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Summary. We propose a new and simple continuous Markov monotone stochastic process and
use it to make inference on a partially observed monotone stochastic process. The process is
piecewise linear, based on additive independent gamma increments arriving in a Poisson fash-
ion. An independent increments variation allows very simple conditional simulation of sample
paths given known values of the process. We take advantage of a reparameterization involving
the Tweedie distribution to provide efficient computation. The motivating problem is the estab-
lishment of a chronology for samples taken from lake sediment cores, i.e. the attribution of a
set of dates to samples of the core given their depths, knowing that the age–depth relationship
is monotone. The chronological information arises from radiocarbon (14C) dating at a subset of
depths. We use the process to model the stochastically varying rate of sedimentation.

Keywords: Compound Poisson–gamma distribution; Monotone processes; Radiocarbon
dating; Tweedie distribution

1. Introduction

Continuous monotone stochastic processes arise in many areas of application: the study of
accumulated wear in aspects of reliability (Heinricher and Stockbridge, 1993; Lam and Zhang,
2003), of exposure to disease in epidemiology (Lee et al., 2004) and in the modelling of forest
fires (Reed and McKelvey, 2002). Here we study the accumulation of lake sediment cores which
can give an insight into past climates. We focus on modelling the age–depth relationship (i.e.
the chronology) given partial information. We propose a very simple stochastic process with
properties (continuous, monotonic and Markovian) that may make it attractive elsewhere.

The most familiar monotone processes are counting processes, of which the simplest is the
Poisson process. Such processes, being piecewise constant, are not in themselves attractive for
modelling smoothly increasing random functions. The process that is presented here may be
interpreted as an integrated process y.t/=∫ t

0 u.s/ds; here u.·/ denotes a positive piecewise con-
stant process, in our case the sedimentation rate. Our process is thus piecewise linear. The very
simple properties derive from an underlying Poisson process.

Monotone processes are also used as part of the technical apparatus of monotone Bayes-
ian smoothing, where interest lies in smooth latent random functions as priors. These arise in
applications as diverse as price effect data (e.g. Brezger and Steiner (2005)), leukaemia progno-
sis (Holmes and Heard, 2003), sleeping problems (Dunson, 2005), dose–response (Kong and
Eubank, 2006) and growth curves (e.g. Ramsay (1998)). The use of Gaussian processes in Bayes-
ian smoothing is now commonplace, but they are less natural for monotone smoothing: hence
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400 J. Haslett and A. Parnell

the need for simple alternatives. Smoothers that are defined via basis functions (such as splines)
are random if the number and/or locations of the knots are random. The proposals here can
be seen as using linear basis functions and a Poisson process to locate the knots. Crucially in
this paper we show that it is possible to marginalize with respect to this process. Effectively, the
prior for the knots is conjugate to the prescription for the basis functions. In our proposal there
are no issues to be overcome by the unknown number of knots.

The methods that are discussed here may also be seen as an instance of another area of
research—the study of stochastic processes given partial realizations. For diffusions this is a
very active research area (e.g. Dellaportas et al. (2006)). The process that is proposed here is not
a diffusion; it may in fact be seen as an example of a ‘partially deterministic Markov process’
(Davis, 1984). The generic challenge lies in computing the likelihood for the observed data and
in generating random sample paths conditional on the observations. We see below that in this
case both tasks are very simple. In particular, the simplicity of the likelihood derives from a close
connection between the compound Poisson–gamma (CPG) and Tweedie distributions, which
are themselves well studied, being members of the exponential dispersion family (Jørgensen,
1987). Despite this simplicity, the method seems to be robust.

In this paper our focus is on the depths {di; i = 1, . . . , n} that are taken from a core of lake
sediment. Biological proxies in such cores provide reconstructions of past climates; see Haslett
et al. (2006). The corresponding calendar ages θi are crucial in estimating the temporal nature
of the reconstructions. Necessarily the underlying function d.θ/ is continuous and monotone;
older ages must lie at deeper sediments. However, these ages are only available indirectly via
radiocarbon (14C) dating. Formally, for m < n of the samples with depths {dj; j = 1, . . . , m},
suitably qualified laboratory estimates xj ± τj are given in 14C years before present (BP). The
challenge is to determine the true calendar dates θi at all depths di, i.e. to provide a chronology,
the set {θi, di}, or more generally a random function θ.d/. This function is the key contribution
of the paper. Uncertainty arises both in the calibration of the radiocarbon ages and in stochastic
interpolation for the n−m depths at which we have no age information. The study of this uncer-
tainty is our central focus. We approach this below by generating continuous random functions
θ.d/ that are consistent with the data.

In a context such as this, the following features seem desirable, in addition to monotonicity.

(a) Continuity; chronologies can be requested for any set of depths within a core. More gen-
erally, although any continuous process can be approximated by a discrete equivalent, it
seems desirable that the procedure be well behaved in the limit.

(b) Minimal assumptions on smoothness; there is no reason a priori to exclude either almost
flat or very steep sections, within the constraints of continuity, for great variations in
sedimentation rate are observed in practice.

(c) Increased uncertainty away from 14C-dated points, which can be very irregular, as we
discuss in Section 4; in the interests of generality, it seems desirable that the procedure be
an interpolator in the limiting case where the measurements are without error.

Additionally the model should be simple, with few parameters, facilitating theoretical analysis
and efficient sampling.

Fig. 1 indicates the nature of the problem. Separate radiocarbon dating of each of the m sam-
ples generates uncertain data (calendar ages—represented by horizontal bars, being the 95%
highest density region (HDR) intervals) at various depths. A valid chronology is a continuous
monotonic function; our model is defined on random piecewise linear functions. Given the data,
our model permits the sampling of many possible piecewise linear sedimentation histories or,
equivalently, chronologies. Each such chronology allows a deterministic reconstruction of the
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Fig. 1. (a) Sample data ( , 95% HDR intervals for calibrated radiocarbon dates at various depths) with
a satisfactory monotonic chronology ( ) and an unsatisfactory non-monotonic chronology (- - - - - - - ) (at
depths of around 4 and 6.5 m) and (b) five sampled satisfactory monotonic chronologies ( ) fitted to
sample data ( )

calendar ages for all of the n; importantly, the samples are dated jointly. Given the data and
the model, sampling many such histories provides many chronologies, allowing analysis of any
aspect of the joint uncertainty that is associated with the entire chronology.

In Section 2 we review at a more technical level the options that are available for monotone
smoothing. Section 3 provides details of the stochastic process that we propose, covering
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402 J. Haslett and A. Parnell

theoretical aspects and setting out the algorithm. We present in Section 4 some more details of
the motivating problem, reviewing previous literature on calibration. Section 5 presents appli-
cations. Section 6 indicates possibilities for extension.

2. Monotone processes and smoothing

The modelling of continuous monotonic processes y.x/ (equivalently x.y/) for {x, y}∈R2 arises
in several fields. Our focus is on sampling realizations of such functions that are consistent with
possibly noisy observations on {xj,yj; j =1, . . . , m} but are interpolators in the absence of noise.
A Bayesian formulation is natural. The key is the family of priors for the random functions.

One natural family of stochastic processes is those which are described as ‘partially deter-
ministic Markov processes’ (Davis, 1984). Diffusions do not have monotonic sample paths and
pure jump processes are not continuous. Several of the approaches to Bayesian smoothing can
be seen as being based on (monotone) splines defined on possibly randomly located knots. In
the present study the requirement of interpolation (in the limiting case) is a strong condition;
it requires a priori that we have knots at and between data points. A wide discussion of the
general issues of monotone smoothing may be found in for example Brezger and Lang (2006),
in particular, the subselecting of monotone paths from the posterior or, almost equivalently,
only proposing monotone paths. More recently, Wang and Dunson (2007) have considered the
even wider issue of smoothing under stochastic constraints.

Holmes and Heard (2003) proposed a piecewise constant process for y, with a random num-
ber of knots at random locations; they used flat priors for this. Although they envisaged that
the number of knots is less than the number of samples, there is nothing in principle to insist
on this. Within disjoint sets that are defined by the knots, they envisaged that the y have a set-
specific distribution. They imposed no explicit constraint on monotonicity, in the interests of
computational simplicity; they simply subsampled monotone paths from the posterior. In the
applied 14C literature Bronk Ramsey (2007) has proposed a Poisson counting process which can
be seen as having piecewise constant sample paths; it brings with it a very natural model for the
number and location of knots, which has much in common with the process that we propose.
However, such paths are clearly discontinuous, yielding in our context sedimentation rates that
are either zero or infinite.

Neelon and Dunson (2004) proposed (as we do below) a piecewise linear process. They
adopted a normal distribution truncated at zero for the slopes, which they discussed in terms of
unrestricted latent slopes and implemented in a natural fashion by never accepting sets of slopes
that contain negative values. Indeed they went further by allowing point masses at zero. They
envisaged a large number of knots at prespecified equally spaced locations; point masses at zero
effectively thin the posterior knot process. Knots at data points will lead to interpolation if that
is desired. One of the strengths of their procedure is that it facilitates the testing of hypotheses
about ‘flat patches’. However, this procedure is not well behaved in the limit, being in this case an
arbitrarily large number of knots, for arbitrarily large sets of unconstrained slopes will contain
no negative slopes with vanishingly small probability.

In the context of 14C dating, the work of Blaauw and Christen (2005) can be seen as a very
special case of the Neelon and Dunson (2004) general approach, involving piecewise linear basis
functions. However, they have unresolved issues on the very small number of knots that they
recommended and their process does not lend itself naturally to interpolation. In Section 4.3
we further discuss their procedure and that of Bronk Ramsey (2007).

Our proposal is to use a simply defined stochastic process in continuous x, with attractive
continuity and Markov properties, based on a random number of piecewise linear segments of
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random length. Crucially, we show that it is simple to marginalize with respect to both. We adopt
a simple gamma model for independent and identically distributed data for the total increment
associated with such segments and show that the process can be structured to have mean-square
continuous sample paths. Although the process is strictly monotone, it does naturally produce
almost flat patches. It may therefore have possibilities for wide applicability.

3. A piecewise linear Markov monotone stochastic process

We first introduce our procedure in the context of a bivariate renewal process .x̃, ỹ/={.x̃i, ỹi/; i=
1, 2, . . . }. This facilitates the specification in Section 3.1 of a three-parameter .λ,α,β/ piecewise
linear CPG process x.y/ which is continuous with respect to x and Markov with respect to y.
In Section 3.2 we establish connections to the closely related Tweedie distribution. We consider
some theoretical properties of interpolation in Section 3.3 showing that it is natural to fix α.
We conclude by considering inference in Section 3.4 and, in Section 3.5, the robustness of the
model to departures from assumptions.

3.1. Process construction
We consider here the generation of the piecewise linear random sample paths in Fig. 1. Initially
we consider a piecewise linear process that is defined on a bivariate gamma renewal process. This
facilitates the specification of a piecewise linear CPG process; we find it most convenient to des-
cribe this as a function x.y/. We propose the following constructive algorithm based on a bivar-
iate monotone renewal process (Hunter, 1974) with increments from gamma distributions as
below. We then consider the continuity of such processes and specialization to a Poisson process.

Firstly, consider a process that is constructed as follows.

(a) Define x̃0 = ỹ0 =0, and create pairs .x̃i, ỹi/={.x̃i−1, ỹi−1/+ .rxi , ryi /; i=1, 2, 3, . . . } where
the .rxi , ryi / are independent and identically distributed gamma.αx,βx/ and gamma.αy,
βy/.

(b) Use linear interpolation to create line segments.

Now, x.y/ = ΣN.y/
i=1 rxi + sy,i+1.y − ỹi/ is a piecewise linear process that is indexed by continu-

ous label y where sy,i = rxi=ryi and N.y/ is a counting process in the range .0, y/. Furthermore,
pairs of differences .x̃k − x̃j, ỹk − ỹj/, with j < k, are independent yet can still be written as a
sum of gamma random variables with respect to N.yj − yk/. The set of renewal points has an
independent increments property.

Consideration of the mean-square continuity of x.y/ with respect to x is facilitated by thinking
of the random function as y.x/; in this notation the slopes are sx,i = ryi=rxi and are of course inde-
pendent and identically distributed. Continuity is assured if limh→0[var{y.x + h/ − y.x/}]=h2

= 0 (Stein, 1999). Conditioning on x̃.x/ = arg max.x̃j, j = 1, . . . , m; x̃j < x/, the most recent
renewal point before x, the probability of another renewal point in .x, x+h/ is gx{x− x̃.x/}h,
for small h, where g is the hazard rate of gamma.αx,βx/. It follows, after unconditioning,
that var{y.x + h/ − y.x/}= h2 var.sx/ + O.h3/ for x̃i−1 < x � x̃i. Thus, provided that var.sx/ is
defined, the process is mean square continuous. Now sx is the product ry.1=rx/ of indepen-
dent gamma and inverse gamma random variables. However, the variance of the latter is not
defined unless αx > 2, which becomes a necessary and sufficient condition for mean-square
continuity.

With unit shape parameters .αx,αy/ the renewal processes are of course Poisson processes.
The piecewise linear process x.y/, with αy = 1 and αx > 2, is thus Markov with respect to y
and mean square continuous with respect to x. We thus adopt more conventional notation,
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404 J. Haslett and A. Parnell

parameterizing the Poisson process by λ and the gamma increments by .α,β/ and referring to
the process as a piecewise linear CPG, with parameters .λ,α,β/. Subsequently we shall see that
it is possible to fix α.

Note that the slope process, which we may denote as s.y/, is piecewise constant and Markov.
The number N.y/ of changes in slope within an interval of length y follows a Poisson distribution.
The process x.y/ is thus an integrated Markov process.

3.2. Marginalizing over N (y)
We address here a central issue: it is possible to marginalize with respect to N.y/. We focus on
the embedded CPG renewal process x̃.y/ =ΣN.y/+1

i=1 rxi and exploit the similarity with x0.y/ =
ΣN.y/

i=1 rxi , a Poisson sum of independent and identically distributed gamma random variables.
This latter follows a Tweedie distribution (Tweedie, 1984), which is alternatively known as the
CPG distribution, some of whose properties we describe below. Clearly these are very similar
for large λ, which is of particular interest to us; below we expand on this connection.

The density of x̃.y/, marginalized with respect to N.y/, can be expressed simply as

f.x;λy,α,β/= exp.−βx/ exp.−λy/
∞∑

n=0

β.n+1/α

Γ{.n+1/α}x.n+1/α−1 .λy/n

n!
: .1/

By contrast the CPG distribution may be written as

f0.x;λy,α,β/= exp.−βx/ exp.−λy/
∞∑

n=1

βnα

Γ.nα/
xnα−1 .λy/n

n!
, .2/

with an atom at zero corresponding to N.y/=0. Although the infinite sum is not available anal-
ytically, very fast routines are available for the evaluation of f0.x/; see Dunn and Smyth (2005).
But we note that

f.x;λy,α,β/=f0.x;λy,α,β/+ @f0.x;λy,α,β/

@.λy/
.3/

is easily computable by using a numerical approximation for the derivative.
Interestingly, the conventional Tweedie parameterization (e.g. Kaas (2001))

λy = μ2−p

ψ.2−p/
, α= 2−p

p−1
,

1
β

=ψ.p−1/μp−1 .4/

shows that it is a member of the exponential dispersion family (Jørgensen, 1987). It is then
easy to show that E[x0.y/] =λyα=β=μ and that E[x̃.y/] =μ+α=β≈μ for large λ. Similarly
var{x0.y/}=λyα.α+1/=β2 =ψμp and var{x̃.y/}=ψμp +α=β2 ≈ψμp for large λ.

3.3. The conditioned process
We consider here the uncertainty in x.y/, given the parameters and realizations {.xi, yi/; i =
1, 2, . . . , s}. Our interest here is in the properties of the process as an interpolator. We shall
see that for large λ the uncertainty is a very weak function of α and that fixing α= 4 is nat-
ural. For simplicity we shall confine ourselves to the case where the realizations are in fact
a subset of the renewal points or may be well approximated as such. We may thus use the
independent increments version of the process. This approximation is not unnatural when λ is
large.

In this case, the increments x̃i − x̃i′ are a sum of N.ỹi − ỹi′/+1 independent gamma random
variables, where N.y/∼ Poisson.λy/, given the parameters. It is thus sufficient to consider the
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Radiocarbon-dated Depth Chronologies 405

Fig. 2. Schematic diagram of the set-up for the calculation of var{x.y/} for the conditioned CPG process

uncertainty in x.y/ given the realizations immediately above and below y for, conditional on
these, the other realizations are irrelevant. (This is in fact the key element of the approximation,
which is valid even when λ is not very large.) For simplicity, we scale this such that the given real-
izations lie at opposite corners of the unit square, the scaling being equivalent to setting β=1;
Fig. 2. We focus on var{x. 1

2 /|x.0/=0, x.1/=1}, dropping explicit reference to the conditioning
for simplicity of notation.

Such a process may be constructively defined:

(a) draw N points from a Poisson distribution with parameter λ;
(b) draw independent multivariate samples of length N + 1 from the Dirichlet distributions

with multivariate parameters 1 and α1 for the y- and x-axes respectively (1 denoting a
vector of 1s of length N +1);

(c) form partial sums;
(d) plot on the unit square with linear interpolation.

We use here the close connection between the gamma and Dirichlet distributions.
The properties of the sample paths are dictated entirely by the parameters α and λ, which

control the lengths of the N + 1 renewal intervals on the x-axis and the number of renewal
points respectively. Note that y = 1

2 selects at random one of the renewal intervals. Let y − u

and y +v denote the end points of this interval on the vertical axis. The point y thus partitions
the axis into three segments: .0, y −u/, .y −u, y + v/ and .y + v, 1/. Similarly, it partitions the
x-axis; denote the lengths of these three segments on this axis by .Δ1, Δ2, Δ3/. Suppose that
the first and last of these comprise M and N −M renewal intervals, where 0�M �N. It follows
that .Δ1, Δ2, Δ3/ ∼ Dirichlet{Mα,α, .N − M/α}. We have N ∼ Poisson.λ/ and, with λ suffi-
ciently large, M|N ∼binomial.N, y/. We also define z=u=.u+v/ and write x.y/=Δ1 + zΔ2. A
schematic view of this set-up in shown in Fig. 2.

We can now write

E[x2|N, M, z]=E[Δ2
1|N, M]+ z2 E[Δ2

2|N, M]+2z E[Δ1Δ2|N, M] .5/
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Fig. 3. Simulated sample paths from (a) varying α with fixed λ and (b) varying λ with fixed α: the lighter
greys represent increased values of the varying parameter

= M2α+M.1+2zα/+ z2.1+α/

.N +1/.Nα+α+1/
, .6/

using standard results on the moments of the Dirichlet distribution. With λ large we also have
z∼uniform.0, 1/ so that

E[x2|N]≈ 1
4

− α+1
6.N +1/

+ .2α+3/.α+1/

12.Nα+α+1/
: .7/

Since α> 2, we also have λα large; thus we can approximate 1=.Nα+α+1/ by 1=.Nα+α/ to
give (after taking expectations over N)
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Fig. 4. Density functions for the CPG distribution (defined in equation (1)) with varying parameter values:
(a) , αD 4, λD 4 and βD 4; - - - - - - - , αD 15, λD 4 and βD 15; . . . . . . ., αD 100, λD 4 and βD 100; (b)

, αD4, λD2 and βD2; - - - - - - - , αD4, λD5 and βD5; . . . . . . ., αD4, λD10 and βD10

var{x. 1
2 /}≈ {1− exp.−λ/}.1+α/

4αλ
≈ ψμp−2

4
: .8/

Thus, in the limit for large λ, the conditioned process is exactly the line y =x. (Clearly this is
also so for the less interesting very small λ.) Furthermore the process is relatively insensitive to
α. Fig. 3 shows the effect of varying α and λ on the variability of the sample paths.

It therefore seems natural, in situations where the focus is on the conditioned process, to sim-
plify the model even further by fixing α at an appropriate large value for given μ. But, for large
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α, f{x.y/;λy,α,β/} is multimodal; Fig. 4. Indeed, in the limit, f.x;λy,α,β/ tends to the degen-
erate scaled Poisson distribution, confined to discrete quanta nμ=λy for integer n. Although in
our application all large values of α lead to the same inferences, it seems more natural to set α
as large as possible while f{x.y/;λ,α,β/} is unimodal. Dunn and Smyth (2005) suggested that
α=4 is a conservative limit and this is what we adopt.

3.4. Model fitting
Our interest here is with inference given observations. We adopt the independent increments
process, treating the data as observations on a subset .x̃s, ỹs/ of the renewal points. Subsequently
in Section 4 we consider having noisy observations on x̃s; our task will then include inference on
the x̃s, given a model for the noise. We firstly consider inference on the parameters λ and β. We
subsequently consider the predictive distribution of y-values corresponding to any x given the
data, using the conditioned process above. For this we are not restricted to the renewal points
of the process.

We write Ωj = x̃s.ys,j/− x̃s.ys,j−1/, and ωj =ys,j −ys,j−1, so that

Ωj =
N.ωj/+1∑

i=1
Gi, .9/

with Gi ∼gamma.α,β/ and N.ωj/∼Poisson.λωj/. The posterior for λ and β is obtained from

π.λ,β|Ω, ω/∝π.Ω|α,β,λ, ω/ π.λ,β/, .10/

with {Ω, ω} denoting the complete set of {Ωj,ωj} pairs. The likelihood, π.Ω|α,β,λ, ω/ =
Πm−1

j=1 .Ωj|α,β,λ,ωj/, is now of the form that is given in equation (1), with Ωj = x, and λy

= λωj. Observe that it is not necessary to condition on the unobserved renewal points.
The predictive distribution of x.y/ given ỹs and x̃s is most easily described constructively as,

for each segment, repeatedly drawing from π.λ,β|Ω, ω/ and, for each such draw, repeatedly
drawing from the conditioned process, as outlined in Section 3.3. More formally, we have

π{x.y/|x̃s, ỹs}=
∫
π{x.y/,β,λ|x̃s, ỹs}dβ dλ

=
∫
π{x.y/|β,λ, x̃s, ỹs}π.β,λ|x̃s, ỹs/dβ dλ, .11/

which is the predictive density marginalized over the posterior.

3.5. Model validation
We initially test our model by generating underlying sample paths from a process, which is not
necessarily that considered in this section, with varying parameter values. We then pass a subset
of {x, y} points from the process to the model. In each of many realizations of the process we
construct 95% highest posterior densities corresponding to four fixed values of y. We report the
coverage rates. In particular we consider four scenarios.

(a) The data are generated from a CPG process with α=4 (the value at which we fix α in our
model). The data are a subset of the renewal points of the process.

(b) The data are generated from a CPG process with α 	= 4. The data are a subset of the
renewal points of the process.

(c) The data are generated from a CPG process with α 	=4. The data are not renewal points
of the process. Instead, they are generated uniformly across the y-axis range of the true
sample path.
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Fig. 5. Cross-validation sample paths for four different scenarios ( , 95% HDR; , true path; �,
data): (a) scenario (a); (b) scenario (b); (c) scenario (c); (d) scenario (d)

(d) The data are generated from a different monotone process. The data are not renewal
points of the process. We use a bivariate truncated Gaussian renewal process and a bivar-
iate log-Gaussian renewal process.

Our resultant sample paths are encouraging. In Fig. 5 we present the 95% highest posterior
density intervals for a sample of each of the possible scenarios. In each case, the ‘true’ sample
path is inside the bounds of our error intervals (with one small exception in scenario (d)). We
repeat the sampling over 200 realizations (over four different y-values) creating a non-indepen-
dent sample of 800. Variations of those scenarios outlined above give the coverage rates that
are shown in Table 1. We note that these results include some situations where the model must
extrapolate beyond the range of the given data. The scenarios show that the model fits well
to various departures from the assumptions, with the worst results seen for processes that are
generated when α is small; recall that the process is discontinuous when α� 2. When α= 1
the process is in fact a (linearized) bivariate Poisson process. Almost vertical segments have the
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Table 1. Percentage coverage of 95%
HDR in repeated generation of chronol-
ogies

Scenario % within
95% HDR

(a) α=4 95.6
(b) α=50 97.0

α=1 87.6
(c) α=50 92.5

α=1 84.1
(d) Truncated Gaussian 96.7

Log-Gaussian 93.3

same probability as almost horizontal segments. Such a process is discontinuous; in fact the
distribution of slopes has neither a mean nor a variance. We propose this as a realistic ‘worst
case’, remarking that strong reasons would be needed to include discontinuity within the prior.

4. Radiocarbon dating and chronology modelling

In this section, we discuss the creation of calendar ages from given radiocarbon determina-
tions. The process involves the technique of radiocarbon calibration via a given calibration
curve which describes the relationship between calendar and radiocarbon years. In Section 4.1,
we review the standard calibration method for creating calendar dates {θj, j = 1, . . . , m}. The
technique can be naturally extended to the scenario where multiple dates are required, thus
providing the opportunity for a joint prior distribution over the set of dates. It is this joint prior
to which we attach our piecewise linear CPG process. In Section 4.2, we discuss techniques for
dealing with dates which may, for reasons that are not connected with sedimentation, violate
the monotonicity assumption. We conclude in Section 4.3 with a review of previous attempts at
chronology modelling.

4.1. Radiocarbon dating
The radiocarbon age of a sample tj is reported in radiocarbon years (written as 14C years). The
non-linear (and non-monotonic) transformation to calendar age θj (given in calendar years BP,
present taken conventionally to be 1950) uses the published calibration curve r.θj/ (Reimer
et al., 2005). The sources of uncertainty include

(a) the calibration curve, r.θ/ itself, modelled as r.θ/ ∼ N{μ.θ/,σ2.θ/} (the functions μ.·/
and σ.·/ are known),

(b) laboratory errors, modelled with Gaussian uncertainty t|θ, τ ∼N{r.θ/, τ2} and typically
reported as t ± τ (see Bowman (1999) and Aitken (1994)),

(c) reservoir effects where samples are believed to have come from non-standard sources of
carbon (Stuiver and Pollach, 1977) and

(d) other errors, possibly induced by the laboratory treatment of the sample, or contamina-
tion of the sample itself (see Scott (2003)).

In the Bayesian format, given the model and radiocarbon data tj ± τj, we obtain a posterior
calendar age distribution via
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Fig. 6. Process of radiocarbon calibration

π.θj|tj,μ, τj,σ/∝π.tj|θj,μ, τj,σ/π.θj/ .12/

where π.θj/ is a prior distribution on the unknown calendar age for the jth sample; note
that the likelihood can be marginalized over r.·/. For more detail, see, for example, Buck et al.
(1996).

An example of radiocarbon calibration for an individual age is shown in Fig. 6. Here, the
radiocarbon age 3180±50 is shown in its original Gaussian format on the y-axis. This is trans-
formed via the calibration curve (with dotted error bands) into the calendar age density on the
x-axis. The multimodality in the calendar age distribution can be seen to arise directly from the
non-monotonic nature of the calibration curve. Note also that the original modal age of 3180
14C years BP is transformed to just under 3400 calendar years BP.

In our case we have multiple samples and observe {.tj ± τj; dj/; j =1, . . . , m}. We now write
the calendar age as a function of depth to give θ.dj/. Interest focuses on the joint prior for the
continuous monotone process θ.d/, for which we adopt the piecewise linear CPG process. In
particular we adopt the CPG distribution as the prior for the observed (depth, calendar age)
increments; the independent increments assumption leads to a product likelihood. We allocate
depth to the y-axis and time (being age) to the x-axis; this ensures continuity of sample paths
with respect to time. Thus the rate process may now be thought of as the inverse of a sedimenta-
tion rate (i.e. years per unit depth). Its stochastic variation is piecewise constant, the number of
changes in a given depth interval being Poisson distributed with depth durations following an
exponential distribution. The sedimentation rates themselves are independent and identically
distributed (being the ratio of exponential and gamma random variables). Their distribution is
skewed; instances of very low rates are more common than are instances of very high rates. Of
course, the rates and their durations are by construction not independent.

4.2. Outliers
Scott (2003) suggested that around 5% of all radiocarbon dates are outliers. Specifically, she
suggested that the radiocarbon age uncertainty in some dates is an underestimate. Below we
extend the standard model.

The standard approach is Christen (1994); tj|θj,σ,φj, δj ∼N{r.θj/+φjδj,σ2}. Here, φj is a
binary flag parameter which identifies potential outlying dates, and δj is a shift parameter with
prior distribution δj ∼N.0, bσ2/. Equivalently, t follows a distribution which is a binary mixture
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of normal distributions with variances σ2 and .b+1/σ2. As in Blaauw and Christen (2005) we
adopt b=2, and the simple prior distribution φj ∼binomial.1, 0:05/, interpreting the posterior
probability that φj =1 as the probability that the date in question is an outlier.

We allow a further type of outlier which allows the model to ignore completely certain dates
which severely violate the monotonicity assumption. We thus use tj|θj,σ,φ1j, δ1j,φ2j, δ2j ∼
N{r.θj/ +φ1jδ1j +φ2jδ2j,σ2}, with φ1j and δ1j defined as above, but with φ2j ∼binomial.1,
0:001/ and δ2j ∼N.0, 100σ2/. The larger prior variance that is given to δ2j has the desired effect
of removing the influence of extreme outlying dates.

4.3. Previous attempts at chronology reconstruction
The approach of Blaauw et al. (2003) involves a concept which is known as wiggle matching (Van
Geel and Mook, 1989). Given linear sedimentation rates over arbitrary periods of time, the cal-
ibration curve can be used to identify the radiocarbon ages of the given dates. A weighted least
squares or maximum likelihood approach provides best fit linear segments. Blaauw and Chris-
ten (2005) extended this approach to define a parametric linear piecewise prior for the calendar
ages. Given a set of k changepoints they used Markov chain Monte Carlo (MCMC) sampling
to determine their ages and depths. The resulting calculations produce a large number of pos-
terior chronologies. Predictions with uncertainties for other depths are obtained by repeated
linear interpolation between changepoints. An important aspect of this model is that it does not
explicitly parameterize the radiocarbon dates that are given for the core; the model does not
contain our defined parameters θj (being the calendar ages of the radiocarbon dates). Rather,
it is concerned only with creating posterior distributions for the depths and ages of changes in
sedimentation rate. The value of k is chosen by considering several possible values and selecting
that which maximizes an information criterion. Note that k is somewhat unsatisfactorily not
treated as random.

An alternative approach was presented by Bronk Ramsey (2007), implemented in the radio-
carbon dating program Oxcal (Bronk Ramsey, 1995, 2001). In this method, a Poisson process is
defined with respect to the age axis. It may be thought of as modelling sedimentation as the accu-
mulation inagivenperiodT ofaPoissonnumberof instantaneous increments,of sizeg.Themean
sedimentation rate is thusλg per unit time, where g is a fixed physical constant characterizing the
site, and inference involves λ only. There is a similarity here to the CPG model in that infinitely
large α and β such that α=β= k leads to a scaled Poisson distribution (i.e. T=k ∼ Poisson). Both
processes have a Poisson number of increments; ours are of random size, whereas those for Bronk
Ramsey (2007) are of fixed and prespecified size, with unclear guidance for its determination.

5. Case-studies

We present two case-studies of the model for sites at Sluggan Moss (Northern Ireland) and Glen-
dalough (Ireland). These two show a wide variety of features that are relevant to the theoretical
implications of our model.

We adopt the CPG formulation as a prior on the calendar age gaps; now Ωj =θ.dj/−θ.dj−1/,
for each of the observed radiocarbon dates xj ± τj at depths {dj, j = 1, . . . , m}. In effect, our
model requires that changes in the linear sedimentation rate can occur randomly throughout
the core but are required to occur at least as often as every radiocarbon-dated depth.

The parameters of our model include the CPG parameters, .β,λ/, as well as those for each of
the calendar dates. All are updated by using single-component Metropolis–Hastings steps. At
each step a set of calendar age simulations is passed to the CPG process through which β and
λ are updated. We adopt vague inverse gamma distributions with shape and rate 0.01 as prior
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distributions for β and λ. Since these approximately control the variability and mean rate of the
process sections respectively, it is conceivable that more informative distributions may be used
if these were available a priori.

The model is implemented in C++ and R (R Development Core Team, 2006) via the
Bchron package (which is available from http://lib.stat.cmu.edu/R/CRAN/). Model
performance is highly dependent on the number of radiocarbon dates, since each additional
determination requires the inclusion of five extra parameters (that for the date themselves, two
binary flag parameters and two outlier shift parameters). The MCMC runs require Metropo-
lis–Hastings updates for each of the parameters. In practice, the two CPG process parameters
add very little computational load to the model.

For the Glendalough sequence, a run of 1 million MCMC iterations (which provides practi-
cally uncorrelated samples and passes convergence checks such as those which are implemented
in BOA; Smith (2005)) requires around 80 min on a 3.2 GHz Dell Precision desktop computer.
Shorter runs of length 200000 provide useful indications about the chronology and can be run
in under 10 min. In practice, we have found that chronologies with a large number of (non-out-
lying) determinations often converge faster because the monotonic constraints that are imposed
on them allow for less variability in the parameter values.

5.1. Sluggan Moss
This core, taken from Sluggan Moss (Smith and Goddard, 1991) in County Antrim, has been
extensively dated. The full data set contains 40 radiocarbon ages of between 985 and 12470 14C
years BP which lie at depths ranging from 44.5 cm to 518 cm. In some cases, multiple radiocar-
bon ages lie at the same depth; we use only those dates which purport to be representative of
the whole sample. There are 23 such radiocarbon determinations.

The pollen record for this core gives an indication of the palaeo-environment throughout the
Holocene. In particular, Smith and Goddard (1991) drew attention to changes in the pollen
assemblage at various depths across the core which correspond to large environmental shifts.
The chronology model allows us to examine the timing of these shifts. The output of the CPG
model is shown in Fig. 7.

Further to the CPG output, we can also examine the effect of variability in the chronology via
the pollen diagrams for which they are created. Important events, such as the coincidental rise
in Betula and fall in Juniperus (which are linked to the start of the Holocene), or the subsequent
fall in Betula and rise in Corylus (which are linked to the occurrence of warmer summers), are
now shown to be of uncertain age. Following the approach of Smith and Pilcher (1973), we
can identify the start of the Holocene as occurring at depth 452 cm, and the onset of warmer
summers at 424 cm. Thus, using our process we can identify a 95% HDR interval for the start
of the Holocene as (10.6–11.0) ×103 calibrated years BP, and the onset of warmer summers as
(9.94–10.55) ×103 calibrated years BP.

Many further possibilities for analysis are available given the joint nature of the chronologies
that we construct, especially those concerned with the timing between events. In particular,
Fig. 8 shows the posterior distribution of the time lapse between two depths (10 cm apart) both
with and without the joint structure. There is a clear reduction in uncertainty. We expand on
these analyses elsewhere.

5.2. Glendalough
The core at Glendalough has been used as part of the Bayesian climate reconstruction project
by Haslett et al. (2006), though the reconstructions were presented in 14C years. The core is
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Fig. 7. CPG output for Sluggan Moss: , 95% HDR regions for the uncertainty in the chronology
model at each depth; �, modal estimate of the chronology; , 95% HDR interval for the unconstrained
calibrated ages that would be obtained if no prior model had been applied

interesting from a chronological viewpoint as it contains just five radiocarbon dates, with an
additional restriction that the top of the core is the date of extraction.

A full run of the CPG model provides the chronology that is shown in Fig. 9(a). The small
sample size that is present for the Glendalough core also induces a high degree of ‘bowing’ where
little temporal information exists. We contrast this with Fig. 9(b), which shows the comparison
between the CPG method and the best fit Blaauw and Christen method, known as BPeat. Clearly,
the BPeat model ignores the extra uncertainty that is present when interpolating between dates.

As above, following the methods of Smith and Pilcher (1973), we can identify the start of the
Holocene from the pollen record, occurring at an estimated 12 m. A 95% HDR interval for this
depth is (10.84–10.88)×103 and (10.90–11.28) ×103 calibrated years BP. Thus there appears to
be some evidence of contemporaneity between the start of the Holocene at Sluggan Moss and
Glendalough.

6. Discussion

We have introduced a new and simple monotone stochastic process y.x/ with piecewise linear
sample paths. It is simply defined on a three-parameter CPG process, is Markov with respect to
the y-axis and, under simple restrictions on a gamma shape parameter, has sample paths that
are mean square continuous with respect to the x-axis.
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Fig. 8. Two overlaid histograms showing the posterior distribution of the time lapse between two depths
utilizing joint structure ( ) and ignoring joint structure ( )

We have focused on a Bayesian analysis of its simplest form, a two-parameter independent
increments process, which corresponds to large values of the Poisson parameter. Given a sample
of points on y.x/ we have shown that a close connection to the Tweedie distribution makes it
simple to compute the likelihood. In particular, we can marginalize over the number and the
lengths of the linear segments. It is therefore easy, given such data, to sample from the posterior
distribution of the parameters. As it is particularly easy to sample from the conditional distri-
bution of the process given data, it is thus straightforward to generate realizations of the sample
path that are consistent with the data and the model. We have further shown by simulation that
the model is robust, in the sense that such conditional realizations, given data, are consistent
with the generating (monotone) stochastic process, even when this departs in several ways from
the conditions of the independent increments CPG model.

We have subsequently embedded this within a problem of radiocarbon dating by adopting
the CPG distribution as a prior for the true chronology (which is equivalent to the true sedi-
mentation history). We have illustrated this with two contrasting examples. In this context, we
show that the method has several desirable attributes. Elsewhere we examine in greater detail the
construction of such chronologies via this and other methods. Further applications will arise in
related work on palaeoclimate reconstruction where the possession of joint posteriors for entire
chronologies is important.

It is clear that several extensions to the CPG methodology are possible. The most interest-
ing of these is the dropping of the requirement that the data are at renewal points of the CPG,
which is related to our requirement that λ is large, for now—given a sample of data—it is neither
simple to compute the likelihood nor to sample realizations conditional on the data. Progress
here would be welcome, for there then become clear connections to ‘broken stick’ piecewise
linear regression and the ability to marginalize with respect to the number of breaks (or knots)
would be an attractive way to bypass Dirichlet process or reversible jump methodologies. This
is closely related to another extension, the relaxation of the assumption that α is known, for,
unless λ is large, the insensitivity to α cannot be guaranteed.
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Fig. 9. (a) CPG output for Glendalough ( , 95% HDR; �, mode; , unrestricted calibrated dates;
note that the radiocarbon determinations at depths 426 cm and 1166 cm both exhibit multimodal densi-
ties—thus the biggest mode (�) may shift discontinuously, giving the erroneous impression of discontinuous
paths) and (b) comparison between the CPG method and the best fit Blaauw and Christen (2005) method
with one changepoint ( , 95% HDR CPG chronology; , 95% HDR BPeat model)
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