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A B S T R A C T   

The basic-level advantage is one of the best-known effects in human categorisation. Traditional accounts argue 
that basic-level categories present a maximally informative or entry level into a taxonomic organisation of 
concepts in semantic memory. However, these explanations are not fully compatible with most recent views on 
the structure of the conceptual system such as linguistic-simulation accounts, which emphasise the dual role of 
sensorimotor (i.e., perception-action experience of the world) and linguistic distributional information (i.e., 
statistical distribution of words in language) in conceptual processing. In four preregistered word→picture 
categorisation studies, we examined whether novel measures of sensorimotor and linguistic distance contribute 
to the basic level-advantage in categorical decision-making. Results showed that overlap in sensorimotor 
experience between category concept and member concept (e.g., animal→dog) predicted RT and accuracy at 
least as well as a traditional division into discrete subordinate, basic, and superordinate taxonomic levels. 
Furthermore, linguistic distributional information contributed to capturing effects of graded category structure 
where typicality ratings did not. Finally, when image label production frequency was taken into account (i.e., 
how often people actually produced specific labels for images), linguistic distributional information predicted RT 
and accuracy above and beyond sensorimotor information. These findings add to our understanding of how 
sensorimotor-linguistic theories of the conceptual system can explain categorisation behaviour.   

1. Introduction 

Categorisation is critical to our everyday cognitive functioning. 
Representative categories and concepts1 allow us to adequately 
perceive, think about, perform actions with and speak about our day-to- 
day experience (Lakoff, 1987). Without categories, we would have to 
treat every object, action or event as a unique instance, rendering us 
overwhelmed and low on cognitive resources (Smith & Medin, 1981). 
Instead, the use of categories allows us to organise the environment and 
the objects encountered within it into groups we judge to be meaning
fully similar, thus enabling us to infer knowledge and potential actions, 
even if we have never encountered a particular instance before. While 
the fundamental importance of categorisation to our cognitive abilities 
is evident, the precise definition of categories and how categorical in
formation is cognitively structured remains under debate. 

In traditional, feature-based accounts of categorisation and 

conceptual structure, natural categories are classes that group entities 
together according to their shared features or properties. While feature- 
based theories differ in their details, they generally agree that concepts 
comprise discrete, binary features (e.g., a concept either has, or has not, 
the feature can fly), and that categorisation is possible because certain 
features occur together more frequently than others (e.g., if it has wings, 
lays eggs and can fly, it is likely a member of the category bird; (Cree & 
McRae, 2003; Hampton, 1993; Malt & Smith, 1984; Posner & Keele, 
1968; Rosch, 1973; Smith, Shoben, & Rips, 1974; Tyler, Moss, Durrant- 
Peatfield, & Levy, 2000). In one popular view, categories are stored in 
semantic memory through an abstracted summary of how features are 
shared by category members (prototype theory; Posner & Keele, 1968; 
Rosch & Mervis, 1975). Any given concept may be categorised at mul
tiple, inclusive levels of abstraction (e.g., that small brown creature may 
simultaneously be categorised as house sparrow, sparrow, bird, and ani
mal), reflecting a taxonomy-like hierarchy from very specific lower 
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1 In the present paper, we use the term concept to refer to an aggregated, canonical aspect of experience that can be mentally represented offline (i.e., in the absence 
of its referent: Connell & Lynott, 2014), and the term category to refer to a class that groups entities together. 
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levels to very abstract higher levels. Crucially, while any concept may be 
categorised at any taxonomic level, the basic level (e.g., bird) is generally 
privileged (Rosch, 1978; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 
1976). First demonstrated in a series of experiments by Rosch, Simpson, 
and Miller (1976), the basic-level advantage describes multiple behav
ioural effects in object recognition, categorisation and naming which 
show a processing advantage for categories of intermediate abstraction. 
Most prominent is the finding that people are faster and more accurate at 
categorising objects which are preceded by their name at the basic level 
(e.g., dog; bird), compared to superordinate (e.g., animal) or subordinate 
(e.g., Labrador, sparrow) level names. This finding is one of the most 
fundamental effects in categorisation research, and has repeatedly been 
replicated in subsequent work featuring object typicality (Jolicoeur, 
Gluck, & Kosslyn, 1984; Murphy & Brownell, 1985), context (Murphy & 
Wisniewski, 1989), subject expertise (Johnson & Mervis, 1997; Tanaka 
& Taylor, 1991) and neurological disorders (Rogers & Patterson, 2007). 

While the basic-level advantage in object categorisation is a robust 
effect, its underlying mechanisms have not been conclusively explained. 
Feature-based hierarchical accounts argue that taxonomic structure is 
integral to how categorical knowledge is represented in semantic 
memory, where feature information is stored only once, at the highest 
possible level, and generalised to all subordinate levels (Collins & Loftus, 
1975), thus avoiding redundancy (e.g., the feature lays eggs is true for all 
birds). Subsequently, Jolicoeur et al. (1984) argue that objects are most 
easily categorised at the basic level because it is the level at which the 
taxonomic structure is usually accessed, and so categorisation at a level 
different to this entry level incurs a cost in response time and/or accu
racy. Other feature-based accounts do not assume that semantic memory 
is structured hierarchically, but rather that a taxonomy is implicit in 
how features are interrelated. For instance, the differentiation account 
(Markman & Wisniewski, 1997; Murphy & Brownell, 1985; Murphy & 
Lassaline, 1997; Murphy & Smith, 1982), argues that basic-level cate
gories are quite distinct from contrasting categories, (e.g., dogs and birds 
share few features) while also being quite informative in how they group 
concepts together (e.g., Labradors and collies share many features). 
Consequently, differentiation accounts suggest an object may be cat
egorised most quickly and accurately at the basic level because it pro
vides the maximally distinctive and informative match to the object’s 
features, whereas other taxonomic levels are disadvantaged because 
they match few features of the object (i.e., superordinate categories are 
distinctive without being informative) or there are several competitors 
that match some of the object’s features (i.e., subordinate categories are 
informative without being distinct). That is, the basic level is implicitly 
advantaged in how it best matches features of the object to be cat
egorised (see also Rogers & Patterson, 2007). 

More recently however, an alternative view of the conceptual system 
has emerged that may offer a different explanation for the processing 
advantages in categorisation. Linguistic-simulation accounts of the 
conceptual system emphasise the importance of both sensorimotor and 
language experience in conceptual processing (Barsalou, Santos, Sim
mons, & Wilson, 2008; Connell, 2018; Connell & Lynott, 2014; Lou
werse, 2011). Both simulated and linguistic distributional information 
are essential to the operation of the conceptual system, but they interact 
flexibly to allow reliance on one form of information over another, 
depending on the exact context or cognitive task (Connell, 2018). 
Simulated representations emerge from sensorimotor experience with 
our environment, whereby the neural activations across brain areas 
involved in processing this experience are represented as partial replays 
upon retrieval (Barsalou, 1999). These comprise perceptual, motor, af
fective and other information in direct and vicarious experience (e.g., 
the concept dog might be represented by its smell, the sound it makes 
when it barks, the touch of its fur etc.), though the precise information 
simulated in a particular instance depends on situational context, task 
goals, available resources, and participant motivations (e.g., Connell & 
Lynott, 2014). Evidence for the role of simulated representations comes 
from neuroimaging studies, showing shared activation between areas 

involved in perceptual experience and their equivalent in conceptual 
processing (Aziz-Zadeh, Wilson, Rizzolatti, & Iacoboni, 2006; Carota, 
Moseley, & Pulvermüller, 2012; Goldberg, Perfetti, & Schneider, 2006; 
Hauk, Johnsrude, & Pulvermüller, 2004), as well as from behavioural 
studies that reveal intricate relationships between perceptual and con
ceptual processing (Connell & Lynott, 2010; Dils & Boroditsky, 2010; 
Zwaan & Taylor, 2006). 

Linguistic distributional knowledge, meanwhile, reflects our vast 
experience with language, where our sensitivity to statistical properties 
(Aslin & Newport, 2012; Landauer & Dumais, 1997; Lund & Burgess, 
1996) has allowed us to develop knowledge of how words and phrases 
have specific patterns in their distribution relative to each other (see 
Wingfield & Connell, 2022a for a review). Certain words occur in the 
same or similar contexts more often than others (e.g., the contexts in 
which people mention dog and animal are more alike than those of dog 
and cup), and such linguistic distributional information has been shown 
to be powerful enough to predict conceptual processing in a wide range 
of tasks (Connell, 2018; Connell & Lynott, 2013; Goodhew, McGaw, & 
Kidd, 2014; Louwerse, 2011). Crucially, while concepts comprise both 
sensorimotor and linguistic distributional information, linguistic distri
butional information is computationally cheaper and faster, if less pre
cise, than sensorimotor information (Barsalou et al., 2008; Connell, 
2018; Louwerse, 2011). Some debate exists on whether conceptual 
processing is primarily driven by sensorimotor simulation (e.g., the 
Language as Simulated Symbols account; Barsalou et al., 2008), or by 
linguistic distributional information without necessarily requiring 
sensorimotor activation (e.g., the Symbol Interdependency Hypothesis; 
Louwerse, 2011), or by either information type depending on a variety 
of factors including the nature of the task at hand and available pro
cessing resources (e.g., the Linguistic Shortcut hypothesis: Connell, 
2018; Connell & Lynott, 2014). In the present paper, we take the latter 
perspective that language may serve as a conceptual shortcut in cases 
where linguistic association is sufficiently informative to inform deci
sion making. 

If concepts are indeed represented as a combination of sensorimotor 
simulation and linguistic distributional knowledge, it follows that such 
sensorimotor and/or linguistic information may also underlie catego
risation. Rather than depending on featural similarity between an object 
and an abstracted feature summary of its class, category membership 
may be a product of sensorimotor and linguistic distributional similarity 
between a category concept (e.g., dog) and a potential member concept 
(e.g., Labrador), based on sensorimotor experience of the referent con
cepts and linguistic experience of the concept labels across language. In 
sensorimotor terms, many feature-based theories emphasise that cate
gorical distinctions emerge at least in part from commonalities in the 
way we perceive and interact with the world around us (Cree & McRae, 
2003; Tyler et al., 2000). However, sensorimotor experience may also be 
considered as the extent to which a concept is experienced via each 
perceptual modality or action effector (i.e., sensorimotor strength: 
Lynott, Connell, Brysbaert, Brand, & Carney, 2020), where the overlap 
in sensorimotor experience between a category concept (e.g., dog) and a 
member concept (e.g., Labrador) predicts how readily people name the 
member as an example of that category (Banks, Wingfield, & Connell, 
2021). In linguistic distributional terms, the relationship between 
member-concept labels and category-concept labels in corpus-derived 
linguistic space is also an effective predictor of category membership 
(Banks et al., 2021; Connell & Ramscar, 2001; Riordan & Jones, 2011; 
Wingfield & Connell, 2022a). When a category label (e.g., dog) appears 
in very similar context to a member concept label (e.g., Labrador), 
people tend to judge the member concept as an excellent example of its 
category (i.e., graded structure of concepts: Connell & Ramscar, 2001). 

Compared to traditional, hierarchical, accounts of categories and 
concepts that rely on discrete features to compute and explain advantage 
effects in categorisation, linguistic-simulation theories take a very 
different approach in some key respects. Firstly, while hierarchical 
views assume that semantic memory is structured into discrete 
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taxonomic levels, with the basic level accorded a preferential status (e. 
g., Jolicoeur et al., 1984), linguistic-simulation accounts do not share 
that assumption. Rather, although linguistic-simulation accounts have 
not yet addressed the basic-level advantage directly, they treat all 
category concepts (i.e., Labrador, dog and animal) with equal status, with 
no assumption of hierarchy nor preference for the basic level, and as
sume that task goals and available resources will determine which 
concept is activated first (Connell & Lynott, 2014). In lacking an explicit 
a priori basic-level preference, linguistic-simulation views are similar to 
feature-based differentiation accounts (e.g., Murphy & Brownell, 1985; 
Rogers & Patterson, 2007) but differ in that they do not assume the basic 
level is implicitly advantaged by optimally distinct and informative bi
nary features. Secondly, where feature-based views draw a distinction 
between concepts and features, linguistic-simulation views do not. In 
these views, there is no a priori difference between tail, barks, and dog. 
They may be related, in that a sensorimotor simulation of dog involves 
activation of the concepts tail and barks, or that the word label dog occurs 
frequently in the same or similar linguistic contexts as tail and barks 
(which enables the extraction of semantic relations; (Wingfield & Con
nell, 2022a), but feature-concepts are not qualitatively different or 
subsidiary representations to object-concepts. 

Finally, the linguistic-simulation account does not assume that 
category membership is dependent on similarity to a central tendency or 
feature abstraction. That is, the category animal is not represented 
through an abstracted feature-summary (i.e., prototype) or salient ex
emplars, but through the same sensorimotor and linguistic distributional 
information that other concepts (e.g., poodle, spaniel) are. Consequently, 
poodles are not categorised as animals because they share sufficient 
features with a prototype, or with familiar poodle exemplars, but 
because the sensorimotor and linguistic distributional information they 
activate is similar to that representing the concept animal. 

The aim of this work is to test whether overlaps in sensorimotor and 
linguistic distributional experience between member concepts and 
category concepts can indeed contribute to the behavioural effect of the 
basic-level advantage in categorisation, without requiring discrete 
taxonomic levels – regardless of whether these levels are assumed to be 
explicitly fixed in semantic memory (e.g., entry-level accounts; Joli
coeur et al., 1984) or arise implicitly from the manner in which mem
bers’ features overlap (e.g., differentiation accounts; Murphy & 
Brownell, 1985). That is: is categorisation behaviour affected by the 
sensorimotor and linguistic distributional relationship between a cate
gory and member concept? And if so, can it explain the basic-level 
advantage better than discrete taxonomic levels? 

1.1. The current study 

In this paper, we report four preregistered experiments (1a, 1b, 2a, 
3). We also include a brief discussion of an exploratory analysis 
(experiment 2b); full details of this study may be found in the supple
mental materials on OSF (https://osf.io/8cjrm). All studies used a label 
→ picture categorisation task similar to that used by Rosch, Simpson, 
and Miller (1976), where participants judged (yes/no) whether the 
pictured item belonged to the category named in the preceding label. We 
investigated whether categorisation performance (response time, accu
racy) can be predicted by sensorimotor (i.e., perception-action experi
ence of the world) and linguistic distributional information (i.e., 
statistical distribution of words in language) more effectively than by 
discrete taxonomic levels. Critically, we used a novel measure of 
sensorimotor information that was fully grounded in perceptual and 
action experience alone (i.e., without the use of abstracted features), 

based on multidimensional ratings of sensorimotor strength from Lynott 
et al. (2020).2 Our measure of linguistic distributional information was 
derived from co-occurrence frequencies in a large corpus of English. 
Together, these measures allowed us to distinguish whether represen
tational similarity between a category and member concept was due to 
overlap in sensorimotor information (e.g., the concepts animal and dog 
both involve similar perception and action experience) or linguistic 
distributional information (e.g., the words animal and dog both appear in 
similar contexts across language). 

We expected that sensorimotor and linguistic information would 
contribute to categorical decision making. In line with the linguistic- 
shortcut hypothesis (Connell, 2018; Connell & Lynott, 2014), we ex
pected that linguistic information in particular would contribute to the 
basic level advantage in a category verification task. That is, we ex
pected people to categorise pictured objects more quickly and accurately 
when the member concept (e.g., dog) was close to the category concept 
(e.g., animal) in both sensorimotor experience and linguistic distribu
tional knowledge. 

2. Experiment 1a: the basic-level advantage 

In our first study (preregistration, data, analysis code and results 
available at https://osf.io/8cjrm, we examined the basic-level advan
tage in a classic label → picture category verification task. Participants 
first saw a category name at one of various levels of specificity (e.g., 
general animal, basic dog, or specific Labrador), followed by a picture (e. 
g., photograph of a Labrador), and their task was to decide yes/no 
whether the pictured item belonged to the specified category. We ex
pected responses to be faster and more accurate for basic-level category 
labels (i.e., the basic-level advantage), and aimed to contrast two 
competing explanations. 

If traditional accounts of the basic-level advantage are correct, then 
the effect emerges from explicit or implicit levels of categorical repre
sentations in a taxonomic hierarchy (i.e., subordinate, basic, superor
dinate). Within this hierarchy, the basic level of dog is either the usual 
point of entry into the taxonomic structure of semantic memory (where 
accessing other levels of Labrador or animal incurs a processing cost: 
Glass & Holyoak, 1974; Jolicoeur et al., 1984) or is the category best 
differentiated by the pictured object’s features (where animal matches 
few features and Labrador has too many competitors that match many 
features: Markman & Wisniewski, 1997; Murphy & Brownell, 1985; 
Rogers & Patterson, 2007). As a result, categorical decisions are easier to 
make at the basic level. 

By contrast, we hypothesised that the basic-level advantage emerges 
from representational overlap of linguistic and sensorimotor informa
tion between a category and member concept. Extensive research on 
picture naming has shown that when participants see a picture of a dog 
(e.g., a Labrador, poodle or collie), they label it with the most frequent 
and earliest-acquired name: dog (e.g., Bates et al., 2003; Belke, Brys
baert, Meyer, & Ghyselinck, 2005). Since the most frequent, earliest- 
acquired name tends to be the basic-level label (Rosch, Mervis, et al., 
1976), we expected categorisation performance to be fastest and most 
accurate when the basic-level category label was presented before the 
picture (e.g., dog → [picture of a dog]). That is, the match between the 
presented category label (dog) and the common name automatically 
activated for the pictured object (dog) facilitates fast and accurate 
category verification. Simultaneously, the overlap between the senso
rimotor representation of the category referent (dog) and the pictured 
object (dog) also facilitates responding, but likely to a lesser extent 
because linguistic activation tends to operate faster than sensorimotor 

2 The present experiments were developed in parallel with a separate inves
tigation using the same measure of sensorimotor overlap between concepts 
(Banks et al., 2021); since both studies used this new measure at the same time, 
both reports can legitimately describe its use as novel. 
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activation (Barsalou et al., 2008; Connell, 2018). Any basic-level 
advantage would then depend on the extent of overlap in sensori
motor and linguistic distributional experience between the alternative 
category labels and the picture name. 

For example, when a category label (e.g., Labrador) is presented, it 
automatically activates a sensorimotor simulation of the referent (e.g., 
perceptual and action experience of a Labrador) and linguistic distri
butional neighbours of the label (e.g., words that appear in similar 
contexts to “Labrador”). Next, the picture is presented and is automat
ically labelled dog, which activates the linguistic distributional neigh
bours of dog and a more detailed sensorimotor simulation of the pictured 
dog. The more similar the sensorimotor experience and linguistic con
texts are between Labrador and dog, the more they facilitate fast and 
accurate category verification, and the closer their response latency and 
accuracy will be to the basic-level case (e.g., label dog → [picture of a 
dog]). On the other hand, the more distant the category label and picture 
are in sensorimotor and linguistic distributional experience (e.g., animal 
→ [picture of a dog]), the slower and more error-prone category verifi
cation will be. 

Specifically, we predicted that both sensorimotor and linguistic 
distributional information would inform categorisation, and that lin
guistic distributional information would contribute above and beyond 
sensorimotor information alone. We also predicted that continuous 
sensorimotor and/or linguistic distributional variables would explain 
categorisation performance (RT and accuracy) better than traditional 
accounts of the basic-level advantage, which are based on discrete levels 
in a taxonomic hierarchy (i.e., subordinate, basic, superordinate). 

2.1. Method 

2.1.1. Participants 
Thirty native speakers of English (23 female; Mage = 22 years, SD =

3.69) were recruited from Lancaster University in return for partial 
course credits or a sum of money (£3.50). We determined sample size via 
sequential hypothesis testing using Bayes Factors (Schönbrodt, Wagen
makers, Zehetleitner, & Perugini, 2017), which allows evidence for/ 
against the hypothesis to accumulate until a pre-specified threshold of 
evidence is reached, and thus enables flexible sampling without 
increasing Type 1 error. We stopped sampling at the minimum bound of 
Nmin = 30, when analysis A for RT (see Data Analysis) cleared the 
specified grade of evidence BF10 ≥ 3 (actual BF10 = 2043.09). This 
threshold indicated that a basic-level advantage could be detected in our 
data (i.e., categorical decisions were made faster when the displayed 
word label was at the basic level compared to the superordinate and 
subordinate levels). 

The preregistered accuracy threshold of 80% correct answers on 
fillers, established based on pilot testing, proved to be too strict and 
would have led to the exclusion of 12 participants. As a result, we 
decided to deviate from the preregistration and lower this threshold to 
70%; one participant did not pass this new threshold and was replaced. 

2.1.2. Materials 
Test items consisted of 216 label → picture items, comprising 72 

target pictures (depicting natural objects and artefacts in full colour), 
each of which was paired with three labels that correctly described it at 
the subordinate, basic and superordinate level (e.g., the picture of a 
Labrador was paired with labels animal, dog and Labrador, respectively). 
We sourced all pictures through online image search, ensuring they were 
labelled for reuse with modification and had a minimum size of 1024 ×
768 pixels. We edited all pictures to display only target objects on a 
white background (see examples in Fig. 1). All images and labels may be 
found on OSF (https://osf.io/8cjrm). 

All 72 subordinate labels were uniquely paired with pictures (e.g., 
label Labrador → picture Labrador), and 24 basic-level categories were 
paired with three different images (e.g., label dog → pictures Labrador, 
collie, and poodle). Finally, these 24 basic-level categories were grouped 

into superordinate categories at 2–7 members apiece, meaning that nine 
superordinate labels were paired with each between 6 and 21 different 
pictures (e.g., label animal → pictures Labrador, collie, poodle, chim
panzee, gorilla, orangutan, etc.). We ensured that all labels were present 
in Lynott et al. (2020) sensorimotor norms to allow for the calculation of 
sensorimotor distances (see Design and Analysis). Finally, we divided all 
216 test items into three stimulus lists of 72 items, where each list 
featured 24 subordinate, 24 basic and 24 superordinate labels and 
included each picture only once.3 

Filler items consisted of 116 label → picture pairs, containing similar 
object pictures and labels to test items. Of these, 71 false fillers were seen 
by all participants, and featured 23 superordinate (e.g., label “publica
tion” → picture eggplant), 24 basic-level (e.g., label “horse” → picture 
zebra) and 24 subordinate (e.g., label “anchovy” → picture sunglasses) 
labels. Forty-one of these fillers were easily recognisable as false (i.e., 
pictured object clearly unrelated to the label e.g., label “frog” → picture 
shamrock) and thirty were more challenging (i.e., pictured object 
belonged to the same superordinate category as the label, e.g., label 
“cow” → picture buffalo). A further 11 unique filler items were added to 
each stimulus list, featuring labels that appeared once among the items 
of that list, to ensure that repeated labels among test items could not cue 
participants to respond “yes” to category membership (e.g., the label 
“animal” appears in multiple true test items). Of these fillers, five were 
superordinate (3 true; 2 false) and six were basic-level (3 true; 3 false). 
Finally, to balance the true/false proportion per category type, we added 
12 fillers that were the same for all lists, with unique subordinate labels 
(6 true; 6 false). As a result, the final stimulus lists each contained 166 
label → picture pairs, divided evenly between true and false (72 true test 
items, 11 true fillers and 83 false fillers). 

2.1.3. Procedure 
Participants sat in front of a computer with a keyboard. They were 

told they would see a series of word-picture pairs where the word rep
resented a category and the picture a potential member of that category. 
They were asked to press YES (z-key on the keyboard) when the picture 
showed a valid category member and NO (m-key) when it did not. Trials 
were presented on a white background, using PsychoPy (version 1.84.1; 
Peirce, 2007). Each trial began with a blank screen displayed for 200 ms 
followed by a fixation cross for 300 ms, the label (centred, black 
lowercase Arial, 52 px) for 1000 ms, another blank screen for 200 ms, a 
fixation cross for 300 ms, and the picture which remained onscreen until 
a response key was pressed (see Fig. 2). Response times were measured 
from the onset of the picture to the onset of a valid keypress, and ac
curacy of each decision was also recorded. Participants were randomly 
assigned to a stimulus list. Test and filler items appeared in random 
order with a self-paced break every 60 trials. Testing took approximately 
20 min, including informed consent and debriefing. 

2.1.4. Ethics and consent 
The study received ethical approval from the Lancaster University 

Faculty of Science and Technology Research Ethics Committee (ethics 
code: FST17003). All participants read information detailing the pur
pose and expectations of the study before giving informed consent to 
take part. Consent included agreement to share publicly all alpha
numeric data in anonymised form. 

2.1.5. Critical predictors 
As well as a specified taxonomic level (subordinate, basic, superor

dinate), each label → picture test item had an associated value in two 

3 We retrieved Zipf log word frequencies (van Heuven et al., 2014) for all 
labels except “sports shirt”. Average word frequency was lowest for subordinate 
level labels (M = 3.10, SD = 0.71) followed by basic-level (M = 4.57, SD =
0.54) and superordinate-level labels (M = 4.61, SD = 0.44). Item-level word 
frequencies may be found in the supplementals on OSF. 
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critical predictors that captured the overlap in sensorimotor and lin
guistic distributional experience between category concept and member 
concept. 

2.1.5.1. Linguistic distance. Using a subtitle corpus consisting of 200 
million words in British English (see van Heuven, Mandera, Keuleers, & 

Brysbaert, 2014), we calculated log co-occurrence frequencies around 
each word with a context radius of five. Each word in the corpus was 

Fig. 1. Examples of “dog”, “flower” and “car” stimuli used in Experiment 1 and 2.  

Fig. 2. Trial structure diagram showing trial timings and stimuli as they appeared to participants.  
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represented as a vector of log co-occurrence frequencies,4 allowing us to 
compare two words by calculating the cosine distance between their 
vectors (i.e., 1 – cos (θ (u,v)). For example, the words dog and animal 
generally appear in relatively similar contexts across language, therefore 
distance between their vectors in linguistic space is smaller (distance =
0.23) than that between two words that appear in very different con
texts, such as dog and spaghetti (distance = 0.46). 

Previous research suggests that pictures tend to be implicitly named 
with the most frequent, earliest-acquired word (e.g., Bates et al., 2003; 
Belke et al., 2005), which is usually the basic level (e.g., Rosch, Mervis, 
et al., 1976). In this experiment, we based our calculations on this 
assumption (i.e., we used the basic label dog as the name for all three 
pictures of dogs, regardless of whether it contained a Labrador, collie, or 
poodle). As a result, the corresponding linguistic distance for basic-level 
label → picture items was always zero (e.g., dog → dog distance = 0), and 
the ability of linguistic distance to predict categorisation performance 
depended on the presence of a systematic relationship between our 
dependent variables (i.e., RT, accuracy) and the linguistic distances of 
superordinate (e.g., animal → dog) and subordinate items (e.g., Labrador 
→ dog). While this approach assumes which word label will be implicitly 
activated by a picture, it ensured fair comparison with the taxonomic 
category predictors, in which the basic-level category took the reference 
level of 0 in the dummy coding of sub- and superordinate categories (see 
data analysis). The final linguistic distance measure for each label → 
picture pair ranged in theory from − 1 to +1 (actual range = [0.00, 
0.83], M = 0.25, SD = 0.21), with higher values indicating greater 
distance in linguistic space (i.e., less overlap in the linguistic distribu
tional experience of each word). 

2.1.5.2. Sensorimotor distance. To compare how two concepts over
lapped in terms of sensorimotor experience, we took the novel approach 
of calculating sensorimotor distance based on multidimensional ratings 
of sensorimotor strength. We used Lynott et al. (2020) sensorimotor 
norms for 40,000 concepts, in which people rated the extent to which 
they experienced a particular concept via six perceptual modalities 
(auditory, gustatory, haptic, interoceptive, olfactory, visual) and by 
performing an action with five action effectors (foot, hand, head, mouth, 
torso), where each dimension was separately rated on a scale from 0 (not 
at all) to 5 (greatly). Each concept was therefore represented by an 11- 
dimensional vector of grounded sensorimotor experience, allowing us to 
compare two words by calculating the cosine distance between their 
vectors (as for linguistic distance); see Wingfield and Connell (2022b). 
For example, sensorimotor experience of dog and animal is more similar 
than sensorimotor experience of dog and spaghetti, which is captured by 
a smaller cosine distance between vectors of sensorimotor experience in 
the former (0.01) compared to the latter (0.24) example. As for linguistic 
distance (see above), we calculated sensorimotor distance between 
sensorimotor vectors for the category label at various taxonomic levels 
(e.g., Labrador, dog, animal) and the name we assumed would be 
implicitly associated with the image (e.g., basic-level dog). 

The final sensorimotor distance measure for each label → picture 
pair ranged in theory from − 1 to +1 (actual range [0.00, 0.29], M =
0.03, SD = 0.05), with higher values indicating greater distance in 
sensorimotor space (i.e., less overlap in the sensorimotor experience of 
each concept). Linguistic and sensorimotor distance measures were 
moderately correlated, r = 0.38 (14.4% shared variance). 

2.1.6. Data analysis 
We planned three sets of analyses to test our hypotheses. All analyses 

were run in R (version 4.1.0: R Core Team, 2021) with main packages 
lme4 (version 1.1–27.1; D. Bates, Maechler, Bolker, & Walker, 2015), 
lmertest (version 3.1–3; Kuznetsova, Brockhoff, & Christensen, 2017) 
MuMIn (version 1.43.17; Bartoń, 2020) and emmeans (version 1.7.0; 
van Lenth, 2021). A full list of packages used is included in the sup
plemental materials on OSF. 

Analysis A tested whether a classic basic-level advantage could be 
distinguished in the data. We ran a mixed effects linear regression of RT 
(correct trials only) with crossed random effects of participants and 
items, and fixed effects of taxonomic level (dummy coded as superor
dinate and subordinate variables with basic as the reference level). We 
also ran a mixed effects logistic regression (binomial, logit link) of ac
curacy (incorrect = 0, correct =1; all trials included), with crossed 
random effects of participants and items, and fixed effects of taxonomic 
level (coded as above). For both analyses, we used Bayesian model 
comparisons (Bayes Factors calculated from BIC; Wagenmakers, 2007) 
to test whether the data favoured a model containing the above fixed 
effects over a null model containing only random effects. 

Analysis B tested whether variance in RT and accuracy could be 
explained by sensorimotor and linguistic distance. Model comparisons 
tested whether the data favoured a model containing both sensorimotor 
and linguistic fixed effects over a model containing only a sensorimotor 
fixed effect. Although not specified in the preregistered analysis plan 
due to an error of omission, we also tested whether the data favoured a 
model with only sensorimotor distance over a null model containing 
only random effects (i.e., reflecting our preregistered hypothesis that 
sensorimotor distance contributes to categorical decision making). 

Finally, Analysis C tested whether RT and accuracy were best 
explained by traditional taxonomic levels or by sensorimotor-linguistic 
information. In non-nested model comparisons, we tested whether the 
data favoured the best-fitting sensorimotor-linguistic model from 
Analysis B over the taxonomic model from Analysis A. Linear models of 
RT and logistic models of accuracy were compared separately. 

For each analysis, we report the coefficients and null hypothesis 
significance testing (NHST) statistics of fixed effects in the best-fitting 
model. 

2.2. Results and discussion 

We removed as outliers 55 trials from the RT analysis (2.81% of 1960 
correct responses) and 63 trials from the accuracy analysis (2.92% of 
2160 responses) that had RTs >2.5SD from the participant’s mean. 
Table 1 shows results of all model comparisons. On average, participants 

Table 1 
Model comparisons for linear mixed effect regressions of RT and logistic mixed 
effects regressions of accuracy in Experiment 1a showing change in R2 for nested 
comparisons and Bayes Factors for all comparisons.  

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10  

Null model (random 
effects) 

0.264 – 0.270 – 

A Taxonomic levels vs. null 0.012 2043.09 0.065 49,457.64 
B Sensorimotor distance vs. 

null 
0.011 9521.33 0.016 12.66  

Sensorimotor + Linguistic 
distance vs. null 

0.012 391.87 0.041 300.29  

Sensorimotor + Linguistic 
distance vs. Sensorimotor- 
only 

0.001 0.04 0.025 23.72 

C Best Sensorimotor- 
Linguistic model vs. 
taxonomic levels. 

– 4.66 – 0.01 

Note: We report conditional model R2 for the null model. For all other models, 
we report marginal (fixed effects only) model R2 (see, Nakagawa & Schielzeth, 
2013). Note that marginal R2 values are estimates reported only for information 
and are not used for inferencing. 

4 For modelling performance in tasks of high conceptual complexity, the use 
of count-vector (e.g., log co-occurrence) models trained on high-quality corpora 
is recommended over the use of more complex predict models (e.g., skip-gram) 
or simpler n-gram models: see Wingfield and Connell (2022a) for a systematic 
review and analysis. 
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took 764 ms (SD = 317 ms) to respond. 

2.2.1. Taxonomic levels 
Bayesian model comparisons in Analysis A showed very strong evi

dence for models containing taxonomic levels over a null model con
taining only random effects of participant and item on participants’ RT 
(BF10 = 2043.09) and accuracy (BF10 = 49,457.64). In RT, catego
risation decisions made at the subordinate level were 37 ms slower than 
at the basic level [unstandardised b = 36.99, 95% CI = ±29.41, t 
(1822.17) = 2.46, p = .014]. Furthermore, categorisation decisions at 
the superordinate level were 84 ms slower than at the basic level [b =
83.81, 95% CI = ±29.68, t(1828.05) = 5.53, p < .001]. Accuracy was 
overall high. Participants were most likely to answer correctly when an 
image was preceded by a label at the basic level (predicted probability of 
a correct answer = 97.7%). Compared to the basic level, participants 
were 2.74 times more likely to respond incorrectly when an image was 
labelled at the subordinate level, [b = − 1.01, 95% CI = ±0.45, z =
− 4.37, p < .001] (predicted probability of a correct answer = 93.9%). 
Finally, participants were up to 3.71 times more likely to respond 
incorrectly at the superordinate level [b = − 1.31, 95% CI = ±0.44, z =
− 5.83, p < .001] (predicted probability of a correct answer = 91.8%) 
than at the basic level. Our data thus replicate the classic basic-level 
advantage in categorisation.5 

2.2.2. Sensorimotor-linguistic predictors 
In RT, Analysis B model comparisons showed very strong evidence 

for the effect of sensorimotor distance over a null model containing only 
random effects (BF10 = 9521.33). While a model containing both 
sensorimotor and linguistic distance was also better than the null (BF10 
= 391.87), model comparisons indicated strong evidence against the 
inclusion of linguistic distance in RT models (i.e., the data were BF01 =

24.30 times more likely under a model containing only sensorimotor 
distance compared to a model containing both sensorimotor and lin
guistic distances). Hence, the best sensorimotor-linguistic model of RT 
was sensorimotor distance alone, where RT increased with sensorimotor 
distance (unstandardised b = 722.97, 95% CI = ±277.49, t(1690.37) =
5.11, p < .001), by up to 210 ms.6 

In accuracy, there was positive evidence for the effect of sensori
motor distance alone (BF10 = 12.66), but also very strong evidence for 
the inclusion of linguistic distance alongside sensorimotor distance 
(BF10 = 300.29). Hence, the best sensorimotor-linguistic model of ac
curacy included both sensorimotor and linguistic distance. Coefficients 
showed that participants were more likely to respond incorrectly as 
sensorimotor distance increased (unstandardised b = − 3.51, 95% CI =
±3.21, z = − 2.15, p = .031) and as linguistic distance increased (b =
− 1.63, 95% CI = ±0.82, z = − 3.87, p < .001) between categories and 
member concepts. That is, participants were 2.77 times more prone to 
error for items at the greatest sensorimotor distance (0.29) than for 
items at the smallest sensorimotor distance (zero). Simultaneously, for 
items at the greatest linguistic distance (0.83) participants were 4.66 
times6 more prone to error than for items at the smallest linguistic 

distance (zero). 
As predicted, sensorimotor and linguistic distributional information 

contribute to categorical decision making. Overlap in sensorimotor 
experience between category concept and member concept (e.g., be
tween animal and Labrador) facilitates categorisation RT and accuracy. 
Similarly, overlap in linguistic experience between the distributional 
patterns of category and member label also facilitates categorisation 
accuracy; however, categorisation RT was not influenced by linguistic 
distance. 

2.2.3. Best model 
Analysis C showed mixed results as to whether the taxonomic or 

sensorimotor-linguistic model best explained the data. As predicted, we 
found positive evidence that sensorimotor distance was BF10 = 4.66 
times better than taxonomic levels in predicting RT. By contrast, and 
contrary to predictions, there was strong evidence that taxonomic levels 
were BF01 = 164.70 times better than sensorimotor and linguistic dis
tance at predicting accuracy. Fig. 3 shows comparisons for each 
experiment. 

2.2.4. Summary 
Overall, while both sensorimotor and linguistic distributional infor

mation contribute to categorical decision making, they did not system
atically do better than a taxonomic hierarchy of subordinate, basic, and 
superordinate levels. That is, sensorimotor information did predict 
response times best, but taxonomic level predicted accuracy best. We 
address a possible cause in the next experiment. 

3. Experiment 1b: modelling categorical gradedness in the 
basic-level advantage 

In experiment 1a, we assumed all pictures to be implicitly named at 
the basic level. However, categories can be graded in terms of the 
“goodness” of membership – that is, how members range in typicality of 
their respective categories – and such categorical gradedness affects 
category processing and production (Armstrong, Gleitman, & Gleitman, 
1983; Rips, Shoben, & Smith, 1973; Rosch, 1973; Rosch & Mervis, 1975; 
Rosch, Mervis, et al., 1976; Rosch, Simpson, & Miller, 1976; Smith et al., 
1974). That is, categorising typical items that are representative of their 
category (e.g., sparrow, for the category bird) tends to be faster than 
categorising atypical items that are less representative of their category 
(e.g., penguin). However, atypical members tend to be named at the 
specific, subordinate level rather than at the more general basic level (e. 
g., a picture of a penguin is more likely to be named penguin rather than 
bird: Rosch, Mervis, et al., 1976; Snodgrass & Vanderwart, 1980). Joli
coeur et al. (1984) interpreted this finding to mean that the subordinate 
level, rather than the basic level, acts as the entry point into the taxo
nomic hierarchy of semantic memory for atypical category members. 
Alternatively, differentiation accounts proposed that a picture of an 
atypical bird, like a penguin, is more easily categorised at the subordinate 
level of penguin because its features are better matched at this specific 
level (i.e., the subordinate level is maximally informative and distinc
tive) compared to more general levels like bird or animal (Murphy & 
Brownell, 1985). In both accounts, categorisation of typical category 
members would therefore show the traditional basic-level advantage (i. 
e., basic level faster and more accurate than subordinate and superor
dinate levels), but categorisation of atypical members would show a 
different pattern (i.e., subordinate level faster and more accurate than 
basic level, followed by superordinate level). 

If it is indeed the case that less-representative category members are 
implicitly named at the specific, subordinate level, then it also affects 
how sensorimotor and linguistic information should be operationalized. 
In the previous experiment, we calculated sensorimotor and linguistic 
distance from the category name to the basic-level label of the pictured 
object. For example, in the item animal → picture of poodle, we assumed 
the picture would be implicitly labelled as the basic-level dog, hence we 

5 Some subordinate-level labels incorporated the basic-level name (e.g., 
steamboat incorporates boat), which one might argue could lead participants to 
process them more quickly and thus suppress the basic-level advantage over the 
subordinate level. To check this possibility, we ran an exploratory analysis 
without these items. Results showed a classic basic-level advantage in accuracy 
but a reduced advantage of the basic-level over the subordinate level in RT, 
meaning that such items are not responsible for the relatively smaller distinc
tion we observed between basic and subordinate levels. We thank an anony
mous reviewer for suggesting this analysis. All data, analyses and results for 
exploratory analyses may be found on OSF: https://osf.io/8cjrm.  

6 This value reflects the change in the dependent variable at the maximum 
sensorimotor (0.29) or linguistic (0.83) distance between categories and 
members in our dataset, calculated as a proportion of the beta coefficient (e.g., 
0.29*722.97 = 209.66). 
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calculated distances from animal → dog. However, for less- 
representative category members, sensorimotor and linguistic distance 
should instead be calculated from the category name to the subordinate 
label. If a poodle is a less-representative type of dog, then its picture 
would be implicitly labelled as poodle, and the item animal → picture of 
poodle should have distances calculated from animal → poodle. Since 
previous work has shown a close relationship between typicality and 
overlap of linguistic distributional experience (e.g., Connell & Ramscar, 
2001), we opted to implement an internally-consistent adjustment for 
categorical gradedness by using linguistic distance to determine 
whether a member concept should be considered a good or poor 
example of its category. Member concepts close to their category 
concept (e.g., salmon and fish appear in very similar linguistic contexts, 
and have a cosine distance of 0.28) were considered good, highly- 
representative category members whose pictures would activate basic- 
level labels and corresponding sensorimotor information, whereas 

member concepts that were distant from their category concept (e.g., 
sailfish and fish appear in rather different linguistic contexts, with a 
cosine distance of 0.67) were considered poor/less-representative 
members that would activate subordinate labels and corresponding 
sensorimotor information. With this adjustment for categorical grad
edness in place, we could characterise as before the representational 
overlap of linguistic and sensorimotor information between a category 
and member concept. 

Hence, in this study (data, analysis code, results, and preregistration 
available at https://osf.io/8cjrm, we collected traditional typicality 
ratings for each of our subordinate-level stimuli as a member of its basic- 
level category (e.g., typicality of sailfish as a fish) and examined its in
fluence on categorical decision making using the dataset from Experi
ment 1a. In line with previous research (e.g., Jolicoeur et al., 1984; 
Murphy & Brownell, 1985), we expected object typicality to enhance the 
ability of traditional taxonomic accounts to explain the basic-level 

Fig. 3. Log (ln) Bayes Factors for the best sensorimotor-linguistic model versus taxonomic levels for each experiment and dependent variable (Panel A), and relative 
contribution of sensorimotor and linguistic distributional information to the best-fitting sensorimotor-linguistic model, calculated from standardised regression 
coefficients (Panel B). 
Note: Red dotted line indicates Bayes Factor threshold set for each experiment; evidence falling between dotted lines is equivocal. 
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advantage in categorisation, and to interact with subordinate taxonomic 
level so that typical items would show a basic-level advantage but 
atypical items would show a subordinate-level advantage. From the 
sensorimotor-linguistic perspective, we also hypothesised that linguistic 
distributional information would capture the graded structure of cate
gories, whereby linguistic distance would correlate negatively with 
traditional typicality ratings (i.e., less typical = greater linguistic dis
tance between category and member concept). Using gradedness- 
adjusted measures of sensorimotor and linguistic distance, we pre
dicted – as before – that linguistic distance would predict categorisation 
performance above and beyond sensorimotor distance (i.e., greater 
category-member distance results in slower RT and poorer accuracy in 
categorical decision) and that the best sensorimotor/linguistic model 
would outperform the taxonomic-typicality model. 

3.1. Method 

3.1.1. Materials & dependent measures 
We used the categorical decision dataset from Experiment 1a, with 

new predictors as outlined below. 

3.1.2. Critical predictors 
As well as a specified taxonomic level (subordinate, basic, superor

dinate), each label → picture test item had an associated traditional 
typicality rating of the pictured object as a member of its basic-level 
category. In addition, each label → picture test item had a gradedness- 
adjusted measure that captured the overlap in sensorimotor and lin
guistic distributional experience between category concept and member 
concept (see below for details). 

3.1.2.1. Traditional typicality ratings. We retrieved typicality ratings 
from naïve participants (all native speakers of English) for each of the 72 
test items that comprised a basic-subordinate concept pair (e.g., fish- 
salmon). These ratings were collected in a larger study collecting typi
cality ratings for 2280 category-member items, where items were 
divided into lists of 120 items each (Banks and Connell, 2022a); the 
present 72 category-member items were randomly spread across these 
lists. Participants rated how good an example of the basic-level category 
(e.g., fish) they thought each subordinate category member (e.g., 
salmon) to be, on a scale from 1 (very poor) to 5 (very good); alterna
tively, they could select a “don’t know” option if they were not familiar 
with the category or member concept in question. Consequently, if a 
participant gave a rating, they were indicating that they were suffi
ciently familiar with the concept to do so. Data collection stopped when 
every item had 12 valid ratings. We then calculated the average typi
cality rating per category member and used this typicality rating on 
every label → picture trial where it was presented (e.g., all trials with a 
salmon picture used the typicality rating for salmon as a kind of fish). 
Mean typicality rating across all items was 4.53 (SD = 0.36, range =
[3.42, 5.00]). 

3.1.2.2. Gradedness-adjusted linguistic and sensorimotor distance. For the 
calculation of linguistic distance in Experiment 1a, we assumed that all 
pictured objects were implicitly named at the basic level (i.e., we used 
the basic label fish as the name for all three pictures of fish). To incor
porate categorical gradedness into linguistic and sensorimotor distance, 
where pictures of less-representative category members would instead 
be implicitly named at the subordinate level (e.g., using the specific 
label sailfish as the name for the picture of a sailfish), we used the data to 
determine the tipping point of linguistic distance that distinguished 
good from less-representative category members. We first examined the 
distribution of linguistic distance between all 72 subordinate member 
concepts and their basic-level category concept (e.g., fish → sailfish, fish 
→ salmon) and visually established 10 potential thresholds beyond 
which we assumed member concepts to be less representative of their 

category. We then replaced the linguistic distances of all items that fell 
beyond each threshold with those calculated using the subordinate 
name as the picture label. For instance, if the linguistic distance for fish 
→ sailfish exceeded the threshold, we replaced all linguistic distances of 
sailfish trials (originally calculated as animal → fish, fish → fish, sailfish → 
fish) with their gradedness-adjusted linguistic distances (i.e., animal → 
sailfish, fish → sailfish, sailfish → sailfish). For these same items, we 
likewise replaced the original sensorimotor distances with their 
gradedness-adjusted sensorimotor distance. 

Finally, we examined which threshold was best supported by the 
data by running mixed effect regressions of RT per candidate threshold, 
with random effects of participant and item and fixed effects of 
gradedness-adjusted sensorimotor and linguistic distances. Model com
parisons showed that the best-fitting model was based on a gradedness- 
adjusted linguistic distance threshold of 0.33, and that the data favoured 
this model BF10 = 1908.20 times more strongly than the original model 
used in Experiment 1a. In short, a linguistic distance of 0.33 acted as a 
tipping point between highly representative category members (N = 23) 
that were implicitly named at the basic level and less-representative 
category members (N = 49) that were implicitly named as the spe
cific, subordinate level. We therefore used these optimal gradedness- 
adjusted linguistic and sensorimotor distances in subsequent analyses. 
Gradedness-adjusted linguistic distance (M = 0.30, SD = 0.25, range =
[0, 0.83]) and sensorimotor distance (M = 0.04, SD = 0.05, range = [0, 
0.29]) were moderately correlated at r = 0.53 (i.e., 28.30% shared 
variance). 

3.1.3. Data analysis 
Five sets of analyses were planned to test our hypotheses: two to test 

the predictions of traditional taxonomic accounts of the basic-level 
advantage, and three to test the sensorimotor-linguistic account. Anal
ysis A tested whether including traditional item typicality would predict 
categorical decision RT and accuracy better than taxonomic information 
alone. RT (correct trials only) and Accuracy (all trials) were analysed 
using the model specifications of Analysis A in Experiment 1a, with an 
additional fixed effect of typicality (variable centred). Bayesian model 
comparisons tested whether the data favoured random effects only, 
taxonomic level, or taxonomic level and typicality. Analysis B tested 
whether categorisation at the subordinate versus basic level differed for 
typical and atypical category members. RT and accuracy were analysed 
as per Analysis A, with the additional fixed effect of interaction between 
typicality and subordinate taxonomic level (i.e., where basic level is 
coded as the reference level). Model comparisons tested whether the 
data favoured this interaction model over the final model of Analysis A. 

To test our sensorimotor-linguistic predictions, Analysis C investi
gated if linguistic distance and typicality ratings were correlated, using a 
Bayesian correlation analysis in JASP (version 0.9.2: JASP Team, 2019) 
with default beta prior width = 1 and a directional hypothesis of 
negative correlation (i.e., higher distance = less typical). Analysis D 
examined whether variance in RT and accuracy could be explained by 
gradedness-adjusted sensorimotor and linguistic distance. Model com
parisons tested whether the data favoured a model containing sensori
motor distance alone, or a model containing the additional fixed effect of 
linguistic distance. Finally, in Analysis E, we investigated whether RT 
and accuracy were best explained by traditional taxonomic-typicality 
information or by sensorimotor-linguistic information. Therefore, in 
analysis E, Bayesian model comparisons determined whether our data 
favoured the best-performing taxonomic-typicality model from analysis 
B or the best-performing sensorimotor-linguistic model from analysis D. 

3.2. Results and discussion 

Outlier trials were already removed from the dataset in Experiment 
1a. In addition, we removed one item (gavel) from both the RT (21 out of 
1905 trials, 1.10%) and accuracy (28 out of 2097 trials, 1.33%) data 
because it had an exceptionally low typicality rating (2.2 on a 1–5 scale) 
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that made it an outlier more than five standard deviations below the 
mean item typicality (M = 4.53, SD = 0.45). While removing this item 
deviated from the preregistered analysis plan, we felt it was necessary to 
avoid compromising the robustness of our analyses. Removing responses 
to this item slightly reduced overall mean RT compared to Experiment 
1a (M = 762 ms, SD = 314 ms). The classic basic-level advantage 
remained intact with this item excluded: there was very strong evidence 
for including taxonomic levels in analysis of both RT (BF10 = 10,707.19) 
and accuracy (BF10 = 82,356.36). Categorisation at the basic level was 
faster than at subordinate [unstandardized b = 42.11, 95% CI =±29.32, 
t (1803.90) = 2.81, p = .005] and superordinate levels [b = 88.15, 95% 
CI = ±29.61, t (1809.75) = 5.83, p < .001]. Similarly, accuracy was 
greatest at the basic level, followed by subordinate [b = − 1.05, 95% CI 
= ±0.47, z = − 4.43, p < .001] and superordinate [b = − 1.36, 95% CI =
±0.45, z = − 5.87, p < .001] levels.7 

Table 2 shows model comparisons for analyses A, B, D and E. 

3.2.1. Taxonomic levels and traditional typicality 
In Analysis A, model comparisons showed evidence against adding 

typicality ratings to a model containing taxonomic levels. In RT analysis, 
the data strongly favoured the taxonomic-only model (BF01 = 40.20) 
and typicality had very little effect [b = 9.48, 95% CI = ±47.36, t 
(75.05) = 0.39, p = .700]. In accuracy analysis, the data again favoured 
the taxonomic-only model (BF01 = 11.29), with typicality weakly 
trending in the predicted direction [b = 0.59, 95% CI =±0.66, z = 1.76, 
p = .080]. In short, typicality ratings did not affect overall categorisation 
performance in our data, contrary to predictions of some traditional 
accounts (e.g., Rosch, 1973; Rosch & Mervis, 1975; Rosch, Simpson, & 
Miller, 1976). 

3.2.2. Interaction of traditional typicality with taxonomic level 
Analysis B model comparisons showed strong evidence against an 

interaction between typicality and subordinate taxonomic level. In 
analysis of RT, the interaction had little effect [unstandardised b =
46.16, 95% CI = ±75.71, t(1812.60) = 1.19, p = .230], and data were 
BF01 = 21.26 times more likely under the model without an interaction. 
In analysis of accuracy, we also found strong evidence against adding the 
interaction between subordinate taxonomic level and typicality (BF01 =

39.24), where it had little effect on categorical decision [b = 0.25, 95% 
CI = ±0.88, z = 0.56, p = .570]. The best taxonomic-typicality model in 
this analysis therefore contained taxonomic levels and typicality ratings, 
but no interaction. Contrary to taxonomic accounts that hold typicality 
affects the basic-level advantage (Jolicoeur et al., 1984; Murphy & 
Brownell, 1985), we found no evidence that atypical items were pref
erentially categorised at the specific, subordinate level. Rather, all 
category members showed the traditional basic-level advantage where 
the basic level was faster and more accurate than subordinate and su
perordinate levels (but see general discussion). 

3.2.3. Linguistic distance and traditional typicality 
Analysis C found a negative correlation of r = − 0.176 between our 

original measure of linguistic distance (i.e., between subordinate items 
and their basic-level label) and average typicality ratings, with BF10 =

0.79 representing only an equivocal level of evidence. That is, linguistic 
distance did not decisively capture the graded structure of categories 
normally reflected in typicality ratings, where more atypical examples of 
a category were only weakly associated with greater linguistic distance 
(i.e., less overlap in linguistic contexts) between category and member 

concept. 

3.2.4. Gradedness-adjusted sensorimotor and linguistic distance 
In RT, Analysis D model comparisons showed very strong evidence 

for the effect of gradedness-adjusted sensorimotor distance over a null 
model of random effects, BF10 = 31,398,739.40. We found strong evi
dence against adding gradedness-adjusted linguistic distance to a model 
containing sensorimotor distance alone. That is, as we found for unad
justed distance measures in Experiment 1a, the data were BF01 = 15.13 
times more likely under a model containing only sensorimotor distance 
compared to a model containing both linguistic and sensorimotor dis
tance. In the best-fitting sensorimotor-only model, categorisation took 
up to 244.38 ms longer at the greatest gradedness-adjusted sensorimotor 
distance (0.29, reflecting the least overlap in sensorimotor experience) 

Table 2 
Model comparisons for linear mixed effect regressions of RT and logistic mixed 
effects regressions of accuracy in Experiment 1b showing change in conditional 
and marginal R2 for nested comparisons and Bayes Factors for all comparisons.  

Analysis Model 
comparison 

RT Accuracy 

ΔR2 BF10 ΔR2 BF10  

Null model 
(random effects) 

0.262 – 0.261 – 

A Taxonomic 
levels vs. null 

0.013 10,707.19 0.070 82,356.36  

Taxonomic 
levels +
Typicality vs. 
null 

0.013 266.36 0.079 7291.12  

Taxonomic 
levels +
Typicality vs. 
Taxonomic 
levels 

<0.001 0.02 <0.001 0.09 

B Taxonomic 
levels +
Typicality +
Interaction vs. 
null 

0.014 12.53 0.079 185.78  

Taxonomic 
levels +
Typicality +
Interaction vs. 
Taxonomic 
levels +
Typicality 

<0.001 0.05 <0.001 0.02 

D Graded 
Sensorimotor 
distance vs. null 

0.018 31,398,739.40 0.027 752.57  

Graded- 
Sensorimotor +
Graded- 
Linguistic 
distance vs. null 

0.017 2,075,342.90 0.033 133.21  

Graded- 
Sensorimotor +
Graded- 
Linguistic 
distance vs. 
Graded- 
Sensorimotor 
only 

<0.001 0.07 0.005 0.18 

E Best Graded 
Sensorimotor- 
Linguistic model 
vs. best 
Taxonomic- 
Typicality 
model 

– 118,155.82 – 0.10 

Note: We report conditional model R2 for the null model. For all other models, 
we report change in marginal (fixed effects only) model R2 (see Nakagawa & 
Schielzeth, 2013). Note that marginal R2 values are estimates reported only for 
information and are not used for inferencing. 

7 Full coefficient statistics for all models including and excluding the gavel 
item are included in supplementals (see also Appendix A). In brief, analysis 
including this outlier item did not affect inferences based on Bayesian model 
comparisons, but it did create a weak but significant coefficient effect of typi
cality in Analysis B that disappeared when the item was excluded, which sug
gested we were correct to remove it. 
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than for items at the smallest sensorimotor distance (zero), [unstan
dardised b = 842.68, 95% CI = ±235.21, t(1532.40) = 6.52, p < .001]. 

In accuracy analysis, we again found very strong evidence for the 
effect of gradedness-adjusted sensorimotor distance over a null model, 
BF10 = 752.52. However – and unlike Experiment 1a– we also found 
evidence against the inclusion of gradedness-adjusted linguistic distance, 
whereby the data favoured the model containing sensorimotor distance 
alone (BF01 = 5.65). Hence, as for RT, the best gradedness-adjusted 
sensorimotor-linguistic model of accuracy was sensorimotor distance 
alone, where the greatest distance made errors up to 6.90 times more 
likely than the shortest distance [b = − 6.66, 95% CI = ±2.70, z =
− 4.82, p < .001]. 

3.2.5. Best model 
In analysis E, results followed the mixed pattern of Experiment 1a 

regarding whether the data were more likely under a model using 
traditional taxonomic levels with typicality ratings or sensorimotor/ 
linguistic distance (see Fig. 3). As predicted, Bayesian model compari
sons between the best-performing models from analyses B and D found 
very strong evidence that gradedness-adjusted sensorimotor distance 
was BF10 = 118,155.82 times better at predicting RT than a model 
containing taxonomic levels and traditional typicality. However, against 
predictions but consistent with Experiment 1a, there was evidence that 
the taxonomic-typicality model was BF01 = 9.69 times better (i.e., BF10 
= 0.10) at predicting accuracy than a model containing gradedness- 
adjusted sensorimotor distance.8 

3.2.6. Summary 
In this study, we examined whether accounting for categorical 

gradedness affected the ability of sensorimotor and linguistic distribu
tional information to contribute to categorical decision making, relative 
to traditional taxonomic levels. In contrast to our predictions, linguistic 
distributional information did not decisively capture the graded struc
ture of categories reflected in typicality ratings. While atypical member 
concepts were slightly more linguistically distant from their category 
concept (e.g., sweatpants and trousers overlap little in linguistic experi
ence) than member concepts that were good examples of their category 
(e.g., jeans and trousers overlap a lot in linguistic experience), the evi
dence for a systematic relationship was equivocal. 

Nevertheless, adjusting for categorical gradedness improved the 
predictive ability of sensorimotor and linguistic distance measures 
compared to the unadjusted measures of Experiment 1a. Gradedness- 
adjusted sensorimotor information contributed to categorical decision 
making, and outperformed traditional predictors of taxonomic levels 
and typicality in fitting RT (but not accuracy). Against our predictions, 
however, gradedness-adjusted linguistic distributional information was 
not an effective predictor of either RT or accuracy. That is, even though 
linguistic distance formed the basis for adjusting categorical gradedness, 
when these gradedness-adjusted measures are used, it appears that 
sensorimotor distance between the category and member concepts is 
more relevant to the time course and decision outcome than the lin
guistic distributional relationship between the category and member 
labels. That is, pictures of good, highly representative category members 
were implicitly named and processed at the basic level (e.g., fish → 
salmon processed as fish → fish) while pictures of less-representative 
category members were implicitly named and processed at the spe
cific, subordinate level (e.g., fish → sailfish processed as fish → sailfish), 

and in each case the sensorimotor overlap between the retrieved cate
gory and member concept affected latency and accuracy of performance. 

In addition, the analysis with typicality produced some unexpected 
results. Contrary to previous findings in the literature (Rosch & Mervis, 
1975; Rosch, Simpson, & Miller, 1976), a traditional measure of cate
gorical gradedness, typicality ratings, did not affect categorical de
cisions, nor did it impact on the basic-level advantage as predicted by 
the entry-level (Jolicoeur et al., 1984) and differentiation (Murphy & 
Brownell, 1985) accounts. Many of the least typical items in our dataset 
tended to be categorised at the basic rather than subordinate level (e.g., 
a picture of a fir was categorised as a tree more quickly and accurately 
than as a fir; a picture of a chalice was categorised as a cup more quickly 
and accurately than as a chalice) and many of the most typical items 
tended to be categorised at the subordinate level rather than basic (e.g., 
a picture of an eagle was categorised as an eagle more quickly and 
accurately than as a bird; a picture of a rose was categorised as a rose 
more quickly and accurately than as a flower). One possible explanation 
for the absence of typicality effects is that our items did not span a wide 
enough range of typicality ratings (i.e., range [3.42, 5.00] on a 1–5 
scale), and hence were not sufficiently atypical to trigger the mecha
nisms that should cause less-representative category members to be 
categorised at the subordinate rather than basic level. However, this 
explanation cannot account for the fact that categorical gradedness did 
affect categorisation when it was modelled via linguistic distance: 
gradedness-adjusted measures of sensorimotor and linguistic distribu
tional information outperformed the unadjusted measures used in 
Experiment 1a, and gradedness-adjusted sensorimotor distance out
performed taxonomic-typical models in predicting RT. Such a pattern of 
findings suggests that subjective typicality ratings may not be the best 
measure of the graded structure of categories, and that the goodness-of- 
membership may be better captured by an implicit measure derived 
from distributional patterns in language use. In the next experiments, we 
examine this possibility, and the robustness of our reported findings, via 
replication studies. 

4. Experiment 2a: replication of Experiment 1a 

To replicate the effects found in Experiment 1a (i.e., sensorimotor 
and linguistic distance predicted the basic level advantage in catego
risation, and outperformed taxonomic level as a predictor in RT but not 
accuracy), we set out to investigate the same hypotheses in a replication 
study run online (i.e., via a web-based experimental platform) rather 
than in the lab. Our predictions remained the same: we expected that 
sensorimotor and linguistic distributional information would inform 
categorisation, that linguistic distributional information would 
contribute above and beyond sensorimotor information alone, and that a 
combination of sensorimotor and/or linguistic distributional informa
tion would explain categorisation performance better than traditional 
taxonomic levels (i.e., subordinate, basic, superordinate). Preregistra
tion, data, analysis code, and results are available at https://osf. 
io/8cjrm. 

4.1. Method 

The method was identical to Experiment 1a with the following 
exceptions. 

4.1.1. Participants 
25 participants (21 female, Mage, 37.76, SD = 10.86) were recruited 

through Prolific.co (formerly Prolific.ac), an online crowdsourcing 
platform, for the sum of £1.75 (i.e., approx. £7 /hour pro rata for an 
assumed duration of 15 min). On average, participants took 12 min and 
44 s to complete the task (SD = 6 min and 18 s). Through Prolific’s 
recruitment filter settings, we ensured that all participants were native 
speakers of English, had no dyslexia, and had a minimum number of 10 
submissions with a Prolific approval rating of >95%. Participants were 

8 As an exploratory analysis, since typicality performed so poorly as a pre
dictor, we opted to compare the gradedness-adjusted sensorimotor distance 
model against the taxonomic-only model (i.e., without typicality ratings). Re
sults remained unchanged: sensorimotor distance was the best model of RT 
(BF10 = 2932.49 times better than the taxonomic model) and taxonomic levels 
were the best model of accuracy (BF01 = 109.43 times better than the senso
rimotor model). 
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required to achieve an accuracy threshold of 70% accuracy on filler 
items; no participants were removed for failing to reach this threshold. 

Sample size was determined through sequential hypothesis testing of 
analysis A as per Experiment 1a. Since we stopped sampling at our lower 
bound of N = 30 in Experiment 1a, we used sequential analysis of 
Experiment 1a’s data to determine the number of participants at which 
evidence for the basic-level advantage in RT began to consistently 
exceed our evidence threshold of BF10 ≥ 3, which occurred at N = 14 
(BF10 = 71.88). Several studies (Crump, McDonnell, & Gureckis, 2013; 
Hilbig, 2016; Semmelmann & Weigelt, 2017) suggest web-based data 
collection yields comparable results to lab-based testing, but may still be 
subject to noise. To allow for a higher level of noise in our dataset, we 
therefore set our present lower bound to be 50% higher at Nmin = 21 
and raised our threshold of evidence to a more conservative BF10 ≥ 10. 
Due to a technical error, an additional 4 participants above Nmin were 
tested before online recruitment automatically closed; we opted to 
include all tested participants in data analysis rather than arbitrarily 
exclude the final four. At 25 participants, the specified grade of evidence 
for the presence of a basic-level advantage in our data was comfortably 
cleared at BF10 = 14,847,327.02. 

4.1.2. Procedure 
The experiment ran on web-based platform Gorilla.sc (Anwyl-Irvine, 

Massonnié, Flitton, Kirkham, & Evershed, 2020), which handled both 
collection of informed consent and experimental data collection. Trial 
presentation was identical to Experiment 1a, except the font used to 
display labels was lowercase Open Sans. 

4.1.3. Ethics and consent 
The study received ethical approval from the Lancaster University 

Faculty of Science and Technology Research Ethics Committee (ethics 
code: FST17003). As well as the terms specified in Experiment 1a, par
ticipants consented to take part on condition that they passed a series of 
attention checks (i.e., 70% accuracy on filler items as per Experiment 
1a). 

4.1.4. Data analysis 
We repeated analyses A through C as specified in Experiment 1a. 

4.2. Results and discussion 

One participant had a very long tail of slow RTs, which indicated 
inattention, but was not otherwise excluded by the preregistered criteria 
for outlier removal. As a result, we decided to remove all trials with RT 
> 10,000 ms: 7 trials from the accuracy analysis and 2 trials from the RT 
analysis. We removed an additional 49 trials from the RT analysis and 57 
trials from the accuracy analysis for having RTs that were >2.5 SD from 
the participant’s mean. No responses were removed due to motor error. 
In total we thus removed 51 outliers from the RT analysis (3.07% of 
1663 correct responses) and 64 outliers from the accuracy analysis 
(3.55% of all 1800 responses). On average, participants took 811 ms (SD 
= 280 ms) to respond. 

Table 3 shows model comparisons for all analyses. 

4.2.1. Taxonomic levels 
Bayesian model comparisons for Analysis A showed very strong ev

idence for models containing taxonomic levels over models containing 
only random effects. In RT, categorisation at the subordinate [unstan
dardized b = 35.91, 95% CI = ±28.94, t(1528.67) = 2.43, p = .015] and 
superordinate [b = 105.85, 95% CI = ±30.09, t(1538.60) = 6.89, p <
.001] levels was slower than at the basic level. In contrast to the findings 
from Experiment 1a, the basic-level advantage did not appear in accu
racy. Compared to the basic level, participants were 4.57 times more 
likely to respond incorrectly at the superordinate level [b = − 1.52, 95% 
CI = ±0.53, z = − 5.67, p < .001], as expected. However, people were 
1.49 times more likely to respond correctly at the subordinate level than 

at the basic level (i.e., in the opposite direction to the predicted basic- 
level advantage), but with a small effect that in NHST terms was not 
significant [b = 0.41, 95% CI = ±0.69, z = 1.16, p = .245]. Predicted 
probabilities of a correct answer were highest at the subordinate-level at 
98.6%, followed by basic-level (97.9%) and finally the superordinate- 
level (91.2%). In other words, accuracy was approximately equal at 
the subordinate and basic levels, and worse at the superordinate level. 
The present study therefore largely but not completely replicates the 
classic basic level advantage. 

4.2.2. Sensorimotor-linguistic predictors 
In RT, Analysis B model comparisons showed overwhelming evi

dence for the effect of sensorimotor distance over the null model (BF10 
= 92,484,998.15), where RT increased by up to 271 ms for the largest 
sensorimotor distance compared to the smallest one [b = 935.20, 95% 
CI = ±272.66, t (1461.16) = 6.72, p < .001]. However, model com
parisons did not support an effect of linguistic distance above and 
beyond sensorimotor distance. Evidence for the sensorimotor-only 
model was BF01 = 3.50 times stronger than for the model including 
linguistic distance, which was below the specified threshold for this 
experiment (BF ≥ 10), and hence constitutes equivocal evidence against 
the inclusion of linguistic distance. We therefore conclude that the best 
sensorimotor-linguistic model of RT was most likely sensorimotor dis
tance alone (i.e., the candidate model with fewer parameters; replicating 
Experiment 1a) but acknowledge an additional effect of linguistic dis
tance may still be possible. In accuracy, there was positive evidence for 
the effect of sensorimotor distance alone, but this time – unlike Exper
iment 1a– there was strong evidence against the inclusion of linguistic 
distance alongside sensorimotor distance (BF01 = 39.49). That is, the 
best sensorimotor-linguistic model of accuracy was sensorimotor dis
tance alone. People were up to 15.47 times6 more likely to respond 
incorrectly as sensorimotor distance increased [b = − 9.44, 95% CI =
±3.58, z = − 5.17, p < .001]. 

As predicted, and replicating Experiment 1a, sensorimotor infor
mation contributes to categorical decision making. Overlap in sensori
motor experience between category and member concept facilitates 
categorisation RT and accuracy. However, contrary to what we pre
dicted, and not replicating the results from lab-based testing, we found 
no positive evidence for the effect of linguistic distributional 
information. 

Table 3 
Model comparisons for linear mixed effect regressions of RT and logistic mixed 
effects regressions of accuracy in Experiment 2a showing change in R2 for nested 
comparisons and Bayes Factors for all comparisons.  

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10  

Null model 
(random effects) 

0.197 – 0.262 – 

A Taxonomic levels 
vs. null 

0.024 14,847,327.02 0.129 9.81 ×
1010 

B Sensorimotor 
distance vs. null 

0.022 92,484,998.15 0.048 12,408.53  

Sensorimotor +
Linguistic distance 
vs. null 

0.024 26,398,821.53 0.049 314.23  

Sensorimotor +
Linguistic distance 
vs. Sensorimotor- 
only 

0.002 0.28 0.001 0.02 

C Best Sensorimotor- 
Linguistic model vs. 
taxonomic levels. 

– 6.23 – <0.01 

Note: We report conditional model R2 for the null model. For all other models, 
we report change in marginal (fixed effects only) model R2 (see, Nakagawa & 
Schielzeth, 2013). Note that marginal R2 values are estimates reported only for 
information and are not used for inferencing. 
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4.2.3. Best model 
Analysis C again showed mixed results as to which model best 

explained the data. Unlike Experiment 1a, where sensorimotor distance 
outperformed taxonomic levels in explaining RT, model comparisons in 
the present analysis showed they performed approximately equivalently 
(see Figs. 3 and 4). The data favoured the model with sensorimotor 
distance BF10 = 6.23 times more than the model including taxonomic 
levels, which was below the specified threshold for this experiment (BF 
≥ 10), and thus constitutes equivocal evidence. Model comparisons for 
accuracy showed overwhelming evidence that taxonomic levels were 
BF01 = 7,902,660.94 times better at fitting the data than sensorimotor 
distance, against predictions but replicating Experiment 1a. 

4.2.4. Summary 
These results are similar but not identical to the findings of Experi

ment 1a (see Figs. 3 and 4). Nevertheless, they provide further evidence 
for the effects of sensorimotor and linguistic distributional information 
on picture categorisation. When it comes to the time course of cate
gorical decision making, the overlap in sensorimotor experience be
tween the category and member concepts was at least as good as discrete 
taxonomic levels (i.e., subordinate vs. basic vs. superordinate) in pre
dicting performance. Linguistic distributional information might have a 
small effect on RT, but the evidence is equivocal. When it comes to the 
accuracy of categorical decisions, however, taxonomic levels outper
form the ability of sensorimotor information to predict performance. 
Crucially, the datasets for Experiments 1a and 2a yielded slightly 
different results (see Figs. 3 and 4). Specifically, contrasting the findings 
in Experiment 1a, linguistic distributional distance did not predict ac
curacy over sensorimotor distance. Moreover, the higher Bayes Factor 
threshold used in Experiment 2a meant that, while the overall pattern 
was similar to that observed in Experiment 1a (i.e., strongest evidence 
for the sensorimotor-only model) evidence for the sensorimotor over 
taxonomic model was in the equivocal zone (BF10 < 10). 

4.2.5. Experiment 2b 
As an exploratory analysis, we examined whether accounting for 

categorical gradedness (i.e., goodness of membership) affected model 
fit. We replicated the analysis of Experiment 1b on the Experiment 2a 
dataset by including measures of object typicality and gradedness- 
adjusted sensorimotor and linguistic distributional distance. A full 
description of the method, results and discussion may be found on 
OSF (https://osf.io/8cjrm) 

Results of this exploratory replication were similar but not identical 
to the findings of Experiment 1b (see Fig. 4). As previously found, 
although contrary to previous findings in the literature, typicality rat
ings did not affect categorical decisions (e.g., Rosch, Simpson, & Miller, 
1976) nor impact on the level of categorisation (i.e., where atypical 
members are categorised at the subordinate level: Jolicoeur et al., 1984; 
Murphy & Brownell, 1985). As predicted, however, gradedness-adjusted 
sensorimotor distance contributed to both RT and accuracy. Sensori
motor overlap between a category and member concept was a very 
strong predictor of categorical decision for “good” category members 
whose pictures were implicitly processed with high-frequency basic la
bels (e.g., fish → salmon processed as fish → fish) and less-representative 
category members whose pictures were implicitly processed with spe
cific labels (e.g., fish → sailfish processed as fish → sailfish). However, 
counter to our predictions, linguistic distance did not affect performance 
once sensorimotor distance had been taken into account. These findings 
are all consistent with Experiment 1b and show that categorical grad
edness – as modelled by linguistic distance but not typicality ratings – 
mediates the basic level advantage in categorical decision making. 

Different to Experiment 1b, however, was the best model. 
Gradedness-adjusted sensorimotor and taxonomic-typicality models 
performed equally well in explaining both accuracy and RT (see Fig. 4). 
When we dropped typicality from the taxonomic model due to its lack of 
effect, accuracy was explained equally well by taxonomic levels and 

sensorimotor distance (as opposed to taxonomic levels alone in Experi
ment 1b), while RT was best explained by taxonomic levels (as opposed 
to sensorimotor distance in Experiment 1b). Taken together, the results 
of exploratory Experiment 1a suggest that sensorimotor-linguistic in
formation (i.e., sensorimotor distance categorically graded by linguistic 
distance) predicts the basic level advantage about as well as discrete 
taxonomic levels, with the apparent primacy of one model over another 
varying by participant sample. 

5. Experiment 3: categorical gradedness from normed object 
names 

Experiments 1a and 2a were built on the assumption that images of 
objects would implicitly activate a basic-level name in participants, 
following research showing that participants most frequently use labels 
of intermediate abstraction when asked to name objects (Rosch, Mervis, 
et al., 1976; see also Murphy & Smith, 1982). However, as Experiments 
1b and 2b (see supplementary materials on OSF) show, participants’ 
categorisation behaviour may be better predicted by models that do not 
rigidly assume the implicit image name is always at the basic level, and 
adjustment for categorical gradedness is required to capture the fact that 
some images are named at a more specific, subordinate level. Further
more, picture naming research suggests that perfect name agreement (i. 
e., a single name given to an image by all participants) is rarely observed 
(e.g., only 24 out of 1468 items in the BOSS norms; Brodeur, Dionne- 
Dostie, Montreuil, & Lepage, 2010; Brodeur, Guérard, & Bouras, 
2014) and the most frequently-given name for an object might not be the 
one assumed by experimenters (e.g., Brodeur and colleagues found that 
most participants labelled an image of an alligator as a crocodile). In 
short, people do not always label objects as one might expect, which 
may explain some of the variability in linguistic distributional versus 
sensorimotor effect sizes in previous experiments. 

In this Experiment, therefore, we investigated the effects of senso
rimotor and/or linguistic distributional information on category verifi
cation using a set of pictures for which the range of associated names 
was known. Specifically, we derived category and object names from a 
recent set of picture-naming norms that provided both the list of names 
participants used to label each image, and the frequency with which 
each name was produced (van Hoef, Lynott, & Connell, 2022). Rather 
than assuming a single basic- or subordinate-level image label when 
calculating sensorimotor and linguistic distributional distances for a 
word → picture pair, we instead incorporated all labels people are likely 
to give an image by averaging their distances, weighted by production 
frequency. For example, rather than assuming the item dog → [picture of 
a poodle] should be treated as dog → dog (Experiment 1a and 2a) or dog 
→ poodle (Experiment 1b and 2b), we treated it according to the normed 
labels for that poodle image: a weighted average of 67% dog → dog and 
33% dog → poodle. In this way, the graded structure of categories was 
inherently reflected in the production frequency used to weight the 
distance calculations, as some member concepts were named at the basic 
level more often than others (e.g., an image of a Labrador was named as 
a dog more often than was an image of a poodle). 

As before, we hypothesised that both sensorimotor and linguistic 
distributional information would inform categorisation, and that the 
basic-level advantage would emerge from representational overlap of 
linguistic and sensorimotor information between a category and mem
ber concept. However, we updated our predictions based on our findings 
in previous experiments. That is, we predicted that weighted average 
sensorimotor distance would independently predict RT and accuracy, 
and that weighted average linguistic distributional distance would 
predict accuracy (but not RT) above and beyond sensorimotor infor
mation and do so at least as well as sensorimotor distance. Furthermore, 
in line with the previous experiments, we predicted that sensorimotor 
distance alone would predict the basic-level advantage in RT at least as 
well as taxonomic levels, whereas sensorimotor and linguistic distribu
tional information would not predict accuracy as well as taxonomic 
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levels. Preregistration, data, analysis code, stimuli and results are 
available at https://osf.io/8cjrm. 

5.1. Method 

5.1.1. Participants 
Forty-three participants (30 female; Mage = 34.58 years, SD = 11.62) 

were recruited through web-based crowdsourcing platform Prolific.co, 
for the sum of £3.55 (i.e., approx. £8.50/ h pro rata for an assumed 
duration of 25 min). On average, participants took 18 min and 44 s to 
complete the task (SD = 4 min and 20 s), which included giving 
informed consent and reading a debriefing. Through Prolific’s recruit
ment filter settings, we ensured that all participants were native 

speakers of English, had corrected-to-normal vision, and had not 
participated in any of our previous web-based experiments. One 
participant was replaced based on the 70% accuracy threshold specified 
in the preregistration. 

As before, we determined sample size via sequential hypothesis 
testing using Bayes Factors (Schönbrodt et al., 2017), with Nmin set at 
30 participants, and Nmax set at 90. We stopped sampling at 43 par
ticipants, when hierarchical effects of both sensorimotor distance and 
linguistic distributional distance in Analysis B cleared the specified 
grade of evidence of BF > 10 (or reciprocal 1/10) for three successive 
participants for both accuracy and RT (see Results section for actual 
BFs). 

Fig. 4. Log (ln) Bayes Factors for all models for each experiment and dependent variable for unadjusted (Panel A) gradedness-adjusted (Panel B) and production- 
frequency weighted models (Panel C) compared to a null model containing only random effects of participant and item. 
Note: Asterisks indicate the best-fitting models overall; where bars show multiple asterisks, evidence for models was equivocal. 
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5.1.2. Materials 
Test items consisted of 396 label → picture items, comprising 132 

target pictures, each of which was paired with three labels that 
described it at the subordinate, basic and superordinate level. All images 
were retrieved from the van Hoef et al. (2022) picture naming norms, 
and their basic- and subordinate-level names were derived from par
ticipants’ naming responses in these norms. First, we determined basic- 
level category names, by selecting only those items for which the modal 
response occurred for the majority of object images as well as for more 
than one object (e.g., dog as the modal name for most Labrador and 
Spaniel images). Crucially, we ensured that every image had at least one 
alternative name that was more specific than the modal response (e.g., 
Labrador for Labrador images). Where more than one alternative name 
was produced for an item, we used the most frequent alternative as the 
subordinate-level label in our task. Since abstracted, superordinate-level 
labels were produced only occasionally in the picture-naming norms, we 
retrieved superordinate-level category names from WordNet 
(https://wordnet.princeton.edu), a lexical database that includes a 
hypernymic (i.e., type-of) taxonomy for each sense of a word. For each 
basic-level name, we determined the set of WordNet hypernyms for the 
relevant word sense (e.g., for the canine sense of dog rather than a 
figurative meaning), and selected the most easily-comprehensible 
abstracted hypernym as the superordinate-level label (e.g., for dog, we 
selected the hypernym animal rather than more technical alternatives 
like mammal or chordate). To create label → picture items, each 
subordinate-level label was then paired with three images (e.g., Labra
dor → three different images of a Labrador), each basic-level label was 
paired with between 6 and 27 images (e.g., dog → three images of a 
Labrador, three images of a Spaniel, three images of a collie, etc.) and 
each superordinate-level label was paired with between 27 and 39 im
ages (e.g., animal → three images of a Labrador, three images of a 
Spaniel, three images of a Lynx etc.). Finally, we divided all 396 test 
items into three stimulus lists of 132 items, where each list featured 44 
subordinate, 9 basic and 4 superordinate labels and included each pic
ture only once. 

Filler items consisted of 174 label → picture pairs, comprising similar 
object pictures and labels to test items, and were seen by all participants. 
Of these, 48 fillers were false and used category labels featured in test- 
items, to ensure that repeated labels could not cue participants to 
respond ‘yes’ to category membership: 24 basic level (e.g., label dog → 
image cow) and 24 superordinate (e.g., label vehicle → image clock). A 
further 105 fillers were false and used category labels not featured in test 
items: 27 superordinate (e.g., label building → picture ashtray), 27 basic 
(e.g., label fish → image frog), and 51 subordinate (e.g., label duck → 
image cockatoo) labels. All false fillers ranged from easy to difficult to 
reject. Finally, to balance out the true and false items per stimulus list, 
we included 21 fillers that were true and did not repeat test-item cate
gory labels: 7 basic (e.g., label saw → image jigsaw), 7 subordinate (e.g., 
label kingfisher → image kingfisher), and 7 superordinate (e.g., label de
vice → image keyboard) labels. As a result, the final stimulus lists each 
contained 306 label → picture pairs, divided evenly between true and 
false (132 true test items, 21 true fillers and 153 false fillers). All stimuli 
may be found in the supplemental materials on OSF. 

5.1.3. Procedure 
The experiment ran on web-based platform Gorilla.sc (Anwyl-Irvine 

et al., 2020), handling both collection of informed consent and experi
mental data collection. Trial presentation and instructions were iden
tical to Experiment 2a, with the exception that the font used to display 
labels was 36-point lowercase Arial. Participants were randomly 
assigned to a stimulus list. Test and filler items appeared in random 
order with a self-paced break after 160 trials. 

5.1.4. Ethics and consent 
The study received ethical approval from the Lancaster University 

Faculty of Science and Technology Ethics Committee (ethics code: 

FST17003). As per Experiment 1a, all participants read information 
detailing the purpose and expectations of the study before giving 
informed consent to take part. 

5.1.5. Critical predictors 
As well as a specified taxonomic level (subordinate, basic, superor

dinate), each label → picture test item had an associated value in two 
critical predictors that captured the overlap in sensorimotor and lin
guistic distributional experience between category concept and member 
concept. 

5.1.5.1. Weighted average linguistic distance. For each image in the item 
set, we retrieved the set of names produced by participants in a recent 
picture naming norms,(van Hoef et al., 2022) as well as the associated 
frequency of production for each name. We then calculated the cosine 
distance between each category label and each image name, using the 
same corpus-based measure of linguistic distance as per Experiment 1a. 
Finally, for every label → picture item, we calculated its weighted 
average linguistic distance by multiplying each label → name distance 
by the relevant production frequency of that name for that picture and 
calculated the mean of these weighted distances. For example, the 
weighted average linguistic distance for the item dog → [Labrador image 
1] was calculated as the dog-dog distance (0) multiplied by its production 
frequency weight (81.0%) plus the dog-Labrador distance (0.519) 
multiplied by its production frequency weight (19%), giving a weighted 
average distance of 0.099. The final weighted average linguistic distance 
measure for each label → picture pair ranged in theory from − 1 to +1 
(actual range = [0.00, 0.91], M = 0.30., SD = 0.15), with higher values 
indicating greater distance in linguistic space (i.e., less overlap in the 
linguistic distributional experience of each word). 

5.1.5.2. Weighted average sensorimotor distance. As for linguistic dis
tance (see above), we calculated the weighted average sensorimotor 
distance for each item based on the different names produced in the van 
Hoef et al. (2022) picture naming norms, weighted by their production 
frequencies. The final weighted average sensorimotor distance measure 
for each label → picture pair ranged in theory from − 1 to +1 (actual 
range [0.00, 0.16], M = 0.03, SD = 0.03), with higher values indicating 
greater distance in sensorimotor space (i.e., less overlap in the sensori
motor experience of each concept). Linguistic and sensorimotor distance 
measures were weakly-to-moderately correlated, r = 0.311 (9.67% 
shared variance). 

5.1.6. Data analysis 
We ran analyses A and B as specified in Experiment 1a, except we 

used weighted average sensorimotor distance and weighted average 
linguistic distributional distance in place of the original distance mea
sures. Analysis C tested whether RT and accuracy were best explained by 
traditional taxonomic levels or by sensorimotor(− linguistic) informa
tion. In non-nested model comparisons, we tested whether the RT data 
favoured the sensorimotor-only model from Analysis B over the taxo
nomic model from Analysis A, and whether the accuracy data favoured 
the sensorimotor-linguistic model from Analysis B over the taxonomic 
model from Analysis A. 

For each analysis, we report the coefficients and null hypothesis 
significance testing (NHST) statistics of fixed effects in the best-fitting 
model. 

5.2. Results and discussion 

In total, we collected data for 5938 trials. We removed 6 trials due to 
motor error (RT < 200 ms) and 21 trials due to inattention (RT > 5000 
ms); no participants had a mean RT further than 3 SD away from the 
overall mean. We removed 188 trials from the analysis of accuracy 
(3.18% from 5911 observations), and 158 trials from the analysis of RT 
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(2.93% of 5397 correct observations) for having an RT further than 
2.5SD away from the participant mean. The final accuracy dataset 
consisted of 5723 correct and incorrect trials; the final RT dataset con
sisted of 5239 correct trials. On average, participants took 786 (SD =
301) ms to respond. 

5.2.1. Taxonomic levels 
Bayesian model comparisons in Analysis A showed very strong evi

dence for models containing taxonomic levels over a null model con
taining only random effects on participants’ RT (BF10 = 19,262,614.75) 
and accuracy (BF10 = 8.88 × 1018). In RT, categorisation decisions made 
at the subordinate level were 32.18 ms slower than at the basic level 
[unstandardized b = 32.18, 95% CI = ±14.60, t(5086.31) = 4.32, p <
.001]. Furthermore, categorisation decisions at the superordinate level 
were 53.37 ms slower than at the basic level [b = 53.37, 95% CI =
±14.82, t(5088.95) = 7.06, p < .001]. 

Accuracy was comparable to previous experiments, suggesting the 
new stimulus set in the present study was of equivalent difficulty. Par
ticipants responded most accurately to an image when it was preceded 
by a basic-level category label(predicted probability of a correct answer 
= 97.6%). Compared to this basic level, participants were 1.71 times 
more likely to respond incorrectly when an image was labelled at the 
subordinate level, [b = − 0.54, 95% CI = ±0.28, z = − 3.69, p < .001] 
(predicted probability of a correct answer = 96.0%). Finally, partici
pants were up to 3.69 times more likely to respond incorrectly at the 
superordinate level than at the basic level [b = − 1.30, 95% CI = ±0.26, 
z = − 9.67, p < .001] (predicted probability of a correct answer =
91.8%). This data thus replicates the classic basic-level advantage, with 
best categorisation accuracy at the basic level and worst at the super
ordinate level, in line with Experiments 1a. Table 4 shows all model 
comparisons. 

5.2.2. Sensorimotor-linguistic predictors 
Confirming our hypotheses, in RT, Analysis B model comparisons 

showed very strong evidence for the effect of weighted average senso
rimotor distance over a null model containing only random effects (BF10 
= 16,023,718,859.37). However, contrasting our hypotheses, model 
comparisons also showed strong evidence for the inclusion of weighted 
average linguistic distributional on top of sensorimotor distance (BF10 =

43.78). Inspection of the coefficients revealed that RT increased with 
sensorimotor distance [unstandardised b = 831.05, 95% CI =±364.55, t 

(1158.64) = 4.47, p < .001] as well as with linguistic distance [b =
105.49, 95% CI = ±51.43, t (3363.21) = 4.02, p < .001]. That is, 
although we originally hypothesised in Experiments 1a and 2a that 
linguistic distance would affect RT, the results of these studies led us to 
update our hypotheses and predict a null linguistic effect in the present 
experiment. However, the linguistic effect on RT did indeed emerge, 
against our preregistered hypothesis, and instead consistent with the 
joint sensorimotor-linguistic effects we had expected to find in Experi
ments 1a and 2a. In other words, participants were up to 132.97 ms 
slower at the greatest average sensorimotor distance (0.16), and up to 
95.99 ms slower at the greatest average linguistic distributional distance 
(0.91) between the category label and image name(s). 

In accuracy, there was overwhelming evidence for the effect of 
sensorimotor distance alone (BF10 = 2.62 × 1029), and positive evidence 
for the inclusion of linguistic distance alongside sensorimotor distance 
(BF10 = 10.99). Hence, the best sensorimotor-linguistic model of accu
racy included both sensorimotor and linguistic distance. Coefficients 
showed that participants were more likely to respond incorrectly as 
sensorimotor distance increased (b = − 24.55, 95% CI = ±5.27, z =
− 9.12, p < .001) and as linguistic distance increased (b = − 1.85, 95% CI 
= ±0.96, z = − 3.77, p < .001) between categories and member con
cepts. That is, participants were 50.80 times more prone to error for 
items at the greatest average sensorimotor distance (0.16) than for items 
at the smallest sensorimotor distance (zero). Simultaneously, for items 
at the greatest linguistic distance (0.91) participants were 5.38 times 
more prone to error than for items at the smallest linguistic distance 
(zero). 

As predicted, overlap in sensorimotor experience between category 
and member concepts (e.g., between animal and dog concept or animal 
and Labrador concept, depending on how an individual participant 
implicitly names an image of a Labrador) facilitates categorisation RT 
and accuracy. Similarly, as predicted, overlap in linguistic experience 
between the distributional patterns of category and member labels also 
facilitates categorisation accuracy. Indeed, more than we expected in 
this study, overlap in linguistic distributional experience also facilitates 
categorisation RT; an effect that failed to emerge as predicted in Ex
periments 1a and 2a. 

5.2.3. Best model 
Analysis C tested whether taxonomic or sensorimotor information 

best predicted RT, and whether taxonomic or sensorimotor-linguistic 
best predicted accuracy. As predicted, Bayesian model comparisons 
found very strong evidence that sensorimotor distance was BF10 =

831.87 times better than taxonomic levels in predicting RT. As a model 
including linguistic distributional distance on top of sensorimotor dis
tance outperformed a sensorimotor-only model in predicting RT, we ran 
an exploratory (i.e., not preregistered) comparison between this 
sensorimotor-linguistic model and taxonomic levels, and found over
whelming evidence that sensorimotor and linguistic distance were BF10 
= 36,317.40 times better than taxonomic levels in predicting RT. 
Moreover, Bayesian model comparisons found overwhelming evidence 
that sensorimotor and linguistic distance were BF10 = 3.24 × 1011 times 
better than taxonomic level at predicting accuracy. That is, 
sensorimotor-linguistic models outperformed taxonomic models in 
predicting the basic level advantage on both latency and accuracy (see 
Figs. 3 and 4). 

5.2.4. Summary 
In conclusion, these results provide further, stronger evidence that 

sensorimotor and linguistic distributional information contribute to 
categorical decision making. Critically, even though the classic basic- 
level advantage was present in our data, results also demonstrate that 
sensorimotor-linguistic information was systematically better at 
explaining category verification performance than a taxonomic hierar
chy of subordinate, basic, and superordinate levels. The grade of evi
dence for this superiority effect was generally much stronger in the 

Table 4 
Model comparisons for linear mixed effect regressions of RT and logistic mixed 
effects regressions of accuracy in Experiment 3, showing change in conditional 
R2 for nested comparisons and Bayes Factors for all comparisons.  

Analysis Model comparison RT Accuracy 

ΔR2 BF10 ΔR2 BF10  

Null model (random 
effects) 

0.332 – 0.295 – 

A Taxonomic levels vs. 
null 

0.006 19,242,414.80 0.057 8.88 
× 1018 

B Step 1 (Sensorimotor) 
vs. step 0 (Null 
model) 

0.014 1.60 × 1010 0.116 2.62 
× 1029  

Step 2 (Sensorimotor- 
linguistic) vs step 1. 

− 0.001 43.78 0.121 10.99 

C Sensorimotor versus 
taxonomic levels. 

– 831.86 – 2.95 
× 1010  

Sensorimotor- 
linguistic versus 
taxonomic levels 

– 36,416.55 – 3.24 
× 1011 

Note: We report conditional model R2 for the null model. For all other models, 
we report change in marginal (fixed effects only) model R2. Note that marginal 
R2 values are estimates reported only for information and are not used for 
inferencing, as marginal R2 values may go down as well as up with additional 
parameters (see, Nakagawa & Schielzeth, 2013). 
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present experiment than in previous experiments, suggesting that some 
of the variable effects in previous experiments may have been due to 
suboptimal assumptions about how participants implicitly labelled 
pictured objects. Indeed, in an exploratory analysis, the weighted 
measures we used in the present study outperformed those we had used 
in Experiments 1a and 2a (i.e., assuming that all objects were implicitly 
named at the basic level),9 indicating that it is important to consider 
variety in object naming behaviour when examining categorisation. 
That is, when we incorporated the normed range of object names that 
are likely to be activated when people see a particular picture, our 
weighted measures of sensorimotor and linguistic distributional infor
mation offered the best explanation for variation in categorisation per
formance. People categorised objects more quickly and accurately when 
the member concept was close to the category concept in both sensori
motor experience and linguistic distributional knowledge. 

6. General discussion 

The basic-level advantage effect in object categorisation is intrinsi
cally tied to long-standing feature- and/or network-based theories on 
the nature of categorisation itself and that of conceptual representation 
(e.g., Corter & Gluck, 1992; Jolicoeur et al., 1984; Markman & Wis
niewski, 1997; Murphy & Brownell, 1985; Rogers & Patterson, 2007; 
Rosch, Simpson, & Miller, 1976). In the present work, we have used 
state-of-the-art measures to show it is possible to express the taxonomic 
relationships between concepts, that are thought to underly catego
risation, in terms of distance in sensorimotor experience and/or lin
guistic distributional knowledge between category and member 
concepts, without referring to discrete, binary features (e.g., has wings, 
can fly) or featural dimensions (e.g., size, weight). Specifically, we found 
that the distance in sensorimotor experience between a given category 
concept (e.g., DOG) and a member concept (e.g., Labrador) may predict 
the speed of categorisation at least as well as a division into discrete 
taxonomic levels (i.e., the basic-level advantage) might (e.g., Experi
ments 1 and 2a). We also found that adjusting our measure of sensori
motor distance – via linguistic distributional information – to reflect the 
graded structure of categories enhanced its ability to predict catego
risation performance (Experiment 1b, method) to the point that it 
overall performed about as well in predicting RT and accuracy as models 
based on the taxonomic level of the category label (Experiments 1b and 
2b, although the best model for a given DV varied across studies, see 
Fig. 4). Finally, we found that weighting our measures of sensorimotor 
and linguistic distributional distance to reflect the range of names 
typically produced for a pictured object improved their ability to predict 
both RT and accuracy well beyond that of discrete taxonomic levels 
(Experiment 3). That is, the present findings show that variation in 
object naming affects categorisation, and that the latency and accuracy 
of categorisation can be predicted by sensorimotor (i.e., perception- 
action experience of the world) and linguistic distributional informa
tion (i.e., statistical distribution of words in language) more effectively 
than by explaining the basic-level advantage in terms of discrete taxo
nomic levels. These findings are in line with recent linguistic-simulation 

views on the nature of concepts (e.g., Barsalou et al., 2008; Connell, 
2018; Connell & Lynott, 2014; Louwerse, 2011) as well as recent cate
gorisation research showing similar effects (e.g., Banks et al., 2021). 

A critical assumption of the present work is not only that concepts 
are represented by both sensorimotor and linguistic distributional in
formation, but also that categorical relationships between concepts (e. 
g., taxonomic relationships) may be expressed in terms of their senso
rimotor and linguistic distributional similarity. For example, we predict 
that the sensorimotor and linguistic distributional profiles of taxonom
ically related concepts (e.g., Labrador, and dog) are generally more 
similar to one another than the profiles of taxonomically unrelated 
concepts (e.g., guitar and dog). Moreover, the sensorimotor and linguistic 
distributional profile of a member concept will often – though not al
ways – be more similar to that of a less-generalised category concept (e. 
g., Labrador vs. dog) than a more-generalised concept (e.g., Labrador vs. 
animal). The taxonomic hierarchy of concepts – and the basic-level 
advantage in particular – may therefore be a behavioural artefact of 
sensorimotor and linguistic distributional overlap, but only at the global 
level and not for every concept individually. This assumption contrasts 
the perspective traditional taxonomic accounts have taken, such as ac
counts which argue semantic memory is explicitly structured into 
taxonomic levels with the basic level as the entry level (e.g., Jolicoeur 
et al., 1984), or accounts which suggest taxonomic levels arise implicitly 
from the way in which features of member concepts overlap, where the 
basic level optimally differentiates members from non-members (e.g., 
Markman & Wisniewski, 1997; Murphy & Smith, 1982). 

However, the taxonomic and sensorimotor-linguistic approaches to 
categorisation are not necessarily mutually exclusive. That is, if the 
taxonomic approach were redefined to describe behavioural phenomena 
rather than the structure of semantic memory, it can be accommodated 
within a sensorimotor-linguistic view. For example, in a label → picture 
category verification task such as the one we employed here, the cate
gory label may activate linguistic distributional knowledge as well as 
sensorimotor representations, which facilitates the categorisation of the 
subsequent image (Boutonnet & Lupyan, 2015; Lupyan & Thompson- 
Schill, 2012). As a process model of category verification, a 
sensorimotor-linguistic account is therefore similar to the preparation 
model proposed by Murphy and Smith (1982), but substitutes functional 
and perceptual features by simulated modality- and effector-specific 
sensorimotor experience and/or linguistic distributional knowledge. 
Importantly, like the original preparation model, the sensorimotor- 
linguistic preparation model does not assume any taxonomic level is 
privileged, but rather that performance is solely driven by the degree of 
overlap in sensorimotor experience and/or linguistic distributional 
knowledge between category and member concepts. The sensorimotor- 
linguistic preparation model thus proposes that when participants see a 
label (e.g., dog), it activates a sensorimotor representation of the referent 
concept, as well as linguistic distributional knowledge about the con
texts it may appear in. When the participant sees the subsequent image, 
they verify whether the image matches this activated representation. 
The greater the overlap between the perceived image and the pre- 
activated perceptual simulation, the less additional activation is 
required and the faster and more accurate the response. 

Importantly, the present work shows that it is possible to capture 
categorical relations without referring to feature similarity (e.g., Mur
phy & Brownell, 1985). This is an important finding, as there are many 
reasons why it might be desirable to specify categorical structure and 
behaviour without assuming feature-based representations of concepts. 
While various traditional accounts differ in their interpretation of the 
nature of the similarity processes underlying categorisation (e.g., 
Brooks, 1978; Hampton, 1979; Medin & Schaffer, 1978; Nosofsky, 1986; 
Posner & Keele, 1968; Rosch & Mervis, 1975), they generally share the 
assumption that concepts comprise indivisible, static and binary features 
(e.g., a given concept may or may not possess the features has wings, can 
fly). In categorisation research, such features are frequently derived 
from participant responses in feature-listing tasks (e.g., McRae, Cree, 

9 We ran an exploratory analysis of sensorimotor and linguistic distance 
measures that were calculated as per Experiments 1a and 2a (i.e., assuming 
basic-level object names). Model comparisons favoured sensorimotor distance 
over a null model containing only random effects for both accuracy (BF10 =

1.90 × 1010) and RT (BF10 = 1947.44) but showed evidence against the 
addition of linguistic distributional distance for both accuracy (BF10 = 0.05) 
and RT (BF10 = 0.20). The best-fitting weighted average models outperformed 
the best-fitting of these basic-named models for both accuracy (BF10 = 1.03 ×
1020) and RT (BF10 = 636,113,631.42), supporting our weighted-average 
approach in Experiment 3. We thank an anonymous reviewer for suggesting 
this analysis; full data and results may be found in the supplemental materials 
on OSF (https://osf.io/8cjrm). 
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Seidenberg, & Mcnorgan, 2005), which are assumed to be sufficiently 
reflective of the correlational structure of the perceived world (Rosch, 
1978), in that participants are unlikely to list features for objects that do 
not possess them. However, therein lie several limitations of a feature- 
based approach to concepts and categories. Firstly, features generated 
from feature-listing tasks are necessarily verbalised expressions of peo
ple’s experience with selected concepts. Consequently, they are typically 
much better suited to describe concrete concepts (e.g., dog, cup) than 
abstract concepts (e.g., hunger, peace; although see Harpaintner, 
Trumpp, & Kiefer, 2018). This asymmetry greatly limits the applicability 
of features as a basis for conceptual representation. If all concepts are 
represented through features, then why would they be harder to deter
mine for one type of concept compared to the next? Secondly, many 
listed features are not inherent to the concept they are listed for. For 
example, in addition to perceptual and functional features, participants 
may list taxonomic (e.g., eagle → is a bird), affective (e.g., wasp → is 
annoying) and other thematic associations (e.g., bird → builds nests, knife 
→ used with fork; see McRae et al., 2005). As a result, it is not clear what 
exactly is being compared when considering feature overlap between 
two concepts. Indeed, research shows that measures of feature overlap 
are among the weaker predictors of concept similarity (Wingfield & 
Connell, 2022b). Thirdly, features generated in feature-listing tasks are 
not always uniformly interpretable away from the category or concept 
they are generated for (e.g., has a seat requires knowledge of chairs to be 
meaningful; Rosch, 1978), and is large means something different for 
metal compared to wooden spoons (Medin & Shoben, 1988). In other 
words, some listed features (e.g., is large for lions, limousines, and mugs; 
McRae et al., 2005) may only become meaningful after the category has 
been established. It is not clear by what mechanism the meaning of such 
features is compared between concepts when determining their simi
larity. Finally, feature-based accounts of categorisation are typically 
agnostic with regards to the representation of features themselves (e.g., 
if bird is represented by has wings, what represents the latter?) and draw 
a line between features and concepts. It is unclear what mechanism 
supports this division, and previous arguments that it is warranted on 
purely operational grounds (e.g., it is useful to assign a feature-status to 
has wings if it allows us to distinguish between the concepts bird and 
mouse: Smith & Medin, 1981) are unpersuasive when alternative ap
proaches render it unnecessary. 

Of course, like all label → picture categorisation tasks, the present 
studies focus on concrete concepts and categories, which raises the 
question of whether the sensorimotor-linguistic account we propose 
extends to categorisation of abstract concepts. While some have argued 
sensorimotor grounding is weaker for abstract compared to concrete 
concepts (e.g., Barsalou & Wiemer-Hastings, 2005; Vigliocco, Meteyard, 
Andrews, & Kousta, 2009), a growing body of work has shown senso
rimotor information is in fact important to representing both concrete 
and abstract concepts, with complex relationships between various 
concrete and abstract subdomains and different sensory modalities and 
motor effectors (Banks & Connell, 2022b; Borghi, Flumini, Cimatti, 
Marocco, & Scorolli, 2011; Borghi & Zarcone, 2016; Connell & Lynott, 
2012; Connell, Lynott, & Banks, 2018; Villani, Lugli, Liuzza, & Borghi, 
2019; Villani, Lugli, Liuzza, Nicoletti, & Borghi, 2021). Nonetheless, 
sensorimotor information is not sufficient alone, particularly for cate
gories that appear to rely on relational information to provide structure 
(e.g., art form: Banks & Connell, 2022b), which is why information from 
language is also important. Indeed, when examining category produc
tion (e.g., name as many types of fruit / science as possible in 60 s), Banks 
et al. (2021) found that both sensorimotor and linguistic distributional 
information contributed to the rank and frequency of listing category 
members, with an identical pattern of effects for concrete and abstract 
categories. It therefore appears that the sensorimotor-linguistic account 
extends to both concrete and abstract categorisation, but the relative use 
of sensorimotor versus linguistic distributional infoarmion varies with 
the type of categorisation behaviour (i.e., depends on task demands: 
Connell, 2018; Connell & Lynott, 2014). 

A notable deviation from our hypotheses is the unexpectedly weak 
direct effect of linguistic distributional information in Experiments 1 
and 2. It could be the case that sensorimotor simulation is a more reli
able source of information in label➔ picture category verification, as 
sensory information activated by the category label may easily be 
verified upon seeing the subsequent image. However, this does not 
explain why linguistic distributional information predicts categorisation 
performance above and beyond sensorimotor information in Experiment 
3 and ignores the interactive relationship between sensorimotor and 
linguistic distributional information (Connell, 2018). Indeed, explor
atory results from Experiment 3 point towards another explanation: 
namely that the effect of linguistic distributional information was not 
adequately captured by our single-point measures in Experiments 1 and 
2 (i.e., that assumed a single name for a pictured object). By contrast, 
calculating a weighted average linguistic distance between the category 
label and multiple names given to a particular image greatly improved 
how well it fit the data relative to a single-point variant. Future work 
may build upon this by incorporating naming distributions into the 
calculation of distance measures for the purpose of adequately predict
ing category verification performance via linguistic distributional 
information. 

A possible limitation of the present work is that, while it provides 
evidence for a sensorimotor-linguistic alternative to existing (feature- 
based) accounts of processing advantages in categorisation, it does not 
directly compare the two approaches. An interesting direction for future 
research would be to explore the relative extent to which sensorimotor- 
linguistic and feature similarity explain the basic-level advantage in 
categorisation. Recent work (Wingfield & Connell, 2022b) shows that 
sensorimotor distance correlates relatively weakly with a measure of 
feature overlap (derived from Buchanan, Valentine, & Maxwell, 2019), 
but outperforms it as a predictor of participants’ semantic similarity 
judgments, which suggests that sensorimotor distance is capable of 
capturing information pertinent to semantic similarity judgments that 
features cannot. Indeed, that work suggested the same is true of lin
guistic distributional measures, which also tended to outperform feature 
overlap in predicting semantic similarity judgments. Future work may 
build on these findings to determine whether they extend to the basic- 
level advantage in categorisation. 

Of note is that, across Experiments 1b and 2b, we found no evidence 
that typicality mediated the basic-level advantage; that is, lower sub
jective typicality ratings did not lead to objects being categorised at the 
subordinate level. Nonetheless, categorical gradedness did affect cate
gorisation when it was modelled via linguistic distance: gradedness- 
adjusted measures of sensorimotor distance in Experiments 1b and 2b 
outperformed the unadjusted measures used in Experiments 1a and 2a, 
respectively. Furthermore, Experiment 3 incorporated the graded 
structure of categories via production-frequency weighting on sensori
motor and linguistic distributional distance and showed strong effects of 
both on categorical decision. These results illustrate the ways in which 
sensorimotor and linguistic distributional information may capture the 
graded structure of categories. For instance, the gradedness-adjusted 
measures of Experiments 1b and 2b incorporated the idea that pic
tures of “good”, highly representative, category members are recognised 
as their basic category concepts (e.g., picture of jeans recognised as 
trousers) while pictures of less-representative category members are 
recognised as the specific, subordinate member concept (e.g., picture of 
sweatpants recognised as sweatpants, and not trousers). As a result, “good” 
member concepts are judged more quickly and accurately when pre
ceded by their basic-level label (e.g., trousers → [picture of jeans]), while 
less-representative member concepts are judged more quickly and 
accurately when preceded by their specific, subordinate label (e.g., 
sweatpants → [picture of sweatpants]), and all other judgments are slower 
and less accurate according to the sensorimotor distance between the 
category and member concepts. These findings indicate that categorical 
gradedness itself – that is, the notion that less-representative category 
members are implicitly named with a specific (subordinate) label rather 
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than with a more generic (basic level) label – is valid. The design of 
Experiment 3 did not permit us to explore items that were predomi
nantly named at the subordinate level, but nevertheless, we showed that 
measures of sensorimotor and linguistic distributional distance that 
incorporate weightings of categorical gradedness predict behaviour in a 
label➔picture categorisation task well beyond the division into three 
discrete taxonomic levels. Finally, since the typicality rating for an ob
ject in its basic-level category proved ineffective at detecting how cat
egorical gradedness affects object categorisation, our findings also 
suggest that typicality ratings may not actually be the best measure of 
categorical gradedness. Rather – particularly given the fact that our 
measure of linguistic distance did not meaningfully correlate with the 
typicality ratings in Experiment 1b – it appears that linguistic distribu
tional information captures aspects of the graded structure of categories 
that are not captured by subjective ratings of object typicality. 

In summary, our measures of sensorimotor and linguistic distribu
tional information successfully captured aspects of the relationship be
tween categories and their members: we have demonstrated that overlap 
in sensorimotor experience predicts RT and accuracy at least as well as 
division into discrete taxonomic levels. Moreover, we have shown that 
sensorimotor experience and linguistic distributional information may 
capture the graded structure of categories. These findings add to our 
understanding of sensorimotor-linguistic concepts and categories and 
provide an alternative to feature- and/or network-accounts of the basic- 
level advantage. 
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Appendix A. Model statistics for taxonomic-typicality models of accuracy and RT for Experiment 1b datasets excluding and including 
the item ‘gavel’  

Model Excluding gavel Including gavel 

Accuracy (taxonomic level, typicality, interaction) β 95%CI z p β CI z p 

(Intercept) 3.773 ±0.538 – – 3.715 ±0.529 – – 
Subordinate − 1.044 ±0.469 − 4.362 1.29 × 10–0.05 − 1.010 ±0.458 − 4.320 1.56 × 10–05 
Superordinate − 1.358 ±0.455 − 5.842 5.17 × 10–0.09 − 1.308 ±0.444 − 5.777 7.60 × 10–09 
Typicality 0.495 ±0.733 1.324 0.185 0.601 ±0.536 2.195 0.0281* 
Subordinate*Typicality 0.254 ±0.884 0.562 0.574 0.071 ±0.640 0.218 0.8278 
RT (taxonomic level, typicality, interaction) β 95%CI t p β 95%CI t p 
(Intercept) 721.580 ±59.773 – – 726.789 ±60.002 – – 
Subordinate 41.791 ±29.318 2.794 0.005 36.792 ±29.375 2.455 0.0142 
Superordinate 88.163 ±29.604 5.837 6.29 × 10–09 83.847 ±29.636 5.545 3.36 × 10–08 
Typicality − 4.754 ±52.788 − 0.177 0.86018 − 46.695 ±43.689 − 2.095 0.0382* 
Subordinate*Typicality 46.163 ±75.710 1.195 0.23222 73.104 ±63.086 2.271 0.0232*  
* NHST significance test deviating from models based on dataset excluding ‘gavel’. 
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