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Proteomic biomarker discovery has led to the identification of numerous potential candidates
for disease diagnosis, prognosis, and prediction of response to therapy. However, very few
of these identified candidate biomarkers reach clinical validation and go on to be routinely
used in clinical practice. One particular issue with biomarker discovery is the identification of
significantly changing proteins in the initial discovery experiment that do not validate when
subsequently tested on separate patient sample cohorts. Here, we seek to highlight some of
the statistical challenges surrounding the analysis of LC-MS proteomic data for biomarker
candidate discovery. We show that common statistical algorithms run on data with low sample
sizes can overfit and yield misleading misclassification rates and AUC values. A common
solution to this problem is to prefilter variables (via, e.g. ANOVA and or use of correction
methods such as Bonferonni or false discovery rate) to give a smaller dataset and reduce
the size of the apparent statistical challenge. However, we show that this exacerbates the
problem yielding even higher performance metrics while reducing the predictive accuracy of
the biomarker panel. To illustrate some of these limitations, we have run simulation analyses
with known biomarkers. For our chosen algorithm (random forests), we show that the above
problems are substantially reduced if a sufficient number of samples are analyzed and the
data are not prefiltered. Our view is that LC-MS proteomic biomarker discovery data should
be analyzed without prefiltering and that increasing the sample size in biomarker discovery
experiments should be a very high priority.
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1 Introduction

Biomarker discovery in proteomics has resulted in a very
large number of publications describing potential biomark-
ers for the detection and prognosis of a large range of dis-
eases. For example, a PubMed search for the terms “protein
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and biomarker discovery” undertaken on 19 February 2014
revealed a total of 6,690 publications in this area. However, it
has been widely noted that this fervent discovery and publica-
tion of potential biomarkers has not translated to a compara-
ble increase in the number of clinically accepted “proteomic”
tests. In fact very few, if any, biomarkers discovered by “pro-
teomics” are routinely used in a clinical setting despite large
government and industry investment [1–3].

One of the main reasons for potential biomarkers fail-
ing to be used in clinical practice is that many are deemed
significant in an initial discovery cohort but are later found
not to be significant in subsequent validation studies [1].
In our opinion, this is usually due to a combination of
model overfitting due to small samples sizes in the initial
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discovery experiment and/or incorrect use of cross-validation.
The serious consequences of model overfitting and incor-
rectly applied statistical techniques in “omic” biomarker dis-
covery were highlighted last year in an Institute of Medicine
review of research at Duke University, which resulted in a
high number of manuscript retractions and the cancella-
tion of three clinical trials [4]. Here, we illustrate our view
by showing practical examples of how small sample sizes,
model overfitting, and prefiltering can lead to deceptive re-
sults. Although a number of these mistakes have been noted
previously (see [5–8]), it seems that as yet they are not well-
known in the area of proteomic biomarker discovery. In this
Viewpoint, we seek to raise awareness of some statistical chal-
lenges associated with proteomic biomarker discovery, and
in so doing impact positively on future protein biomarker
studies.

In recent years, LC-MS has become one of the leading ap-
proaches for peptide identification and quantification as it
can reliably quantify and identify a large number of pep-
tides in a reasonably short time. LC-MS data have been
used in many biomarker discovery experiments (for exam-
ples see [9, 10]). Typical LC-MS experiments measure many
tens of thousands of variables or m/z features (which we
will now refer to as p) on a relatively small number of sam-
ples (hereon n; often much less than 100). The resulting data
present what is often referred to as a “small n large p” prob-
lem. Technical aspects in generating and processing LC-MS
have been well summarized in [11] and are not discussed
here.

Likewise, the “small n large p” problem has been well
documented. Many machine learning and statistical tech-
niques have been identified that may be used to analyze
such data, including RFs, regularized logistic regression,
support vector machines, k-nearest neighbors, neural net-
works, and shrunken centroids. These and other methods
have been reviewed and compared in a number of previ-
ous studies [5, 12, 13]. For brevity, we focus here solely on
the random forest (RF) method as this is one of the fastest
and most flexible techniques that is applied to biomarker
discovery [13–15]. However, the issues that arise from data
prefiltering and small sample sizes are common to all
techniques.

RF was first proposed by Leo Breiman in 2001 [16] and has
proven to be a very popular method in many areas of research
including bioinformatics and proteomics. It is an ensemble
method that uses multiple classification and regression deci-

sion trees in its model. The RF builds each decision tree based
on a different subset of the data by taking multiple bootstrap
samples (sample with replacement) of observations and ran-
dom samples of variables. For each decision tree in the RF
algorithm, the observations that were not used to build the
tree are used to validate it.

The performance of a biomarker panel is often assessed
using the area under the receiver operator curve (AUC). The
AUC is a measure of the degree to which a model can out-
perform a random classifier. The value of the AUC lies in
the range (0–1) with a higher value indicating a better clas-
sifier. Notably, when generating an AUC the RF algorithm
internally cross-validates the model by using separate train-
ing and test datasets from the initial discovery data for each
decision tree within the model. The RF output provides cross-
validated predicted probabilities of each observation belong-
ing to a response class and these probabilities are then used
to generate an AUC value. Hence, all AUC values reported
using RF are cross-validated. While the AUC allows us to
assess how accurately an algorithm can predict the response
variable, it does not establish the identity of the biomarkers
in a panel. Instead the members of the panel are usually
identified through the use of variable importance measures,
which as their name suggests assign importance to individ-
ual members of the protein panel. Because it is important to
know which members of the biomarker panel contribute to
the AUC the RF method has its own default variable impor-
tance measure, though this is a somewhat separate part of
the classification.

2 Sample sizes and data prefiltering

A widely used approach in proteomic biomarker discovery
workflows is to reduce the effect of the “small n large p” prob-
lem by prefiltering the variables that come from the initial
LC-MS data, so that only the “best” variables are put forward
for classification. For example, data are often prefiltered us-
ing ANOVA see [17–19]. This “best” filtered subset of data
are then often analyzed on the same sample cohort using a
classification technique such as RF or those mentioned in
Section 1. However, because data from the same sample co-
hort were used twice: once to choose the filtered subset and
again to build a classification model, the results will not give
a realistic prediction of the accuracy of the model when it is
tested on a different cohort of patients. In our view, this is
one of the major limitations of existing proteomic biomarker
discovery workflows. This should not be a controversial view
as it has been shown in different contexts that prefiltering
gives an overly optimistic interpretation of the predictive abil-
ity of classification algorithms [5–8]. This happens because
the prefiltered variables have the advantage that they already
appear to be strongly associated with the response [20, 21].
Here, we use simulated data to illustrate the important con-
siderations of how small sample size and prefiltering lead to
model overfitting.
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Table 1. Total number of variables, proportion of truly predictive
biomarkers, and RF parameters used in the simulation

p 12 112 1 012 10 012

ptrue/p 0.58 0.0625 0.0069 0.00069
Number of

variables
sampled by RF

3 10 31 100

Number of trees in
RF

500 500 500 500

3 Using simulated data to illustrate the
issues of sample size and
cross-validation

We consider two criteria as being important for the selec-
tion of a good biomarker panel. The first is that the panel
accurately predicts the response as estimated by the AUC.
The second criterion is that a biomarker panel should con-
tain individual proteins or peptides (variables) that are truly
predictive of the response. Clearly, without very large prospec-
tive discovery and validation cohorts this latter criterion can
only be assessed definitively using simulated data. To test the
impact of prefiltering and sample size we created simulated
datasets containing authentic predictive variables.

3.1 Simulation model

To create simulated datasets, we adopted the approach of
Strobl et al. [22] where data contain seven truly predictive
markers (denoted here x1–x7 together with five nonpredictive
biomarkers (x8–x12). To mimic real-world behavior of pro-
teins, some of these variables are simulated to be highly cor-
related. To this initial small dataset, we appended in varying
degrees a larger number of random nonpredictive markers.
Using this approach, we created simulated data of varying
sample sizes, n, (set at 10, 50, and 100) and varying num-
bers of additional random noise variables (0, 100, 1000, and
10 000). This resulted in a total of 12 datasets that allowed us
to determine the impact of data size and prefiltering. Ideally,
for each dataset the RF should only choose biomarker pan-
els which, contain the seven authentic markers mentioned
above and should not include the nonpredictive markers.
We applied the RF algorithm to each dataset and ran it 100
times in order to ensure the reliability of the biomarker pan-
els selected. The total number of variables simulated across
datasets (p) as well as the proportion of truly predictive
biomarkers (ptrue/p) can be seen in the top row of Table 1.

3.2 Analysis

Further, for each of the 12 datasets we ran three different
scenarios:

(i) RF on the full dataset
(ii) RF after prefiltering by ANOVA with a cutoff p-value of

0.05.
(iii) RF after prefiltering by ANOVA with a Bonferroni correc-

tion.

We also performed this analysis using the false discovery
rate (FDR). However, in all cases this was found to give near
identical results to Bonferroni.

RF requires tuning parameters for the number of variables
to sample at each iteration and the number of trees to be used
in the forest. Table 1 shows the RF parameters used for each
dataset. Table 2 shows the number of variables remaining for
each dataset after ANOVA filtering and Bonferroni correction
as well as the percentage of truly predictive biomarkers that
remained after filtering. To select biomarker panels, the RF
model was run using the package random forest and AUC
values were calculated using the package ROCR in R version
3.0.1. In each case, the reported performance metrics are ob-
tained as the average cross-validated value over 100 iterations
of the RF.

3.3 Predictive and reported accuracy

Figure 1A (top panel) shows the proportion of the seven truly
predictive markers correctly found in the top ten most im-
portant variables selected by the RF under each scenario. It is
clear that when the sample size and the number of variables
were small (n = 10, p = 12, respectively), the selection of truly
predictive biomarkers using the full data was very accurate
(85.7% average accuracy over the 100 RF iterations). (For the
Bonferroni corrected data the p-value threshold (0.05/n) was
so strict that it did not accept any variables as significant when
the sample size was 10; because of this the first panel of Fig
1B does not include Bonferroni.) However, when the sam-
ple size was small and the number of variables was increased
(p > 1000) this quickly fell away to zero. This figure also shows
the effect of increasing sample size on finding truly predic-
tive markers when the number of variables is large. When
p > 1000 and even with a sample size of 50 only 57.1% of
the truly predictive features were found. This shows that find-
ing truly predictive markers in even modest sized proteomic
datasets requires that a relatively large number of samples
are analyzed.

As mentioned previously, a common way to decrease the
number of variables included in the data is to prefilter using
methods such as ANOVA and/or correction methods such
as Bonferroni. Figure 1A shows that in all but one case, the
ANOVA filtered data found the same or fewer of the truly
predictive features, with Bonferroni (and equivalently FDR)
performing worse in general. The fact that the Bonferroni
correction identified fewer of the truly predictive variables is
because the number of false positives accepted is reduced (by
correcting for multiple testing) and this in turn increases the
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Table 2. Total number of variables accepted and percentage of true biomarkers included for full, ANOVA, and Bonferroni datasets for
sample sizes 10, 50, and 100

Sample size 10

Full variables 12 (100%) 112 (100%) 1012 (100%) 10 012 (100%)
ANOVA variables 2 (14.3%) 9 (14.3%) 50 (0%) 478 (0%)
Bonferroni variables 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Sample size 50

Full variables 12 (100%) 112 (100%) 1012(100%) 10 012(100%)
ANOVA variables 7 (85.7%) 10 (71.4%) 58 (85.7%) 503 (71.4%)
Bonferroni variables 4 (57.1%) 4 (57.1%) 4 (57.1%) 4 (57.1%)

Sample size 100

Full variables 12 (100%) 112 (100%) 1012 (100%) 10 012 (100%)
ANOVA variables 7 (85.7%) 12 (85.7%) 50 (85.7%) 527 (85.7%)
Bonferroni variables 7 (85.7%) 5 (71.4%) 4 (57.1%) 4 (57.1%)

number of truly predictive biomarkers that are falsely rejected
(false negatives).

Figure 1B (bottom panel) shows AUC values obtained for
each of the three samples sizes considered (10, 50, 100). It
is evident that the ANOVA filtered and Bonferroni corrected
data nearly always reported higher accuracy than the analysis
performed on the unfiltered full dataset. In fact this accuracy
seemed to improve when more noise variables are included
in the analysis. For example with a sample size of 50, the
reported AUC for ANOVA filtered data was 0.9 for the dataset
with 12 variables and increased to 0.99 with 10 012 variables

(Fig. 1B) when in fact the actual performance decreased from
85.7 to 57.1% (Fig. 1A).

When the data in Fig. 1A and B are taken together, it
is clear that prefiltering data either does not change or re-
duces the performance of the algorithm, while paradoxically
increases the reported AUC values. This deceptive inflation
of the AUC for ANOVA filtered and Bonferroni corrected
datasets might lead the experimentalist to have undue confi-
dence in the biomarker panel and is likely to lead to wasted
time and effort validating biomarker panels that contain con-
siderable random noise. While ANOVA did in many cases

Figure 1. Simulated biomarker datasets. (A; Top panel) Percentage of correctly identified truly discriminating biomarkers. (B; Bottom panel)
AUC values for the full and ANOVA and Bonferroni filtered datasets.
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identify the same number of true biomarkers as were found
through analysis of the full dataset; the consequences of the
overinflated reported accuracy when using ANOVA or Bon-
ferroni here negate the benefits of simplifying the data. Also,
it should be noted that, ANOVA and hence Bonferroni and
FDR would be expected to perform well for this simulation as
the variables are linearly related. If the data were nonlinear,
as might reasonably be expected, we would anticipate an even
worse performance from these methods.

4 Concluding remarks

Through the use of simulated datasets, we have illustrated
that more robust identification of candidate biomarkers will
result from the use of larger sample sizes in proteomic
biomarker discovery experiments. This is a point that is often
noted but it seems rarely acted upon. It is our view that this
contributes significantly to the poor record of proteomics for
delivering clinically validated biomarkers, because authen-
tic candidates are not selected from discovery experiments.
Importantly, we have also shown that the commonly used ap-
proach of prefiltering of the initial discovery data by ANOVA
and correction methods like Bonferroni and FDR rarely im-
prove the accuracy of biomarker selection. Hence, we propose
that greater time and attention to appropriate statistical con-
siderations are made earlier in the biomarker discovery and
development process. Further, we suggest that only when
the data are not prefiltered, can the quality of a biomarker
panel be accurately judged through the AUC. If prefiltering
is performed, it should be done outside of the model cross-
validation process or by having a separate external cross-
validation for filtering and an internal cross-validation for
accessing model performance. In other words, ANOVA filter-
ing should be performed on a completely separate cohort to
that used to assess the performance of the chosen biomarker
panel in order to avoid inflation of the performance metrics.

Sample size is also a major consideration. We suggest that
LC-MS clinical biomarker discovery experiments are under-
taken on the maximum number of samples possible, prefer-
ably at least 50 in order to (i) minimize the effects of over-
fitting and (ii) improve the quality of performance metrics.
Although it may be argued that it is not feasible to run such
relatively large sample sizes, we suggest that investing at this
stage in the process will ultimately save significant time and
effort that might otherwise be wasted in validating a nonpre-
dictive biomarker panel. It is notable that this validation often
requires the time-consuming assembly of highly valuable and
precious patient cohorts.
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