requiring neither detailed information about properties, nor extensive
historical data-sets. One feature that central-price tendency methods do assume is that the
data being aggregated are drawn from the same distribution, and cannot be subdivided
into different distributions which might be differentially affected over time.

In the US, the index published by the National Association of Realtors is based on
median prices (Bourassa et al., 2006). Although such indexes are simple to construct, there
is little control for robustness (Case & Shiller, 1987).

Central price tendencymodels are often criticised as theydonot control for the attributes
of houses sold either directly in estimation, or indirectly by sample selection (Goh et al.,
2012). This can result in inaccurate indexes, susceptible to variations in the mix of houses
sold from period to period in a particular region.

Richards and Prasad (2008) argue that stratifying the full sample by suburb, and then
taking the simple average of the median sale prices across each suburb, yields price
index estimates that are not significantly different from hedonic regression. Given the
effectiveness of this strategy for stratification, Richards and Prasad (2008) suggest that
the marginal benefits of the more complex and data-intensive methods, such as hedonic
regression and repeat-sales, are not justified.

2.4. Comparison of approaches

Goh et al. (2012) directly compared these three different strategies and concluded that
hedonic regression models give the best performance. Two variants of the hedonic model
were used, namely the standard explicitly intertemporal model and the ‘imputed’ cross-
sectional model. The latter was found to outperform all other index models, matching the
findings of previous studies (e.g. Diewert & Hendriks, 2011). Schwann (1998) observed
that price indexes constructed using standard hedonic regression are the most robust to
finer levels of temporal and geographic disaggregation. He also proposed a time series
model employing a stochastic structure for hedonic parameter evolution, which achieves
further stabilisation in sparse markets.

The mix-adjusted median was the next best performer in Goh et al.’s (2012) study,
with repeat-sales faring the worst, which, given its prominence in the evaluation of the US
housing market, is surprising. Shimizu et al. (2010) found that the repeat-sales approach
measures market turning points later than the hedonic approach, the former being more
than two years delayed in the case of the Tokyo housingmarket.Wallace andMeese (1997)
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also concluded that repeat-sales and other hybrid methods produce less reliable estimates
of price movements than the hedonic approach.

Goh et al.’s (2012) results reject the null hypothesis of equality between mean hedonic
characteristics for the samples of single-sale and repeat-sale dwellings, revealing that
repeat-sales are not representative of the market in general. Houses sold more than once
are significantly smaller, have fewer amenities and are of poorer quality, supporting the
observation that repeat-sale dwellings are generally sold at a discount to non-repeat-sales.

Goh et al. (2012) reported that, although the performance of the mix-adjusted median
was merely ‘modest’, the method deserves some credit because of its simplicity and
transparency. Because it assumes that all houses in a given location stratum are drawn
from the same distribution of hedonic quantities, there is no need to identify hedonic
attributes of individual houses, collect large amounts of data or carry out any esoteric
statistical procedures. Goh et al.’s (2012) findings support Richards and Prasad’s (2008)
claim that, in absence of information on hedonic attributes, the mix-adjusted median is
likely to be the best alternative. Our aim is to investigate whether the central tendency
approach can be enhanced to the point where it can compete with, or even outperform,
hedonic regression, as applied to the Irish housing market.

3. Case study: the Irish residential property price index

The Irish propertymarket is an example of a relatively sparse data-set. For the period 2010–
2015, there were only, on average, 2,200 transactions per month nationwide, motivating
the development of techniques for achieving high levels of robustness from small amounts
of data.

Currently, property price changes in Ireland are reported only monthly, more than
three weeks into the new month, and only broken down for two subregions, Dublin, and
outside Dublin, for apartments and for all properties. The Residential Property Price Index
(RPPI) is compiled by the CSO, using a hedonic regression 12-month rolling time dummy
model (O’Hanlon, 2011). In addition, themonthly results that are released to the public are
based on a rolling average of the previous three months, thus enhancing the smoothness
of the time series. However, the disadvantage of such artificial smoothing is that the RPPI
loses responsiveness to changing market conditions, and can appear misleadingly precise
to observers who are not aware of the use of rolling average.

Currently, there are two significant sources of data available for compiling a house price
index in Ireland. The first is mortgage returns, which are filed by all lending agencies for
properties whose purchase was partly funded by a mortgage. Irish mortgage lenders are
required, under Section 13 of the Housing Act 2002, to submit monthly mortgage returns
to the Department of Environment, Heritage and Local Government containing data on
both mortgage approvals (occurring where a formal letter of mortgage offer has issued)
and mortgage drawdowns (O’Hanlon, 2011).

The advantage of this information source is that it carries detailed information about the
property, such as the number of bedrooms, the floor area, year of build, plot size, etc. The
disadvantage is that not all properties are purchased with a mortgage, hence the sample
is unrepresentative. As property prices rise, more people are in a position to trade down
to cheaper properties without a mortgage. In addition, lending restrictions following the
property crash have led to an increase in cash transactions: from 2010 to 2014, mortgages
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on house purchases fell from 88% to only 50% (Dalton &Moore, 2014). Furthermore, 68%
ofmortgage returns contain errors, such as amissing year of construction,missing number
of rooms or missing plot size. Missing, erroneous and implausible values are imputed by
the CSO (O’Hanlon, 2011).

The fact that half of transactions aremissing from themortgage records is not necessarily
a problem. If 50% of data is randomly removed from a data-set, it has at most a mild effect
on the robustness of any index computed from it, amplifying the standard error by

√
2.

What matters more is when the missing data are not a random sample, but have some
relationship with the rest of the data, which is not taken into account by the model.

For the mortgage data, it is likely that the missing 50% is not a representative sample.
Cheaper investment properties aremore likely to be transacted in cash,without amortgage.
By contrast, the purchase of larger family homes is more likely to require a mortgage. For
this reason, even if the CSO’s hedonic regression achieves high goodness-of-fit statistics,
the performance is potentially taking place within a biased sample,meaning that goodness-
of-fit is not a reliable measure of robustness.

A second source of available information is stampduty returns,maintainedby thePSRA.
This publicly available online database reports the date of sale, sale price and address of
every property sold in Ireland since 1 January 2010, with a typical latency of around
10 days. The disadvantage of this information source is that it includes no information on
the property. Even the addresses can be unreliable, as Ireland has only recently introduced
a postal code system,which is yet to be adopted by the PSRA.Although the largemajority of
returns are lodged immediately, some are delayedbyup to 3months before being submitted
to the National Stamp Duty Office. A final disadvantage is that as well as including market
sale transactions, the records also include a small proportion of non-sale transactions (e.g.
properties that are inherited), which could potentially bias a house price index because the
values involved are much lower.

In the case of stamp duty returns which are delayed, it seems reasonable that the subset
of records which get delayed is a random selection: the type and location of property
purchased should have no predictable relationship with the issue of whether the associated
stamp duty is lodged promptly or not. As regards the non-market transactions, if these
occur randomly through time periods and geographic locations, then this noise should
tend to cancel out for large data-sets using a central-tendency approach.

According to O’Hanlon (2011), the failure of stamp duty returns to collect details on the
characteristics of properties rules out the possibility of carrying out an appropriate level
of mix-adjustment. He concludes that the Property Price Register can only be of benefit
to users with detailed knowledge of the characteristics of specific properties (such as local
inhabitants, local estate agents).

In this article, we investigate the hypothesis that a frugal data-set recording only address,
date of sale and sale price is sufficient for deriving an index of equivalent robustness to the
RPPI currently produced by the CSO. Addresses can, with high reliability, be converted
to GPS locations through freely available mapping systems, such as Google Maps. This
geographic positioning should permitmix-adjustment and stratification using appropriate
central-tendency strategies.

Heene et al. (2014) have argued that simple models with fewer parameters are better
suited to modelling complex phenomena, because they minimise the risk of arbitrary
overfitting. If an automated frugal data model can match the performance of the CSO’s
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hedonic regression it would have many advantages, requiring no labour or expense to
maintain, and being available with 10 days latency, rather than 3 or 4 weeks.

But first we need to set the rules by which the competition will be decided: we must
define index robustness.

4. Measuring robustness

Despite being of critical importance for research in this area, the issue of robustness has
received little attention (Goh et al., 2012).

What does a good index look like? According to Chandler and Disney (2014), it is
surprisingly hard to identify what exactly house price indexes are intended to measure.
Even the language used by the organisations compiling the indexes is vague. For example,
the UK’s Office for National Statistics (ONS) states that ‘the aim of the ONS House Price
Index is to measure the change in the average house price for owner-occupied properties
in the UK’. But what does ‘average’ mean? This ambiguity creates difficulties in assessing
the relative accuracy and robustness of different index models.

The ‘true’ house price trend is unobservable, since identifying ‘true’ house prices would
require measurement of the total stock of housing in the local market (Goh et al., 2012).
Wallace and Meese (1997) addressed the problem by assuming that the ‘true’ index can be
proxied by the median house price, though Goh et al. (2012) argue that this is contrary to
a large body of literature which argues against the application of the median (e.g. Case &
Shiller, 1987; Hansen, 2009).

Case and Szymanoski (1995) and Richards and Prasad (2008) developed methods
for comparing various models by directly comparing goodness-of-fit statistics. However,
Sommervoll (2006) argues that, due to the risk of overfitting, goodness-of-fit statistics can
be misleading, especially where indexes are estimated at high levels of disaggregation or
for sparse data. Serious mis-measurements may occur, even in cases where the statistical
diagnostic tools likeR2, t-values and standard deviations indicate good explanatory power.

The underlying problem with goodness-of-fit is that it fails to account for complexity:
models should somehow be penalised for the number of degrees of freedom they exploit
to achieve a certain level of fit. In the light of this, model performance is better evaluated
through forecast error. One way to test forecast error is to randomly divide a data-set of
property transactions into two halves: if the index is robust, both halves should yield the
same index value.

Following this idea, Goh et al. (2012) adopt a within-sample cross-validation strategy.
They randomly select a 75% subset of transactions and evaluate how well the index
computed on this selection predicts the sale price of properties in the other 25% subset.
The closer the match, the more robust the index.

A problem with Goh et al.’s (2012) test for robustness is that a single iteration of cross-
validation is not reliable. For example, two random halves might by chance produce close
agreement, where nearly every other partition would have resulted in diverging values.
Specifically, the values returned from a single implementation of the cross-validation
technique are themselves drawn from a distribution, with an associatedmean and standard
deviation. The process must be repeated many times to identify a reliable sampled mean.
As the number of partitions n increases, the reliability of the robustness value increases
with order

√
n.
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While Goh et al.’s (2012) test can provide a weak heuristic for assessing robustness, it
cannot provide the basis for a definition, since it is easy to construct an index which is
not robust, yet does well at the test. For example, we could hardcode an algorithm that
outputs 100 if the number of transactions in the sample is even, and 99.999 if the number
is odd. The agreement will always be very high for any random split, and this agreement
can be boosted to any arbitrary level by adjusting the hardcoded values. And yet the index
is uninformative.

Wepropose aminor refinement ofGoh et al.’s (2012) test, which can serve as a definition
for robustness. Given two competing indexes, the more robust index is the one which,
when run repeatedly on two random partitions of a given data-set, produces a pair of
values which, on average, are closer to each other than those produced by the other index.
We also restrict the set of functions to those which vary monotonically with the change in
any sale price in the set (i.e. if any sale price is altered, the function output must either stay
the same or move in the same direction). To formalise this mathematically, a valid index
function is a computable function i : Rn → R that is monotonic, i.e. for all ε > 0 and
for all x ∈ Rn, it holds that i(x1 + ε, x2 + ε, . . . , xn + ε) > i(x1, . . . , xn). This is close to
Goh et al.’s idea of cross-validation prediction, except that it knocks out the pathological
examples, as highlighted above, where an index ignores the input, and always produces the
same hardcoded output.

In practice, the most robust index is the smoothest index. Our argument is as follows:
given an index, some component of the monthly price fluctuation is due to random
sampling error, and the remaining component is due to genuine shifts inmarket sentiment.
Wewant to eliminate asmuch of the background noise as possible, thus allowing us to tune
in to the signal of the market itself. Comparing discrepancies between successive months
is similar to Goh et al.’s (2012) idea of comparing different samples drawn from the same
month: the goal is to develop an index with the smallest discrepancies.

Changes in market sentiment have a lower frequency than that of background noise:
for example, we expect the market to move in cycles, with prices drifting consistently
upwards formonths, then drifting consistently downwards during a recession (see Agnello
& Schuknecht, 2011). In contrast, sampling error stemming from the construction of the
index will jump randomly from month to month. While changes in house prices have
momentum, sampling error does not (thus explaining why the CSO chooses to publish
three-month rolling averages). Because of this differential in frequencies, smoothness acts
as an indicator of noise filtering. The smoother the trending of the index (i.e. the greater
the extent to which changes in successive months agree with each other), the smaller the
noise component, and the higher the reliability of the remaining signal. Accordingly, we
will evaluate index robustness in terms of the average absolute monthly change in market
momentum; a steadily rising index would have an average change of zero.

According to Wang and Zorn (1997), an index should be defined by its use in practice,
rather than by the more complex, higher level concerns of statistics and models. They find
that much of the debate over index methodology can be distilled to implicit and largely
unrecognised disagreement as to the intended application.

Taking Wang and Zorn’s recommendation into account, we can express the above
mathematical definition in terms of a clear practical application: the most robust index is
the portfolio that investors would naturally seek to hold if house price indexes were openly
traded in a prediction market (as recommended by Englund et al., 2002 and Shiller, 2003).
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Investors seek to hold a portfolio which is as diversified as possible, thus minimising
risk, while maintaining return (see Maguire et al., 2014). For example, a diversified index,
such as the S&P 500 index for the US stock market, should have a better risk to reward
profile than any of its constituents, or indeed, any subset of its constituents (c.f. Maguire
et al., in press). This is why investors seek to hold the S&P 500 index, and why it provides
the gold standard for financial models.

Choueifaty, Froidure, andReynier (2013) propose that portfolio diversification is related
to volatility, and can be evaluated by the extent to which independent sources of infor-
mation combine to smooth the overall volatility of a portfolio. For example, if numerous
house price indexes published by different organisations were freely available to trade,
investors would naturally hold the portfolio which minimises overall volatility, thus in
effect creating a more diversified super-index with a better risk to reward profile than any
of its individual constituents. In sum, the optimal house price index, the one that would
be most traded and hence most quoted in the media, is the smoothest house price index.

In the following section, we describe an algorithm developed to meet this objective
standard for index robustness, which functions on sparse (no long-term historical records)
and frugal data (only location, date and price).

5. Algorithm

Our algorithm involves several stages of processing the online data provided by the PRSA.
First, we collected all the available data, stretching back from January 2010 to the end of
June 2015. Google Maps API provided the best option for geocoding the addresses into
GPS co-ordinates. The service has a rate limit of 2,500 requests per day, so the process was
carried out automatically over a period of 2 months.

Approximately 90% of addresses were successfully converted, giving us the GPS co-
ordinates, date of sale and sale prices for 147,635 unique transactions. These transactions
were analysed in monthly sets, with January 2010 providing the base index of 100. There
were considerable differences in the number of transactions per month, from a low of 677
in January 2011, to a high of 3,894 in December 2014.

The first indexwe calculatedwas based simply on the raw average property price for each
month. The time series of price changes for this index had an average monthly change in
momentumof 12.40%. Subsequently, we computed the rawmonthlymedian. Themonthly
shift in momentum of this index was lower than that of the raw average, at 8.42%.

5.1. Stage 1: Filtering

The stamp duty return data show that whole housing estates and blocks of apartments are
sold in bulk at the same time, greatly distorting the average price in a given month. The
next stage of the algorithm was to remove these distortions.

Making use of the geographic co-ordinates, we eliminated any property transaction
for which there was another transaction within 100m in the same period of 48 h. This
eliminated all bulk sales, with the number of valid transactions being reduced by 14.4% to
126,444. The average monthly change in momentum of the median of this filtered subset
of transactions was lower again, at 6.37%.
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5.2. Stage 2: Mix-adjustment through proximity voting

A potential problem with median-based approaches is that fluctuations in the relative
number of properties sold in unrepresentative regions can have a dramatic effect on the
median, even when there is no increase in price. For example, if twice as many properties
in Dublin are sold as usual, a region in which the value of most properties is higher than
the national median, these sales will act to drag the median upwards, despite no actual
change in price.

Richards and Prasad (2008), for example, found that, based on a database of 3.5 million
transactions in the six largest Australian cities, compositional shifts between higher and
lower priced parts of cities led to much volatility in unadjusted median prices. Similarly,
realtors in the US report that median house prices rise in the summer: most families with
children, who typically buy more expensive homes, time their purchase based on school
year considerations (Richards & Prasad, 2008).

To enhance robustness, it is important to control for the mix of properties which are
sold in any particular month. What we want is to identify a subset of the given sample
which is more representative of the houses in the market as a whole. Specifically, we want
the analysis set to be as spatially autocorrelated as possible with the set of historical records,
featuring the same relative distributions of transactions in different regions of the country,
and the same types of properties within those regions. Spatial autocorrelation arises in
housing data due to the proximity of units that are the same or among contiguous units
(Hamid, 2001). In general, properties in close proximity tend to have similar structural
characteristics, such as size of living area, dwelling age and design features (Ismail, 2006).
The similar quality of proximate properties is a natural consequence of the fact that they
tend to be developed at the same time (Gillen,Thibodeau, & Wachter, 2001). Residents in
the same neighbourhood may also follow similar commuting patterns, and share the same
neighbourhood amenities such as public schools and shopping centres (Ismail, 2006).

In light of this, we developed a system for enhancing autocorrelation based on geo-
graphical proximity to a historical target set of transactions. Specifically, we eliminate the
10% least representative properties from the sample, using a single transferrable voting
system. The system operates as follows.

Let N be the entire set of filtered property transactions from Stage 1. Let n be the set
of properties transacted in the current month. Each property in N votes for the nearest
property to it in the set n.

If any property in n exceeds the threshold for election of |N |
0.9|n| votes, then it is elected

from the set; any excess votes are redistributed to its nearest neighbour. Subsequently, the
property with the least number of votes is eliminated and its votes are redistributed in a
similar manner. The process continues until all properties in n have either been eliminated
or elected. In the end, 90%of the properties innwill be elected. This algorithmensures there
will be roughly the same number of properties included from each geographic location.
In addition, because the same kinds of houses tend to be located beside each other (e.g.
detached bungalows, three-bed semi-detached, apartments), the algorithm should also
ensure a representative quantity of each type of dwelling.

The average monthly change in momentum of the adjusted-filtered median index was
lower again, at 4.47%.
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5.3. Stage 3: Localised stratification

Mix-adjustment alone is not sufficient for maximising stability between months. The
reliance on a median ignores all information about the distribution below and above the
median value, effectively ignoring the shape of the distribution. If this shape varies between
months, such information is overlooked, thus passing up on an opportunity to enhance
stability. This kind of situation arises when different regions have different medians, and
the prices in these regions are diverging.

For example, the national mix-adjusted median house price at the start of 2015 was
e180,000. However, because capital cities are more expensive, a large proportion of homes
in Dublin were sold for more than this value (85%). The issue that hence arises is that any
fluctuations in house prices that are unique to Dublin will have little impact on the overall
national median.

In contrast, regions whose median price is closest to the national median will have a
disproportionate effect on influencing the national median price. These areas are con-
tributing too much information, while other areas are contributing too little. This reduces
robustness, and increases volatility between months.

Accordingly, Goh et al. (2012) take the view that disaggregation of data along geographic
lines is extremely important when constructing house price indexes. Studies from the
Australian housing market, for example, reveal the existence of marked geographical
differences in the behaviour of house prices acrossmetropolitan areas (see Costello, Fraser,
& Groenewold, 2011; Hatzvi & Otto, 2008).

One way to address this issue is through stratification. Richards and Prasad (2008)
proposed a novel stratification method and tested it on an Australian data-set. They
grouped together suburbs according to the long-term average price level of dwellings
in those regions, taking the equally weighted average of the medians for each stratum. This
measure of price growth was found to improve substantially upon an unstratified median,
and was very highly correlated with regression-based measures (see also McDonald &
Smith, 2009).

One limitation with Richards and Prasad’s (2008) stratification technique is that it
imposes arbitrary strata. The point at which a property shifts from being in one stratum to
another is completely arbitrary. There is no guarantee that the strata Prasad and Richards
selected reflect the most pertinent or delineated divisions in the market. Over time,
these strata might shift, with more houses being built in one region than another, or a
particular area being improved due to redevelopment projects. The possibility of changing
relationships between the strata is not accommodated by Richards and Prasad’s (2008)
approach.

Our simple solution is not to impose any arbitrary stratifications, but to derive a different
local base for every single property. The algorithm proceeds as follows: Two months of
transaction records are selected, a stratification-base and the currentmonth to be evaluated.
We divide each sale price in the current month by that of the closest property in the
stratification-base, giving a set of ratios. We then take the median of this set. This is the
stratified-adjusted-filtered median.

For example, consider a house that is sold in Donegal fore105K in February 2015. The
closest house to it sold in January 2015 for e120K. So we turn e105K into .875 − 1 =
−12.5%. Alternatively, consider a house that is sold in Dublin for e420K in February
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2015. The closest house to it sold in January 2015 for e360K. So we turn e420K into
1.167 − 1 = +16.7%. Now take the median of all the percentage change values.

Under this system, all areas contribute equally to the index, thus reducing volatility.
Choosing the stratification-base by default as the previous month, the average monthly
change in momentum comes out at 3.76%.

5.4. Stage 4: Multiple base-month calibration

We are not limited to using only a single month as a stratification-base: we can run the
same algorithm using different historical bases. For example, we can derive the index value
for January 2015 using December 2014 as the stratification-base, November 2014, October
2014 and so forth.

As an example, Table 1 displays the stratified-adjusted-filtered median price change for
January 2015 using the six preceding months as stratification-bases.

We recomputed the index by calculatingmonthly change using every available historical
stratification base and averaging them. Usingmultiple base-month calibration, the average
absolute monthly change in momentum of the stratified-adjusted-filtered median index
was lower again, at 2.83%.

Table 2 displays descriptive statistics for the time series of price changes from January
2010 to July 2015 that results following the various stages of the algorithm, with the RPPI
for comparison. Note that the mean and median are based on absolute monthly change,
while ‘smooth’ refers to the average absolute monthly change in momentum.

5.5. Comparisonwith CSO index

Our frugal index achieved a ‘smoothness’ of 2.83%, which is a slightly lower level of
volatility than the CSO’s RPPI index, which had a ‘smoothness’ of 3.35% for the same
period. For example, the maximum monthly change between any consecutive months for
our frugal index was –6.7% for December 2012–January 2013, while the largest jump for
the RPPI was a jump of +8.1% between November and December 2012. The correlation
between the monthly changes of the two indexes was only r = .43, suggesting that they
contribute slightly different sources of information.

Quigley (1995) found that hybrid models which combine information from repeat-
sales and hedonic regression can be evenmore robust than either method in isolation. Our
findings support this idea: when the two indexes are optimally weighted to minimise the
smoothness value of the resulting composite index (56.1% for the frugal index, 43.9% for
the RPPI), the resulting monthly change in momentum drops to only 2.51%. For the sake
of comparison, the average monthly change in momentum of the RPPI’s 3-month rolling
average is .76%, while that of the 12-month rolling average is .25%.

Figure 1 plots the two time series, frugal and RPPI, plus their minimised volatility
composition. Although our frugal index is more robust than the RPPI produced by the

Table 1. Price change between Dec 2014 and Jan 2015 using different stratification-base months.

Jul 14 Aug 14 Sep 14 Oct 14 Nov 14 Dec 14

Change Jan 15 +5.7% +3.9% +3.8% +2.7% +2.2% +6.0%
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Table 2. Descriptive statistics for price change index produced at various stages.

Mean (%) Median (%) Max(%) Min (%) StDev (%) Smooth (%)

Raw average 7.01 5.74 +31.1 −17.9 9.23 12.40
Rawmedian 5.06 4.07 +23.8 −15.2 6.79 8.42
Stage 1 3.85 3.23 +11.1 −15.6 4.81 6.37
Stage 2 2.58 2.70 +9.19 −7.38 3.31 4.47
Stage 3 2.72 2.22 +7.33 −8.38 3.38 3.76
Stage 4 2.05 1.64 +5.41 −6.67 2.55 2.83
RPPI 2.16 1.61 +8.06 −5.50 2.73 3.35
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Figure 1. RPPI, frugal and composite indexes from January 2010 to June 2015.

CSO, the composite index is the most robust of all, and is what investors would choose to
hold if both indexes were available to trade in an openmarket. By splitting their investment
56–44, investors would maximise the risk to return profile of their portfolio, and create a
more robust index in the process.

6. Conclusion

Wehave shown that, contrary to the assertions ofO’Hanlon (2011), the frugal data available
from stamp duty returns, namely sale price, date of sale and address, are sufficient for
developing an index that matches and exceeds the robustness of the CSO’s RPPI, which
relies on recording a multitude of characteristics for each property.

Admittedly, our frugal index doesn’t improve greatly on the existing RPPI (though
further refinements may lead to enhanced performance). Themain advantage of our novel
algorithm is the ease and flexibility with which it can be implemented. The code can be
run on any database containing property prices and locations. It automatically controls for
outliers, noise and data-set bias. As soon as new data become available, the index can be
recomputed instantly with no overhead. It can also be applied to houses that have not been
sold yet, using their asking prices to anticipate future changes in sale price. Because the
algorithm is completely automated, it also allows users to analyse changes for any subset
of records (e.g. by province, county or any arbitrarily selected geographical area).
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The speedy measurement of changes in house prices is of great importance to policy-
makers and investors, and is also crucial to understanding the operation of the housing
market. Empirical evidence suggests that mobilising real estate derivative markets brings
about significant economic benefits in the form of rapid adjustments towards supply–
demand equilibriums in housingmarkets, lower rents on real estate and reduced amplitude
of speculative house price movements (Englund et al., 2002; Lacoviello & Ortalo-Magné,
2003; Quigley, 1999). Our algorithm could be used to support derivative markets by
providing an objective means of deciding a target outcome to be speculated on, one which
can be recomputed hour by hour.

Critics of our frugal approach may argue that, over the period of decades, carefully
calibrated statistical techniques provide a clearer picture of gradual changes in the market.
This may well be the case. However, it can also be argued that an important goal of a
house price index is to communicate immediate changes in market sentiment. According
to Wang and Zorn (1997), there is little value in pursuing a goal of statistical or modelling
accuracy if it does not lead to improved decision-making and better economic outcomes.
Short- and medium-term price fluctuations can have significant impact on government
and market participants, as reflected by frequent media headlines (e.g. are prices currently
rising? has the market bottomed out? is this the right time to buy?) We have provided a
proof of concept that algorithms using sparse and frugal data can fill this niche, providing
market participants with reliable up-to-date information on house price fluctuations.
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Abstract. A common problem appearing across the field of data sci-
ence is k -NN (k-nearest neighbours), particularly within the context of
Geographic Information Systems. In this article, we present a novel data
structure, the GeoTree, which holds a collection of geohashes (string en-
codings of GPS co-ordinates). This enables a constant O (1) time search
algorithm that returns a set of geohashes surrounding a given geohash
in the GeoTree, representing the approximate k-nearest neighbours of
that geohash. Furthermore, the GeoTree data structure retains an O (n)
memory requirement. We apply the data structure to a property price in-
dex algorithm focused on price comparison with historical neighbouring
sales, demonstrating an enhanced performance. The results show that
this data structure allows for the development of a real-time property
price index, and can be scaled to larger datasets with ease.

Keywords: GeoTree, geospatial, k -NN, data structure, price index

1 Introduction

Large scale datasets are a hot topic in computer science. Each one tends to
present its own problems and intricacies [1]. The Nearest Neighbour (NN ) prob-
lem is a well known and vital facet of many data mining research topics. This
involves finding the nearest data point to a given point under some metric which
measures the distance between data points. In the context of geospatial data,
the NN problem often emerges in the form of geographical proximity search [2].

Real world geographic data is usually represented by a pair of GPS co-
ordinates, which pinpoint any location on Earth with unlimited precision. As
a result of their structure, computing the distance between pairs of points in
order to find the nearest neighbour can be extremely slow on large datasets.

The problem often requires expansion to finding the k nearest neighbours (k -
NN), which further increases the complexity by requiring a sorting of the distance
matrix in order to extract a ranking of points by proximity. It is extremely com-
putationally expensive to compute and rank these distances on large datasets [3].
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A computationally cheap method of solving this problem would vastly improve
the scalability of proximity based algorithms [2]. We propose a data structure
which enables such cheap computation, the GeoTree, and explore its potential
when applied to a real-world geospatial task.

2 Background

2.1 Naive geospatial search

The distance between two pieces of geospatial data defined using the GPS co-
ordinate system is computed using the haversine formula [4]. If we wish to find
the closest point in a dataset to any given point in a naive fashion, we must loop
over the dataset and compute the haversine distance between each point and the
given, fixed point. This is an O (n) computation. If the distances are to be stored
for later use, this also requires O (n) memory consumption. Thus, if the closest
point to every point in the dataset must be found, this requires an additional
nested loop over the dataset, resulting in O

(
n2

)
memory and time complexity

overall (assuming the distance matrix is stored). If such a computation is applied
to a large dataset, such as the 147,635 property transactions used in the house
price index developed by [5], an O

(
n2

)
algorithm can run extremely slowly even

on powerful modern machines.

As GPS co-ordinates are multi-dimensional objects, it is difficult to prune and
cut data from the search space without performing the haversine computation.
With a considerable portion of big data being geospatial in nature, geospatial
algorithms and data structures are coming under increased research attention,
with the amount of personal location data available growing by approximately
20% year-on-year according to the McKinsey Global Institute [6]. As such, ex-
ploring alternative methods of representing GPS co-ordinates is necessary to
make algorithmic improvements.

2.2 GeoHash

A geohash is a string encoding for GPS co-ordinates, allowing co-ordinate pairs
to be represented by a single string of characters. The publicly-released encoding
method was invented by Niemeyer in 2008 [7]. The algorithm works by assigning
a geohash string to a square area on the earth, usually referred to as a bucket.
Every GPS co-ordinate which falls inside that bucket will be assigned that geo-
hash. The number of characters in a geohash is user-specified and determines the
size of the bucket. The more characters in the geohash, the smaller the bucket
becomes, and the greater precision the geohash can resolve to. While geohashes
thus do not represent points on the globe, as there is no limit to the number of
characters in a geohash, they can represent an arbitrarily small square on the
globe and thus can be reduced to an exact point for practical purposes. Figure 1
demonstrates parts of the geohash grid on a section of map.
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Fig. 1: GeoHash algorithm applied to a map

Geohashes are constructed in such a way that their string similarity signifies
something about their proximity on the globe. Take the longest sequential sub-
string of identical characters possible from two geohashes (starting at the first
character of each geohash) and call this string x. Then x itself is a geohash (ie.
a bucket) with a certain area. The longer the length of x, the smaller the area of
this bucket. Thus x gives an upper bound on the distance between the points.
We will refer to this substring as the smallest common bucket (SCB) of a pair
of geohashes. We define the length of the SCB as the length of the substring
defining it. This definition can additionally be generalised to a set of geohashes
of any size. Furthermore, we define the SCB of a single geohash g to be the set
of all geohashes in the dataset which have g as a prefix. We can immediately
assert an upper bound of 123,264m for the distance between the geohashes in
Figure 2, as per the table of upper bounds in the pygeohash package [8].

geohash 1: c1c2c3︸ ︷︷ ︸
SCB

x4 . . . xn

geohash 2: c1c2c3︸ ︷︷ ︸
SCB

y4 . . . yn

where: xi 6= yi∀i ∈ {4 . . . n}

Fig. 2: Geohash precision example
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2.3 Efficiency improvement attempts

Geohashing algorithms have, over time, improved in efficiency and have been
put to use in a wide variety of applications and research contexts [9] [10]. As
stated by [2], the efficient execution of nearest neighbour computations requires
the use of niche spatial data structures which are constructed with the proximity
of the data points being a key consideration.

The method proposed by Roussopoulos et al. [2] makes use of R-trees, a data
structure very similar in nature to the geohash [11]. They propose an efficient
algorithm for the precise NN computation of a spatial point, and extend this
to identify the exact k-nearest neighbours using a subtree traversal algorithm
which demonstrates improved efficiency over the naive search algorithm. Arya
et al. [12] further this research by introducing an approximate k -NN algorithm
with time complexity of O (kd log n) for any given value of k.

A comparison of some data structures for spatial searching and indexing
was carried out by [13], with a specific focus on comparison between the afore-
mentioned R-trees and Quadtrees, including application to large real-world GIS
datasets. The results indicate that the Quadtree is superior to the R-tree in
terms of build time due to expensive R-tree clustering. As a trade-off, the R-
tree has faster query time. Both of these trees are designed to query for a very
precise, user-defined area of geospatial data. As a result they are still quite slow
when making a very large number of queries to the tree.

Beygelzimer et al. [14] introduce another new data structure, the cover tree.
Here, each level of the tree acts as a ”cover” for the level directly beneath it,
which allows narrowing of the nearest neighbour search space to logarithmic
time in n.

Research has also been carried out in reducing the searching overhead when
the exact k -NN results are not required, and only a spatial region around each
of the nearest neighbours is desired. It is often the case that ranged neighbour
queries are performed as traditional k -NN queries repeated multiple times, which
results in a large execution time overhead [15]. This is an inefficient method,
as the lack of precision required in a ranged query can be exploited in order
to optimise the search process and increase performance and efficiency, a key
feature of the GeoTree.

Muja et al. provide a detailed overview of more recently proposed data struc-
tures such as partitioning trees, hashing based NN structures and graph based
NN structures designed to enable efficient k -NN search algorithms [16]. The
suffix-tree, a data structure which is designed to rapidly identify substrings in a
string, has also had many incarnations and variations in the literature [17]. The
GeoTree follows a somewhat similar conceptual idea and applies it to geohashes,
allowing very rapid identification of groups of geohashes with shared prefixes.

The common theme within this existing body of work is the sentiment that
methods of speeding up k -NN search, particularly upon data of a geospatial
nature, require specialised data structures designed specifically for the purpose
of proximity searching [2].

Appendix C. Publication: GeoTree: a data structure for constant time... 205



GeoTree: a data structure 5

3 GeoTree

The goal of our data structure is to allow efficient approximate ranged proximity
search over a set of geohashes. For example, given a database of house data, we
wish to retrieve a collection of houses in a small radius around each house without
having to iterate over the entire database. In more general terms, we wish to
pool all other strings in a dataset which have a maximal length SCB with respect
to any given string.

3.1 High-level description

A GeoTree is a general tree (a tree which has an arbitrary number of children
at each node) with an immutable fixed height h set by the user upon creation.
Each level of the tree represents a character in the geohash, with the exception
of level zero - the root node. For example, at level one, the tree contains a node
for every character that occurs among the first characters of each geohash in
the database. For each node in the first level, that node will contain children
corresponding to each possible character present in the second position of every
geohash string in the dataset sharing the same first character as represented by
the parent node. The same principle applies from level three to level h of the
GeoTree, using the third to hth characters of the geohash respectively.

At any node, we refer to the path to that node in the tree as the substring
of that node, and represent it by the string where the ith character corresponds
to the letter associated with the node in the path at depth i.

The general structure of a GeoTree is demonstrated in Figure 3. As can be
seen, the first level of the tree has a node for each possible letter in the alphabet.
Only characters which are actually present in the first letters of the geohashes
in our dataset will receive nodes in the constructed tree. We, however, include
all characters in this diagram for clarity. In the second level, the a node also
has a child for each possible letter. This same principle applies to the other
nodes in the tree. Formally, at the ith level, each node has a child for each of
the characters present among the (i+ 1)th position of the geohash strings which
are in the SCB of the current substring of that node. A worked example of a
constructed GeoTree follows in Figure 4.

Consider the following set of geohashes which has been created for the pur-
pose of demonstration: {gc7j98, gc7j98, gd7j98, ac7j98, gc9aaj, gc7j9d, ac7j98,
gd7jya, gc9aaj}. The GeoTree generated by the insertion of the geohashes above
with a fixed height of six would appear as seen in Figure 4.

3.2 GeoTree Data Nodes

The data attributes associated with a particular geohash are added as a child
of the leaf node of the substring corresponding to that geohash in the tree, as
shown in Figure 5. In the case where one geohash is associated with multiple
data entries, each data entry will have its own node as a child of the geohash
substring, as demonstrated in the diagram.

Appendix C. Publication: GeoTree: a data structure for constant time... 206



6 Robert Miller and Phil Maguire

ROOT
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Fig. 3: GeoTree General Structure
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Fig. 4: Sample GeoTree Structure

It is now possible to collect all data entries in the SCB of a particular geohash
substring without iterating over the entire dataset. Given a particular geohash
in the tree, we can move any number of levels up the tree from that geohash’s
leaf nodes and explore all nearby data entries by traversing the subtree given
by taking that node as the root. Thus, to compute the set of geohashes with an
SCB of length m or greater with respect to the particular geohash in question,
we need only explore the subtree at level m along the path corresponding to that
particular geohash. Despite this improvement, we wish to remove the process of
traversing the subtree altogether.

3.3 Subtree Data Caching

In order to eliminate traversal of the subtree we must cache all data entries in the
subtree at each level. To cache the subtree traversal, each non-leaf node receives
an additional child node which we will refer to as the list (ls) node. The list node
holds references to every data entry that has a leaf node within the same subtree
as the list node itself. As a result, the list node offers an instant enumeration of
every leaf node within the subtree structure in which it sits, removing the need
to traverse the subtree and collect the data at the leaf nodes. The structure of
the tree with list nodes added is demonstrated in Figure 6 (some nodes and list
nodes are omitted for the sake of brevity and clarity).
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ROOT

a

a

. . .

{d1} {d2}

. . .

. . .

{d3}

z

. . .

{d4}

. . .

. . .

. . .

{d5}

Fig. 5: GeoTree Structure with Data Nodes

ROOT

a

a

{d1} {d2} ls: {d1, d2}

. . . ls: {d1, d2, . . . }

ls: {d1, d2, d3, . . . } . . .

a

{d3} ls: {d3}

ls: {d3, . . . }

Fig. 6: GeoTree Structure with List Nodes

3.4 Retrieval of the Subtree Data

Given any geohash, we can query the tree for a set of nearby neighbouring
geohashes by traversing down the GeoTree along some substring of that geohash.
A longer length substring will correspond to a smaller radius in which neighbours
will be returned. When the desired level is reached, the cached list node at that
level can be queried for instant retrieval of the set of approximate k -NN of the
geohash in question.

As a result of this structure’s design, the GeoTree does not produce a distance
measure for the items in the GeoTree. Rather, it clusters groups of nearby data
points. While this does not allow for fine tuning of the search radius, it allows
a set of data points which are geospatially close to the specified geohash to be
retrieved in constant time.

3.5 Memory Requirement of the Data Structure

As each geohash is associated with only one character at each level of the
GeoTree, only one node on each level will hold that geohash’s data entry in
its list node. Thus, each data entry is inserted into one single list node at every
level of the tree. Given a tree of height h, this means that the data will be stored
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in h different list nodes in addition to the one leaf node which the data receives.
If the dataset is of size n, then there will be (h + 1) ∗ n data entries stored in
the tree. However, as the height of the tree is fixed and specified prior to the
building of the tree, the overall memory requirement of the GeoTree is O (n).
This can be further improved to only n data entries stored by collecting a set of
the data once in memory and filling the list nodes with a list of pointers to the
data entries, if necessary.

3.6 Technical Implementation

To touch briefly on the implementation of GeoTree [18], a nested hash map
structure is used in order to store the tree. The root node is the root hash
map of the nest, with the hash keys at this level corresponding to the letters of
the level one nodes. Each of these keys point to a value which is another hash
map containing keys corresponding to the level two letters of geohashes which
have matching first letters with the parent key. The nesting process continues
down to the leaf nodes (or terminal hash values in this case) in the same fashion
described in subsection 3.1. The final hash key (representing the last character
of the geohash) points to the list of data entries associated with that geohash.

3.7 Time Complexity

Building (Insertion) As hash maps offer O (1) insertion, insertion of data at
each level of the GeoTree is O (1). Furthermore, due to the height of the tree, h,
being constant and fixed, insertion of entries to the GeoTree is an O (1) operation
overall.

SCB Lookup The O (1) lookup of hash maps also means that the tree can be
traversed in steps of O (1) time. As the list nodes hold the SCB of every geohash
substring possible from those in the dataset, and a maximum of h SCBs will
need to be queried, it follows that any SCB lookup is also O (1).

3.8 Comparison with the prefix tree (trie)

The GeoTree data structure shares a number of similarities with the prefix tree
or trie data structure [19]. A trie is a search tree which utilises its ordering and
structure to increase searching efficiency across its inserted strings. Each branch
represents a character and thus as you traverse down the trie, you build the
prefix of a word, working toward an entire word at each leaf node.

This is very similar to the GeoTree, as the geohash encodings of properties
take the place of words in this use case and traversing the GeoTree builds prefixes
of geohash strings. Both data structures make use of structure to make search
more efficient, however, in the case of the GeoTree, the ordering has geographical
significance rather than the semantic meaning in the prefix tree.
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One key difference between tries and GeoTrees lies in the subtree data caching
step. As the GeoTree relies on being able to query every entry in the subtree of
a particular node, the caching is necessary to quickly return a large number of
property records. In the case of a prefix tree, it would be necessary to enumerate
every path in the subtree to retrieve all of the words. In the use case which
the GeoTree is being applied to, this would result in a significant increase in
execution time over a very large dataset.

The GeoTree data structure could be thought of as a variant or augmentation
of the trie, one which is specifically designed to give a fast, approximate solution
to k -NN on geospatial datasets.

4 Real-World Performance

4.1 Application: House Price Index Algorithm

In order to test the performance of GeoTree in practice, we applied it to the
computation of an Irish house price index. House price indexes and forecasting
models have come under increased attention from a data mining context, with
a view to improve the current methods of calculating and forecasting property
price changes. Such algorithms could help identify price bubbles, facilitating
preemptive measures to avoid another market collapse [20,21,22].

Many of these algorithms are based around the mix-adjusted median or cen-
tral price tendency model, which requires a geospatial k -NN search [5,23]. This
approach is based on the principle that large amounts of aggregated data will
cancel noise and result in a stable, smooth signal. It also offers the benefit of
being less complex than the highly-theoretical hedonic regression model. It also
requires less data than the repeat-sales model, in the sense of both quantity and
time period spread [5,23,24].

Maguire et al. [5] introduced an enhanced central-price tendency model which
outperformed the robustness of the hedonic regression method used by the Irish
Central Statistics Office [25]. The primary limitation of this method is the al-
gorithmic complexity and brute-force nature of the geospatial search, which im-
pinges on its scalability to larger datasets, and restricts the introduction of fur-
ther parameters. Our aim was to apply the GeoTree data structure to improve
the execution time, scalability and robustness of this method. We re-implemented
the algorithm used by [5] (described below), running the algorithm on the same
data set (Irish Property Price Register) used in the original article as a control
test for performance before introducing the GeoTree. For the purposes of algo-
rithmic complexity calculation, we let n be the average number of house sales
present in one month of the dataset, and let t be the number of months of data
in the dataset.
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Stage two (voting) of the original algorithm is executed as follows:

⇒ Iterate over each month, m, of the dataset
(t operations)
⇒ Iterate over each house, h, sold during m

(n operations)
⇒ Iterate over houses sold in m to find the nearest to h (n operations*)

Stage four (stratification) of the original algorithm is executed as follows:

⇒ Iterate over each month, m, of the dataset
(t operations)
⇒ Iterate over each house, h, soldHHP during m

(n operations)
⇒ Iterate over each month prior to m, mp

( t−1
2 operations)
⇒ Iterate over houses sold in mp to find the nearest to h (n opera-

tions*)

By introducing the GeoTree to the algorithm, the steps which formerly re-
quired an O (n) iteration over all houses in the dataset to identify the nearest
house (marked by an asterisk) now become an O (1) GeoTree ranged proximity
search operation. There is, however, a mild trade-off. Rather than returning the
closest property to the house in question, the GeoTree structure instead returns
everything in a small area around the house (formally, it returns the maximal
length non-empty SCB for that house’s geohash). The bucket can then be it-
erated over to find the true closest property, or an alternative strategy can be
employed, such as taking the median price of all houses within the small area.

4.2 Performance Results

Table 1 compares the performance of the algorithms described previously with
and without GeoTrees (on a database of 279,474 property sale records), including
both single threaded execution time and multi-threaded execution time (running
eight threads across eight CPU cores) on our test machine. The results using the
GeoTree are marked with a + symbol.

4.3 Correlation

Despite the algorithmic alteration of taking the median price of a group of geo-
hashed nearest neighbours, as opposed to the nearest neighbour per se, the house
price indexes produced by the original algorithm and the GeoTree-enhanced ver-
sion are very similar. Figure 7 shows both versions of the Residential Property
Price Index (RPPI) superimposed. The two different versions yielded highly
correlated outputs (Pearson’s r = 0.999, Spearman’s ρ = 0.997, Kendall’s τ =
0.966), revealing that GeoTree succeeded in delivering an almost identical index
to the original one, though with major performance gains in execution time.
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4.4 Scalability Testing

In order to test the scalability of the GeoTree, we obtained a dataset comprising
2,857,669 property sale records for California, and evaluated both the build and
query time of the data structure. Table 2 shows mean build time and mean
query time on both 10% (∼285,000 records) and 100% (∼2.85 million records)
of the dataset. In this context, query time refers to the total time to perform
100 sequential queries, as a single query was too fast to accurately measure.

The results demonstrate that the height of the tree has a modest effect on the
build time, while dataset size has a linear effect on build time, thus supporting
the claimed O (n) build time with O (1) insertion. Furthermore, query time is
shown to remain constant regardless of both tree height and dataset size, with
negligible differences in all instances.

Table 2: Scalability Performance of GeoTree

Height h 4 5 6 7 8

Build Time
(10%)a

17.63s
(0.08s)

18.10s
(0.10s)

18.46s
(0.22s)

18.84s
(0.08s)

19.39s
(0.09s)

Build Time
(100%)b

179.67s
(0.58s)

183.80s
(0.57s)

183.99s
(0.52s)

192.06s
(0.60s)

194.31s
(0.94s)

Query Time
(10%)c

5.1ms
(0.3ms)

5.2ms
(0.4ms)

5.3ms
(0.9ms)

5.3ms
(0.4ms)

5.3ms
(0.5ms)

Query Time
(100%)c

5.4ms
(1.0ms)

5.3ms
(0.9ms)

5.5ms
(1.0ms)

5.7ms
(1.3ms)

5.6ms
(1.2ms)

a Build Time (10%) is the total time to insert 10% of dataset (∼285,000
records)

b Build Time (100%) is the total time to insert 100% of dataset (∼2.85m
records)

c Query Time consists of total time to execute 100 sequential neighbour
queries on 10% and 100% of the dataset respectively

d Times reported are in the format µ(σ) calculated over ten trials

4.5 Discussion of Results

The results show that the GeoTree data structure offers the necessary scalability
and speed of execution to expand to much larger geospatial datasets, including
larger property price datasets. The biggest limitation of the GeoTree lies in
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the geospatial search distance ranges being linked to the length of the geohash
string encoding, thus not being alterable to any desired distance. As a result,
the algorithm loses a small amount of accuracy in comparison with the original,
as discussed in subsection 4.3. Despite this, the substantial gains in execution
time shown in Table 1 combined with the scalability offered by an O (1) search
algorithm demonstrated in Table 2 make a compelling case for a worthwhile
trade-off in certain applications, where execution time would become too long
with exact methods, such as in the property price index application shown.

Further improvements to the algorithm which could be explored in future re-
search include querying just the surrounding squares of a geohash grid through a
GeoTree search, rather than moving up an entire level. For example, in Figure 1,
a search for neighbours in wx4g0c which fails could explore neighbour wx4g0f
and the other adjacent neighbouring squares before falling back to searching
through the entirety of wx4g0. This would likely restore some of the lost accu-
racy previously mentioned without introducing a large execution time overhead,
should a mapping of the lettering patterns be computed beforehand and used in
neighbour exploration.

5 Conclusion

We have shown that the GeoTree data structure introduced in this article of-
fers an efficient O (1) method for geospatial approximate k -NN search over a
collection of geohashes. The application to a real-world property price index al-
gorithm revealed significant reductions in execution time, and potentially opens
the door for a real-time property price index. The data structure also performed
well when applied to a much larger dataset, demonstrating its scalability. In con-
clusion, any data science problem which requires geospatial sampling around a
particular area can employ the GeoTree for O (1) retrieval of approximate neigh-
bours, potentially enabling, for example, fast retrieval of locations of interest to
map users, or geo-targeted advertisement and social networking updates.
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Table 1: Complexity and performance of the algorithms

Algorithm Complexity µ (1 core)a σb µ (8 cores)a σb

Voting O (n2t) 233.54 secondsc 2.37% 46.73 secondsc 1.69%

Voting+ O (nt) 12.78 secondsc 1.68% 3.02 secondsc 0.69%

Stratify O
(

n2t(t−1)
2

)
29.03 hours 2.41% 4.19 hours 1.89%

Stratify+ O
(

nt(t−1)
2

)
∼0.05 hours

(163.89s)
1.71%

∼0.01 hours
(39.63s)

0.85%

Overall O
(

n2t(t+1)
2

)
29.11 hours 2.43% 4.21 hours 1.90%

Overall+ O
(

nt(t+1)
2

)
∼0.05 hours

(177.73s)
1.67%

∼0.01 hours
(43.71s)

0.79%

a Execution times reported are the mean (µ) of ten trials.
b Standard deviation (σ) reported as a percentage of the mean (µ).
c Includes build time for the dataset array / GeoTree on the dataset, as applicable.
d All algorithms computed using an AMD Ryzen 2700X CPU.
e All algorithms executed on the Irish Residential Property Price Register database of
279,474 property sale records as of time of execution.

Fig. 7: Irish RPPI (GeoTree vs Original), from 02-2011 to 09-2018
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Abstract—Homeowners, first-time buyers, banks, governments
and construction companies are highly interested in following the
state of the property market. Currently, property price indexes
are published several months out of date and hence do not offer
the up-to-date information which housing market stakeholders
need in order to make informed decisions. In this article, we
present an updated version of a central-price tendency based
property price index which uses geospatial property data and
stratification in order to compare similar houses. The expansion
of the algorithm to include additional parameters owing to a
new data structure implementation and a richer dataset allows
for the construction of a far smoother and more robust index
than the original algorithm produced.

I. INTRODUCTION

House price indexes provide vital information to the po-
litical, financial and sales markets, affecting the operation
and services of lending institutions greatly and influencing
important governmental decisions [1]. As one of the largest
asset classes, house prices can even offer insight regarding the
overall state of the economy of a nation [2]. Property value
trends can predict near-future inflation or deflation and also
have a considerable effect on the gross domestic product and
the financial markets [3], [4].

There are a multitude of stakeholders interested in the
development and availability of an algorithm which can offer
an accurate picture of the current state of the housing market,
including home buyers, construction companies, governments,
banks and homeowners [5], [6].

Due to the recent global financial crisis, house price indexes
and forecasting models play a more crucial role than ever. The
key to providing a more robust and up-to-date overview of the
housing market lies in machine learning and statistical analysis
on set of big data [7]. The primary aim is the improvement
of currently popular algorithms for calculating and forecasting
price changes, while making such indexes faster to compute
and more regularly updated. Such advances could potentially
play a key role in identifying price bubbles and preventing
future collapses in the housing market [8], [9].

Hedging against market risk has been shown to be po-
tentially beneficial to all stakeholders, however, it relies on
having up-to-date and reliable price change information which
is generally not publicly available [7], [10]. This restricts

the possibility of this tool becoming a mainstream option to
homeowners and small businesses.

In this article, we will expand upon previous work by [5]
on a stratified, mix-adjusted median property price model
by applying that algorithm to a larger and richer dataset of
property listings and explore the enhancements in smoothness
offered by evolving the original algorithm enabled by the use
of a new data structure [11].

II. PROPERTY PRICE INDEX MODELS

In this section we will detail the three main classes of
existing property price indexes. These consist of the hedonic
regression, repeat-sales and central-price tendency methods.

A. Hedonic Regression

Hedonic regression [12] is a method which considers all
of the characteristics of a house (eg. bedrooms, bathrooms,
land size, location etc.) and calculates how much weight each
of these attributes have in relation to the overall price of the
house. While it has been shown to be the most robust measure
in general by [13], outperforming the repeat-sales and mix-
adjusted median methods, it requires a vast amount of detailed
data and the interpretation of an experienced statistician in
order to produce a result [5], [14].

As hedonic regression rests on the assumption that the
price of a property can be broken down into its integral at-
tributes, the algorithm in theory should consider every possible
characteristic of the house. However, it would be impractical
to obtain all of this information. As a result, specifying a
complete set of regressors is extremely difficult [15].

The great number of free parameters which require tuning
in hedonic regression also leads to a high chance of overfitting
the model [5].

B. Repeat-sales

The repeat-sales method [16] is the most commonly used
method of reporting housing sales in the United States and uses
repeated sales of the same property over long periods of time
to calculate change. An enhanced, weighted version of this
algorithm was explored by [17]. The advantage of this method
comes in the simplicity of constructing and understanding the
index; historical sales of the same property are compared with
each other and thus the attributes of each house need not be
known nor considered. The trade-off for this simplicity comes978-1-7281-2547-3/20/$31.00 c©2020 IEEE
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at the cost of requiring enormous amounts of data stretched
across long periods of time [18].

It has also been theorised that the sample of repeat sales
is not representative of the housing market as a whole. For
example, in a study by [19], only 7% of detached homes
were resold in the study period, while 30% of apartments
had multiple sales in the same dataset. It is argued that this
phenomenon occurs due to the ’starter home hypothesis’:
houses which are cheaper and in worse condition generally sell
more frequently due to young homeowners upgrading [19],
[20], [21]. This leads to over-representation of inexpensive
and poorer quality property in the repeat-sales method. Cheap
houses are also sometimes purchased for renovation or are
sold quickly if the homeowner becomes unsatisfied with them,
which contributes to this selection bias [19]. Furthermore,
newly constructed houses are under-represented in the repeat-
sales model as a brand new property cannot be a repeat sale
unless it is immediately sold on to a second buyer [20].

As a result of the low number of repeat transactions, an
overwhelming amount of data is discarded [22]. This leads to
great inefficiency of the index and its use of the data available
to it. In the commonly used repeat-sales algorithm by [17],
almost 96% of the property transactions are disregarded due
to incompatibility with the method [15].

C. Central Price Tendency

Central-price tendency models have been explored as an
alternative to the more commonly used methods detailed
previously. The model relies on the principle that large sets
of clustered data tend to exhibit a noise-cancelling effect and
result in a stable, smooth output [5]. Furthermore, central price
tendency models offer a greater level of simplicity than the
highly-theoretical hedonic regression model. When compared
to the repeat sales method, central tendency models offer more
efficient use of their dataset, both in the sense of quantity and
time period spread [5], [23].

According to a study of house price index models by [13],
the central-tendency method employed by [23] significantly
outperforms the repeat-sales method despite utilising much
smaller dataset. However, the method is criticised as it does
not consider the constituent properties of a house and is thus
more prone to inaccurate fluctuations due to a differing mix of
sample properties between time periods [13]. For this reason,
[13] finds that the hedonic regression model still outperforms
the mix-adjusted median model used by [23]. Despite this, the
simplicity and data utilisation that the method offers deserve
credit were argued to justify these drawbacks [23], [13].

An enhancement to the mix-adjusted median algorithm by
[23] was later shown to outperform the robustness of the
hedonic regression model used by the Irish Central Statistics
Office [5], [24]. The primary drawback of this algorithm was
long execution time and high algorithmic complexity due
to brute-force geospatial search, limiting the algorithm from
being further expanded, both in terms of algorithmic features
and the size of the dataset [11].

D. Improvement Attempts

With an aim to overcome the issue of algorithmic com-
plexity in the method described by [5], a niche data structure
was designed primarily for the purpose of greatly speeding
up the geospatial proximity search with the aim of sacri-
ficing minimal algorithmic precision. The GeoTree offers a
substantial performance improvement when applied to the
original algorithm while producing an almost identical index
[11]. Through application of the GeoTree, the restrictions
on the original algorithm have been lifted and we can now
explore the performance of an evolved implementation of the
algorithm on a richer, alternative dataset while introducing
further parameters.

III. CASE STUDY: MYHOME PROPERTY LISTING DATA

MyHome [25] are a major player in property sale listings in
Ireland. With data on property asking prices being collected
since 2011, MyHome have a rich database of detailed data
regarding houses which have been listed for sale. MyHome
have provided access to their dataset for the purposes of this
research.

A. Dataset Overview

The data provided by MyHome includes verified GPS co-
ordinates, the number of bedrooms, the type of dwelling and
further information for most of its listings. It is important to
note, however, that this dataset consists of asking prices, rather
than the sale prices featured in the less detailed Irish Property
Price Register Data (used in the original algorithm) [5].

The dataset consists of a total of 718,351 property listing
records over the period February 2011 to March 2019 (inclu-
sive). This results in 7,330 mean listings per month (with a
standard deviation of 1,689), however, this raw data requires
some filtering for errors and outliers.

B. Data Filtration

As with the majority of human collected data, some pruning
must be done to the MyHome dataset in order to remove
outliers and erroneous data. Firstly, not all transactions in
the dataset include verified GPS co-ordinates or include data
on the number of bedrooms. These records will be instantly
discarded for the purpose of the enhanced version of the al-
gorithm. They account for 16.5% of the dataset. Furthermore,
any property listed with greater than six bedrooms will not
be considered. These properties are not representative of a
standard house on the market as the number of such listings
amounts to just 1% of the entire dataset.

Any data entries which do not include an asking price
cannot be used for house price index calculation and must
be excluded. Such records amount to 3.6% of the dataset.
Additionally, asking price records which have a price of less
than e 10,000 or more than e 1,000,000 are also excluded,
as these generally consist of data entry errors (eg. wrong
number of zeroes in user-entered asking price), abandoned or
dilapidated properties in listings below the lower bound and
mansions or commercial property in the entries exceeding the
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upper bound. Properties which meet these exclusion criteria
based on their price amount to only 2% of the dataset and
thus are not representative of the market overall.

In summation, 77% of the dataset survives the pruning
process. This leaves us with 5,646 filtered mean listings per
month.

C. Comparison with PPR Dataset

The mean number of filtered monthly listings available in
our dataset represents a 157% increase on the 2,200 mean
monthly records used in the original algorithm’s index compu-
tation [5]. Furthermore, the dataset in question is significantly
more precise and accurate than the PPR dataset, owing to the
ability to more effectively prune the dataset. The PPR dataset
consists of address data entered by hand from written docu-
ments and does not use the Irish postcode system, meaning that
addresses are often vague or ambiguous. This results in some
erroneous data being factored into the model computation as
there is no effective way to prune this data [5]. The MyHome
dataset has been filtered to include verified addresses only, as
described previously.

The PPR dataset has no information on the number of
bedrooms or any key characteristics of the property. This can
result in dilapidated properties, apartment blocks, inherited
properties (which have an inaccurate sale value which is used
for taxation purposes) and mansions mistakenly being counted
as houses [5]. Our dataset consists of only single properties
and the filtration process described previously greatly reduces
the number of such unrepresentative samples making their way
into the index calculation.

The ”sparse and frugal” PPR dataset was capable of out-
performing the CSO’s hedonic regression model with a mix-
adjusted median model [5]. With the larger, richer and more
well-pruned MyHome dataset, further algorithmic enhance-
ments to this model are possible.

IV. PERFORMANCE MEASURES

Property prices are generally assumed to change in a
smooth, calm manner over time [26] [27]. According to [5],
the smoothest index is, in practice, the most robust index.
As a result of this, smoothness is considered to be one of
the strong indicators of reliability for an index. However,
the ’smoothness’ of a time series is not well defined nor
immediately intuitive to measure mathematically.

The standard deviation of the time series will offer some
insight into the spread of the index around the mean index
value. A high standard deviation indicates that the index
changes tend to be large in magnitude. While this is useful
in investigating the ”calmness” of the index (how dramatic its
changes tend to be), it is not a reliable smoothness measure,
as it is possible to have a very smooth graph with sizeable
changes.

The standard deviation of the differences is a much more
reliable measure of smoothness. A high standard deviation of
the differences indicates that there is a high degree of variance
among the differences ie. the change from point to point is

unpredictable and somewhat wild. A low value for this metric
would indicate that the changes in the graph behave in a more
calm manner.

Finally, we present a metric which we have defined, the
mean spike magnitude μΔX (MSM) of a time series X . This
is intended to measure the mean value of the contrast between
changes each time the trend direction of the graph flips. In
other words, it is designed to measure the average size of the
’spikes’ in the graph.

Given DX = {d1, . . . , dn} is the set of differences in the
time series X , we say that the pair (di, di+1) is a spike if di

and di+1 have different signs. Then Si = |di+1 − di| is the
spike magnitude of the spike (di, di+1).

The mean spike magnitude of X is defined as:

μΔX =
1

|SX |
∑

S∈SX

S2

where:

SX = {S1, S2, ..., St} is the set of all spike magnitudes of X

V. ALGORITHMIC EVOLUTION

A. Original Price Index Algorithm

The central price tendency algorithm introduced by [5]
was designed around a key limitation; extremely frugal data.
The only data available for each property was location, sale
date and sale price. The core concept of the algorithm relies
on using geographical proximity in order to match similar
properties historically for the purpose of comparing sale
prices. While this method is likely to match certain properties
inaccurately, the key concept of central price tendency is that
these mismatches should average out over large datasets and
cancel noise.

The first major component of the algorithm is the voting
stage. The aim of this is to remove properties from the
dataset which are geographically isolated. The index relies on
matching historical property sales which are close in location
to a property in question. As a result, isolated properties will
perform poorly as it will not be possible to make sufficiently
near property matches for them.

In order to filter out such properties, each property in the
dataset gives one vote to its closest neighbour, or a certain,
set number of nearest neighbours. Once all of these votes
have been casted, the total number of votes per property is
enumerated and a segment of properties with the lowest votes
is removed. In the implementation of the algorithm used in
[5], this amounted to ten percent of the dataset.

Once the voting stage of the algorithm is complete, the
next major component is the stratification stage. This is the
core of the algorithm and involves stratifying average property
changes on a month by month comparative basis which then
serve as multiple points of reference when computing the over-
all monthly change. The following is a detailed explanation of
the original algorithm’s implementation.
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First, take a particular month in the dataset which will serve
as the stratification base, mb. Then we iterate through each
house sale record in mb, represented by hmb

. We must now
find the nearest neighbour of hmb

in each preceding month in
the dataset, through a proximity search. For each prior month
mx to mb, refer to the nearest neighbour in mx to hmb

in
question as hmx . Now we are able to compute the change
between the sale price of hmb

and the nearest sold neighbour
to h in each of the months {m1, . . . ,mn} as a ratio of hmb

to
hmx

for x ∈ {1, . . . , n}. Once this is done for every property
in mb, we will have a scenario such that there is a catalogue
of sale price ratios for every month prior to m and thus we
can look at the median price difference between m and each
historic month.

However, this is only stratification with one base, referred
to as stage three in the original article [5]. We then expand the
algorithm by using every month in the dataset as a stratification
base. The result of this is that every month in the dataset now
has price reference points to every month which preceded it
and we can now use these reference points as a way to compare
month to month.

Assume that mx and mx+1 are consecutive months in
the dataset and thus we have two sets of median ratios
{rx(m1), . . . , rx(mx−1)} and {rx+1(m1), . . . , rx+1(mx)}
where ra(my) represents the median property sale ratio be-
tween months ma and my where ma is the chosen stratifica-
tion base. In order to compute the property price index change
from mx to mx+1, we look at the difference between rx(mi)
and rx+1(mi) for each i ∈ 1, . . . , x− 1 and take the mean
of those differences. As such, we are not directly comparing
each month, rather we are contrasting the relationship of both
months in question to each historical month and taking an
averaging of those comparisons.

This results in a central price tendency based property index
that outperformed the national Irish hedonic regression based
index while using a far more frugal set of data to do so.

B. GeoTree

The largest drawback of the original index lies in the
computational complexity; it is extremely slow to run. This is
due to the performance impact of requiring repeated search for
neighbours to each data point. This limitation was responsible
for preventing the algorithm scaling to larger datasets, more
refined time periods and more regular updating. A custom data
structure, the GeoTree, was developed in order to trade off a
small amount of accuracy in return for the ability to retrieve a
cluster of neighbours to any property in constant time [11].
This data structure relies on representing the geographical
location of properties as geohash strings.

The GeoTree data structure functions by placing the geohash
character by character into a tree-structure where each branch
at each level represents an alphanumeric character. Under each
branch of the tree there is also a list node which caches all of
the property records which exist as an entry in that subtree,
allowing the O (1) retrieval of those records. The number of
sequential characters in common from the start of a pair of

geohashes puts a bound on the distance between those two
geohashes. Thus, by traversing down the tree and querying
the list nodes, the GeoTree can return a list of approximate
nearest neighbours in O (1) time [11].

As can be seen in [11, Table I], the performance improve-
ment to the index offered by the GeoTree is profound and
sacrifices very little in terms of precision, with the resulting
indexes proving close to identical. This development allows
the scope of the index algorithm to be widened, including the
introduction of larger datasets with richer data, more frequent
updating and the development of new algorithmic features,
some of which will be explored in this article.

C. Geohash+

Extended geohashes, which we will refer to as geohash+,
are geohashes which have been modified to encode additional
information regarding the property at that location. Additional
parameters are encoded by adding a character in front of
the geohash. The value of the character at that position
corresponds to the value of the parameter which that character
represents. Figure 1 demonstrates the structure of a geohash+

with two additional parameters, p1 and p2.

geohash+: p1p2︸︷︷︸
+

x1 . . . xn︸ ︷︷ ︸
geohash

Fig. 1: geohash+ format

Any number of parameters can be prepended to the geohash.
In the context of properties, this includes the number of
bedrooms, the number of bathrooms, an indicator of the type
of property (detached house, semi-detached house, apartment
etc.), a parameter representing floor size ranges and any other
attribute desired for comparison.

Alternative applications of geohash+ could include a situa-
tion where a rapid survey of nearby live vehicles of a certain
type is required. If we prepend a parameter to the geohash
locations of vehicles representing that vehicle’s type, eg: 1 for
cars, 2 for vans, 3 for motorcycles and so forth, we can use
the GeoTree data structure to rapidly survey the SCBs around
a particular vehicle, with separate SCBs generated for each
type automatically.

D. GeoTree Performance with geohash+

Due to the design of the GeoTree data structure, a geohash+

will be inserted into the tree in exactly the same manner
as a regular geohash [11]. If the original GeoTree had a
height of h for a dataset with h-length geohashes, then the
GeoTree accepting that geohash extended to a geohash+ with
p additional parameters prepended should have a height of
h+p. However, both of these are fixed, constant, user-specified
parameters which are independent of the number of data
points, and hence do not affect the constant-time performance
of the GeoTree.

The major benefit of this design is that the ranged proximity
search will interpret the additional parameters as regular
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geohash characters when constructing the common buckets
upon insertion, and also when finding the SCB in any search,
without introducing additional performance and complexity
drawbacks.

E. Enhanced Price Index

In order to enhance our price index model, we prepend a
parameter to the geohash of each property representing the
number of bedrooms present within that property. As a result,
when the GeoTree is performing the SCB computation, it will
now only match properties which are both nearby and share
the same number of bedrooms. This allows the index model to
compare the price of properties which are more similar across
the time series and thus should result in a smoother, more
accurate measure of the change in prices over time.

The technical implementation of this algorithmic enhance-
ment is handled almost entirely by the GeoTree automatically,
due to its design. As described previously, the GeoTree sees
the additional parameter no differently to any other character
in the geohash and due to its placement at the start of
the geohash, the search space will be instantly narrowed to
properties with matching number of bedrooms, x, by taking
the x branch in the tree at the first step of traversal.

VI. RESULTS

We ran the algorithm on the MyHome data without factoring
any additional parameters as a control step. We then created
a GeoTree with geohash+ entries consisting of the number
of bedrooms in the house prepended to the geohash for the
property.

A. Comparison of Time Series

Table I shows the performance metrics previously described
applied to the algorithms discussed in this paper: Original
PPR, PPR with GeoTree, MyHome without bedroom factoring
and MyHome with bedroom factoring. While both the standard
deviation of the differences and the MSM show that some
smoothness is sacrificed by the GeoTree implementation of the
PPR algorithm, the index running on MyHome’s data without
bedroom factoring approximately matches the smoothness of
the original algorithm. Furthermore, when bedroom factoring
is introduced, the algorithm produces by far the smoothest
index, with the standard deviation of the differences being
26.2% lower than the PPR (original) algorithm presented in
[5], while the MSM sits at 58.2% lower.

If we compare the MyHome results in isolation, we can
clearly observe that the addition of bedroom matching makes
a very significant impact on the index performance. While
the trend of each graph is observably similar, Figure 2
demonstrates that month to month changes are less erratic
and appear less prone to large, spontaneous dips. Considering
the smoothness metrics, the introduction of bedroom factoring
generates a decrease of 26.8% in the standard deviation of
the differences and a decrease of approximately 48.4% in the
MSM. These results show a clear improvement by tightening
the accuracy of property matching and are promising for the

potential future inclusion of additional parameters such as
bedroom matching should such data become available.

Figure 2 corresponds with the results of these metrics, with
the MyHome data (bedrooms factored) index appearing the
smoothest time series of the four which are compared. It is
important to note that the PPR data is based upon actual sale
prices, while the MyHome data is based on listed asking prices
of properties which are up for sale and as such, may produce
somewhat different results.

It is a well known fact that properties sell extremely well
in spring and towards the end of the year, the former being
the most popular period for property sales. Furthermore, the
months towards late summer and shortly after tend to be the
least busy periods in the year for selling property [28]. These
phenomena can be observed in Figure 2 where there is a
dramatic increase in the listed asking prices of properties in
the spring months and towards the end of each year, while
the less popular months tend to experience a slump in price
movement. As such, the two PPR graphs and the MyHome
data (bedrooms not factored) graph are following more or
less the same trend in price action and their graphs tend to
meet often, however, the majority of the price action in the
MyHome data graphs tends to wait for the popular selling
months. The PPR graph does not experience these phenomena
as selling property can be a long, protracted process and due
to a myriad of factors such as price bidding, paperwork, legal
hurdles, mortgage applications and delays in reporting, final
sale notifications can happen outside of the time period in
which the sale price is agreed between buyer and seller.

VII. CONCLUSION

The introduction of bedroom factoring as an additional
parameter in the pairing of nearby properties has been shown
to have a profound impact on the smoothness of the mix-
adjusted median property price index, which was already
shown to outperform a popularly used implementation of
the hedonic regression model. This improvement was made
possible due to the acquisition of a richer data set and the
development of the GeoTree structure, which greatly increased
the performance of the algorithm. There is future potential for
the introduction of further property characteristics (such as
the number of bedrooms, property type etc.) in the proximity
matching part of the algorithm, should such data be acquired.

Furthermore, the design of the data structure used en-
sures that minimal computational complexity is added when
considering the technical implementation of this algorithmic
adjustment. As a result of this, the index can be computed
quickly enough that it would be possible to have real-time
updates (eg. up to every 5 minutes) to the price index, if a
sufficiently rich stream of continuous data was available to
the algorithm. Large property listing websites, such as Zillow,
likely have enough live, incoming data that such an index
would be feasible to compute at this frequency, however, this
volume of data is not publicly available for testing.
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TABLE I: Index Comparison Statistics

Algorithm St. Dev St. Dev of
Differences MSM

PPR (original) 16.524 2.191 23.30

PPR (GeoTree) 16.378 2.518 29.78

MyHome (without
bedrooms) 12.898 2.209 18.91

MyHome (with
bedrooms) 12.985 1.617 9.75

Fig. 2: Comparison of index on PPR and MyHome data sets, from 02-2011 to 03-2019 [data limited to 09-2018 for PPR]
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Abstract
Homeowners, first-time buyers, banks, governments and construction companies are highly interested in following the state 
of the property market. Currently, property price indexes are published several months out of date and hence do not offer 
the up-to-date information which housing market stakeholders need in order to make informed decisions. In this article, we 
present an enhanced version of a mix-adjusted median based property price index which uses geospatial property data and 
stratification in order to compare similar houses sold in different trading periods. The expansion of the algorithm to include 
additional parameters, enabled by both a richer dataset and the introduction of a new, efficient data structure for nearest 
neighbour approximation, allows for the construction of a far smoother and more robust index than the original algorithm 
produced.

Keywords  House price index · Property price index · Mmix-adjusted · Property prices · House prices · Financial markets · 
Mortgage lenders · Inflation · Geospatial data · Geospatial index · Stratification · National statistics · Housing statistics · 
Property statistics · Tree structure

1  Introduction

House price indexes provide vital information to the politi-
cal, financial and sales markets, affecting the operation 
and services of lending institutions greatly and influencing 
important governmental decisions [1]. As one of the largest 
asset classes, house prices can even offer insight regarding 
the overall state of the economy of a nation [2]. Property 
value trends can predict near-future inflation or deflation and 
also have a considerable effect on the gross domestic product 
and the financial markets [3, 4].

There are a multitude of stakeholders interested in the 
development and availability of an algorithm which can 
offer an accurate picture of the current state of the housing 
market, including home buyers, construction companies, 
governments, banks and homeowners [5, 6].

Due to the recent global financial crisis, house price 
indexes and forecasting models play a more crucial role 
than ever. The key to providing a more robust and up-to-
date overview of the housing market lies in machine learning 
and statistical analysis on set of big data [7]. The primary 
aim is the improvement of currently popular algorithms for 
calculating and forecasting price changes, while making 
such indexes faster to compute and more regularly updated. 
Such advances could potentially play a key role in identi-
fying price bubbles and preventing future collapses in the 
housing market [8, 9].

Hedging against market risk has been shown to be poten-
tially beneficial to all stakeholders, however, it relies on hav-
ing up-to-date and reliable price change information which 
is generally not publicly available [7, 10]. This restricts the 
possibility of this tool becoming a mainstream option to 
homeowners and small businesses.

In this article, we will expand upon previous work by 
Maguire et al. [5] on a stratified, mix-adjusted median prop-
erty price model by applying said algorithm to a larger and 
richer dataset of property listings and explore the enhance-
ments in smoothness offered by evolving the original 
algorithm [11]. Such evolutions have been made possible 
through the introduction of a custom-tailored data structure, 
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the GeoTree, which allows for rapid identification of a group 
of neighbours of any given property within fixed distance 
buckets [12]. These introductions remove the time barrier 
which was constraining the original algorithm, which took 
an excessive amount of time to compute results, leading to 
an inability to further expand the size of the dataset.

The result of our study is a flexible, highly adaptable 
house price index model, which can be utilised to extract an 
accurate house price index from datasets of varying degrees 
of size and richness. The model offers the ability for a lay-
person to construct an up-to-date property price index using 
publicly available data, while allowing for stakeholders with 
greater data resources, such as mortgage lenders or corpora-
tions, to leverage their more descriptive information sources 
to achieve a higher degree of model precision.

2 � An overview of property price index 
models

In this section we will detail the three main classes of exist-
ing property price indexes. These consist of the hedonic 
regression, repeat-sales and central-price tendency/mix-
adjusted median methods.

2.1 � Hedonic regression

Hedonic regression is a method which considers all of the 
characteristics of a house (eg. bedrooms, bathrooms, land 
size, location etc.) and calculates how much weight each 
of these attributes have in relation to the overall price of 
the house [13]. Mathematically, a semi-log hedonic regres-
sion model is typically used for house price index estimation 
[14]:

where px is the price of property x sold in the period of 
interest. c is a constant. I is the set of property attributes on 
which the model is being fit. �i is the regression co-efficient 
associated with attribute i. Dx

i  is a dummy variable, indicat-
ing the presence of characteristic i in property x, in the case 
of categorical attributes. For continuous attributes, this will 
take on the continuous value in question. �x

i  is an error term 
for attribute i.

While hedonic regression has been shown to be the most 
robust measure in general by Goh et al. [15], outperform-
ing the repeat-sales and mix-adjusted median methods, it 
requires a vast amount of detailed data and the interpretation 
of an experienced statistician in order to produce a result 
[5, 16].

log(px) = c +
∑
i∈I

�iDx
i
+ �x

i

As hedonic regression rests on the assumption that the 
price of a property can be broken down into its integral 
attributes, the algorithm in theory should consider every 
possible characteristic of the house. However, it would be 
impractical to obtain all of this information. As a result, 
specifying a complete set of regressors is extremely difficult 
[17].

The great number of free parameters which require tuning 
in a hedonic regression model also leads to a high chance 
of overfitting [5]. This issue may be more pronounced in 
cases where the training data is sourced from a biased sam-
ple which is not representative of the property market as 
a whole, rather than from a complete set of property sale 
transactions in a given region.

2.2 � Repeat‑sales

The repeat-sales method is the most commonly used method 
of reporting housing sales in the United States and uses 
repeated sales of the same property over long periods of time 
to calculate change [18]. An enhanced, weighted version of 
this algorithm was explored by Case et al. [19]. The advan-
tage of this method comes in the simplicity of constructing 
and understanding the index; historical sales of the same 
property are compared with each other and thus the attrib-
utes of each house need not be known nor considered. The 
trade-off for this simplicity comes at the cost of requiring 
enormous amounts of data stretched across long periods of 
time [20]. Mathematically, the standard repeat sales model 
takes the form [14]:

where pt
n
 is the price of property n when sold in time period 

t. T is the set of all time periods over which the index is 
measuring. �i is the regression coefficient associated with 
time period i. Dn

i
 is a dummy variable taking value 1 where 

i = t , taking value − 1 where i = s and taking value 0 other-
wise. �n

i
 is an error term.

It has also been theorised that the sample of repeat sales 
is not representative of the housing market as a whole. 
For example, in a study by Jansen et al. [21], only 7% of 
detached homes were resold in the study period, while 30% 
of apartments had multiple sales in the same dataset. It is 
argued that this phenomenon occurs due to the ’starter home 
hypothesis’: houses which are cheaper and in worse condi-
tion generally sell more frequently due to young homeown-
ers upgrading [21–23]. This leads to over-representation of 
inexpensive and poorer quality property in the repeat-sales 
method. Cheap houses are also sometimes purchased for 
renovation or are sold quickly if the homeowner becomes 
unsatisfied with them, which contributes to this selection 
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bias [21]. Furthermore, newly constructed houses are under-
represented in the repeat-sales model as a brand new prop-
erty cannot be a repeat sale unless it is immediately sold on 
to a second buyer [22].

As a result of the low number of repeat transactions, an 
overwhelming amount of data is discarded [24]. This leads 
to great inefficiency of the index and its use of the data avail-
able to it. In the commonly used repeat-sales algorithm by 
Case et al. [19], almost 96% of the property transactions are 
disregarded due to incompatibility with the method [17].

2.3 � Central price tendency/mix‑adjusted median

Central-price tendency models have been explored as an 
alternative to the more commonly used methods detailed 
previously. The model relies on the principle that large sets 
of clustered data tend to exhibit a noise-cancelling effect and 
result in a stable, smooth output [5]. Furthermore, central 
price tendency models offer a greater level of simplicity than 
the highly-theoretical hedonic regression model. When com-
pared to the repeat sales method, central tendency models 
offer more efficient use of their dataset, both in the sense of 
quantity and time period spread [5, 25].

According to a study of house price index models by Goh 
et al. [15], the central-tendency method employed by Prasad 
et al. [25] significantly outperforms the repeat-sales method 
despite utilising much smaller dataset. However, the method 
is criticised as it does not consider the constituent properties 
of a house and is thus more prone to inaccurate fluctuations 
due to a differing mix of sample properties between time 
periods [15]. For this reason, Goh et al. [15] finds that the 
hedonic regression model still outperforms the mix-adjusted 
median model used by Prasad et al. [25]. Despite this, the 
simplicity and high level of data utilisation that the method 
offers were argued to justify these drawbacks [15, 25].

An evolution of the mix-adjusted median algorithm used 
by Prasad et al. was later shown to outperform the robustness 
of the hedonic regression model used by the Irish Central 
Statistics Office [5, 26]. This model is described in detail 
in Sect. 7.1. The primary drawback of this algorithm was 
long execution time and high algorithmic complexity due 
to brute-force geospatial search, limiting the algorithm from 
being further expanded, both in terms of algorithmic features 
and the size of the dataset [12].

3 � The role of price indexes in the financial 
sector

Property price index algorithms are of high interest to finan-
cial institutions, particularly banks who partake in mortage 
lending. We will outline the importance of these models to 

said institutions, as well as exploring the feasibility of imple-
menting each of the models discussed in Sect. 2.

3.1 � Importance of property price models 
to the financial services sector

While there are a multitude of stakeholders in the property 
market, perhaps the greatest of these is the financial services 
sector, due to lending in the form of mortgages. For the 
majority of people, a house is the most valuable asset they 
will own in their lifetime. Furthermore, almost one-third of 
British households are actively paying a mortgage on their 
house, which collectively forms the greatest source of debt 
for said group of people [27].

A change in the trend of house prices can have an extraor-
dinary impact on the general strength or weakness of an 
economy. When property prices are high, homeowners feel 
secure in increasing both spending and borrowing, which in 
turn stimulates economic activity and increases bank rev-
enues. However, when house prices are falling, homeowners 
can reduce their spending as they begin to fear that their debt 
burden from their mortgage will outsize the value of their 
property, thus restricting economic activity [27, 28].

Mortgages are a key source of revenue for banks and 
financial bodies, due to their long repayment length, which 
results in a considerable amount of interest accrued. How-
ever, they also pose a substantial risk for said financial insti-
tutions, as they involve the lending of a large principal which 
is often repaid over decades, during which the financial cir-
cumstances and stability of the borrower are not guaranteed 
to remain constant and indeed, are often influenced by the 
flux in property prices as an indicator of general economic 
stability. This makes it difficult to predict the number of 
borrowers who will struggle to meet their repayments during 
periods of economic downturn [29].

While an economic recession usually results in massive 
downward pressure on commercial property prices and the 
equities market, such a sharp drop tends not to be reflected 
as drastically in the residential property market. Rather, the 
number of transactions usually drops, as property owners 
no longer wish to sell their house for a lower sum of money 
than they would have received before. It is likely that such 
a drop in residential property sales volume is reflected in a 
reduction in new mortgage applications, hence resulting in a 
loss of revenue and profit for lenders. Furthermore, such an 
economic event signals reduced financial stability for bor-
rowers and thus default rates on mortgages will rise, causing 
a greater amount of bad debt on the books [28, 29].

It is logical then that financial bodies are highly interested 
in tracking the movements in property prices, to inform their 
lending policies and risk assessment methods. A more bull-
ish property market may lead to banks taking on slightly 
more risk, with a view that the property will appreciate and 
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so too will the confidence of the borrower. Conversely, a 
bearish market will likely result in a tightening of the lend-
ing criteria, with institutions only taking on highly finan-
cially secure borrowers who they judge to be capable of 
weathering the storm of further depreciation of their newly-
purchased property, in a worst-case scenario [30]. They 
might also be interested in comparing a mortgage applica-
tion to the average property price for that region, to judge 
whether the price is excessively expensive when balanced 
with the financial circumstances of the applicant.

The untimely manner in which government statistical 
offices tend to release information on market movements, 
with a lag of 1–2 months being typical, may result in key 
policy decisions around lending being made later than is 
ideal. As a result, larger financial institutions are often inter-
ested in creating their own custom house price model which 
delivers up-to-date information, in order to better inform 
their lending criteria. We will present a suitable, performant 
model meeting these criteria later in this article.

3.2 � Viability of models for application 
in the banking sector

Where a bank wishes to develop their own property price 
index model in order to get more up-to-date market informa-
tion, there are some key considerations when choosing the 
appropriate methodology to employ. While the repeat sales 
method might at first seem tempting due to the simplicity of 
implementation, further thought reveals that this method is 
unlikely to be suitable. This algorithm relies on comparing 
multiple sales of the exact same house over long periods of 
time. If a financial body is using their historical mortgage 
data to fit the model, it is unlikely that the past sales of any 
given property were conducted using mortgages taken out at 
the same bank by different buyers, resulting in a low match 
rate for what is already a wasteful method in terms of data 
utilisation. Furthermore, historical data stretching back over 
decades is generally necessary to generate a reliable result 
with this method, which will likely be difficult for an insti-
tution to both source and convert into a clean, rich digital 
format [20].

The hedonic regression model may be a viable option, 
as these institutions will have property characteristic data 
for the properties on their loan books, which is key to the 
performance of this algorithm. However, the main draw-
back of using this method is the complexity of the model. 
The process of creating a hedonic regression model is very 
theoretically intense and generally requires the work of a 
number of statisticians in order to implement and interpret 
the index on an ongoing, regular basis. Furthermore, due 
to the human labour associated with maintaining a hedonic 
regression model, as well as the reliance on rich, detailed 
and well filtered data, it is difficult to produce the model on 

a more frequent time schedule than monthly or bi-monthly, 
particularly when this work must be repeated on a region-
by-region basis, where an institution wants more granular 
measures than a national model.

Overfitting is another possible avenue of concern with 
regard to hedonic regression indices, as mentioned in 
Sect. 2.1. As hedonic regression relies on having a com-
plete view of the property market, it may adapt poorly 
to financial institutions who likely only have access to a 
biased sample of property sales which have used their own 
lending products as the method of payment. If a particu-
lar bank was to target the middle-class working family as 
their intended customer base, for example, this may lead 
to a bias in the type of homes which are predominantly 
included in the model’s data pipeline, thus not accurately 
capturing the trend in the broader housing market, rather, 
only the movements in a subset of it.

Mix-adjusted median based property price index mod-
els may therefore prove the most effective option for a 
financial institution to implement. The main advantages 
of such an approach lie in the ease of implementation and 
flexibility to incorporate various data sources of differing 
densities. Firstly, a mix-adjusted median algorithm can 
usually be computed in an entirely automated way, without 
a great amount of tuning or manual processing, reducing 
the need for multiple statisticians to spend time constantly 
tweaking the model to produce a monthly release, par-
ticularly where results are being produced for a number 
of different cities or regions. This allows for the model to 
be recomputed very frequently; as often as daily or two-
to-three times per week, if sufficient live incoming data is 
available for the model.

This model also does not rely on specifying a complete 
set of price-affecting characteristics and can work with as 
little as three attributes: the sale date, the address and the 
price. Due to this, the algorithm can use the entire property 
sale transaction data for greater accuracy and avoidance of 
overfitting, which is published publicly in most countries; 
for example, by the Property Services Regulatory Authority 
in Ireland, or by HM Land Registry in the United Kingdom. 
Furthermore, the flexibility of the methodology allows for 
additional core attributes, such as the number of rooms, to 
be included for greater accuracy, as we will demonstrate 
later in this article. This means that the institution can mix 
their own highly detailed mortgage data together with gen-
eral, unbiased but sparsely-detailed data for property sales, 
in order to increase the model’s perspective of the market 
as a whole. As a result, the mix-adjusted median model is 
a sensible option for large banking institutions who wish to 
see very regular updates on the market in order to aid them 
in deciding on their credit lending policies.
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4 � GeoTree: a data structure for rapid, 
approximate nearest neighbour bucket 
searching

In order to solve the issues surrounding the brute-force geo-
spatial search for nearest neighbours discussed in Sect. 2.3, 
a fast, custom bucket solution was implemented in order to 
generate neighbour results for a given property in O(1) time. 
This means that the execution time does not increase with 
the number of samples in the structure; it remains constant 
regardless of the size.

4.1 � Naive geospatial search

The distance between two pieces of geospatial data defined 
using the GPS co-ordinate system is computed using the 
haversine formula [31]. If we wish to find the closest point 
in a dataset to any given point in a naive fashion, we must 
loop over the dataset and compute the haversine distance 
between each point and the given, fixed point. This is an O(n) 
computation. If the distances are to be stored for later use, 
this also requires O(n) memory consumption. Thus, if the 
closest point to every point in the dataset must be found, this 
requires an additional nested loop over the dataset, resulting 
in O

(
n2
)
 memory and time complexity overall (assuming the 

distance matrix is stored). If such a computation is applied 
to a large dataset, such as the 147,635 property transactions 
used in the house price index developed by Maguire et al. 
[5], an O

(
n2
)
 algorithm can run extremely slowly even on 

powerful modern machines.
As GPS co-ordinates are multi-dimensional objects, it is 

difficult to prune and cut data from the search space without 
performing the haversine computation. Due to this, a dif-
ferent approach to geospatial search will prove necessary 
to investigate.

4.2 � GeoHash

A geohash is a string encoding for GPS co-ordinates, allow-
ing co-ordinate pairs to be represented by a single string 
of characters. The publicly-released encoding method was 
invented by Niemeyer in 2008 [32]. The algorithm works 
by assigning a geohash string to a square area on the earth, 
usually referred to as a bucket. Every GPS co-ordinate which 
falls inside that bucket will be assigned that geohash. The 
number of characters in a geohash is user-specified and 
determines the size of the bucket. The more characters in 
the geohash, the smaller the bucket becomes, and the greater 
precision the geohash can resolve to. While geohashes thus 
do not represent points on the globe, as there is no limit to 
the number of characters in a geohash, they can represent an 
arbitrarily small square on the globe and thus can be reduced 

to an exact point for practical purposes. Figure 1 demon-
strates parts of the geohash grid on a section of map.

Geohashes are constructed in such a way that their string 
similarity signifies something about their proximity on the 
globe. Take the longest sequential substring of identical 
characters possible from two geohashes (starting at the first 
character of each geohash) and call this string x. Then x itself 
is a geohash (ie. a bucket) with a certain area. The longer 
the length of x, the smaller the area of this bucket. Thus x 
gives an upper bound on the distance between the points. We 
will refer to this substring as the smallest common bucket 
(SCB) of a pair of geohashes. We define the length of the 
SCB as the length of the substring defining it. This definition 
can additionally be generalised to a set of geohashes of any 
size. Furthermore, we define the SCB of a single geohash 
g to be the set of all geohashes in the dataset which have g 
as a prefix. We can immediately assert an upper bound of 
123,264 m for the distance between the geohashes in Fig. 2, 
as per the table of upper bounds in the pygeohash package, 
which was used in the implementation of this project [33].

4.3 � Efficiency improvement attempts

Geohashing algorithms have, over time, improved in 
efficiency and have been put to use in a wide variety of 
applications and research contexts [34, 35]. As stated by 
Roussopoulos et al. [36], the efficient execution of nearest 
neighbour computations requires the use of niche spatial 
data structures which are constructed with the proximity of 
the data points being a key consideration.

Fig. 1   GeoHash applied to a map

Fig. 2   Geohash precision 
example

geohash 1: c1c2c3︸ ︷︷ ︸
SCB

x4 . . . xn

geohash 2: c1c2c3︸ ︷︷ ︸
SCB

y4 . . . yn

where: xi �= yi∀i ∈ {4 . . . n}
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The method proposed by Roussopoulos et al. [36] makes 
use of R-trees, a data structure similar in nature to the 
GeoTree structure which we will introduce in this article 
[37]. They propose an efficient algorithm for the precise 
NN computation of a spatial point, and extend this to iden-
tify the exact k-nearest neighbours using a subtree traversal 
algorithm which demonstrates improved efficiency over the 
naive search algorithm. Arya et al. [38] further this research 
by introducing an approximate k-NN algorithm with time 
complexity of O(kd log n) for any given value of k.

A comparison of some data structures for spatial search-
ing and indexing was carried out by Kothuri et al. [39], with 
a specific focus on comparison between the aforementioned 
R-trees and Quadtrees, including application to large real-
world GIS datasets. The results indicate that the Quadtree is 
superior to the R-tree in terms of build time due to expensive 
R-tree clustering. As a trade-off, the R-tree has faster query 
time. Both of these trees are designed to query for a very 
precise, user-defined area of geospatial data. As a result they 
are still relatively slow when making a very large number of 
queries to the tree.

Beygelzimer et al. [40] introduce another new data struc-
ture, the cover tree. Here, each level of the tree acts as a 
“cover” for the level directly beneath it, which allows nar-
rowing of the nearest neighbour search space to logarithmic 
time in n.

Research has also been carried out in reducing the search-
ing overhead when the exact k-NN results are not required, 
and only a spatial region around each of the nearest neigh-
bours is desired. It is often the case that ranged neighbour 
queries are performed as traditional k-NN queries repeated 
multiple times, which results in a large execution time over-
head [41]. This is an inefficient method, as the lack of preci-
sion required in a ranged query can be exploited in order to 
optimise the search process and increase performance and 
efficiency, a key feature of the GeoTree.

Muja et al. provide a detailed overview of more recently 
proposed data structures such as partitioning trees, hashing 
based NN structures and graph based NN structures designed 
to enable efficient k-NN search algorithms [42]. The suffix-
tree, a data structure which is designed to rapidly identify 
substrings in a string, has also had many incarnations and 
variations in the literature [43]. The GeoTree follows a some-
what similar conceptual idea and applies it to geohashes, 
allowing very rapid identification of groups of geohashes 
with shared prefixes.

The common theme within this existing body of work 
is the sentiment that methods of speeding up k-NN search, 
particularly upon data of a geospatial nature, require special-
ised data structures designed specifically for the purpose of 
proximity searching [36].

4.4 � GeoTree

The goal of our data structure is to allow efficient approxi-
mate ranged proximity search over a set of geohashes. For 
example, given a database of house data, we wish to retrieve 
a collection of houses in a small radius around each house 
without having to iterate over the entire database. In more 
general terms, we wish to pool all other strings in a dataset 
which have a maximal length SCB with respect to any given 
string.

4.4.1 � High‑level description

A GeoTree is a general tree (a tree which has an arbitrary 
number of children at each node) with an immutable fixed 
height h set by the user upon creation. Each level of the tree 
represents a character in the geohash, with the exception 
of level zero—the root node. For example, at level one, the 
tree contains a node for every character that occurs among 
the first characters of each geohash in the database. For each 
node in the first level, that node will contain children cor-
responding to each possible character present in the sec-
ond position of every geohash string in the dataset sharing 
the same first character as represented by the parent node. 
The same principle applies from level three to level h of the 
GeoTree, using the third to hth characters of the geohash 
respectively.

At any node, we refer to the path to that node in the tree 
as the substring of that node, and represent it by the string 
where the ith character corresponds to the letter associated 
with the node in the path at depth i.

The general structure of a GeoTree is demonstrated in 
Fig. 3. As can be seen, the first level of the tree has a node 
for each possible letter in the alphabet. Only characters 
which are actually present in the first letters of the geohashes 
in our dataset will receive nodes in the constructed tree, 
however, we include all characters in this diagram for clarity. 

ROOT

a

a

. . .

b

. . .

. . .

. . .

z

. . .

b

. . .

. . .

. . .

z

. . .

Fig. 3   GeoTree general structure
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In the second level, the a node also has a child for each pos-
sible letter. This same principle applies to the other nodes in 
the tree. Formally, at the ith level, each node has a child for 
each of the characters present among the (i + 1) th position 
of the geohash strings which are in the SCB of the current 
substring of that node. A worked example of a constructed 
GeoTree follows in Fig. 4.

Consider the following set of geohashes which 
has been created for the purpose of demonstration: 
{bh9f98, bh9f98, bd7j98, ac7j98, bh9aaj, bh9f9d, ac7j98,
bd7jya, bh9aaj, ac7aaj} . The GeoTree generated by the 
insertion of the geohashes above with a fixed height of six 
would appear as seen in Fig. 41.

4.4.2 � GeoTree data nodes

The data attributes associated with a particular geohash are 
added as a child of the leaf node of the substring correspond-
ing to that geohash in the tree, as shown in Fig. 5. In the case 
where one geohash is associated with multiple data entries, 
each data entry will have its own node as a child of the geo-
hash substring, as demonstrated in the diagram.

It is now possible to collect all data entries in the SCB 
of a particular geohash substring without iterating over the 
entire dataset. Given a particular geohash in the tree, we can 
move any number of levels up the tree from that geohash’s 
leaf nodes and explore all nearby data entries by travers-
ing the subtree given by taking that node as the root. Thus, 
to compute the set of geohashes with an SCB of length m 
or greater with respect to the particular geohash in ques-
tion, we need only explore the subtree at level m along the 
path corresponding to that particular geohash. Despite this 
improvement, we wish to remove the process of traversing 
the subtree altogether.

4.4.3 � Subtree data caching

In order to eliminate traversal of the subtree we must cache 
all data entries in the subtree at each level. To cache the 
subtree traversal, each non-leaf node receives an additional 
child node which we will refer to as the list (ls) node. The 
list node holds references to every data entry that has a leaf 
node within the same subtree as the list node itself. As a 
result, the list node offers an instant enumeration of every 
leaf node within the subtree structure in which it sits, remov-
ing the need to traverse the subtree and collect the data at the 
leaf nodes. The structure of the tree with list nodes added is 
demonstrated in Fig. 6 (some nodes and list nodes are omit-
ted for the sake of brevity and clarity).

4.4.4 � Retrieval of the subtree data

Given any geohash, we can query the tree for a set of nearby 
neighbouring geohashes by traversing down the GeoTree 
along some substring of that geohash. A longer length sub-
string will correspond to a smaller radius in which neigh-
bours will be returned. When the desired level is reached, 
the cached list node at that level can be queried for instant 

ROOT

a

c

7

j

9

8

{2}

a

a

j

{1}

b

h

9

f

9

8

{2}

d

{1}

9

a

a

j

{2}

d

7

j

9

8

{1}

y

a

{1}

Fig. 4   Sample GeoTree structure

ROOT

a

a

. . .

{d1} {d2}

. . .

. . .

{d3}

z

. . .

{d4}

. . .

. . .

. . .

{d5}

Fig. 5   GeoTree structure with data nodes

ROOT

a

a

{d1} {d2} ls: {d1, d2}

. . . ls: {d1, d2, . . . }

ls: {d1, d2, d3, . . . } . . .

a

{d3} ls: {d3}

ls: {d3, . . . }

Fig. 6   GeoTree structure with list nodes

Fig. 7   geohash+ format geohash+: p1p2
︸ ︷︷ ︸

+

x1 . . . xn
︸ ︷︷ ︸

geohash

1  Note: The leaf nodes consisting of an integer in curly braces, {x} , is 
for demonstration and indicates that x is the number of insertions to 
the tree with that geohash string.
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retrieval of the set of approximate k-NN of the geohash in 
question.

As a result of this structure’s design, the GeoTree does 
not produce a distance measure for the items in the GeoTree. 
Rather, it clusters groups of nearby data points. While this 
does not allow for fine tuning of the search radius, it allows 
a set of data points which are geospatially close to the speci-
fied geohash to be retrieved in constant time, which is a 
worthwhile trade-off for our specific purposes, as it drasti-
cally decreases the computation time of the index.

4.5 � Geohash+

Extended geohashes, which we will refer to as geohash+, 
are geohashes which have been modified to encode addi-
tional information regarding the property at that location. 
Additional parameters are encoded by adding a character in 
front of the geohash. The value of the character at that posi-
tion corresponds to the value of the parameter which that 
character represents. Figure 7 demonstrates the structure of 
a geohash+ with two additional parameters, p1 and p2.

Any number of parameters can be prepended to the geo-
hash. In the context of properties, this includes the number 
of bedrooms, the number of bathrooms, an indicator of the 
type of property (detached house, semi-detached house, 
apartment etc.), a parameter representing floor size ranges 
and any other attribute desired for comparison.

4.6 � GeoTree Performance with geohash+

Due to the design of the GeoTree data structure, a geohash+ 
will be inserted into the tree in exactly the same manner as 
a regular geohash [12]. If the original GeoTree had a height 
of h for a dataset with h-length geohashes, then the GeoTree 
accepting that geohash extended to a geohash+ with p addi-
tional parameters prepended should have a height of h + p . 
However, both of these are fixed, constant, user-specified 
parameters which are independent of the number of data 
points, and hence do not affect the constant-time perfor-
mance of the GeoTree.

The major benefit of this design is that the ranged proxim-
ity search will interpret the additional parameters as regular 
geohash characters when constructing the common buckets 
upon insertion, and also when finding the SCB in any search, 
without introducing additional performance and complexity 
drawbacks. This means that if we wish to match properties 
for price comparison in our index models not only geospa-
tially, but also by bedroom count, for example, the GeoTree 
with geohash+ will naturally take care of this added com-
plexity without increasing the computation time complexity.

5 � Case study: myhome property listing data

MyHome [44] are a major player in property sale listings in 
Ireland. With data on property asking prices being collected 
since 2011, MyHome have a rich database of detailed data 
regarding houses which have been listed for sale. MyHome 
have provided access to their dataset for the purposes of this 
research.

5.1 � Dataset overview

The data provided by MyHome includes verified GPS co-
ordinates, the number of bedrooms, the type of dwelling and 
further information for most of its listings. It is important 
to note, however, that this dataset consists of asking prices, 
rather than the sale prices featured in the less detailed Irish 
Property Price Register Data (used in the original algorithm) 
[5].

The dataset consists of a total of 718,351 property list-
ing records over the period February 2011 to March 2019 
(inclusive). This results in 7330 mean listings per month 
(with a standard deviation of 1689), however, this raw data 
requires some filtering for errors and outliers.

5.2 � Data filtration

As with the majority of human collected data, some prun-
ing must be done to the MyHome dataset in order to remove 
outliers and erroneous data. Firstly, not all transactions in the 
dataset include verified GPS co-ordinates or include data on 
the number of bedrooms. These records will be instantly dis-
carded for the purpose of the enhanced version of the algo-
rithm. They account for 16.5% of the dataset. Furthermore, 
any property listed with greater than six bedrooms will not 
be considered. These properties are not representative of a 
standard house on the market as the number of such listings 
amounts to just 1% of the entire dataset.

Any data entries which do not include an asking price 
cannot be used for house price index calculation and must 
be excluded. Such records amount to 3.6% of the dataset. 
Additionally, asking price records which have a price of less 
than €10,000 or more than €1,000,000 are also excluded, 
as these generally consist of data entry errors (eg. wrong 
number of zeroes in user-entered asking price), abandoned 
or dilapidated properties in listings below the lower bound 
and mansions or commercial property in the entries exceed-
ing the upper bound. Properties which meet these exclusion 
criteria based on their price amount to only 2% of the dataset 
and thus are not representative of the market overall.

In summation, 77% of the dataset survives the pruning 
process. This leaves us with 5646 filtered mean listings per 
month.

Appendix E. Publication: A real-time mix-adjusted median property price index...233



143Journal of Banking and Financial Technology (2022) 6:135–148	

1 3

5.3 � Comparison with PPR dataset

The mean number of filtered monthly listings available in 
our dataset represents a 157% increase on the 2200 mean 
monthly records used in the original algorithm’s index 
computation [5]. Furthermore, the dataset in question is sig-
nificantly more precise and accurate than the PPR dataset, 
owing to the ability to more effectively prune the dataset. 
The PPR dataset consists of address data entered by hand 
from written documents and does not use the Irish postcode 
system, meaning that addresses are often vague or ambig-
uous. This results in some erroneous data being factored 
into the model computation as there is no effective way to 
prune this data [5]. The MyHome dataset has been filtered 
to include verified addresses only, as described previously.

The PPR dataset has no information on the number of 
bedrooms or any key characteristics of the property. This can 
result in dilapidated properties, apartment blocks, inherited 
properties (which have an inaccurate sale value which is 
used for taxation purposes) and mansions mistakenly being 
counted as houses [5]. Our dataset consists of only single 
properties and the filtration process described previously 
greatly reduces the number of such unrepresentative samples 
making their way into the index calculation.

The “sparse and frugal” PPR dataset was capable of out-
performing the CSO’s hedonic regression model with a mix-
adjusted median model [5]. With the larger, richer and more 
well-pruned MyHome dataset, further algorithmic enhance-
ments to this model are possible.

6 � Performance measures

Property prices are generally assumed to change in a smooth, 
calm manner over time [45, 46]. According to Maguire et al. 
[5], the smoothest index is, in practice, the most robust 
index. As a result of this, smoothness is considered to be 
one of the strong indicators of reliability for an index. How-
ever, the ’smoothness’ of a time series is not well defined nor 
immediately intuitive to measure mathematically.

The standard deviation of the time series will offer some 
insight into the spread of the index around the mean index 
value. A high standard deviation indicates that the index 
changes tend to be large in magnitude. While this is useful in 
investigating the “calmness” of the index (how dramatic its 
changes tend to be), it is not a reliable smoothness measure, 
as it is possible to have a very smooth graph with sizeable 
changes.

The standard deviation of the differences is a much more 
reliable measure of smoothness. A high standard deviation 
of the differences indicates that there is a high degree of 
variance among the differences ie. the change from point 

to point is unpredictable and somewhat wild. A low value 
for this metric would indicate that the changes in the graph 
behave in a more calm manner.

Finally, we present a metric which we have defined, the 
mean spike magnitude ��X (MSM) of a time series X. This is 
intended to measure the mean value of the contrast between 
changes each time the trend direction of the graph flips. In 
other words, it is designed to measure the average size of the 
‘spikes’ in the graph.

Given DX = {d1,… , dn} is the set of differences in the 
time series X, we say that the pair (di, di+1) is a spike if di and 
di+1 have different signs. Then Si = |di+1 − di| is the spike 
magnitude of the spike (di, di+1).

The mean spike magnitude of X is defined as:

where:

7 � Algorithmic evolution

7.1 � Original price index algorithm

The central price tendency algorithm introduced by Maguire 
et al. [5] was designed around a key limitation; extremely 
frugal data. The only data available for each property was 
location, sale date and sale price. The core concept of the 
algorithm relies on using geographical proximity in order 
to match similar properties historically for the purpose of 
comparing sale prices. While this method is likely to match 
certain properties inaccurately, the key concept of central 
price tendency is that these mismatches should average out 
over large datasets and cancel noise.

The first major component of the algorithm is the voting 
stage. The aim of this is to remove properties from the data-
set which are geographically isolated. The index relies on 
matching historical property sales which are close in loca-
tion to a property in question. As a result, isolated proper-
ties will perform poorly as it will not be possible to make 
sufficiently near property matches for them.

In order to filter out such properties, each property in the 
dataset gives one vote to its closest neighbour, or a certain, 
set number of nearest neighbours. Once all of these votes 
have been casted, the total number of votes per property 
is enumerated and a segment of properties with the lowest 
votes is removed. In the implementation of the algorithm 
used by Maguire et al. [5], this amounted to ten percent of 
the dataset.

��X =
1

||SX||

∑

S∈SX

S2

SX = {S1, S2,… , St} is the set of all spike magnitudes of X

||SX|| is the size of the set SX
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Once the voting stage of the algorithm is complete, the 
next major component is the stratification stage. This is the 
core of the algorithm and involves stratifying average prop-
erty changes on a month by month comparative basis which 
then serve as multiple points of reference when comput-
ing the overall monthly change. The following is a detailed 
explanation of the original algorithm’s implementation.

First, take a particular month in the dataset which will 
serve as the stratification base, mb . Then we iterate through 
each house sale record in mb , represented by hmb

 . We must 
now find the nearest neighbour of hmb

 in each preceding 
month in the dataset, through a proximity search. For each 
prior month mx to mb , refer to the nearest neighbour in mx 
to hmb

 in question as hmx
 . Now we are able to compute the 

change between the sale price of hmb
 and the nearest sold 

neighbour to h in each of the months {m1,… ,mn} as a ratio 
of hmb

 to hmx
 for x ∈ {1,… , n} . Once this is done for every 

property in mb , we will have a scenario such that there is a 
catalogue of sale price ratios for every month prior to m and 
thus we can look at the median price difference between m 
and each historic month.

However, this is only stratification with one base, referred 
to as stage three in the original article [5]. We then expand 
the algorithm by using every month in the dataset as a strati-
fication base. The result of this is that every month in the 
dataset now has price reference points to every month which 
preceded it and we can now use these reference points as a 
way to compare month to month.

Assume that mx and mx+1 are consecutive months in 
the dataset and thus we have two sets of median ratios 
{rx(m1),… , rx(mx−1)} and {rx+1(m1),… , rx+1(mx)} where 
ra(my) represents the median property sale ratio between 
months ma and my where ma is the chosen stratification base. 
In order to compute the property price index change from mx 

to mx+1 , we look at the difference between rx(mi) and rx+1(mi) 
for each i ∈ 1,… , x − 1 and take the mean of those differ-
ences. As such, we are not directly comparing each month, 
rather we are contrasting the relationship of both months in 
question to each historical month and taking an averaging 
of those comparisons.

This results in a central price tendency based property 
index that outperformed the national Irish hedonic regres-
sion based index while using a far more frugal set of data 
to do so.

7.2 � Enhanced price index

In order to enhance our price index model, we prepend a 
parameter to the geohash of each property representing 
the number of bedrooms present within that property. As a 
result, when the GeoTree is performing the SCB computa-
tion, it will now only match properties which are both nearby 
and share the same number of bedrooms as the property in 
question. This allows the index model to compare the price 
ratio of properties which are more similar in nature during 
the stratification stage and thus should result in a smoother, 
more accurate measure of the change in property prices over 
time [11].

As described previously, the GeoTree sees the additional 
parameter no differently to any other character in the geo-
hash and due to its placement at the start of the geohash, the 
search space will be instantly narrowed to properties with 
matching number of bedrooms, x, by taking the x branch in 
the tree at the first step of traversal.

Table 1   Complexity and 
performance of the algorithms

aExecution times reported are the mean ( � ) of ten trials.
bStandard deviation ( � ) reported as a percentage of the mean ( �).
cIncludes build time for the dataset array/GeoTree on the dataset, as applicable.
dAll algorithms computed using an AMD Ryzen 2700X CPU.
eAll algorithms executed on the Irish Residential Property Price Register database of 279,474 property sale 
records as of time of execution

Algorithm Complexity � (1 core)a �b (%) � (8 cores)a �b (%)

Voting O

(
n
2
t

)
233.54 sc 2.37 46.73 sc 1.69

Voting+ O(nt) 12.78 sc 1.68 3.02 sc 0.69
Stratify

O

(
n
2
t(t−1)

2

)
29.03 h 2.41 4.19 h 1.89

Stratify+
O

(
nt(t−1)

2

)
∼0.05 h (163.89 s) 1.71 ∼0.01 h (39.63 s) 0.85

Overall
O

(
n
2
t(t+1)

2

)
29.11 h 2.43 4.21 h 1.90

Overall+
O

(
nt(t+1)

2

)
∼0.05 h (177.73 s) 1.67 ∼0.01 h (43.71 s) 0.79
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8 � Results

Firstly, we will examine the performance improvement 
offered by the introduction of the GeoTree data structure, in 
addition to demonstrating the scalability of said data struc-
ture. Following this, we run the property price index algo-
rithm on the MyHome data without factoring any additional 
parameters as a control step. Finally, we create a GeoTree 
with geohash+ entries consisting of the number of bedrooms 
in the house prepended to the geohash for the property, 
showing a comparison of each index time series.

8.1 � GeoTree performance

Table 1 compares the performance of the original property 
price index algorithm with and without use of the GeoTree 
(on a database of 279,474 property sale records), includ-
ing both single threaded execution time and multi-threaded 
execution time (running eight threads across eight CPU 
cores) on our test machine. The results using the GeoTree 
are marked with a + symbol.

Figure 8 demonstrates the high level of similarity between 
the original PPR index algorithm and the PPR index with 
GeoTree. The slight difference is due to the algorithmic 
change of considering a basket of neighbours for each prop-
erty, rather than a single neighbour per property as in the 
original algorithm, which could be argued to be a positive 
algorithmic change, as a larger sample of properties is con-
sidered. Regardless, the difference between each time series 
is minimal and both are extremely highly correlated with one 
another ( p = 0.999).

8.2 � GeoTree scalability testing

In order to test the scalability of the GeoTree, we obtained 
a dataset comprising 2,857,669 property sale records for 
California, and evaluated both the build and query time of 
the data structure. Table 2 shows mean build time and mean 
query time on both 10% ( ∼ 285,000 records) and 100% ( ∼
2.85 million records) of the dataset. In this context, query 
time refers to the total time to perform 100 sequential que-
ries, as a single query was too fast to accurately measure.

The results demonstrate that the height of the tree has 
a modest effect on the build time, while dataset size has a 
linear effect on build time, thus supporting the claimed O(n) 
build time with O(1) insertion. Furthermore, query time is 
shown to remain constant regardless of both tree height and 
dataset size, with negligible differences in all instances.2

8.3 � Improved index model performance

Table 3 shows the performance metrics previously described 
applied to the algorithms discussed in this paper: Original 
PPR, PPR with GeoTree, MyHome without bedroom factor-
ing and MyHome with bedroom factoring. While both the 
standard deviation of the differences and the MSM show that 
some smoothness is sacrificed by the GeoTree implementa-
tion of the PPR algorithm, the index running on MyHome’s 

Table 2   Scalability Performance of GeoTree

aBuild time (10%) is the total time to insert 10% of dataset ( ∼ 285,000 records)
bBuild time (100%) is the total time to insert 100% of dataset ( ∼ 2.85m records)
cQuery time consists of total time to execute 100 sequential neighbour queries on 10% and 100% of the dataset respectively
dTimes reported are in the format �(�) calculated over ten trials

Height h 4 5 6 7 8

Build time (10%)a 17.63 s (0.08 s) 18.10 s (0.10 s) 18.46 s (0.22 s) 18.84 s (0.08 s) 19.39 s (0.09 s)

Build time (100%)b 179.67 s (0.58 s) 183.80 s (0.57 s) 183.99 s (0.52 s) 192.06 s (0.60 s) 194.31 s (0.94 s)

Query time (10%)c 5.1 ms (0.3 ms) 5.2 ms (0.4 ms) 5.3 ms (0.9 ms) 5.3 ms (0.4 ms) 5.3 ms (0.5 ms)
Query time (100%)c 5.4 ms (1.0 ms) 5.3 ms (0.9 ms) 5.5 ms (1.0 ms) 5.7 ms (1.3 ms) 5.6 ms (1.2 ms)

Table 3   Index comparison statistics

Algorithm St. dev St. dev of dif-
ferences

MSM

PPR (original) 16.524 2.191 23.30
PPR (GeoTree) 16.378 2.518 29.78
MyHome (without bedrooms) 12.898 2.209 18.91
MyHome (with bedrooms) 12.985 1.617 9.75

2  Note, this analysis is not designed to provide results on our house 
price index. Rather, it is intended to demonstrate that our GeoTree 
proximity matching solution is scalable to a larger geospatial dataset 
than the dataset used in our model analysis.
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data without bedroom factoring approximately matches the 
smoothness of the original algorithm. Furthermore, when 
bedroom factoring is introduced, the algorithm produces 
by far the smoothest index, with the standard deviation of 
the differences being 26.2% lower than the PPR (original) 
algorithm presented by Maguire et al. [5], while the MSM 
sits at 58.2% lower.

If we compare the MyHome results in isolation, we can 
clearly observe that the addition of bedroom matching makes 
a very significant impact on the index performance. While 
the trend of each graph is observably similar, Fig. 8 dem-
onstrates that month to month changes are less erratic and 
appear less prone to large, spontaneous dips. Considering the 
smoothness metrics, the introduction of bedroom factoring 
generates a decrease of 26.8% in the standard deviation of 
the differences and a decrease of approximately 48.4% in the 
MSM. These results show a clear improvement by tightening 
the accuracy of property matching and are promising for the 
potential future inclusion of additional parameters such as 
bedroom matching should such data become available.

Figure 8 corresponds with the results of these metrics, 
with the MyHome data (bedrooms factored) index appearing 
the smoothest time series of the four which are compared. It 
is important to note that the PPR data is based upon actual 
sale prices, while the MyHome data is based on listed asking 
prices of properties which are up for sale and as such, may 
produce somewhat different results.

It is a well known fact that properties sell extremely well 
in spring and towards the end of the year, the former being 
the most popular period for property sales. Furthermore, 
the months towards late summer and shortly after tend to be 
the least busy periods in the year for selling property [47]. 
These phenomena can be observed in Fig. 8 where there is 
a dramatic increase in the listed asking prices of properties 

in the spring months and towards the end of each year, while 
the less popular months tend to experience a slump in price 
movement. As such, the two PPR graphs and the MyHome 
data (bedrooms not factored) graph are following more or 
less the same trend in price action and their graphs tend to 
meet often, however, the majority of the price action in the 
MyHome data graphs tends to wait for the popular selling 
months. The PPR graph does not experience these phenom-
ena as selling property can be a long, protracted process and 
due to a myriad of factors such as price bidding, paperwork, 
legal hurdles, mortgage applications and delays in reporting, 
final sale notifications can happen outside of the time period 
in which the sale price is agreed between buyer and seller.

9 � Conclusion

9.1 � Contributions

The introduction of bedroom factoring as an additional 
parameter in the pairing of nearby properties has been shown 
to have a profound impact on the smoothness of the mix-
adjusted median property price index. These developments 
were made possible due to the acquisition of a richer data 
set and the introduction of the GeoTree data structure, which 
greatly increased the performance of the algorithm. There 
is also scope for the introduction of further property char-
acteristics (such as the number of bathrooms, property type 
etc.) in the proximity matching part of the algorithm, should 
such data be acquired.

Despite this advancement, the algorithm still has great 
benefit to the layperson, outperforming certain implemen-
tations of hedonic regression models without having access 
to richer, private datasets [11]. The result is a highly flex-
ible algorithm, which can adapt to various levels of data 
availability while still offering a high degree of accuracy. 
Examples of free, publicly available datasets which could 
be used with our house price index model include the Irish 
Property Price Register [48] (used in this analysis), or the 
British Price Paid dataset covering England and Wales, pub-
lished monthly by HM Land Registry [49]. Stakeholders 
with greater exposure to the market, such as mortgage lend-
ers, are likely to have their own rich data sources and thus 
will be capable of leveraging the increased accuracy offered 
by our model when it is fed a more descriptive dataset, as 
demonstrated in this study.

Furthermore, the design of the GeoTree data structure 
ensures that minimal computational complexity is added 
when considering the technical implementation of this algo-
rithmic adjustment [12]. Any additional parameters or attrib-
utes could also be integrated with ease, without increasing 
the complexity of the index computation. This contribution 
is of great benefit to all housing market stakeholders, as it 

Fig. 8   Comparison of index on PPR and MyHome data sets, from 
02-2011 to 03-2019 [data limited to 09-2018 for PPR]
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means that as soon as the property sale data for a given 
month becomes available, a house price index model can be 
produced immediately, using our algorithm. This counter-
acts the substantial time lag issue associated with national 
hedonic regression models, where house price indices typi-
cally are not published for one-to-two months after the end 
of the month to which the data pertains (e.g. August property 
price change may not be published until October).

9.2 � Limitations and future work

The efficiency improvements offered by the GeoTree are 
such that our model could be computed rapidly enough, with 
full automation, to have real-time updates (e.g. up to every 
5 min) to a property price index, if a sufficiently rich stream 
of continuous data was available to the algorithm. Large 
property listing websites, such as Zillow, likely have enough 
live, incoming listing data that such an index would be fea-
sible to compute at this frequency, however, this volume of 
data is not publicly available so as to allow for demonstration 
of such an application by ourselves.

Comprehensive financial institutions dealing in mortgage 
lending likely have enough data to produce such an index on 
a region-by-region basis at least as frequently as weekly, if 
not even more regularly. This would aid their credit depart-
ments in lending decisions by offering a live, timely view of 
the changing dynamics of the property market and points of 
reference for typical house prices in each region, which the 
out of date national hedonic regression indices are incapable 
of doing, due to the lengthy publication delay discussed in 
Sect. 9.1.

Despite these limitations, we believe that our index has 
substantial benefit to all property market stakeholders, 
regardless of the amount of data at hand, or the richness 
of said data. Our future ambitions for research in this field 
include expanding our house price index model to perform 
property market forecasting based on emerging data. We 
also hope to gain access to an even larger property sale data-
set, so that we can benchmark our model’s performance on 
a higher frequency than monthly indices. Beyond this, our 
goal is to integrate the house price index model into a deep 
learning model framework which can perform individual 
property valuation based on a number of input characteris-
tics. This model aims not only to show the present value of a 
given property, but also the historical change in the value of 
said property, using our house price index model as an input.

Funding  Open Access funding provided by the IReL Consortium.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 

were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Diewert WE, de Haan J, Hendriks R (2015) Hedonic regressions 
and the decomposition of a house price index into land and struc-
ture components. Econom Rev 34(1–2):106–126. https://​doi.​org/​
10.​1080/​07474​938.​2014.​944791

	 2.	 Case K, Shiller R, Quigley J (2001) Comparing wealth effects: the 
stock market versus the housing market. Adv Macroecon. https://​
doi.​org/​10.​3386/​w8606

	 3.	 Forni M, Hallin M, Lippi M, Reichlin L (2003) Do financial vari-
ables help forecasting inflation and real activity in the euro area? J 
Monetary Econ 50(6):1243–1255. https://​doi.​org/​10.​1016/​S0304-​
3932(03)​00079-5

	 4.	 Gupta R, Hartley F (2013) The role of asset prices in forecast-
ing inflation and output in South Africa. J Emerg Market Financ 
12(3):239–291. https://​doi.​org/​10.​1177/​09726​52713​512913

	 5.	 Maguire P, Miller R, Moser P, Maguire R (2016) A robust house 
price index using sparse and frugal data. J Prop Res 33(4):293–
308. https://​doi.​org/​10.​1080/​09599​916.​2016.​12587​18

	 6.	 Plakandaras V, Gupta R, Gogas P, Papadimitriou T (2014) Fore-
casting the U.S. real house price index. Working paper series 
30–14, Rimini Centre for Economic Analysis. https://​ideas.​repec.​
org/p/​rim/​rimwps/​30_​14.​html

	 7.	 Hernando JR (2018) Humanizing finance by hedging property 
values. Emerald Publishing Limited, Bingley, pp 183–204. https://​
doi.​org/​10.​1108/​S0196-​38212​01700​00034​015 (Chap. 10)

	 8.	 Jadevicius A, Huston S (2015) Arima modelling of Lithuanian 
house price index. Int J Hous Mark Anal 8(1):135–147. https://​
doi.​org/​10.​1108/​IJHMA-​04-​2014-​0010

	 9.	 Klotz P, Lin TC, Hsu SH (2016) Modeling property bubble 
dynamics in Greece, Ireland, Portugal and Spain. J Eur Real Estate 
Res 9(1):52–75. https://​doi.​org/​10.​1108/​JERER-​11-​2014-​0038

	10.	 Englund P, Hwang M, Quigley JM (2002) Hedging housing risk. 
J Real Estate Financ Econ 24(1):167–200. https://​doi.​org/​10.​
1023/A:​10139​42607​458

	11.	 Miller R, Maguire P (2020) A rapidly updating stratified mix-
adjusted median property price index model. In: 2020 IEEE 
symposium series on computational intelligence (SSCI), IEEE, 
p 9–15, https://​doi.​org/​10.​1109/​SSCI4​7803.​2020.​93082​35

	12.	 Miller R, Maguire P (2020) GeoTree: a data structure for con-
stant time geospatial search enabling a real-time mix-adjusted 
median property price index. arXiv e-prints arXiv:​2008.​02167

	13.	 Kain JF, Quigley JM (1970) Measuring the value of housing 
quality. J Am Stat Assoc 65(330):532–548. https://​doi.​org/​10.​
1080/​01621​459.​1970.​10481​102

	14.	 OECD, Eurostat, Organization IL, Fund IM, Bank TW, for 
Europe UNEC (2013) Handbook on residential property price 
indices. https://​doi.​org/​10.​1787/​97892​64197​183-​en

	15.	 Goh YM, Costello G, Schwann G (2012) Accuracy and robust-
ness of house price index methods. Hous Stud 27(5):643–666. 
https://​doi.​org/​10.​1080/​02673​037.​2012.​697551

	16.	 Bourassa S, Hoesli M, Sun J (2006) A simple alternative house 
price index method. J Hous Econ 15(1):80–97. https://​doi.​org/​
10.​1016/j.​jhe.​2006.​03.​001

Appendix E. Publication: A real-time mix-adjusted median property price index...238



148	 Journal of Banking and Financial Technology (2022) 6:135–148

1 3

	17.	 Case B, Pollakowski HO, Wachter SM (1991) On choosing 
among house price index methodologies. Real Estate Econ 
19(3):286–307. https://​doi.​org/​10.​1111/​1540-​6229.​00554

	18.	 Bailey MJ, Muth RF, Nourse HO (1963) A regression method 
for real estate price index construction. J Am Stat Assoc 
58(304):933–942. https://​doi.​org/​10.​1080/​01621​459.​1963.​
10480​679

	19.	 Case KE, Shiller RJ (1987) Prices of single family homes 
since 1970: New indexes for four cities. Working paper 2393, 
National Bureau of Economic Research. https://​doi.​org/​10.​3386/​
w2393. http://​www.​nber.​org/​papers/​w2393

	20.	 de Vries P, de Haan J, van der Wal E, Mariën G (2009) A house 
price index based on the spar method. J Hous Econ 18(3):214–
223. https://​doi.​org/​10.​1016/j.​jhe.​2009.​07.​002 (special Issue on 
Owner Occupied Housing in National Accounts and Infla-
tion Measures)

	21.	 Jansen S, Vries P, Coolen H, Lamain CJM, Boelhouwer P (2008) 
Developing a house price index for the Netherlands: a practical 
application of weighted repeat sales. J Real Estate Financ Econ 
37:163–186. https://​doi.​org/​10.​1007/​s11146-​007-​9068-0

	22.	 Costello G, Watkins C (2002) Towards a system of local house 
price indices. Hous Stud 17(6):857–873. https://​doi.​org/​10.​
1080/​02673​03021​6001

	23.	 Dorsey RE, Hu H, Mayer WJ, Chen Wang H (2010) Hedonic 
versus repeat-sales housing price indexes for measuring the 
recent boom-bust cycle. J Hous Econ 19(2):75–93. https://​doi.​
org/​10.​1016/j.​jhe.​2010.​04.​001

	24.	 Dombrow J, Knight JR, Sirmans CF (1997) Aggregation bias 
in repeat-sales indices. J Real Estate Financ Econ 14(1):75–88. 
https://​doi.​org/​10.​1023/A:​10077​20001​268

	25.	 Prasad N, Richards A (2008) Improving median housing price 
indexes through stratification. J Real Estate Res 30(1):45–72

	26.	 O’Hanlon N (2011) Constructing a national house price index 
for Ireland. J Stat Soc Inq Soc Ireland 40:167–196

	27.	 Bank of England (2018) How does the housing market affect the 
economy? https://​www.​banko​fengl​and.​co.​uk/​knowl​edgeb​ank/​
how-​does-​the-​housi​ng-​market-​affect-​the-​econo​my. Accessed 24 
May 2021

	28.	 Zhu H et al (2005) The importance of property markets for mon-
etary policy and financial stability. Real Estate Indica Financ 
Stab 21:9–29

	29.	 Bank of England (2018) What is the bank of England’s role in 
the housing market? https://​www.​banko​fengl​and.​co.​uk/​knowl​
edgeb​ank/​whats-​the-​bank-​of-​engla​nds-​role-​in-​the-​housi​ng-​mar-
ket. Accessed 24 May 2021

	30.	 Che X, Li B, Guo K, Wang J (2011) Property prices and bank 
lending: some evidence from China’s regional financial centres. 
Procedia Comput Sci 4:1660–1667. https://​doi.​org/​10.​1016/j.​
procs.​2011.​04.​179 (proceedings of the International Confer-
ence on Computational Science, ICCS 2011)

	31.	 Robusto CC (1957) The cosine-haversine formula. Am Math Mon 
64(1):38–40

	32.	 Niemeyer G (2008) geohash.org is public! https://​blog.​labix.​org/​
2008/​02/​26/​geoha​shorg-​is-​public. Accessed 02 May 2019

	33.	 McGinnis W (2017) Pygeohash. https://​github.​com/​wdm00​06/​
pygeo​hash, [Python]

	34.	 Moussalli R, Srivatsa M, Asaad S (2015) Fast and flexible conver-
sion of Geohash codes to and from latitude/longitude coordinates. 
In: 2015 IEEE 23rd annual international symposium on field-pro-
grammable custom computing machines, p 179–186. https://​doi.​
org/​10.​1109/​FCCM.​2015.​18

	35.	 Moussalli R, Asaad SW, Srivatsa M (2015) Enhanced conver-
sion between geohash codes and corresponding longitude/latitude 
coordinates. https://​paten​ts.​google.​com/​patent/​US201​60283​515

	36.	 Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor 
queries. SIGMOD Rec 24(2):71–79. https://​doi.​org/​10.​1145/​
568271.​223794

	37.	 Guttman A (1984) R-trees: a dynamic index structure for spatial 
searching. SIGMOD Rec 14(2):47–57. https://​doi.​org/​10.​1145/​
971697.​602266

	38.	 Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) 
An optimal algorithm for approximate nearest neighbor searching 
fixed dimensions. J ACM 45(6):891–923. https://​doi.​org/​10.​1145/​
293347.​293348

	39.	 Kothuri RKV, Ravada S, Abugov D (2002) Quadtree and R-tree 
indexes in oracle spatial: a comparison using GIS data. In: Pro-
ceedings of the 2002 ACM SIGMOD international conference on 
Management of data, ACM, p 546–557

	40.	 Beygelzimer A, Kakade S, Langford J (2006) Cover trees for near-
est neighbor. In: Proceedings of the 23rd international conference 
on machine learning, ACM, New York, NY, USA, ICML ’06, p 
97–104. https://​doi.​org/​10.​1145/​11438​44.​11438​57

	41.	 Bao J, Chow C, Mokbel MF, Ku W (2010) Efficient evaluation 
of k-range nearest neighbor queries in road networks. In: 2010 
Eleventh international conference on mobile data Management, 
p 115–124. https://​doi.​org/​10.​1109/​MDM.​2010.​40

	42.	 Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms 
for high dimensional data. IEEE Trans Pattern Anal Mach Intell 
36(11):2227–2240. https://​doi.​org/​10.​1109/​TPAMI.​2014.​23213​
76

	43.	 Apostolico A, Crochemore M, Farach-Colton M, Galil Z, Muth-
ukrishnan S (2016) 40 years of suffix trees. Commun ACM 
59(4):66–73

	44.	 MyHome Ltd (2021) http://​www.​myhome.​ie. Accessed 31 Mar 
2021

	45.	 McMillen DP (2003) Neighborhood house price indexes in Chi-
cago: a Fourier repeat sales approach. J Econ Geogr 3(1):57–73. 
https://​doi.​org/​10.​1093/​jeg/3.​1.​57

	46.	 Clapp JM, Kim H, Gelfand AE (2002) Predicting spatial patterns 
of house prices using LPR and Bayesian smoothing. Real Estate 
Econ 30(4):505–532. https://​doi.​org/​10.​1111/​1540-​6229.​00048

	47.	 Paci L, Beamonte MA, Gelfand AE, Gargallo P, Salvador M 
(2017) Analysis of residential property sales using space-time 
point patterns. Spatial Stat 21:149–165. https://​doi.​org/​10.​1016/j.​
spasta.​2017.​06.​007

	48.	 PPR (2021) Property price register. https://​www.​prope​rtypr​icere​
gister.​ie. Accessed 25 Oct 2021

	49.	 HM-Land-Registry (2021) Price paid dataset. https://​www.​gov.​
uk/​gover​nment/​stati​stical-​data-​sets/​price-​paid-​data-​downl​oads. 
Accessed 25 Oct 2021

Appendix E. Publication: A real-time mix-adjusted median property price index...239



240

Bibliography

Agnello, Luca and Ludger Schuknecht (2011). “Booms and busts in housing markets:

Determinants and implications”. In: Journal of Housing Economics 20.3, pp. 171–

190.

Anderson, Hamish (July 2018). “Value of nature implicit in property prices – he-

donic pricing method methodology”. In: ONS - Environmental Accounts. URL:

https://www.ons.gov.uk/economy/environmentalaccounts/methodologies/

valueofnatureimplicitinpropertypriceshedonicpricingmethodhpmmethodologynote.

Anenberg, Elliot and Steven Laufer (Oct. 2017). “A More Timely House Price Index”.

In: The Review of Economics and Statistics 99.4, pp. 722–734. ISSN: 0034-6535. DOI:

10.1162/REST_a_00634.

Anselin, Luc and Nancy Lozano-Gracia (2008). “Errors in variables and spatial ef-

fects in hedonic house price models of ambient air quality”. In: Empirical eco-

nomics 34, pp. 5–34. DOI: 10.1007/s00181-007-0152-3.

Apostolico, Alberto, Maxime Crochemore, et al. (2016). “40 years of suffix trees”. In:

Communications of the ACM 59.4, pp. 66–73.

Arya, Sunil, David M. Mount, et al. (Nov. 1998). “An Optimal Algorithm for Approx-

imate Nearest Neighbor Searching Fixed Dimensions”. In: J. ACM 45.6, pp. 891–

923. ISSN: 0004-5411. DOI: 10.1145/293347.293348.

Babyak, Michael A (2004). “What you see may not be what you get: a brief, non-

technical introduction to overfitting in regression-type models”. In: Psychosomatic

medicine 66.3, pp. 411–421.

Baker, Malcolm, Brendan Bradley, and Jeffrey Wurgler (2011). “Benchmarks as limits

to arbitrage: Understanding the low-volatility anomaly”. In: Financial Analysts

Journal 67.1, pp. 40–54.

https://www.ons.gov.uk/economy/environmentalaccounts/methodologies/valueofnatureimplicitinpropertypriceshedonicpricingmethodhpmmethodologynote
https://www.ons.gov.uk/economy/environmentalaccounts/methodologies/valueofnatureimplicitinpropertypriceshedonicpricingmethodhpmmethodologynote
https://doi.org/10.1162/REST_a_00634
https://doi.org/10.1007/s00181-007-0152-3
https://doi.org/10.1145/293347.293348


Bibliography 241

Bala, Alain Pholo, Dominique Peeters, and Isabelle Thomas (2014). “Spatial issues

on a hedonic estimation of rents in Brussels”. In: Journal of Housing Economics 25,

pp. 104–123. ISSN: 1051-1377. DOI: 10.1016/j.jhe.2014.05.002.

Bank of England (2018a). How does the housing market affect the economy? Accessed:

2024-06-01. URL: https://www.bankofengland.co.uk/knowledgebank/how-

does-the-housing-market-affect-the-economy.

— (2018b). What is the Bank of England’s role in the housing market? Accessed: 2024-

06-01. URL: https://www.bankofengland.co.uk/knowledgebank/whats-the-

bank-of-englands-role-in-the-housing-market.

Bao, J., C. Chow, et al. (May 2010). “Efficient Evaluation of k-Range Nearest Neigh-

bor Queries in Road Networks”. In: 2010 Eleventh International Conference on Mo-

bile Data Management, pp. 115–124. DOI: 10.1109/MDM.2010.40.

Basu, Sabyasachi and Thomas G Thibodeau (1998). “Analysis of spatial autocorre-

lation in house prices”. In: The Journal of Real Estate Finance and Economics 17,

pp. 61–85. DOI: 10.1023/A:1007703229507.

Beygelzimer, Alina, Sham Kakade, and John Langford (2006). “Cover Trees for Near-

est Neighbor”. In: Proceedings of the 23rd International Conference on Machine Learn-

ing. ICML ’06. ACM, pp. 97–104. DOI: 10.1145/1143844.1143857.

Bholat, David (2015). “Big data and central banks”. In: Big Data & Society. DOI: 10.

1177/2053951715579469.

Braun, Rahel and Sarah M Lein (2021). “Sources of bias in inflation rates and im-

plications for inflation dynamics”. In: Journal of Money, Credit and Banking 53.6,

pp. 1553–1572. DOI: 10.1111/jmcb.12848.

Brezina, Corona (2011). Understanding the gross domestic product and the gross national

product. Rosen Publishing Group, inc., pp. 4–5.

CACI (Mar. 2019). Acorn technical guide - CACI. URL: https://acorn.caci.co.uk/

downloads/Acorn-Technical-document.pdf.

Cartern, Charles C. and William J. Haloupek (2000). “Spatial Autocorrelation in a

Retail Context”. In: International Real Estate Review 3.1, pp. 34–48.

Case, Bradford, Henry O. Pollakowski, and Susan M. Wachter (1991). “On Choos-

ing Among House Price Index Methodologies”. In: Real Estate Economics 19.3,

pp. 286–307. DOI: 10.1111/1540-6229.00554.

https://doi.org/10.1016/j.jhe.2014.05.002
https://www.bankofengland.co.uk/knowledgebank/how-does-the-housing-market-affect-the-economy
https://www.bankofengland.co.uk/knowledgebank/how-does-the-housing-market-affect-the-economy
https://www.bankofengland.co.uk/knowledgebank/whats-the-bank-of-englands-role-in-the-housing-market
https://www.bankofengland.co.uk/knowledgebank/whats-the-bank-of-englands-role-in-the-housing-market
https://doi.org/10.1109/MDM.2010.40
https://doi.org/10.1023/A:1007703229507
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1177/2053951715579469
https://doi.org/10.1177/2053951715579469
https://doi.org/10.1111/jmcb.12848
https://acorn.caci.co.uk/downloads/Acorn-Technical-document.pdf
https://acorn.caci.co.uk/downloads/Acorn-Technical-document.pdf
https://doi.org/10.1111/1540-6229.00554


Bibliography 242

Case, Bradford and Edward J Szymanoski (1995). “Precision in house price indices:

Findings of a comparative study of house price index methods”. In: Journal of

Housing Research 6.3, pp. 483–496. URL: http://www.jstor.org/stable/24832841.

Case, Karl and Robert Shiller (Nov. 1987). Prices of Single Family Homes Since 1970:

New Indexes for Four Cities. Working Paper 2393. National Bureau of Economic

Research. DOI: 10.3386/w2393.

— (Feb. 1988). The Efficiency of the Market for Single-Family Homes. Working Paper

2506. National Bureau of Economic Research. DOI: 10.3386/w2506.

Cellmer, Radosław, Aneta Cichulska, and Mirosław Bełej (2020). “Spatial Analysis

of Housing Prices and Market Activity with the Geographically Weighted Re-

gression”. In: ISPRS International Journal of Geo-Information 9.6. DOI: 10.3390/

ijgi9060380.

Chandler, Daniel and Richard Disney (2014). Measuring house prices: a comparison of

different indices. Institute for Fiscal Studies. ISBN: 978-1-909463-39-4. URL: https:

//ifs.org.uk/publications/measuring-house-prices-comparison-different-

indices.

Che, Xinwei, Bin Li, et al. (2011). “Property Prices and Bank Lending: Some Evidence

from China’s Regional Financial Centres”. In: Proceedings of the International Con-

ference on Computational Science 4, pp. 1660–1667. DOI: 10.1016/j.procs.2011.

04.179.

Chen, Ming-Chi, Yuichiro Kawaguchi, and Kanak Patel (2004). “An analysis of the

trends and cyclical behaviours of house prices in the Asian markets”. In: Journal

of Property Investment & Finance 22.1, pp. 55–75. DOI: 10.1108/14635780410525144.

Choueifaty, Yves, Tristan Froidure, and Julien Reynier (2013). “Properties of the most

diversified portfolio”. In: Journal of Investment Strategies 2.2, pp. 49–70. DOI: 10.

2139/ssrn.1895459.

Clapp, John M and Carmelo Giaccotto (1992). “Estimating price trends for residen-

tial property: a comparison of repeat sales and assessed value methods”. In:

The Journal of Real Estate Finance and Economics 5.4, pp. 357–374. DOI: 10.1007/

BF00174805.

http://www.jstor.org/stable/24832841
https://doi.org/10.3386/w2393
https://doi.org/10.3386/w2506
https://doi.org/10.3390/ijgi9060380
https://doi.org/10.3390/ijgi9060380
https://ifs.org.uk/publications/measuring-house-prices-comparison-different-indices
https://ifs.org.uk/publications/measuring-house-prices-comparison-different-indices
https://ifs.org.uk/publications/measuring-house-prices-comparison-different-indices
https://doi.org/10.1016/j.procs.2011.04.179
https://doi.org/10.1016/j.procs.2011.04.179
https://doi.org/10.1108/14635780410525144
https://doi.org/10.2139/ssrn.1895459
https://doi.org/10.2139/ssrn.1895459
https://doi.org/10.1007/BF00174805
https://doi.org/10.1007/BF00174805


Bibliography 243

Clapp, John M., Hyon–Jung Kim, and Alan E. Gelfand (2002). “Predicting Spatial

Patterns of House Prices Using LPR and Bayesian Smoothing”. In: Real Estate

Economics 30.4, pp. 505–532. DOI: 10.1111/1540-6229.00048.

Conefrey, Thomas, David Staunton, et al. (2019). “Population change and housing

demand in Ireland”. In: Central Bank of Ireland Economic Letter 14, pp. 1–16.

Conway, Delores, Christina Q Li, et al. (2010). “A spatial autocorrelation approach

for examining the effects of urban greenspace on residential property values”.

In: The Journal of Real Estate Finance and Economics 41, pp. 150–169. DOI: 10.1007/

s11146-008-9159-6.

Costello, Greg, Patricia Fraser, and Nicolaas Groenewold (2011). “House prices, non-

fundamental components and interstate spillovers: The Australian experience”.

In: Journal of Banking and Finance 35.3, pp. 653–669. DOI: 10.1016/j.jbankfin.

2010.07.035.

Costello, Greg and Craig Watkins (2002). “Towards a System of Local House Price

Indices”. In: Housing Studies 17.6, pp. 857–873. DOI: 10.1080/02673030216001.

Dalton, Padraig and Ken Moore (Dec. 2014). How to quickly adapt to new policy needs?

The experience of the Central Statistics Office, Ireland in developing house price indica-

tors. URL: https://www.ine.pt/scripts/DGINS-2015/presentations/S1_P3_

CSO.pdf.

De La Briandais, Rene (1959). “File Searching Using Variable Length Keys”. In: IRE-

AIEE-ACM ’59 (Western). Association for Computing Machinery, 295–298. ISBN:

9781450378659. DOI: 10.1145/1457838.1457895.

De Vries, Paul, Jan de Haan, et al. (2009). “A house price index based on the SPAR

method”. In: Journal of Housing Economics 18.3. Special Issue on Owner Occupied

Housing in National Accounts and Inflation Measures, pp. 214–223. ISSN: 1051-

1377. DOI: 10.1016/j.jhe.2009.07.002.

De Wit, Erik R., Peter Englund, and Marc K. Francke (2013). “Price and transaction

volume in the Dutch housing market”. In: Regional Science and Urban Economics

43.2, pp. 220–241. DOI: 10.1016/j.regsciurbeco.2012.07.002.

Diewert, W Erwin and Kevin J Fox (2022). “Substitution bias in multilateral methods

for cpi construction”. In: Journal of Business & Economic Statistics 40.1, pp. 355–369.

DOI: 10.1080/07350015.2020.1816176.

https://doi.org/10.1111/1540-6229.00048
https://doi.org/10.1007/s11146-008-9159-6
https://doi.org/10.1007/s11146-008-9159-6
https://doi.org/10.1016/j.jbankfin.2010.07.035
https://doi.org/10.1016/j.jbankfin.2010.07.035
https://doi.org/10.1080/02673030216001
https://www.ine.pt/scripts/DGINS-2015/presentations/S1_P3_CSO.pdf
https://www.ine.pt/scripts/DGINS-2015/presentations/S1_P3_CSO.pdf
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1016/j.jhe.2009.07.002
https://doi.org/10.1016/j.regsciurbeco.2012.07.002
https://doi.org/10.1080/07350015.2020.1816176


Bibliography 244

Ding, Jiale, Wenying Cen, et al. (2024). “A neural network model to optimize the

measure of spatial proximity in geographically weighted regression approach:

a case study on house price in Wuhan”. In: International Journal of Geographical

Information Science 38.7, pp. 1315–1335. DOI: 10.1080/13658816.2024.2343771.

Domingos, Pedro (2012). “A few useful things to know about machine learning”. In:

Communications of the ACM 55.10, pp. 78–87. DOI: 10.1145/2347736.2347755.

Dorsey, Robert E., Haixin Hu, et al. (2010). “Hedonic versus repeat-sales housing

price indexes for measuring the recent boom-bust cycle”. In: Journal of Housing

Economics 19.2, pp. 75–93. ISSN: 1051-1377. DOI: 10.1016/j.jhe.2010.04.001.

Elul, Ronel, Nicholas S Souleles, et al. (2010). “What "triggers" mortgage default?”

In: American Economic Review 100.2, pp. 490–94. DOI: 10.1257/aer.100.2.490.

Englund, Peter, Min Hwang, and John M. Quigley (Jan. 2002). “Hedging Housing

Risk”. In: The Journal of Real Estate Finance and Economics 24.1, pp. 167–200. ISSN:

1573-045X. DOI: 10.1023/A:1013942607458.

Englund, Peter and Yannis M Ioannides (1997). “House price dynamics: an interna-

tional empirical perspective”. In: Journal of Housing Economics 6.2, pp. 119–136.

DOI: 10.1006/jhec.1997.0210.

Falzon, Joseph and David Lanzon (2013). “Comparing alternative house price in-

dices: evidence from asking prices in Malta”. In: International Journal of Housing

Markets and Analysis. DOI: 10.1108/17538271311306048.

Gillen, Kevin, Thomas Thibodeau, and Susan Wachter (2001). “Anisotropic autocor-

relation in house prices”. In: The Journal of Real Estate Finance and Economics 23,

pp. 5–30. DOI: 10.1023/A:1011140022948.

Goh, Yen Min, Greg Costello, and Greg Schwann (2012). “Accuracy and Robustness

of House Price Index Methods”. In: Housing Studies 27.5, pp. 643–666. DOI: 10.

1080/02673037.2012.697551.

Goldberg, Stephen R, Mary J Phillips, and H James Williams (2009). “Survive the

recession by managing cash”. In: Journal of Corporate Accounting & Finance 21.1,

pp. 3–9. DOI: 10.1002/jcaf.20540.

Gouriéroux, Christian and Anne Laferrère (2009). “Managing hedonic housing price

indexes: The French experience”. In: Journal of Housing Economics 18.3, pp. 206–

213. DOI: 10.1016/j.jhe.2009.07.012.

https://doi.org/10.1080/13658816.2024.2343771
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1016/j.jhe.2010.04.001
https://doi.org/10.1257/aer.100.2.490
https://doi.org/10.1023/A:1013942607458
https://doi.org/10.1006/jhec.1997.0210
https://doi.org/10.1108/17538271311306048
https://doi.org/10.1023/A:1011140022948
https://doi.org/10.1080/02673037.2012.697551
https://doi.org/10.1080/02673037.2012.697551
https://doi.org/10.1002/jcaf.20540
https://doi.org/10.1016/j.jhe.2009.07.012


Bibliography 245

Grover, Richard and Chris Grover (Aug. 2013). “Property cycles”. In: Journal of Prop-

erty Investment and Finance 31.5, pp. 502–516. DOI: 10.1108/JPIF-05-2013-0030.

Guerrieri, Veronica and Harald Uhlig (2016). “Housing and Credit Markets: Booms

and Busts”. In: vol. 2. Handbook of Macroeconomics. Elsevier, pp. 1427–1496.

DOI: 10.1016/bs.hesmac.2016.06.001.

Guo, Yi, Stephen Tierney, and Junbin Gao (2021). “Efficient sparse subspace clus-

tering by nearest neighbour filtering”. In: Signal Processing 185, p. 108082. ISSN:

0165-1684. DOI: 10.1016/j.sigpro.2021.108082.

Guttman, Antonin (June 1984). “R-trees: A Dynamic Index Structure for Spatial Search-

ing”. In: SIGMOD Rec. 14.2, pp. 47–57. ISSN: 0163-5808. DOI: 10.1145/971697.

602266.

Haan, Jan de and WE Diewert (2011). “Handbook on residential property price in-

dexes”. In: Luxembourg: Eurostat.

Hand, David J. (2013). “Data Mining”. In: Encyclopedia of Environmetrics. American

Cancer Society. ISBN: 9780470057339. DOI: 10.1002/9780470057339.vad002.

pub2.

Hansen, James (2009). “Australian house prices: a comparison of hedonic and repeat-

sales measures”. In: Economic Record 85.269, pp. 132–145. DOI: 10.1111/j.1475-

4932.2009.00544.x.

Hatzvi, Eden and Glenn Otto (2008). “Prices, rents and rational speculative bubbles

in the Sydney housing market”. In: Economic Record 84.267, pp. 405–420. DOI:

10.1111/j.1475-4932.2008.00484.x.

Haurin, Donald R. and David Brasington (1996). “School Quality and Real House

Prices: Inter- and Intrametropolitan Effects”. In: Journal of Housing Economics 5.4,

pp. 351–368. DOI: 10.1006/jhec.1996.0018.

He, Chengjie, Zhen Wang, et al. (2010). “Driving Forces Analysis for Residential

Housing Price in Beijing”. In: Procedia Environmental Sciences 2. International Con-

ference on Ecological Informatics and Ecosystem Conservation (ISEIS 2010), pp. 925–

936. ISSN: 1878-0296. DOI: 10.1016/j.proenv.2010.10.104.

Henneberry, John (1998). “Transport investment and house prices”. In: Journal of

property valuation and investment 16.2, pp. 144–158. DOI: 10.1108/14635789810212913.

https://doi.org/10.1108/JPIF-05-2013-0030
https://doi.org/10.1016/bs.hesmac.2016.06.001
https://doi.org/10.1016/j.sigpro.2021.108082
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/971697.602266
https://doi.org/10.1002/9780470057339.vad002.pub2
https://doi.org/10.1002/9780470057339.vad002.pub2
https://doi.org/10.1111/j.1475-4932.2009.00544.x
https://doi.org/10.1111/j.1475-4932.2009.00544.x
https://doi.org/10.1111/j.1475-4932.2008.00484.x
https://doi.org/10.1006/jhec.1996.0018
https://doi.org/10.1016/j.proenv.2010.10.104
https://doi.org/10.1108/14635789810212913


Bibliography 246

Hess, Andreas and Arne Holzhausen (2008). The structure of European mortgage mar-

kets. Tech. rep. Working paper.

Hill, Robert, Michael Scholz, et al. (Oct. 2018). “An evaluation of the methods used

by European countries to compute their official house price indices”. In: Economie

et Statistique / Economics and Statistics 2018, pp. 221–238. DOI: 10.24187/ecostat.

2018.500t.1953.

Hill, Robert J, Norbert Pfeifer, et al. (2024). “Warning: Some transaction prices can

be detrimental to your house price index”. In: Review of Income and Wealth 70.2,

pp. 320–344.

HM Land Registry (2024). Price Paid dataset. Accessed: 2024-06-01. URL: https://

www.gov.uk/government/statistical-data-sets/price-paid-data-downloads.

Iacoviello, Matteo and Francois Ortalo-Magne (2003). “Hedging housing risk in Lon-

don”. In: The Journal of Real Estate Finance and Economics 27, pp. 191–209. DOI:

10.1023/A:1024776303998.

II, John A. Pearce and Steven C. Michael (2006). “Strategies to prevent economic

recessions from causing business failure”. In: Business Horizons 49.3, pp. 201–209.

ISSN: 0007-6813. DOI: 10.1016/j.bushor.2005.08.008.

Ismail, Suriatini (Jan. 2006). “Spatial autocorrelation and real estate studies: A liter-

ature review”. In: Regional Science and Urban Economics 35.

Jansen, Sylvia, P Vries, et al. (Jan. 2008). “Developing a House Price Index for The

Netherlands: A Practical Application of Weighted Repeat Sales”. In: The Journal

of Real Estate Finance and Economics 37, pp. 163–186. DOI: 10.1007/s11146-007-

9068-0.

Jones, Colin, Stewart Cowe, and Edward Trevillion (2018). Property boom and banking

bust: The role of commercial lending in the bankruptcy of banks. John Wiley & Sons.

ISBN: 978-1-119-21925-5.

Jones, Phil and James Evans (2013). Urban regeneration in the UK: Boom, bust and re-

covery. Sage. ISBN: 978-1-473-91501-5. DOI: 10.4135/9781473915015.

Kain, John F. and John M. Quigley (1970). “Measuring the Value of Housing Qual-

ity”. In: Journal of the American Statistical Association 65.330, pp. 532–548. DOI:

10.1080/01621459.1970.10481102.

https://doi.org/10.24187/ecostat.2018.500t.1953
https://doi.org/10.24187/ecostat.2018.500t.1953
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://doi.org/10.1023/A:1024776303998
https://doi.org/10.1016/j.bushor.2005.08.008
https://doi.org/10.1007/s11146-007-9068-0
https://doi.org/10.1007/s11146-007-9068-0
https://doi.org/10.4135/9781473915015
https://doi.org/10.1080/01621459.1970.10481102


Bibliography 247

Kennedy, Gerard and Samantha Myers (Nov. 2019). An overview of the Irish housing

market. Financial Stability Notes 16/FS/19. Central Bank of Ireland. URL: https:

//www.centralbank.ie/docs/default- source/publications/financial-

stability- notes/no- 16- an- overview- of- the- irish- housing- market-

(kennedy-and-myers).pdf.

Kothuri, Ravi Kanth V, Siva Ravada, and Daniel Abugov (2002). “Quadtree and R-

tree indexes in oracle spatial: a comparison using GIS data”. In: 2002 ACM SIG-

MOD International Conference on Management of Data. ACM, pp. 546–557. DOI:

10.1145/564691.564755.

Kuo, Li-Lan and Feifei Li (2013). “An Investor’s Low Volatility Strategy”. In: The

Journal of Index Investing 3.4, pp. 8–22. DOI: 10.3905/jii.2013.3.4.008.

Labonte, Marc (2007). Would a Housing Crash Cause a Recession? Congressional Re-

search Service.

Larson, William D. and Justin Contat (Apr. 2021). Transaction Composition and House

Price Index Measurement: Evidence from a Repeat-Sales Aggregation Index. FHFA Staff

Working Papers 21-01. Federal Housing Finance Agency. URL: https://ideas.

repec.org/p/hfa/wpaper/21-01.html.

Law, Stephen (2017). “Defining Street-based Local Area and measuring its effect on

house price using a hedonic price approach: The case study of Metropolitan Lon-

don”. In: Cities 60, pp. 166–179. ISSN: 0264-2751. DOI: 10.1016/j.cities.2016.

08.008.

Lee, Jae-Gil and Minseo Kang (2015). “Geospatial Big Data: Challenges and Oppor-

tunities”. In: Big Data Research 2.2. Visions on Big Data, pp. 74–81. ISSN: 2214-5796.

DOI: 10.1016/j.bdr.2015.01.003.

Leung, Tin Cheuk and Kwok Ping Tsang (2013). “Anchoring and loss aversion in the

housing market: Implications on price dynamics”. In: China Economic Review 24,

pp. 42–54. DOI: 10.1016/j.chieco.2012.10.003.

Liow, Kim and Joseph Ooi (Oct. 2004). “Does corporate real estate create wealth for

shareholders?” In: Journal of Property Investment and Finance 22, pp. 386–400. DOI:

10.1108/14635780410556870.

https://www.centralbank.ie/docs/default-source/publications/financial-stability-notes/no-16-an-overview-of-the-irish-housing-market-(kennedy-and-myers).pdf
https://www.centralbank.ie/docs/default-source/publications/financial-stability-notes/no-16-an-overview-of-the-irish-housing-market-(kennedy-and-myers).pdf
https://www.centralbank.ie/docs/default-source/publications/financial-stability-notes/no-16-an-overview-of-the-irish-housing-market-(kennedy-and-myers).pdf
https://www.centralbank.ie/docs/default-source/publications/financial-stability-notes/no-16-an-overview-of-the-irish-housing-market-(kennedy-and-myers).pdf
https://doi.org/10.1145/564691.564755
https://doi.org/10.3905/jii.2013.3.4.008
https://ideas.repec.org/p/hfa/wpaper/21-01.html
https://ideas.repec.org/p/hfa/wpaper/21-01.html
https://doi.org/10.1016/j.cities.2016.08.008
https://doi.org/10.1016/j.cities.2016.08.008
https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1016/j.chieco.2012.10.003
https://doi.org/10.1108/14635780410556870


Bibliography 248

Luttik, Joke (2000). “The value of trees, water and open space as reflected by house

prices in the Netherlands”. In: Landscape and Urban Planning 48.3, pp. 161–167.

DOI: 10.1016/S0169-2046(00)00039-6.

Maguire, Phil, Stephen Kelly, et al. (2017). “Further evidence in support of a low-

volatility anomaly: Optimizing buy-and-hold portfolios by minimizing historical

aggregate volatility”. In: Journal of Asset Management 18, pp. 326–339. DOI: 10.

1057/s41260-016-0036-1.

Maguire, Phil, Robert Miller, et al. (2016). “A robust house price index using sparse

and frugal data”. In: Journal of Property Research 33.4, pp. 293–308. DOI: 10.1080/

09599916.2016.1258718.

Maguire, Phil, Philippe Moser, et al. (2014). “Maximizing positive porfolio diversi-

fication”. In: 2014 IEEE Conference on Computational Intelligence for Financial En-

gineering & Economics (CIFEr). IEEE, pp. 174–181. DOI: 10.1109/CIFEr.2014.

6924070.

Mar Iman, Abdul Hamid (2001). “Incorporating a geographic information system in

the hedonic modelling of farm property values”. PhD thesis. Lincoln University.

URL: https://hdl.handle.net/10182/2161.

Maslow, A. H. (July 1943). “A theory of human motivation.” In: Psychological Review

50.4, pp. 370–396. DOI: 10.1037/h0054346.

McDonald, Chris, Mark Smith, et al. (2009). Developing stratified housing price measures

for New Zealand. Tech. rep. Reserve Bank of New Zealand. URL: https://www.

rbnz.govt.nz/hub/publications/discussion-paper/2009/dp2009-07.

McGinnis, Will (2017). Pygeohash. [Python]. URL: https://github.com/wdm0006/

pygeohash.

McKee, Kim (2012). “Young People, Homeownership and Future Welfare”. In: Hous-

ing Studies 27.6, pp. 853–862. DOI: 10.1080/02673037.2012.714463.

McMillen, Daniel P. (Jan. 2003). “Neighborhood house price indexes in Chicago: a

Fourier repeat sales approach”. In: Journal of Economic Geography 3.1, pp. 57–73.

ISSN: 1468-2702. DOI: 10.1093/jeg/3.1.57.

McMillen, Daniel P. and Paul Thorsnes (2006). “Housing Renovations and the Quan-

tile Repeat-Sales Price Index”. In: Real Estate Economics 34.4, pp. 567–584. DOI:

10.1111/j.1540-6229.2006.00179.x.

https://doi.org/10.1016/S0169-2046(00)00039-6
https://doi.org/10.1057/s41260-016-0036-1
https://doi.org/10.1057/s41260-016-0036-1
https://doi.org/10.1080/09599916.2016.1258718
https://doi.org/10.1080/09599916.2016.1258718
https://doi.org/10.1109/CIFEr.2014.6924070
https://doi.org/10.1109/CIFEr.2014.6924070
https://hdl.handle.net/10182/2161
https://doi.org/10.1037/h0054346
https://www.rbnz.govt.nz/hub/publications/discussion-paper/2009/dp2009-07
https://www.rbnz.govt.nz/hub/publications/discussion-paper/2009/dp2009-07
https://github.com/wdm0006/pygeohash
https://github.com/wdm0006/pygeohash
https://doi.org/10.1080/02673037.2012.714463
https://doi.org/10.1093/jeg/3.1.57
https://doi.org/10.1111/j.1540-6229.2006.00179.x


Bibliography 249

Miller, Robert and Phil Maguire (2020). “A rapidly updating stratified mix-adjusted

median property price index model”. In: 2020 IEEE Symposium Series on Computa-

tional Intelligence (SSCI). IEEE, pp. 9–15. DOI: 10.1109/SSCI47803.2020.9308235.

— (2021). “GeoTree: A Data Structure for Constant Time Geospatial Search Enabling

a Real-Time Property Index”. In: Intelligent Computing: Proceedings of the 2021

Computing Conference, Volume 2. Springer, pp. 152–165. DOI: 10.1007/978- 3-

030-80126-7_12.

— (2022). “A real-time mix-adjusted median property price index enabled by an

efficient nearest neighbour approximation data structure”. In: Journal of Banking

and Financial Technology, pp. 1–14. DOI: 10.1007/s42786-022-00043-y.

Moussalli, R., M. Srivatsa, and S. Asaad (May 2015). “Fast and Flexible Conver-

sion of Geohash Codes to and from Latitude/Longitude Coordinates”. In: 2015

IEEE 23rd Annual International Symposium on Field-Programmable Custom Comput-

ing Machines, pp. 179–186. DOI: 10.1109/FCCM.2015.18.

Moussalli, Roger, Sameh W. Asaad, and Mudhakar Srivatsa (2015). “Enhanced con-

version between geohash codes and corresponding longitude/latitude coordi-

nates”. Pat. US20160283515A1. URL: https://patents.google.com/patent/

US20160283515.

Muja, M. and D. G. Lowe (Nov. 2014). “Scalable Nearest Neighbor Algorithms for

High Dimensional Data”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 36.11, pp. 2227–2240. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2014.

2321376.

MyHome Ltd. (2024). Accessed: 2024-06-01. URL: http://www.myhome.ie.

Nationwide (Jan. 2024). House price index methodology. URL: https://www.nationwide.

co.uk/- /assets/nationwidecouk/documents/about/house- price- index/

nationwide-hpi-methodology.pdf.

Niemeyer, Gustavo (2008). geohash.org is public! Accessed: 2024-06-01. URL: https:

//blog.labix.org/2008/02/26/geohashorg-is-public.

Nofsinger, John R. (2012). “Household behavior and boom/bust cycles”. In: Journal

of Financial Stability 8.3. The Financial Crisis of 2008, Credit Markets and Effects

on Developed and Emerging Economies, pp. 161–173. ISSN: 1572-3089. DOI: 10.

1016/j.jfs.2011.05.004.

https://doi.org/10.1109/SSCI47803.2020.9308235
https://doi.org/10.1007/978-3-030-80126-7_12
https://doi.org/10.1007/978-3-030-80126-7_12
https://doi.org/10.1007/s42786-022-00043-y
https://doi.org/10.1109/FCCM.2015.18
https://patents.google.com/patent/US20160283515
https://patents.google.com/patent/US20160283515
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1109/TPAMI.2014.2321376
http://www.myhome.ie
https://www.nationwide.co.uk/-/assets/nationwidecouk/documents/about/house-price-index/nationwide-hpi-methodology.pdf
https://www.nationwide.co.uk/-/assets/nationwidecouk/documents/about/house-price-index/nationwide-hpi-methodology.pdf
https://www.nationwide.co.uk/-/assets/nationwidecouk/documents/about/house-price-index/nationwide-hpi-methodology.pdf
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://doi.org/10.1016/j.jfs.2011.05.004
https://doi.org/10.1016/j.jfs.2011.05.004


Bibliography 250

Norman Mille Vivek Sah, Michael Sklarz and Stefan Pampulov (2013). “Is there Sea-

sonality in Home Prices—Evidence from CBSAs”. In: Journal of Housing Research

22.1, pp. 1–15. DOI: 10.1080/10835547.2013.12092066.

OECD, Eurostat, et al. (2013). Handbook on Residential Property Price Indices, p. 186.

DOI: 10.1787/9789264197183-en.

O’Hanlon, Niall (2011). “Constructing a national house price index for Ireland”. In:

Journal of the Statistical and Social Inquiry Society of Ireland 40, pp. 167–196. ISSN:

00814776. URL: http://hdl.handle.net/2262/62349.

ONS (Dec. 2023a). UK House Price Index: Acorn (CACI) Consumer Classification Study.

Tech. rep. URL: https : / / www . gov . uk / government / statistics / quality -

assurance-of-administrative-data-in-the-uk-house-price-index/acorn-

consumer-classification-caci.

— (Dec. 2023b). UK House Price Index: Quality and methodology. Tech. rep. URL: https:

//www.gov.uk/government/publications/about- the- uk- house- price-

index/quality-and-methodology.

— (Dec. 2023c). UK House Price Index: Scottish Energy Performance Certificate Study.

Tech. rep. URL: https : / / www . gov . uk / government / statistics / quality -

assurance - of - administrative - data - in - the - uk - house - price - index /

scottish-energy-performance-certificates.

— (Dec. 2023d). UK House Price Index: Valuation Office Agency Council Tax Valuation

List Study. Tech. rep. URL: https://www.gov.uk/government/statistics/

quality- assurance- of- administrative- data- in- the- uk- house- price-

index/valuation-office-agency-council-tax-valuation-lists.

Ortalo-Magné, François and Sven Rady (Apr. 2006). “Housing Market Dynamics:

On the Contribution of Income Shocks and Credit Constraints*”. In: The Review

of Economic Studies 73.2, pp. 459–485. ISSN: 0034-6527. DOI: 10.1111/j.1467-

937X.2006.383_1.x.

Paci, Lucia, María Asunción Beamonte, et al. (2017). “Analysis of residential prop-

erty sales using space–time point patterns”. In: Spatial Statistics 21, pp. 149 –165.

ISSN: 2211-6753. DOI: 10.1016/j.spasta.2017.06.007.

https://doi.org/10.1080/10835547.2013.12092066
https://doi.org/10.1787/9789264197183-en
http://hdl.handle.net/2262/62349
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/acorn-consumer-classification-caci
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/acorn-consumer-classification-caci
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/acorn-consumer-classification-caci
https://www.gov.uk/government/publications/about-the-uk-house-price-index/quality-and-methodology
https://www.gov.uk/government/publications/about-the-uk-house-price-index/quality-and-methodology
https://www.gov.uk/government/publications/about-the-uk-house-price-index/quality-and-methodology
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/scottish-energy-performance-certificates
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/scottish-energy-performance-certificates
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/scottish-energy-performance-certificates
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/valuation-office-agency-council-tax-valuation-lists
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/valuation-office-agency-council-tax-valuation-lists
https://www.gov.uk/government/statistics/quality-assurance-of-administrative-data-in-the-uk-house-price-index/valuation-office-agency-council-tax-valuation-lists
https://doi.org/10.1111/j.1467-937X.2006.383_1.x
https://doi.org/10.1111/j.1467-937X.2006.383_1.x
https://doi.org/10.1016/j.spasta.2017.06.007


Bibliography 251

Piddington, Justine, Simon Nicol, et al. (2020). The Housing Stock of the United King-

dom. Tech. rep. BRE Trust, UK. URL: https://files.bregroup.com/bretrust/

The-Housing-Stock-of-the-United-Kingdom_Report_BRE-Trust.pdf.

Prasad, Nalini and Anthony Richards (2008). “Improving Median Housing Price In-

dexes through Stratification”. In: Journal of Real Estate Research 30.1, pp. 45–72.

DOI: 10.1080/10835547.2008.12091213.

Property Services Regulatory Authority (IE) (June 2024). Residential Property Price

Register. URL: https : / / www . propertypriceregister . ie / website / npsra /

pprweb.nsf/PPR?OpenForm.

Quigley, John M. (1995). “A Simple Hybrid Model for Estimating Real Estate Price

Indexes”. In: Journal of Housing Economics 4.1, pp. 1–12. ISSN: 1051-1377. DOI: 10.

1006/jhec.1995.1001.

— (1999). “Real Estate Prices and Economic Cycles”. In: International Real Estate Re-

view 2.1, pp. 1–20. URL: https://ideas.repec.org/a/ire/issued/v02n011999p1-

20.html.

Ramírez-Gallego, Sergio, Bartosz Krawczyk, et al. (2017). “Nearest Neighbor Classi-

fication for High-Speed Big Data Streams Using Spark”. In: IEEE Transactions on

Systems, Man, and Cybernetics: Systems 47.10, pp. 2727–2739. DOI: 10.1109/TSMC.

2017.2700889.

Rappaport, Jordan et al. (2007). “A guide to aggregate house price measures”. In:

Economic Review - Federal Reserve Bank of Kansas City 92.2, pp. 41–71. URL: https:

//www.kansascityfed.org/documents/1400/2007-A%20Guide%20to%20Aggregate%

20House%20Price%20Measures.pdf.

Reusens, Peter, Frank Vastmans, and Sven Damen (2023). “A new framework to dis-

entangle the impact of changes in dwelling characteristics on house price in-

dices”. In: Economic Modelling 123, p. 106252. DOI: 10.1016/j.econmod.2023.

106252.

Robusto, C. C. (1957). “The Cosine-Haversine Formula”. In: The American Mathemat-

ical Monthly 64.1, pp. 38–40. DOI: 10.2307/2309088.

Roussopoulos, Nick, Stephen Kelley, and Frédéric Vincent (May 1995). “Nearest Neigh-

bor Queries”. In: SIGMOD Rec. 24.2, pp. 71–79. ISSN: 0163-5808. DOI: 10.1145/

568271.223794.

https://files.bregroup.com/bretrust/The-Housing-Stock-of-the-United-Kingdom_Report_BRE-Trust.pdf
https://files.bregroup.com/bretrust/The-Housing-Stock-of-the-United-Kingdom_Report_BRE-Trust.pdf
https://doi.org/10.1080/10835547.2008.12091213
https://www.propertypriceregister.ie/website/npsra/pprweb.nsf/PPR?OpenForm
https://www.propertypriceregister.ie/website/npsra/pprweb.nsf/PPR?OpenForm
https://doi.org/10.1006/jhec.1995.1001
https://doi.org/10.1006/jhec.1995.1001
https://ideas.repec.org/a/ire/issued/v02n011999p1-20.html
https://ideas.repec.org/a/ire/issued/v02n011999p1-20.html
https://doi.org/10.1109/TSMC.2017.2700889
https://doi.org/10.1109/TSMC.2017.2700889
https://www.kansascityfed.org/documents/1400/2007-A%20Guide%20to%20Aggregate%20House%20Price%20Measures.pdf
https://www.kansascityfed.org/documents/1400/2007-A%20Guide%20to%20Aggregate%20House%20Price%20Measures.pdf
https://www.kansascityfed.org/documents/1400/2007-A%20Guide%20to%20Aggregate%20House%20Price%20Measures.pdf
https://doi.org/10.1016/j.econmod.2023.106252
https://doi.org/10.1016/j.econmod.2023.106252
https://doi.org/10.2307/2309088
https://doi.org/10.1145/568271.223794
https://doi.org/10.1145/568271.223794


Bibliography 252

Rymon, Ron (1992). “Search through systematic set enumeration”. In: Proceedings

of the Third International Conference on Principles of Knowledge Representation and

Reasoning. KR’92. Morgan Kaufmann Publishers Inc., 539–550. ISBN: 1558602623.

Safar, Maytham (Aug. 2005). “K nearest neighbor search in navigation systems”. In:

Mob. Inf. Syst. 1.3, 207–224. ISSN: 1574-017X. DOI: 10.1155/2005/692568.

Sayag, Doron, Dano Ben-hur, and Danny Pfeffermann (2022). “Reducing revisions

in hedonic house price indices by the use of nowcasts”. In: International Journal

of Forecasting 38.1, pp. 253–266. ISSN: 0169-2070. DOI: 10.1016/j.ijforecast.

2021.04.008.

Scatigna, Michela, Robert Szemere, and Kostas Tsatsaronis (Sept. 2014). Residential

property price statistics across the globe. Quarterly Review. Bank for International

Settlements. URL: https://www.bis.org/publ/qtrpdf/r_qt1409h.htm.

Shiller, Robert J. (Mar. 2003). “From Efficient Markets Theory to Behavioral Finance”.

In: Journal of Economic Perspectives 17.1, 83–104. DOI: 10.1257/089533003321164967.

Silver, Mick (Nov. 2016). How to better measure hedonic residential property price indexes.

Working Paper series WP/16/213. International Monetary Fund. URL: https:

//www.imf.org/external/pubs/ft/wp/2016/wp16213.pdf.

Soltani, Ali, Nader Zali, et al. (2023). “Multilevel impacts of urban amenities on hous-

ing price in Tehran, Iran”. In: Journal of Urban Planning and Development 149.4,

p. 05023028. DOI: 10.1061/JUPDDM.UPENG-4434.

Sommervoll, Dag Einar (2006). “Temporal aggregation in repeated sales models”.

In: The Journal of Real Estate Finance and Economics 33, pp. 151–165. DOI: 10.1007/

s11146-006-8946-1.

Tu, Yong, Seow Eng Ong, and Ying Hua Han (2009). “Turnovers and housing price

dynamics: Evidence from Singapore condominium market”. In: The Journal of

Real Estate Finance and Economics 38.3, pp. 254–274. DOI: 10.1007/s11146-008-

9155-x.

Turner, Anthony G (2003). “Sampling strategies”. In: Handbook on designing of house-

hold sample surveys.
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