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Summary.We propose and fit a Bayesian model to infer palaeoclimate over several thousand
years. The data that we use arise as ancient pollen counts taken from sediment cores together
with radiocarbon dates which provide (uncertain) ages. When combined with a modern pollen–
climate data set, we can calibrate ancient pollen into ancient climate. We use a normal–inverse
Gaussian process prior to model the stochastic volatility of palaeoclimate over time, and we
present a novel modularized Markov chain Monte Chain algorithm to enable fast computation.
We illustrate our approach with a case-study from Sluggan Moss, Northern Ireland, and provide
an R package, Bclim, for use at other sites.

Keywords: Hierarchical time series; Modular Bayes; Normal–inverse Gaussian process;
Palaeoclimate reconstruction; Temporal uncertainty

1. Introduction

In this paper we show how to perform statistical inference on palaeoclimate from pollen proxy
data while taking account of numerous sources of uncertainty. The data that we use arise from
sediment cores taken from beneath lakes or bogs where pollen has accumulated over many
thousands of years. The changing composition of pollen grains provides information about the
climate at that location, whereas radiocarbon dates of the sediment provide information about
their age. A further data set of the modern pollen–climate relationship allows for the transfor-
mation between our ancient pollen data and our inference target: ancient climate. We provide
an outline of our general approach and a case-study from Sluggan Moss in Northern Ireland.
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After extraction, the sediment core will have been sliced into narrow layers, each treated
as a near instantaneous snapshot of the vegetation at that depth. From each slice a palynol-
ogist will count many different varieties of pollen and record the counts and depths. We use
counts for 28 pollen varieties that have been shown to be sensitive to three carefully chosen
aspects of climate (Huntley, 1993). At certain depths material will have been sent for radio-
carbon dating, though the choice of depths will depend on the availability of suitable mate-
rial and budgetary constraints. The number of radiocarbon dates is usually far fewer than
the number of depth slices, so some interpolation is required to obtain ages at other depths.
Fig. 1 shows a sample of the pollen data and radiocarbon dates for our case-study site. The
data that we use are all available on line from www.europeanpollendatabase.net and
www.neotomadb.org.

Palaeoclimate inference (more loosely referred to as reconstruction) is a major focus of the
Intergovernmental Panel on Climate Change (Jansen et al., 2007). Public interest, however, has
largely been fuelled by the ‘hockey stick’ and ‘climategate’ controversies, e.g. Mann et al. (1998,
1999) and McShane and Wyner (2011) where reconstructions were obtained for the aggregated
northern hemisphere. Climate changes during the past millennium are relatively small and can
be inferred with reasonable precision from precisely dated proxies such as tree rings. By contrast,
the much older Younger Dryas period ((12.8–11.5)×103 years before Present (BP)) shows a rapid
switching from warm to cold to warm. During this period ice core data from Greenland show
abrupt warmings of up to 16 ◦C within decades (Jansen et al. (2007), page 435). This type of
climate change is not captured well by the general circulation models which are used to predict
future climate, nor by the precise proxies that are used to examine the past millennium. Pollen
proxy data offer the best hope of resolving such sizable past climate changes in locations other
than Greenland.

Our goal is to create a posterior distribution of climate on a temporal grid given pollen
and radiocarbon data at a particular site. This goal is challenging because the relationship
between pollen and climate is non-linear, the pollen data are observed irregularly and with
uncertainty in time, and both climate and pollen are multivariate. To formulate such a model,
we use a generalized version of the framework of Bayesian hierarchical time series models
(Berliner, 1996), comprising an observation layer, a process layer and a parameter layer. To this
we add a calibration layer which allows us to learn about the link between pollen and climate.
Given the complexity of the model and the size of the data sets we make some simplifying
assumptions involving the independence of different layers, which results in a modularized
Bayesian algorithm (Liu et al., 2009).

A key modelling choice in palaeoclimate inference is the selection of climate variables to
reconstruct, climate often being defined as the ‘average’ of weather. Many researchers (e.g.
Mann et al. (1998) and Li et al. (2010)) have chosen to reconstruct mean annual temperature.
This may seem like a logical choice, given that this is relatively easy to measure and relevant
to human wellbeing. However, as summarized by Huntley (2012), the choice should instead
depend on the aspects of climate to which the proxy is sensitive. Many biological proxies have
shown that they are not sensitive to changes in mean annual temperature so reconstructions
of this sort will be characterized by large uncertainties. Instead, more relevant variables were
proposed by, among others, Huntley (1993):

(a) the mean temperature of the coldest month, MTCO, in degrees Celsius, which is a measure
of the harshness of the winter;

(b) the growing degree days above 5 ◦C, GDD5 (calculated as the sum of daily temperatures
above 5 ◦C over a year), which is a measure of the warmth of the growing season;
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(c) the ratio of actual to potential evapotranspiration, AET/PET, which is a measure of the
available moisture (Prentice et al., 1993).

We use these three dimensions as our climate variables throughout this paper. We infer these
three variables via a jointly defined likelihood, as reconstructing variables individually can lead
to further difficulties (Juggins, 2013).

To transform our 28-dimensional pollen into three-dimensional climate, we use a large set of
modern pollen and climate data (detailed in Haslett et al. (2006)). These data have been collected
from around the world; each data point consists of the modern climate and a set of pollen counts
taken from the surface sediment at that location. The climates are obtained from weighted
averaging of local weather station data over periods of approximately 30 years. We treat these
climates as being known precisely; their uncertainties are likely to be orders of magnitude smaller
than the uncertainties that we obtain for ancient climate. The surface pollen counts are obtained
similarly to the counting of fossil pollen. Indeed many of these surface samples are simply the top
layer of a core extracted for palaeoclimate reconstruction. The modern data are available from

http://mathsci.ucd.ie/∼parnell a/Rpack/Bclim.htm.

Statistical models for modern pollen–climate data sets have been built previously (Haslett
et al., 2006; Salter-Townshend and Haslett, 2012; Sweeney, 2012) and involve finding climates
that pollen varieties particularly favour, though these also ignore uncertainty in the modern
climate data. The models use spatial processes, though it is climate rather than physical space
that is the spatial variable. We can use these climate–space processes to ‘look up’ the climate
that is favoured by any particular 28-vector of ancient pollen. This modern data set contributes
another statistical model in our framework; we term it the modern analogue data set.

We do not consider the problem of spatiotemporal or multiproxy inference on palaeoclimate
in this paper. Although data are available for such a task (e.g. from the Web site given above)
and there is some sophisticated statistical modelling in this area (e.g. Li et al. (2010), though this
was based on simulated data), we feel that a proper understanding of the processes and models
that are required for palaeoclimate inference at a single site using a single proxy have not yet
been fully developed. We hope that this paper provides a way forward for those interested in
such extensions.

The paper is arranged as follows. In Section 2 we provide details of our hierarchical time
series approach and show how this may be modularized to produce three submodels. In Section
3 we outline how our reconstruction model can be fitted by using a novel Markov chain Monte
Carlo (MCMC) algorithm. In Section 4 we apply our model to our case-study site in Northern
Ireland. We conclude in Section 5. Our paper contains three technical appendices; the first deals
with the MCMC algorithm, the second with model validation, and the third with instructions
for the associated R package Bclim (see Appendix C).

2. Bayesian calibrated hierarchical time series models

We structure our model similarly to that defined by Berliner (1996), though similar concepts are
found in state space models (e.g. Cressie and Wikle (2011)) and dynamic linear models (West and
Harrison, 1999). We separate the model into four layers: the observation layer, the calibration
layer, the process layer and the parameter layer. Each layer consists of multiple parts: the ancient
pollen and the radiocarbon dates form the observation layer, the modern analogue data are the
calibration layer, and the climate and sedimentation process form the process layer.

We start by outlining our notation.
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(a) y are the observed ancient pollen data from the core. yi is a 28-vector of pollen for layer i

in the core, i=1, : : : , n.
(b) x are the observed radiocarbon dates in the core. xk is the kth radiocarbon date, k =

1, : : : , r. Usually r � n. Since radiocarbon forms in the upper atmosphere at a variable
rate, the radiocarbon age of an object is not the same as its calendar age. The radiocarbon
calibration curve (Reimer et al., 2013) provides a method for transferring radiocarbon
ages into calendar ages.

(c) d are the observed depths in the core. di is the depth associated with layer i.
(d) c are ancient climate variables. ci is the 3-vector of climates associated with layer i. These

are our main inference target.
(e) t are variables representing ages of the ancient pollen data. ti is the age (given in calendar

years BP) of layer i.
(f) ym is the observed modern pollen data. ym

j is a 28-vector of modern pollen for observation
j =1, : : : , s where j indexes each modern sample site. (These are surface samples, so depth
is not relevant for the modern analogue data.)

(g) cm is the observed modern climate data. cm
j is a 3-vector of modern climates for observation

j.
(h) θ are a set of parameters governing the relationship between pollen and climate.
(i) ψ are a set of parameters governing the sedimentation process (i.e. linking age and depth).
(j) v are a set of parameters governing the climate process. As these parameters deal with the

dynamics of climate change they are also of key interest. We use v rather than a Greek
character because we use these to measure stochastic volatility. We set vi to be a 3-vector
of volatility parameters associated with time increment .ti, ti+1/.

From the above parameters we create a posterior distribution of our parameters given data:

p.c, t, θ,ψ, v|y, x, d, ym, cm/∝p.y|c, θ/p.x|t, c,ψ/︸ ︷︷ ︸
observation layer

p.ym|cm, c, θ/︸ ︷︷ ︸
calibration layer

×p.c|t, v/p.t|ψ, d/︸ ︷︷ ︸
process layer

p.θ/p.ψ/p.v/︸ ︷︷ ︸
parameter layer

:

Before proceeding further we make some simplifying assumptions. We assume that pollen
at layer i is conditionally independent of other layers given climate and the parameters θ (for
both ancient and modern data). Furthermore, we assume that radiocarbon dates are condition-
ally independent given the calendar age at that layer. These assumptions are well established
in the literature (e.g. Haslett et al. (2006), Haslett and Parnell (2008) and Tingley et al. (2012))
and have rarely been challenged. Strictly speaking the conditional independence assumption
for pollen layers holds only when all possible climate variables are observed and when pollen
counts react instantly to changing climate. In reality we can only infer a finite number of cli-
mate variables, and plants will react at differing speeds to changing climates. In this paper we
move from two to three climate dimensions (compared with Haslett et al. (2006)) by includ-
ing a moisture component of climate (AET/PET) as well as the two temperature components.
However, the problem of differing rates of plant response to changing climate has been dealt
with only through far more advanced deterministic models (see, for example Garreta et al.
(2009)).

We make two further assumptions that require slightly more discussion. First, we assume that
the modern analogue data set dominates the ancient data set to the extent that we can write
p.ym|cm, c, θ/≈p.ym|cm, θ/. Such an assumption was presented as uncontroversial in Haslett
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et al. (2006) though it may present problems where ancient climate lies beyond the range of
the modern analogue data. However, no models which account for ancient climate have been
proposed in the literature. Second, we make the assumption that climate plays no role in the
sedimentation process, so p.x|t, c,ψ/ ≈ p.x|t,ψ/. A simple argument against this assumption
may be that warmer climates yield more pollen and so faster sedimentation rates. However, the
relationship is likely to be far more complex, and again no such models have yet been created
which relate stochastic sedimentation to climate.

Following these assumptions, we obtain

p.c, t, θ,ψ, v|y, x, d, ym, cm/∝
n∏

i=1
p.yi|ci, θ/×

s∏
j=1

p.ym
j |cm, θ/×

r∏
k=1

p.xk|tk,ψ/

× p.c|t, v/p.t|ψ, d/p.θ/p.ψ/p.v/:

As at present stated, the model requires a posterior of dimension dim.c/ + dim.t/ + dim.θ/ +
dim.ψ/ + dim.v/ where c is of dimension n × 3 and t of dimension n. The parameters θ, ψ
and v all turn out to be similarly high dimensional (see later sections for elaboration), so we
make two final assumptions that are purely to reduce the complexity of the model fitting and
result in breaking the overall model into three separate modules. Such approximations have
been previously suggested by Liu et al. (2009), although they occur naturally in many settings
where data are preprocessed before analysis. First, we remove the influence of the fossil pollen
y on the parameters θ. Second we remove the influence of t on the climate process for c. The
effect of this modularization can be seen most clearly by looking at the complete conditional
distributions for these parameters:

p.θ|: : :/∝
n∏

i=1
p.yi|ci, θ/

s∏
j=1

p.ym
j |cm

j , θ/p.θ/,

p.t|: : :/∝
r∏

k=1
p.xk|tk,ψ/p.t|ψ, d/p.c|t, v/:

In each case we remove the underlined terms from the updates, thereby creating three separate
models that no longer need to be fitted simultaneously. The parameters θ are now learnt solely
from the modern data, so

p.θ|ym, cm/∝
s∏

j=1
p.ym

j |cm
j , θ/p.θ/: .1/

The ages t and parameters ψ are learnt solely from the radiocarbon dates and depths:

p.t,ψ|x, d/∝
r∏

k=1
p.xk|tk,ψ/

n∏
i=1

p.ti|ψ, d/p.ψ/: .2/

Finally, the posterior distribution for ancient climate involves the posterior distributions above,
the ancient pollen data and the climate process:

p.c, t, θ,ψ, v|y, x, d, ym, cm/∝
n∏

i=1
p.yi|ci, θ/p.c|t, v/p.t,ψ|x, d/p.θ|ym, cm/p.v/: .3/

We call equations (1), (2) and (3) the modern analogue module, the chronology module and the
reconstruction module respectively. This modularization (the act of removing the underlined
terms from the updates) is a conservative assumption as it reduces the precision in the parameters
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Bayesian Inference for Palaeoclimate 121

Fig. 2. Directed acyclic graph of our palaeoclimate model with different modules indicated in tinted boxes
(the notation is provided in Section 2): O, parameters or latent random variables; �, data; �!, direction of
information flow; - - ->, relationships where modularization occurs

because we are removing terms that are multiplicative to the complete conditional. The three
modules can be seen most clearly in a directed acyclic graph: Fig. 2. In the subsequent sections
we discuss the modelling choices for each of the modules in more detail.

2.1. Modern analogue module
The modern analogue data set that we use contains 7742 modern surface samples of 28-vectors
ym of modern pollen and 3-vectors cm of modern climate. In this module we aim to estimate
parameters θ governing the relationship between pollen and climate by using the model that
is specified in equation (1). The probability density function (PDF) p.ym

j |cm
j , θ/ that is used in

the likelihood here is sometimes known as a forward model as it provides a data-generating
mechanism from which pollen can be simulated given climate. Numerous methods for creating
a forward model between climate and pollen proxy data have been suggested; see Ohlwein and
Wahl (2012) for a full review.

A first attempt at a Bayesian modern analogue forward model was given by Haslett et al.
(2006) where the likelihood distribution was Dirichlet–multinomial to model overdispersion in
the modern analogue data explicitly:

ym
j,1, : : : , ym

j,28|cm
j ∼DirMult[Kj, {θ1.cm

j /, : : : , θ28.cm
j /}]

where Kj is the total number of pollen grains for sample j (a palynologist will often stop after
counting 400 grains), and {θ1.cm

j /, : : : , θ28.cm
j /} is a set of parameters governing the likelihood

of that particular variety of pollen being present in the sample, given the climate that is associated
with it. The parameters θj were given a Gaussian Markov random-field (Rue et al., 2009) prior
with two-dimensional climate as the spatial variable. The net effect is to produce 28 surfaces
(known as response surfaces) which govern how that particular pollen variety responds to
climate.

The model of Haslett et al. (2006) was extended by Salter-Townshend and Haslett (2012) to
account explicitly for zero inflation (rather than just overdispersion) and to allow for a richer
covariance structure among the multinomial proportions. This new covariance structure uses
a nested multinomial distribution where the nesting structure was created from an expertly
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elicited highly informative prior distribution. The model retains the Gaussian Markov random
fields (in two climate dimensions) and so the integrated nested Laplace approximation (Rue
et al., 2009) can be used to bypass Monte Carlo fitting techniques and to provide extremely fast
posterior inference. We use the model of Salter-Townshend and Haslett (2012) in this paper to
learn about the modern analogue data, though we extend their model slightly to account for
our three climate dimensions rather than the two that were originally used.

In Fig. 3, we show a schematic plot of how a pollen variety may respond to different climates.
The modern data points (denoted as circles in Fig. 3) provide the means to fit a non-parametric
curve with climate as the explanatory variable and pollen count as the response. When presented
with ancient pollen (in a later module) we can invert these surfaces to obtain an estimate of the
PDF of ancient climate. The graph shows two example ancient pollen counts, denoted 1 and
2. The second of these leads to a naturally multimodal climate PDF. Fig. 3(a) shows example
modern pollen and climate data for a single pollen variety and climate dimension. This pollen
variety seems to prefer values of the climate variable to be around 30, for which we would expect
around 180 grains to be counted in a sample layer. When ancient pollen 1 (with a count of
around 180) is introduced we obtain a climate PDF (Fig. 3(b)) which is strongly focused around
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Fig. 3. Schematic of the modern pollen–climate model for the modern analogue data: O, modern pollen
data; , estimated pollen response; , estimated uncertainty interval; , ancient pollen 1,
count D 180; , ancient pollen 2, count D 140
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climate 30. When a lower count of ancient pollen is found (at around 140) we obtain a bi-
modal climate PDF focused away from climate value 30, with a further possible mode at climate
value 80.

2.2. Chronology module
The chronology module is concerned with estimating the ages t of the ancient pollen in the
core. These ages will necessarily be uncertain, since the radiocarbon dates are observed with
uncertainty, and the interpolation that is required to infer ages at all depths will add further
uncertainty. A useful constraint is that age must increase with depth (older sediments lie deeper
in the core) so a monotonic stochastic process is used. Various statistical age–depth models have
been proposed (e.g. Bronk Ramsey (2008), Haslett and Parnell (2008) and Blaauw and Christen
(2011)); see Parnell et al. (2011) for a review. We use the Bchron model of Haslett and Parnell
(2008) since it has been specifically developed for inclusion in palaeoclimate reconstruction and
allows full access to all posterior quantities.

Expanding on equation (2), we treat the radiocarbon dates x as normally distributed (which
is a common assumption in radiocarbon dating) around a known function of the calendar
ages t (via the radiocarbon calibration curve; Reimer et al. (2013)). More importantly, the
sedimentation process p.ti|ψ, d/ is governed by a compound Poisson–gamma process on the
time increments:

ti − ti−1|ψ, d =
N.di−di−1/+1∑

i=1
gi.ψ/

where N.di −di−1/ follows a Poisson distribution with a rate that depends on the depth incre-
ment, and gi is a gamma-distributed random variable parameterized by ψ. Further complica-
tions exist in the form of outlying radiocarbon determinations which may break the monotonic
structure of the process. However, we do not discuss these further here; see Christen and Perez
(2009) for a discussion of outliers in radiocarbon dating. Fig. 4 shows the estimated ages (with
uncertainties) for our case-study site.

2.3. Reconstruction module
Our final module creates our quantity of interest; the posterior distribution of three-dimensional
climate. Returning to equation (3), we need to define the quantities p.yi|ci, θ/, p.ci|ti, v/ and
p.v/. For the first of these we use the same nested multinomial likelihood as in the mod-
ern analogue module. The modularization allows us to marginalize over θ to give p.yi|ci/ =∫

p.yi|ci, θ/p.θ|ym, cm/dθ since p.θ|ym, cm/ uses exclusively the modern analogue data. We use
this expression to our advantage in the model fitting section below. An alternative would be to
fix θ at its posterior mode though we have found that this tends to underestimate the uncertainty
in the resulting ancient climate estimates.

The key modelling choice for this module concerns the climate process c|t, v. We require
a time series process in continuous time that can appropriately capture climate dynamics like
those seen in the Younger Dryas period. Previous work in this area has included traditional auto-
regressive integrated moving average time series models (Tingley and Huybers, 2010), models
with covariates (Li et al., 2010) and models based on Brownian motion (Haslett et al., 2006). For
our purposes we use a simple stochastic volatility model based on the normal–inverse Gaussian
(NIG) distribution which allows us to focus on both climate and climate volatility. We write (for
an individual climate dimension)
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Fig. 4. Output from a chronology model run on our case-study site at Sluggan Moss: , calibrated dates;
, 95% chronology; , mean

ci − ci−1|ti − ti−1 =h∼N{0, v.h/}, v.h/∼ IG.φ1h,φ2h/

where IG is an inverse Gaussian distribution (Betrò and Rotondi, 1991) and φ1 and φ2 are given
informative prior distributions (see the next paragraph). When marginalized over the squared
volatilities v, we obtain an NIG process on c (Barndorff-Nielsen, 1997). This is long tailed, has
explicit PDF and is closed under addition. Bayesian inference for the NIG process has been
discussed by Karlis and Lillestol (2004). The NIG process is extremely simple to work with and
provides many of the features that we might expect to appear in a dynamic and volatile system
such as climate.

There are various choices for how we use the NIG process in our final model with respect
to the multivariate nature of climate. The simplest version is perhaps to use the NIG process
on each dimension independently with a single volatility process shared between the climate di-
mensions. Since it is likely that changes in temperature and moisture occur at different rates
we rejected this model in favour of something more flexible and so allow for independent
volatilities in each climate dimension. We do, however, specify common prior distributions
for the hyperparameters φ1 and φ2 (which are discussed below). An even richer model would
involve a multivariate NIG model (Barndorff-Nielsen, 1997) which would explicitly model cor-
relation between the climate dimensions. However, such correlation is partly induced through
the likelihood and the multivariate version would require substantially more coding. We leave
a more detailed study of the choice of prior distribution for the climate process to another
paper.

We obtain informative prior distributions for the inverse Gaussian parameters φ1 and φ2
by fitting the NIG process to the last 14000 years of a similarly irregularly spaced ice core
data set from Greenland (Stuiver, 2000). The data here are precise measurements of δ18O,
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Bayesian Inference for Palaeoclimate 125

which is a chemical proxy that approximately measures the temperature of rainfall. Once fitted,
the posterior distributions are well approximated by log-normal distributions, so we obtain
φ1 ∼LN.1:28, 0:08/ andφ2 ∼LN.4:23, 0:27/. Henceforth, our focus is on a posterior distribution
for ancient climate c, ancient volatilities

√
v and hyperparameters φ1 and φ2.

3. Fitting the reconstruction module

Having covered the modelling choices for each of our modules, we now outline a novel MCMC
fitting algorithm for the reconstruction module. The fitting algorithms for both the modern
analogue and the chronology modules have been discussed elsewhere (Salter-Townshend, 2009;
Haslett and Parnell, 2008) so we do not cover them. However, our algorithm makes use of the
fact that we can simulate parameters θ from the posterior distribution of the modern analogue
module and simulate ages t from the posterior distribution of the chronology module.

Of course MCMC sampling is not the only means by which such models can be fitted. For
similar models there are numerous algorithms based on sequential Monte Carlo sampling (see,
for example, Carvalho et al. (2010) for a review). These proceed (in our notation) in a ‘forward’
or filtering stage by simulating from p.c1/ and then forming p.ci|y1, : : : , yi/ sequentially for
i = 2, : : : , n. Filtering densities are created of the form p.ci|y1, : : : , yi/, though their creation
requires the use of both the observation and the process layer for every time point. Below,
we show that in our situation it is possible to produce a valid joint posterior without such
restrictions, i.e. which does not require full calculation of the likelihood or process distributions
at the forward stage.

We introduce our algorithm by first remarking that it is feasible to calculate, for a single
layer of ancient pollen, a posterior distribution of ancient climate for that layer only, written as
p.ci|yi/∝p.yi|ci/p.ci/, where p.yi|ci/ is calculated by using the integral

p.yi|ci/=
∫

p.y|ci, θ/p.θ|ym
i , cm

i / dθ

and p.ci/ is flat (note that our prior on ci in Section 2.3 is intrinsic, i.e. we model the changes
in c but make no a priori statement about the marginal values of c). This likelihood is slow to
calculate as the integration may involve a high dimensional grid, but it can be done in parallel
for multiple layers simultaneously. The resulting sets of p.ci|yi/ for i=1, : : : , n we term marginal
data posteriors (MDPs), as they contain the posterior information on the ancient climate given
pollen at only that layer. Clearly, they are strongly related to the filtering densities that were
outlined above. In fact they are far easier to store, being of dimension n×3 rather than n×28.
Once obtained, we need no further calls to the expensive likelihood terms p.yi|ci/. The use of
MDPs is somewhat equivalent to being given climate as ‘data’ (with provided uncertainties),
which is common in many fields where data are adjusted before analysis. Here that adjustment
is done explicitly with full respect to the uncertainty.

The benefit of using MDPs is not immediately obvious so it is helpful to consider a simplified
version where yi|ci ∼ N.ci, 1/; the MDP is trivially ci|yi ∼ N.yi, 1/. The complete conditional
distribution of the parameters of interest c and v is

p.c, v|: : :/∝
n∏

i=1
p.yi|ci/

n∏
i=2

p{ci|ci−1, v.ti−1, ti/}
n∏

i=2
p{v.ti−1, ti/|φ1,φ2}:

All the terms involving c are now Gaussian and so c can be analytically integrated out of
the model. The same holds were the MDP used in place of p.yi|ci/ without any recourse to
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approximation. This means that we can focus inference on v and create c at a second stage from
c|y, v∼N.Vy, V/ where V = .I +W/−1. Here W is a singular tridiagonal matrix containing the
volatilities which can be written as

W =∑
i

v−1
i BiB

T
i

where Bi is the ith row of difference matrix B, an .n− 1/×n differencing matrix with the first
row structured as .−1, 1, 0, : : : , 0/, and subsequent rows structured similarly.

In our situation the MDPs are not Gaussian, though it is relatively simple to approximate
them accurately by using Gaussian mixtures so that

p.ci|yi/≈
G∑
g=1

πig.yi/N{μig.yi/, Σig.yi/}

where the mixture component probabilities πig, the component means μig and covariance
matrices Σig are explicitly written here to show their dependence on the observed data yi. The
size of the approximation can be arbitrarily reduced by simply increasing the number of mix-
ture components G. By conditioning on a mixture component (with probability proportional
to πig), the factorization in the previous paragraph occurs again and we have the same short cut
to creating a posterior distribution with minimal approximation error. Gaussian mixtures can
be created by using the MClust package of Fraley and Raftery (2002). For our algorithm we
find it sufficient to set G=10 and to force all covariance matrices Σ to be diagonal.

The above discussion allows us to create posterior samples of climate and climate volatility
from ancient pollen data. Our final step is to interpolate onto a regular grid so that we can obtain,
for example, climate estimates at a centurial level. We can interpolate the squared volatilities
v by using the inverse Gaussian bridge of Webber and Ribeiro (2003). Climates can then be
created from a standard Brownian bridge conditionally on the volatilities. More technical detail
on the fitting algorithm is given in Appendix A. We consider the robustness of our model to
misspecification in Appendix B.

4. Case-study: Sluggan Moss, County Antrim, Northern Ireland

We now apply our three modules to a site from Northern Ireland, previously published in
Smith and Goddard (1991). Our goal is to create a posterior distribution of the three climate
dimensions GDD5 (warmth of growing season), MTCO (harshness of winter) and AET/PET
(availability of moisture) and their associated volatilities over the previous 14000 years. A plot
of a subset of the data at this site (pollen, depths and radiocarbon dates) is given in Fig. 1, where
depth is shown on the vertical axis (so that 0 cm represents the surface though not necessarily
the present), and radiocarbon ages (with 1 −σ uncertainties; see Scott et al. (2010) for more
details) are shown where they have been obtained further down the core. These radiocarbon
ages (and their associated depths) are used to create a chronology as shown in Fig. 4 in Section
2.2. For each pollen taxa, the percentage abundance is shown at each depth slice in the core
(note that the core has not been sliced regularly in depth). Some pollen taxa, e.g. alder (Alnus),
like warmer, wetter climates, whereas others, e.g. sedges (Cyperaceae) prefer cooler climates.
These pollen data and their associated ages (and age uncertainties), together with the modern
analogue data, form the input to our inference routine.

The modern analogue module relies only on the modern data so the creation of the posterior
p.θ|ym, cm/ is a once-only exercise. This posterior distribution can be reused for other ancient
pollen cores. For further computing details we refer the reader to Salter-Townshend and Haslett
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Bayesian Inference for Palaeoclimate 127

(2012). The chronology module is also independent of the fossil pollen and can also be created
at an offline stage, though it is relevant to one particular core only. As stated earlier we use the
Bchron (Haslett and Parnell, 2008) R package to create an age–depth model and thus posterior
distributions of the age of each ancient pollen layer. The output from the chronology module is
shown in Fig. 4, where each of the horizontal lines represents a radiocarbon date taken from the
fossil pollen core. Its associated PDF is shown in black. The chronology model run provides age
estimates at the dates at which pollen is counted in the core, represented here by the shaded 95%
pointwise credible intervals. The chronology model allows us to work on a calendar timescale,
albeit with uncertainty.

For the reconstruction module, the creation of MDPs and their approximation as mixtures
is a relatively fast step taking less than 5 min on a modern personal computer with several
central processor units, though the former is strongly dependent on the number of layers n.
For our core we have n= 115 layers, which is a fairly typical number, though other cores may
have many more. The MCMC stage to create posterior volatilities was run for 100000 iterations
with a burn-in period of 20000 and thinning by 40. The resulting 2000 iterations were checked
for convergence by using the R package boa (Smith, 2005). Posterior creation of climates and
their subsequent interpolation are of negligible computational impact. A full run of the modern
analogue, chronology and reconstruction modules for this core took less than 10 min on an Intel
Core-i7 2.6 GHz processor with eight central processor units and 16 Gbytes of random-access
memory.

Fig. 5 shows GDD5, MTCO and AET/PET posterior distributions for Sluggan Moss
interpolated via bridging onto a regular centennial grid from 0:2 × 103 to 13:8 × 103 years
BP (approximately the age range of the Sluggan Moss core). We show pointwise summaries of
the climate sample paths, though other summaries (e.g. first differences) are available just as
simply. A Younger-Dryas-type event is clearly visible in MTCO, and there appear to be con-
temporary changes in both GDD5 and AET/PET. Unsurprisingly, the last 10000 years BP are
reasonably constant, much like comparable ice core data (Stuiver, 2000). Fig. 6 shows the pos-
terior distributions of interpolated volatilities derived via the inverse Gaussian bridge. Given
the extra uncertainty in the volatility, there is less signal here and we show only the plot for
MTCO. There is some evidence of an increase in volatility at around the Younger Dryas per-
iod; all the highest mean volatilities occur before 10000 years BP. Further precision could be
attained by reducing chronological uncertainties or incorporating multiple sites in a spatial
model.

Fig. 7 shows the prior and posterior distributions for the inverse Gaussian parameters φ1 and
φ2. These control the mean and the variance of the volatility process such that the mean of the
squared volatility per unit time is φ1 with variance φ2

1=φ2. The model indicates that the prior and
posterior of φ1 are broadly comparable, but the posterior of φ1 is shifted lower than the prior,
corresponding to an increase in volatility variance. This may be the result of a climatological
phenomenon (for example, cores in Europe may exhibit more variability in volatility), or may
be a result of the increased data uncertainty when compared with that of an ice core.

These results from Sluggan Moss have several implications from a palaeoclimate perspec-
tive. It appears from Fig. 5 that the uncertainty in the reconstructed palaeoclimate values is
greater for all three variables before about 10.5×103 years BP; mean volatility is also generally
higher during this period (Fig. 6). The very high uncertainty is principally a consequence of
the ‘multiple-analogues’ problem that was discussed by Haslett et al. (2006); this probably also
underlies at least in part the generally high volatility that is seen during this interval. The first
implication is thus that pollen data alone provide an inadequate basis for a reliable palaeocli-
mate reconstruction at this site for the period before about 10.5×103 years BP, although this
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Fig. 5. Plots of (a) AET/PET (available moisture, scaled up to (0,1000)), (b) the centennial interpolated
GDD5 (growing season warmth) and (c) MTCO (harshness of winter) over the period 0–14�103 years: ,
95% marginal data posteriors; , summarized 95%, 75% and 50% posterior stochastic interpolations of
climates c from our interpolated stochastic volatility model

limitation could probably be overcome if the choice of analogues could be constrained by using
data from other proxies (Huntley, 1993, 1994).

After about 10.5×103 years BP, throughout most of the Holocene, the palaeoclimate has
been relatively stable, with some reduced uncertainty in the reconstructed values for all three
variables. Of the three, MTCO (harshness of the winter) has shown least change and also
has relatively limited uncertainty, the 50% range of the joint posteriors generally being about
3 ◦C and even the 95% range rarely exceeding 8 ◦C. Although such uncertainties exceed those
typically quoted by transfer function studies (Brooks and Birks, 2001), it is important to have
more complete and realistic estimates of uncertainty if robust comparisons are to be made
between such reconstructed values and either those reconstructed from other proxies or those
derived from climate models. The median GDD5 (growing season warmth) is higher before
about 6×103 years BP, falling thereafter, albeit that the change is of much smaller magnitude
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Fig. 7. Plots of the prior ( ) and posterior distributions ( ) of the volatility parameters (a) φ1 and
(b) φ2

than the uncertainty. Although the fall in the median value is consistent with a wide range of
other evidence that indicates that the early millennia of the Holocene were generally warmer in
summer in Europe (e.g. treelines extending to higher latitudes and altitudes, as summarized by
Grove (2004)), the range of the uncertainty in the reconstructed values would urge caution if
considering this record in isolation.

In the case of AET/PET (availability of moisture) the median value is generally lower after
about 6×103 years BP, but also has greater uncertainty. The higher uncertainties after about
6×103 years BP urge caution in interpreting the reconstructed values; indeed, it is likely that the
increased abundance of Gramineae (grasses) is principally driving the reconstructed changes,
whereas this increase mostly reflects human forest clearance as agriculture developed. Further-
more, there is a discrepancy in the change in the median reconstructed value when compared
with other lines of evidence (e.g. the widespread development of blanket bogs in the uplands
of the British Isles after the mid-Holocene; see Birks (1988)) that indicate generally greater
availability of moisture in north-west Europe during the second half of the Holocene.

5. Discussion

The model that we have presented performs inference on palaeoclimate while quantifying
uncertainties in a more detailed and thorough fashion than previously possible. The foundation
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of the model is a Bayesian hierarchical time series which explicitly separates out the dynam-
ical systems (climate; sedimentation) from the observation model (the link between climate
and proxy pollen data; the formation of radiocarbon dates). This idea, which was proposed
originally in Haslett et al. (2006), had also been suggested by Tingley et al. (2012). We have
implemented and considerably expanded this approach and developed a modular algorithm
which can perform inference on both climate and climate volatility through the use of mixtures
of marginal data posteriors. The NIG process that we apply to imitate the dynamic nature of
changing climate allows us to focus inference on questions that could not previously be answered
by using existing modelling approaches.

The modularity that was invoked by following our modelling assumptions seems appropriate
for use in future extensions. This modularity enables various steps to be run in parallel and also
allows us to change modules as required. For example, to produce interpolations by using a
different chronology model from that of Fig. 4, the creation of MDPs and their approximation
as mixtures do not need to be rerun, being entirely independent of any chronological uncertainty.
Thus only the other steps were required. This has larger implications for future modelling as,
for example, a new forward model can be used in place of the model that we use with no
other changes required to any of the other steps. The same applies to the chronology model,
the Mclust mixture algorithm and the climate process itself (though it would still need to be
intrinsic). The price that we pay for such flexibility is increased uncertainty in the posterior
distributions of climate.

There are several other potential drawbacks to the model as proposed. First, it is conceiv-
able that the mixture formulation does not properly cover the marginal data posterior to learn
the climate volatility parameters sufficiently. Such a problem will increase with n and G (the
number of mixture components that are used). However, our model validation runs (Appendix
B) show that this is almost never so and coverage properties, even when G is underestimated,
still seem adequate. Another potential disadvantage is the modularization assumption, both
between the likelihood parameters θ and the rest of the model, and also between the chronology
model and the climate process. The former seems most reasonable, as new cores are unlikely
to impact much on the climate process given the strength of modern analogue data that are
available. The latter, however, poses an interesting challenge, as if the sedimentation process
is also posed as an intrinsic prior it is feasible for inclusion in our MDP-style inferential ap-
proach.

Some enhancements which follow immediately and to which our algorithm may still apply
include the following.

(a) A multiproxy analysis of palaeoclimate: this would require multiple forward models
describing the relationship between climate and the various proxies. Our modulariza-
tion approach would not be hindered by such an extension, as we could simply create
MDPs for the various proxies and include them as standard, so that the product MDP
now becomes, for example, πproxy1

MDP .c|y1/π
proxy2
MDP .c|y2/. However, care needs to be taken

in selecting the aspects of climate to which the different proxies are responsive. If these
are substantially different, it may be that an extra process layer is required to match the
different climate variables appropriately.

(b) The development of probabilistic forward models: these describe the causal chain from
climate to proxy data. The forward model that we use is relatively simplistic in its descrip-
tion of the mechanics of climate–pollen interaction, though it is far more sophisticated
in its description of the uncertainty relating to the counting of pollen data and the re-
lationships between pollen varieties. We encourage the development of physical forward
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models provided that they retain suitable stochastic elements. A recent example of such
thinking is Tolwinski-Ward et al. (2011).

(c) Richer climate process models: we might extend our time series approach into the spatial
domain to give

y.si, ti/|c.si, ti/∼fθ{c.si, ti/}, i=1, : : : , n,

c.si, ti/|{c.s1, t1/, : : : , c.si−1, ti−1/}= c∼ ζκ.c/, i=2, : : : , n,

where now both pollen and climate are indexed by space s and time t and the prior distribu-
tion ζ is applied to climate change, parameterized by κ. We might assume that this would
use all observations from previous time points t1, : : : , ti−1 so that a particle algorithm
might now become more appropriate. The prior ζ might be a simple stochastic climate
model, or a richer version of our independent increments process including covariates and
a spatial process. It is immediately obvious that c will no longer factorize out of the pos-
terior, yet if ζ remains intrinsic a Laplace approximation might still allow our algorithm
to proceed, though with caveats about the size of the approximation error. Finally, even
in situations where the prior is not intrinsic, it may be that other non-Gaussian mixture
arrangements will yield simple tractable forms.

Performing inference on palaeoclimate over multiple sites may be possible by following the
proposed methodology of Lindgren et al. (2011). In fact, the borrowing of strength from nearby
cores may overcome one of our main issues: that of temporal uncertainty. It is certainly feasible
that the constrained correlation of neighbouring sites will reduce temporal variability and thus
provide more precise estimates of climate and possibly its associated volatility. Following this
approach seems most promising in producing a pan-European map of palaeoclimate and its
uncertainty.

Acknowledgements

We thank the following people for fruitful discussions as part of the SUPRAnet network: Jonty
Rougier, Caitlin Buck, Tamsin Edwards and Michel Crucifix. We also thank T. Brendan Murphy
for his assistance with the mclust algorithm and the Joint Editor for comments on an earlier
draft.

Appendix A: Technical details of the model fitting approach

For the following derivations we assume univariate climate so that ci is actually a scalar. Everything that
follows is extendable to multivariate climate with only minor notational changes, as discussed in the last
section of this appendix.

First, we re-express the mixture component of the marginal data posteriors which were previously

p.ci|yi/=
G∑
g=1
πigN.μig, Σig/:

We introduce indicator variables zig that are 1 if observation i is in group g and 0 otherwise, and vectorized
as zi. Thus we have

p.ci|yi/=
∫

p.zi|πi/
G∏
g=1

N.μig, Σig/
zi @zi

where zi|πi is a multinomial .1,πi/ distribution where πi are the known mixture weights for layer i. This
re-expression has the advantage that, conditionally on z, Πn

i=1 p.ci|yi, zi/ is multivariate normal. However,
this introduces extra parameters z which must be estimated.
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Following this rearrangement, we require the posterior distribution

p.c, v, z, t,φ1,φ2|data/∝
{

n∏
i=1

G∏
g=1

p.ci|μig, Σig/
zig

}{
n∏

i=2
p.ci|ci−1, ti, ti−1, vi−1/

}

×
{

n∏
i=1

p.zi|πi/

}{
n−1∏
i=1

p.vi|ti, ti+1/

}
p.t|x, d/p.φ1/p.φ2/

where all the distributions on the right-hand side are known. p.ci|μig, Σig/ is a univariate normal distri-
bution with fixed mean μig and variance Σig, p.ci|ci−1, vi−1/ is Gaussian with given mean and variance,
p.zi|πi/ is multinomial .1,πi/ with πi = .πi1,. . . ,πiG/ the vector of known mixture proportions for layer
i. p.φ1/ and p.φ2/ are log-normal distributions with informative hyperparameters set as described in the
main text.

All the distributions involving c above are Gaussian so c can be analytically integrated out of the
posterior. We now let

n∏
i=1

G∏
g=1

p.ci|μig, Σig/
zig =MVN.Mz, D−1

z /

where Mz is an n-vector of mixture means defined by the allocations in z and Dz is a diagonal matrix of
mixture precisions, again defined by the allocations in z. Furthermore Πn

i=2p.ci|ci−1, vi−1/ can be written as

(
n−1∏
i=1

v
−1=2
i

)
exp.− 1

2 cTWc/

where W =W.v/ is the singular random-walk precision matrix that was introduced in Section 3.
Setting

A=
n−1∏
i=1

v
−1=2
i ×

n∏
i=1

p.zi|πi/×
n−1∏
i=1

p.vi|ti, ti+1/×p.t|x, d/ ×p.φ1/ ×p.φ2/

and Q=Qz.v/= .Dz +W/−1, and focusing on the Gaussian part of the full posterior, the above equation
can be rearranged to give

p.c, v, z, t,φ1,φ2|data/∝A |Dz|1=2 exp
{− 1

2 .c−Mz/
TDz.c−Mz/

}
exp.− 1

2 cTWc/

=A |Dz|1=2 exp
{− 1

2 .c−Q−1DzMz/
TQ.c−Q−1DzMz/

}
× exp

{− 1
2 MT

z .Dz −DzQ
−1Dz/Mz

}

= |Dz|1=2

|Q|1=2
|Q|1=2 exp

{− 1
2 .c−Q−1DzMz/

TQ.c−Q−1DzMz/
}

× exp
{− 1

2 MT
z .Dz −DzQ

−1Dz/Mz

}
:

Thus the posterior can be marginalized over the distribution c|y, v, z∼N.Q−1DzMz, Q−1/, removing cli-
mate c from this stage of the inference. It can subsequently be simulated from this multivariate normal
distribution given the posterior of v, z,φ1,φ2|y. It is this posterior on which we now focus.

The marginalized posterior is now

p.v, z, t,φ1,φ2|data/∝A
|Dz|1=2

|Q|1=2
exp

{− 1
2 MT

z .Dz −DzQ
−1Dz/Mz

}

where all terms are now trivial to compute, as Q is a simple tridiagonal matrix so its inverse requires
only O.n/ steps. The full conditionals for the remaining parameters (treated individually as vi and zi) now
become

p.vi|: : :/∝ v
−1=2
i

|Q|1=2
exp. 1

2 MT
z DzRz/p.vi|ti, ti+1/,
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p.zi|: : :/∝ |Dz|1=2

|Q|1=2
exp.− 1

2 MT
z DzMz + 1

2 MT
z DzRz/p.zi|πi/

where Rz is the solution to .Dz + W/Rz = DzMz. These parameters can thus be updated extremely fast
by using simple Metropolis–Hastings steps. φ1 and φ2 can be similarly updated by using only the inverse
Gaussian and log-normal distributions on which they depend.

A notable increase in speed can be obtained for parameter v by using the Woodbury formula (e.g. Press
et al. (2002)) since when proposing a new vi as, say, vÅ we can create QÅ =Q+ .vÅ−1 −v−1

i /BiB
T
i with Bi

as described in Section 3. The ratio of determinants now simplifies as

|Q|
|QÅ| = |Q|

|Q+ .ti+1 − ti/−1Bi.vÅ−1 −v−1
i /BT

i |
= |Q|

|Q||1+ .vÅ−1 −v−1
i /BT

i Si|
={

1+ .vÅ−1
i −v−1

i /BT
i Si

}−1

with Si the solution to .Dz +W/Si =Bi.

A.1. Multiple climate dimensions
For multiple climate dimensions j =1, . . . , m we now have climates cij and increment variances vij param-
eterized by φ1j and φ2j . The mixture means μ and variances Σ are further parameterized by j and the joint
posterior is

p.c, v, z, t,φ1,φ2|data/∝
{

m∏
j=1

n∏
i=1

G∏
g=1

p.cig|μgij , Σgij/
zig

}{
m∏

j=1
p.c1j/

n∏
i=2

p.cij|ci−1,j , ti, ti−1, vi−1,j/

}

×
{

n∏
i=1

p.zi|πi/

}{
m∏

j=1

n−1∏
i=1

p.vij|ti, ti+1/

}
p.t|x, d/

m∏
j=1

p.φ1j/×p.φ2j/:

Unsurprisingly, the same marginalization over c occurs as before, and we obtain

p.v, z, t,φ1,φ2|data/∝A
m∏

j=1

|Dzj|1=2

|Qj|1=2
× exp{− 1

2 MT
zj.Dzj −DzjQ

−1
j Dzj/Mzj}

where A is now
m∏

j=1

n−1∏
i=1

v
−1=2
ij ×

n∏
i=1

p.zi|πi/×
m∏

j=1

n−1∏
i=1

p.vij|ti, ti+1/×p.t|x, d/×
m∏

j=1
p.φ1j/p.φ2j/:

The updates for v and φ1andφ2 are unaffected as they factorize across climate dimensions. The update for
z is now

p.zi|: : :/∝
m∏

j=1

{ |Dzj|1=2

|Qj|1=2
exp.− 1

2 MT
zjDzjMzj + 1

2 MT
zjDzjRzj/

}
p.zi|πi/:

Appendix B: Model validation

In this section we determine the properties of our model fitting algorithm by using simulated data under
some idealized and non-idealized circumstances. To improve the speed of our tests we simplify the likeli-
hood somewhat. Similarly we simulate data observed only on fixed unit time. We consider five different
scenarios.

(a) A simple Gaussian test that the parameters are identifiable when simulated from the model: we
set n = 100 and m = 3. For j = 1, : : : , m we first simulate φ1j ∼ U.0:1, 10/ and φ2j ∼ U.0:1, 10/.
For i = 1, : : : , n − 1 we then create vij ∼ IG.φ1j ,φ2j/ and, for i = 1, : : : , n, we create cij − ci−1,j ∼
N.0, vij/. Finally we create δi ∼ U.0:02, 2/ and simulate pseudopollen yij ∼ N.cij ,

√
δ−1

i /. From
the pseudopollen data and the Gaussian likelihood we obtain Gaussian MDPs (with no
simulation or mixture approximation required) which are passed, with the values of φj and ηj ,
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Table 1. Performance of the various model validation scenarios

Scenario Detail Proportion inside 90% Proportion inside 50%
credible interval credible interval

(a) Gaussian likelihood 90.7 50.8
(b) ZIP likelihood 90.8 47.7
(c) ZIP likelihood (too few 90.1 44.5

mixture components)
(d) (i) ZIP likelihood (underestimated 91.6 46.5

IG parameters)
(d) (ii) ZIP likelihood (overestimated 94.0 51.1

IG parameters)

to our MCMC functions to provide posterior distributions of three-dimensional climate and
volatility.

(b) A zero-inflated Poisson (ZIP) likelihood with three pollen taxa: the inverse Gaussian param-
eters, volatilities and climates are simulated as above, but we create pseudopollen via yi1 ∼
ZIP{p1,

√
.a1c

2
1 +a2c

2
2/}, yi2 ∼ ZIP{p2,

√
.a1c

2
1 +a3c

2
3/} and yi3 ∼ ZIP{p3,

√
.a1c

2
1 +a2c

2
2 +a3c

2
3/}.

Here ZIP.p, r/ is a ZIP distribution with zero inflation parameter p and rate r. We set p1, p2 and p3
respectively as pj ∼U.0, 0:2/ and a1, a2 and a3 as Poisson rate parameters simulated as the modulus
of a normal distribution: aj ∼|N.0, 1/|. The pseudopollen data are turned into MDPs via impor-
tance sampling. This ZIP model gives MDPs that are quite often multimodal. The MDPs are then
approximated as mixtures by using G=5 mixture components. These mixture components are then
passed to our MCMC algorithm to estimate climates and volatilities.

(c) This scenario is exactly as (b) but using only two mixture components. In many situations this will
be a poor representation of the MDP and thus may bias estimates of climate or volatility.

(d) This scenario is split into two parts:
(i) exactly as (b) but with the inverse Gaussian parameters φ1j and φ2j given an underestimating

multiplicative bias value simulated from U.0:5, 1/;
(ii) exactly as (b) but with the inverse Gaussian parameters φ1j and φ2j given an overestimating

multiplicative bias value simulated from U.1, 5/.

We run each of the above scenarios 1000 times and check the coverage properties of the climate posterior
to see whether they lie within the 90% and 50% credibility intervals. Table 1 shows the results. Under each
scenario the model seems to perform extremely well.

Appendix C: R package Bclim

Bclim is available as part of the open source, free, statistical software R (R Core Development Team,
2011). R is available to download from www.r-project.org. To install the package Bclim simply
type install.packages(‘‘Bclim‘‘ ) at the R prompt, followed by library(Bclim). The Bclim
package is made up of four main functions (covering the creation of MDPs, mixture approximation,
MCMC sampling and interpolation), two plotting functions (for climate and climate volatility) and a
function which runs all necessary steps in sequence.

Example data to run the function can be downloaded from http://mathsci.ucd.ie/∼
parnell a/Rpack/Bclim.htm. To run the Sluggan example shown in Section 4, the files should
be downloaded via the commands

# Download and load in the response surfaces:
url1 <- ‘ http://mathsci.ucd.ie/˜parnell a/media/requireddata3D.RData ’
download.file(url1,‘ required.data3D.RData ’)

# and now the pollen
url2 <- ‘ http://mathsci.ucd.ie/˜parnell a/media/SlugganPollen.txt ’
download.file(url2,‘ SlugganPollen.txt ’)
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# and finally the chronologies
url3 <- ‘ http://mathsci.ucd.ie/˜parnell a/media/Sluggan 2chrons.txt ’
download.file(url3,‘ Slugganchrons.txt ’)

The response surfaces in the first command are the precalibrated forward model parameters θ. The sub-
sequent functions use the locations of the pollen and chronology file rather than loading them into
random-access memory:

# Create variables which state the locations of the pollen and chronologies
pollen.loc <- paste(getwd(),‘ /SlugganPollen.txt’,sep= ’’)
chron.loc <- paste(getwd(),‘ /Slugganchrons.txt’,sep= ’’)

# Load in the response surfaces
load(‘ required.data3D.RData ’)

The functions now proceed as BclimLayer, which produces the marginal data posteriors, BclimMix
Par or BclimMixSer, which approximate the MDPs as mixtures (either in parallel or serial respectively),
BclimMCMC, which produces posterior chains of volatilities and climates, and BclimInterp, which uses
the inverse Gaussian and Brownian bridges to interpolate climate. Finally BclimCompile produces a
list object which can be passed to plotBclim or plotBclimVol for plotting:

step1 <- BclimLayer(pollen.loc,required.data3D=required.data3D)
step2 <- BclimMixSer(step1)
step3 <- BclimMCMC(step2,chron.loc)
step4 <- BclimInterp(step2,step3)
results <- BclimCompile(step1,step2,step3,step4,core.name="Sluggan")

# Create a plot of MTCO (dim=2)
plotBclim(results,dim=2)

# Create a volatility plot
plotBclimVol(results,dim=2)

Each of these functions has an associated ‘help’ file which provides further information and options.
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