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Abstract. An algorithm has been developed to dynamically schedule
heterogeneous tasks on to heterogeneous processors in a distributed sys-
tem. The scheduling strategy operates in a dynamically changing com-
puting resource environment and adapts to variable communication costs
and variable availability of processing resources. The scheduler utilises a
genetic algorithm to minimise the overall execution time. Experiments
are performed which show that the algorithm can achieve near optimal
efficiency, with up to 100,000 tasks being scheduled.

1 Introduction

Scheduling heterogeneous tasks on to heterogeneous resources, otherwise known
as the task allocation problem, is an NP-hard problem for the general case [7]. In
multi-processor systems, such as a distributed system, one would expect linear
speed-up when additional processors are employed to process tasks. Properties
of a distributed system such as communication overheads, heterogeneous proces-
sors, and heterogeneous tasks can reduce the efficiency achieved by the system.
The development of a scheduling strategy is required to produce schedules which
seek to minimise the total execution time. The scheduler must also have the abil-
ity to adapt to varying resource environments.

Many heuristic algorithms exist for specific instances of the task scheduling
problem, but are inefficient for a more general case [6, 15]. The use of Holland’s
genetic algorithms [13] (GAs) in scheduling, which apply evolutionary strategies
to allow for the fast exploration of the search space of possible schedules, allows
for solutions which seek to minimise the execution time to be found quickly and
for the scheduler to be applied to more general problems. Many researchers have
investigated the use of GAs to schedule tasks in homogeneous [4, 14, 23] and
heterogeneous [1, 9, 10, 17, 22] multi-processor systems with great success.

Unfortunately assumptions are often made which reduce the generality of
these solutions, such as that scheduling is calculated off-line in advance and
cannot change, all communications times must be known in advance [1, 4, 9, 14,
22], networks provide instantaneous message passing [10, 23] and that processors



will always run at the same speeds [1, 4, 9, 10, 14, 15, 19, 21–24]. These assump-
tions limit the generality of these scheduling strategies in real world systems.
We make no assumptions about the homogeneity of the processors, or about the
availability of system resources.

In this paper a scheduling strategy is presented which uses a GA to schedule
heterogeneous tasks on to heterogeneous processors to minimise the total exe-
cution time. It operates dynamically, allowing for tasks to arrive for processing
continuously, it considers variable network contention and variable speed pro-
cessors based on historical observation of system conditions, and it maximises
the use of the processor which is responsible for scheduling tasks.

In Sect. 2 we review related work. In Sect. 3 we give an overview of how a GA
operates. In Sect. 4 we describe our scheduling algorithm. In Sect. 5 we present
the results of our performance experiments, and conclude in Sect. 6.

2 Related Work

There are many examples in the literature of artificial intelligence techniques
being applied to task scheduling [1, 4, 9, 10, 14, 15, 17, 19, 21–24]. Meta-heuristic
search techniques such as GAs [13], tabu [8], and ant colony search [3] are most
applicable to the task scheduling problem because we wish to quickly search for
a near optimal schedule out of all possible schedules. Good results have been
yielded through the use of GAs in task scheduling algorithms [1, 4, 9, 10, 14, 15,
17, 19, 21, 23, 24].

Much work has been done on using GAs for static scheduling [1, 4, 9, 14, 22],
where schedules are created before runtime, but the state of all tasks and system
resources must be known a priori and cannot change. This limits these schedulers
to specific problems and systems.

Dynamic GA schedulers [10, 17, 23, 24] create schedules at runtime, with
knowledge about the properties of the system and tasks possibly not known
in advance, allowing for variable system and task properties to be considered.
Dynamic GA schedulers are thus the most practical of the two to use for real
world distributed systems. Current dynamic GA schedulers have been shown
to produce near optimal schedules in simulations, although assumptions that
have been made limit their usefulness. Communications costs and the possibility
of variable processing resources are not considered. We propose that historical
information about communication costs and variable processor speeds be con-
sidered when creating a schedule. An algorithm is presented in this paper which
corresponds to the real world and addresses properties which have not been
previously addressed in GA based dynamic task scheduling algorithms.

3 Genetic Algorithms

A GA is a meta-heuristic search technique which allows for large solution spaces
to be heuristically searched in polynomial time, by applying evolutionary tech-
niques from nature [13]. GAs use historical information to exploit the best so-



lutions from previous searches, known as generations, along with random muta-
tions to explore new regions of the solution space. A GA can be broken down
into three steps important steps, selection, crossover, and random mutations. Se-
lection according to fitness is a source of exploitation, and crossover and random
mutations promote exploration.

A generation of a GA contains a population of strings, σi, each of which
correspond to a possible solution from the search space. Each string in the pop-
ulation has a value associated with it, Fi, indicating how ‘fit’ the string is, or
how good the string is, compared to the rest of the strings in the population.

4 Scheduling Algorithm

In this section we detail our scheduling algorithm which utilises the GA meta-
heuristic search technique. The algorithm we have developed is based on one
developed by Zomaya et al. [23, 24]. We have created an algorithm which can
adapt to varying resource environments and can produce near optimal schedules.
The GA algorithm is only performed if there are more unscheduled tasks than
processors; if there are fewer tasks than processors, the largest task gets assigned
to the processor which will finish processing it earliest.

We wish to schedule an unknown number of tasks for processing on a dis-
tributed system with a minimum execution time. The processors of the dis-
tributed system are heterogeneous, and it is assumed we have non-exclusive
usage of their processing resources. The available processing resources on each
processor can vary over time. Processors can be added, removed, or fail, and
can be idle. Each processor can be uniquely identified by a scheduling proces-
sor, which is dedicated to creating schedules to map tasks to processors. The
available network resources between processors in the distributed system can
vary over time. Each task, ti, to be scheduled for processing has an associated
processing resource requirement and the task can be uniquely identified. Tasks
are also indivisible, independent of all other tasks, and can be processed by any
processor in the distributed system.

Tasks arrive at unknown intervals for processing, and are placed in a queue of
unscheduled tasks. Batches of tasks from this queue are scheduled on processors
during each invocation of the scheduler. Each task has a resource requirement
which is measured in millions of floating point operations per second (Mflop/s).
Each processor can only process a single task at any one time. The available
processing resources of each processor are known (in Mflop/s), measured using
Dongarra’s Linpack benchmark [5]. This is a recognised standard used to bench-
mark systems for inclusion in the list of Top 500 supercomputers [16]. Available
processing and network resources vary over time, so the exponential smoothing
function (see Sect. 4.1) is used to minimise localised fluctuations, thus allowing
for a more realistic processing environment to be controlled. A single processor is
dedicated to scheduling (as in [11]) although it is recognised that the scheduling
algorithm itself could be distributed over all of the processors in the distributed
system.



Each idle processor in the system requests a task to process from the sched-
uler, which is then processed and returned. The scheduler contains a queue of
tasks which have been mapped to each processor, and when a request for work
is received from a processor the task at the head of the corresponding queue is
sent for processing. A processor does not contain a queue of tasks, because net-
work resources are limited and processing resources are not dedicated, thus we
do not wish to repeatedly hand out the same tasks multiple times when system
resources change significantly.

4.1 Exponential Smoothing Function

An exponential smoothing function, Ai = Ai−1 + ν × (ai − Ai−1), is utilised
to allow for a single ‘average’ value, A, to accurately represent multiple values,
a1, a2, .., an, which arrive sequentially producing A1, A2, .., An, while smoothing
out fluctuations, and allowing recent values to exert more influence than older
values whose influence tends towards zero. The total number of values is N . The
spread of the function is controlled by ν, where ν = [0, 1].

4.2 Communication costs

Communication costs, such as bandwidth (bits/second) and latency (seconds),
between the scheduler and the processors available for work should be considered
in any schedule produced. We use historical information about network commu-
nication times between processors to estimate future communication costs, thus
allowing for a more real world scheduling environment to be considered.

The cost of sending a task tk to processor Pj is Ck,j = (bk,j/Qk,j)+(Rk,j/2).
Cj,k denotes the communication cost between processor j and the scheduler for
task k. This value is derived by calculating the cost of sending and receiving
messages. The latency of the communications channel from the scheduler to
each processor is tested, and a round trip time is calculated which is included in
Rj using the smoothed average function. When a task is sent from the scheduler
to a processor, its size in bytes, bk,j , is calculated, where k is the kth task sent.
The processor then sends back an acknowledgement, and the task round trip
time is noted as rtk,j . The number of bytes sent per second is calculated as
qk,j = (bk,j/rtk,j)−Rj

and qk,j is then sent to the smoothing function to produce
Qk,j , which denotes the bandwidth of a given channel.

4.3 Dynamic Batch Size

Tasks arrive for processing at random intervals and are added to the queue of
unscheduled tasks T . The queue may contain a large number of tasks waiting
to be scheduled; however, it may take a long time to find a schedule for all
the tasks which efficiently utilises system resources. Instead a dynamically sized
batch considers batches of tasks for scheduling from the queue, which reduces the
probability of processors waiting on the scheduler to finish creating a schedule.



A single processor is dedicated to scheduling (such as in [11]), so we strive to
maximise the use of its resources, a cost which has not been considered by some
dynamic scheduling algorithms [10, 17, 23]. It is easier to obtain a high utilisation
of processing resources if there is a high ratio of tasks to processors [23].

The time a GA takes to run from start to finish is related to the size of the
batch, kH2, where k is a constant overhead and H is the size of the batch. Thus
using the exponential smoothing function a smoothed average time, ST where
ST ≥ 1, for a single element in the batch can be calculated. We wish to fully
utilise the resources of the dedicated scheduling processor. The time when the
first processor becomes idle is calculated as follows, minTime = minM

j=1(δj/Pj),
where δj is the processing time in Mflop/s waiting to be processed by processor Pj

and M is the number of processors in the distributed system. Thus H = b√ST c,
where H ≥ 1, resulting in a dynamically sized batch which fully utilises the
processor belonging to the scheduler.

Once a schedule has been assigned the batch size is once again recalculated
and another schedule is produced until there are no more tasks in T to schedule.

4.4 Encoding

Each string, σi, in the population represents a different possible schedule. We
have chosen to use double precision floating point numbers for each character
of σi. Each character in σi provides information about mappings between tasks
and processors. The number of characters in σi is ω = H+M−1, where H is the
number of tasks in the batch, and M−1 is the number of partitions in the string,
where M is the number of processors. Each task in the batch is mapped to a
processor, with a unique task ID number identifying the task, and a delimiter
separating the different processors queues.

4.5 Most into Least

An initial population is generated using the Most-Into-Least (MIL) list schedul-
ing heuristic, which has been successfully used in other GA task schedulers [4,
10]. A random number of tasks, are assigned to processors in a round robin fash-
ion. The remaining tasks are then sorted, using Quicksort [12], and allocated in
a round robin fashion to the processors which will finish processing them the
earliest, taking into account existing and assigned tasks for each processor. This
leads to a well balanced randomised initial population.

4.6 Fitness Function

A fitness function attaches a numerical value to every string in the population,
which indicates how much better one schedule is over the rest of the schedules
in the population. We use relative error to generate a fitness value for each
string (used in [10]) in the population because it allows for the makespan and
load balancing of a schedule to be represented in a single numerical value. This is



only an internal metric to heuristically direct the exploration of the search space.
When the GA has finished running, the string with the smallest makespan is used
by the scheduler to assign tasks to processors.

In a given string σi, an error ej is calculated for each processor, Pj , where ej

is a non-negative floating point number. Previously assigned, but unprocessed,
load for each processor is considered by calculating δj , the finishing time of a pro-
cessor j. The finishing time is calculated as δj = (Lj/Pj), where Lj denotes the
previously assigned load, measured in Mflop/s, and Pj is the current processing
power in Mflop/s of processor j.

The theoretical optimal processing time can now be found,

ψ = (
N∑

i=1

ti/
M∑

j=1

Pj) +
M∑

j=1

δj where ti is the processing requirement of task i in

the batch (in Mflop/s) and N is the total number of tasks in the batch.
The relative error of a string is given as

Ei =

√
M∑

j=1

|ψ − (Lk,i +
M∑

u=1
((ty/Pj) + Cty,j))|2 where Cty,j is the communica-

tion cost (see Sect. 4.2), of scheduling a task, ty, on a processor j. The fitness
value of a string is Fi = 1/Ei, where Fi = [0, 1]. A larger value indicates a better
or fitter schedule.

4.7 Selection, Crossover and Mutation

We choose to use the standard weighted roulette wheel method of selection
which is widely used by previous researchers who have applied GAs to task
scheduling [4, 9, 10, 14, 19, 23]. Each string in the population, σi, is assigned a

slot, ςi, between 0 and 1. The size of a slot is ςi = Fi×(
ρ∑

j=1

F−1
j ), where

ρ∑
i=1

ςi = 1.

After the selection process is complete we use the cycle crossover method [18]
to promote exploration as used in [23]. We have chosen to use two types of
mutation to promote exploration of the search space. First of all we randomly
swap elements of a randomly chosen string in the population. The next type
of mutation aims to make a string more balanced. A random string is selected
and a task on the processor, Pj , with the greatest relative error, Ei,j , is then
randomly selected and inserted randomly into the queue of a different processor.
This heuristic encourages well balanced solutions to be found in less time.

4.8 Stopping Conditions

The GA will keep evolving the population until one or more stopping conditions
are met. The string with the lowest makespan is selected after each generation
and if it is less than a specified minimum, the GA stops evolving. The maximum
number of generations is set at 1000 [23]. The GA will also stop evolving if one
of the processors becomes idle, in which case it will return the best schedule
found so far.



5 Experiments

The scheduling algorithm described in Sect. 4 has been implemented and simu-
lations have been performed, with up to 50 heterogeneous processors, and up to
100,000 randomly generated heterogeneous tasks. Each experiment was repeated
a number of times and an average result was calculated for each point. We also
implemented the original algorithm that our algorithm is based on, developed
by Zomaya et al. [23], which is the current state of the art dynamic GA task
scheduler for homogeneous distributed computing. It was easily adapted to work
with heterogeneous processors by using Mflop/s as the measure of the rate of
execution rather than time.

Tasks are scheduled across 50 heterogeneous processors with a processing
resource range of 10 to 100 Mflop/s. We assume that all of the tasks arrive for
processing at the beginning of the simulation, for these experiments. Determining
a representative set of heterogeneous computing task benchmarks remains a
challenge for the scientific community in this research area as noted by Theys et
al. [20]. We have decided to generate random sets of tasks for scheduling using
the Poisson distribution. We use randomly generated task sets because: we wish
to demonstrate the algorithms effectiveness over a broad range of conditions, a
set of heterogeneous computing benchmark tasks do not exist, and it is not clear
what characteristics a ‘typical’ task would exhibit [20].

We have decided to use a population size of 10, which is known as a mi-
cro GA [2] and used in [10, 23, 24], which speeds up computation time without
impacting greatly on the final result. We have also compared our scheduling
algorithm against a number of well known batch and immediate mode heuris-
tic schedulers. An immediate mode scheduler only considers a single task for
scheduling on a FCFS basis.

The Min-min batch scheduler begins with a batch of unscheduled tasks. It
then schedules the task with the minimum completion time to the next available
processor. This is repeated until all tasks have been scheduled. The Max-min
batch scheduler is similar to the Min-min scheduler except it schedules the task
with the maximum completion time to the next available processor. The earliest
first immediate mode scheduler considers tasks on a FCFS basis. When a task
arrives for scheduling, it is assigned to the processor which will finish processing
it the earliest. The lightest loaded scheduler is also an immediate mode scheduler.
When a task arrives for scheduling it is assigned to the processor which has the
lightest existing load.

5.1 Communication

We wish to show that our algorithm provides greater efficiency in a system with
variable communication costs. To demonstrate its effectiveness we vary the ratio
of the task processing requirement to communications costs, and measure the
efficiency achieved. We fix the available processing resources and the size of
the batch, to allow for the effect of communication costs to be demonstrated.
We wish to schedule 100,000 tasks with a view to maximising the efficiency of
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Fig. 1. Efficiency of schedulers varying communication to task size ratio

the processing resources in the distributed system. The communications costs
between each processor and the scheduler are normally distributed.

Figure 1 shows that the improved algorithm proposed in this paper consis-
tently provides schedules with greater efficiency over all of the other schedul-
ing algorithms. The consideration of communication costs allows the improved
scheduler to estimate a communications cost when creating a schedule, resulting
in an overall improvement in efficiency of the scheduler.

6 Conclusion

A scheduling algorithm has been developed to schedule heterogeneous tasks on to
heterogeneous processors in a distributed system. It provides efficient schedules,
adapting to varying resource environments with respect to processing resources,
and communications costs. The algorithm also fully utilises the dedicated proces-
sor running the scheduler. The GA employed the MIL list scheduling heuristic to
create a well balanced randomised initial population. The fitness function utilises
the relative error metric internally which promotes a well balanced solution with
a low makespan. Roulette wheel selection is used to exploit past results to di-
rect the search for efficient schedules. Cycle crossover promotes exploration of
the search space. Random swaps and random re-balancing of processor queues
within strings perturb the search and facilitate a better exploration of the search
space.

Results have been presented which show that the algorithm proposed in
this paper consistently uses processors more efficiently than the current state



of the art GA algorithms for the same problem. It is more suitable for real-
world use because it considers properties of distributed systems, such as variable
communication costs and variable speed heterogeneous processors, which other
algorithms for the task scheduling problem do not consider.
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