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Abstract—This paper presents work carried out with data
from an industrial plasma etch process. Etch tool parameters,
available during wafer processing time, are used to predict
wafer etch rate. These parameters include variables such as
power, pressure, temperature, and RF measurement. A number
of variable selection techniques are examined, and a novel
piecewise modelling effort is discussed. The achievable accuracy
and complexity trade-offs of plasma etch modelling are discussed
in detail.

I. INTRODUCTION

Plasma etching is a complex dynamic process used in
semiconductor manufacture during which material is removed
from the surface of product wafers using gases in plasma
form. Plasma etch is preferred to older wet etch methods
as anisotropic etch profiles can be achieved with excellent
across-wafer uniformity. However, due to the complexity of
the process, plasma etching is notoriously difficult to model
and hence troublesome to control. Measurements of etch depth
and etch profile are not usually available to machine operators
for several days after the completion of the etch process.
Hence, control is difficult to implement with this inherent
measurement delay. A machine running out of specification
without being detected can lead to days of scrapped materials
and/or damaged equipment.

Whereas downstream data is recorded intermittently and
delayed, a great deal of inline data is often recorded from the
processing tool during the etch process. Variables such as pres-
sure, temperature, RF power and phase, plasma impedance,
and gas flow rates are available in real time during wafer
processing. “Virtual metrology” is a relatively new technology
that is gaining a following in this industry whereby readily
available measurements are used to estimate the actual wafer
state and etch results [1]. With a full virtual metrology system
in place, “virtual” measurements of etch depth would be
available for each wafer directly after processing, reducing
wafer scraps and enhancing the etch process dramatically.

The determination of a model for virtual metrology schemes
is challenging due to the low supply of actual metrology values
for training, the natural drifting behavior of the tools, and
the effect of periodic maintenance cycles. This paper explores
some methods of variable selection for modelling of etch rate,
examines a piecewise modelling effort to counteract the effect

of maintenance cycles, and discusses the obtainable accuracy
and complexity compromises of modelling the plasma etch
process.

II. VARIABLE SELECTION TECHNIQUES

During plasma etch processing, a vast amount of infor-
mation is recorded from etching machines and various other
diagnostics. This situation leads to a surplus of available data
for each wafer processed. Deciding which variables are most
useful to explain variations in the etch output is a challenging
task. Modelling from first principals is a complicated option,
and leads to computer models that take hours or days to
compute seconds of a plasma etch simulation [2]. Relating
the bulk plasma and etch tool parameters to etch parameters
on a nanometre scale is a daunting task, and engineers in the
area often turn to statistical methods to model variations in
the etch process [3] [4]. This paper examines three different
statistically-based methods for variable selection.

A. Principal Component Analysis

Principal Component Analysis (PCA) is a method used to
transform a set of correlated variables into new uncorrelated
variables, known as principal components (PCs). Each PC is a
linear combination of the original variables. They are arranged
in order of the variance that each one explains in the original
dataset [5]. It is often used with plasma etch to compress
Optical Emission Spectroscopy (OES) measurements [6].

Before PCA is performed on a set of data, X, made up of n
samples (rows) and m variables (columns), it is usual to offset
each variable to have zero mean, and sometimes to scale each
variable to unit variance. This is useful if the original data has
variables with many different magnitude scales. Scaling to unit
variance gives all variables equal importance for the analysis.
PCA performs an eigen-decomposition of the covariance or
correlation matrix of the data matrix X, which decomposes X
as the sum of the outer product of vectors ti and pi plus a
residual matrix E [6].

X = t1pT
1 + t2pT

2 + ...+ tlpT
l + E (1)

= TPT + E (2)
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where,

T = [t1, t2, ...tl] (3)
P = [p1,p2, ...pl] (4)

and l is the number of PCs. The vectors ti are known as the
scores and T ∈ Rn×1 the score matrix; the pi vectors are
the loadings and P ∈ Rm×1 the loadings matrix. For PCA,
the decomposition of X is such that the loading matrix P is
orthonormal and the score matrix T is orthogonal. The first
PC is the linear combination of the m original variables that
explains the greatest amount of variability (t1 = Xp1). In the
m-dimensional variable space, the loading vector p1 defines
the direction of the greatest variance [7]. Overall, loadings
represent how the original variables are combined to make
the PCs, scores represent original data projected onto the new
uncorrelated variables, and finally, E, the residual, represents
the data that is left unrepresented by the model. For a matrix
X of rank r, r PCs can be calculated. However, the first k
(k < r) of these may be sufficient to explain the bulk of the
variance in the data. If k = dim(X), then E = 0, and the
representation of the data is exact for the new variables (PCs).

PCA can be used as a variable selection technique by
examining the loading vectors for the first few principal
components. The variables that contribute the most variance
to these components will have the highest loading values.
These variables can then be selected as inputs to etch rate
models. Using the principal components themselves as inputs
to regression based models is known as Principal Component
Regression (PCR), and has been applied to plasma processing
in [8].

B. Correlation Methodology

An arguably simpler method to select important variables is
to analyse the linear correlations between each etch chamber
variable and the etch rate recorded. The correlation between
two variables is defined as

ρx,y =
cov(x, y)
σxσy

=
E((x− µx)(y − µy))

σxσy
, (5)

where x and y are two variables, with mean values µx and
µy and standard deviations σx and σy . E is the expected
value operator, and cov denotes covariance. The correlation
coefficient ρx,y cannot exceed 1 in absolute value, and is
a measure of the degree of linear relationship between two
random variables. The closer the correlation coefficient is to
-1 or +1 the more closely the two variables are related.

As correlations measures only the degree of the linear
relationship between two variables, it is useful to pass the
input variables through non-linear transforms before correla-
tion tests, as a test for some non-linear relationships. For this
variable selection technique, each input is raised to a number
of powers before correlation testing (e.g. x1, x2...xn). It was
found that this increased the correlation between input and
output vectors dramatically for some variables.

After all of the variables have been correlated with the
output, they are ranked in order of correlation coefficient,

and then the most correlated variables are used as inputs to
regression or neural-network based models.

C. Stepwise Regression

Stepwise regression is a technique in which a linear regres-
sion model is produced to model an output variable, but the
regression variables are chosen automatically using a number
of criteria. Stepwise Regression is a combination of two
separate stages, forward selection, and backward elimination.

The forward selection algorithm begins with a model with
no predictor variables. Variables are entered into the model
one at a time in an order determined by the strength of their
correlation with the output. At each step, the p-value of an
F-statistic is computed to test models with and without a new
potential variable. If a variable is not currently in the model,
the null hypothesis that the term would have a zero coefficient
if added to the model is tested. If there is sufficient evidence
to reject the null hypothesis, the term is added to the model.
The F-distribution at each stage can be expressed as [9]

F =
RSS0 −RSS1

RSS1/(n− p+ 1)
(6)

where RSS0 is the residual sum of squares of the original
model without the additional variable, RSS1 is the residual
sum of squares with the new variable included, p is the number
of variables present in the larger model, and n is the number
of samples.

A backward selection algorithm starts with all of the avail-
able regression variables in the model. These are then removed
in order of the weakest predictors first. Removal continues
until only useful predictor variables remain in the model.

A stepwise algorithm is a combination of the above meth-
ods. Variables are added in sequence to a model, and their
value assessed. If the variable adds value, it is retained, but
all other variables in the model are then retested to examine
if they are still contributing to the success of the model. They
are removed if they do not contribute significantly [10]. The
p-value limits that are used to judge whether variables are kept
or added to the model are set by the user. For the purpose of
this study, p-values of 0.05 and 0.10 were used for addition
and removal of regression variables respectively.

III. DESCRIPTION OF DATASET

For this paper, data was collected from an industrial silicon
etch process over a period of six months. The analysis is car-
ried out on production data for a well-controlled, capacitively
coupled trench etch process. All of the data is obtained from
the same etch machine, and the dataset spans approximately
18 maintenance cycles that are carried out approximately once
every 1000 wafers. The process in question has a total of five
etch steps, each entailing different etch gases and materials.
Chamber setting such as power and gas flow are adjusted for
each step.

Time series data for the chamber parameters are measured
during etch time. Due to the large amount of data present, these
are further compressed into bulk statistics (mean and standard
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Fig. 1. Variance Explained as a function of Principal Components for input
data.

deviation) for the purpose of our investigations. For each step
in the process, an average of 30 variables are collected, leading
to over 150 variables in total. As the main etch step is later
in the process, only variables from steps 3-5 are included in
this analysis. This reduces the variable set to 85. The variables
measured from each step include:

• Mean and standard deviations of gas flow rates into the
plasma etch chamber taken from flow rate meters.

• Readings from the RF system such as phase, power,
voltage and a calculation of plasma impedance.

• Measurements from the etch chamber’s impedance
matching unit, such as capacitor and coil positions.

• Chamber measurements, such as pressure and electrode
temperature.

• Endpoint traces from monochronometers used for end-
point detection of some of the process steps.

• Wafer context data, such as processing time, lot number,
wafer number, maintenance counter and product type.

Although etch tool variables are measured for every wafer
processed, actual measurements of etch depth are carried out at
a much lower frequency. In total, there are approximately eight
hundred useable measurements of etch rate contained in the
dataset. The wafers are processed in lots of 25, and etch depth
measurements are taken from slots 13 and 25 approximately
once in every 2 lots, leading to measurements of approximately
4% of wafers. There is a measurement delay for etch rate of
up to three days for each measured lot.

A PCA of the data, after mean and standard deviation
normalisation demonstrates that the individual variables have
very little correlation between them. This is seen as the overall
variance for the dataset cannot be explained using a small
number of principal components (see Figure 1).

IV. MODELLING TECHNIQUES

After variable selection has been carried out using one of
the techniques outlined in section II, the next step is to build
a model around the chosen variables in order to estimate etch

rate for future wafers. Two modelling techniques are used in
this work.

A. Multiple Linear Regression

Multiple Linear Regression (MLR), also known as Ordinary
Least Squares Regression (OLSR) is a linear method that
attempts to model the relationship between two or more
regression variables and an output variable by fitting a linear
equation to the observed data. This leads to a model of the
form

y = β0 + β1x1 + . . .+ βp−1xp−1 (7)

being fit to each data point. Here, y is a measured output, and
x1 . . . xp−1 are system inputs that can be used as regression
variables. We denote the data points to be

yi, xi,1, xi,2, . . . , xi,p−1, i = 1, ...n

The output observations yi will be represented by the vector
y, the unknown model parameters, β0, β1, . . . , βp−1 by the
vector β, and the data matrix Xn×p takes the form:

X =


1 x1,1 x1,2 . . . x1,p−1

1 x2,1 x2,2 . . . x2,p−1

...
...

...
...

...
1 xn,1 xn,2 . . . xn,p−1

 (8)

Hence for a given β, the vector of predicted values ŷ is
given by

ŷ = Xβ (9)

The ordinary least squares solution for β is given by

β = (XT X)−1XT y (10)

provided that XT X is nonsingular [11]. Models created using
MLR are computationally quick to train as they require only
simple matrix operations.

B. Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks of inter-
connected artificial neurons that can be used for information
processing. Each artificial neuron, or node of the network,
receives inputs from other nodes, and produces an output based
on its internal activation function (which can be non-linear).
The nodes are usually arranged in layers, with all neurons in
a layer receiving weighted outputs from all neurons in the
preceding layer, and in turn, passing their outputs through
weights to the next layer. This is known as a feedforward
neural network. It has been shown that a feedforward ANN
network with one hidden layer can approximate almost any
continuous function [12]. Neural networks have been applied
often in the literature to plasma processes due to their ability
to approximate nonlinear functions, and have been shown
to outperform statistical techniques such as PCR, MLR, and
Partial Least Squares Regression (PLSR) on some datasets
[13][8].

This paper makes use of Multi-Layer Perceptron (MLP)
neural networks consisting of three layers: an input layer,
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an output layer, and one hidden layer. The output neurons
used linear activation functions, while the other layers used
nonlinear sigmoid activation functions.

MLPs are trained by starting the network with random
weights (multiplicative values applied to signals between neu-
rons). The dataset is split into two parts, a training set and a
validation set. For the training set, the output of the network
is calculated. The sum squared error E is defined as [14]

E =
N∑

j=1

(yj − ŷj)2 (11)

where N is the number of samples in the training set, yj

is the desired output for sample j, and ŷj is the calculated
output at sample j. When training the MLP this error, E, is
minimised via a gradient descent algorithm, where the weights
are adjusted each iteration in the direction of decreasing E. A
general rule for MLP weight optimisation is expressed as:

W(m+ 1) = W(m) + η∆W(m) (12)

where W is a matrix of the network weights and ∆W is the
calculated change in weight to minimize the error, E.

∆W = − δE
δW

(13)

The other parameters, m and η are the training iteration
number (the gradient descent is iteratively completed on the
dataset until an error minimum is found) and the learning
rate respectively [15]. Test datasets can be used in parallel
to the training to assess when networks are becoming over-
trained on the training set. In practical circumstances, more
sophisticated and computationally efficient error minimisation
techniques are used, such as the 2nd order gradient descent
BroydenFletcherGoldfarbShannon (BFGS) method [16].

To combat the possible effects of random weight initiali-
sation, several networks with the same structure are trained,
initialising the weights randomly each time. Optimisation of
the number of hidden neurons and the gradient of activation
functions can also assist with accuracy [17]. In general, neural
networks can be computationally demanding to train due to the
iterations required for the gradient descent method to converge.
They are also quite data-hungry, often requiring a large number
of samples to develop a useful model [18].

V. DATA DISAGGREGATION

In an attempt to more accurately model the variations in
etch rate over the dataset, a disaggregation of the input data
is explored. For the wafers in the dataset, a count variable is
provided that indicates the position of that wafer in the current
maintenance cycle. Data is disaggregated into three separate
datasets. Each dataset contains wafers with different ranges
the count variable. The first set contains all input and output
information for wafers numbered 1–300, the second 301–600,
and finally the third 601–1000. Each different dataset is then
modelled completely separately from the others as shown in
Figure 2.

Fig. 2. Schematic of data disaggregation scheme.

The aim of this scheme is to exploit any similarities that
may exist between different stages of maintenance cycles. It
is conjectured that the beginning sections, middle sections and
end sections of individual maintenance cycles may be more
similar to the corresponding sections in other cycles than to
the different sections of the same cycle.

VI. RESULTS

This section outlines the performance of the variable selec-
tion and modelling techniques investigated. The performance
ratings used for this study are Mean Absolute Percentage Error
(MAPE) and Root Mean Squared Error (RMSE), defined by

APE(%) =

∑N
i=1

|(ŷi−yi)|
yi

N
× 100 (14)

and

RMSE =

√∑N
i=1(ŷi − yi)2

N
, (15)

where ŷ is the predicted value, y is the actual value and N
denotes the number of samples available.

A. Variable Selection

A number of models are generated to model the data from a
global perspective, with the intent of investigating the effects
of different variable selection techniques. The dataset is split
into two sections; one for the training of the models, and the
second to act as completely “unseen” data for the predictions.
For the 18 maintenance cycles available, 16 are used to
train the prediction models, and 2 to judge generalisation
performance. In terms of metrology vectors, this leads to a
training set with 703 etch rate measurements, and a validation
set with 103 measurements.

The results for the models, based on multiple linear regres-
sion, are shown in Table I. All models are based on a subset of
approximately 16 predictor variables, as this was the number
of variables chosen by the stepwise regression technique.

It can be immediately noticed that the PCA based selec-
tion method performs most poorly out of the three methods
examined. Increasing the number of regression variables for
this model to 21 (7 variables from each of the first 3 principal
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TABLE I
MULTIPLE LINEAR REGRESSION MODEL PERFORMANCE WITH DIFFERING

VARIABLE SELECTION TECHNIQUES

Method MAPE (%) RMSE

Correlation 1.45 1.14

PCA 2.04 1.53

Stepwise 1.38 1.13

components) leads to a model with much better error figures
of 1.3% and 1.076 for MAPE and RMSE respectively.

For the models in Table I, the main disadvantage of the
correlation and PCA based variable selection method is that
there is a high probability of the algorithms choosing predictor
variables that are correlated with one another. These extra
variables are added to the prediction model, but do not add
much extra information or value to the prediction accuracy.
This phenomenon arises in the correlation selection algorithm
from signals such as power and pressure from different pro-
cess steps. For example, power from step 3 and step 4 are
selected as candidate variables by this technique, whereas the
correlation between these signals is 0.9981. Adding both to a
linear model is of very little value.

In the case of PCA, all of the variables from the same
principal component are likely to be similar as they are used to
describe the same component of the dataset variance. Hence,
selecting five variables from the same principal component
may actually add very little new information to the model.
Another complication to this selection technique is that the
PCs are calculated without any reference to the output. The
variables selected by the principal component model may best
explain the largest variance in the input data, but may be poor
predictors of the system output. A PCR model investigated for
this dataset yielded very poor prediction results.

The stepwise regression method of variable selection has
the advantage that the selected predictor variables are unlikely
to be highly correlated. As per section IV, each variable is
added to the model only if it contributes to the accuracy of
the prediction. Adding a variable that is highly correlated to an
existing variable in the model will not contribute significantly,
and so there is a low probability of many correlated variables
existing in the final model structure. As variables are assessed
during the algorithm and removed if they no longer contribute,
stepwise regression should lead to the most parsimonious
model. Figures 3 and 4 show the correlation structure between
the variables selected by the different algorithms. It is clear
that the variables chosen by stepwise regression are less
correlated. There are only four variables chosen in common
between the two methods whereas the model’s accuracy is
similar. This suggests that there are very few key drivers of
the variability in the dataset.

B. Data disaggregation

Table II describes the effect of the data disaggregation
scheme on the model accuracies. The data is split for training
and test in the same proportions as described in the previous

Fig. 3. Correlation structure for variables chosen with correlation method.

Fig. 4. Correlation structure for variables chosen with stepise regression.

TABLE II
EFFECT OF DATA DISAGGREGATION ON MODEL ACCURACY. THE FIRST

COLUMN DENOTES THE METHOD OF VARIABLE SELECTION AND THE
MODEL TYPE.

Method/Model Full set Disaggregated

MAPE (%) RMSE MAPE (%) RMSE

Corr / NN 1.23 0.99 1.48 1.20

Corr / MLR 1.45 1.14 1.59 1.23

Step / MLR 1.38 1.13 1.67 1.30

Step / NN 1.36 1.12 1.49 1.18

section.
The best performing model over all of the techniques

investigated is a neural network based model using correlation
selected variables (including higher orders of the variables).
We can see from the results that the disaggregation of the
data does not provide any increase in accuracy for the models,
with the models based on the global dataset outperforming the
others for all input combinations. The global nonlinear NN
models appear to be capable of modelling the output across
multiple maintenance cycles. It can be seen in Figure 5 that
general trends are followed successfully, but high frequency
etch rate deviations are sometimes missed. However, these are
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Fig. 5. Etch rate prediction from globally based neural network model.

well within tolerances.

VII. CONCLUSIONS

This paper has detailed an examination of various variable
selection and modelling techniques in an effort to relate etch
rate measurements to plasma processing tool parameters.

The achievable accuracy with such parameters for the trench
process investigated is approximately 1.2% MAPE. It should
be noted that this accuracy has been achieved with only etch
tool measurements. Further accuracy may be possible with
more sophisticated sensors, such as OES and PIM. However,
a substantial cost can be associated with the installation
of such systems. The models developed in this study are
capable of following mean trends in the etch rate data, but
the high frequency changes are not modelled accurately. To
successfully model the more rapid changes in etch depth
may require more advanced metrology. These changes may
however be attributable to another step in the manufacturing
process.

There is little difference in accuracy between models de-
veloped using different variable selection routines. This was
despite the fact that different algorithms chose different inputs
for their models. We can conclude that there are few variables
that can act as “key” indicators of the process. A PCA analysis
of the machine parameters confirmed that the dataset variance
is spread across many variables. This is further compounded
by the fact that completely different variables are chosen when
the same techniques are applied to a different etch chamber.
Both the correlation based and PCA based methods have the
disadvantage that highly correlated variables can be chosen as
model inputs. This does not apply to the same extent for the
stepwise algorithm.

Using the data disaggregation technique suggested leads
to no improvement in model accuracy for linear or nonlin-
ear models. Global models perform better for this particular
dataset, capturing the movement of etch rate across multiple
maintenances. We can conclude that there is little consistent

behaviour across different data segments across maintenance
cycles. The inaccuracy of the disaggregated models may also
be somewhat affected by the smaller training sets that arise
from splitting up an already sparse dataset.
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