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Abstract. Each p-block of a finite group has an associated defect
group, which is a p-subgroup of the group. Each real 2-block has,
in addition, an associated extended defect group, which is is a 2-
subgroup of the group that contains a defect group as a subgroup
of index ≤ 2. We consider the possible extended defect groups of a
real 2-block that has a cyclic or a Klein-four defect group. In each
case we describe the modules in the block that are components in
the permutation module of the group acting by conjugation on its
involutions. We also determine the Frobenius-Schur indicators of
the irreducible characters in the block.

1. Introduction

Let G be a finite group and let O be a complete discrete valuation
ring that has a fraction field F of characteristic 0 and residue field
k := O/J(O) of characteristic p > 0. We assume that F and k are
splitting fields for all subgroups of G. These are standard assumptions
in [15]. Mostly, but not exclusively, p = 2. We use R to denote either
of the rings O or k. Now G acts by conjugation on

Ω := {g ∈ G | g2 = 1G}.

We call the resulting permutation module RΩ the involution mod-
ule of G. In this paper we classify the components (indecomposable
dirrect summands) of RΩ that belong to real 2-blocks ofG whose defect
groups are cyclic or Klein-four groups. This enables us to determine the
Frobenius-Schur indicators of the irreducible characters in such blocks.

As usual G is a right G×G-set via x·(g1, g2) := g−1
1 xg2, for all x ∈ G

and g1, g2 ∈ G. If H is a subgroup of G, then ∆H := {(h, h) | h ∈ H}
is the diagonal of H in G×G, and if h ∈ H, then ClH(h) is the H-
conjugacy class that contains h. We simplify this to Cl(h), if H = G.
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The wreath product G oΣ is a split extension of G×G by the cyclic
group Σ = 〈σ〉 of order 2. Here (g1, g2)σ = σ(g2, g1), for all g1, g2 ∈ G.
We extend G to a right G oΣ-set by defining x · σ := x−1, for all x ∈ G
(see [13]). The map g → (g, g−1)σ, establishes a G oΣ-set isomorphism
between G and the G o Σ-conjugacy class ClGoΣ(σ) of σ. So RG is
isomorphic to the induced module (R∆G×Σ)↑GoΣ, as CGoΣ(σ) = ∆G×Σ.

Throughout this paper B is a p-block of G. This means that B is
a G × G-component of RG. According to J. A. Green, there is a p-
subgroup D of G such that ∆D is a vertex of B, as G×G-module. This
D is also a defect group of B, in the sense of R. Brauer. There is a set
Irr(B) of irreducible complex G-characters and a set of RG-modules
attached to B. If M is a RG-module, we let MB denote the sum of
all submodules of M that belong to B. In particular

RΩB is the sum of all submodules of RΩ that belong to B.

The contragradient block Bo is the p-block of G that is the image of
B under σ. Thus B = B + Bo is a G o Σ-component of RG. We let
B̂ be the p-block of G oΣ that contains this component. The block Bo

contains the complex conjugates of the irreducible characters in B and
the duals of the RG-modules in B. We say that B is real if B = Bo.

For the rest of this section p = 2 and B is a real 2-block of G. So B is
a G oΣ-component of RG. By [14, Lemma 10], there exists e ∈ NG(D),
with e2 ∈ D, such that ∆D〈∆e σ〉 is a vertex of B as G o Σ-module.
We call the 2-group E := D〈e〉 an extended defect group of B. If B is
the principal 2-block of G then E = D; otherwise [E : D] = 2.

We justify the adjective ‘extended’ as follows: There is a conjugacy
class of G which occurs in the support of the block idempotent of B
and on which the central character of B does not vanish. Any such
class is called a defect class of B. It is known that there exists g ∈ G in
a defect class of B such that the defect group D is a Sylow 2-subgroup
of the centralizer CG(g) of g in G. According to [10], B has a real
defect class. By [14] there exists g ∈ G in this class such that E is
a Sylow 2-subgroup of the extended centralizer C∗

G(g) of g in G. Here
C∗

G(g) := {x ∈ G | x−1gx = g±1}.
The Frobenius-Schur indicator of a generalized character χ of G

is the integer ε(χ) := 1
|G|

∑

g∈G χ(g2). Suppose that χ is irreducible.

Then ε(χ) ∈ {0,±1}. Moreover ε(χ) = 0, if χ is not real-valued, and
ε(χ) = +1 if χ is the character of a real representation. Otherwise
ε(χ) = −1. The structure of E affects the Frobenius-Schur indicators
of the irreducible characters in B, as the following two lemmas indicate.
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Lemma 1.1. B has an irreducible character with Frobenius-Schur in-
dicator −1 and height zero if and only if E/D′ does not split over D/D′.

Proof. This is a result of R. Gow. See Theorem 5.6 in [9]. �

Lemma 1.2. The following are equivalent:

(i) E splits over D;
(ii) RΩB 6= 0;
(iii)

∑

χ∈Irr(B)

ε(χ)χ(1) 6= 0.

Proof. This is Theorem 2 in the author’s paper [14]. �

We call B a strongly real 2-block of G, if it satisfies these conditions.
We shall prove a number of general results in Section 2, in particular

the following two theorems about real 2-blocks:

Theorem 1.3. Suppose that B is strongly real. Then there is a com-
ponent of RΩB that has vertex CD(x), for some x ∈ Ω such that
E = D〈x〉. Moreover, each component of RΩB has a vertex contained
in CD(y), for some y ∈ Ω such that E = D〈y〉.

In the terminology of Brauer, a root of B (in DCG(D)) is a 2-block
β of DCG(D) such that βG = B. Each root of B has defect group D,
and the roots of B form a single NG(D)-orbit under conjugation.

Theorem 1.4. B has a real root if and only if E ≤ DCG(D).

The remainder of the paper concentrates on real 2-blocks that have
a cyclic or Klein-four defect group. For such blocks we have:

Lemma 1.5. Suppose that D is cyclic or a Klein-four group. Then B
has an irreducible character with Frobenius-Schur indicator −1 if and
only if E does not split over D.

Proof. This follows from Lemma 1.1 and the fact that all irreducible
characters in B have height zero, as detailed below. �

E. C. Dade described the decomposition matrices, and much of the
character theory of blocks with cyclic defect group in [6]. In particular,
if D is cyclic, then there is a unique irreducible kG-module S in B, and
there are |D| ordinary irreducible G-characters in B. It is also known
that for each i = 1, 2, . . . , |D|, there is a unique indecomposable RG-
module Si in G such that Si has i composition factors. The subgroup
of index gcd(|D|, i) in D is a vertex of Si.

Here are names for 2-groups with maximal subgroups that are cyclic:

• D2n := 〈a, b | a2n−1

= b2 = 1, ab = a−1〉 is a dihedral group;
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• Q2n := 〈a, b | a2n−1

= 1, b2 = a2n−2

, ab = a−1〉 is a generalized
quaternion group;

• SD2n := 〈a, b | a2n−1

= b2 = 1, ab = a2n−2−1〉 is a semidihedral
group;

• M2n := 〈a, b | a2n−1

= b2 = 1, ab = a2n−2+1〉 is a modular group.

The term ‘modular 2-group’ is used occasionally in finite group theory.
A recent example can be found in [8].

Here is our main result about real 2-blocks with a cyclic defect group:

Theorem 1.6. If D is cyclic, then one of the following is true:

(i) E is cyclic. Two irreducible characters in B are real-valued;
one of these has Frobenius-Schur indicator −1.

(ii) E ∼= D × Z2. Two irreducible characters in B are real-valued
and kΩB ∼= S ⊕ S.

(iii) E is a dihedral group. All irreducible characters in B are real-
valued and kΩB ∼= S|D|/2 ⊕ S|D|/2.

(iv) E is a semi-dihedral group. Half of the irreducible characters
in B are real-valued and kΩB ∼= S|D|/2.

(v) E is a modular group. Two irreducible characters in B are
real-valued and kΩB ∼= S2.

(vi) E is a generalized quaternion group. All irreducible charac-
ters in B are real-valued; half of these have Frobenius-Schur
indicator −1.

We use rad(M) to denote the radical and soc(M) to denote the
socle of a kG-module M . The Loewy series of M is M ⊃ rad(M) ⊃
rad2(M) ⊃ . . .. We use PM to denote the projective cover of M . If
A,B, . . . are irreducible modules, then U(A,B, . . .) is a uniserial module
with successive Loewy factors A,B, . . ..

Now suppose that D is a Klein-four group. Then D = 〈s, t〉, where
s, t and st are involutions. R. Brauer showed in [4, Section 7] that B
has four ordinary irreducible characters and either one or three irre-
ducible modules. K. Erdmann [7, Theorem 4] Green correspondence
and Auslander-Reiten theory to describe the possible decomposition
matrices of B.

We list the irreducible characters in B as χ1, χ2, χ3, χ4. Let β be a
root of B and let I = {n ∈ NG(D) | βn = β} be the inertial group of β
in NG(D). Then [I : CG(D)] is an odd integer, called the inertial index
of B. If the inertial index is 1 then B has a single irreducible module
S; if the inertial index is 3 then B has three irreducible modules S,X
and Y . In the latter case s, t and st are conjugate in G and CG(s) has
a unique 2-block b1 such that bG1 = B. Moreover, b1 has inertial index
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1. Let ψ1 denote the unique irreducible Brauer character in b1. We
obtain the following by combining results from [4] and [7].

Lemma 1.7. If D is a Klein-four group, there are three block types:

(I) B has inertial index 1 and rad(PS)/S ∼= S ⊕ S. All decompo-
sition numbers are 1;

(II) B has inertial index 3 and

rad(PS)/S ∼= X ⊕ Y, rad(PX)/X ∼= Y ⊕ S, rad(PY )/Y ∼= S ⊕X.

Thus DB =









1 0 0
1 1 1
0 1 0
0 0 1









.

There is a sign δ = ±1 such that for all 2-regular elements
g ∈ CG(s), we have χ1(gs) = χ3(gs) = χ4(gs) = δψ1(g) and
χ2(gs) = −δψ1(g);

(III) B has inertial index 3 and

rad(PS)/S ∼= U(X,S, Y ) ⊕ U(Y, S,X),

rad(PX)/X ∼= U(S, Y, S), rad(PY )/Y ∼= U(S,X, S).

Thus DB =









1 0 0
1 1 1
1 1 0
1 0 1









.

There is a sign δ = ±1 such that for all 2-regular elements
g ∈ CG(s), we have χ1(gs) = χ2(gs) = δψ1(g) and χ3(gs) =
χ4(gs) = −δψ1(g).

We give our main results for real 2-blocks with Klein-four defect
groups in three theorems:

Theorem 1.8. Let B be of type (I). Then one of the following holds:

(i) E ∼= Z4 × Z2. All four irreducible characters in B are real-
valued; two of these have Frobenius-Schur indicator −1.

(ii) E ∼= Z
3
2. All four irreducible characters in B are real-valued

and kΩB ∼= S4;
(iii) E ∼= D8. Two irreducible characters in B are real-valued and

kΩB ∼= U(S, S) is indecomposable with a vertex of order 2.

Theorem 1.9. Let B be of type (II). Then one of the following holds:

(i) E ∼= Z
3
2. Two irreducible characters in B are real-valued and

kΩB ∼= S2 ⊕X ⊕ Y ;
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(ii) E ∼= D8. All four irreducible characters in B are real-valued
and kΩB is indecomposable with a vertex of order 2. Moreover
hd(kΩB) ∼= rad(kΩB) ∼= S ⊕X ⊕ Y .

Theorem 1.10. Let B be of type (III). Then one of the following holds:

(i) E ∼= Z
3
2. All four irreducible characters in B are real-valued

and kΩB ∼= S2 ⊕ U(X,S, Y ) ⊕ U(Y, S,X);
(ii) E ∼= D8. Two irreducible characters in B are real-valued and

kΩB is indecomposable with a vertex of order 2. Moreover
hd(kΩB)∼=soc(kΩB)∼=S and rad(kΩB)/ soc(kΩB)∼=X ⊕ Y .

2. Preliminary results

In this section we describe some results about blocks that do not
depend on the isomorphism type of their defect groups. Generally B
is a p-block of G and D is a defect group of B. If p = 2, and B is
a real 2-block, then E is an extended defect group of B that contains
D. Each g ∈ G can be written uniquely as g = gpgp′ = gp′gp, for gp a
p-element in G and gp′ a p′-element in G. In fact, gp, gp′ ∈ 〈g〉.

Lemma 2.1. Suppose that D E G and that B has a real root and
inertial index 1. Then the number of real irreducible characters in B
equals the number of real irreducible characters of D.

Proof. Let β be a real root of B. By [15, 5.8.14], there is a unique
irreducible Brauer character ψ in β, and the irreducible characters in
β are {Xλ | λ ∈ Irr(D)}. Here if λ ∈ Irr(D),

Xλ(g) =

{

ψ(gp′)λ(gp), if gp ∈ D,

0, otherwise,
for all g ∈ DCG(D).

Since ψ is real, the character Xλ is real if and only if λ is real.
Let g ∈ G\DCG(D). Then by hypothesis βg 6= β. So Xg

λ 6= Xλ. It
follows that Xλ↑G is an irreducible character in B. Moreover, the set
of irreducible characters in B is {Xλ↑G | λ ∈ Irr(D)}. Clearly Xλ↑G

is real if Xλ is real. Suppose that Xλ is not real. Then Xλ and its
complex conjugate Xλ both belong to β. It follows that they are not
G-conjugate. So Xλ↑G is not real. The Lemma follows from this. �

We state without proof the next two results.

Lemma 2.2. Let N EG, let M be a kN-module and let L be a kG/N-
module. Then M↑G ⊗ L ∼= dim(L)M↑G.

Lemma 2.3. Let p = 2 and let I ≤ H ≤ G with [H : I] = 2. Then
there is a short exact sequence of RG-modules

0 → RH↑G → RI↑
G → RH↑G → 0.
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Thus the composition multiplicity of an irreducible kG-module in kI↑G

is twice its multiplicity in kH↑G.

A p-permutation RG-module is an RG-module whose restriction to
a p-subgroup of G is a permutation module. An indecomposable RG-
module is a p-permutation module if and only if it has a source module
that is trivial. By [15, 4.8.9] if M is a p-permutation kG-module then
there is a unique p-permutation OG-module M̃ such that M=M̃⊗O k.
We refer to the character of M̃ as the O-character of M .

Lemma 2.4. Let X be a G-set and let V be a p-subgroup of G. Green
correspondence establishes a multiplicity preserving correspondence:

{G-components of RX that have vertex V }
l

{NG(V )/V -components of RCX (V ) that are projective}.

If M ↔ N under this correspondence, and M belongs to B, then N
belongs to a p-block b of NG(V ) such that bG = B.

Proof. This is Theorem 3.2 of [5]. �

Lemma 2.5. Let M be an indecomposable p-permutation RG-module
let χM be the O-character of M , and let g be a p-element in G. Then

χM (g)

{

∈ Z+, if g belongs to some vertex of M ;
= 0, otherwise.

Proof. The character value χM (g) is the number of trivial components
of M↓〈g〉. See [12] for details. �

The following is a variant of Lemma 9.7 of [1].

Lemma 2.6. Let M be an indecomposable p-permutation RG-module
and let H be a subgroup of G. Let V be a vertex of M such that V ∩H
is not a proper subgroup of U ∩H, for any vertex U of M . Then some
component of M↓H has vertex V ∩H.

Proof. By hypothesis RV is a component of M↓V . So RV ∩H is a com-
ponent of M↓V ∩H . Choose a component S of M↓H such that RV ∩H is a
component of S↓V ∩H . Now V ∩H is a vertex of RV ∩H . So V ∩H ≤ W ,
for some vertex W of S, by Lemma 4.3.4 of [15]. Similarly W ≤ U , for
some vertex U of M . Thus V ∩H ≤ W ≤ U ∩H. The assumption on
V ∩H forces V ∩H = U ∩H. We conclude that V ∩H = W . �

The Frobenius automorphism of k is given by Fr(λ) = λp, for all
λ ∈ k. If M is a kG-module, then we can apply Fr to the entries
in the matrices representing the elements of G in GL(M), to get a
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kG-module MFr called the Frobenius twist of M . If M has Brauer
character φ, then MFr has Brauer character φFr where φFr(g) = φ(gp),
for all p-regular g ∈ G. Clearly M is indecomposable/irreducible if and
only if MFr is indecomposable/irreducible. Moreover, as Fr commutes
with induction, ifM is indecomposable then M andMFr share the same
vertices. Let BFr be the p-block of G that contains the Frobenius twists
of all the kG-modules in B. Then B and BFr have the same defect
classes and defect groups. Moreover Irr(BFr) = {χFr | χ ∈ Irr(B)},
where χFr(g) := χ(gpg

p
p′), for all g ∈ G.

Lemma 2.7. There is a multiplicity and vertex preserving correspon-
dence between the components of RΩB and the components of RΩBFr.

Proof. This follows from the discussion above and the fact that kΩ =
(kΩ)Fr. �

Lemma 2.8. Suppose that B is a real 2-block of G. Then

B↓∆G×Σ = RΩBFr ⊕X,

where no component of X has a vertex that contains Σ.

Proof. Here we are identifying the 2-blocks of G and ∆G × Σ. Now
kG↓∆G×Σ = kΩ ⊕ k(G\Ω), where kΩ is centralized by Σ, and no com-
ponent of k(G\Ω) has a vertex that contains Σ. Suppose that M is
a component of the inflation of kΩBFr to ∆G × Σ. Then M has a
vertex that contains Σ. But CGoΣ(Σ) = ∆G × Σ, and (BFr)GoΣ = B̂,
by Lemma 16 of [14]. It then follows from Lemma 3.7a of [11] that M

is a direct summand of kGB̂ = B. �

Proof of Theorem 1.3. Choose e ∈ E so that E = D〈e〉 and set H :=
∆G×Σ. Each vertex of B is ∆G-conjugate to (∆D〈∆eσ〉)(1,y), for some
y ∈ G. Suppose that such a vertex contains σ. Then there exists d0 ∈ D
such that σ = (∆(d0e)σ)(1,y). But (∆(d0e)σ)(1,y) = (d0ey, y

−1d0e)σ. So
y = d0e, whence E = D〈y〉, and y ∈ Ω. Moreover

(1) (∆D〈∆eσ〉)(1,y) ∩H = ∆ CD(y) × Σ.

Let x ∈ Ω be such that E = D〈x〉 and CD(x) 6< CD(y), for all y ∈ Ω
such that E = D〈y〉. Set V := (∆D〈∆eσ〉)(1,x). Then V is a vertex
of B, and (1) implies that V ∩ H 6< U ∩ H, for any vertex U of B.
Lemma 2.6 shows that there is a component of B↓∆G×Σ that has vertex
V ∩H = ∆ CD(x)×Σ. We conclude from Lemma 2.8 that RΩBFr has
a component that has vertex CD(x). The first statement now follows
from Lemma 2.7.

Let M be a component of RΩB, as RG-module, and let W ≤ D be
a vertex of M . Then M has vertex ∆W × Σ, as R∆G × Σ-module.
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Lemma 2.8 implies that MFr is a component of B↓∆G×Σ. Using (1),
there exists y ∈ E such that E = D〈y〉 and W ≤ CD(y). This proves
the second statement. �

The vertices of components of RΩ also have a lower bound:

Lemma 2.9. Suppose that p = 2. Then each projective component of
RΩ belongs to a real 2-block with a trivial defect group.

Proof. This is the main result of [13]. �

We will make use of the following special result in Sections 4 and 5:

Lemma 2.10. Suppose that B is a strongly real 2-block such that DEG
and E ≤ DCG(D). Set Z := Ω(Z(D)). Consider kZ as Z oG/D-
module, with Z acting regularly and G/D acting by conjugation. Then
there is a self-dual irreducible kG-module T in B such that the module

∑

i≥0

T ⊗ radi(kZ)/radi+1(kZ)

is a direct summand of kΩB, and all its components have vertex D.

Proof. We identify the 2-blocks of G, ∆G and ∆G× Σ. The group G
acts by conjugation on Z, and D ≤ CG(Z). So there is a well-defined
action of G/D on Z. The group Z acts regularly on kZ. In this way
kZ is a module for the semi-direct product group Z oG/D.

Choose e ∈ ΩCG(D) such that E = D × 〈e〉. Then (∆eσ)(1,e) = σ,

and ∆D(1,e) = ∆D. So V := ∆D × Σ is a vertex of B. Now

∆G×Σ ≤ NGoΣ(V ) ≤ NGoΣ(∆D) = ∆G(CG(D) o Σ).

Let c ∈ CG(D) be such that (1, c) normalizes V . Then σ(1,c) = (c, c−1)σ
belongs to V . This forces c ∈ Z. So NGoΣ(V ) = ∆G(Z o Σ).

By Lemma 2.4, there is a component fB of B↓NGoΣ(V ) that has vertex
V and kernel containing V . In particular all components of fB↓∆G×Σ

have vertex V . So by Lemma 2.8, the module fB↓∆G is a direct sum-
mand of kΩBFr, and all of its components have vertex D.

Now NGoΣ(V )/V ∼= Z oG/D. So we can regard fB as a projective
indecomposable Z o G/D-module. Let S be the irreducible socle of
fB. Then S is self-dual, as B and hence fB are self-dual. Proposition
18.4 of [1] implies that

fB↓∆G/∆D
∼=

∑

i≥0

S ⊗k radi(kZ)/radi+1(kZ).

The result now follows from Lemma 2.7, and the fact that kZ = (kZ)Fr.
�
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The following result is similar to Lemma 13.7 in [1].

Lemma 2.11. Let P be a p-subgroup of G. Then

B↓P CG(P )oΣ =
∑

(b + bo) ⊕ X,

where b ranges over the p-blocks of P CG(P ) such that bG = B and no
component of X has a vertex that contains ∆P .

Proof. Set H := P CG(P ). Then kG↓HoΣ = kH ⊕ k(G\H), as kH o Σ-
modules. Now ∆P does not centralize any element of G\H. So by
Lemma 2.4, no component of k(G\H) has a vertex that contains ∆P .

The kH o Σ-components of kH have the form b + bo, where b is a
p-block of H. Let b be such a block and let b̂ be the p-block of H o Σ
that contains b + bo. As P is a normal subgroup of H, it is contained
in a defect group of b, by [1, 13.6]. So ∆P is contained in a vertex of
b + bo, as kH o Σ-module. Now CGoΣ(∆P ) = CG(P ) o Σ ≤ H o Σ. So

b̂GoΣ = B̂, by Lemma 3.7a of [11]. It follows from this that bG = B. �

The O-character χB of B is computed in Lemma 8 of [14] as:

(2)

χB ((g1, g2)) =
∑

χ∈Irr(B)

χ(g−1
1 )χ(g2),

χB ((g1, g2)σ) =
∑

χ∈Irr(B)

ε(χ)χ(g1g2),
for all g1, g2 ∈ G.

Our next result appears as Theorem (4B) in R. Brauer’s paper [3]:

Corollary 2.12. Let g ∈ G. Then

(3)
∑

χ∈Irr(B)

ε(χ)χ(g) =
∑

b

∑

χ̂∈Irr(b)

ε(χ̂)χ̂(g),

where b ranges over the p-blocks of CG(gp) such that bG = B.

Proof. We claim that the p-part of (g, 1)σ ∈ GoΣ generates a group that
contains ∆gp. Suppose first that p is odd. There is a unique s ∈ 〈gp〉
such that s2 = gp. Then ∆s is a p-element and 〈∆gp〉 = 〈∆s〉. Also
(∆s)−1 (g, 1)σ is a p′-element, because its square is (gp′, gp′)σ. So ∆s is
the p-part of (g, 1)σ. This proves the claim when p is odd. Conversely,
suppose that p = 2. Then (g, 1)σ has 2-part (g2, 1)σ. So the claim

follows from the fact that ∆g2 = ((g2, 1)σ)2.
With P = 〈gp〉, Lemma 2.11 gives

B↓CG(g2)oΣ =
∑

bG=B

(b+ bo) ⊕ X,
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where no component of X has a vertex that contains ∆gp. It then
follows from the previous paragraph, and Theorem 4.7.4 of [15], that
χB ((tu, 1)σ)) =

∑

bG=B χb ((g, 1)σ)). Equation (3) is a consequence of
this and (2). �

The following is a variant of [14, Corollary 15]:

Lemma 2.13. Suppose that B is a real 2-block of G. Let t be a 2-
element in G. Then

∑

χ∈Irr(B) ε(χ)χ(t) is a nonnegative integer, which

is positive if and only if t is G-conjugate to e2, for some e ∈ E such
that E = D〈e〉.

Proof. The element (t, 1)σ ∈ G o Σ has 2-power order, as its square is
the 2-element ∆t ∈ G × G. By (2), χB ((t, 1)σ) =

∑

χ∈Irr(B) ε(χ)χ(t).

So Lemma 2.5 implies that
∑

χ∈Irr(B) ε(χ)χ(t) is a non-negative integer.

Suppose that (t, 1)σ belongs to a vertex of B. Then there exist

g1, g2 ∈ G and e ∈ E such that E = D〈e〉 and ((t, 1)σ)(g1,g2) = (e, e)σ.
Thus g−1

1 tg2 = g−1
2 g1 = e, whence e2 = tg1 is G-conjugate to t.

Conversely, suppose that e2 = tg1 , where g1 ∈ G and E = D〈e〉.

Then ((t, 1)σ)(g1,g1e−1) = (e, e)σ. So (t, 1)σ belongs to a vertex of B.
The result now follows from Lemma 2.5. �

Lemma 2.14. Let p = 2, let P be a principal indecomposable kG-
module and let Φ be the O-character of P . Then the multiplicity of
the irreducible module P/rad(P ) as a composition factor of kΩ is ε(Φ).

Proof. See [14, Lemma 3] or [16, Lemma 1]. �

A subgroup pair of G is a pair (H, I) such that H ≤ I ≤ G and
[I : H] = 2. We say that a pair (J,K) is a subpair of (H, I) if J ≤ H
and KH = I. More generally, (J,K) is G-conjugate to a subpair of
(H, I) if there exists g ∈ G such that (J g, Kg) is a subpair of (H, I).
Clearly G-conjugacy is a transitive relation on subgroup pairs.

If B is a real non-principal 2-block of G then (D,E) is a subgroup
pair of G. The G-conjugates of (D,E) are called the defect pairs of B.

Lemma 2.15. Suppose that B is a real 2-block of G. Let H ≤ G
and let b be an admissible real non-principal 2-block of H such that
B = bG. Then each defect pair of b is a subpair of a defect pair of B.
In particular, if b is strongly real then B is strongly real, while if D is
a defect group of b, then each defect pair of b is a defect pair of B.

Proof. If X ⊆ G, set X+ :=
∑

x∈X x, in kG. Let ωB, ωb be the central
character of B, respectively b. Let C be a real defect class of B. Then
ωb((C ∩ H)+) = ωB(C+) 6= 0k. We pair the contribution of each H-
conjugacy class in C ∩H to ωb((C ∩H)+) with that of its inverse class
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in C ∩ H. In this way we see that there is a real H-conjugacy class
C1 ⊆ C ∩ H such that ωb(C

+
1 ) 6= 0k. Let g ∈ C1, let DH be a Sylow

2-subgroup of CH(g) and let EH be a Sylow 2-subgroup of C∗
H(g) that

contains DH . Theorem 2.1 in [10] implies that some defect pair (Db, Eb)
of b is a subpair of (DH , EH). But g ∈ C. So (DH , EH) is G-conjugate
to a subpair of (D,E). It follows that (Db, Eb) is G-conjugate to a
subpair of (D,E).

Suppose that b is strongly real. Then C1 is a strongly real class of
H. So C ⊇ C1 is a strongly real class of G. Thus B is strongly real.

Finally, suppose that D is a defect group of b. Then Db is a Sylow
2-subgroup of CG(g) and Eb is a Sylow 2-subgroup of C∗

G(g). It follows
that (Db, Eb) is a defect pair of B. �

Proof of Theorem 1.4. Suppose that B has a real root β. Let (D,E1)
be a defect pair of β. Lemma 2.15 implies that (D,E1) is a defect pair
of B. So there exists an element g ∈ G in a defect class of B such
that D is a Sylow 2-subgroup of CG(g) and E1 is a Sylow 2-subgroup
of C∗

G(g). But then g is a real element in CG(D).
Conversely, suppose that E ≤ DCG(D). Lemma 2.11 gives

B↓D CG(D)oΣ =
∑

(β1 + βo
1) ⊕ X,

where β1 ranges over the roots of B, and no component of X has a
vertex that contains ∆D. Suppose that E = D〈e〉. Then ∆D〈∆eσ〉 is
a vertex of B, as G o Σ-module. The hypothesis is that ∆D〈∆eσ〉 ≤
DCG(D) oΣ. It then follows from Lemma 2.6 that there is a root β1 of
B such that β1 +βo

1 has vertex ∆D〈∆eσ〉. But then β1 is a real 2-block
of DCG(D). We deduce that so too is its NG(D)-conjugate β. �

3. Cyclic Defect group

In this section B is a real 2-block of G that has a cyclic defect
group. We follow Dade’s original approach from [6]. Recall the notation
introduced in Section 1. Let d be a generator for the defect group D
and suppose that |D| = 2n. Then t := d2n−1

is the unique involution
in D. Let χ be the Brauer character of the irreducible B-module S.
So χ is real-valued. We note that P := S2n is the unique projective
indecomposable B-module and S2n−1 is the unique indecomposable B-
module that has 〈t〉 as a vertex.

Set H := CG(t). As H ≥ NG(D), Brauer’s first main theorem implies
that there is a unique block b of H such that bG = B, and D is a
defect group of b. As b is unique it is also real, and Lemma 2.15
implies that each of its defect pairs is a defect pair of B. Let T be the
unique irreducible kH-module in b. We may label the indecomposable
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kH-modules in b as T := T1, T2, . . . , T2n , where Ti is uniserial with i
composition factors, each isomorphic to T .

Lemma 3.1. Let V be a nontrivial subgroup of D and let f be the
Green correspondence with respect to (G, V,H). Then f(Si) = Ti or
f(Si) = T2n−i, for each i = 1, 2, . . . , 2n.

Proof. As usual EndkG(M) is the quotient of EndkG(M) by the sub-
space of projective endomorphisms, for any module M . We make use
of [1, 21.3, 21.4], and the fact that B and b have inertial index 1.

Let 1 ≤ i ≤ 2n−1 and let θ be a non-zero G-endomorphism of Si. As
i+ i−2n ≤ 0, and as Si has composition length i, [1, 21.3] implies that
θ is not a projective homomorphism. Thus EndkG(Si) ∼= EndkG(Si).
We deduce from this that EndkG(Si) has dimension i as k-vector space.
The Heller translate of Si is S2n−i. So EndkG(S2n−i) ∼= EndkG(Si), by
[1, 20.6]. Thus EndkG(S2n−i) also has dimension i as k-vector space.
The same results hold for EndkG(Ti) and EndkG(T2n−i).

Now let 1 ≤ i ≤ 2n. Then EndkG(Si) ∼= EndkG(fSi) by [1, Corollary
4]. The result follows from this and the previous paragraph. �

We can label the irreducible characters in B as Xλ, where λ ranges
over Irr(D). The characters Xλ with λ 6= 1 are called the exceptional
characters in B. The trivial character X1 is the unique non-exceptional
character in B. If dλ,χ is the multiplicity of χ in Xλ, then dλ,χ = 1, for
all λ. We use a dash, as in χ′, X ′

λ, for other objects associated to b.

Lemma 3.2. If λ ∈ Irr(D), then Xλ is real if and only if X ′
λ is real.

Proof. The automorphism group of D is a 2-group. But B has odd
inertial index. So CG(D) is the inertial subgroup of a root of B in
NG(D).

If g ∈ G is 2-regular then Xλ(g) = χ(g) and X ′
λ(g) = χ′(g) are both

real-valued. If g ∈ G is such that g2 is G-conjugate to an element
of D\{1} then Corollary 1.9 of [6] implies that Xλ(g) = ±X ′

λ(g) (the
symbols Ci,Ni and φi in the statement of that Corollary are the same
for B and b, while the symbols εi and γi are signs). If g ∈ G is such
that g2 is not G-conjugate to an element of D then by a theorem of J.
A. Green, Xλ(g) = 0 and X ′

λ(g) = 0. The lemma follows easily from
these facts. �

Let X be a component of kΩB and let V be a vertex of X that
is contained in D. As D 6= 〈1〉, Lemma 2.9 implies that 〈t〉 ≤ V .
Thus NG(V ) ≤ H. Let f be the Green correspondance with respect
to (G, V,H). Then by Lemma 2.4, fX is a component of kΩ(H) that
belongs to b and that has kernel containing 〈t〉.
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By the results of section 5.8.3 of [15], there is a unique 2-block b of
H := H/〈t〉 that is dominated by b. Now b is real. Let g ∈ H belong
to a real defect class of b. Then g is 2-regular. The proof of Lemma
5.8.9 of [15] can be adapted to show that C∗

H
(g) = C∗

H(g). So we may

assume that (D,E) is a defect pair of b.

Lemma 3.3. Suppose that B is not the principal block. Let s ∈ Ω be
such that kCl(s)B 6= 0. Then some G-conjugate of s lies in E\D.

Proof. The proof is by induction on |E|. The base case is D = 〈1〉 and
E is cyclic of order 2. In that case the conclusion follows from Theorem
19 of [14].

By Lemma 2.4 we may assume that s ∈ H, and that kCH(s)↑H has
a componext X that belongs to b. Then X can be regarded as a
component of kCH(s)↑

H that belongs to b. Now CH(s) is a subgroup of

index ≤ 2 in CH(s). Thus kCH(s)↑H has a composition factor of b,

using Lemma 2.3. Now kCH(s)↑H is a direct summand of kΩ(H), as
H-modules. Moreover, b is a real 2-block with cyclic defect group D of
smaller order than D. By our inductive assumption, s is H-conjugate
to an element of E\D. It follows from this that s is H-conjugate to an
element of E\D. �

Abelian extended defect group

We prove parts (i) and (ii) of Theorem 1.6. So assume that E ≤
CG(D). Theorem 1.4 implies that b has a real root β. As D has two
real-valued linear characters, Lemma 2.1 implies that b has two real-
valued irreducible characters. We deduce from Lemma 3.2 that B has
two real-valued irreducible characters. As all decomposition numbers
in B are one, both of these characters have the same degree.

Suppose that E is a cyclic group. Lemma 1.2 implies that kΩB =
0 and

∑

λ∈Λ ε(Xλ)Xλ(1) = 0. So one of the real-valued irreducible
characters in B has Frobenius-Schur indicator +1 and the other has
indicator −1.

Now suppose that E ∼= D × Z2. Lemma 2.14 implies that kΩB has
two composition factors that are isomorphic to S. But Theorem 1.3
implies that kΩB has at least one component with vertex D. The only
possibility is that kΩB = S ⊕ S. The O-character of kΩB is the sum
of the two real irreducible characters in B.

Note that kΩ(H)b = T ⊕ T . This can be used to show that T is the
Green correspondent of S with respect to (G,D,H).

To prove the other parts of Theorem 1.6, we need some information
on the elements s ∈ Ω such that kCl(s)B 6= 0. In case B is the
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principal 2-block of G, we have E = D, T = kH , and kCl(1H)B = kH

and kCl(t)B = kH .
Suppose that B is not the principal 2-block of G. Then E = D×〈e〉,

where e is an involution. Moreover, e and te are the only involutions in
E\D. We claim that S occurs twice as a component of kCl(e), if e and
te are conjugate in G. Otherwise it occurs once as a component of each
of kCl(e) and kCl(te). For, b covers a unique real 2-block of H/D that
has defect pair (D/D,E/D). By Theorem 19 of [14], S occurs once as a
component of kCH/D(eD)↑H/D. Now e and te are the only involutions in

E\D. So NH〈t, e〉 is the inverse image of CH/D(eD) in H. We deduce
that S occurs once as a component of kNH〈t,e〉↑H .

Say that e isH-conjugate to te. Then [NH〈t, e〉 : CH(e)] = 2. Lemma
2.3 implies that T occurs twice as a composition factor of kClH(e). But
then kClH(e)b = T⊕T , by our work above. It then follows from Lemma
2.4 that kCl(e)B = S ⊕ S,

Say that e is not H-conjugate to te. Then NH〈t, e〉 = CH(e). So
kCl(e)b = T , and by the same argument, kCl(te)b = T . If e is G-
conjugate to te, then Lemma 2.4 implies that kCl(e)B = S ⊕ S. Oth-
erwise, Lemma 2.4 implies that kCl(e)B = S and kCl(de)B = S.

Dihedral or semi-dihedral extended defect group

We prove parts (iii) and (iv) of Theorem 1.6. So assume that E
is dihedral or semi-dihedral. As E splits over D, all real irreducible
characters in B have Frobenius-Schur indicator +1. Let E = D〈e〉,
where e2 = 1. Then E\D is a union of two conjugacy classes of E:

{d2me | m = 0, 1, . . .} and {d2m+1e | m = 0, 1, . . .}.

Now CD(xe) = 〈t〉, for each x ∈ D. As 〈t〉 is a minimal nontrivial
subgroup of D, Corollary 18 of [14] and Lemma 2.9 imply that each B-
component of kΩ has vertex 〈t〉, and hence that each such component is
isomorphic to S2n−1 . Similarly, each b-component of kΩH is isomorphic
to T2n−1 . It then follows from Lemma 2.4 that T2n−1 is the Green
correspondent of S2n−1 with respect to (G,D,H).

We use induction on |E| to prove that S2n−1 occurs twice as a compo-
nent of kCl(e), if e and de are conjugate in G. Otherwise it occurs once
as a component of each of kCl(e) and kCl(de). The base case |E| = 4
is covered by the abelian extended defect group case.

We can apply our inductive hypothesis to b, as (D,E) is a defect
pair of b, E is a dihedral group, and |E| < |E|. Note that e and te
are conjugate in E, since t is an even power of d. So the inverse image
NH〈t, e〉 of CH(e) in H contains CH(e) as a subgroup of index 2.
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Suppose first that e is H-conjugate to de. Then e is H-conjugate to
de. By our inductive hypothesis, T2n−2 occurs twice as a component of
kCH(e)↑H . The inflation of the latter module to H is kNH〈t,e〉↑H . Thus T

has multiplicity 2n−1 = 2 × 2n−2 as a composition factor of kNH〈t,e〉↑H .
Lemma 2.3 then implies that T has multiplicity 2n = 2 × 2n−1 as a
composition factor of kCH(e)↑H = kClH(e). It follows that kClH(e)
has two components that are isomorphic to T2n−1 . We conclude from
Lemma 2.4 that S2n−1 occurs twice as a component of kCl(e).

Suppose that e is not H-conjugate to de. Then e is not H-conjugate
to de. By our inductive hypothesis, T2n−2 occurs once as a component of
each of kCH(e)↑H and kCH(de)↑

H . Repeating the argument above, T2n−1

occurs once as a component of each of kClH(e) and kClH(de). Suppose
that e is G-conjugate to de. Then Lemma 2.4 implies that S2n−1 occurs
twice as a component kCl(e). Otherwise, Lemma 2.4 implies that S2n−1

occurs once as a component of each of kCl(e) and kCl(de).
If E is dihedral, both e and te are involutions. Then kΩ has two

components that belong to B. Both are isomorphic to S2n−1 . It then
follows from Lemma 2.14 that all irreducible characters in B are real.
On the other hand, if E is semi-dihedral, only e is an involution. Then
kΩ has one component that belongs to B. This component is isomor-
phic to S2n−1 . It then follows from Lemma 2.14 that exactly half the
irreducible characters in B are real.

Modular extended defect group

We prove part (v) of Theorem 1.6. So assume that E is a modular 2-
group i.e. that E = D〈e〉 where e2 = 1 and de = td. Then e and te are
conjugate in E and are the only involutions in E\D. As CD(e) = 〈d2〉,
Theorem 1.3 implies that some B-component of kΩ has vertex 〈d2〉.

Let s be one of the two elements of order 4 in D. Then se and
tse both have order 4. So e and se are involutions in E that are not
conjugate in H. As b has abelian extended defect group Es, our proof
of part (i) of Theorem 1.6 implies that T occurs once as a component

of kCH(e)↑H .
The inverse-image of CH(e) in H is NH〈t, e〉. So T occurs once as a

component of kNH〈t,e〉↑H . As [NH〈t, e〉 : CH(e)] = 2, Lemma 2.3 implies
that T occurs twice as a composition factor of kClH(e). In view of
Lemma 3.3, this accounts for all b-composition factors in kΩH . Now T2

is the only indecomposable b-module that has at most two composition
factors and vertex 〈d2〉. So by the first paragraph, T2 occurs once as a
component of kClH(e). Lemma 2.4 then implies that fT2 occurs once
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as a component of kCl(e). Here fT2 is the Green correspondent of T2

with respect to (G,D,H).
The previous paragraph and Lemma 2.14 imply that b has two real

irreducible characters. So by Lemma 3.2 B also has two real irreducible
characters. So S occurs with multiplicity 2 as a composition factor
of kΩ. In particular the B-component fT2 of kCl(e) has at most 2
composition factors. We deduce from this and Lemma 3.1 that fT2 =
S2. Thus S2 is the unique component of kΩ that belongs to B.

Generalized quaternion extended defect group

We prove part (vi) of Theorem 1.6. So assume that E is a gener-
alized quaternion group i.e. E = D〈e〉 where e2 = t and de = d−1.
Since E does not split over D, Lemma 1.2 implies that kΩB = 0 and
∑

χ∈Irr(B) ε(χ)χ(1) = 0. Since all irreducible characters in B have the
same degree, it follows that B has an equal number of irreducible char-
acters with Frobenius-Schur indicator +1 and −1. The same result
holds for b.

Now b has defect pair (D,E) and E is a dihedral group. We deduce
from part (iii) of Theorem 1.6 that all 2n−1 irreducible characters in
b are real with Frobenius-Schur indicator +1. So the remaining 2n−1

irreducible characters in b are real with Frobenius-Schur indicator −1.
Lemma 3.2 and the previous paragraph show that all irreducible

characters in B are real. We conclude from the first paragraph that
half the irreducible characters in B have Frobenius-Schur indicator +1
and the other half have Frobenius-Schur indicator −1.

4. Type (I) blocks with Klein-four defect group

We will prove Theorem 1.8 in this section. So assume that B is a
real 2-block of G with Klein-four defect group D that is of type (I),
and E is an extended defect group of B that contains D.

Recall the notation of Section 1. From the decomposition matrix
of B, all four irreducible characters in B have the same degree. Set
b := βNG(D). Then b is the Brauer correspondent of B. There is a
unique irreducible kCG(D)-module T0 in β. As CG(D) is the inertial
group of T0 in NG(D), the induced module T := T0↑NG(D) is the unique
irreducible kNG(D)-module in b.

According to [4, VII], the subsections ofB are (π1, b1), (π2, b2), (π3, b3)
and (1, B). Here πi is a 2-element and bi is a 2-block of CG(πi) such
that bGi = B. Moreover, for each i there exists an element ni ∈ G such
that bi = (βni)CG(πi). Each bi has a unique irreducible Brauer character
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ψi, and the generalized decomposition number of each χj with respect
to (πi, ψi) is ±1.

Abelian extended defect group

We prove part (i) of Theorem 1.8. So assume that E ≤ CG(D). Then
β is a real block, by Theorem 1.4. Thus b1, b2 and b3 are real blocks.
We deduce from this and the fact that the generalized decomposition
numbers of B are ±1 that all four irreducible characters in B are real-
valued.

Suppose that E does not split over D. Then Lemma 1.2 implies
that kΩB = 0 and

∑4
i=1 ε(χi)χi(1) = 0. It follows that two of the

irreducible characters in B have Frobenius-Schur indicator +1, while
the other two have Frobenius-Schur indicator −1.

Suppose then that E splits over D. We apply Lemma 2.10 to NG(D)
and its 2-block b. Thus the kNG(D)-module

M :=
∑

i≥0

T ⊗k radi(kD)/radi+1(kD)

is a direct summand of kΩNG(D)b and each of its components has vertex

D. The factors radi(kD)/radi+1(kD) are inflated from CG(D) and T is
induced from a kCG(D)-module. It then follows from Lemma 2.2 that
M ∼= T 4.

Let fT be the kG-module that is the Green correspondent of T with
respect to (G,D,NG(D)). Then fT 4 is a direct summand of kΩB, by
Lemma 2.4. But according to Lemma 2.14, the multiplicity of S as a
composition factor of kΩ is

∑4
i=1 ε(χi) ≤ 4. It follows that ε(χi) = +1,

for i = 1, 2, 3, 4, and also that fT = S and kΩB = S4. Finally, the
O-character of kΩB is 4χ, where χ is the unique irreducible character
in B which takes a positive integer value on each element of D. This
completes the proof of part (i) of Theorem 1.8.

D8 extended defect group

We prove part (ii) of Theorem 1.8. So assume that E ∼= D8. Write
E = 〈s, t, e〉 and D = 〈s, t〉, where s, t and e are involutions, and se = s
and te = st. Then CD(xe) = 〈s〉, for all x ∈ D. So by Theorem 1.3
and Lemma 2.9, every component of kΩB has vertex 〈s〉.

Recall that χB is the G oΣ-character of the lift of B to characteristic
zero. Since (te)2 = s, Lemma 2.13 that

(4)

4
∑

i=1

ε(χi)χi(s) is a positive integer.
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Suppose we are in Case (I)1 of Lemma 1.7. Then s, t and st are
conjugate in G and the subsections of B are (s, b1), (s, b2), (s, b3) and
(1, B). Equation 7.21 of [4] shows that

∑4

i=1
ε(χi)χi(s) = ψ1(s)(ε(χ1) + ε(χ2) − ε(χ3) − ε(χ4))

+ψ2(s)(ε(χ1) − ε(χ2) + ε(χ3) − ε(χ4))

+ψ3(s)(ε(χ1) − ε(χ2) − ε(χ3) + ε(χ4)).

It then follows from (4) that at least two of χ1, χ2, χ3, χ4 are not real-
valued. But every real 2-block has at least one real-valued irreducible
character. So we may assume that χ1 and χ2 are real, while χ3 = χ4.

Suppose we are in Case (I)2 of Lemma 1.7. Then s and t are not
conjugate in G and the subsections of B are (s, b1), (t, b2), (t, b3) and
(1, B). Equation 7.21 of [4] shows that

∑4

i=1
ε(χi)χi(s) = ψ1(s)(ε(χ1) + ε(χ2) − ε(χ3) − ε(χ4))

It then follows from (4) that at least two of the irreducible characters
in B are not real-valued. So just as before we may assume that χ1 and
χ2 are real-valued, while χ3 = χ4.

In either of the above two cases B has two real-valued irreducible
characters and the decomposition matrix of B is a 4× 1-column of 1’s.
It then follows from Lemma 2.14 that S occurs twice as a composition
factor of kΩ. Now S is not a component of kΩ, as it has vertex D.
Thus kΩB is an indecomposable uniserial module U(S, S) whose vertex
is 〈s〉. The O-character of kΩB can be taken to be χ1 + χ2.

Similar arguments show that exactly one of b1, b2, b3 is a real block.
Case (I)3 of Lemma 1.7 does not occur, as t and st are conjugate in

E. This completes the proof of part (ii) of Theorem 1.8.

5. Type (II) and (III) blocks with Klein-four defect group

We will prove Theorems 1.9 and 1.10 in this section. So assume that
B is a real 2-block of G with Klein-four defect group D that is of type
(II) or (III), and E is an extended defect group of B that contains
D. Recall the notation of Section 1. Lemma 1.7 shows that B has
three irreducible modules S, X and Y . In both types we may assume
that S is a self-dual module. It is then clear from the decomposition
matrices given in Lemma 1.7 that χ1 and χ2 are real-valued irreducible
characters. Then ε(χ1) = ε(χ2) = +1, and ε(χi) ≥ 0, for i = 3, 4, by
Lemma 1.5.

Set b = βNG(D). Then b is the Brauer correspondent of B in NG(D).
Now β has a unique irreducible module T0. The inertial group I of
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β in NG(D) equals that of T0, and I/CG(D) is cyclic of order 3. It
follows that T0 has three extensions to I, which we label as SI , XI and
YI. Then S1 := SI↑NG(D), X1 := XI↑NG(D) and Y1 := YI↑NG(D) are the
three irreducible kNG(D)-modules that belong to b. In particular b is
of type (II) or (III). We may assume that SI and S1 are self-dual.

Abelian extended defect group

We prove part (i) of Theorems 1.9 and 1.10. Assume that E ≤
CG(D). We claim that in this case E splits over D. Theorem 1.4
implies that β is a real 2-block of CG(D). So T0 is a self-dual kCG(D)-
module. We may choose notation so that SI is a self-dual kI-module.
Then SI ⊗ U = XI and SI ⊗ U∗ = YI, where U is a non-trivial 1-
dimensional kI/CG(D)-module. In particular Y1 = X∗

1 . So S1 is the
only self-dual irreducible b-module.

Now b is a real block of type (II) or (III), with defect pair (D,E).
Let χ̂1, χ̂2, χ̂3, χ̂4 be the irreducible characters in b, with the notation
chosen so that S1, X1 and Y1 appear in the modular decomposition
of χ̂2, while X appears in the modular decomposition of χ̂3 and Y
appears in the modular decomposition of χ̂4. It is clear that χ̂1 and χ̂2

are real-valued. As Y1 is the dual of X1, the characters χ̂3 and χ̂4 form
a complex conjugate pair.

Let ΦX be the principal indecomposable character corresponding to
X1. Then

ε(ΦX) = ε(χ̂2) + ε(χ̂3) = ε(χ̂2) 6= 0.

So ε(χ̂2) = +1. Similarly ε(ΦY ) = 1 and ε(ΦS) = 2 and ε(χ̂1) = +1. It
then follows from Lemma 2.14 that S1 occurs twice and each of X1 and
Y1 occurs once, as a composition factor of kΩNG(D). We then deduce
from Lemma 1.2 that E splits over D, which proves our claim.

Regard kD as a kNG(D)/CG(D)-module, via the conjugation action
of NG(D) on D. Then

(5) kD/ rad(kD) and rad(kD)/rad2(kD) are trivial NG(D)-modules.

Now by direct calculation, rad(kD)/rad2(kD) ∼= U ⊕U∗, as I/CG(D)-
modules. Moreover, if NG(D)/CG(D) ∼= Σ3, then rad(kD)/rad2(kD) ∼=
U↑NG(D), as kNG(D)/CG(D)-modules. We note also that

SI↑NG(D) ⊗ U↑NG(D) ∼= (SI ⊗ U) ↑NG(D) ⊕ (SI ⊗ U∗) ↑NG(D)

∼= XI↑NG(D) ⊕ YI↑NG(D).

So whether NG(D)/CG(D) ∼= Z3 or Σ3, we have

(6) S1 ⊗ rad(kD)/rad2(kD) ∼= X1 ⊕ Y1.
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In the hypothesis of Lemma 2.10, take the group to be NG(D) and
the block to be b. As S1 is the only self-dual irreducible b-module, we
conclude from (5), (6) and Lemma 2.10 that

S1 ⊕ S1 ⊕X1 ⊕ Y1

is a direct summand of kΩNG(D)b.
Let f be the Green correspondence with respect to (G,D,NG(D)).

Lemma 2.4 and the previous paragraph imply that

(7) fS1 ⊕ fS1 ⊕ fX1 ⊕ fY1 is a direct summand of kΩB.

Now s is not a square in E, as E is an elementary abelian 2-group.
It then follows from Lemma 2.13 that

(8)
4

∑

i=1

ε(χi)χi(s) = 0.

Suppose that B is of type (II). Then (8) and Lemma 1.7 imply that

δψ1(1) (ε(χ1) − ε(χ2) + ε(χ3) + ε(χ4)) = 0.

Thus χ3 = χ4. Considering the decomposition matrix of B, Lemma
2.14 implies that S occurs twice, and both X and Y occur once, as
composition factors of kΩ. It then follows from (7) that fS1 = S, and
fX1 and fY1 are distinct irreducible B-modules, and

kΩB = S ⊕ S ⊕X ⊕ Y.

The character of the lift of kΩB to characteristic zero is 2χ1 + χ3 +
χ4. Notice that χ3 and χ4 are non-real constituents of the involution
module.

Suppose that B is of type (III). Then (8) and Lemma 1.7 imply that

δψ1(1) (ε(χ1) + ε(χ2) − ε(χ3) − ε(χ4)) = 0.

Thus ε(χ3) = ε(χ4) = +1, and hence X and Y are self-dual modules.
Considering the decomposition matrix of B, Lemma 2.14 implies that
S occurs four times, and both X and Y occur twice, as composition
factors of kΩ.

From the structure of the projective indecomposable B-modules,
each indecomposable B-module that is not irreducible contains S as
a composition factor. Now fX∗

1 = fY1, as X∗
1 = Y1. In particular

neither fX1 nor fY1 is irreducible. So both fX1 and fY1 contain S as
a composition factor. It follows from this that S occurs at most two
times as a composition factor of fS1 ⊕ fS1.

Now X is not a direct summand of a permutation module, as it is
not liftable to an RG-module. In particular fS1 6∼= X. We claim that
X is not a submodule of fS1. Suppose otherwise. Then X is also a
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quotient module of fS1, as fS1 and X are self-dual. It follows that X
occurs at least twice as a composition factor of fS1. This is impossible,
as X occurs at most two times as a composition factor of fS1 ⊕ fS1.
Our claim follows. In the same way, Y is not a submodule of fS1.

The previous paragraph implies that S is a submodule of fS1. We
claim that fS1 = S. Suppose otherwise. Then by duality S occurs
at least twice as a composition factor of fS1. This is impossible, as S
occurs at most two times as a composition factor of fS1 ⊕ fS1. Our
claim follows.

We claim that S is not a submodule of fX1. For otherwise there
is a non-projective map in Hom(fS1, fX1). It follows from the Green
correspondence theorem that there is a nonzero homomorphism S1 →
X1. But this is nonsense, as S1 and X1 are non-isomorphic irreducible
NG(D)-modules. This proves our claim. By a similar argument, S is
not a factor module of fX1.

The previous paragraph means that we may choose notation so that
X is a submodule of fY1. Then by duality, X is a factor module of fX1.
This accounts for all occurrences ofX as a composition factor of kΩ. By
exhaustion, Y is a submodule of fX1 and a factor module of fY1. This
accounts for all occurrences of Y as a composition factor of kΩ. We now
know that X = hd(fX1) = soc(fY1) and Y = hd(fY1) = soc(fX1).
We deduce from this that fX1 = U(X,S, Y ) and fY1 = U(Y, S,X).

We have shown that

kΩB = S ⊕ S ⊕ U(X,S, Y ) ⊕ U(Y, S,X).

The O-character of S is χ1. The O-character of U(X,S, Y ) takes a
positive integer value at s. So it must equal χ2. Similarly U(Y, S,X)
has O-character χ2.

D8 extended defect group

We prove part (ii) of Theorems 1.9 and 1.10. So suppose that E ∼=
D8. Then E = D : 〈e〉, where e has order 2, se = s and te = st. Clearly
CD(xe) = 〈s〉, for all x ∈ D. Theorem 1.3 then implies that every
component of kΩB has vertex 〈s〉. Moreover, as s = (te)2, Lemma
2.13 implies that

(9)

4
∑

i=1

ε(χi)χi(s) is a positive integer.

According to [4], there is a unique block b1 of CG(s) such that bG1 =
B. Moreover, b1 has defect group D and extended defect group E. As
s and t are not conjugate in CG(s), the block b1 is of type (I). Let T
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be the unique irreducible b1-module and let ψ1 be the Brauer character
of T . Then kΩCG(s)b1 = U(T, T ), by Theorem 1.8. Lemma 2.4 now
implies that kΩB is the Green correspondent of U(T, T ). In particular
kΩB is indecomposable.

By [2, 6.6.3] the module U(T, T ) is its own Heller translate. As Green
correspondence commutes with Heller translation, it follows that kΩB
is its own Heller translate. So we have a short exact sequence

(10) 0 → kΩB → P → kΩB → 0,

where P is the projective cover of kΩB.
Suppose that B is of type (II). Then (9) and Lemma 1.7 imply that

δψ1(1)(ε(χ1) − ε(χ2) + ε(χ3) + ε(χ4)) is a positive integer.

Thus χ3 and χ4 are real-valued. From Lemma 2.14, and the decompo-
sition matrix of B given in Lemma 1.7, we see that kΩB has two com-
position factors isomorphic to each of S, X and Y . Considering (10),
this shows that P has four composition factors isomorphic to each of S,
X and Y . It follows from this that P is the direct sum of the projective
covers of S,X and Y , and hence hd(kΩB) ∼= rad(kΩB) ∼= S ⊕X ⊕ Y .

Now EndkG(kΩB) is 4-dimensional; the identity map, together with
the projections onto each of the submodules S, X and Y , constitute
a basis. Let χ =

∑4
i=1 niχi be the O-character of kΩB. Then χ(s) =

ψ1(n1−n2+n3+n4) is a positive integer, while n1+n2 = n2+n3 = n2+
n4 = 2. So either n1 = n2 = n3 = n4 = 1 or n1 = n3 = n4 = 2, n2 = 0.
The latter case would imply that EndkG(kΩB) is 12-dimensional. We
conclude that χ = χ1 +χ2 + χ3 +χ4. This completes the proof of part
(ii) of Theorem 1.9.

Suppose that B is of type (III). Then (9) and Lemma 1.7 imply that

δψ1(1)(ε(χ1) + ε(χ2) − ε(χ3) − ε(χ4)) is a positive integer.

Thus χ3 = χ4 and δ = +1. From Lemma 2.14, and the decomposition
matrix of B given in Lemma 1.7, we see that kΩB has two composition
factors isomorphic to S, and one to each of X and Y . Considering (10),
this shows that P has four composition factors isomorphic to S and two
to each of X and Y . It follows from this that P is the projective cover
of S. Thus soc(kΩB) ∼= hd(kΩB) ∼= S, and rad(kΩB)/ soc(kΩB) ∼=
X⊕Y . The character of the lift of kΩB to characteristic zero is χ1+χ2.
This completes the proof of part (ii) of Theorem 1.10.
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