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Abstract

This thesis addresses the critical challenge of predicting crop yield. As the demand
for food surges due to population growth, accurate and efficient predictive mod-
els become increasingly important. Leveraging a comprehensive database from
the Horizon 2020 InnoVar project, which includes variables across phenomics, ge-
nomics, soil, and weather conditions, we aim to extend the existing Additive Main
Effects and Multiplicative Interaction (AMMI) modelling framework.

Our work is divided into three key contributions. First, we propose a computa-
tionally efficient Bayesian AMMI model using variational inference, addressing the
high computational costs often associated with traditional Markov chain Monte
Carlo methods. Second, we introduce the Bayesian Additive Main effects and Mul-
tiplicative Interaction Tensor (BAMMIT) model, which extends the AMMI model
to accommodate multiple categorical variables. Third, we present the Clustered
Bayesian Additive Main Effects and Multiplicative Interaction Tensor (CBAM-
MIT) model, incorporating Gaussian Mixture Models to allow for the inclusion of
categorical representations of numerical variables.

Our findings show that these extensions not only improve predictive accuracy
but also offer probabilistic assessments of predictions. They have real-world ap-
plicability, as demonstrated using data from Ireland, and can potentially guide
stakeholders in agriculture – from farmers to policymakers – in making informed
decisions.
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CHAPTER 1
Introduction

1.1 Motivation
Staple foods are basic dietary items that are consumed regularly and in such
quantities as to constitute the dominant part of the diet (UNICEF et al., 2023).
Their production plays a crucial role in global food security and economy. In
particular, wheat, rice and maize collectively supply nearly half of the world’s
calories and contributing to approximately 40% of protein intake (Erenstein et al.,
2022). According to the Food and Agriculture Organisation (FAO), wheat alone
contributes approximately $50 billion annually to the world economy and provides
around 20% of all calories consumed by humans (UNICEF et al., 2020). To meet
the needs of the growing world population, projected to reach 10 billion by 2050,
the FAO estimates that the world will need to produce about 50% more food by
then (UNICEF et al., 2020). This surge in demand places additional pressure on
the agricultural industry to improve crop yields, thereby ensuring food security,
sustainability and economic stability (Godfray et al., 2010; Tilman et al., 2011).

However, the production of these crops faces numerous challenges ranging from
climate change to limitations in technological advancements. (Lobell and Gourdji,
2012; Rosenzweig et al., 2014). Given this context, predictive modelling in crop
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yield, particularly for the staple cereals, becomes vital. Efficient and accurate mod-
els can guide strategies for sustainable agriculture, providing a buffer against the
volatility caused by environmental, economic, and demographic factors (Antle and
Capalbo, 2010). Accurate forecasts can be an instrument for many purposes. It
can guide stakeholders (ranging from farmers to policymakers) in crucial decisions
related to storage, distribution, and market pricing (Lobell et al., 2015). More-
over, precise predictions contribute to sustainable resource management, such as
the optimised use of water, fertilisers, and land (Zhang et al., 2002; Khosla, 2010).

Predicting crop yield is a complex task for several reasons. First, the challenge
of securing high-quality data frequently poses a hurdle (Lobell and Asseng, 2017).
This can be due to initial conditions for data collection, incomplete or inconsistent
datasets, or issues related to data privacy, which limit the availability of critical
information. Second, the inclusion of multiple factors, such as local conditions
such as soil and weather can change rapidly over short distances and time, making
it difficult to make accurate predictions (Mkhabela et al., 2011; Asseng et al.,
2013; Rosenzweig et al., 2014). Additionally, external economic factors such as
market demand and price fluctuations further add to the complexity (Antle and
Capalbo, 2010). Finally, the intricacy of the models themselves adds another layer
of complexity. These models require the integration of various factors including
genetics, environment, and management, which is a challenging task, therefore
making it difficult to create generalisable models for crop yield prediction.

In this context, the Horizon 2020 project InnoVar1 focuses on advancing crop
variety testing across European farmlands, specifically targeting the needs of an
expanding global population amid climate change. It aims to improve the effi-
ciency and accuracy of variety testing in crops, using wheat as the primary test
subject. By integrating genomics, phenomics, and machine learning, the project
seeks to optimise and modernise the Decision of Uniformity, Stability (DUS), and
Value for Cultivation and Use (VCU) testing processes. Involving 21 partners in
10 countries (Czechia, Denmark, Hungary, Ireland, Italy, Lebanon, Netherlands,
Portugal, Spain, and the United Kingdom), InnoVar runs trials in 15 locations
across Europe and creates tools for variety recommendations. The ultimate goal

1https://www.h2020innovar.eu
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1.1. Motivation

is to pave the way for improved agricultural practices for other vital crops like
perennial ryegrass and maize.

The project has generated a large database, comprising more than 200 variables
with approximately 100,000 observations and includes two species of wheat: bread
wheat (Triticum aestivum L.), primarily used for making bread, and durum wheat
(Triticum durum), commonly used for pasta, semolina, and similar products.
This database is divided into four main modules: phenomics, genomics, soil,
and weather. Each of these categories contains numerous associated attributes,
ranging from average air temperature and fertiliser application to soil nutrients,
genetic markers, and even wheat yield and grain weight. The genomics module
is particularly noteworthy, containing around 40,000 Single Nucleotide Polymor-
phisms (SNPs) for each species of wheat. A standout feature of the project is
the inclusion of nearly 300 variables obtained through drone technology, enabling
high-throughput phenotyping (HTP) analyses (Gill et al., 2022). The integration
of these diverse attributes is specifically aimed at constructing optimal prediction
models for DUS and VCU characteristics and optimisation of such experiments.

The InnoVar project also has a historical database for Ireland and Italy. These two
datasets contain a series of variables related to location and genotype. For Italy,
the yield of durum wheat, measured in tonnes per hectare (t/ha), was recorded for
32 genotypes across seven locations in a randomised complete block design with
three replicates over four years (from 2015 to 2018), totalling 1,269 observations.
For Ireland, data was collected over ten years (from 2010 to 2019) concerning
the production of bread wheat, also measured in tonnes per hectare. The trials
were conducted in the counties of Dublin, Cork, Carlow, Kildare, Kilkenny, Louth,
Meath, Laois, Tipperary, and Waterford, using a randomised complete block design
with four replicates. The dataset includes 85 genotypes and 17 environments,
resulting in a total of 6,368 measurements. The historical data for Ireland is the
data used throughout this thesis.

Building on the important role of staple foods like wheat in global food security
and the burgeoning demand posed by population growth, this thesis aims to ad-
vance the predictive modelling in wheat yield. Drawing upon the comprehensive

3
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database generated by the Horizon 2020 InnoVar project, which offers a rich spec-
trum of variables including phenomics, genomics, soil, and weather conditions, the
thesis seeks to extend the existing model Additive Main Effects and Multiplicative
Interaction (AMMI) framework, keeping the structure of the model and addressing
the main limitations. Given the multi-layered complexity involved in crop yield
prediction, from the intricate interplay of genetic, environmental, and management
factors to rapidly changing local conditions, we use the Bayesian approach to not
only improve the accuracy but also to provide probabilistic assessments of the
model’s predictions. Specifically, our research addresses the following questions:

(a) The Bayesian AMMI model encounters a significant challenge when handling
large volumes of data, given that Markov chain Monte Carlo (MCMC) meth-
ods (Robert et al., 1999) have high computational costs. Can we adopt an
alternative approach for obtaining the posteriors distributions for the model
parameters that reduces computational cost, while still capturing main and
interaction effects, and retaining predictive power?

(b) The traditional AMMI model is constrained to studying only the effects
of genotype and environment, as well as their interaction, overlooking the
influence of other variables that could be associated with prediction. Can
we develop a model that incorporates multiple variables, both numerical and
categorical, and captures their interactions at different levels?

(c) Often, the results and predictions from these models are implemented and
frequently used by farmers and non-technical individuals. Is it possible to
present the findings in a manner that is not only statistically robust, but
also comprehensible and actionable for individuals from other disciplines?

(d) When models are required to accommodate both categorical and continuous
predictors, how do we adapt the current generation of models so that we
retain the simple explanatory understanding of interactions that is commonly
used in AMMI models?

Throughout this manuscript, we answer these questions through independent chap-
ters as described next.

4
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1.2 Outline and Contributions
In Chapter 2, we introduce the preliminary concepts underlying this research.
This chapter starts off with a review of the major statistical models commonly
employed in crop prediction, with a particular focus on the additive main-effects
and multiplicative interaction (AMMI) model, which serves as the foundation for
the methodologies developed in this thesis. We also present an overview of vari-
ational inference, tensor regression, and clustering techniques, all of which have
been applied in subsequent chapters of this thesis.

In Chapter 3, we propose an alternative to reduce the computational time required
for the Bayesian AMMI model by adopting variational inference. We introduce the
Bayesian formulation of the model, specifying the priors for each parameter and
how the model’s inherent constraints are imposed in this approach. Subsequently,
we derive the variational distributions for each parameter. Through a simulation
study and application to a real-world case study using historical data from the
InnoVar project, we compare the results obtained via the variational approach
with those obtained via Markov chain Monte Carlo (MCMC). We demonstrate the
model’s performance in terms of accuracy, prediction and computational speed.

In Chapter 4, we propose an extension of the traditional Bayesian AMMI model,
using a tensor structure that allows for multiple interacting categorical variables,
in order to understand the phenotypic effect beyond the usual interaction of geno-
type and environment. In addition to incorporating these new effects, our proposal,
named the Bayesian Additive Main effects and Multiplicative Interaction Tensor
(BAMMIT) model, allows for the identification of important variables that make
meaningful contributions to interaction terms. Specifically, we present the math-
ematical formulation of this generalised approach, along with the new notation
adopted. We discuss the priors used in the hierarchical model and the spike-and-
slab structure, the former to ensure model identifiability and the latter to capture
both lower and higher-order interactions between variables. Through simulations,
we demonstrate that the model remains identifiable and effectively captures inter-
actions of different orders. We also show that the inclusion of new variables in the
model enhances its predictive power. We conclude the chapter with an applica-
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tion to historical real-world data from Ireland, now with additional variables. We
suggest a visualisation approach to present the results more simply and assist in
the decision-making process.

In Chapter 5, we introduce the Clustered Bayesian Additive Main Effects and
Multiplicative Interaction Tensor (CBAMMIT) model, extending the BAMMIT
framework through the integration of Gaussian Mixture Models (GMM). The idea
is to use GMM to incorporate categorical representations of numerical variables
into the existing BAMMIT model, as its current framework does not allow for the
inclusion of such variables. The proposed methodology distinguishes itself from
current literature by performing the clustering process simultaneously with esti-
mation, aiming to improve the predictive performance of the model. Initially, we
provide context through a brief review of GMM, followed by a conceptualisation of
the AMMI and BAMMIT models, as these form the basis for the new CBAMMIT
model. We then introduce the likelihoods for this new model, defining its priors
and discussing their contextual implications within the chapter. We illustrate the
rationale behind the adopted clustering process through a motivational example
using toy data, where we use a simplified version of the model to show the ad-
vantages of simultaneous clustering and estimation. With the results obtained in
the simulation study, we demonstrate the predictive abilities of the CBAMMIT
model. Additionally, we indicate scenarios where the model excels, as well as those
where it has its shortcomings. Finally, the real-world applicability of the model
is tested using the same dataset from Ireland, including two numerical variables
to be clustered: average annual temperature and average annual rainfall for the
years 2010 to 2019.

In Chapter 6, we present a discussion of the main findings of this research, the
broader impact and the outline for future works.
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CHAPTER 2
Preliminaries

In this chapter, we provide preliminaries on topics that will be used in the subse-
quent chapters of this thesis. In Section 2.1, we discuss the concepts of phenotype,
genotype and environment, as well as the role of the interaction between genotype
and environment on the phenotype performance. We also introduce the idea of
multi-environment trials. Following that, we review in Section 2.2 some commonly
used models in the literature to capture the effects of genotype and environment
variables, as well as the interaction between them, on the phenotypic response. In
Section 3.2.1, we focus on the AMMI model, discussing in Section 2.3.1 the biplot
graph, which is the most common way to visualise the AMMI model estimates.
Having presented the applied context of the thesis, we proceed to introduce the
methods applied to the AMMI model. Specifically, in Section 2.4, we introduce
the concept of variational inference, which is employed in Chapter 3. In Section
2.5, we present the idea of tensor regression, introducing some concepts that will
be applied later in Chapter 4. We conclude the preliminaries with Section 5.1,
which contains an overview of Gaussian mixture distributions, a concept used in
Chapter 5 of this work.
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2.1 Phenotype, Genotype and Environment
As discussed by Brown and Caligari (2011), the primary goal of a plant breeding
program is to create superior crop varieties that can be cultivated both efficiently
and economically. This objective is rooted in the intricate relationship between
phenotype, genotype and environment. As Kang (1988) points out, the perfor-
mance of a crop is strongly influenced by the environmental conditions in which it
is cultivated, shaping the way genetic characteristics show up as the visible traits.

The definitions of the concepts of phenotype, genotype, and environment are broad.
In a plant breeding context, genotype is the genetic makeup of the plant, the set
of genes inherited by the plant that serves as the genetic blueprint for its potential
traits (Allard, 1999). Meanwhile, Yan and Rajcan (2002) defines environment as
the sum total of circumstances surrounding or affecting the plant. These condi-
tions include soil quality, climate, and management practices like irrigation and
fertilisation. Finally, phenotype refers to the observable traits or characteristics of
the plant, such as height, yield, or resistance to disease. A specific example would
be a wheat genotype with a genetic predisposition for high yield may not achieve
its potential if grown in nutrient-poor soil, demonstrating that both genotype and
environment contribute to the final phenotype.

As a result, the observed phenotype can be a function of genotype, environment
and the interaction between them:

p = g + e + (ge), (2.1)

where p is the phenotypic response, g is the genotype factor, e is the environ-
mental factor and (ge) is the interaction between genotype and environment. The
equation presented in 2.1 is a conceptual model rather than a strict mathematical
formula. While these components are symbolised in a linear additive fashion, the
relationship in biological terms involves many interactions that are not directly
quantifiable by simple arithmetic.

In Figure 2.1 we show two simple types of interactions. In the left panel, the ad-
ditive interaction the effects of genotype and environment are independent of each
other. It implies, for example, that a particular genotype that performs well in one
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set of environmental conditions would also perform well in another. On the other
hand, in a crossover interaction, as shown in the right panel, the relative perfor-
mance of different genotypes changes depending on the environmental conditions.
That is, a genotype that performs well under one set of environmental conditions
may perform poorly under another. For example, the phenotypic response of g1

performs better than of g2 in an arid climate, while in a rainy climate, the op-
posite occurs. A detailed graphical representation of genotype-by-environment
interactions is given by Yan and Kang (2002).

g1

g2

g1

g2

Additive Interaction Crossover Interaction

e1 e2 e1 e2

Environment

P
he

no
ty

pe

Figure 2.1: Phenotypic response on two types of interaction between two genotypes
(g1 and g2) in two environmental conditions (e1 and e2).

The empirical evaluation of the genotype-by-environment interaction can be per-
formed in a multi-environment trials (METs). METs are experiments in which
a range of genotypes are evaluated across multiple environments to assess their
performance and stability under varying conditions (DeLacy et al., 1996). The
aim of METs is to identify genotypes that consistently perform well across diverse
environmental conditions, thereby supporting in the selection of superior plant
varieties for widespread cultivation.
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2.2 Genotype-by-environment Interaction
Models

Statistical models to characterise the genotype-by-environment (G×E) interaction
have been studied since the early 20th century (Cooper et al., 1996; Kang et al.,
2004). One of the earliest methods employed was Analysis of Variance (ANOVA),
which separates the total variability in the data into components due to genotype,
environment, and their interaction (Yates and Cochran, 1938). While ANOVA is
straightforward and widely used, it primarily serves as an exploratory tool and
lacks the capacity to model complex relationships between the variables (Piepho
et al., 2008).

A linear regression approach was first used by Finlay and Wilkinson (1963) to
describe G × E interaction. This method is simple and interpretable but assumes
a linear relationship not only between genotype and environment but also im-
plicitly assumes a specific form of the response to these factors, which may not
adequately capture the complexity of G×E interactions. Moreover, the regression
on the mean model is limited because it characterises environmental quality in a
single dimension, making it difficult to capture the complexity of G × E, leaving
a substantial amount of interaction unexplained (Malosetti et al., 2013).

Factorial regression extends linear regression models by incorporating terms that
model the combined effects of genotypes and environmental variables, thereby
providing a more nuanced understanding of G × E interactions (Comstock and
Moll, 1963). Factorial regression models offer a means to understanding G × E

interactions by integrating both genotypic and environmental information within
a single analytical framework. They provide insight into how different genotypes
might respond or be sensitive to changes in specific environmental conditions or
factors (Vargas et al., 1998). These models can be used to offset the modelling
of noise from having many variables by being reduced to a single variable for a
reduced-rank factorial regression model (Vargas et al., 1998). This method allows
for more complex relationships but requires a large data set for accurate estimation.

The Genotype plus Genotype-by-Environment interaction model is another pop-
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2.2. Genotype-by-environment Interaction Models

ular tool for analysing G × E (Yan et al., 2000). It focuses on the genotypic
main effects and the G × E interaction effects, excluding the main effect of the
environment. An advantage of this approach is that a biplot (Gabriel, 1971) (de-
scribed in more detail in Section 2.3.1), derived from the model, provides a visual
representation of the genotypes’ main effects and their interactions with environ-
ments. However, it is important to note that the main effects of environments
are not directly represented in this visualization. By focusing only on the geno-
type and G × E interaction, the model excludes the main effects of environments.
This can be a limitation when the primary interest is in understanding specific
environmental effects.

Multiplicative models that combine univariate (ANOVA) and multivariate tech-
niques have been proposed for decomposing the genotype, environment and G×E

components (De Resende and Thompson, 2004). The most common of these
methods is the additive main effect and multiplicative interaction (AMMI) model
(Gauch Jr et al., 1992). The AMMI model is discussed in greater detail in the
next section.

It is worth noting that in many of these models, the term environment is often sim-
plified to signify either the location or a combination of location and year/season.
There are several practical reasons behind this simplification. One of the primary
reasons is the ease of modelling and interpretation. Reducing the complexity of
environmental factors to location or location/season enables a more straightfor-
ward analysis and interpretation of results, a point emphasised in various studies
(Piepho et al., 2008; Gauch Jr, 2006). Another key reason is the availability of
data. Gathering detailed data on multiple environmental factors such as soil qual-
ity, micro-climate conditions, and pest pressures could be both resource-intensive
and logistically challenging (Yan et al., 2007). Using location as a proxy offers a
convenient way to generalise these numerous variables. While this approach might
not capture all the nuances of the genotype-environment interaction, it often serves
as a reasonable approximation for first-order environmental effects and provides a
balance between model complexity and interpretability (Malosetti et al., 2013).
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2.3 AMMI model
The AMMI model is composed of both additive and multiplicative terms, with the
latter measuring the interaction between the two additive effects. Specifically, the
model can be written as:

yij = µ + gi + ej +
Q∑

q=1
λqγiqδjq + ϵij, i = 1, . . . I, and j = 1, . . . , J, (2.2)

where yij is the phenotypic response and µ is the grand mean across all genotypes
and environments. The terms gi and ej capture the additive effects of the ith

genotype and jth environment, respectively. The noise component ϵij is assumed
to be normally distributed with a mean of zero and a variance of σ2.

The interaction between genotypes and environments is represented by the multi-
plicative term of the equation, also known as the bilinear component. This term
captures the G × E interaction by decomposing it into Q components. The pa-
rameter λq, usually arranged in descending order, measures the strength of the qth

component, while the parameters γiq and δjq represent the effect of the ith genotype
and jth environment in the qth component of the interaction, respectively.

Given the shared goal of decomposing data into underlying structures, the AMMI
model is sometimes mistaken for factor analysis (FA). However, while FA focuses
on explaining the covariance structure of the observed variables using latent fac-
tors, uncovering latent constructs, the AMMI model focuses on decomposing a
data matrix into the interaction of two sets of factors, modelling interactions and
decomposing structured data matrices. One advantage of the AMMI model over
FA is its ability to model and interpret the interactions between these variables
directly. This makes the AMMI model especially useful in agronomic studies.

To ensure the identifiability of the bilinear term, orthonormalisation constraints
are assumed:

1. ∑i γiqγiq′ = ∑
j δjqδjq′ = 0, for q ̸= q′.

2. ∑i(γiq)2 = ∑
j(δjq)2 = 1, ∀ i, j.

12



2.3. AMMI model

These constraints are necessary to obtain unique estimation of the parameters
(Josse et al., 2014). However, they do not universally guarantee identifiability
across all scenarios (Guhaniyogi et al., 2017; Miller and Carter, 2020). Additional
considerations might be necessary, such as the number of interaction terms in-
cluded (Q) and the model’s overall parameterisation. Specifically, choosing an
appropriate number of principal components (Q) is essential because too many
components might fit the noise rather than the underlying interaction structure,
potentially leading to overfitting and loss of model interpretability.

The frequentist approach for estimating the AMMI model’s parameters involves
two major steps (Gauch Jr, 2013). The first step is to fit a two-way ANOVA
model to estimate the main effects gi and ej as well as the grand mean µ. Then,
use principal component analysis (PCA) on the residuals from this initial model
to construct an interaction matrix (Gilbert, 1963; Gollob, 1968; Gabriel, 1978). In
this approach, it is also assumed that ∑i gi = ∑

j ej = 0. It ensures that the main
effects are centred, separating them from the interactions. For practical examples
of how these constraints and frequentist estimations work, see Yan et al. (2007).

In the Bayesian framework, various methodologies have been proposed for estimat-
ing the parameters of the AMMI model. Viele and Srinivasan (2000) introduced
the use of Markov chain Monte Carlo (MCMC) techniques, with a focus on adher-
ing to the model’s identifiability constraints. Liu (2001) improved upon this by
developing a more computationally efficient and stable Gibbs sampling method.
Further enhancements to Gibbs sampling were made by Crossa et al. (2011) and
Perez-Elizalde et al. (2012), who not only stabilised the algorithm but also in-
corporated statistical inference into biplot visualisations (Gabriel, 1971), adding
credibility regions for interaction effects.

In particular, Josse et al. (2014) suggests an alternative approach to handle with
the model constraints, by ignoring them when defining priors for all parameters.
Different from previous works, this approach does not ensure orthonormality con-
straints for interaction terms at the prior level. The authors propose working
with functions of parameters that are identifiable. After obtaining samples from
these posterior distributions using MCMC, a post-processing step is applied, where
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each sample matrix is centred by row and column, and then subjected to Singular
Value Decomposition (SVD). This author’s claim is that this procedure gives new
parameter sets that do meet the model constraints, making the results easier to
interpret.

Regarding the number of multiplicative components Q in the AMMI model, there
are different methods to determine it. Typically, Q ≤ min(I −1, J −1). By setting
Q to this maximum value, the model could theoretically capture all the variance in
the interaction. However, in practice, Q often takes on a value between 1 and 3 to
facilitate easier interpretation and visualisation through biplots. However, more
sophisticated proposals have been applied. For example, Cornelius (1993) used
parametric significance tests, while other studies have leveraged cross-validation
techniques (dos S. Dias and Krzanowski, 2003; Gabriel, 2002; Hadasch et al., 2017).
Resampling methods have also been applied to determine the optimal Q (Malik
et al., 2018, 2019). On the Bayesian paradigm, approaches for setting Q include
using prior choices and Bayes factors (Perez-Elizalde et al., 2012; da Silva et al.,
2015). Additionally, a non-parametric Bayesian approach, as presented by Sarti
et al. (2021), eliminates the need to specify Q altogether.

There are several reasons to for the AMMI model’s popularity. It has strong pre-
dictive performance (Gauch Jr, 2006; Gauch Jr et al., 2008), accuracy (Gauch and
Moran, 2019) and stability evaluation system (Gauch Jr, 1988; Yue et al., 2022).
The AMMI model’s flexibility is another advantage. It can be applied to a wide
variety of data types and fields, not just in plant breeding but wherever the inter-
action between two main factors is a point of interest. Also, this model often serves
as a baseline model against which more complex models can be compared. Finally,
the model enhances interpretability, allowing, for example, for the generation of
biplots.

Having explained its advantages and considering the various possible extensions
that can be made, we use the AMMI model in this work as a baseline for new
implementations and generalisations.
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2.3.1 Visualisation of the AMMI model
First introduced by Gabriel (1971), the biplot is a graphical representation that
displays both the observations and the variables of a data set in a reduced dimen-
sional space. The biplot shows how each observation can be expressed as a linear
combination of the original variables and how each original variable contributes to
the principal components.

The biplot has seen increasing popularity in recent years, particularly among agri-
cultural researchers due to its ability to effectively visualise G × E interactions
(Yan et al., 2000). However, there have been many studies examining both the
advantages and disadvantages of biplots (for example, see Yan and Tinker (2006),
Yan et al. (2007), or Yang et al. (2009)). Some of the main advantages of bi-
plots are that they can provide a concise visual summary of the relationships in a
data set and that they can help in identifying patterns, clusters, and outliers. A
limitation of biplots includes interpretation issues when there are many variables
(Crossa et al., 2004). In data sets with a large number of observations and/or
variables, the biplot can become overcrowded, making it difficult to interpret and
identify patterns. Additionally, when derived from techniques like PCA (which is
inherently a linear dimension reduction technique), biplots reflect the underlying
assumption of linear relationships among variables. This can provide misleading
interpretations if the true relationships are nonlinear.

In relation to AMMI model, both the γiq and δjq are plotted in the same biplot,
making it a useful tool for interpreting genotype by environment interactions.
Figure 2.2 shows a biplot example, illustrating the wheat yield from the 2015
historical Irish data set. To run the AMMI model and to create the plot, we
use the R package metan (Olivoto and Lúcio, 2020). In the biplot, each point’s
coordinates are determined by the first two principal components. In this case,
the plot shows two principal components, PC1 and PC2, which explain 31.8% and
28% of the variability in the data, respectively.
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Figure 2.2: Example of a biplot, using the historical Irish data from 2015. The
legends represent the environments (Env) and the genotypes (Gen).

The proximity of each pair of points in the biplot represents similarity. For ex-
ample, points that are closer together represent observations with similar mean-
centred values and vice-versa. The arrows in the biplot represent the original
variables, with their length reflecting the extent of the variable’s contribution to
the variance captured by the displayed principal components. The direction and
angle of an arrow in relation to the axes of the principal components indicate the
strength of the variable’s correlation: a tighter angle reveals a stronger correla-
tion. Additionally, the angle between two arrows in the biplot approximates the
correlation between the corresponding variables; a smaller angle suggests a posi-
tive correlation, while a larger angle, especially one exceeding 90 degrees, implies
a negative correlation.
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In Figure 2.2, the plot is divided into quadrants by PC1 and PC2. Points that
are close together represent genotypes or environments with similar performance,
while those farther apart differ more. For example, genotype g5 and environment
e1 are on opposite ends of PC1, suggesting a significant difference in their impact
on yield. Conversely, genotype g85 and environment e7 are positioned closely
on the plot, suggesting they have similar scores on the principal components.
Environment e4, located in the bottom-left quadrant, is close to zero on the PC2-
axis and has a score near -1 on the PC1-axis. This positioning suggests that
the variability or differences in yield for e4 are not strongly explained by PC2,
but are more influenced by PC1. The length of the arrow for e4 indicates that
this environment has a significant impact on the overall variance captured by the
principal components, especially in terms of the dimension associated with PC1.
One drawback of this type of plot is interpretability. The concepts involved in
understanding the plot require some mathematical knowledge which can hinder
its usefulness to a wider audience.

An alternative to visualising the AMMI model through biplots was suggested by
Sarti et al. (2023) using heatmaps. In Chapter 4 of this work, we extend this
visualisation approach by incorporating uncertainty into the heatmap legends, as
proposed by Inglis et al. (2022).

2.4 Variational Inference
Let x = (x1, . . . , xN) be a set of N observations and z = {z1, . . . , zM} a set of M

latent variables that we need to infer. The Bayes Theorem give us

p(z|x) = p(z) p(x|z)∫
p(x|z)p(z)dz

,

where the numerator p(z, x) = p(z)p(x|z) represents the joint density. The de-
nominator is known as the marginal likelihood or the evidence, defined as

p(x) =
∫

p(z, x)dz.

In general, it is difficult to calculate p(x). Traditionally, Markov chain Monte
Carlo (MCMC) methods have been used to generate samples from the posterior
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distribution p(z|x), which, over many iterations, approximate the true posterior
distribution. This sampling approach provides estimates of the posterior charac-
teristics but can be computationally intensive and slow to converge, particularly
in complex models. To address this challenge, we can reformulate the integration
problem as an optimisation problem.

Variational Inference (VI) or variational Bayes is a method for approximating
probability densities (Blei et al., 2017). Although VI has its roots in statistical
physics, its application has been popularised in machine learning and probabilistic
modelling (Jordan et al., 1999; Wainwright et al., 2008; Blei et al., 2017; Bishop
and Nasrabadi, 2006). Particularly, VI has been employed for topic modelling
using Latent Dirichlet Allocation, Gaussian Process Regression (Titsias, 2009),
and deep generative models like Variational Autoencoders (Kingma and Welling,
2013). In natural language processing, it has been applied to sentiment analysis,
topic categorisation, and machine translation (Blei et al., 2003; Hoffman et al.,
2013). In an applied context, Carbonetto and Stephens (2012) used VI to model
genetic variation and gene expression. In neuroscience, (Archer et al., 2013) applied
VI methods to decode neural signals.

The main idea behind VI is to use optimisation methods rather than sampling to
approximate the true posterior distribution. First, we choose a family of approxi-
mate densities Q parameterised by θ, denoted as q(z|θ). The goal is to find the
set of parameters θ that minimises the divergence between our approximation q
and the true posterior distribution. This idea is illustrated in Figure 2.3.

Figure 2.3: Illustration of the idea behind variational inference. This figure was
produced by the author but inspired by Kejzlar and Hu (2023).
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In Figure 2.3, the true posterior distribution p(z|x) represents the distribution
we aim to approximate through variational inference. The contour outlined repre-
sents the family of approximate densities q(z|θ), within which we seek the optimal
parameter set θ∗. The initial parameter set is indicated by θinit, showing the start-
ing point for the optimisation. The dotted line traces the path of the optimisation
process towards θ∗, which is the parameter set that minimises the divergence be-
tween q(z|θ) and the true posterior p(z|x), effectively approximating it as closely
as possible within the chosen family Q.

To measure the closeness between the distributions q(z|θ) and p(z|x), we use the
Kullback-Leibler (KL) divergence. This quantifies the amount of information lost
when q(z|θ) is used to approximate p(z|x). Specifically, the KL divergence is
a measure of how one probability distribution diverges from a second expected
probability distribution:

q∗(z|θ∗) = arg min
q(z|θ)∈Q

KL(q(z|θ)||p(z|x)).

The aim is to find q∗ which serves as the optimal variational distribution. As it is
not possible to minimise the KL divergence directly, we optimise another quantity,
the evidence lower bound (ELBO) (Blei et al., 2017):

ELBO(q) = Eq[log p(x, z)] − Eq[log q(z)].

By maximising the ELBO, we indirectly minimise the KL divergence between the
variational distribution and the true posterior. This is because the KL divergence
can be rewritten as:

KL(q(z|θ)||p(z|x)) = log p(x) − ELBO(q).

Since log p(x) is constant with respect to the variational parameters θ, maximising
the ELBO is equivalent to minimising the KL divergence, thereby improving the
approximation q(z|θ) towards p(z|x).

A common choice for the variational family Q is the mean-field variational fam-
ily, where we assume that the latent variables z are mutually independent when
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conditioned on the variational parameters θ. Mathematically, this is expressed by
factorising q(z|θ) as

q(z|θ) =
M∏

m=1
qm(zm|θm).

To optimise the variational parameters θ under the mean-field assumption, one
popular algorithm is the coordinate ascent variational inference (CAVI) (Bishop
and Nasrabadi, 2006). In CAVI, each variational parameter θm is updated it-
eratively while keeping the other variational parameters fixed. Specifically, the
optimal qm(θm) are proportional to

qm(θm) ∝ exp{E−θm log p(θm|y, θ−θm)}.

where E−θm denotes the expectation with respect to all elements of the vector θ

except θm.

Although the mean field approach is computationally more tractable, it is worth
noting that the assumption that latent variables are mutually independent might
not be suitable for many problems, particularly those where correlations between
latent variables are important (Blei et al., 2017).

In Chapter 3, the variational inference approach is applied as an alternative to
MCMC methods for obtaining the posterior distributions of the Bayesian AMMI
model, with the aim of reducing computational time cost.

2.5 Tensor Regression
Let I1, . . . , IN be positive integers. A tensor of order N (or N -way tensor) is a
mathematical object represented as a multi-dimensional array of size I1 ×I2 × . . .×
IN (Kolda and Bader, 2009). Tensors generalise scalars, vectors and matrices. A
vector is a tensor of order 1, while a matrix is a tensor of order 2 (see Figure 2.4).

Tensors have found applications in a wide range of disciplines (Cichocki et al.,
2015). In chemistry, tensors are often used in the context of quantum chemistry,
molecular dynamics, and spectroscopy (Khoromskaia and Khoromskij, 2018). Ten-
sors are used in multiple areas of physics. For example, in general relativity, tensors
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Figure 2.4: Graphical representation of tensors of order 1, 2 and 3. This figure
was produced by the author, but inspired by a similar one in Liu et al. (2022).

are used in formulating the gravitational field equations (Einstein, 1916). Simi-
larly, in quantum mechanics, the concept of tensors is used to depict the statistical
state of a quantum system (Von Neumann, 2018). In the field of computer science,
tensors are regularly used in areas such as natural language processing (Bouchard
et al., 2015), or when using deep learning for image recognition to enable machines
to interpret and make decisions based on visual data (Panagakis et al., 2021). In
statistics, tensors are applied to extend traditional linear regression models for
multi-dimensional data (Zhou et al., 2013).

Mathematically, let be N be the number of observations, X1, X2, . . . , XN a collec-
tion of predictor tensors and Y1, Y2, . . . , YN a collection of response tensors, where
each Xi would be of dimension I1, . . . , IP and and each Yi would be of dimension
I1, . . . , IR. For each observation i = 1, . . . , N , the tensor regression model can be
formulated as:

Yi = f(Xi, W) + Ei,

where, f(Xi, W) is the regression function mapping the predictor tensor Xi and
coefficient tensor W to the response tensor Yi. Ei is the error tensor corresponding
to the ith observation.
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Depending on the assumptions made about the functions f(Xi, W) various fea-
ture selection strategies, like tensor decomposition, can be used (Liu et al., 2022).
There are several ways to decompose a tensor, but two of the most commonly used
methods are the Canonical Polyadic (CP) decomposition and the Tucker decom-
position. These decompositions aim to reduce the dimensionality of the tensor,
thereby making it computationally more manageable (Kolda and Bader, 2009).

It is interesting to note a conceptual resemblance between the multiplicative in-
teraction terms in the AMMI model (Equation 2.2) and tensor regression models.
The bilinear terms λqγiqδjq, which capture the interactions between genotypes and
environments, can be viewed as a latent tensor in a product form. This comparison
is particularly relevant in the context of tensor regression, where such a structure
is explicitly used to model multi-way interactions between factors.

In this work, we employ tensor regression in Chapter 4 to generalise the AMMI
model. We follow the Bayesian framework proposed by Guhaniyogi et al. (2017),
where the a Bayesian regression model using vector or tensor covariates is used to
predict a univariate response via a category of multiway shrinkage priors.

2.6 Bayesian Mixture of Gaussian Distributions
Clustering analysis aims to segment observations into distinct groups, or clusters.
Items in the same cluster are more closely related to each other than to items in
other clusters. The clustering is accomplished by employing various metrics for
measuring similarity or distance between data points.

The clustering technique studied in this work is based on probabilistic models
and uses the principle of mixture of distributions. This stands in contrast to
conventional clustering methods such as K-means, which rely on heuristic criteria
for similarity or distance. The objective is to identify the statistical model that
is most likely to have generated the data. Each cluster is essentially a component
of this mixture model, where each observation is assigned to a particular cluster
based on the likelihood that it was produced by that specific component model.

For a comprehensive understanding of model-based clustering, see the review by
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McNicholas (2016) and a more recent work by Gormley et al. (2023). Additionally,
Bouveyron and Brunet-Saumard (2014) provides an extensive review focused on
the application of Model-Based Clustering to high-dimensional data. McLachlan
et al. (2019) also present a review of theory and methodological developments in
finite mixture models.

Frequently, a Gaussian mixture model (GMM) it is used, which assumes that each
component follows a Gaussian distribution. Formally, let X = (x1, . . . , xN) be
N independent and identically distributed random variables. Assume that xi is
a p-dimensional random vector following a multivariate Normal distribution. The
density of xi is modelled as a mixture of K components:

f(xi|θk) =
K∑

k=1
πkNp(xi|µk, Σk), (2.3)

where θk is the vector of parameters of the mixture model, with µk and Σk the
mean vector and the covariance matrix associated with the kth component, re-
spectively. The parameters π = (π1, . . . , πK) are the cluster mixing proportion,
such that πk > 0 and ∑K

k=1 πk = 1. The model in (2.3) can be expressed through
latent allocation variables c = (c1, ..., cn)⊤, where ci ∈ {1, . . . K} identifies the
cluster in which the respective xi belongs to. We can assume that ci ∼ Cat(π)
and π ∼ Dir(α), α = (α1, . . . , αK) = 1.

In the nonparametric Bayesian approach, the structure of π fundamentally deter-
mines the allocation of data points to different clusters within the model, directly
influencing its ability to model the underlying data distribution. The flexibility of
the Dirichlet process allows for an unbounded number of potential components,
with the π’s governing the richness of the mixture and its capacity to adapt to the
complexity of the data. Thus, the inherent structure of the π’s is pivotal to the
performance and adaptability of the nonparametric Bayesian models. For more
details, see Murugiah (2010).

As discussed by Gormley et al. (2023), GMM is sensitive to the number of pa-
rameters p. This means that as the number of parameters increases, challenges
may arise in interpreting the results and in the estimations, due to the increasing
dimension of the Σk matrix. One proposed solution to address this issue is to
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consider an eigen-decomposition of the form

Σk = ρkDkAkD⊤
k . (2.4)

Each component in Equation 2.4 is responsible for a specific geometric property
of volume, shape and orientation. The parameter ρk is a proportionality constant
that determines the volume occupied by the kth component, while the matrix
of eigenvectors Dk defines the orientation. The diagonal matrix of eigenvalues
Ak establishes the shape. Through this decomposition, it is possible to obtain
14 different models using finite mixtures of multivariate Gaussian, with different
geometric characteristics. This decomposition is used in the implementation of the
model-based clustering R package mclust (Scrucca et al., 2016).

One of the questions to be answered concerns how many clusters K should be
included in the model. If the value of K is too small, some clusters may not be
included, whereas if K is too large, the model will overfit. Therefore, there is a
trade-off between the model’s complexity and the number of groups. Extensive
research has been conducted on the selection of K, by both Bayesian and non-
Bayesian approaches.

A conventional method is fitting models of various complexities and using criteria
like Bayesian Information Criterion (BIC) or the Akaike Information Criterion
(AIC) for model selection (Alamichel et al., 2022). Another approach is to consider
K → ∞, then the model becomes a non-parametric mixture, also known as an
infinite mixture model (Rasmussen, 1999). The most commonly used prior for this
type of mixture is the Dirichlet process (Ferguson, 1973; Lo, 1984).

Another challenge that arises in the Bayesian framework, it is the label switching
problem (Diebolt and Robert, 1994; Richardson and Green, 1997) where the labels
of the clusters may change upon model refitting or resampling, although the model
itself remains the same (Celeux et al., 2000; Stephens, 2000). As pointed out by
Stephens (2000), this changing can result in a highly symmetric and multimodal
posterior distribution of the parameters, which complicates the task of summari-
sation. Papastamoulis (2016) and Jasra et al. (2005) present a detailed review on
solutions to this label switching problem.
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In this work, the GMM-based clustering process is applied in Chapter 5. The
method is considered to enable the inclusion of continuous variables in the AMMI
model.
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CHAPTER 3
Variational Inference for Additive

Main and Multiplicative
Interaction Effects Models

In plant breeding the presence of a genotype by environment (G × E) interaction has
a strong impact on cultivation decision making and the introduction of new crop culti-
vars. The combination of linear and bilinear terms has been shown to be very useful in
modelling this type of data. A widely-used approach to identify G × E is the Additive
Main Effects and Multiplicative Interaction Effects (AMMI) model. However, as data
frequently can be high-dimensional, Markov chain Monte Carlo (MCMC) approaches
can be computationally infeasible. In this article, we consider a variational inference
approach for such a model. We derive variational approximations for estimating the pa-
rameters and we compare the approximations to MCMC using both simulated and real
data. The new inferential framework we propose is on average two times faster whilst
maintaining the same predictive performance as MCMC.
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3.1 Introduction
In plant breeding, it is often of interest to identify which genotypes perform best in
different environments. The presence of genotype × environment (G × E) interac-
tions is an important factor, and has a strong impact on the yield. Furthermore, it
contributes to the improvement of breeding programs (McLaren and Chaudhary,
1994). Many authors deal with modelling interactions in plant genomic data. In
particular, Crossa et al. (2010) review various statistical models for analysing G×E

interactions. A common approach is to create models that combine linear and bi-
linear (interaction) terms. Often, these bilinear interaction terms are not simple
multiplicative combinations of genotype-environment pairs, but rather latent pa-
rameters to be estimated. For papers on linear-bilinear models, see Gauch Jr et al.
(2008), Crossa et al. (2010), Poland et al. (2012) and Gauch Jr (2013).

One of the most widely used linear-bilinear models is the Additive Main and Mul-
tiplicative Interaction (AMMI) effects model (Gauch Jr, 1988; Gauch Jr et al.,
1992). AMMI incorporates both additive and multiplicative components from the
two-way data structure, first educing the principal additive components, and then
investigating the G×E component with principal components analysis. The results
of an AMMI-style analysis are usually displayed graphically in biplots (Gauch Jr
and Zobel, 1997; Yan et al., 2000; Yan and Rajcan, 2002), that help to interpret
the G × E interactions. Further, these models typically perform well with regard
to their predictive properties (Gauch Jr, 2006; Gauch Jr et al., 2008).

Several approaches have been made in estimating the parameters of the AMMI
model, mostly from the point of view of classical inference (Gilbert, 1963; Gabriel,
1978; Gauch Jr, 1988; Van Eeuwijk, 1995). However, the desirable characteristics
for evaluating uncertainty and including expert knowledge, as a priori informa-
tion, led the Bayesian approach to be applied in G×E modelling (Foucteau et al.,
2001; Theobald et al., 2002; Cotes et al., 2006), and consequently, in the AMMI
model. In the latter case, it is necessary to deal with the constraints associated
with the model, and the problems caused by the orthonormal bases used in the
decomposition of the bilinear term. Due to these restrictions, complicated prior
distribution decisions for AMMI inference may be necessary (Viele and Srinivasan,
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2000; Crossa et al., 2011). An alternative approach proposed by Josse et al. (2014)
ignores these restrictions on the prior distributions and applies later-level process-
ing of the posterior.

When the data sets are particularly large or when models become complex, tra-
ditional methods for Bayesian inference can fail to sample from the posterior dis-
tribution. An alternative way to deal with these issues is to use methods such as
Variational Inference (VI); also called Variational Bayes (Beal, 2003; Ormerod and
Wand, 2010; Blei et al., 2017). This approach has been widely used in recent years
because, whilst the variational approximations do not always converge to the exact
posterior distribution, they are computationally much faster. In some agricultural
models, for example, VI has been demonstrated to perform well (Montesinos-López
et al., 2017; Gillberg et al., 2019).

To date we have not found a paper that applies VI to AMMI models, and this is
the focus of our paper. We follow Josse et al. (2014)’s approach for constructing
the AMMI model, but fit the model using VI in order to enjoy the characteristics
of the Bayesian approach and reduce the computational cost in the approximation
of the posteriors of the model. In a set of simulation studies, we find that VI
performs well in terms of speed and, in comparison with the results obtained via
Markov chain Monte Carlo (MCMC), our results were similar in terms of accuracy.
Unsurprisingly we find the speed boost to be greater when the data set grows larger.

Our paper is structured as follows. We begin in Section 3.2.1 by reviewing the
AMMI model, which is formulated in the Bayesian style. Section 3.2.2 provides
a review of VI. In Section 3.2.3 we present the mathematics of the variational
updates for the AMMI model. In Section 3.3 we evaluate our methods and make
comparisons with MCMC using simulated and real data. We present graphs com-
paring the results of the two methods, as well as the prediction results. In Section
4.5 we provide a discussion of our findings and point to future research. An R
implementation of the AMMI models and variational inference of the model used
to run all experiments and generate the results of the paper is available on GitHub
here (https://github.com/Alessandra23/vammi).
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3.2 Theoretical Background
3.2.1 AMMI Model
In this section, we define the AMMI model and present the restrictions that guar-
antee identifiability of the model parameters. The AMMI model for an outcome
variable (e.g. log yield per hectare), yij ∈ R, is formulated as

yij = µ + gi + ej +
Q∑

q=1
λqγiqδjq + ϵij, (3.1)

where µ is the grand mean, gi, i ∈ {1, . . . , I} and ej, j ∈ {1, . . . , J}, represent
the effect of the i-th genotype and j-th environment, respectively, and ϵij is noise
distributed as N (0, σ2). The term in the summation is called the bilinear com-
ponent and captures the interaction effects, where λq is the singular value of the
q-th bilinear component, and γiq and δjq are the left and right singular vectors of
the interaction, respectively. The upper term of the summation Q represents the
number of bilinear terms to include and is fixed before running the model. For
visualization and interpretability issues it is common to set Q less than three. All
the terms on the right hand side of the equation (with the exception of Q) are
parameters to be estimated. The model can be trivially extended to account for
block or replicate effects, but we do not explore such extensions in this paper.

In matrix form, denoting Y = (yij) ∈ RI×J , Equation (3.1) is equivalent to

Y = µ1I1′
J + g1′

J + 1Ie′ + ΓΛ∆′ + E. (3.2)

where Γ ∈ RI×Q, ∆ ∈ RJ×Q, Λ ∈ RQ×Q, 1m is a column vector of ones of size m.
γq and δq arise from the q-th column of matrices Γ and ∆ respectively. Λ is a
diagonal matrix consisting of the terms λ1, . . . , λQ. The other bold terms indicate
vector stacking of the individual main effects.

The nature of the over-parameterisation means that it is necessary to establish
some conditions of identifiability and interpretability for the parameters. It is
thus common to assume the constraints below:

(i) 1′
Ig = 1′

Je = 0,

29



3.2. Theoretical Background

(ii) 1′
Iγq = 1′

Jδq = 0 for all q ∈ {1, . . . , Q},

(iii) Γ′Γ = ∆′∆ = IQ,

(iv) the diagonal terms of Λ are ordered such that λ1 ≥ λ2 ≥ · · · ≥ λQ ≥ 0,

(v) the first entry of each column of Γ is positive.

The constraints (i) and (ii) are interpretability constraints, whereas (iii), (iv) and
(v) are necessary constraints to ensure identifiability of the model.

From a frequentist perspective, a multi-stage least squares method can be used to
estimate the parameters of the model, first estimating the linear terms µ + gi + ej

and then using Principal Components Analysis (PCA), equivalent to maximum
likelihood estimation, to estimate the residuals of the nonlinear term and so create∑Q

q=1 λqγiqδjq (Gilbert, 1963; Gollob, 1968; Gabriel, 1978).

From a Bayesian perspective, the restrictions can be dealt with via the prior dis-
tributions. In Cornelius and Crossa (1999) a Bayesian shrinkage estimator is pro-
posed. Crossa et al. (2011) introduce proper prior distributions and use a Gibbs
sampler for inference on the parameters to target the exact posterior distribu-
tion. Perez-Elizalde et al. (2012) propose the von Mises–Fisher distribution as a
prior for the orthonormal matrices Γ and ∆. By contrast, Josse et al. (2014) pro-
pose that the over-parameterisation be handled subsequent to the model fitting,
initially ignoring the problems at the prior level and applying an appropriate post-
processing of the posterior distribution. They argue that this approach allows eas-
ily interpretable inferences to be obtained, in addition to simpler implementation
in statistical software. Mendes et al. (2020) and Omer and Singh (2017) perform
a comparison between the classical and Bayesian approaches of the AMMI model,
showing that the Bayesian modelling is more flexible than the classical one. More
recently, Sarti et al. (2023) propose the use of semi-parametric Bayesian Additive
Regression Trees (BART) to capture genotypic by environment interactions.

One of the main problems when using the Bayesian methodology in linear-bilinear
models is the associated computational cost, given the complex structure of the
parameters. Taking this into account, we follow the proposal of Josse et al. (2014),
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applying the prior distributions suggested in the matrices of the linear term, and
using the variational inference to obtain the estimates of the AMMI model param-
eters, thus reducing the computational time of the fitting process.

3.2.2 Variational Inference
The basic idea of VI, as an alternative to Markov chain Monte Carlo, is to approx-
imate the posterior distribution via optimisation, thereby making the estimation
process computationally faster. First, we choose a family of approximate densities
over a set of latent variables which we believe will provide a good approximation
to the true posterior. Then we find the set of parameters that make our approxi-
mation as close as possible to the posterior distribution. Blei et al. (2017) reviews
the method, presenting examples, applications, and a discussion of problems and
current research on the topic.

Let y = y1, ..., yn a set of observations, θ a vector of parameters, p(y) the marginal
distribution of observations, and p(y, θ) the joint density of the model and the pa-
rameters. The density transform approach, one of the most common variants of VI
(Ormerod and Wand, 2010), consists of approximating the posterior distribution
of p(θ|y) = p(y, θ)/p(y) by a distribution q(θ) from a set of tractable distribu-
tions Q, for which we minimise the Kullback-Leibler (KL) divergence. Since it
is not possible to calculate KL directly, the optimisation is done over an equiva-
lent quantity, called the evidence lower bound (ELBO) (Blei et al., 2017), where
maximising it is equivalent to minimising the KL divergence:

ELBO[q(θ)] = −KL[q(θ)∥p(θ | y)] + log p(y). (3.3)

Maximising the ELBO, comprising the expected log-likelihood of the observed data
and the entropy of the variational distribution, is as an effective way by indirectly
minimising the KL divergence. It allows for efficient and scalable inference in
models where exact Bayesian inference is unfeasible. It is computationally simpler
and adapts well to large data sets and complex models, such as those found in this
work.

A broad class of distributions to describe the variational family Q is the mean-field
approximation, which assumes that the elements of θ are mutually independent,
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then q(θ) can be factored into ∏M
m=1 qm(θm), where M is the number of partitions

of the vector of parameters θ. Therefore, each variable θm can be governed by its
own variational factor. Bringing together the ELBO and the mean-field family,
the optimal qm(θm) are proportional to

qm(θm) ∝ exp{E−θm log p(θm|y, θ−θm)}, (3.4)

where E−θm denotes the expectation with respect to all θ variational distributions
except θm. If the prior distributions are conjugate it is possible to obtain explicit
expressions for each component leading to simple parameter updates, which is one
of the advantages of the approach. As a disadvantage, Montesinos-López et al.
(2017) comments that the restrictions imposed by the mean-field approximation
can lead to underestimation of the variability of parameter estimates, and further
emphasises that it is not a good option if there is strong dependency between the
parameters.

3.2.3 VI applied to the AMMI Model
Exact inference for the model is intractable and we use the variational approx-
imation for computational efficiency. Following Josse et al. (2014), we list the
priors defined for the complete set of parameters without considering any hard
constraints (Table 3.1). To simplify notation, let Θ = {µ, g, e, λ, γ, δ, σ2} be the
set of parameters and let θ = {µµ, σ2

µ, σ2
g , σ2

e , σ2
λ, a, b} be all the hyper-parameters.

Omitting the dependency on θ, we state the joint posterior density of the param-
eter vector of the variational AMMI model as

p(Y , µ, g, e, Λ, Γ, ∆, σ2) ∝ p(Y |µ, g, e, Λ, Γ, ∆, σ2)p(µ)p(g)p(e)p(Λ)p(Γ)p(∆)p(σ2),

and assume that the posterior distribution is approximated by factorising the vari-
ational approximation,

p(µ, g, e, Λ, Γ, ∆, σ2) ∝ q(µ)q(g)q(e)q(Λ)q(Γ)q(∆)q(σ2).

For our model, the resulting approximate posterior distribution of each factor fol-
lows the same distribution as the corresponding prior. Table 3.1 presents the
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assumed prior distributions as well as the approximations of the posterior distri-
bution, where N , N + and G denote the normal, truncated normal and gamma
distributions, respectively. For brevity, we do not list here the variational updates
of all these parameters. We provide the full mathematical derivation in Appendix
3.A.

A key point in variational inference is the dependence of the estimates on the
initial values of the optimisation (Rossi et al., 2019; Airoldi et al., 2008; Lim and
Teh, 2007). In our variational approach, the initial values proved to be especially
important, perhaps due to the dependence on the parameters of the bilinear term,
which is ignored by the coordinate ascent. In view of this, our way to get around
this problem was to initialise the Θ set in the algorithm with the frequentist
estimates of the parameters, then we recursively update the variational parameters
µq(µ), Σq(µ), µq(gi), Σq(gi), µq(ej), Σq(ej), µq(λq), Σq(λq), µq(γi), Σq(γi), µq(δj), Σq(δj),
aq(σ−2), and bq(σ−2), for all i, j, q, until convergence. For more discussion of this
initialisation see Section 3.3.

Table 3.1: Overview of prior distributions and the respective variational distribu-
tions of each parameter of the model.

Parameter Prior Distribution Variational Distribution

µ N (µµ; σ2
µ) N (µq(µ), Σq(µ))

g
I∏

i=1
N (0; σ2

g)
I∏

i=1
N (µq(gi), Σq(gi))

e
J∏

j=1
N (0; σ2

e)
J∏

j=1
N (µq(ej), Σq(ej))

λ ordered sample of
Q∏

q=1
N +(0; σ2

λ)
Q∏

q=1
N +(µq(λq), Σq(λq))

γ N +(0; 1)
Q∏

q=1

I∏
i=2

N (0; 1)
I∏

i=1
N (µq(γi), Σq(γi))

δ
Q∏

q=1

J∏
j=1

N (0; 1)
J∏

j=1
N (µq(δj), Σq(δj))

σ−2 G(a; b) G(aq(σ−2), bq(σ−2))
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The variational distributions listed are a consequence of the variational approxima-
tion method used. We employed a mean-field variational Bayes approach, which
assumes that the variational distribution factorises over the parameters, leading
to the specific forms shown.

3.3 Results
3.3.1 Simulation Study
In this section, we describe the simulation study to investigate the performance of
the proposed algorithm. The data were generated as follows:

1. The number of environments and genotypes were I ∈ {6, 10, 12, 25, 50, 100, 200}
and J ∈ {10, 12, 20, 30, 50, 100}, respectively, and we used Q ∈ {1, 2}.

2. We simulated the additive term as µ ∼ N (90, 10), gi ∼ N (0, σ2
g), and ej ∼

N (0, σ2
e). We fixed the standard deviations σ2

g = 10 and σ2
e = 10.

3. For the multiplicative term, we fixed λq = {12, 20, 25, 60}, and obtained the
matrices Γ and ∆ through orthonormalization, ensuring their columns are
orthogonal with unit norm. The process is described in Sarti et al. (2023).

4. We simulated the values yij from N (µ + gi + ej + ∑Q
q=1 λqγiqδjq, σ2

y), where
we fixed σ2

y = 1.

We performed several experiments to determine how the Root Mean Square Error
(RMSE) is influenced by the initialisation of the Θ vector in the algorithm. To
achieve this, we altered the initial values of the Θ vector in three different scenarios.
That is, for each scenario we supplied as initial values: (a) random values from
a normal distribution; (b) frequentist estimates from the AMMI model; and (c)
Bayesian estimates of the model, considering 25% of the simulated data.

We evaluated the performance by calculating the accuracy of the predicted values,
computational time and compatibility of the estimates compared to those obtained
via MCMC. We used RMSE as a measure to assess the quality of the estimates in
the predicted values. In the evaluation of the criteria for accuracy and comparison
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of estimates, we used the results from the implementation of MCMC using the
package ‘R2jags’ (Plummer et al., 2003; Su and Yajima, 2012). The VI algorithm
was implemented in R (Team, 2021), on a MacBook Pro 1.4GHz Quad-Core Intel
Core i5 with 8GB memory. The computational time was measured in minutes.

The main effects parameters and the mean behave well, in the sense that the re-
spective estimates converge to their true values, regardless of the Q value taken.
The variational distributions of these parameters are in line with those obtained
via MCMC. The variational estimates of the main effects of genotypes and envi-
ronments versus the true values are shown in Figure 3.1 as well as the respective
subsequent MCMC, considering Q = 1, λ = 60, 25 genotypes and 10 environments.

Although the results for the main effects behave well, our main interest is to analyse
the quality of the estimation of the bilinear interaction term. To achieve this, we
analysed three scenarios in particular, one when λ was close to zero, another when
λ was close to 20, and finally when λ was 60, with Q = 1 for each scenario.
The first case performs the worst, as the model cannot capture the interaction
and, consequently, the estimates are poor. However, as λ grows, the simulation
results showed that the VI algorithm is able to estimate the bilinear parameters
reasonably well, see Figure 3.2a.

Note that in the main effects parameters, interaction term and predicted ŷ, a
systematic bias is observed. This bias arises due to the approximation quality of
VI, which uses a simpler distribution to approximate the posterior, and the choice
of the initial values. Additionally, the convergence is to a local optima rather
than the true posterior. The constraints of the AMMI model are also affecting the
estimates.
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Figure 3.1: Variational estimates of genotype and environment effects considering
Q = 1, λ = 60, I = 25, J = 10, and the the respective quantile intervals, 5% and
95%.
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Figure 3.2: Variational estimates of bilinear term and predicted values considering
Q = 1, λ = 60, I = 25, J = 10, and the the respective quantile ranges, 5% and
95%.

To evaluate the computational performance of the VI algorithm, we considered
different scenarios, and separated them into two different groups: smaller versus
larger sample sizes, which consisted of {100, 250, 500, 1000} and {5000, 10000, 15000,

20000} observations respectively. When the number of observations is smaller
(I × J ≤ 1000) the computational cost of MCMC and VI are similar (Figure
3.3a). However, when there is an increase in the number of genotypes and envi-
ronments (I × J > 5000), it is possible to observe a more significant difference
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between the two procedures (Figure 3.3b). The value of Q also naturally changes
the computational time of the algorithms, and as it grows, the time increases.

Note that there is a theoretical dependency between the number of genotypes,
the number of environments, and the total number of observations. As the to-
tal number of observations is generally defined as the product of the number of
genotypes and the number of environments, assuming each genotype is tested in
each environment, the model’s complexity can be influenced by the values of I
and J. If either I or J is very small, the power to detect significant interactions
decreases, and the estimates of interaction effects become less reliable. Similarly,
a small N relative to the complexity of the model (e.g., when many genotypes and
environments are involved but few observations per cell) might lead to unreliable
estimates.
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(a) Comparison of simulation times for sample
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(b) Comparison of simulation times for sample
sizes {5000, 10000, 15000, 20000}.

Figure 3.3: Computational fitting time of AMMI model VI versus MCMC. For
smaller experiments where the number of genotypes/environments is in the 10s
then the time difference is small. For large experiments where I, J > 100 then the
benefits of the VI model are clearer.

3.3.2 Real Data Set
We now illustrate our methods applied to a real data set from the Horizon2020 EU
InnoVar project (www.h2020innovar.eu) that aims to build new cultivation tools
from genomic, phenomic and environmental data. For this study, we consider
data spanning ten years (2010 - 2019) concerning the production of a common
species of wheat called Triticum aestivum L., in Ireland, with the response being
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the yield of wheat measured in tonnes per hectare. The data were supplied by
the Irish Department of Agriculture, Food, and Marine. The experiments were
conducted using a block design with four replicates, with the yield averaged across
the replicates. For our study, we considered a single data set with all years, taking
the averages of the years of genotypes and environments, resulting in a final data
set containing 85 genotypes, 17 environments, and a total of 810 observations.

Initially, our objective is to perform a comparison of VI to MCMC, evaluating
the computational cost of the two methods, contrasting the posterior distributions
and the accuracy of the predictions. Then, we use the posterior variational dis-
tributions to make inferences about the genotypes and environments under study,
identifying which genotypes perform better in each environment. In both algo-
rithms, we fit the model by taking Q = 1 and Q = 2.

In terms of computational time, both methods took approximately the same time
to run, with VI being seconds faster. Regarding the accuracy of the predictions,
calculated in sample, although it is known that the VI approach is less accurate
than MCMC, in the data set under study the VI was quite satisfactory, since it
had an RMSE of 1.08 for Q = 1, while for the MCMC it was 0.68.

The second point to be addressed concerns the effect of genotypes in respective
environments. Josse et al. (2014) discuss how the Bayesian methodology could
be used to provide additional insights into the analysis of G × E interactions.
For example, which genotype has the best performance across environments, and
which genotype has the best performance in a given environment. In the classical
methodology, this type of question is answered using a biplot (Gabriel, 1978).
However, some authors have already discussed how careful the researcher should
be when using this tool. Josse et al. (2014) presents a graphical way in which
credibility boxes are created using the quantiles of the posterior distributions. Sarti
et al. (2021) propose a heatmap plot to observe which genotype and environment
are best for producing wheat. This plot, when compared with the traditional
biplot, provides more complete and objective information about which genotypes
and environments interact most effectively, in an intuitive and interpretable way.

Figures 3.4 and 3.5 shows the visualisation proposed by Sarti et al. (2021), con-
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sidering the variational posterior distributions setting Q = 1. Figure 3.4 shows
that environment e12 produces a higher predicted yield with genotypes g17 and g21.
Additionally, we can see that environments e5 and e10 have similar fits across the
genotypes, as do e4 and e11. Conversely, we can also identify certain genotypes
that display similar behaviour across all environments, such as g17, g36, or g81.
Genotypes g21 and g73 have highest predicted yeild in environment e7, whereas,
genotype g74 has the lowest predicted yield in environment e8. In general, environ-
ment e8 has the lowest predicted wheat yields, while environments e12, e17, e1, e5,
and e9 have the highest predicted yields. Genotypes g17, g21, and g73 performed
well in practically all environments in which it was present, while genotypes g57, g19

and g64 showed lower values in all environments. Figure 3.5 shows the 5% and 95%
quantiles, which are uncertainties associated with the predicted yields. Although
it can be useful, to examine the interaction terms and their credible intervals, the
main goal of this work was to investigate how the genotype by environments affect
the predicted response.
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(a) 50% quantile.

Figure 3.4: Quantile 50% of the predicted wheat yields, from the posterior varia-
tional distribution (Q = 1).

40



3.4. Discussion

g1
g2
g3
g4
g5
g6
g7
g8
g9

g10
g11
g12
g13
g14
g15
g16
g17
g18
g19
g20
g21
g22
g23
g24
g25
g26
g27
g28
g29
g30
g31
g32
g33
g34
g35
g36
g37
g38
g39
g40
g41
g42
g43
g44
g45
g46
g47
g48
g49
g50
g51
g52
g53
g54
g55
g56
g57
g58
g59
g60
g61
g62
g63
g64
g65
g66
g67
g68
g69
g70
g71
g72
g73
g74
g75
g76
g77
g78
g79
g80
g81
g82
g83
g84
g85

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17
Environment

G
en

ot
yp

e

0

5

10

15

20
ŷ
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(b) 95% quantile.

Figure 3.5: Quantiles 5% and 95% of the predicted wheat yields, from the posterior
variational distribution (Q = 1).

3.4 Discussion
In this work we propose a variational inference on the Additive Main Effects and
Multiplicative Interaction Effect models, which is widely used in analysing G × E

interactions. Our main contribution is the formulation of an efficient variational
approximation scheme that satisfies the model constraints while simultaneously
obtaining a computationally faster algorithm. To satisfy the model constraints,
we adopted the priors suggested by Josse et al. (2014), where the authors address
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the over-parameterisation problem at a posterior level, instead of at a prior level.

As demonstrated in our simulation study, our inferential approach performs well
in various scenarios, outperforming other Bayesian methods previously described
in the literature and the results presented by Josse et al. (2014). This holds
true for both small and larger sample sizes. The variational scheme was able to
satisfactorily estimate the main effects and the interaction effect, as well as provide
good predictions. This performance was carried over into the real InnoVar data
set, where the predictive performance was comparable to that of MCMC methods.

The computational time for our method proved to be superior when compared to
both the algorithm when run in JAGS. In the real data scenario, VI was slightly
faster than MCMC. In the real data scenario, VI was considerably faster than
MCMC methods. In this case, the difference in computational time would be even
more evident if the sample size were larger.

For future work, we aim to compare the variational proposal with the Bayesian
AMMI model implemented in NIMBLE (de Valpine et al., 2017). In real-world
scenarios, we plan to consider data sets with a larger number of genotypes and
environments, and consequently, a greater number of observations. Given the
method’s sensitivity to the initial values of optimisation, an analysis of variational
methods for multimodal surfaces may also be undertaken (Morningstar et al., 2021;
Nedelkoski et al., 2020).
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Appendix

In this chapter, we provide the variational updates for the model’s parameters
presented in Table 3.1. For simplicity, we present the derivations only for Q = 1.
Additionally, we present the heatmaps plots for the interaction term of the real
data presented in Section 3.3.2.

3.A Variational updates
3.A.1 Likelihood

p(y|Θ) =
I∏

i=1

J∏
j=1

N (µ + gi + ej + λ1γiδj; τ−1)

=
I∏

i=1

J∏
j=1

τ−1
√

2π
exp

{
−τ

2
(
y − (µ + gi + ej + λ1γiδj)2

)}

log p(y|Θ) ∝
I∑

i=1

J∑
j=1

{
log τ

2 − τ

2
(
y − (µ + gi + ej + λ1γiδj)2

)}

∝
I∑

i=1

J∑
j=1

{
log τ

2 − τ

2
(
y2 − 2µyij − 2yijgi − 2yijej − 2yijλ1γiδj + µ2+

2µgi + 2µej + 2µλ1γiδj + g2
i + 2giej + 2giλ1γiδj + e2

j + 2ejλ1γiδj + λ2γ2
i δ2

j

)}
.
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3.A. Variational updates

3.A.2 Variational distribution of µ.

q(µ) ∝ exp{E−µ[log p(y|Θ) + log p(µ)]}

exp q(µ) ∝ E−µ


I∑

i=1

J∑
j=1

−τ

2
[
−2yijµ + µ2 + 2µgi + 2µej + 2µλ1γi1δj1

]
− 1

2σ2
µ

(µ2 − 2µµµ)


∝ µ2

[
−1

2

(
nτ̃ + 1

σ2
µ

)]
+ µ

τ̃

 I∑
i=1

J∑
j=1

yij − J
I∑

i=1
g̃i − I

J∑
j=1

ẽj −
I∑

i=1

J∑
j=1

λ̃1γ̃i1δ̃j1

+ µµ

σ2
µ


q(µ) ∼ N (µq(µ), Σ−1

q(µ));

µq(µ) = Σ−1
q(µ)

τ̃

 I∑
i=1

J∑
j=1

yij − J
I∑

i=1
g̃i − I

J∑
j=1

ẽj −
I∑

i=1

J∑
j=1

λ̃1γ̃i1δ̃j1

+ µµ

σ2
µ


Σq(µ) = nτ̃ + 1

σ2
µ

3.A.3 Variational distribution of g.

q(g) ∝ exp{E−g[log p(y|Θ) + log p(g)]}

exp q(g) ∝ E−gi


I∑

i=1

J∑
j=1

−τ

2
[
−2yijgi + 2µgi + g2

i + 2giej + 2giλ1γi1δj1
]

−
I∑

i=1

1
2σ2

g

g2
i


∝

I∑
i=1

g2
i

[
−1

2

(
nτ̃ + 1

σ2
g

)]
+ gi

τ̃

 J∑
j=1

yij − Jµ̃ −
J∑

j=1
ẽj −

J∑
j=1

λ̃1γ̃i1δ̃j1


q(g) ∼

I∏
i=1

N (µq(gi), Σ−1
q(gi));

µq(gi) = Σ−1
q(gi)

τ̃

 J∑
j=1

yij − Jµ̃ −
J∑

j=1
ẽj −

J∑
j=1

λ̃1γ̃i1δ̃j1


Σq(gi) = Jτ̃ + 1

σ2
g
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3.A.4 Variational distribution of e.

q(e) ∝ exp{E−e[log p(y|Θ) + log p(e)]}

exp q(e) ∝ E−ej


I∑

i=1

J∑
j=1

−τ

2
[
−2yijej + 2µej + e2

j + 2giej + 2ejλ1γi1δj1
]

−
I∑

i=1

1
2σ2

e

e2
j


∝

J∑
j=1

{
e2

j

[
−1

2

(
nτ̃ + 1

σ2
e

)]
+ ej

[
τ̃

(
I∑

i=1
yij − Iµ̃ −

I∑
i=1

g̃i −
I∑

i=1
λ̃1γ̃i1δ̃j1

)]}

q(e) ∼
J∏

j=1
N (µq(ej), Σ−1

q(ej));

µq(ej) = Σ−1
q(ej)

[
τ̃

(
I∑

i=1
yij − Iµ̃ −

I∑
i=1

g̃i −
I∑

i=1
λ̃1γ̃i1δ̃j1

)]

Σq(ej) = Iτ̃ + 1
σ2

e

3.A.5 Variational distribution of λ1.

q(λ1) ∝ exp{E−λ1 [log p(y|Θ) + log p(λ1)]}

exp q(λ1) ∝ E−λ1


I∑

i=1

J∑
j=1

−τ

2
[
−2yijλ1γiδj + 2µλ1γiδj + 2giλ1γiδj + 2ejλ1γiδj + (λ1γiδj)2

]
−

λ2
1

2σ2
λ(1 − Φ(0))

}
q(λ1) ∼ T N (µq(λ1), Σ−1

q(λ1));

µq(λ1) = Σ−1
q(λ1)

τ̃
I∑

i=1

J∑
j=1

γiδj(−2yij + 2µ + 2gi + 2ej)


Σq(λ1) = τ̃
I∑

i=1

J∑
j=1

(γ̃2δ̃2) + 1
σ2

λ(1 − Φ(0))
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3.A. Variational updates

3.A.6 Variational distribution of γ

q(γ) ∝ exp{E−γ [log p(y|Θ) + log p(γ)]}

exp q(γ) ∝ E−γ


I∑

i=1

J∑
j=1

−τ

2
[
−2yijλ1γiδj + 2µλ1γiδj + 2giλ1γiδj + 2ejλ1γiδj + (λ1γiδj)2

]
−

1
2γ2

1 −
I∑

i=2

1
2γ2

i

}

q(γ) ∼
I∏

i=1
N (µq(γi), Σ−1

q(γi));

µq(γ) = Σ−1
q(γ)

τ̃ λ̃1

J∑
j=1

yij δ̃j + µ̃λ̃1

J∑
j=1

+g̃iλ̃1

J∑
j=1

δ̃j + λ̃1

J∑
j=1

ẽj δ̃j


Σq(γ) = τ̃ λ̃2

1

J∑
j=1

δ̃2
j + 1.

3.A.7 Variational distribution of δ

q(δ) ∝ exp{E−δ[log p(y|Θ) + log p(δ)]}

exp q(δ) ∝ E−δ


I∑

i=1

J∑
j=1

−τ

2
[
−2yijλ1γiδj + 2µλ1γiδj + 2giλ1γiδj + 2ejλ1γiδj + (λ1γiδj)2

]
−

1
2

J∑
j=1

δ2
j


q(δ) ∼

J∏
j=1

N (µq(δj), Σ−1
q(δj));

µq(δj) = Σ−1
q(δ)

[
τ̃ λ̃1

I∑
i=1

yij γ̃i + µ̃λ̃1

I∑
i=1

γ̃i + λ̃1

I∑
i=1

γ̃ig̃i + λ̃1ẽj

I∑
i=1

γ̃i

]

Σq(δj) = τ̃ λ̃2
1

I∑
i=1

γ̃2
i + 1.
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3.A.8 Variational distribution of τ .

q(τ ) ∝ exp{E−τ [log p(y|Θ) + log p(τ )]}

q(τ) ∝ Γ(aq(τ), aq(τ))

aq(τ) = a + N

2

bq(τ) = 1
2

I∑
i=1

J∑
j=1

(y2
ij − 2µ̃yij − 2yij g̃i − 2yij ẽj − 2yijλ̃γ̃iδ̃j + µ̃2 + 2µ̃g̃i + 2µ̃ẽj + 2µ̃λ̃1γ̃iδ̃j + g̃2

i +

2g̃iẽj + 2g̃iλ̃1γ̃iδ̃j + ẽ2
j + 2ẽjλ̃1γ̃iδ̃j + λ̃2γ̃2

i δ̃2
j ) + b
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3.B. Interaction term heatmaps - real data set

3.B Interaction term heatmaps - real data set
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Figure 3.B.1: Quantile 50% of the interaction term, from the posterior variational
distribution (Q = 1).

48



3.B. Interaction term heatmaps - real data set

g1
g2
g3
g4
g5
g6
g7
g8
g9

g10
g11
g12
g13
g14
g15
g16
g17
g18
g19
g20
g21
g22
g23
g24
g25
g26
g27
g28
g29
g30
g31
g32
g33
g34
g35
g36
g37
g38
g39
g40
g41
g42
g43
g44
g45
g46
g47
g48
g49
g50
g51
g52
g53
g54
g55
g56
g57
g58
g59
g60
g61
g62
g63
g64
g65
g66
g67
g68
g69
g70
g71
g72
g73
g74
g75
g76
g77
g78
g79
g80
g81
g82
g83
g84
g85

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17
Environment

G
en

ot
yp

e

−4

0

4

8

Predicted 
interaction

(a) 5% quantile.

g1
g2
g3
g4
g5
g6
g7
g8
g9

g10
g11
g12
g13
g14
g15
g16
g17
g18
g19
g20
g21
g22
g23
g24
g25
g26
g27
g28
g29
g30
g31
g32
g33
g34
g35
g36
g37
g38
g39
g40
g41
g42
g43
g44
g45
g46
g47
g48
g49
g50
g51
g52
g53
g54
g55
g56
g57
g58
g59
g60
g61
g62
g63
g64
g65
g66
g67
g68
g69
g70
g71
g72
g73
g74
g75
g76
g77
g78
g79
g80
g81
g82
g83
g84
g85

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17
Environment

G
en

ot
yp

e
−4

0

4

8

Predicted 
interaction

(b) 95% quantile.

Figure 3.B.2: Quantiles 5% and 95% of the interaction term, from the posterior
variational distribution (Q = 1).
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CHAPTER 4
Bayesian Additive Main Effects

and Multiplicative Interaction
Models Using Tensor Regression

for Multi-environmental Trials

We propose a Bayesian tensor regression model to accommodate the effect of multiple
factors on phenotype prediction. We adopt a set of prior distributions that resolve
identifiability issues that may arise between the parameters in the model. Further, we
incorporate a spike-and-slab structure that identifies which interactions are relevant for
inclusion in the linear predictor, even when they form a subset of the available variables.
Simulation experiments show that our method outperforms previous related models and
machine learning algorithms under different sample sizes and degrees of complexity. We
further explore the applicability of our model by analysing real-world data related to
wheat production across Ireland from 2010 to 2019. Our model performs competitively
and overcomes key limitations found in other analogous approaches. Finally, we adapt a
set of visualisations for the posterior distribution of the tensor effects that facilitate the
identification of optimal interactions between the tensor variables, whilst accounting for
the uncertainty in the posterior distribution.
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4.1 Introduction
The phenotypic performance of a cultivar is associated with many potentially
interacting variables (Hara et al., 2021). These may include, but are not limited to:
genetic factors, environmental exposure, soil type, climatic conditions, and season.
Any combinations of these factors may contribute, either positively or negatively,
to the variability of the production of the crop of interest (Kross et al., 2020).
Statistical modelling of the effect of these variables, both singly and jointly, is an
important decision-making tool for farmers and those in the agricultural sector for
predicting e.g. yield (Adisa et al., 2019).

One of the main interactions believed to impact most on crop production is be-
tween genotype and environment, which we denote for notational convenience as
G × E. This sort of interaction is characterised by cultivars that do not behave
consistently in differing environments. Therefore, it is necessary to estimate the
amount of variation in crop yield that is caused by it. Many models have been
proposed to estimate G × E (Gauch Jr et al., 2008; Crossa et al., 2010; Gauch Jr,
2013). The most popular is the additive main effects and multiplicative interac-
tion (AMMI) model (Gauch Jr, 1988), which consists of two components. The
first term is the additive component, which contains the main effects of categor-
ically structured genotype and environmental factors. The second term involves
a sum of a multiplication of parameters, which are constrained to an orthonor-
mal space and represent how strong/weak the interactions between the genotypes
and environments are. The AMMI model is restricted to using only these two
covariates. While genotype and environment interactions are key components in
predicting crop yield, a comprehensive understanding requires the consideration
of additional factors.

Our approach allows for more components beyond genotype and environment to
be included in the AMMI model. We follow the Bayesian tensor regression tech-
nique of Guhaniyogi et al. (2017) to allow for any number of interacting categorical
factors. Tensors are algebraic structures that generalise matrices and provide a
generic way of describing multidimensional arrays on a given number of axes.
Tensor decomposition methods have the advantage of capturing the information
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in the data with a multi-linear structure and bring a unique representation without
the requirement for additional constraints like sparsity or statistical independence
(Jørgensen et al., 2018). The two main tensor decompositions are the PARAFAC
(Carroll and Chang, 1970; Harshman et al., 1970) and Tucker models (Tucker,
1963). Tensors have been used in many fields of study, including physics (Gaillac
et al., 2016), chemistry (Facelli, 2011), medicine (Peyrat et al., 2007), and data
mining (Mørup, 2011). Guhaniyogi et al. (2017) propose a tensor-based Bayesian
regression model where vector/tensor covariates are used to estimate a univariate
response through a class of multiway shrinkage priors. They illustrate the model
on real-world data from the brain connectome and provide theoretical results con-
cerning the speed at which the posterior distribution converges to the true posterior
(i.e., the contraction rate). Similarly, Papadogeorgou et al. (2021) propose a soft
tensor regression to investigate the connection between human traits and brain
structural connectomics.

In this paper, we propose the Bayesian Additive Main effects and Multiplicative
Interaction Tensor (BAMMIT) model, which generalises the AMMI model to con-
tain a tensor of interacting terms. We extend the standard AMMI model to include
new parameters to the additive and multiplicative terms of the model, taking into
account factors other than genotype and environment on the phenotype of a given
cultivar. Common extra factors might include soil types, time points, or growth
stages. Our methodology captures both minor and major interactions of these
factors and identifies which of these are important and need to be included in the
model. We present our new model in a Bayesian hierarchical format where we
place prior distributions on the main and tensor product terms so as to guarantee
the model’s identifiability and impose orthonormality constraints, which are an
essential part of both the original AMMI and the BAMMIT models.

We evaluate our proposed approach through a set of simulation experiments. Our
interest is to investigate the model’s performance under different sample sizes and
degrees and complexity of interaction structures. We compare the predictions from
our model with other machine learning models and standard linear mixed effects
models in terms of the root mean squared error (RMSE) and the coefficient of
determination (R2).
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4.2. Methods

The remainder of this paper is structured as follows. In Section 4.2.1, we review
the AMMI model and present the constraints imposed on its two components. In
Section 4.2.2, we introduce our BAMMIT model with its extended additive and
multiplicative terms. We outline the interpretability and identifiability constraints,
as well as the prior distributions considered for the parameters and a description of
how we obtain the posterior distributions. In Section 5.4, we compare the results
from BAMMIT with other relevant models based on synthetic data. In Section 4.4,
we analyse real-world data on wheat production in Ireland from 2010 to 2019. We
also utilise a new set of visualisations to assess the posterior distributions of the
components of the BAMMIT model, and identify optimal interactions and their
associated uncertainty. Finally, we review and discuss the findings of the work in
Section 4.5.

4.2 Methods
In this section, we review the original AMMI model and define terminology and no-
tation. We then introduce the BAMMIT model detailing the necessary constraints
to ensure identifiability as well as the prior distributions and inferential scheme.
In real-world scenarios the models we introduce below often include additional
replicate or block effects that complicate the hierarchical structure of the data.
However we remove these for simplicity of exposition in our model definitions, and
include them only in our case studies.

4.2.1 AMMI model
The traditional AMMI model takes into account only two categorical factors, com-
monly genotype and environment, and is given by a combination of two parts, one
additive and one multiplicative. Let yij be the outcome variable with i representing
genotype and j environment. We write the model as:

yij = µ + b
(1)
i + b

(2)
j +

Q∑
q=1

λqβ
(1)
iq β

(2)
jq + εij, εij ∼ N(0, σ2), (4.1)

where b
(1)
i and b

(2)
j represent the marginal effect of the ith genotype and jth envi-

ronment, respectively, i = 1, ..., B1 and j = 1, ..., B2. The bilinear term (i.e. the
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summation) is composed of Q components, each of which contains a variable λq and
the scores β

(1)
iq and β

(2)
jq . The parameter λq measures the interaction strength of the

qth component and is usually ordered such that λ1 ≥ λ2 ≥ · · · ≥ λQ. The scores
β

(1)
iq and β

(2)
jq represent the importance of the ith genotype and the jth environment

in the interaction. To ensure identifiability, the bilinear term is constrained so that∑
i β

(1)
iq β

(1)
iq′ = ∑

j β
(2)
jq β

(2)
jq′ = 0, for q ̸= q′ and ∑i(β

(1)
iq )2 = ∑

j(β
(2)
jq )2 = 1.

There are a range of approaches for estimating the parameters of the AMMI model.
In the frequentist paradigm, the additive term of Equation (4.1) is estimated by
ordinary least squares ignoring the interaction term, and subsequently a singular
value decomposition (SVD) of the matrix of residuals is used to estimate the
multiplicative terms (Gabriel, 1978). In this case, in addition to the constraints
applied to the multiplicative term, it is generally ensured that∑i b

(1)
i = ∑

j b
(2)
j = 0,

in order to maintain orthogonality between the main effects and interaction terms,
as well as to directly interpret the parameters.

Within the Bayesian context, Viele and Srinivasan (2000) proposed the use of
Markov chain Monte Carlo (MCMC) to estimate the parameters of the AMMI
model ensuring that the inherent constraints of the model are not violated. Liu
(2001) formulated a more stable and computationally faster Gibbs sampler. Crossa
et al. (2011) and Perez-Elizalde et al. (2012) proposed a Gibbs sampler such that
the algorithm was stabilised and incorporated statistical inference in the visual-
isation of biplots (Gabriel, 1971), drawing credibility regions for the interaction
effects. By contrast, Josse et al. (2014) introduced an approach to deal with the
over-parametrisation issue of the model by defining priors for the complete set
of parameters ignoring the constraints, then applying a post-processing on the
posterior samples of each parameter. Sarti et al. (2023) used Bayesian additive re-
gression trees (BART) in which a ‘double-grow’ BART is responsible for capturing
the interaction term.

The number of terms in the summation, Q, is crucial for modelling genotype-by-
environment interactions in the AMMI model. While theoretically Q can be as
large as Q ≤ min(B1 − 1, B2 − 1), allowing the model to capture all variance in
the interaction, it is commonly limited to an integer between 1 and 3. This range
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helps in maintaining the balance between capturing significant interaction patterns
and ensuring the model’s interpretability, by preventing overfitting and allowing
clearer visualisation through biplots.

However, many approaches can be applied to determine the value of Q. Examples
include Cornelius (1993) who applied parametric significance tests; other authors
who employed cross validation techniques (dos S. Dias and Krzanowski, 2003;
Gabriel, 2002; Hadasch et al., 2017), or those using resampling techniques (Malik
et al., 2018, 2019). Examples in the Bayesian field include Perez-Elizalde et al.
(2012) and da Silva et al. (2015) where the prior choice and Bayes factor deal
with determining the number of components of the multiplicative term. The non-
parametric Bayesian approach of Sarti et al. (2023) bypasses the need to provide
Q completely but, like many BART models, suffers from interpretability problems
due to the complexity of the regression trees.

One of the reasons for the popularity of the AMMI model is its strong predictive
performance (Gauch Jr, 2006; Gauch Jr et al., 2008), accuracy (Gauch and Moran,
2019) and its stability evaluation system (Gauch Jr, 1988; Yue et al., 2022). Given
its desirable properties, many extensions can be found in the literature, as high-
lighted above. In this work, we aim to maintain the structure of the AMMI model
and add the effects of other categorical factors that are commonly available in
real-world multi-environmental trials.

4.2.2 BAMMIT model
The model in (4.1) can be extended to include the effect of many factors apart
from genotype and environment. Let yij...v be an outcome variable, in a setting
with a total of N observations and V predictors. We define the BAMMIT model
as:

yij...v = µ + b
(1)
i + b

(2)
j + · · · + b(V )

v +
Q∑

q=1
λq

(
β

(1)
iq × β

(2)
jq × · · · × β(V )

vq

)
+ εij...v, (4.2)

where εij...v ∼ N(0, σ2). This is similar to the AMMI model described in (4.1),
however now we have V factors instead of only two. Alternatively, we can rewrite
the coefficients of the additive and multiplicative terms of (4.2) in tensor nota-
tion. Let b(v) = (b(v)

1 , . . . , b
(v)
Bv

)⊤ be a Bv-dimensional vector of parameters of the
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vth predictor and β(v)
q = (β(v)

1q , . . . , β
(v)
Bvq)⊤ be a Bv-dimensional vector of singular

values, with q = 1, ..., Q. Binding the column vectors β(v)
q , we get β(v), a matrix

of dimension Bv × Q. We define N =
(∏V

v=1 Bv

)
as the total number of observa-

tions (though, for example, replication may increase N without any need for extra
parameters).

For notational convenience, we define a cumulative direct sum and a cumulative
Kronecker product resulting in an N -dimensional vector as V

v=1 b(v) = b(1) · · · b(V )

and ⊗V
v=1 β(v)

q = β(1)
q ⊗ · · · ⊗ β(V )

q , respectively. The direct sum operation is
defined such that for vectors a = (a1, a2)⊤ and b = (b1, b2, b3)⊤, for example,
a b = (a1 + b1, a1 + b2, a1 + b3, a2 + b1, a2 + b2, a2 + b3)⊤ .

Following the tensor notation presented, the BAMMIT model can be written more
compactly as:

y = µ1⊤
N +

V

v=1
b(v) +

Q∑
q=1

λq

(
V⊗

v=1
β(v)

q

)
+ ε, (4.3)

where y is an N -dimensional vector, as before µ is the grand mean, λq is the
strength of the qth component, and ε is a noise vector such that each entry εn ∼
N (0, σ2), with n = 1, . . . , N . Even though we assume normality, it is possible to
assume other distributions for the noise vector. Moreover, it is feasible to consider
a heteroscedastic structure for some components of the model, as will be presented
in Section 4.4.

In Equation (4.3), each vector b(1), b(2), . . . , b(V ) consists of B1, B2, . . . , BV values,
respectively, each of which representing the levels of a factor (e.g., 8 genotypes,
10 environments and 4 soil types would yield B1 = 8, B2 = 10, B3 = 4, with
V = 3). The cumulative direct sum operator then ensures sums of main effects
representing all possible combinations between levels, each corresponding to one
observation in the data set. The additive term represents the individual effect of
each predictor, while the summation captures via Q components the interactions
between the individual effects. In the case where there is only the effect of two
variables, the model in Equation (4.3) is reduced to the AMMI model. The sum-
mation term provides a regularisation on the complexity of the model, with larger
Q yielding a more complex set of interactions.
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The model in the form presented in Equation (4.3) allows for the inclusion and
study of multiple categorical predictors beyond the standard G × E pair used in
AMMI models, and the understanding of their effects in two parts, individually and
when interacting. As in the traditional AMMI model, Q is fixed and represents how
many multiplicative terms are included in the model. Common extra predictors
that might be added to the model include soil type, time, or growth stages, amongst
many others. Being able to tractably estimate the effect of each of these on a
phenotype would be extremely useful for practitioners, whilst retaining the simple
interpretation of the parameters in the AMMI model.

Importantly, our proposed model allows the inclusion of the entirety of potential
interactions, from 2-way to V -way. Through the use of appropriate selection priors
and by adjusting the value of the hyperparameter Q, we ensure that the model not
only accounts for these interactions but also scales efficiently with the complexity
introduced by them. Thus interactions between certain factors that are not present
in the data are not incorporated. This is a key feature of the model, as by allowing
for the modelling of multiple levels of interactions, the model retains predictive
and explanatory power. This can be useful when we want the model to be flexible
and adapt to the data, or when we have prior knowledge that the effect of an
interaction should be negligible.

4.2.3 Prior distributions in the BAMMIT model
In order to ensure the tractability of the coefficients in the model, it is necessary
to establish restrictions on the interaction terms, similarly to those applied in
the AMMI model. However, it is not trivial to ensure the identifiability of each
parameter individually, only the entire product term (Guhaniyogi et al., 2017).
In the Bayesian context, these constraints are ensured from the definition at the
prior level. For example, in the Bayesian AMMI model proposed by Perez-Elizalde
et al. (2012), the von Mises-Fisher distribution is considered for the coefficients
of the multiplicative term. In the tensor field, Guhaniyogi et al. (2017) introduce
multiway shrinkage priors in their tensor regression model. In our approach, we
provide a new method by which the constraints are met by applying the restrictions
of the interaction term through parameter transformations which we describe next.
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Formally, we frame a hierarchical model in which prior distributions of the grand
mean, main additive effects and variance parameters are

µ ∼ N(µµ, σ2
µ),

b(v) ∼ N(0, σ2
b(v)),

λq ∼ N+(0, σ2
λ),

σ−2 ∼ G(a0, a1),

σb(v) ∼ t+(0, a2),

σλ ∼ t+(0, a3),

where N, N+, G, and t+, are the Normal, truncated Normal, Gamma, and trun-
cated t-Student distributions, respectively. The hyperparameters of the grand
mean µµ and σ2

µ are fixed as are all ak terms, k = 0, 1, 2, 3. We treat the additive
effects as random and so estimate σb(v) , though a ‘fixed effects’ version could also
be implemented. We express the prior knowledge on the standard deviations of
the additive term parameters and the λ parameter using a truncated t distribu-
tion. Additionally, we impose that the estimated λ vector values are in descending
order.

For the product parameters in the interaction term, we use a transformation to en-
sure the constraints are met and to capture all the interaction orders. Specifically,
we generate an auxiliary variable θ

β
(v)
iq

from a standard N (0, 1) distribution (the
transformation is invariant to the scale of this distribution), with i = 1, . . . , Bv,
v = 1, . . . , V , q = 1, . . . , Q. Then, we centre by the mean µ

β
(v)
q

of the vector β(v)
q ,

that is, for each vector β(v)
q we calculate its mean and then subtract it from the

auxiliary variable θ
β

(v)
iq

for the respective value of q. Finally, we get β
(v)
iq via:

β
(v)
iq =

(
θ

β
(v)
iq

− µ
β

(v)
q

) [∑
i

(
θ

β
(v)
iq

− µ
β

(v)
q

)2
]−1/2

. (4.4)

By applying this procedure to the parameters of the matrix β(v) guarantees that
the identifiability constraints (2) and (3) of the model are met in the inferential
process. To ensure individual variables can be removed from the interaction terms
(and hence capture sub V -way interactions) we include extra parameters in the
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prior to give:

β
(v)
iq =

[(
θ

β
(v)
iq

− µ
β

(v)
q

)
+ Mγ(v)

q

] (∑
i

(
θ

β
(v)
iq

− µ
β

(v)
q

)2
)1/2

+ Mγ(v)
q

−1

,

where the binary variable γ(v)
q acts as a switch in the model, allowing the model

to include or exclude the effects of the corresponding variable v depending on the
data. The value M is set as a large constant. Thus γ(v)

q = 1 → β
(v)
iq ≈ 1 and so that

interaction is removed. When γ(v)
q = 0 the interaction is included as normal in the

BAMMIT model. To achieve this, we impose the additional prior distributions:

γ(v)
q ∼ Bernoulli(pv

q),

p(v)
q ∼ Beta(1, 10).

Our approach here is akin to a spike-and-slab structure where we can control the
inclusion or exclusion of certain variables based on the data, and consequently
determine which interactions are involved.

4.3 Simulation Studies
In this section we examine the performance of our proposed methodology in three
different ways. First we assess whether the proposed priors are indeed capturing
the lower and higher order interactions. Then, we examine whether the inclusion
of additional variables in the model truly improves prediction and observe how the
model behaves with the insertion of these new variables. Finally, we conduct a
comparative analysis between our method and other existing methodologies.

4.3.1 Simulation scenarios
The simulation scenarios were designed considering V ∈ {2, 3, 4}. In each sce-
nario, we configure the number of levels (B1, ..., BV ) to allow for differences in the
interaction structures. We set up the values as follows:

(i) V = 2 and N = 120, with B1 = 12, B2 = 10. This is the classic AMMI
approach with only two variables.
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(ii) V = 3 and N = 480, with B1 = 12, B2 = 10, B3 = 4. This is an extension of
the AMMI approach with three variables. This scenario is chosen to illustrate
the model’s ability to capture multiple levels of interaction (i.e. 2 and/or
3-way). Specifically, the interaction term of Equation (4.3) is partitioned
into the following equations, where Iij and Iijk are used to represent the 2
and 3-way interactions of interest, respectively:

(a) Iij =
Q∑

q=1
λq

(
β

(1)
iq β

(2)
jq

)
,

(b) Iijk =
Q1∑
q=1

λ1q

(
β

(1)
iq β

(2)
jq

)
+

Q2∑
q=1

λ2q

(
β

(1)
iq β

(2)
jq β

(3)
kq

)
,

(c) Iijk =
Q∑

q=1
λq

(
β

(1)
iq β

(2)
jq β

(3)
kq

)
.

(iii) V = 4 and N = 960, with B1 = 12, B2 = 10, B3 = 4, B4 = 2. This is
a further extension with four variables which allows for potentially many
complex and multi-layer interactions. In this case, we are not partitioning
the interaction term of Equation (4.3). Therefore, the data is simulated while
solely taking into account the 4-way interaction.

We specifically use scenario (ii) to assess whether the proposed priors are effec-
tively capturing both lower and higher-order interactions. We chose to examine
scenario (ii) because it offers a simpler context than scenario (iii) for this evalua-
tion, and it is not limited to a 2-way interaction, as in scenario (i). The rationale
behind considering sub-cases (a) and (b) in scenario (ii) is to discern if our model
can recover the lower-order interactions even when we fit a model with a higher
order interaction term. Similarly, we aim to investigate the effect of the parameter
Q when simulating the model with varying orders of interactions. Upon validat-
ing that the model successfully captures interactions at multiple levels, we then
consider simulation scenarios (i), (ii) part (c), and (iii) to investigate the impact
of incorporating additional predictors into the model.

To specify the number of terms for the interaction, we define Qsim as the value
of Q used in the simulation, which can take values from the set {1, 2, 3}. Corre-
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spondingly, we set λ such that:

Qsim λ
1 {10}
2 {8,10}
3 {8,10,12}

Table 4.3.1: Values of λ for each Qsim.

For scenario (ii) part (b) we note that there are two Q values (one for each of the
latent interactions), so we set the values of λ for both Q1,sim and Q2,sim as they are
presented in Table 4.3.1. For the sake of simplicity, we assume Q1,sim = Q2,sim in
all cases. Specifically, considering the configuration of this scenario, there are 480
observations and three predictors, setting 12 levels for the first predictor, 10 for
the second and 4 for the third. Given this number of observations and variables,
we generate three configurations of training data sets: one where the value of
Q1,sim = Q2,sim = 1; another where Q1,sim = Q2,sim = 2; and finally, a data set in
which Q1,sim = Q2,sim = 3; where the λ values correspond to their respective values
in Table 4.3.1. The same understanding extends to generate the corresponding
test data in all scenarios. In total, we generate 30 simulated data sets (15 for
training and 15 for testing). In all scenarios, we set µ = 100, and σ = 1.5. The
settings and model parameterisations for our current simulation study are derived
from previous simulation experiments on similar models in the literature (Josse
et al., 2014; Sarti et al., 2023).

To fit the BAMMIT model, we run a Markov chain Monte Carlo (MCMC) al-
gorithm through the probabilistic programming language Just Another Gibbs
Sampler (JAGS; Plummer et al., 2003) and the R package R2jags (Su and Ya-
jima, 2021). We fit five BAMMIT models to each simulated data set, by varying
Q ∈ {1, 2, 3, 4, 6}. We use µµ = 100, σ2

µ = 10, a0 = a1 = 0.1, a2 = a3 = 1, and
M = 10, 000. We use three chains, 4,000 iterations per chain, discarding the first
2,000 as burn-in, and a thinning rate of two. Regarding computational time, a
data set with three predictors (V = 3), N = 100 and Q = 1 takes on average three
minutes to run, whilst to run a data set with the same configuration, but Q = 3
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takes 17 minutes. We discuss computational issues further in Section 4.5. All ex-
periments2 were implemented in R on a MacBook Pro with a 1.4 GHz Quad-Core
Intel Core i5 and 8 GB of RAM.

To assess the performance of the model when V > 2 (and so standard AMMI can-
not be applied), we compare BAMMIT with two models extensively employed for
prediction purposes, namely Random Forests (RF) and eXtreme Gradient Boost-
ing (XGB). A Bayesian factorial mixed (BFM) model (Rouder et al., 2017) is also
fitted for comparison. Ultimately, we compare our approach with the traditional
AMMI and the more recent AMBARTI model (Sarti et al., 2023), though these
are unavoidably restricted to using only the first two variables. For the RF model,
we use the package randomForest (Liaw et al., 2002) selecting the default set-
tings, mtry= 2 and 500 trees. For the XGB model, we use the package xgboost
(Chen et al., 2019) setting 50 iterations. For the AMBARTI model we use the
package AMBARTI 3 setting 50 trees, 500 as burn-in and 1000 iterations as post
burn-in. For the BFM model, the main effects are included, along with the inser-
tion of interactions of all orders, and we follow the same priors as applied to the
BAMMIT model. All the models were fitted to the training data. We checked
the accuracy, using the test data, by comparing the posterior mean estimates with
the true parameter values used in the simulations. We use the root mean squared
error (RMSE) to measure predictive power (how close ŷ is to the true y) and R2

to assess the proportion of explained variability.

4.3.2 Simulation results
In Figure 4.3.1, we present scatterplots of true versus estimated values in the
case where we simulated the interaction structure as given in scenario (ii) part
(a), setting Qsim = 1. The first plot corresponds to the fit of the model that
follows the same structure as the simulated data, which considers all main effects
along with the true simulated 2-way interaction. This model includes solely the
step of imposing identifiability constraints, as outlined in Equation (4.4). The
second corresponds to the BAMMIT model fit. It can be observed that both fits

2The code used is available at https://github.com/Alessandra23/bammit
3The code is available at https://github.com/ebprado/AMBARTI.
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exhibit similar results, the expected result, indicating that the BAMMIT structure
captures the interaction between the two variables.

2−way interaction BAMMIT
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Figure 4.3.1: Scatterplots of true versus estimated interaction term for simulation
scenario (ii) part (a), setting Qsim = 1 and λ = 10. The left panel shows only
the estimated interaction effects whilst the right panel shows the full estimated
fitted values. The models were fitted with Q = 1. The blue points represent the
posterior median and the grey bars represent the 95% credible intervals.

Figure 4.3.2 illustrates the results for the case in which the interaction is simulated
according to scenario (ii) part (b). In this case, the simulation was conducted with
Q1,sim = Q2,sim = 1, while the BAMMIT model was fitted with Q = {1, 2, 3, 4}.
The graphs clearly highlight the importance of the value assigned to the hyperpa-
rameter Q. Specifically, when only one term is present in the interaction (Q = 1),
the estimation is not accurate. This is because with Q = 1, the model cannot
capture the complexity of the two different interactions present in the simulated
data. However, as Q is increased the BAMMIT model successfully captures the
simulated interaction structure. The lesson here is that Q needs to be sufficiently
large to capture all possible latent interactions in the data.

To assess the behaviour of the BAMMIT model when data is simulated with a
higher value of Q, we present in Table 5.4.2 the RMSE of the interaction for
the BAMMIT model fit, varying the number of terms in Q = {1, 2, 4, 6}. The
interaction structure was simulated again as given in scenario (ii) part (b), with
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Figure 4.3.2: Scatterplots of true versus estimated interaction term for simulation
scenario (ii) and Equation (4.5), setting Q1,sim = Q2,sim = 1 and λ = 10. The
model was fitted with Q = {1, 2, 3, 4}. The blue points represent the posterior
median and the grey bars represent the 95% credible intervals.

the assumption that Q1,sim = Q2,sim = {1, 2, 3}. Once more, we observe that the
incorporation of more terms into the interaction enhances the model’s accuracy,
leading to a decrease in the RMSE of the interaction as Q increases.

Fitted Q
Q1,sim , Q2,sim 1 2 4 6

1 2.75 0.76 0.59 0.58
2 3.38 2.51 1.21 0.98
3 5.65 2.47 0.88 0.84

Table 4.3.2: RMSE for the interaction term of the BAMMIT model, considering
that the interaction was simulated from Equation (4.5) and Q1,sim = Q2,sim =
{1, 2, 3} in the simulation. The BAMMIT model was fitted with Q = {1, 2, 4, 6}.
The RMSE values reported are based on the test data, reflecting the model’s
performance in predicting unseen data. We would expect the model to perform
satisfactorily once the fitted Q value is greater than or equal to Q1 + Q2.

Given that the model is successfully capturing both the lower and higher inter-
actions, we now focus on presenting the results where the data simulation was
conducted directly from Equation (4.3), and how the inclusion of new terms con-
tributes to the model’s prediction. Initially, the scatterplot in Figure 4.3.3 shows
the comparison of the additive term, taking V = 4, Qsim = 2, N = 960 when the
true value of λ = {8, 10}. Each point is an estimated value of the parameters and
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the error bars are the 95% credible intervals. By visual inspection, the estimates
of the effects of the four main predictors are close to the true values, with narrower
intervals for predictors with a greater number of levels.
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Figure 4.3.3: Scatterplots of true versus estimated additive terms for simulation
scenario (iii), setting Qsim = 2, λ = {8, 10}. The bars represent the 95% credible
intervals.

In Figure 4.3.4, we compare the estimates against the true values in the case where
the number of predictors varies. Each point represents an interaction term estimate
in a total of 120 (V = 2), 480 (V = 3) and 960 (V = 4) points, and the bars, again,
represent the 95% credible intervals. We observe that when V = 4, the dispersion
is smaller and the interaction estimates are more concentrated around zero. This
can be explained because as more predictors are added to the additive term of the
model, the greater the approximation of the response by the predictors and the
smaller the amount approximated by the interaction term, despite inserting more
variables in both terms of the model. Also, note that the interaction is comprised
of all the new variables together, and that this interaction may not be that strong.
For example, suppose we are looking at the genotype × environment × soil type ×
growth stage interaction. In this case, the interaction of the four factors together
is not as strong as if we were looking only at subsets of these interactions, such as
genotype × environment × growth stage.

In terms of predictions, Table 4.3.3 shows the prediction RMSE and the R2 consid-
ering the cases where we have three and four predictors in the models (simulation
scenarios (ii) and (iii)). To fit BAMMIT and AMMI models we used Q = 2. As
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Figure 4.3.4: Scatterplots of true versus estimated interaction terms for simulations
scenarios (i), (ii) and (iii) setting Qsim = 1 and λ = 10. The interaction in
scenario (ii) was generated from Equation (4.5). The bars represent the 95%
credible intervals.

stated above, the AMBARTI and AMMI models were fitted disregarding the ef-
fects of the other variables. Specifically, in scenario (iii), for example, there were
three predictors, but the two aforementioned models disregarded the effect of the
third predictor. The BAMMIT model clearly performed better than the other two
models. In addition to the prediction advantage, our model stands out from RF
and XGB as it can provide a simpler structure for the interaction between the
variables, while at the same time providing estimates based on full posterior dis-
tributions rather than point estimates. Our approach was better than the BFM,
that includes all the possible interactions between the variables. Our BAMMIT
model was able to satisfactorily explain the variability of the response variable,
since the R2 obtained in all scenarios was above 75%. In a real world scenario
where the data were not simulated from the BAMMIT model we might expect
that the machine learning approaches would be more competitive in terms of their
performance. However, they would still not allow for clear interpretation of the
interaction effects.
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V = 3 V = 4
BAMMIT AMBARTI AMMI RF XGB BFM BAMMIT AMBARTI AMMI RF XGB BFM

RMSE 1.62 2.54 2.52 1.68 2.06 1.87 1.64 2.74 2.71 1.74 2.05 1.72
R2 0.78 0.02 0.02 0.58 0.69 0.72 0.81 0.01 0.01 0.68 0.78 0.79

Table 4.3.3: RMSE and R2 for ŷ on out-of-sample data for scenarios (ii) and (iii),
setting Qsim = Q = 2. The RMSE values reported are based on the test data.

4.4 Case Study
In this section, we investigate the performance of the model on a real data set.
The data was collected over ten years (2010 – 2019) and concerns the production
of a common species of wheat (Triticum aestivum L.) in Ireland, with the response
being the yield of wheat measured in tonnes per hectare (t/ha). The data comes
from the Horizon2020 EU InnoVar project4 and was supplied by the Irish Depart-
ment of Agriculture, Food and the Marine. The experiments were conducted using
a randomised complete block design with four replicates. The data set contains
85 genotypes and 17 environments, all anonymised and named as g1, . . . , g85 and
e1, . . . , e17, respectively. Here, environment refers only to the location, instead of
the common interpretation of environment as a location-year combination. Owing
to not all genotypes being observed in each location in all seasons, the total num-
ber of observations genotype × environment × year × block is 6,368, rather than
57,800. It exemplifies one of the advantages of the BAMMIT model, that is able
to impute the missing combinations as part of the model fit.

A subsample of this data was previously explored by Sarti et al. (2023), considering
only two factors: genotype and environment. However, in our work, we include
the additional variables year and block, present in the Irish data set, as a third
and fourth effect in the BAMMIT model. We expect to detect if there is vari-
ability between years across environments and genotypes, and to determine such
an interaction. Previously Hara et al. (2021) showed that the ability to predict
the yield in a certain year can be useful for making decisions such as cultivation

4www.h2020innovar.eu
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planning and storage. Specifically, the model structure for the data is

yijtr = µ + b
(1)
i + b

(2)
j + b

(3)
t + b

(4)
jr +

Q∑
q=1

λqβ
(1)
iq β

(2)
jq β

(3)
tq + ϵijtr, (4.5)

where the indexes i, j, t and r are associated to genotypic, environmental, time
and block effects, respectively. We nest the block effect within environment and
allow an environment specific variance for each, thus removing any experimental
variation associated with that specific site not related to the response. To avoid
numerical under- or overflow we standardise the response before fitting, but convert
all predicted values back to the original scale for ease of interpretability.

To fit the model, we partition the data into training and testing sets by selecting
three out of the four available blocks for training. The selection of this number of
blocks is to ensure a more comprehensive representation of the inherent variability
across blocks. The remaining block is used for validation, resulting in 4,776 ob-
servations for training and 1,592 for testing. Therefore, we have V = 4, B1 = 85
genotypes, B2 = 17 environments, B3 = 10 years and B4 = 3 blocks. Assuming
that there is little prior information for hyperparameter specification, we follow a
non-informative approach, with a0 = a1 = 0.1. To input the number of Q terms,
we run the model with Q = {1, 2, 3, 4}. The model is fitted with three Markov
chains, 4,000 iterations per chain, discarding 2,000 and a thinning rate of two.

We compare our BAMMIT approach prediction performance with traditional AMMI,
AMBARTI and a Bayesian factorial model. For the AMBARTI model, we consider
50 trees, 1000 iterations as burn-in and 1000 iterations as post burn-in. The fitted
Bayesian factorial model we use follows the same priors assumed for the BAMMIT
model. We define the model structure as:

yijtr = µ + b
(1)
i + b

(2)
j + b

(3)
t + b

(4)
jr + b

(1,2)
ij + b

(1,3)
it + b

(2,3)
jt + b

(1,2,3)
ijt + ϵijtr.

We note that this model no longer parameterises the interactions in a latent tensor
space (as our models do) and so uses a far greater number of parameters. Since
we only evaluate our model on out of sample data the comparison between these
approaches remains valid.
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In addition to evaluating the model’s performance in terms of prediction, we are
interested in answering some specific questions. Initially, when fixing the year and
block effect, we would like to know which genotype has the best performance, in
which environment, and also which environment provides the highest yield and
the lowest uncertainty. Subsequently, we explore the interactions between these
variables to find potential year/environment/genotype combinations which provide
optimal or sub-optimal yield performance.

4.4.1 Results
To assess the performance of the predictions ŷ, we display the RMSE and the R2

in Table 4.4.1 for each model. As the AMBARTI and classic AMMI models can
only handle the genotype and environment variables, when fitting these models we
take into account all rows in the data set and ignore the year and block variables,
so that rows corresponding to the same genotype and the same environment are
treated as different. We considered Q = 4 for the BAMMIT and AMMI models.
In terms of convergence, all the models have had their convergence checked, with
R̂ ≈ 1. In particular, all parameters of the BAMMIT model converge, except for
the individual values of the parameters β(v)

q , as expected.

BAMMIT AMBARTI AMMI BFM
RMSE 0.59 1.66 1.60 0.72

R2 0.92 0.34 0.38 0.85

Table 4.4.1: Metrics for out-of-sample y for the BAMMIT, AMBARTI, AMMI
and Bayesian factorial mixed (BFM) models. The AMBARTI and AMMI models
ignored the effects of the year and the block variables. Best performance is shown
in bold. The RMSE values reported are based on the test data

The results presented in Table 4.4.1 show that the BAMMIT model was supe-
rior to the other models, in both RMSE and R2. Specially, our proposed model
outperforms the BFM model, which is the main competitor to BAMMIT, since
it directly includes all possible interactions. For the AMBARTI and the classical
AMMI model, the inferior performance was expected, since the adjusted models do
not take into account the effects of the other variables. Also, for the AMBARTI,
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these results can be explained by the high numbers of genotypes and environments.
As mentioned above, considering all the 10 years, there are 85 genotypes and 17
environments, and in this case the AMBARTI model is not efficient in the gener-
ation of the 2B1−1 − 1 and 2B2−1 − 1 two-partition combinations for genotypes and
environments. Thus, due to the high numbers of possible combinations, the inter-
action component of the AMBARTI model is not able to estimate the interactions
between genotypes and environments efficiently and the model performs poorly.

In addition to assessing model performance through RMSE and R2 metrics, exam-
ining the estimates of the β coefficients provides further insights into the efficacy
of the modelling approaches. In the BAMMIT model, the β coefficients showed
superior performance metrics, highlighting the strength and significance of the
interactions between the factors involved. Unlike in the AMBARTI and AMMI
models, where the β estimates are constrained by the absence of year and block
variables, the BAMMIT and BFM models incorporate these factors, allowing for
a more comprehensive understanding of their impact. For the BAMMIT model,
despite the non-convergence of the individual values of the parameters βv

q , the
overall model convergence (R̂ ≈ 1) and the high R2 suggest that the estimates
effectively capture the underlying data structure. It is also worth noting that the
performance gap between the BAMMIT and the competing models can partly be
explained by the efficiency of the β estimates in capturing key interactions, even
when some parameters show individual non-convergence. Thus, the robust per-
formance of BAMMIT, is attributable not just to the model structure but also to
the effective estimation of interaction effects through the β coefficients, which are
crucial for understanding the dynamics among the genotypes, environments, and
other variables such as year and block. Further analysis of these β estimates, par-
ticularly through graphical visualisation or additional statistical summaries, could
provide deeper insights into their specific contributions and interactions within the
model.

In Figure 4.4.1, we display the estimated probabilities p̂(v)
q which reflect the like-

lihood that specific variables are included as part of the interaction terms in the
BAMMIT model. The notation p̂(v)

q specifically denotes the estimated probability
that the v-th variable interacts in the q-th order interaction. For instance, a lower
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p̂(v)
q value near zero suggests a higher probability that the variable v is integral

to the q-th order interaction term within the model. This interpretation helps in
understanding which variables and their interactions are considered significant in
influencing the response variable, which in this case is wheat yield.

Figure 4.4.1 shows the estimated values of p̂(v)
q for each variable involved in the

model (genotype, environment, and year), along with their 95% credible inter-
vals. The lower values observed for environment and year suggest these variables
have a higher likelihood of being involved in interaction terms, indicating they
are particularly crucial in the prediction of wheat yield. This is consistent with
the model’s results, which indicate that wheat yield is not solely dependent on
any single factor but is significantly influenced by the interactions among these
variables. Furthermore, the small uncertainty ranges in these values, compared to
the broader Be(1, 10) prior, highlight the model’s confidence in these estimates.

Genotype Environment Year

1 2 3 4 1 2 3 4 1 2 3 4

0.0

0.1

0.2

0.3

q

p̂ q

Figure 4.4.1: Estimated values of p̂(v)
q and the 95% credible intervals. Values

closer to zero indicate an increasing probability that the variable was included in
the interaction term. The general low values indicate a high degree of interaction,
with environment being particularly important. We note that the uncertainty
ranges in these values are far smaller than that of the Be(1, 10) prior.

4.4.2 Posterior visualisation
A common way to visualise the genotype and environment interactions in an AMMI
model is through biplots (Gabriel, 1971). However, Sarti et al. (2023) used a
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heatmap to visualise the predictions and interactions. In this visualisation ap-
proach, it is possible to identify in a more immediate way the best interactions
between genotypes and environments. A shortcoming of their approach concerns
the quantification of uncertainty, which cannot be observed directly on the graph.
To address this particular issue, in this work we show the prediction for interac-
tions through a heatmap as in Sarti et al. (2023) and the uncertainty is showed as
Value-suppressing uncertainty palettes (VSUP) as presented by Inglis et al. (2022).

First introduced by Correll et al. (2018), value-suppressing uncertainty palettes
are bivariate colour palettes that represent a measure or value and its uncertainty.
The outputs for each combination of value and uncertainty in traditional bivari-
ate palettes are often shown as a 2D square (for example, see Robertson and
O’Callaghan, 1986), However, VSUP plots combine cells in the palette using a
tree structure to suppress the measure or value at higher levels of uncertainty. In
VSUP, when the uncertainty is low, more bins are allocated to the colour space.
When increasing in uncertainty, the values are suppressed into fewer bins that
blend together their colour value. By doing this, the values will become more
distinct as the level of uncertainty reduces, with the intention of making it easier
to detect the difference between low and high uncertainty.

In Figure 4.4.2, we display an ordered heatmap and VSUP legend for the Irish
data selecting the year 2015 in block four from the test data set in the original
scale. This year corresponds to the best average wheat production observed in
the data. The remaining years are shown in the Appendix. For these plots we
use the standard deviation of the predictions as our measure of uncertainty and
the value shown is the median prediction for each variable pair. The ordering
of environment in Figure 4.4.2 is based on the descending values of ŷ (that is,
the predicted yield). Meaning, environments with higher ŷ values will be placed
first. Conversely, the ordering of genotype is based on the ascending values of
ŷ. This means that genotypes with lower ŷ values will be placed first, and those
with higher values will follow. This results in a visualisation where generally high
predicted yield values are pushed to the top left of the plot and descend to the
bottom right. The environments e2, e4, e9, e11 and e16 were the worst environments
observed, having a small median value compared to the others. On the other
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hand, environment e1 was the best and most stable, presenting a median yield
value higher than the others and a lower uncertainty. The environment e6 had a
middling production across some genotypes, but with a higher uncertainty when
compared to the others. Applying the same interpretation to the genotypes, we
observed that the genotypes g3 and g85 had the best performance. The genotype
g10 presented a good production of predicted wheat on environment e1 and e7,
however with a higher standard deviation than the other genotypes, which also
produced around 15 t/ha in this environment. As an example of the main genotype
× environment combinations, the worst observed were g81×e16, g5×e2 and g10×e2,
while the best were g85 ×e1, g3 ×e1, g5 ×e7 and g3 ×e7. The results are comparable
to those of Sarti et al. (2023).
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Figure 4.4.2: Predicted yields from the BAMMIT model for the wheat production
data set in 2015. Production this year was high, between 11 and 15 tonnes per
hectare, with positive emphasis on the environment e1 and on the combinations
g3 × e1 and g85 × e1.
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The proposed VSUP plots offer a clear advantage over traditional biplots by en-
abling quicker pattern identification and straightforward interpretation of complex
interactions. They are more scalable, handling numerous genotypes and environ-
ments without losing readability. This is a notable improvement over biplots,
which become cluttered as variables increase and also require a level of expertise
to interpret them. VSUP plots additionally include the uncertainty, which is miss-
ing from a biplot, and allows for quick identification of variable pairs with high or
low confidence.

Finally, in Figure 4.4.3 we present the box plot of ŷ by year, alongside the actual
means observed in the test data. The true means fall within the box plots, what
shows the good BAMMIT model’s performance in capturing the central tendency
of the wheat yield in each year. The predictions suggest that the best production
occurred in the years 2015 to 2017, with 2015 having a smaller variation than the
others. The analysis of the variable year in this context is particularly important,
as it serves as a proxy for multiple factors that change over time, such as climatic
conditions and agricultural practices, which are not explicitly captured by the
static variable environment (that only represents location).

5.0
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10.0

12.5

15.0

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

Y
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Figure 4.4.3: Box plot of the predicted wheat yield by year. The blue points
represent the true mean observed in the test data.
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4.5 Discussion
We proposed a generalisation of the AMMI model which extends the tensor regres-
sion approach of Guhaniyogi et al. (2017) and Papadogeorgou et al. (2021) to allow
for multiple interacting categorical variables. The main idea is to allow for more
realistic understanding of phenotypic effects beyond the usually considered pair
of genotype and environment. We envisage that in the future such models may
be used to further indicate interactions between season, soil, weather conditions,
growth stage and other potential predictors. The priors we use on the hierarchical
model were built not only to meet the inherent restrictions and ensure identifi-
ability but also to capture both lower and higher-order interactions between the
variables.

The simulation results suggest that the model performs well in a variety of pre-
diction tasks whilst retaining simple interpretative output. The model was able to
capture the lower and higher-order interactions between the variables regardless
of the true number of terms initially specified for the multiplicative term in the
simulation. The results indicated that, provided the value of Q was sufficiently
large, the model’s accuracy in capturing interactions at all levels was satisfactory.
Secondly, the model demonstrated robustness when multiple interactions were in-
cluded with differing levels of complexity, and the model retained the ability to
estimate values of the parameters that matched the ground truth. Lastly, our
model outperformed other well-known models, such as random forests and facto-
rial mixed models in terms of predictive accuracy. As expected, in all scenarios,
when the established number of terms in the interaction increases, the Bayesian
model had a better fit, regardless of the true number used in the simulation. All
our models were checked to confirm that the algorithm had converged and that
any imposed prior constrains were met for all our simulated data sets.

When applied to real data, our approach was superior to other methods when eval-
uated on predictive performance and RMSE. The model enabled the identification
of variables involved in interactions and determine which genotypes, environments
and years had the highest wheat production. In this study, understanding the be-
haviour of the variable year was particularly important because the environment
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is limited to location and is not capable of capturing annual changes in climatic
conditions or agricultural strategies, for example. Furthermore, we could visualise
components of the model, such as the interaction effect, and so it was possible
to determine the optimal interactions. The purpose of showing the results in the
visualisations presented in this paper is to aid a researcher’s ability to interpret
the results and improve recommendations.

In relation to the computation time, the cost for the method was high, particularly
as the number of predictors V and components Q increased. For example, a data
set with three predictors (V = 3) and Q = 1 took on average one minute to
run, whilst for a data set with four predictors (V = 4) and Q = 3 took around 30
minutes. This drawback was compounded when the data set is large (around 5,000
total observations or more) with the model taking several hours to form a valid
posterior distribution. To avoid this computational cost, potential optimisation
strategies can be employed, such as parallel processing, variational inference (Blei
et al., 2017; Dos Santos et al., 2022) or those as discussed in Papadogeorgou et al.
(2021) and Zhang et al. (2020).

For future work, several extensions can be made to these models. By modifying the
prior distributions, new structures can be added to certain predictors, thereby al-
lowing any temporal and spatial components to have their inherent characteristics
inserted into the model. Another important extension is the insertion of continu-
ous variables, or latent representations of them, since the current structure does
not allow for this type of variable. Also, the choice of the number of components
Q is still arbitrary, taking into account only the typical values already mentioned
in the literature. Nonetheless, a more sophisticated approach to choosing the rank
Q can be applied, as shown by Guhaniyogi et al. (2017).
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Appendix

4.A Real data
We complement the results presented in the Section 4.4 by presenting in Figure
4.A.0 the graphs for the predicted yields for the BAMMIT model applied to the
Irish time series data set. Analysing only the legend of the figures and looking at
the value scale it is possible to see that the forecast of wheat yield for the year 2015
(presented in Figure 4.4.2) was higher than that for all the other years. In order
to clearly observe the behaviour of genotype and environment predictors over the
years, we scale the estimated value and the uncertainty legend to be equal across
plots. Thus, years with high production and low uncertainty have an intense colour
while years with contrary behaviour have a washed-out colour.

Another way to see to account the year effect, shown in Figure 4.A.1, where the
VSUP legend shows the average of the years and the respective sd. Note that the
sd is much larger, once the model is predicting combinations that did not exist
previously (as mentioned this is one of the features of the BAMMIT model). From
this plot, we can see that the best environment was e5, performing well in all
genotypes and across years. Conversely, e4 and e11 performed the worst.
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Figure 4.A.0: Predicted yields from the BAMMIT model across the Irish dataset,
with consistent ordering and colour scales for ease of comparison.
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Figure 4.A.1: Predicted yields from the BAMMIT model averaged over all years
of the Irish dataset.
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4.B Auto-regressive BAMMIT (AR-BAMMIT)
The construction of the BAMMIT model allows new structures to be applied to
the parameters, such as spatial or temporal. The inclusion of these new struc-
tures brings greater complexity to the model, but the constraints imposed on the
multiplicative terms are still needed so as to guarantee the model’s identifiability.
As an example of this extension on the BAMMIT model, consider the Irish data
presented in Section 4.4.

In this particular application, where one of the variables in the BAMMIT model
is the year of production, we have the option of extending the model by applying
a different structure to the time predictor in both terms, that is, additive and
multiplicative. The model is now:

yijtr = µ + b
(1)
i + b

(2)
j + b

(3)
t + b

(4)
j r +

Q∑
q=1

λqβ
(1)
iq β

(2)
jiq β

(3)
tq + ϵijtr,

b
(3)
t = αb + ϕbb

(3)
t−1 + ηt,

θ
(3)
tq = αθ + ϕθθ

(3)
(t−1)q + ωt,

β
(3)
tq =

[(
θ

β
(3)
iq

− µ
β

(3)
q

)
+ Mγ(3)

q

] (∑
i

(
θ

β
(3)
iq

− µ
β

(3)
q

)2
)1/2

+ Mγ(3)
q

−1

,(4.6)

where the indexes i, j, t and r are associated to genotypic, environmental, time and
block effects, respectively. The priors for the entire model follow the same structure
as before (Section 4.4), such that Equation (4.6) is defined to meet the conditions
of identifiability of the model. To estimate the auto-regressive parameters ϕb and
ϕθ we use uniform priors in the interval [−1, 1]. A normal distribution with mean
zero and variance 100 was considered for the parameters αb and αθ. The priors for
ηt and ωt were a truncated t-Student distribution with parameters zero and one.

The metrics obtained for the out-of-sample performance of the AR-BAMMIT
model were equivalent to those presented in Table 4.4.1 for the BAMMIT model.
Specifically, with Q = 4, the model that included the temporal structure achieved
an RMSE of approximately 0.59. Although it did not yield a better RMSE than the
BAMMIT model, the AR-BAMMIT outperformed the others. Additionally, the
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application on this data illustrates the possibility of incorporating new structures
into the model’s predictors.
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CHAPTER 5
Bayesian Clustering Additive

Main Effects and Multiplicative
Interaction Models for

Multi-environmental Trials

The Additive Main effects and Multiplicative Interaction (AMMI) model is often used
for phenotypic modelling due to its ability to capture interactions between genotypes
and environments. However, this model has two primary limitations: it only accepts
categorical variables and does not account for numerous other factors that could influ-
ence phenotype prediction. In this paper, we propose an extension to the AMMI model
that allows for the inclusion of any number of both continuous and categorical variables.
This is achieved through model-based clustering, enabling both the insertion of categor-
ical variables and the latent representation of continuous ones. Uniquely, our method
performs clustering and estimation simultaneously rather than in two stages, thereby
enhancing the model’s predictive power. Through both a toy data example and a simu-
lation study, we demonstrate the strong performance of our model in terms of accuracy
and predictive capability. We further illustrate the applicability of our proposed method
through an analysis of wheat production in Ireland from 2010 to 2019, where annual
temperature and rainfall are used to capture between-year variability.
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5.1 Introduction
Crop modelling is a vital part of agricultural policy and research. Accurate crop
yield prediction has a direct impact on the choices made by stakeholders (which
includes farmers, policymakers and commodity traders) regarding crop manage-
ment, resource allocation, and market price (Lobell et al., 2015). It also helps in
cultivating a wider range of crops and in identifying key variables that naturally
influence crop production. With data-driven yield predictions, farmers can gain a
better understanding of environmental factors affecting the growth of new crops
(Pant et al., 2021). Consequently, it is important to understand the interaction
between different factors, such as environmental conditions, genotype, and farm-
ing practices for improving the prediction accuracy (Mkhabela et al., 2011; Asseng
et al., 2013). However, modelling the effect of these variables can be a challenge,
particularly the interaction effect between them.

One of the most significant interactions, studied intensively in a variety of fields,
including agriculture, medicine, and psychology, is between genotype and environ-
ments. This interaction offers crucial insights into how genetic factors and environ-
mental conditions interplay to shape various outcomes (Via and Lande, 1985). In
agriculture, it is used for the optimisation of crop yield, sustainability and resilience
against stressors like pests, diseases, and climate change (Yan et al., 2000). This
interaction is especially important in multi-environment trials (METs), to evalu-
ate how different genotypes perform across a range of environmental conditions
(DeLacy et al., 1996). By doing so, researchers can identify crop varieties that are
more universally robust or that are specifically tailored to particular environmental
conditions (Crossa et al., 2004). However, there are limitations on considering the
genotype by environment interaction in isolation (Malosetti et al., 2013; Ebdon
and Gauch Jr, 2002). One major limitation is the omission of other key variables,
overlooking factors such as soil quality, weather conditions, and even economic
factors, which can also impact crop performance (Messina et al., 2011; Cooper
et al., 2014). Ignoring these additional variables compromise the generalisability
of models and may lead to misleading conclusions. Furthermore, if genotype by
environment interaction is not the primary driver of the phenomenon under study,
models that focus solely on these interactions may have limited predictive power
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(Crossa et al., 2016).

One of the more popular methods proposed for analysing the genotype by en-
vironment interaction is the additive main effects and multiplicative interaction
(AMMI) model (Gauch Jr, 1988). However, this model is limited in only accommo-
dating these two categorical variables and disregarding other potential influential
factors. To address this, the Bayesian Additive Main Effects and Multiplicative
Interaction Tensor (BAMMIT) model was proposed Dos Santos et al. (2023). This
model extends the AMMI structure by allowing for additional categorical variables
and their interactions in a generalised tensor format. As in the AMMI model, the
BAMMIT model consists of two primary terms: an additive term for main ef-
fects and a multiplicative term for interaction effects. The interaction is captured
in both at lower and higher levels. Despite these enhancements, the BAMMIT
model still has one main limitation, notably the constraint that all terms must be
categorical.

Mixture models, particularly Gaussian Mixture Models (GMM), are widely ap-
plied methods for both density estimation and cluster analysis in various fields
ranging from computer science to biology (Murphy, 2012; Bishop and Nasrabadi,
2006; Peel and McLachlan, 2000). In agriculture, mixture models have been ap-
plied in different contexts, as presented by Mouret et al., 2022; Wu et al., 2021;
Bouayad et al., 2021. These models can efficiently approximate an unknown distri-
bution by employing a weighted sum of multiple component distributions and their
probabilistic nature allows for soft assignments of data points to clusters, thereby
providing a more nuanced understanding of data structure (Fraley and Raftery,
2002). This probabilistic framework also makes mixture models highly adaptable
to different forms of data and cluster shapes. They are particularly useful when
the data is multidimensional and may be generated from several underlying pro-
cesses or sub-populations. For example, McLachlan and Peel (2000) and Bishop
and Nasrabadi (2006) provide comprehensive insights into the flexibility of mix-
ture models in dealing with high-dimensional data and their ability to capture
complex structures. In the context of genetics, Pritchard et al. (2000) highlight
how mixture models can be used to identify sub-populations within a given set of
genetic data. In machine learning, Hastie et al. (2009) emphasises the strength of
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mixture models in handling high-dimensional data with multiple subgroups.

Given the interest in combining the structure of the BAMMIT model with the in-
corporation of numerical variables through the use of GMM, our study introduces
the Clustered Bayesian Additive Main effects and Multiplicative Interaction Ten-
sor (CBAMMIT) model. This new approach allows for the inclusion of continuous
variables through clustering, which are still represented categorically in the model.
Unlike traditional methods where clustering is performed prior to model inference,
our proposed approach aims to carry out both processes simultaneously to achieve
better predictions. This grouping process offers several advantages. In addition
to improving predictions, the proposed methodology addresses another important
aspect: the ability to ‘create’ new environments. Furthermore, the probabilistic
interpretation of Bayesian clustering in this model allows for a nuanced quantifi-
cation of uncertainty in cluster membership.

The remainder of this paper is organised as follows. Section 5.2 provides a review of
Gaussian Mixture Models, the traditional AMMI model, and the BAMMIT model,
and introduces our new approach, along with the chosen priors and the inference
process. Section 5.3 illustrates the performance of our model in a scenario where
simultaneous clustering and inference prove to be more effective than applying the
clustering process prior to inference. A simulation study is presented in Section
5.4, followed by an application to real data in Section 5.5. Finally, Section 5.6
offers a discussion and conclusions about the work.

5.2 Methods
We present a synthesis of Gaussian mixture distributions applied to clustering.
Then, we review the AMMI and BAMMIT models. Finally, we introduce the new
approach, specify the priors, and outline the inferential process.

5.2.1 Bayesian Mixture of Gaussians
Let X = (x⊤

1 , . . . , x⊤
N)⊤ be a random sample of size N . Assume that x⊤

i is a p-
dimensional random vector following a multivariate Normal distribution. We can
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model the density of x⊤
i as a mixture of K components, that is

f(xi|θk) =
K∑

k=1
πkNp(xi|µk, Σk), (5.1)

where µk and Σk are the mean vector and the covariance matrix associated with
the kth component, respectively. The parameters π = (π1, . . . , πK)⊤ are the cluster
mixing proportions, which satisfies 0 ≤ πk ≤ 1 and ∑K

k=1 πk = 1. Equivalently,
the mixture model (5.1) can be expressed through latent allocation variables c =
(c1, ..., cn)⊤, where ci ∈ {1, . . . K} identifies the cluster that the respective xi

belongs to. Finally, we assume that ci ∼ Cat(π) and π ∼ Dir(α), where commonly
α = (α1, . . . , αK) = 1.

The choice of K is non-trivial and often depends on the specific application (Fra-
ley and Raftery, 2002). The conventional method for determining the number of
components in a mixture model involves fitting models of various complexities and
using criteria like Bayesian Information Criterion (BIC) or the Akaike Informa-
tion Criterion (AIC) for model selection (Alamichel et al., 2022). As K approaches
infinity, the model becomes a non-parametric mixture, also known as an infinite
mixture model. While this can provide more flexibility, it can also lead to overfit-
ting and increased computational complexity (Bishop and Nasrabadi, 2006).

In addition to determining the value of K and computational complexity, there
are other ongoing issues in working with Gaussian mixture models (or mixture
models in general). One of the concerns is identifiability, where multiple sets of
parameters can produce the same likelihood, leading to interpretive ambiguity in
the model’s components (Frühwirth-Schnatter, 2006; Peel and McLachlan, 2000).
Another problem is label switching, where the labels of the clusters may change
upon model refitting or resampling, although the model itself remains the same
(Celeux et al., 2000; Stephens, 2000).
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5.2.2 AMMI model
Let yij be an outcome variable measured at the ith genotype and jth environment,
with i = 1, . . . , B1 and j = 1, . . . B2. The traditional AMMI model is written as

yij = µ + b
(1)
i + b

(2)
j +

Q∑
q=1

λqβ
(1)
iq β

(2)
jq + εij, εij ∼ N(0, σ2), (5.2)

where where µ is the overall mean of the outcome variable. The terms b
(1)
i and b

(2)
j

represent the additive effect of the ith genotype and jth environment, respectively.
The bilinear term consists of Q terms, with λ1 > · · · > λQ as the weights of
the interaction. The scores β

(1)
iq and β

(2)
jq represent the effects of genotype and

environment in the interaction, respectively, where ∑i β
(1)
iq β

(1)
iq′ = ∑

j β
(2)
jq β

(2)
jq′ = 0,

for q ̸= q′ and ∑i(β
(1)
iq )2 = ∑

j(β
(2)
jq )2 = 1, ∀ i, j.

Regarding the inference, there are several methods for estimating AMMI model
parameters. In the frequentist framework, the additive term of the AMMI model
is typically estimated using ordinary least squares, followed by singular value de-
composition for the multiplicative terms, as described by Gabriel (1978). In the
Bayesian approach, Viele and Srinivasan (2000) used Markov chain Monte Carlo
(MCMC) techniques for parameter estimation, ensuring the model’s constraints
are maintained. Liu (2001) formulated a faster and more stable version of the
Gibbs sampler. Further refinements to the Gibbs sampler were made by Crossa
et al. (2011) and Perez-Elizalde et al. (2012), who also included statistical infer-
ence in biplot visualizations. Josse et al. (2014) tackled the issue of model over-
parameterisation by defining unconstrained priors and applying post-processing.
Most recently, Sarti et al. (2023) employed Bayesian Additive Regression Trees
(BART) to effectively capture the interaction term, though with an alternative
structure to that of the latent bilinear term.

5.2.3 BAMMIT model
A generalisation of Equation (5.2) was proposed by Dos Santos et al. (2023) to
include the effect of factors apart from genotype and environment. The BAMMIT
model is defined as

yij...v = µ + b
(1)
i + b

(2)
j + · · · + b(V )

v +
Q∑

q=1
λq

(
β

(1)
iq β

(2)
jq × · · · × β(V )

vq

)
+ εij...v, (5.3)
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where yij...v is the outcome variable, now observed in V levels. The error term
εij...v is normally distributed with a mean of zero and variance σ2. Each vec-
tor b(1), b(2), . . . , b(V ) consists of B1, B2, . . . , BV values, respectively, each of which
representing the levels of a factor. The vth predictor is represented by a Bv-
dimensional vector of parameters b(v) = (b(v)

1 , . . . , b
(v)
Bv

)⊤ and the singular values
by another Bv-dimensional vector β(v)

q = (β(v)
1q , . . . , β

(v)
Bvq)⊤, where q = 1, . . . , Q.

By concatenating these column vectors, we obtain the matrix β(v) of dimension
Bv × Q. The total number of observations N is then defined as N =

(∏V
v=1 Bv

)
.

The structure of the BAMMIT model incorporates both additive and multiplica-
tive terms, similar to the AMMI model, but accommodates for the increased com-
plexity introduced by the V predictors. The total number of observations N is
determined by the product of the dimensions of all N predictors. Note that the
number of observations may increase due to replications without requiring addi-
tional parameters. The parameter Q remains fixed, as in traditional AMMI models,
signifying the number of multiplicative terms incorporated. Potential additional
predictors that can be integrated into the model range from soil type and time to
growth stages, among others. Additionally, the model is designed to include all
potential interactions, ranging from 2-way to V -way interactions, by employing
suitable selection priors and adjusting the hyperparameter Q. This ensures that
only meaningful interactions present in the data are incorporated in the model.

5.2.4 CBAMMIT model
We now introduce our new CBAMMIT which aims to capture the behaviour of
other factors by representing them as latent categorical structures through their
cluster membership. To incorporate the effect of these continuous variables (de-
noted x) into the BAMMIT model, we rewrite Equation (5.3) as

yi = µ + b
(1)
c

(1)
i

+ b
(2)
c

(2)
i

+ . . . + b
(V )
c

(V )
i

+
Q∑

q=1
λqβ

(1)
qc

(1)
i

× . . . × β
(V )
qc

(V )
i

+ ϵi, (5.4)

where yi is the ith response observation, i = 1, . . . , N , and the index c
(v)
i , previously

fixed, becomes random, taking values in the set {1, . . . Bv}. This component is now
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obtained through GMM, with the following structure:

x(v) ∼ GMM
(
µx(v) , Σx(v) , π, c

(v)
i

)
c

(v)
i ∼ Cat(π(v))

µx(v) ∼ N(0, Z)

Σx(v) ∼ Wishartn
b(v) (R, q)

π(v) ∼ Dir(α(v)).

In this formulation, to each predictor v there are nb(v) associated numerical vari-
ables, named x(v) =

[
x(v)

1 , . . . , x(v)
n

b(v)

]⊤
, where each x(v)

l is a vector of N obser-
vations, and x(v) is a matrix of dimensions N × nb(v) . Model-based clustering is
applied to the matrix of continuous data x(v) to generate the levels of the vth pre-
dictor. Importantly these steps are run concomitantly so that uncertainty in the
clustering labels and their contribution to the response is accounted for correctly.
As in the BAMMIT model, the parameter λ serves as the weight of the interaction
in the model. The effect of the vth predictor in the interaction is captured by a
Bv-dimensional vector β(v)

q . The matrix β(v) is of dimension Bv × Q, where each
column is the vector β(v)

q .

Note that not all V predictors need to be constructed through clustering. Some
effects may already be categorical, obviating the need for grouping. Our interest
may lie solely in clustering a specific effect, such as the environment. For exam-
ple, consider the AMMI model with just two predictors (V = 2): genotype and
environment. We may assume the genotype variable is already categorical with B1

levels, while the environment predictor is associated with two numeric variables:
air temperature and humidity. These numeric variables are grouped to construct
B2 distinct levels for the environment, each corresponding to a specific cluster.
This may be particularly useful when we only have access to climatic, environ-
mental, or genetic continuous variables, rather than simplistic labels that have
been applied arbitrarily (such as using location as a stand-in for environment).
Our current approach only accounts for clustering of continuous variables, though
extensions to to multi-modal model based clustering can be found in the literature
(e.g., McParland and Gormley, 2016). These are considerably more complex to
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implement and so are left for future work

Regarding the specification of the model’s priors, we are guided by the works of
Josse et al., 2014; Sarti et al., 2023 and Dos Santos et al. (2023). The remainder
of hierarchical model, in addition to those terms given above, is:

yi ∼ N
µ + b

(1)
c

(1)
i

+ b
(2)
c

(2)
i

+ · · · + b
(V )
c

(V )
i

+
Q∑

q=1
λqβ

(1)
qc

(1)
i

× · · · × β
(V )
qc

(V )
i


µ ∼ N(µµ, σ2

µ)

b
(v)
c

(v)
i

∼ N(µb(v) , σ2
b(v))

λq ∼ N+(0, σ2
λ)

σ−2 ∼ G(a0, a1)

µb(v) ∼ N(0, 1)

σb(v) ∼ t+(0, a2)

σλ ∼ t+(0, a3)

where N+, G, and t+, are the truncated Normal, Gamma, and truncated t-Student
distributions, respectively. We assume λ1 ≥ . . . λq and that all the hyperparame-
ters here are fixed, as well in the GMM structure.

To address model identifiability and include interactions of all orders, we employ
a transformation process involving auxiliary variables θ

β
(v)
ciq

, generated from a stan-
dard N(0, 1) distribution, and means µ

β
(v)
q

, as presented by Dos Santos et al. (2023).
This is done for every vector β(v)

q . The formula incorporates additional parameters
M and γ(v)

q that act as switches to include or exclude the effects of the vth variable
based on the data. These switches are regulated by a Bernoulli prior distribution,
guided by a Beta distribution, thus resembling a spike-and-slab structure:

γ(v)
q ∼ Bernoulli(pv

q),

p(v)
q ∼ Beta(1, 10).

This allows for flexibility in choosing which interactions to include or exclude in
the BAMMIT model (Dos Santos et al., 2023). Specifically, each parameter β

(v)
qc

(v)
i
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is obtained by

β
(v)
qc

(v)
i

=
θ

β
(v)

qc
(v)
i

− µ
β

(v)
q

+ Mγ(v)
q



∑

i

θ
β

(v)

qc
(v)
i

− µ
β

(v)
q

2


1/2

+ Mγ(v)
q


−1

.

5.3 Toy Data Example
In this section, we provide a motivational example to better illustrate the concept
behind our proposal, where the clustering process is carried out simultaneously
with inference. Consider the simplest version of the Equation (5.4), where there
is just one predictor, and consequently, no interaction term:

yi = bci + εi, (5.5)

where εi ∼ N(0, σ2). For simplicity, in this section we drop the superscript of the
variable b and of all the parameters related to it. Under this formulation, the
hierarchical model is then

x ∼ GMM
(
µx, σ2

x, ci, π
)

ci ∼ Cat(π)

π ∼ Dir(α = (α1, . . . , αB) = 1)

µx ∼ N(0, 102)

σx ∼ t+(0, 102).

The predictor bci is constructed from a single numeric variable x, which is as-
sumed to have B levels after being grouped. Figure 5.3.1 presents a graphical
representation of Equation (5.5).

The relationships outlined in the DAG show that yi is modelled as being affected
by the co-variate x and the cluster-specific effects bi, with σy representing the
standard deviation of the noise around yi. The cluster-specific effect bi is derived
from the cluster mean µj, which is influenced by the cluster assignments cj. These
assignments are important as they are determined by the GMM clustering process.
Additionally, the variability of x and bi is captured by σx and σb. We draw the
reader’s focus in particular to the red arrow which, if included, leads to our mod-
elling approach but, if missing, gives a separable model where the model based
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clustering is performed solely on x before the BAMMIT model is run. We refer
to this latter two-step approach as C+BAMMIT. When the red arrow is included
we name our approach CBAMMIT.

Figure 5.3.1: Directed Acyclic Graph (DAG) for the motivating example following
Equation (5.5).

In this toy example, we simulate data to contain two clusters with means µx =
(−2, 2) and standard deviation one for each dimension. We set N = 400, allocat-
ing 300 observations for the training data and 100 for the test data. The clusters
are not particularly well-separated, as showed by the histogram in Figure 5.3.2.
Although the concept of a cluster may vary between different methods, the config-
uration in this example presents a challenging scenario for many models that rely
heavily on clear cluster separation for accurate predictions.

The CBAMMIT and C+BAMMIT models are fitted assuming the same priors for
the model parameters. However, since the latter model consists of two separate
processes, the estimates for the levels ci are obtained as the posterior mode and are
then used in the BAMMIT model as the levels for the variable bci . We run each
model 20 times and calculate the Root Mean Square Error (RMSE) for the predic-
tor bci and for the response. The comparative results are displayed in Figure 5.3.3,
where box plots illustrate the distribution of RMSE values for the multiple runs
of each model. We see that our proposed CBAMMIT outperforms C+BAMMIT,
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showing a superior predictive accuracy and robustness in scenarios where clusters
are not distinctly separated, particularly for the vector of effects b.
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Figure 5.3.2: Histogram of variable x.

b y

CBAMMIT C + BAMMIT CBAMMIT C + BAMMIT

0.975

1.000

1.025

1.050

0.16

0.17

0.18

0.19

0.20

Model

R
M

S
E

Figure 5.3.3: Box plots of the RMSE of the models BAMMIT and C+BAMMIT
on test data for the predictor b and the vector of response y.
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5.4 Simulation Studies
To evaluate the performance of the new approach, we propose a simulation study.
Our main objectives are to observe whether the clusters are estimated correctly
and evaluate the prediction performance of the model. We constructed data sets
in five different scenarios, presented in Table 5.4.1.

Scenarios V N Variables
Clustered nb(v) B∗

v µx(v)

1 2 200 b(2) 1 3 {(-2, 5, 10)}
2 3 500 b(2) 1 3 {(-2,5, 10)}
3 3 500 b(2) 3 3 {(-2,5, 10)}
4 3 500 b(2), b(3) 1,3 3,3 {(-2,5, 10), (-10,0,10)}
5 3 500 b(2), b(3) 1,3 3,10 {(-2,5, 10), U(-50, 50)}

Table 5.4.1: Simulation scenarios settings.

The scenarios were constructed to vary the number of predictors V , the number of
numerical variables nb(v) associated with one or more predictors, the corresponding
number of clusters for these variables, and consequently, the number of levels B∗

v ,
where B∗

v is the number of clusters defined in the simulation. We built simulation
scenarios considering the following points: observe what happens when clustering
is applied on only one of the variables; evaluate when clustering is performed on
more than one variable; and finally, evaluate the effect of changing the number of
variables used in clustering and the number of groups.

Explicitly, Scenario 1 in Table 5.4.1 serves as a baseline model, representing the
AMMI model. In this case, a single numerical variable associated with the predic-
tor b(2) is clustered into three distinct groups with mean values of -2, 5, and 10.
Scenarios 2 and 3 build upon Scenario 1 by introducing three additional categori-
cal variables. While b(2) remains a key predictor, the focus of clustering shifts to
the number of numerical variables associated with it. Scenarios 4 and 5 introduce
further complexity by involving numerical variables associated with both b(2) and
b(3) in the clustering process. These scenarios vary in the number of associated
numerical variables and their levels. Whenever there is more than one associated
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numerical variable, we use the same mean vector µx(v) to simulate the data, aiming
to maintain consistency in the underlying clustering structure.

In all scenarios, b(1) is kept as a categorical variable with a fixed number of levels,
set at 10. The levels of b(3) are also fixed in Scenarios 2 and 3. To evaluate
the model’s performance, we generated both training and test data sets for each
scenario. Specifically, in Scenario 1, we utilised 200 observations for the training
set and 100 for the test set. For the remaining scenarios, which have the same
total sample size N , we allocate 400 observations for the test set and 100 for the
training set.

To fit the model, we run a Markov chain Monte Carlo (MCMC) algorithm through
Just Another Gibbs Sampler (JAGS; Plummer et al., 2003) and the R package
R2jags (Su and Yajima, 2021). We fit the model considering Q = {1, 2}, with
respective λ = {(10), (8, 10)}, in all scenarios, and the number of clusters equal to
the number of clusters simulated (Bv = B∗

v). We set µµ = 100, σ2
µ = 10, a0 = a1 =

0.1, a2 = a3 = 1, and M = 10, 000. We use three chains, 4,000 iterations per chain,
discarding the first 2,000 as burn-in, and a thinning rate of two. To deal with the
label switching problem, we use the package label.switching (Papastamoulis,
2015). For all simulation scenarios, we fit the C+BAMMIT model, adhering to
the same priors, parameterisation, and settings used in the CBAMMIT model. We
compare the two models by calculating the RMSE on both the training and test
data. All experiments were implemented in R, on a MacBook Pro with a 1.4 GHz
Quad-Core Intel Core i5 and 8 GB of RAM.

5.4.1 Results
We first evaluate whether the model is successfully capturing the effect of the
variable b(1) in the additive term. This variable is of particular interest because
its levels are fixed and did not undergo the clustering process. In Figure 5.4.1, we
present the scatterplots of the true values against the estimated values for each
scenario. In this case, we simulate the data with Q = 1 and λ = 10. We observe
that the effect of this variable is reasonable captured in all scenarios, with more
problems in the scenarios 4 and 5. These deviations could potentially be attributed
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to the complexities introduced by the mixture components and the interactions
among them.

Scenario 4 Scenario 5

Scenario 1 Scenario 2 Scenario 3
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Figure 5.4.1: Scatterplots of true versus estimated additive term b(1), with the
respective 95% credible intervals, for all simulation scenarios, setting Q = 1 and
λ = 10.

In Figure 5.4.2, we show the estimation of the variable b(2) for all the five simulation
scenarios. This predictor is associated with the numerical variables that were
clustered into three levels. Despite the increased model complexity in Scenarios
4 and 5, the estimation results for b(2) remained satisfactory. Turning to Figure
5.4.3, we present the scatterplots of true versus estimated values of the variable
b(3). Similar to b(2), the results for b(3) were also good across scenarios. To generate
both these figures, we once again simulated the data under conditions where Q = 1
and λ = 10.

In Tables 5.4.2 and 5.4.3, we present the RMSE for the interaction term and the
response variable, respectively, for both the CBAMMIT and C+BAMMIT models
on the test data. The interaction term proved to be the most challenging to predict,
showing little difference between the tested methods. This may be influenced by
the procedure ensuring model identifiability. Lastly, the prediction of the response
variable was better in the CBAMMIT model compared to the C+BAMMIT model.
In all scenarios, convergence was measured in terms of R̂. Achieving convergence
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Scenario 4 Scenario 5
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Figure 5.4.2: Scatterplots of true versus estimated additive term b(2), with the
respective 95% credible intervals, for all simulation scenarios, setting Q = 1 and
λ = 10.
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Figure 5.4.3: Scatterplots of true versus estimated additive term b(3), with the
respective 95% credible intervals, for simulation scenarios 4 and 5, setting Q = 1
and λ = 10.

(R̂ ≈ 1) became more challenging as the number of observations and the value
of Q increased. As a result, depending on the value chosen, it was sometimes
necessary to increase the number of iterations in the fitting process and to apply
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procedures to correct the label-switching problem. Another point to mention is
that the created data sets could be imbalanced, in the sense that the response
variable was not always measured across all possible combinations of levels. As
observed, scenarios 4 and 5 were the most problematic in all evaluated aspects,
highlighting the model’s difficulty in handling a high number of numerical variables
to be clustered.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
CBAMMIT 1.12 1.24 1.61 1.94 2.14

C+BAMMIT 1.12 1.23 1.62 1.94 2.14

Table 5.4.2: RMSE for the interaction term in the test data for the five scenarios
under study for CBAMMIT and C+BAMMIT.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
CBAMMIT 0.98 1.08 1.25 1.80 2.02

C+BAMMIT 1.02 1.18 1.40 1.98 2.24

Table 5.4.3: RMSE for y in the test data for the five scenarios under study for
CBAMMIT and C+BAMMIT.

5.5 Application
To demonstrate the applicability of the CBAMMIT model, we consider a historical
data set previously analysed in Dos Santos et al. (2023). This data set comprises
yield measurements for bread wheat (Triticum aestivum L.) in Ireland, expressed
in tonnes per hectare (t/ha). The data set, sourced from the Horizon2020 EU
InnoVar project5, was provided by the Irish Department of Agriculture, Food and
the Marine. It encompasses various factors: genotype, location, year, and block.
The data set is comprehensive, containing 85 genotypes across 17 environments
and spanning 10 years (2010-2019) with four blocks, resulting in a total of 6,368
observations. As all combinations at all levels are observed, it offers a robust
foundation for our study. To maintain data privacy, all genotypes and locations
have been anonymised.

5www.h2020innovar.eu
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In the study by Dos Santos et al. (2023), the variable ‘year’ was used as a proxy
to represent the unique characteristics of each respective year. In our analysis, we
remove the categorical variable year, and then include two additional numerical
variables: temperature and rainfall corresponding to each year. These two vari-
ables are grouped together and will be responsible for representing the effect of
the year. This climate data was obtained from Met Éireann6, the Irish National
Meteorological Service. In Figure 5.5.1, we display these two variables against
each other and we can observe that one of the points presented the lowest aver-
age temperature and rainfall. We apply a clustering process, using the function
Mclust from package mclust (Scrucca et al., 2016), setting the number of mixture
components G = 2. The fact that the year 2010 is a group by itself aligns with the
results observed by Dos Santos et al. (2023), where the year 2010 had the lowest
yield and higher standard deviation range.
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Rainfall
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1
2

Figure 5.5.1: Variables rainfall against temperature for Ireland in the year 2010-
2019.

To fit the CBAMMIT model, we divide the data set into train and test data, in a
such way that the data related to the first tree blocks were used for training and

6https://www.met.ie
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data related to the last block for testing. The CBAMMIT equation is then defined
as

yi = µ + b
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where b(1), b(2), b(3) and b(4) are associated to genotypic, environmental, time and
block effects, respectively. The indexes c(1), c(2), and c(4), are fixed, and represent
the levels of the variables. The index c(3) are those for which the levels will be
obtained through the clustering process.

To fit he model, we set the number of clusters to B3 = {1, 2, 3} and the value of
Q = {1, 2, 4}. To compare the predictive performance, we also fit the C+BAMMIT
and just a BAMMIT model, where the third variable is the year. With the last
model, we aim to investigate if the inclusion of the variables temperature and
rainfall actually improves the yield prediction in this case.

In Table 5.5.1, we present the RMSE of the fitted models. The displayed results
correspond to fits with Q = 4 and B3 = 2. In terms of predictive performance, the
BAMMIT model outperformed its competitors. However, the CBAMMIT model
excelled compared to the two-stage process, C+BAMMIT. The poor performance
of CBAMMIT relative to its predecessor BAMMIT can be explained by the poor
representativeness of the two numerical variables, temperature and rainfall, used
to construct the third effect. The fact that the year 2010 had such an atypical
behaviour compared to the others, to the extent that it formed a cluster by itself,
may have affected the model’s outcome.

CBAMMIT C + BAMMIT BAMMIT
RMSE 1.02 1.12 0.59

R2 0.88 0.87 0.92

Table 5.5.1: RMSE and R2 for y in the test data for the CBAMMIT, C+BAMMIT
and BAMMIT models.

5.6 Discussion
In this paper, we proposed the Clustered Bayesian Additive Main Effects and
Multiplicative Interaction Tensor (CBAMMIT) model, which extends the BAM-
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MIT approach by incorporating Gaussian Mixture Models. The method aims to
incorporate the effect of numerical variables into the model through categorical
representations. The levels of each factor, now random, are obtained through a
clustering process carried out simultaneously with the estimation process.

Our simulation results demonstrated that the CBAMMIT model offers promising
results. Firstly, it enables the inclusion of continuous variables, thereby extending
the traditional AMMI model, which was limited to categorical variables. Secondly,
even in cases where the clusters were not clearly defined, the model was still capable
of providing reasonable predictive results for both the response variable and the
additive and interactive terms in the model. However, performance was less robust
in these instances compared to when clusters were more distinct. In real-world data
application, the model highlighted the importance of setting appropriate values for
Q and Bv. The RMSE of the model increased as Q grew and as the correct number
of Bv was defined. The importance of the choice of Q is an inherited characteristic
from the AMMI and the BAMMIT model, in which in the last one relates to the
process of identifying key variables for interaction.

Although the CBAMMIT model shows satisfactory results in terms of accuracy
and predictive performance, especially when compared to the two-step process,
it does have some significant limitations. The first issue arises from the model’s
sensitivity to changes in the proposed settings and parameterisation. Additionally,
the label-switching problem is not fully resolved, even after applying a process to
address it. The computational cost of the method is also high, taking several
hours to complete depending on the number of observations, numeric variables,
and clusters involved. Another limitation of the CBAMMIT model is that it
currently does not allow for the incorporation of both numerical and categorical
variables in the clustering process.

Future research should focus on extending the CBAMMIT model to allow for the
simultaneous clustering of both categorical and numerical variables. To address the
model’s sensitivity to parameterisation, the adoption of alternative priors could be
explored. Other avenues could involve applying the model to different types of data
and further validation through larger and more diverse data sets. It would also
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be beneficial to investigate other ways to correct the label-switching problem, as
the method presented in this work is solely data-based. Another key consideration
would be to employ a process that does not require specifying the number of
clusters, such as a Dirichlet process.
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CHAPTER 6
Conclusions

In this thesis, we have introduced novel methods used to model and predict crop
yield using machine learning techniques. By exploring the complex relationships
that determine the phenotypic response, with a focus on genotype by environment
interactions, we aim better understanding these relationships and improve the
decision making process for researchers, farmers and plant breeders. In this work,
we extended the traditional AMMI model to capture more complex interactions,
thereby providing a more accurate and comprehensive insight into factors that
influence crop yields.

In Chapter 3 we apply variational inference to the AMMI model. We named our
proposed approach VAMMI. This approach was employed to reduce the compu-
tational cost associated with Bayesian methods, especially when using large data
sets. Our key contribution was to meet the model constraints and produce a com-
putationally faster algorithm by designing an variational approximation scheme
for inference based on the priors proposed by Josse et al. (2014). The simulation
study showed that the VI approach offered comparable predictive performance
when compared with traditional the Markov chain Monte Carlo, at the same time
that the computational cost was reduced.
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In Chapter 4 we presented the BAMMIT model, an extension of the traditional
AMMI model. This new model can accommodate many interacting categorical
variables, that builds upon the tensor regression technique of Guhaniyogi et al.
(2017) and Papadogeorgou et al. (2021). This approach offers a richer under-
standing of phenotypic effects and provides the opportunity to model other po-
tential interactions such as season, soil, and weather. The model proved to be
efficient and robust in our simulation experiments. It was able to effectively cap-
ture both lower-order and higher-order interactions with relative ease as well as
out-performing other popular machine learning methods, such as random forests
and factorial mixed models. This model performed better when applied to real-
world data, especially in terms of RMSE measurements and predictive performance
and allowed the identification of which variables interact and to ascertain which
genotypes, environments and years produced the greatest yield. Additionally, the
model offers visualisation tools that facilitate easier interpretation and analysis.
One drawback to this approach is computational time. As the number of predictors
increases, so does the computational time, which gets compounded with large data
sets. However, to combat the computational time, several optimisation strategies
are suggested, including variational inference (Blei et al., 2017; Dos Santos et al.,
2022).

In Chapter 5, we introduced the Clustered Bayesian Additive Main Effects and
Multiplicative Interaction Tensor (CBAMMIT) model. This method extends the
BAMMIT approach by integrating Gaussian Mixture Models, allowing the in-
clusion of numerical variables via categorical representations, where a clustering
process is used to determine the factor level. Our CBAMMIT model successfully
incorporates continuous variables, and overcomes the limitations of the traditional
AMMI model (which could only include categorical variables). The model was
able to produce accurate prediction results for the response variable as well as
the additive and interaction components in the model, even in situations where
the clusters were not well defined. However, easily identifiable clusters resulted
in better performance. Despite the promising results, the CBAMMIT approach
has some drawbacks. The model’s performance is sensitive to changes in settings
and parameterisation. Additionally, the label-switching problem, discussed in this
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Chapter, still has to be resolved.

6.0.1 Limitations and Improvements
While the models developed in this thesis represent significant advancements in
the field, they come with their own set of limitations. In this section, we discuss
some of the limitations of our proposed methods and provide improvements for
future research.

6.0.1.1 Computational Time

The primary concern with all the proposed models is the significant computational
cost. As the models grew in complexity, so did their demand for computational
resources. This is especially true for the BAMMIT and CBAMMIT models pre-
sented in Chapter 4 and Chapter 5, which frequently takes several hours to run,
which could be problematic for time-sensitive projects or when handling large data
sets. Future research efforts may concentrate on optimising and simplifying these
algorithms in order to tackle these issues. By using parallel computing or optimi-
sation strategies, processing times may be shortened, increasing the adaptability
and efficiency of these models for practical use.

6.0.1.2 Model Sensitivity

As discussed in Chapter 5, the CBAMMIT model’s sensitivity to initial settings
and parameterisation, is a considerate limitation of this approach. This sensitivity
can have a substantial impact on the dependability and performance of the model,
necessitating the need for a careful analysis of prior selection. For future work,
investigating the underlying causes of this sensitivity may be helpful in identifying
areas where the model needs to be adjusted for stability. Alternatively, the use of
different priors could be explored.

6.0.1.3 Label Switching

The issue of label switching, discussed in Chapter 5, is an avenue for future work.
As this work only presents a data-based solution to solve the label switching prob-
lem, it would also be helpful to investigate alternative approaches. In addition to
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improving the CBAMMIT model’s stability through consistent and comprehensi-
ble results across several iterations, finding a robust solution to the label switching
problem would also increase the model’s usefulness in real-world applications.

6.0.2 Future Work
Aside from the aforementioned limitations and avenues for improvements, there
are numerous other directions for research to go.

One interesting direction for future research is the models’ incorporation of a time
dimension. Time-varying phenomena, such as seasonal variations and climatic
shifts, are inherent characteristics of environmental factors. The inclusion of a
time component in these models, which takes into account these phenomena, may
allow for the identification of complex patterns and trends that could otherwise
go missed and could greatly improve the precision and insights obtained from the
models.

Under development are standalone R packages for the VAMMI, BAMMIT, and
CBAMMIT models. The aim of these packages is to offer intuitive and effective
tools that will enable the wider implementation and distribution of the approaches
associated with each model. However, the current implementation of the pro-
posed methods presented in this work are freely available at https://github.
com/Alessandra23 in separate repositories. As a result, interested practitioners
can access the techniques and all studies in this thesis are replicable.

From a visualisation perspective, the heatmaps used to display the genotype by
environment interactions in Chapter 4, and the VSUP plots (which include the
uncertainty associated with Bayesian models) in Chapter 5, only show bivariate
interactions. Examining visualisations for higher dimension interactions that are
informative and intuitive may be an interesting line of future work. Additionally,
incorporating a temporal dimension into the heatmap visualisations, to show how
the interactions vary over time, could be a useful avenue for further research.

Finally, one of the main objectives is to apply the methodologies developed in this
thesis to the data from the InnoVar project. Given the diversity of the data in
this project, the models developed in Chapters 4 and 5 are the most suitable and
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promising. In particular, the visualisation proposal presented in Chapter 4 will be
extremely useful for understanding the model results for project partners who are
not familiar with the statistical technicalities involved.
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